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Abstract

In this paper, we study the semidiscrete approximation for the following initial-boundary value problem
u, (x,t) =u, (x,t) + @-u(0,t)) *¥, —I<x<l, t>0,
u(-1,t)=0, u(l,t)=0, t>0,
u(x,0)=u,(x)>0, —-1<x<I,

where p(X) € CO([—I,I]), symmetric and non decreasing on the interval (-1,0), inf,__, ; p(x) >1and

1
I = E We prove, under suitable conditions on pP(X) and initial datum, that the semidiscrete solution

quenches in a finite time and estimate its semidiscrete quenching time. We also establish the
convergence of the semidiscrete quenching time to the theoretical one when the mesh size tends to zero.
Finally, we give some numerical experiments for a best illustration of our analysis.

Keywords: Semidiscretizations; localized semilinear parabolic equation; semidiscrete quenching time;
convergence.

1. Introduction

We consider the following initial-boundary value problem

u (x,t)=u_(x,t)+@-u(0,t)) *®, —l<x<l, t>0, 1)
u(-1,t)=0, u(l,t)=0, t>0, )
u(x,0)=u,(x)>0, —-l<x<I, (3)
where p(X) CO([—I,I]), symmetric and nondecreasing on the interval (—1,0), inf, ., , p(xX)>1, | =%

and U, (X)is a function which is bounded and symmetric. In addition, U, (X) is nondecreasing on the interval
(-1,0) and Uy (X) +(L—U,(0)) "® >0 on (-1,1).
1.1 Definition
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We say that the classical solution U of (1)-(3) quenches in a finite time if there exists a finite time Tq such that

||u(.,t)||oo <lforte |_O,Tq) but
lim,_; [u(. 0], =1,

Where [u(,t)]_ =max__,,[u(x,t)|. The time T, is called the quenching time of the solution U .

The present problem is connected with the diffusion equation generated by a polarization phenomenon in ionic
conductors, local structures in chemical reactions with heterogeneous catalysis or localization phenomenon that
arise from more sophisticated modelling of biological systems and chemical reaction diffusion processes in which
the reaction takes place only at some local sites (see [4], [14] and the reference therein).

The theoretical analysis of quenching solutions for semilinear parabolic equations has been investigated by many
authors (see [3], [6], [7], [8] and the references cited therein). Local in time existence and the uniqueness of a
classical solution have been proved. But the problem presented in this article has not been treated. In [8], the
authors have considered a semilinear parabolic equation with variable reaction term for the study of the blow-up
phenomenon (we say that a solution blows up in a finite time if it attains the value infinity in a finite time). In our

case, we remark that, if p_ >0, then the reaction term f (X, u(X,t)) = (L—u(0,1)) "™ is continuous in both
variables and locally Lipschitz in the second one. We can deduce, the local in time existence and uniqueness of a
classical solution for any bounded initial datum (see [9]).

This paper concerns the numerical study of the phenomenon of quenching, using a semidiscrete form of the
problem (1)-(3). We obtain some conditions, under which, the solution of a semidiscrete form of (1)-(3) quenches in
a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete
quenching time to the theoretical one when the mesh size tends to zero. One may find in [12] and [13], some results
concerning the numerical approximations of quenching solutions. A similar study has been undertaken in [1] for the
phenomenon of blow-up where the authors have considered the problem (1)-(3) in the case where the reaction term

(@ —u(0,t))"" is replaced by (u(x,t))” with p >1. Inthe same way in [2] the numerical extinction has been

studied using some discrete and semidiscrete schemes (we say that a solution U extincts in a finite time if it reaches
the value zero in a finite time).

Our paper is structured as follows. In the next section, we give some lemmas which will be used throughout the
paper. In the third section, under some hypotheses, we show that the solution of the

semidiscrete problem guenches in a finite time and estimate its semidiscrete quenching time. In the fourth section,
we give a result about the convergence of the semidiscrete quenching time to the theoretical one when the mesh size
goes to zero. Finally, in the last section, we give some numerical results to illustrate our analysis.

2. Properties of the semidiscrete scheme

In this section, we give some lemmas which will be used throughout the paper. Let us begin with the construction
of a semidiscrete scheme. Let | be a positive integer, and consider the grid X; = —l+ih, 0<i<I|, where

h= ZTI . We approximate the solution U of (1)-(3) by the solution Uh(t) — (Uo(t),Ul(t), U, (t))T of the

following semidiscrete equations

dUd—it(t)zazui(t)+(1—uk(t))bi, 1<i<l-1 te(0,T"), @)
Us()=0, U,®=0, te(0T") 5)
U.(0)=p >0, 0<i<lI, ©)

where b; is an approximation of p(x;), 0<i<Il,b,=0,b, =0,b, >0,1<i<|-1land

b =b, 1<i<I-1,b,>b, 1<i<k-1,

i+l —
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I
k is the integer part of the number E ,

Ui, () —2U; (1) +U; 4 (1)

5, (t) = :

,  1<i<Ii-]

?=0,0=0,0_ ,=¢,0<i<1,5¢p,>0,0<i<k-1, 59, :—(Dpflh_(oi,

Here (O,th) is the maximal time interval on which ”Uh(t)”oo <1 where ||Uh(t)||0o =maX ., U, (t)| . When

the time th is finite, then we say that the solution U, (t) of (4)-(6) quenches in a finite time, and the time th is

called the quenching time of the solution U, (t).
The following lemma is a semidiscrete form of the maximum principle.

Lemma 2.1 Let a,(t) € CO([O,T),SR'+1) and let V, (t) € Cl([O,T),SR”l) be such that

dvd+t(t)—52Vi(t)+ak(t)Vk(t)zo, 1<i<1-1, te(0,T), )
V,(t)>0, V,({t)>0, te(0,T), ®)
V,(0)>0, 0<i<lI. )

Then V,(t) >0, 0<i<1,te(0,T).

Proof. Let T, be any quantity satisfying the following inequality T, <T , and let m=min ., o, Vi(t).

since for i €{0,---,1}, V,(t) is a continuous function on the compact [0,T,] . there exists t, [0, T, ]such
that m=V, (t;) for a certain i, € {0,-++,1}. We argue by contradiction. Assume that m < 0. If i, =0 or
i, = |, then we have a contradiction because of (8). For i, € {1, . —1}, it is not hard to see that
dv, (t _ V., (t,) -V, (t, —K
ﬁ:umkﬁo () =V, )so, (10)
dt k

V. () -2V, (t,)+V, ,(t

52Vi0 (to) — I0+1( 0) II:E 0) Io—l( 0) Z o. (11)

Define the vector Z, (t) =e™V, (t) where A is large enough that @, (t,)V, (t,) —Am < 0. Use (10) and (11)

i (t
to obtain # <0 and 5ZZiO (t,) = 0, which implies that

dZ; (t)

e 5°Z, (ty) +e™ (a, (t, )V, (t,) —Am) < 0. (12)
From (7), we obtain the following inequality
dz, (t

dt( o) —8°Z, (t,) +e” (a, (t,)V, (t,) — Am)>0.

Therefore, we have a contradiction because of (12). This ends the proof.

The next lemma is another form of the maximum principle for semidiscrete equations.

Lemma2.2Let f e Cl(iRXER,ER). If U, (t),V, () e Cl([O,T),ER”l) are such that
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d\;t(t) SV () + T (V, (), t)>OIU ®_ SU, 1)+ F (U, (b),1), 1<i<I-1 te(0,T), (13)
Vo) =Uo(1), V,(t)=U, (1), te(0,T), (14)
V,(0)>U,(0), 0<i<I. (15)

Then V, (t) >U, (t), 0<i<1,te(0,T).
Proof. Consider the vector Z, (t) =V, (t) —U, (t) . A direct calculation yields

dz,(t)
dt

Z,(t)=0, Z,(t)=0, te(0,T),

82,0+ ' (0.(1),)Z (1)=0, 1<i<I-1, te(0,T),

Z.(0)>0, 0<i<I,

where 6, is an intermediate value between U, and V, and f " is the partial derivative of f with respect to the

second variable. By hypothesis f e C* then f (6, (t),t) is bounded on (O,T). Apply Lemma 2.1 to complete
the rest of the proof.

The next lemma shows that when i is between 1 and I-1, then U, (t) is positive where U, (t) is the solution of the
semidiscrete problem.

Lemma 2.3 Let U, (t) be the solution of (4)-(6). Then, we have
U,(t)>0, 1<i<I-1.

Proof. Let ¥ = Min_,_, , ¢, and introduce the vector V, defined by V, = ¢ ™*"sin(izh), 0 <i < |, where

A, = %ﬂs(hﬁ) . It is not hard to see that
dlij‘t(t) 5. (t)>dv() SV, (t)=0, 1<i<I-1 te(0,T)

Uy =V, ()=0, U, )=V, (t)=0, te(0,T),
U,(0)>V,(0), 1<i<I-1.

We deduce from Lemma 2.2 that U, (t) > e ™" sin(izh), 0 <i < | . This implies that U, (t) > 0,
1<i<1 -1, and the proof is complete.

The following lemma reveals that the solution U, (t) of the semidiscrete problem is symmetric and & U, (t) is
positive when i is between 1 and k-1.

Lemma 2.4 Let U, be the solution of (4)-(6). Then, we have for t € (O,th)
U_.Mt=U,@),0<i<l, 5'U,(t)>0,0<i<k-1 (16)

Proof. Consider the vector V, defined as follows V, (t) =U, ; (t) for 0 <i < | . For i=0, then we have
V,(t)=U, ,(t)=U, (t) =0, and i=I, then we also have V, (t) =U,_, (t) =U,(t) =0. For
ie {1,---, I —1}, it follows that
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dU(.j_ti(t):ézU” O+@-U, @), 1<i<i-1 te(0T).
If we replace U, ;(t) by V, (t) and use the fact that b, ; =D,, we obtain
av, (1)

S -sV 0 =0-0,0)", 1si<i-1 teQTy)

which implies that V, (t) is a solution of (4)-(6).
Define the vector W, (t) such that W, (t) =U, (t) =V, (t) . We observe that

aw, (t)
dt

W,(1)=0, W,(t)=0, te(0,T"),

SW. (1) =0, 1<i<I-1, te(O,th),

W, (0)=0, 0<i<lI.

From Lemma 2.1, it follows that
W,(t)=0for 0<i<I,te(0T"),
which implies that V, (t) =U, (t) .

Now, define the vector Z, (t) such that
Z,(t)=U_,t)-U,(t), 0<i<k-1,

and let t,be the first t > O such that Z, (t) >0 for t [0,t, ) but Z; (t;) = 0. Without loss of the generality,
we assume that i, is the smallest integer such that Z; (t;) =0.1f i; =0 then we have U, (t,) =U,(t;) =0,

which is a contradiction because from Lemma 2.3. U, (t,) > 0. It is easy to check that

dz. (t Z (t)-Z. (t,—k

9, t) _ im,_, o (o) =2, (& )so, if 1<i, <k-1. (17)
dt k

We observe that

dz, (t,) . i

Lt 577, (1) = 0-U, ()™ AU, )™

Use the mean value theorem to obtain

dz, (t,) , _.,0

T_5 Zi0 (to) = (biO _bio+1)(1_Uk(tO)) In(l_Uk(to)):

where |i0 is an intermediate value between the exponents bi0+1

In(1-U, (t,)) <0, which implies that

0z, (t,)
t

and b, . Since b, <b , and

~5°Z, (t,)20.

A direct calculation yields

dz, (t,) . Ui 2 (t)—U; () . U, .2 (t) -V, ()
at h? - h?2 '
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For i, e{L---,k—Z},we obtain
dz, (t,) S Z; 4(t) 20
dt h?

which is a contradiction because of (17).

7

If i0 =Kk —1, use the fact that the semidiscrete solution U IS symmetric and since k is the integer part of the

I
Number 5 we have either U, (t)=U, ;(t) or U, ,(t)=U,(t). In both cases, we find that

dzk—l(to) > Uk+l(t0)_Uk(tO) -0.
dt h?

We have a contradiction because of (17) and the proof is complete.

The following lemma is the discrete version of the Green's formula.
Lemma 2.5 Let U,,V, € R'™ be two vectorssuch that U, =0, U, =0, V, =0, V, =0. Then, we have

1 1
hU,8%V, =>» hv,5°U,. (18)

i=1 i=1

Proof. A routine calculation yields

V|U 1-1 -U |V|—1 +V0U1 _Uovl
h 1

and using the assumptions of the lemma, we obtain the desired result.

-1 -1
hU,8%V, => hVv,5°U, +

i=1 i=1

Now, let us state a result on the operator 52,

Lemma 2.6 Let U, € R'™ be such that ||U h”oo <landlet B be apositive constant. Then, we have

S*(A-U,)”" = pA-U,)"'5%U, for 1<i<I-1.

Proof. Using Taylor's expansion, we get

_Ui)Z ﬁ(égh‘;l) (1_9i)—ﬂ—2 +(Ui—1 _Ui)Z ﬂ(zﬂhjl)

if 1<i<1-1, where 6, is an intermediate value between U, and U,,,, 7, the one between U, and U, .

§2(1-U)7 = fL-U) 16U, + U,y (L-m)""

The result follows taking into account the fact that|U, | <1.

To end this section, let us give another property of the operator o2

Lemma2.7Let U,,V, e R'*.If
5°U)5" (V)= 0and 5 (U)5 (V)>0,1<i<1 -1, 19)
Then 82(UV,) >U,62(V,) +V.62(U,), 1<i<I -1,

U

where 5+(Ui):”1T_Ui and 0 (U,) :u

h
Proof. A straightforward computation yields
h®s* UV)=Up Vi, -2UV, +U, Vi,

i+l
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h252(UiVi):(Ui+1
+U, —UDV, -V)+V U, —U)+U (VL V) +UV 1<i <) -1,

UV, V) +Vi U, -U)+U;(V,,, -V)) +UV, 20UV,

which implies that
S°(UV)=U.6%(V,)+V.6*U,)+57U,)d" (V) +5 (U)o (), 1<i<I-1.
Using (19), we obtain the desired result.

3. Quenching solutions

In this section, we show that under some assumptions, the solution U, of (4)-(6) quenches in a finite time and
estimate its semidiscrete quenching time.

Theorem 3.1 Let U, be the solution of (4)-(6) and assume that there exists a constant A € (0,1] such that the
initial datum at (6) satisfies

5’p +(L—@) ™ > Asin(zih)1-¢,)™, 0<i<I, (20)
and
27 by +1
1-—————(1- >0, 21
26ap el @

Then, the solution U, quenches in a finite time th and we have the following estimate

2 2
Th< __| 1_— _ by +1 )

Proof. Let (O,th) be the maximal time interval on which ||Uh (t)”oc <1. To prove the finite time quenching, we

consider the function J, (t) defined as follows

du, (t)
dt

) =—_c(a-u,@m)™, o<i<l,

2—2cos(hx)
2

where C, (t) = Ae ™ sin(ih ), with A, = . A straightforward computation reveals that

&), -5%), = E(di— U,)-(1-U, )-b ac,
dt dt * dt

From Lemmas 2.6 and 2.7, the last term on the right hand side of the equality 5*(C,(1-U,)™) is bounded from

below by (1-U,)™°C, +b, (1-U,) ™ C.6°U, duetothe fact §*(1-U,)*5°C, and 5 (1-U,) ™5 C,

are nonnegative because the results of Lemma 2.4 hold for U, (t) and C, (t) . We deduce that

Ly5%(C,-U)™), 1<i<] -1,

du,
(1-uH)"t—t
he,-U) dt

D523, i(di—mn 1-U)* (& _sicy-be a-uy @Yo s, 1<i<i-1.
dt dt dt

. e, o, .
Using (4) and the factthatF—é' C, =0, we find that

@, SN

d——5J >b (1-U,)™ -b@-U,)"C,-u)™, 1<i<i-1,
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L
dt
%—ﬁi >h (1-U,)" ™", +b(1-U) " (C, @-U, )™ -C,(1-U)™), 1<i<I-1,

5. >b(1-U)""'J, +C (1-U,)*)-b@1-U)""C(1-U )™, 1<i<I-1,

From Lemma 2.4, U, >U,. We remark that C, > C.. Since b, >b, for 1<i <k —1. We deduce that

aJ;

Lm0t Eb-U) M dsi< - ().

It is not hard to see that J,(t) =0, J, (t) =0 and the relation (20) implies that J, (0) > 0. It follows from
Lemma 2.1 that J, (t) > O, which implies that

% >C(A-U;») ", 0<i<l, te(OTy).

h2
Using Taylor's expansion, we find that cos(hz) >1— 7° > which implies that 4, < 7°. Obviously

sin(khz) > % We deduce that

dU A —z? —by h
Sz oe T U)™, teOT))

This inequality can be rewritten as

(1-U,)*duU, zge-”ztdt, te(0,T,)). (22)

A simple integration of the inequality (22) over (O,th) yields

Al-e ) _@-U, )"

2r* b, +1
which implies that
2h 2
T 21—L(1—uk(0))bk*l.
A(b, +1)

By using the inequality (21), we obtain

27°

m(l—”(l’h”w) ).

1
h
Tq < —? In(l—

We have the desired result.
Remark Therefore by integrating the inequality (22) over interval (to,th) , we have

27°

ab S C L.

1
h
Tq _tO < —? In(l—

The Remark 3.1 is crucial to prove the convergence of the semidiscrete quenching time.
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4. Convergence of semidiscrete quenching times

In this section, under adequate hypotheses, we show the convergence of the semidiscrete quenching time to the
theoretical one when the mesh size goes to zero. We denote by

Uy (£) = (U(Xo, 1), u(x, 1), Py = (P(%), -+, P(%,))" and by, = (g, -+, b;)" .
In order to prove this result, firstly, we need the following theorem.

Theorem 4.1 Assume that (1)-(3) has a solution u € C**([-1,1]x[0,T —z]) such that

SUP o7 u(.,t)||w =a <1lwith 7 € (O,T). Suppose that the initial datum at (6) and the exponent at (4)
satisfy respectively

||¢)h —-u, (O)||O0 =0(2) and ||bh — ph”@ =0(1) as h— 0. (23)
Then, for h sufficiently small, the problem (4)-(6) has a unique solution U, € Cl([O,th ], iR”l) such that

maX

U, @) —u, @) =0O(e, —u, )] +[b, —p,|, +h) as h—0.

0<t<T—7

Proof. LetK, L and M be positive constants such that

||Uxx3x||m <K.b, (1_%)-bh—1 <M. |a-u, @)™ -, ©) < L. (24)

The problem (4)-(6) has for each h, a unique solution U, Cl([O,th ], 9%”1). Let t(h) < min {F - ’Z',th } be
the greatest value of t > 0. There exists a positive real £ (with & <  <1) such that

U, @ -u, @), < p ;“ for te(0,t(h)). (25)

From (23), we deduce that t(h) > O for h sufficiently small. By the triangle inequality, we obtain

U, @), <[u., +|U,®) —u, @), for te(0,t(h)),

which implies that

U, . Sa+ﬂ;a:ﬂ;a<lfor te(0.t(h)). (26)
Let e, (t) =U, (t) —u, (t) be the error of discretization. Using Taylor's expansion, we have for t € (O,t(h)),
B )=, (R0 0, Fo)+h0-6) 6 - POk, -1t ), 111

where &, is an intermediate value between U, (t) and u(X,,t) and I. the one between the exponents b, and

P(X;) . Using (24) and (26), we arrive at

%_ﬁei(t) <Mle )]+ L|b, - py[, +Kh, 1<i<1-1. @7

Let z, (t) the vector defined by

z,(t) =e™ (g, —u, ). +L[b, - py,|. +Kh), 0<i<I.

A direct calculation yields
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dz(;ft)_(gzzi(t)> M|z, (1) +L|b, - p, [, +Kh, 1<i <11, te(0,t(h)),

Z,(t) > €, (1), z,(t) > e, (t), te(0t(h)),
z,(0)>e (0),0<i<I.

It follows from Lemma 2.2 that z, (t) > e, (t) for t € (O,t(h)), 0 <i< 1. By the same reasoning, we also prove
that z; (t) > —e,(t) fort e (O,t(h)), 0<i <1, which implies that

z,(t) > e, ()], 0<i<1, te(0t(h)).
We deduce that
U, @®-u, @] <e™(lp, —u, ()] +L]o, — p,|. +Kh), te(0t(h)).

In order to show that t(h) = min{T — Z',th } we argue by contradiction. Suppose that t(h) < min {F — T,th }
From (25), we obtain

P22 < U, ) -u, ), <™ (o, ~u, ), +Llb, — Pl + KN). te @), @9

-

We remark that when h tends to zero, <0, which is impossible. Consequentlyt(h) = min{l’ —T,th }

Let us show that t(h) =T — 7. Suppose that t(h) = th <T —7. Arguing as above, we obtain a contradiction,
which leads us to the desired result.

Now, we prove the main result of this section, the convergence of the quenching time.

Theorem 4.2 Suppose that the problem (1)-(3) has a solution U which quenches in a finite time Tq such that
ue C3‘1([— l, I]x [O,Tq]) and the initial datum at (6) and the exponent at (4) satisfy the hypothesis (23). Under

the assumptions of Theorem 3.1, the problem (4)-(6) has a solution U, which quenches in a finite time th and

; h
lim,_, T, =T,.

T
.Proof.Let 0 < ¢ < > There exists ¥ = f—a (with 0 < < £ <1) such that

1 27°
-—In(1

77, b, +1 &
——e ‘(l-y)*)<- f 1-71). 29
20 g @Sy fryell-rd) 29)

Since lim,_;. Jlu(. b =1, there exist T, <T, and ‘Tq —T1‘<§ such that 1> [u(.,t)[_ 21—% for

te l'l'l,Tq ) From Theorem 4.1, the problem (4)-(6) has for h sufficiently small, the unigue solution U (t) such

T +Tq

that ||Uh (t)-u, (t)||0o <% fort e [O,Tz] where T, = . Using the triangle inequality, we get

U, @[, =ue v, -Ju,®-u,®|. z.l-%-% for t e [T,,T,],

which implies that

||Uh(t)||oo >1-yforte [Tl,Tz].
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From Theorem 3.1, U, (t) quenches at time th . Using inequality (29) and the Remark 3.1, we arrive at

2 2 7rT1 by +1
Ty T\_ |n(1—A(b 3 AU, (m)]) )<

it follows that
T =Ty < [T =T+ [T, T, s%+% e

This complete the proof.
5. Numerical results

In this section, we present some numerical approximations to the quenching time of the problem (1)-(3) in the case
where U,(X) =0 and

0 if XG{—E,E};
2 2

p(x) =
2+ 1 it XG(—E,E}
1+|x| 2'2

Firstly, we consider the following explicit scheme

Ui(n+1) _Ui(n) U(n) 2U i(ﬂ) +Ui(fl)

i+1

At h?

+(1-UM™ 1<i<i -1,

U =0 U =0,

Uu®=0,0<i<l,
and secondly, we use the following implicit scheme

(n+1) (n) (n+1) (n+1) (n+1)
Ui U Ui -0 +UE
At h?

+(1-UM™ 1<i< -1,

n

Uén+1) =0, U|(n+1) :O,

u®=0,0<i<lI,

for 1I<i<1-1, At =h*(l-

where n >0, k:IE, b, =2+

n b +1 e H h2

nll )X, At = ming—, At
1+ || @ 2
n-1

and T" = ZA'[J- . In the following tables, in rows, we present the numerical quenching times, the numbers of
iterations, (J:TDOU times and the orders of the approximations corresponding to meshes of 16, 32, 64, 128, 256. The
numerical quenching time T" = nz_iAtj is computed at the first time when At =‘T"+l —
order(s) of the method is computed i‘:c.;m

— Iog((TAh - T2h )/(Tzh - Th ))
) log(2)
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Table 1: Numerical quenching times, numbers of iterations, CPU times (seconds) and orders of the approximations
obtained with the explicit Euler method

| " n CPUtime | s

16 0.809359 | 2657 - -

32 0.810080 | 10299

64 0.810269 | 39820 2 1.93
128 | 0.810317 | 153904 | 9 1.97
256 | 0.810329 | 592219 | 66 2.00

Table 2: Numerical quenching times, numbers of iterations, CPU times (seconds) and orders of the approximations
obtained with the explicit Euler method

| TN n CPUtime | s

16 0.821012 | 2636

32 0.812994 | 10194

64 0.810997 | 3937 1 2.01
128 | 0.810499 | 151904 | 10 2.00
256 | 0.810374 | 585059 | 74 1.99

In the following, we also give some plots to illustrate our analysis. For the different plots, we used both explicit and

implicit schemes in the case where 1=16. In figures 1 and 2 we can appreciate that the discrete solution is
nondecreasing and reaches the value one at the middle node. In figures 3 and 4 we see that the approximation of

u(x,T) is nondecreasing and reaches the value one at the middle node. Here, T is the quenching time of the
solution $u$. In figures 5 and 6 we observe that the approximation of ||u(.,t)||oo is also nondecreasing and reaches

the value one at the time t =~ 0.81.
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Figure 1: Evolution of the discrete solution(Explicit scheme)  Figure 2: Evolution of the discrete solution(Implicit scheme)
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Figure 3: Profil of the approximation of U(X, T) Figure 4: Profil of the approximation of U(X,T)
where, T is the quenching time (Explicit scheme) where, T is the quenching time (Implicit scheme)
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Figure 5: Profil of the approximation of ||u(.,t)||w Figure 6: Profil of the approximation of ||u (.,t)”w
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Figure 7: Graph of U against P(X), T is the quenching Figure 8: Graph of U against P(X), T is the quenching
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