
                                                                                         Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                            

ISSN: 2395-0218    

 
Volume 4, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm                                                  372|  

 
SCITECH                                                                        Volume 4, Issue 3    

RESEARCH ORGANISATION|                   Published online: July 23, 2015| 

Journal of Progressive Research in Mathematics 

www.scitecresearch.com/journals  

Numerical Quenching solutions of Localized Semilinear 

Parabolic Equation with a Variable Reaction 

N’guessan Koff
1 
and Diabate Nabongo

2
 

1 
UFR SED,

 
Alassane Ouattara University of Bouake, 02 BP 801 Abidjan 02 (Côte d'Ivoire), 

nkrasoft@yahoo.fr. 
2
 UFR SED,

 
Alassane Ouattara University of Bouake, 16 BP 372 Abidjan 16 (Côte d'Ivoire), 

nabongo_diabate@yahoo.fr. 

 

Abstract  

In this paper, we study the semidiscrete approximation for the following initial-boundary value problem 
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where  ),()( 0 llCxp  , symmetric and non decreasing on the interval )0,( l , 1)(inf )0,(  xplx and 

2

1
l . We prove, under suitable conditions on )(xp  and initial datum, that the semidiscrete solution 

quenches in a finite time and estimate its semidiscrete quenching time. We also establish the 
convergence of the semidiscrete quenching time to the theoretical one when the mesh size tends to zero. 
Finally, we give some numerical experiments for a best illustration of our analysis. 
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1. Introduction 

We consider the following initial-boundary value problem 

,0,,)),0(1(),(),( )(   tlxltutxutxu xp

xxt                                                                         (1) 

,0,0),(,0),(  ttlutlu                                                                                                                      (2) 

,,0)()0,( 0 lxlxuxu                                                                                                                        (3) 

where  ),()( 0 llCxp  , symmetric and nondecreasing on the interval )0,( l , 1)(inf )0,(  xplx , 
2

1
l  

and )(0 xu is a function which is bounded and symmetric. In addition, )(0 xu  is nondecreasing on the interval 

)0,( l  and 0))0(1()( )(

0

''

0   xpuxu  on ),( ll . 

1.1 Definition 

http://www.scitecresearch.com/journals


                                                                                         Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                            

ISSN: 2395-0218    

 
Volume 4, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm                                                  373|  

We say that the classical solution u  of (1)-(3) quenches in a finite time if there exists a finite time qT  such that 

1)(., 


tu  for  
qTt ,0  but 

1)(.,lim 
 tu

qTt , 

Where ),(max)(., txutu lxl 
 . The time qT is called the quenching time of the solution u . 

The present problem is connected with the diffusion equation generated by a polarization phenomenon in ionic 

conductors, local structures in chemical reactions with heterogeneous catalysis or localization phenomenon that 

arise from more sophisticated modelling of biological systems and chemical reaction diffusion processes in which 

the reaction takes place only at some local sites (see [4], [14] and the reference therein). 

The theoretical analysis of quenching solutions for semilinear parabolic equations has been investigated by many 

authors (see [3], [6], [7], [8] and the references cited therein). Local in time existence and the uniqueness of a 

classical solution have been proved. But the problem presented in this article has not been treated. In [8], the 

authors have considered a semilinear parabolic equation with variable reaction term for the study of the blow-up 

phenomenon (we say that a solution blows up in a finite time if it attains the value infinity in a finite time). In our 

case, we remark that, if 0p , then the reaction term 
)()),0(1()),(,( xptutxuxf  is continuous in both 

variables and locally Lipschitz in the second one. We can deduce, the local in time existence and uniqueness of a 

classical solution for any bounded initial datum (see [9]). 

This paper concerns the numerical study of the phenomenon of quenching, using a semidiscrete form of the 

problem (1)-(3). We obtain some conditions, under which, the solution of a semidiscrete form of (1)-(3) quenches in 

a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete 

quenching time to the theoretical one when the mesh size tends to zero. One may find in [12] and [13], some results 

concerning the numerical approximations of quenching solutions. A similar study has been undertaken in [1] for the 

phenomenon of blow-up where the authors have considered the problem (1)-(3) in the case where the reaction term 
ptu  )),0(1(  is replaced by 

ptxu )),((  with 1p . In the same way in [2] the numerical extinction has been 

studied using some discrete and semidiscrete schemes (we say that a solution u  extincts in a finite time if it reaches 

the value zero in a finite time). 

Our paper is structured as follows. In the next section, we give some lemmas which will be used throughout the 

paper. In the third section, under some hypotheses, we show that the solution of the 

semidiscrete problem quenches in a finite time and estimate its semidiscrete quenching time. In the fourth section, 

we give a result about the convergence of the semidiscrete quenching time to the theoretical one when the mesh size 

goes to zero. Finally, in the last section, we give some numerical results to illustrate our analysis. 

2. Properties of the semidiscrete scheme 

In this section, we give some lemmas which will be used throughout  the paper. Let us begin with the construction 

of a semidiscrete scheme. Let I be a positive integer, and consider the grid ihlxi  , Ii 0 , where 

I

l
h

2
 . We approximate the solution u  of (1)-(3) by the solution  TIh tUtUtUtU )(),(),()( 10  of the 

following semidiscrete equations  

 h

q

b

ki
i TtIitUtU

dt

tdU
i ,0,11,))(1()(

)( 2 
 ,                                                                 (4) 

 h

qI TttUtU ,0,0)(,0)(0  ,                                                                                                               (5) 

,0,0)0( IiU ii                                                                                                                                 (6) 

where ib  is an approximation of )( ixp , Ii 0 , 00 b , 0Ib , 0ib , 11  Ii and  

iiI bb  , 11  Ii , ii bb 1 , 11  ki , 
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k is the integer part of the number  
2

I
, 

,
)()(2)(

)(
2

112

h

tUtUtU
tU iii

i
 

        ,11  Ii  

00  , 0I , iiI   , Ii 0 , 0

i , 10  ki , 
h

ii

i





  1

. 

Here  h

qT,0  is the maximal time interval on which 1)( 


tU h  where )(max)( 0 tUtU iIih 
 . When 

the time 
h

qT  is finite, then we say that the solution )(tU h  of (4)-(6) quenches in a finite time, and the time 
h

qT  is 

called the quenching time of the solution )(tU h . 

The following lemma is a semidiscrete form of the maximum principle. 

Lemma 2.1  Let   10 ,,0)(  I

h TCta  and  let   11 ,,0)(  I

h TCtV  be such that 

 TtIitVtatV
dt

tdV
kki

i ,0,11,0)()()(
)( 2  ,                                                                   (7) 

 TttVtV I ,0,0)(,0)(0  ,                                                                                                                   (8) 

.0,0)0( IiVi                                                                                                                                            (9) 

Then 0)( tVi , Ii 0 ,  Tt ,0 . 

Proof. Let 0T  be any quantity satisfying the following inequality TT 0 , and let )(min
00,0 tVm iTtIi  . 

Since for  Ii ,,0 , )(tVi  is a continuous function on the compact  0,0 T  , there exists  00 ,0 Tt  such  

that )( 00
tVm i  for a certain  Ii ,,00  . We argue by contradiction. Assume that 0m . If 00 i  or 

Ii 0 , then we have a contradiction because of (8). For  1,,10  Ii  , it is not hard to see that 

0
)()(

lim
)( 00

0

0 000 


 
k

ktVtV

dt

tdV ii

k

i
,                                                                                                 (10) 

.0
)()(2)(

)(
2

01001

0

2 000

0







h

tVtVtV
tV

iii

i                                                                                                            (11) 

Define the vector )()( tVetZ h

t

h

  where   is large enough that 0)()( 00  mtVta kk  . Use (10) and (11) 

to obtain 0
)( 00 

dt

tdZ i
 and 0)( 0

2

0
tZ i , which implies that  

  0)()()(
)(

000

20
0

0

0  mtVtaetZ
dt

tdZ
kk

t

i

i
 

.                                                                                   (12) 

From (7), we obtain the following inequality 

  0)()()(
)(

000

20
0

0

0  mtVtaetZ
dt

tdZ
kk

t

i

i
 

. 

Therefore, we have a contradiction because of (12). This ends the proof.      

The next lemma is another form of the maximum principle for semidiscrete equations. 

Lemma 2.2 Let   ,1Cf . If   11 ,,0)(),(  I

hh TCtVtU  are such that 
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 TtIittUftU
dt

tdU
ttVftV

dt

tdV
ki

i
ki

i ,0,11),),(()(
)(

)),(()(
)( 22   ,                  (13) 

 TttUtVtUtV II ,0),()(),()( 00  ,                                                                                                     (14) 

.0),0()0( IiUV ii                                                                                                                                     (15) 

Then )()( tUtV ii  , Ii 0 ,  Tt ,0 . 

Proof. Consider the vector )()()( tUtVtZ hhh  . A direct calculation yields 

 TtIitZttftZ
dt

tdZ
kki

i ,0,11,0)()),(()(
)( '2   ,                     

 TttZtZ I ,0,0)(,0)(0   ,                                                                                                                             

IiZi  0,0)0( ,                                                                                                                                                

where k is an intermediate value between kU  and kV  and  
'f  is the partial derivative of  f with respect to the 

second variable. By hypothesis 
1Cf   then )),((' ttf k is bounded on  T,0 . Apply Lemma 2.1 to complete 

the rest of the proof.  

The next lemma shows that when i is between 1 and I-1, then )(tU i is positive where )(tU h  is the solution of the 

semidiscrete problem. 

Lemma 2.3 Let )(tU h  be the solution of (4)-(6). Then, we have 

0)( tUi ,  11  Ii . 

Proof. Let iIi  11min  and introduce the vector hV  defined by )sin( hieV
t

i
h  

 , Ii 0 , where 

2

)cos(22

h

h
h





  . It is not hard to see that 

0)(
)(

)(
)( 22  tV

dt

tdV
tU

dt

tdU
i

i

i

i  ,   TtIi ,0,11                   

 TttVtUtVtU II ,0,0)()(,0)()( 00  ,                                                                                                            

11),0()0(  IiVU ii  .                                                                                                                                    

We deduce from Lemma 2.2 that )sin()( hietU
t

i
h  

 , Ii 0 . This implies that 0)( tU i , 

11  Ii , and the proof is complete. 

The following lemma reveals that the solution )(tU h of the semidiscrete problem is symmetric and )(tU i

  is 

positive when i is between 1 and k-1. 

Lemma 2.4 Let hU  be the solution of (4)-(6). Then, we have for  h

qTt ,0  

)()( tUtU iiI  , Ii 0 ,  0)(  tU i , 10  ki .                                                                            (16) 

Proof. Consider the vector hV defined as follows )()( tUtV iIi  for Ii 0 . For i=0, then we have 

0)()()( 00   tUtUtV II , and i=I, then we also have 0)()()( 0   tUtUtV III . For 

 1,,1  Ii  , it follows that 
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 h

q

b

kiI
iI TtIitUtU

dt

tdU
iI ,0,11,))(1()(

)( 2  


  . 

If  we replace )(tU iI  by )(tVi  and use the fact that iiI bb  , we obtain 

 ,,0,11,))(1()(
)( 2 h

q

b

ki
i TtIitUtV

dt

tdV
i 

  

which implies that )(tVh  is a solution of (4)-(6). 

Define the vector )(tWh  such that )()()( tVtUtW hhh  . We observe that 

0)(
)( 2  tW

dt

tdW
i

i  ,   h

qTtIi ,0,11  ,                 

 h

qI TttWtW ,0,0)(,0)(0  ,                                                                                                            

IiWi  0,0)0( . 

 From Lemma 2.1, it follows that  

0)( tWi  for  Ii 0 ,  h

qTt ,0 , 

which implies that )()( tUtV hh  . 

Now, define the vector )(tZ h  such that  

)()()( 1 tUtUtZ iii   , 10  ki , 

and let 0t be the first 0t  such that 0)( tZ i  for  0,0 tt  but 0)( 00
tZ i . Without loss of the generality, 

we assume that 0i  is the smallest integer such that 0)( 00
tZ i . If 00 i  then we have 0)()( 0001  tUtU , 

which is a contradiction because from Lemma 2.3. 0)( 01 tU . It is easy to check that    

0
)()(

lim
)( 00

0

0 000 


 
k

ktZtZ

dt

tdZ ii

k

i
,   if  11 0  ki .                                                               (17) 

We observe that 

010

0

0 ))(1())(1()(
)(

000

20 ii b

k

b

ki

i
tUtUtZ

dt

tdZ 
  . 

Use the mean value theorem to obtain             

))(1ln())(1)(()(
)(

0010

20
0

000

0 tUtUbbtZ
dt

tdZ
k

l

kiii

i i 


 ,                                                                               

where 
0i

l  is an intermediate value between the exponents 10ib  and 
0i

b . Since 100  ii bb  and 

0))(1ln( 0  tU k , which implies that 

 0)(
)(

0

20

0

0  tZ
dt

tdZ
i

i
 . 

A direct calculation yields                                                                                                                                  

2

0102

2

01020 )()()()()(
00000

h

tUtU

h

tUtU

dt

tdZ iiiii  
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For  2,,10  ki  , we obtain  

0
)()(

2

010 00 


h

tZ

dt

tdZ ii
, 

which is a contradiction because of  (17). 

If  10  ki , use the fact that  the semidiscrete solution hU   is symmetric and since k is the integer part of  the 

Number 
2

I
 , we have either )()( 11 tUtU kk    or )()(1 tUtU kk  . In both cases, we find that 

0
)()()(

2

00101 


 

h

tUtU

dt

tdZ kkk
. 

We have a contradiction because of  (17) and the proof  is complete. 

The following lemma is the discrete version of the Green's formula. 

Lemma 2.5 Let  
1,  I

hh VU  be two vectors such that 00 U , 0IU , 00 V , 0IV . Then, we have 

i

I

i

ii

I

i

i UhVVhU 2
1

1

2
1

1

 








 .                                                                                                                               (18) 

Proof. A routine calculation yields  

h

VUUVVUUV
UhVVhU IIII

i

I

i

ii

I

i

i
1010112

1

1

2
1

1


 









  , 

and using the assumptions of the lemma, we obtain the desired result.  

Now, let us state a result on the operator  
2 . 

Lemma 2.6 Let  
1 I

hU  be such that 1
hU  and let   be a positive constant. Then, we have 

iii UUU 212 )1()1(      for  11  Ii . 

Proof. Using Taylor's expansion, we get 

2

2

2

1

2

2

2

1

212 )1(
2

)1(
)()1(

2

)1(
)()1()1( 







 





  





 iiiiiiiii
h

UU
h

UUUUU  

if  11  Ii ,  where i  is an intermediate value between iU  and 1iU , i  the one between iU  and 1iU . 

The result follows taking into account the fact that 1
hU .  

To end this section, let us give another property of the operator
2 . 

Lemma 2.7 Let  
1,  I

hh VU . If  

0)()( 

ii VU   and 0)()( 

ii VU  , 11  Ii ,                                                                          (19) 

Then )()()( 222

iiiiii UVVUVU   ,  11  Ii , 

where 
h

UU
U ii

i


  1)(  and  

h

UU
U ii

i


  1)( . 

Proof. A straightforward computation yields 

1111

22 2)(   iiiiiiii VUVUVUVUh   
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iiiiiiiiiiiiiiii VUVUVVUUUVVVUUVUh 2)()())(()( 1111

22    

iiiiiiiiiiii VUVVUUUVVVUU   )()())(( 1111 , 11  Ii , 

which implies that 

)()()()()()()( 222

iiiiiiiiii VUVUUVVUVU    , 11  Ii . 

Using (19), we obtain the desired result. 

3. Quenching solutions 

In this section, we show that under some assumptions, the solution hU  of (4)-(6) quenches in a finite time and 

estimate its semidiscrete quenching time. 

Theorem 3.1 Let hU  be the solution of (4)-(6) and assume that there exists a constant  1,0A  such that the 

initial datum at (6) satisfies 

ii b

i

b

ii ihA


 )1)(sin()1(2  ,  Ii 0 ,                                                                                  (20) 

and  

0)1(
)1(

2
1

1
2









kb

h

kbA



.                                                                                                                         (21) 

Then, the solution hU  quenches in a finite time 
h

qT  and we have the following estimate   

))1(
)1(

2
1ln(

1 1
2

2







 kb

h

k

h

q
bA

T 



. 

Proof. Let  h

qT,0  be the maximal time interval on which 1)( 


tUh . To prove the finite time quenching, we 

consider the function )(tJ h  defined as follows  

,0,))(1)((
)(

)( IitUtC
dt

tdU
tJ ib

ii
i

i 


 

where )sin()( 
ihAetC

t

i
h

 , with 
2

)cos(22

h

h
h





 . A straightforward computation  reveals  that 

11),)1(()1()1()( 2122 


IiUC
dt

dU
UCb

dt

dC
UU

dt

dU

dt

d
J

dt

dJ
iii b

ii
ib

iii
ib

ii
i

i
i  . 

From Lemmas 2.6 and 2.7, the last term on the right hand side of the equality ))1((2 ib

ii UC


   is bounded from 

below by ii

b

iii

b

i UCUbCU ii 212 )1()1(  
  due to the fact i

b

i CU i    )1(  and  i

b

i CU i    )1(  

are nonnegative because the results of Lemma 2.4 hold for )(tU h   and  )(tCh . We deduce that 

11),()1()()1()( 21222 


IiU
dt

dU
UCbC

dt

dC
UU

dt

dU

dt

d
J

dt

dJ
i

ib

iiii
ib

ii
i

i
i ii  . 

Using (4) and the fact that 02  i

i C
dt

dC
 , we find that 

11,)1()1()1(
112 


IiUCUb

dt

dU
UbJ

dt

dJ
iii b

ki

b

ki
kb

kii
i  , 



                                                                                         Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                            

ISSN: 2395-0218    

 
Volume 4, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm                                                  379|  

11,)1()1())1(()1(
112 


IiUCUbUCJUbJ

dt

dJ
iiki b

ki

b

ii

b

kkk

b

kii
i  , 

11),)1()1(()1()1(
112 


IiUCUCUbJUbJ

dt

dJ
ikii b

ki

b

kk

b

kik

b

kii
i  , 

From Lemma 2.4, ik UU  . We remark that  ik CC  . Since  ik bb   for 11  ki . We deduce that 

k

b

kii

i JUbJ
dt

dJ
i 12 )1(


 , 11  Ii ,  h

qT,0 . 

It is not hard to see that 0)(0 tJ , 0)( tJ I  and the relation (20) implies that 0)0( hJ . It follows from 

Lemma 2.1 that 0)( tJ h , which implies that 

),0(,0,))(1)((
)( h

q

b

ii
i TtIitUtC

dt

tdU
i 


. 

Using Taylor's expansion, we find that 
2

1)cos(
2

2 h
h   , which implies that 

2 h . Obviously 

2

1
)sin( kh . We deduce that  

).,0(,)1(
2

2 h

q

b

k

tk TtUe
A

dt

dU
k 


 

This inequality can be rewritten as 

),0(,
2

)1(
2 h

q

t

k

b

k Ttdte
A

dUU k  
.                                                                                                     (22) 

A simple integration of the inequality (22) over ),0( h

qT  yields 

1

))0(1(

2

)1(
1

2

2









k

b

k

T

b

UeA k
h

q





, 

which implies that 

1
2

))0(1(
)1(

2
1

2





 k

h
q b

k

k

T
U

bA
e


. 

By using the inequality (21), we obtain 

))1(
)1(

2
1ln(

1 1
2

2







 kb

h

k

h

q
bA

T 



. 

We have the desired result. 

Remark  Therefore by integrating the inequality (22) over interval ),( 0

h

qTt , we have 

)))(1(
)1(

2
1ln(

1 1

0

2

20
0

2 





 kb

h

t

k

h

q tUe
bA

tT



. 

The Remark 3.1 is crucial to prove the convergence of the semidiscrete quenching time. 
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4. Convergence of semidiscrete quenching times 

In this section, under adequate hypotheses, we show the convergence of the semidiscrete quenching time to the 

theoretical one when the mesh size goes to zero. We denote by 

T

Ih txutxutu )),(,),,(()( 0  , 
T

Ih xpxpp ))(,),(( 0  and 
T

Ih bbb ),,( 0  . 

In order to prove this result, firstly, we need the following theorem. 

Theorem 4.1 Assume that (1)-(3) has a solution    ),0,(1,3  TllCu  such that 

  1)(.,sup ,0 
  tuTt with  T,0 . Suppose that the initial datum at (6) and the exponent at (4) 

satisfy respectively 

)1()0( ouhh 


  and  )1(opb hh 


 as 0h .                                                                              (23) 

Then, for h sufficiently small, the problem (4)-(6) has a unique solution   11 ,,0  Ih

qh TCU  such that 

))0(()()(max 0 hpbuOtutU hhhhhhTt 
   as  0h . 

Proof.  Let K, L and M  be positive constants such that 

K
u xxx



3
, Mb hb

h 
 1

)
2

1(


, Ltutu h

l

h
h 


))(1ln())(1( .                                                       (24) 

The problem (4)-(6) has for each  h, a unique solution   11 ,,0  Ih

qh TCU . Let  h

qTTht ,min)(   be 

the greatest value of  0t . There exists a positive real   (with 1  ) such that 

2
)()(

 



tutU hh  for   )(,0 htt .                                                                                                    (25) 

From (23), we deduce that 0)( ht  for h sufficiently small. By the triangle inequality, we obtain 


 )()()(.,)( tutUtutU hhh  for   )(,0 htt , 

which implies that  

1
22

)( 









tU h  for   )(,0 htt .                                                                                  (26) 

Let )()()( tutUte hhh   be the error of discretization. Using Taylor's expansion, we have for   )(,0 htt , 

,11)),,(1ln()),(1))((()1(),
~~(

6
),~(

6
)(

)( 12 


Iitxutxuxpbbtxu
h

txu
h

te
dt

tde
k

l

kii

b

kiixxxixxxi
i ii                                                                                      

where k  is an intermediate value between )(tU k  and ),( txu k  and il  the one between the exponents ib  and 

)( ixp . Using (24) and (26), we arrive at 

KhpbLteMte
dt

tde
hhki

i 


)()(
)( 2 , 11  Ii .                                                                                  (27) 

Let )(tzh  the vector defined by 

))0(()( )1( KhpbLuetz hhhh

tM

i 


  , Ii 0 . 

A direct calculation yields 
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KhpbLtzMtz
dt

tdz
hhki

i 


)()(
)( 2 , 11  Ii ,  )(,0 htt , 

)()( 00 tetz  , )()( tetz II  ,   )(,0 htt , 

)0()0( ii ez  , Ii 0 . 

It follows from Lemma 2.2 that )()( tetz ii   for  )(,0 htt , Ii 0 . By the same reasoning, we also prove 

that )()( tetz ii   for  )(,0 htt , Ii 0 , which implies that 

)()( tetz ii  , Ii 0 ,  )(,0 htt . 

We deduce that 

))0(()()( )1( KhpbLuetutU hhhh

tM

hh 





 ,  )(,0 htt . 

In order to show that  h

qTTht ,min)(  , we argue by contradiction. Suppose that  h

qTTht ,min)(  . 

From (25), we obtain 

))0(())(())((
2

)1( KhpbLuehtuhtU hhhh

TM

hh 










,  )(,0 htt .         (28) 

We remark that when h tends to zero, 0
2




, which is impossible. Consequently  h

qTTht ,min)(  . 

Let us show that  Tht )( . Suppose that  TTht h

q)( . Arguing as above, we obtain a contradiction, 

which leads us to the desired result.  

Now, we prove the main result of this section, the convergence of  the quenching time. 

Theorem 4.2 Suppose that the problem (1)-(3) has a solution u which quenches in a finite time qT  such that 

    qTllCu ,0,1,3   and the initial datum at (6) and the exponent at (4) satisfy the hypothesis (23). Under 

the assumptions of Theorem 3.1, the problem (4)-(6) has a solution hU  which quenches in a finite time 
h

qT  and 

q

h

qh TT 0lim . 

. Proof . Let 
2

0
qT

  . There exists    (with 10   ) such that 

2
))1(

)1(

2
1ln(

1 1
2

2

2 









kq bT

k

ye
bA

   for  1,1 y .                                                                     (29) 

Since 1)(.,lim 
 tu

qTt , there exist qTT 1  and 
2

1


TTq  such that 

2
1)(.,1





tu  for 

 
qTTt ,1 . From Theorem 4.1, the problem (4)-(6) has for h sufficiently small, the unique solution )(tU h  such 

that 
2

)()(





tutU hh  for  2,0 Tt  where 
2

1

2

qTT
T


 . Using the triangle inequality, we get 

22
1)()()(.,)(





tutUtutU hhh  for  21,TTt , 

which implies that 




1)(tU h  for  21,TTt . 
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From Theorem 3.1, )(tU h  quenches at time 
h

qT . Using inequality (29) and the Remark 3.1, we arrive at 

2
)))(1(

)1(

2
1ln(

1 1

1

2

21
1

2 













kb

h

T

k

h

q TUe
bA

TT , 

it follows that 





22
11 q

h

qq

h

q TTTTTT . 

This complete the proof. 

5. Numerical results 

In this section, we present some numerical approximations to the quenching time of the problem (1)-(3) in the case 

where 0)(0 xu  and 
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2
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1

1
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2

1
0

)(

xif
x
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Firstly, we consider the following explicit scheme 
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and secondly, we use the following implicit scheme 
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e
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2

 

and 





1

0

n

j

j

n tT . In the following tables, in rows, we present the numerical quenching times, the numbers of 

iterations, CPU times and the orders of the approximations corresponding to meshes of 16, 32, 64, 128, 256. The 

numerical quenching  time 





1

0

n

j

j

n tT   is computed at the first time when 
161 10  nn

n TTt . The 

order(s) of the method is computed from 

4h 2h 2h hlog((T  - T )/(T  - T ))
s =

log(2)
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Table 1: Numerical quenching times, numbers of iterations, CPU times (seconds) and orders of the approximations 

obtained with the explicit Euler method 

 

I nT  n CPUtime s 

16 0.809359 2657 - - 

32 0.810080 10299 - - 

64 0.810269 39820 2 1.93 

128 0.810317 153904 9 1.97 

256 0.810329 592219 66 2.00 

 

Table 2: Numerical quenching times, numbers of iterations, CPU times (seconds) and orders of the approximations 

obtained with the explicit Euler method 

I nT  n CPUtime s 

16 0.821012 2636 - - 

32 0.812994 10194 - - 

64 0.810997 3937 1 2.01 

128 0.810499 151904 10 2.00 

256 0.810374 585059 74 1.99 

 

In the following, we also give some plots to illustrate our analysis. For the different plots, we used both explicit and 

implicit schemes in the case where I=16. In figures 1 and 2 we can appreciate that the discrete solution is 

nondecreasing and reaches the value one at the middle node. In figures 3 and 4 we see that the approximation of 

),( Txu  is nondecreasing and reaches the value one at the middle node. Here, T is the quenching time of the 

solution $u$. In figures 5 and 6 we observe that the approximation of 


)(.,tu  is also nondecreasing and reaches 

the value one at the time 81.0t . 
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Figure 1: Evolution of the discrete solution(Explicit scheme) Figure 2: Evolution of the discrete solution(Implicit scheme) 

  

Figure 3: Profil of the approximation of ),( Txu  

where, T is the quenching time (Explicit scheme) 

Figure 4: Profil of the approximation of ),( Txu  

where, T is the quenching time (Implicit scheme) 

  

Figure 5: Profil of the approximation of 


)(.,tu  

 (Explicit scheme) 

Figure 6: Profil of the approximation of 


)(.,tu  

 (Implicit scheme) 

  

Figure 7: Graph of U against )(xp , T is the quenching 

 Time  (Explicit scheme) 

Figure 8: Graph of U against )(xp , T is the quenching 

Time  (Implicit scheme) 
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