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 where 

0DC

, 

0DC

 are Caputo fractional derivatives of order  ,  , respectively, 2<1  , 2<1  , 

4<3   , (0,1) , (0,1)  and 1>p , sss p

p

2|=|)(   is a p-Laplacian operator, f  is a 

continuous function. After translating the quasilinear equation into the linear fractional differential system, by 
using coincidence degree theory, the existence result is established. 
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1 Introduction 

     In this paper we will study the existence of solutions for the following quasilinear fractional differential equation 

with resonance boundary condition  
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 (1.1) 

 where 

0DC

, 

0DC

 are Caputo fractional derivatives of order  ,  , respectively, 2<1  , 2<1  , 

4<3   , (0,1) , (0,1)  and 1>p , sss p

p

2|=|)(   is a p-Laplacian operator, f  is a continuous 

function. 

In recent years, fractional differential equations have been of great of interest due to the intensive development of 

fractional calculus itself and its various applications. Fractional differential equations appear naturally in a number of fields 

such as physics, polymer rheology, biophysics, blood flow phenomena, aerodynamics, electro-dynamics of complex 

medium, viscoelasticity, analysis of feedback amplifiers, capacitor theory, electrical circuits, electro-analytical chemistry, 

biology, control theory, fitting of experimental data, agriculture, etc. (see [4] [10] [11]). 
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A broad range of scenarios of resonant problems were studied in the framework of ordinary differential and 

difference equations, (see [8] [16]). For fractional boundary value problems at resonance, we refer the reader to [1] [18] 

[19] and the references cited therein. Kosmatov (see [5]) studied the following boundary value problem of fractional order 

with non-local conditions  

 
(1),=)(0,=(0)

(0,1),..)),(),(,(=)(
2

0 uuuD

teatututftuD










 

 where 2<<1  , 1<<0   and 1=1 . This problem is resonance boundary value problem. The author 

obtained the existence result by the the coincidence degree theory of Mawhin. 

p-Laplacian equations is very interesting because it has many applications. The turbulent flow in a porous problem 

medium is a fundamental mechanics problem. For studying this type of problems, Leibenson(see [6]) first introduced the 

p-Laplacian equation as follows  

 )),(),(,(=)))((( txtxtftxp
  (1.2) 

 where sss p

p

2|=|)(  , 1>p . Obviously, p  is invertible and its inverse operator is q , where 1>q  is a 

constant such that 1=
11

qp
 . From then on, many important results relative to (1.2) with certain boundary conditions 

had been obtained, (see [12] [13] [14] [15]). In [2], Chen studied the following boundary value problem for fractional 

p-Laplacian equation  
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 where 1,<0  , 2<<1   , 

0D , 


0D  is a Caputo fractional derivative, and 1>p , sss p

p

2|=|)(   

is a p-Laplacian operator. A new result on the existence of the solutions for above fractional boundary value problem is 

obtained. 

From the above references, we find that: for the resonance case, most of the BVPs considered are not more than 

second-order, and higher-order are restricted to the case 2=p ; most of the BVPs considered are related to 

Riemann-Liouville fractional derivative, the Caputo fractional derivative considered is less. Motivated by the works 

mentioned above, we study the existence of solutions for higher-order fractional boundary value problem with a 

p-Laplacian at resonance. 

Because of the fact that the Mawhin's continuation theorem can't be used directly to discuss the BVP with a 

quasilinear differential operator, we translate the problem (1.1) into a system with linear differential operator. By the 

coincidence degree theorem of Mawhin, we obtain an existence result. 

This paper is organized as follows: in section 2, we include some basic definitions and preliminary results that will 

be used to prove our main results; in section 3, using the coincidence degree theory of Mawhin(see [7]), we establish a 

theorem on existence of solutions for BVP (1.1); in section 4, an example is given to illustrate the main result. 

2  Preliminaries and lemmas 

For the convenience of the reader, we present here some necessary basic knowledge and definitions about fractional 

calculus theory, which can be found, for instance in [4] [11]. 

Definition 2.1 ([4] [11], section 2.1) The Riemann-Liouville fractional integral operator of order 0>  of a function 

Ru )(0,:  is given by  

 ,)()(
)(

1
=)( 1

0
0 dssusttuI

t


 
 




 

 provided that the right side integral is pointwise defined on )(0, .  

Definition 2.2 ([4] [11], section 2.4) The Caputo fractional derivative of order 0>  of a function Ru )(0,:  

is given by  
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 where n  is the smallest integer greater than or equal to  , provided that the right side integral is pointwise defined on 

)(0, .  

Lemma 2.1 ([4])  Let 0> . Assume that [0,1], 0 LuDu C 


. Then the following equality holds  

 ,)(=)( 1

11000



  n

n

C
tctcctutuDI 

 

 where 1,0,1,=,  niRci  ; here n  is the smallest integer greater than or equal to  .  

Proposition 2.2 ([3])  p  satisfies the following properties  

(B1)  p  is continuous, monotonically increasing and invertible. Moreover, qp  =1
 with 1>q  satisfying   

1=
11

qp
 ;  

(B2)  for 0,  vu ,  

 2;<<1),()()( pifvuvu ppp    

 2.)),()((2)( 2   pifvuvu pp

p

p   

Definition 2.3 ([7]) Let X  and Y  be a real normed spaces. A linear mapping YXLL dom:  is called a 

Fredholm mapping if the following two conditions holds: 

(C1)  Lker  has a finite dimension, and  

(C2)  LIm  is closed and has a finite codimension.  

If L  is a Fredholm mapping, its Fredholm index is the integer LLL Imcodimkerdim=Ind  .  

Now, we briefly recall some notations, which can be found in [7]. Let X  and Y  be real Banach spaces, 

YXLL dom:  be a Fredholm operator with index zero, and XXP : , YYQ :  be projectors such that  

 ,Im=ker,ker=Im LQLP  

 .ImIm=,kerker= QLYPLX   

It follows that LPLL PL Imkerdom:| kerdom   is invertible. We denote the inverse by 

PLLKP kerdomIm:  . 

If   is an open bounded subset of X  such that Ldom , then the map YXN :  will be called 

L-compact on   if )(QN  is bounded and XNQIKP  :)(  is compact. 

Theorem 2.3 IV.13)Theorem([7],  Let X  and Y  be two Banach spaces with norms X  and Y , 

respectively, and X  an open and bounded set. Suppose YLXL dom:  is a Fredholm operator of index 

zero and [0,1],:   YN  is L-compact. In addition, if  

(D1)  NxLx   for (0,1) ,  )ker\dom( LLx ;  

(D2)  LNx Im  for  Lx ker ;  

(D3)  0,0}ker,|{deg
ker




LJQN
L

, where YYQ :  is a projection such that QL ker=Im  
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and LQJ kerIm:   is a homeomorphism.  

Then the abstract equation NxLx =  has at least one solution in  .  

Let )(=)(1 tutx , ))((=)( 02 tuDtx C

p

  . Rewrite the differential equation in BVP (1.1) into   

                

In this paper, we take [0,1]},,|{= 101

1

0111 CzDzDzzZ CC 






 with norm ,{max= 111  zz Z  

}, 101

1

0 



  zDzD CC 
, [0,1]},,|{= 202

1

0222 CzDzDzzZ CC 






 with norm ,{max= 222  zz Z  

}, 202

1

0 



  zDzD CC 
. 

Now we set }),(={= 21

T

21 ZZxxxX   with the norm },{max=
2211 ZZX xxx  , let 

[0,1]}[0,1]),(={= T

21 CCyyyY   with norm ,{max= 1  yy Y  }2 y . Clearly, X  and Y  are 

Banach spaces. 

Define YLL dom:  by  

 ,),(=),(= T

2010

T

21 xDxDxxLLx CC 
  (2.5) 

 where  

 (1)}.=)(0,=(0)'(1),=)(0,=(0)':),(={=dom 222111

T

21 xxxxxxXxxxL   (2.6) 

 Obviously, if Lxxx dom),(= T

21   is a solution of (2)-(2), then 1x  is a solution of BVP (1.1). 

3  Main results 

In this section, a theorem on existence of solution for BVP (1.1) will be given. 

Theorem 3.1  Suppose  

(H1)  there exists a constant 0>A  such that  
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 (3.1) 

  for LLx ker\dom  with Atx |>)(| 2  on [0,1]t ;  

(H2)  there exists a constant 0>B  such that  
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 (3.2) 

  for LLx ker\dom  with Btx |>)(| 1  on [0,1]t , where (0,1) ;  
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(H3)  there exists function )([0,1],,,,,  RC  such that for 
3),,( Rzyx   and [0,1]t ,  

 ),(||)(||)(||)(|),,,(| 111 tztytxtzyxtf ppp   
 (3.3) 

 we denote that  =0 ,  =0 ,  =0 ,  =0 . 

Then BVP (1.1) has at least one solution provided  

 2;<1,<
)(

1

)(

1
0001

pif
p 










 



 (3.4) 
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 (3.5) 

Now, we begin with some lemmas below. 

Lemma 3.2 Let L be defined by (2.1); then  

 },,:dom),(={=ker 21

T

21 RccLccxL   (3.6) 

 0}.=)((1)0,=)((1):),(={=Im 20201010

T

21   yIyIyIyIYyyyL    (3.7) 

Proof. First we show (3.6). By Lemma 2.1, 0=)(10 txDC 
  has a solution  

 ,,,=)( 10011 Rcctcctx   

Combining with boundary value condition 0=(0)'1x , one has Rctx 11 =)( . Similarly from 0=)(20 txDC 
 , we 

have Rctx 22 =)( . One has that (3.6) holds.  

For Lxxx dom),(= T

21  , consider the system   

                                

It holds that Yyyy T

21 ),(= . From (3) and (2.2), using Lemma 2.1, we can get  

 0,=)((1) 1010  yIyI    (3.10) 

 Also, in view of (3) and (2.2), we have  

 0.=)((1) 2020  yIyI    (3.11) 

 Thus  

 0}.=)((1)0,=)((1):),(={Im 20201010

T

21   yIyIyIyIYyyyL    (3.12) 

 Conversely, we can show that .Im0}=)((1)0,=)((1):),(={ 20201010

T

21 LyIyIyIyIYyyy    
 

Hence  

 0}.=)((1)0,=)((1):),(={=Im 20201010

T

21   yIyIyIyIYyyyL    (3.13) 

Lemma 3.3 Let L  be defined by (2.1); then L  is a Fredholm operator of index zero, and the linear continuous 

projector operators LXP ker:   and QYQ Im:   can be defined as  

 ,(0))(0),(= T

21 xxPx  (3.14) 
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 Let PLP LL kerdom|=   and PLLKP kerdomIm:   denote the inverse of PL . Set  
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Proof. For any Yy , we have  
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 .=(1,1)= T QyQy  

 

Moreover, (3.7) and (3.13) imply that QL ker=Im , then QLY ImIm=  , 

LQL kerdim=2=Imdim=Imcodim . Hence, L  is a Fredholm operator of index zero. 

From the definitions of P , PK , it is easy to see that the generalized inverse of L  is PK . In fact, for 

Ly Im , we have  

 
T

200100

T
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P


  

 ),(=))(),((= T

21 tytyty  (3.17) 

 Moreover, for ,kerdom PLx   we get .(0,0)=))(),((= TT

21 txtxx  By Lemma 2.1, we obtain that  
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CCCC

PP


  

 ).(=))(),((= T

21 txtxtx  (3.18) 

 Combining (3.17) with (3.18), we know that .)|(= 1

kerdom



 LLP LK  The proof is complete.  

Define YXN :  by  

    ,))((),(),(,)),((=))(),((=)(
T

21

1

012

T

21 txtxDtxtftxtxtxNtNx q

C

q  
  (3.19) 

 then (2)-(2) can be written as NxLx = . 

Since f  is a continuous function and )(sp  is a uniformly continuity function, we can prove by standard 

arguments that N  is L -compact, i.e., QN  and NQIK p )(   are completely continuous. 

Lemma 3.4  Suppose (H1) - (H3)  hold; then the set (0,1)},=:ker\dom{=1  NxLxLLx  is 

bounded.  

Proof. Take 1x , then QLLxNx ker=Im=  . So 0=QNx , then  
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 It follows from (H1) and (3.18) that there exists [0,1]2 t  such that Atx |)(| 22 . Now  
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 Using Lemma 2.1 and 0=(0)'2x , we have  
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 Combining (3.20) with (3.21), we have  
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 Using Lemma 2.1, we have  
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 In view of (H2) and (3.21), we have there exists [0,1]1t . So Btx |)(| 11 .  

Similarly, we have   
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 (I) For 2<<1 p , from (H3) and Proposition 2.2 one gets  
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 Notice (3.4), one arrives at  
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 From (3.5), we have  
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  Thus,  

 .:=},{max,:=},{max 22223311 NNMxMNMx ZZ    

 

 }.,{max=},{max=
2211 NMxxx ZZX   

Therefore, 1  is bounded. The proof is complete.  

Lemma 3.5 Suppose that (H2)  holds, then the set }Im:ker{=2 LNxLx   is bounded.  

Proof. For 2x , then 
T

21 ),(= ccx  and  
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 So 0.=2c  From (H2), we have Bc || 1 . Thus MBcx X |=| 1 , which implies 12   is bounded.  

 Let 1}1,:dom),(={=
2211

T

21  NxMxLxxx ZZ  , then 21   is 

bounded and open set. Clearly, conditions (D1) and (D2) in Theorem 2.3 are satisfied. The remainder is to verify condition 

(D3). To this end, we define isomorphism LQJ kerIm:   by 
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It is easy to see that 0),( xH  for [0,1])ker(),(  Lx  . Hence,  

 ,0}ker,0),({deg=,0}ker,|{deg
ker

LHLJQN
L




 

 ,0}ker,1),({deg= LH   

 0.,0}ker,{deg=  LI  

 Theorem 2.3 yields that NxLx =  has at least one solution  Lx dom . Namely, BVP (1.1) has at least one 

solution in X. The proof is complete. 

4  Example 

In this section, we give some examples to illustrate the usefulness of our main result.  

Example 4.1  
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Corresponding to BVP (1.1), we have 3=p , 1.7= , 1.5= , 0.25= , 0.5= ,  
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 Clearly, assumtions (H1)-(H2) are all satisfied. Let 
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 Then (H3) and (3.5) hold. 

Therefore, BVP (1.1) has a solution by Theorem 3.1. 
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