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Abstract 

This paper presents the design of a system, which can improve the reconstruction of Compressive 
Sensed images. The proposed techniques can reduce the reconstruction time for a compressive sensing 
based image. Those improvements utilize matrix simplification, multi-thread and GPU computations. 
Implementing those techniques achieve gains on time consumption, compared to the baseline. This 
paper also presents a novel scheme of buffering streamed image (video) to achieve optimum 
performance. 
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1. Introduction 

Wireless spectrum is becoming increasingly scarce as more and more mobile devices are being used with new 

innovations to support multimedia applications. The evolution of new applications is further eroding the ability to 

make spectrum available to ever increasing mobile users [1]. The design of mobile devices for inclusion of new and 

evolving multimedia applications faces big challenges due to: a) limited power supply from battery; b) wireless 

transmission impairments for sustained image transmissions; and c) limited CPU capability in each device. 

Therefore, data compression is becoming more and more important. This research takes image as a sample 

multimedia data type to explore some improvement. 

Compressive Sensing (CS) technique was initially proposed to enable signal sampled at sub-Nyquist rate to be 

perfectly recovered. For the past decade, CS has been widely adopted in various signal-processing areas[2-

3].Compressive sensing of images allows sampling to occur at a sub-Nyquist rate onto a random basis and it could 

be reconstructed to the original image with the condition of sparsity [2-3].The N-dimensional signal x is assumed to 

be K-sparse with respect to some orthogonal matrix V. The “sampling” of x is a linear transformation by using a 

matrix ф to produce a vector y = фx. Let ф be an M-by-N matrix where M<<N, so y has M elements; we call each 

element of y as a measurement of x. The decoder recovers the signal x from y with known V and ф [4-5]. 

For the mobile application of CS scenario, there are two challenges:  1) the wireless transmission of compressed 

signals in noisy channels and 2) the reconstruction of the original content at the receiver side. The first challenge 

had been discussed in the works 2010 through 2014 [6-8]; the second challenge is critical in some scenarios, e.g, 

when the receiver side is mobile device with limited CPU capability. 

Most of CS based reconstruction depends on iterations [9], which are very time consuming and inefficient. On 

average, processing 100 times more than encoding time, from previous implementation experiences. Thus, 

improvements of reconstruction of CS are very important in real world implementations of CS. This paper presents 

several approaches to speed up the reconstruction process of Compressive Sensing. 

2. System and Methods 

The reconstruction of Compressive Sensed data is very time consuming and inefficient. This paper presents several 

approaches to speed up the reconstruction process of Compressed Sensing. 
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2.1 Baseline Performance Time and Reconstruction Algorithm 

“BCS-SPL—Block Compressed Sensing with Smooth Projected Landweber Reconstruction”, which is developed 

by Sungkwang Mun and James E. Fowler following the method describe in [5], was chosen as the starting point for 

the CS reconstruction. It marks the baseline of the reconstruction time using single core microprocessor.  

The reconstruction is recursive executed using following methods described in [5]. It is an iterative process.   

𝑥 𝑖 = 𝑊𝑖𝑒𝑛𝑒𝑟(𝑥𝑖)  (1) 

𝑥 𝑖 = 𝑥 𝑖 + Φ𝐵
𝑇(𝑦 − Φ𝐵𝑥 

𝑖) (2) 

𝑥 𝑖 = 𝜓𝑥 𝑖   (3) 

𝑥 𝑖 = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑥 𝑖) (4) 

𝑥 𝑖 = Ψ𝑇𝑥 𝑖  (5) 

𝑥 𝑖+1 = 𝑥 𝑖 + Φ𝐵
𝑇(𝑦 − Φ𝐵𝑥 

𝑖) (6) 

2.2 Hardware Upgrade 

In order to speed up the processing time, multi-core microprocessor was adopted. The computer used for the 

reconstruction was a Lenovo IdeaPad 700 80RU00CYUSlaptop computer system. The system uses an Intel Core™ 

i7-6700HQ Processor. The base frequency is 2.6G Hz, and it has 4 cores support up to 8 threads. 

The GPU of the system is a NVIDIA GeForce GTX-950M video card. It has 640 CUDA cores with a base clock of 

914 MHz.  Inside the GPU, there are 2 GB DDR5 memory. 

The Random Access Memory (RAM) of the system contains 12 GB of DDR4 RAM, with frequency up to 2133 

MHz.The hard drive of the system is a Samsung MZLVL256 SSD NVME PCI Solid State Drive. The read speed is 

up to 1258 MB/s. 

3. Acceleration Approaching’s and Experiment Results  

3.1 Simplified Matrix Operation 

3.1.1 Overview 

From equations (2) and (6) in section 2.1, we could simplify the computation to  

𝑥 𝑖+1 = (𝐼 − Φ𝐵
𝑇Φ𝐵)𝑥 𝑖 + Φ𝐵

𝑇𝑦(7) 

By using equation (7), it may accelerate the reconstruction processing time. 

3.1.2 Processing Complexity Analysis 

Processing complexity analysis:  

a) The CS block size is 32 by default, because 32 × 32 = 1024, therefore Φ𝐵is a 1024 × (1024 ×
𝑠𝑢𝑏𝑟𝑎𝑡𝑒) matrix  

b) Then  𝐼 − Φ𝐵
𝑇Φ𝐵  will be a 1024 × 1024 matrix.  

c) In practice, x will be reshaped to a 1024 × [
𝑚×𝑛

1024
] matrix 

d) Since (𝐼 − Φ𝐵
𝑇Φ𝐵)   and Φ𝐵

𝑇𝑦  are like “constant” in recursion and could be pre-calculated, thus the 

calculation cost and processing time can be saved by using equation (7).  

     Then for (7), the computational complexity will be  1024 × 1024 matrix multiply 1024 × [
𝑚×𝑛

1024
] matrix, the 

computational complexity is  

1024 ×  𝑚 ×
𝑛

1024
 × 1024 = 1024 × 𝑚 × 𝑛(8) 

     In equation (2) or (6), the computational complexity will be  

1024 × 1024 × 𝑠𝑢𝑏𝑟𝑎𝑡𝑒 × 𝑚 × 𝑛 + 1024 × 1024 × 𝑠𝑢𝑏𝑟𝑎𝑡𝑒 × 𝑚 ×
𝑛

1024
 

= 2 × 𝑠𝑢𝑏𝑟𝑎𝑡𝑒 × 1024 × 𝑚 × 𝑛 (9) 
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      Comparing equations (8) and (9), it is concluded that if subrate is less than 0.5, using (2) and (6) is more 

efficient. When subrate is greater than 0.5, using (7) is more effective. This conclusion will be proved by 

experimental results in tables 1-2 and figures 1-2. 

Table 1. Simplified Matrix Operation: Lenna as example for reconstruction time (in Second) 

subrate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Baseline 9.9753 9.6059 8.1422 6.4530 5.9219 4.5965 4.2468 4.2238 3.3244 0.2869 

Simplified 

Matrix 

operation 

12.6014 11.2701 10.2928 6.9856 5.8617 4.9847 4.1751 3.5130 2.5165 0.2007 

 

 
Fig 1: Simplified Matrix Operation: Lenna as example for reconstruction time 

(Note: for all figures in this paper, the x-axis represents the percentage of measurements used to reconstruct the 

image, from 0.1 to 1, with 0.1 increments.) 

Table 2. Simplified Matrix Operation:Barbara as example for reconstruction time (in Second) 

subrate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Baseline 12.3059 9.4749 7.0272 5.6647 5.2568 4.9652 4.3774 3.9228 3.4502 0.2708 

Simplified 

Matrix 

operation 

 

18.1466 

 

10.6697 

 

8.1512 

 

6.8408 

 

5.6378 

 

4.7552 

 

4.0611 

 

3.3409 

 

2.7155 

 

0.2055 
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Fig 2: Simplified Matrix Operation: Barbara as example for reconstruction time 

3.2 Multi Threads Computing 
The system has 4 cores to support up to 8 threads of computing. By using multiple threads will speed up the 

processing. Tables 3-4 and figures 3-4 shows the experimental results using multi threads computing. 

Table 3. Multi threads computing: Lenna as example for reconstruction time (in Second) 

subrate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 Thread 
(Baseline) 

9.9753 9.6059 8.1422 6.4530 5.9219 4.5965 4.2468 4.2238 3.3244 0.28691 

2 Threads 7.2586 6.8289 5.2330 4.4108 4.1842 3.5010 2.8858 2.5954 1.9682 0.17754 

4 Threads 6.5446 6.0403 5.0301 4.1118 3.6344 3.1341 2.6066 2.4316 1.9384 0.15981 

8 Threads 6.6134 6.1757 5.1376 4.1926 3.7457 3.2085 2.6468 2.4891 1.9439 0.16144 

 

Fig 3: Multi threads computing: Lenna as example for reconstruction time 
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Table 4. Multi threads computing: Barbara as example for reconstruction time (in Second) 

 

subrate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 Thread 

(Baseline) 

10.9453 7.9804 7.18028 6.8937 5.7913 5.6115 5.4693 4.8856 4.1857 0.81042 

2 Threads 7.87528 5.8402 5.23701 4.9966 4.0884 3.8535 3.7689 3.3187 2.8091 0.58889 

4 Threads 7.27363 5.4090 4.74991 4.4588 3.7206 3.5924 3.5323 3.0612 2.5866 0.56057 

8 Threads 7.54904 5.6359 4.94224 4.6409 3.9460 3.6207 3.5204 3.0913 2.6460 0.57779 

 
 

 

 
Fig 4:Multi threads computing: Barbara as example for reconstruction time 

From above results, we can conclude that for a 4-core computer, using 4 threads is optimal. Therefore, the number 

of threads should be equal to number of CPU cores. 

3.3 GPU Computing 

Another approach to accelerate the processing is to use GPU since CS based algorithms include lots of matrix 

operation. 

Originally, GPU (graphics processing unit) was used to accelerate graphics processing. Recently, GPUs are 

increasingly applied to scientific calculations. Unlike a CPU, which includes a few number of cores (1,2, 4, or 8, 

etc.), a GPU has a great number of parallel array of integer and floating-point processors as shown in Figure 5. A 

typical GPU comprises hundreds of these smaller processors [10]. Because of the nature of GPU architecture, using 

a GPU may speed up the CS reconstruction, by speeding up its matrix processing. 

The results in Table 5 and Figure 6 show that, by using GPU, it saves around 50% of processing time. Table 5 

shows the reconstruction time comparison for 512×512 grey scale image „Lenna‟: 
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Figure5:  CPU and GPU from [11] 

Table 5: GPU vs CPU in reconstruction time (in seconds) 

subrate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

CPU_time 

(baseline) 

9.9753 9.6059 8.1422 6.4530 5.9219 4.5965 4.2468 4.2238 3.3244 0.2869 

GPU_time 4.2459 3.7375 3.1959 2.2181 1.9722 1.6035 1.2885 1.1070 0.7959 0.0879 

 

Fig 6:GPU vs CPU in reconstruction time (in seconds) 

3.4 Buffering and Optimized Image Size for GPU Computing: 
In stream applications, e.g., online video like YouTube, instead of decoding frame by frame, we could buffer 

several frames and decode in a whole. For example, for 512 by 512 video, we can buffer 4 frames together, to a 

1024 by 1024 larger frame, then decode the larger frame. By doing this, it can save lots of decoding time. 

If we compare average reconstruction time of a 256×256 slot, the experiment result shows the optimized image size 

will be 1024×1024. Thus, in stream applications, for example, if the video size is 512×512, we can combine 4 

together to a 1024×1024 one, then do the reconstruction to achieve the minimum average reconstruction time.  

Considering the quality of service (QOS), we should not buffer a very large size of frames. The experiment result 

shows 1024 by 1024 may be a near optimal size. 

 



Journal of Information Sciences and Computing Technologies(JISCT) 

ISSN: 2394-9066      

Volume 6, Issue 2 available at www.scitecresearch.com/journals/index.php/jisct                                                610| 

Table 6: Optimal Buffering for GPU (reconstruction time in seconds) 

 
subrate  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

airplane 

(256x256) 
raw 1.27 1.26 1.23 1.21 1.12 0.938 0.829 0.652 0.548 0.044 

256*256 
average 

1.27 1.26 1.23 1.21 1.12 0.938 0.829 0.652 0.548 0.044 

clock 
(256x256) 

raw 1.29 1.29 1.24 1.25 1.26 1.25 1.25 0.896 1.03 0.042 

clock 

(256×256) 
Barbara 
(512x512) 

256*256 
average 

1.29 1.29 1.24 1.25 1.26 1.25 1.25 0.896 1.03 0.042 

raw 2.29 2.38 2.42 2.33 2.04 1.86 1.48 1.31 1.06 0.087 

 256*256 
average 

0.57 0.59 0.606 0.582 0.510 0.467 0.370 0.329 0.265 0.021 

Lenna 
(512x512) 

raw 2.31 2.30 2.404 2.347 2.05 1.89 1.52 1.35 1.00 0.0909 

256*256 

average 
0.578 0.576 0.601 0.586 0.514 0.474 0.381 0.339 0.250 0.022 

man 

(1024x1024

) 

raw 6.34 6.75 6.91 5.62 5.03 5.23 3.62 3.02 2.35 0.260 

Lenna 

(512×512) 
man 

(2048x2048
) 

256*256 

average 
0.396 0.421 0.431 0.351 0.314 0.326 0.226 0.188 0.146 0.0162 

raw 22.7 24.5 29.0 21.1 18.0 16.4 14.0 10.5 8.48 0.938 

 256*256 
average 

0.355 0.383 0.453 0.330 0.282 0.256 0.219 0.164 0.132 0.014 

subrate 
airplane 

(256x256) 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

raw 1.27 1.26 1.23 1.21 1.12 0.938 0.829 0.652 0.548 0.044 

 256*256 

average 
1.27 1.26 1.23 1.21 1.12 0.938 0.829 0.652 0.548 0.044 

clock 

(256x256) 
raw 1.29 1.29 1.24 1.25 1.26 1.25 1.25 0.896 1.03 0.042 

256*256 

average 
1.29 1.29 1.24 1.25 1.26 1.25 1.25 0.896 1.03 0.042 

Fig 7. Average GPU Processing Time 
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4. Conclusion 

In this paper, we discussed several methods to accelerate the reconstruction of Compressive Sensed images. Some 

of these methods could process the reconstruction up to 3-4 times faster. 

Comparing those methods, GPU computing may be the most promising. Since the GPU used in the test system, 

NVidia GTX 950M, is not the most advanced one with very limited RAM. Thus GPU computing seems to be a well 

fit platform for rapid CS reconstruction. 

Future development could implement Video processing using CS with GPU reconstruction and explore optimal 

algorithms.   
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