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Abstract 

Estimation of energy demand is used as an important tool for decision makers 

determining company strategies and policies. Apart from this, the fact that the actual 

consumption differs from the forecast is harmful for the economy of the company and even 

for the economy of the big scale. In this study, it is aimed to estimate the imbalance 

aberration caused by demand forecast deviation with Artificial Neural Networks and to 

evaluate its results.  
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1.  Introduction 

Accurate estimation of the amount of energy needed by countries is important for 

decision makers that determine energy strategies and policies. Particularly, in energy-

driven outsourcing countries and in developing countries where demand for electricity is 

rising relatively fast, the demand forecasts become even more important. On the basis of 

this precept lies both economic and political reasons. It is economically important; energy 

consumption has affected many economic parameters such as current account deficit, 

inflation and growth. Furthermore, the liberalization of energy markets, which are 

becoming increasingly widespread throughout the world, has led to the energy prices being 
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determined by supply and demand to a large extent. For this reason, imbalances are 

generally punished in other examples of energy markets in the world and in Turkey.  

Electricity is an energy that must be consumed when it is produced because it cannot 

be stored, or rather it is very costly to store. Therefore, demand forecasts in electricity 

markets are indispensable. In order to meet the electricity need, TETAŞ (Türkiye Elektrik 

Ticaret ve Taahhüt A.Ş.- Turkey Electricity Trade and Contracting Co.) receives energy 

with bilateral agreement depending on the estimations that it has sent from 1 year ago. 

However, estimates made a year ago do not adequately reflect the needs of the present day, 

and companies are aiming to get the energy they need by estimating demand in the Day 

Ahead Market (DAM). However, if the amount of energy received by TETAŞ cannot meet 

the amount of energy in the day, or if it is in excess of the amount of energy, companies 

have to provide the supply demand balance by selling the excess electricity on  

their hands or by purchasing the missing part from this market. This situation causes 

the imbalance costs. This loss must be able to be controlled / predicted.  

Recently, studies have been carried out on electricity energy consumption and load 

forecasting, distribution and planning analysis in electricity generation. In the paper entitled 

“Grey prediction with rolling mechanism for electricity demand forecasting of Turkey” are 

proposed in the estimation of electricity demand. The study shows that the GPRM approach 

can be used as a useful tool for short-term load estimation for Turkey [1]. 

For Niğde in Turkey, load estimation was performed by two different methods. These 

methods are artificial neural network backpropagation algorithm and nonlinear trend 

analysis moving average methods. It has been shown that the most appropriate method is 

artificial neural network. The estimates obtained by both methods of 2001 were compared 

with the actual values and it was found that the estimation results are very close to the real 

values [2].  

Turkey's electricity consumption is modeled using the Support Vector Regression. 

According to the model result, Turkey's electricity consumption in the next 20 years will 

reach 284.9 TWh, which is estimated to be about twice the 2006 value. They stated that the 
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relevant institutions should plan a significant increase in the future power plant capacity 

[3]. 

In order to estimate China's energy demand from the countries with the highest 

energy consumption and to examine the dynamic nature of electricity consumption, a 

statistical power consumption model from 1980 to 2012 was developed. It was developed 

using the model Intelligent Swarm Firefly algorithm [4]. 

Many other similar works have been proposed either in the past [5–9] or more 

recently [10–14]. 

In this study, models were developed to predict demand for electricity in the DAM 

using artificial neural networks (ANN). Different architectures have been tried to achieve 

the most optimal prediction in the developed models. 

 

2.  Materials and Methods 

2.1. Artificial Neural Networks  

Artificial neural networks can collect information about samples, make 

generalizations, and then decide on those samples using information they have learned in 

comparison with samples they have never seen before. The goal of an ANN is to compute 

between output and input values with some internal calculations [15]. The first 

computational model of artificial neural networks was based on 1943 by W.S. McCulloch 

ve W.A. Pitts [16]. ANN is widely used in various fields such as prediction [17], control 

systems [18], classification [19], optimization [20] and decision making [21]. ANNs are a 

parallel distribution processing method in which neurons and weights linked to neurons are 

put together. The relationship between the input and output can be learned, simply based on 

the basic principle of operation. A multilayer sensor (MLP) is one of the best-known types 

of ANNs consisting of an input layer, an output layer, and one or more hidden layers [22].  

There are activation functions defined between layers. The most common ones are 

given in Table 1. 
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Table 1: Transfer functions common used in algorithms 

Transfer function Algorithm
Tansig tansig(n) = 2(1 + exp (-2n)) – 1 
Purelin purelin(n) = n, for all n
Logsig logsig(n) = 1(1 + exp (-n)) 

 
Also there are many different types of training algorithms. One of the most common 

training algorithms is Feed Forward Back Propagation algorithm  (FFBP) [23].  

2.2. Data Collection 

The data were obtained from TETAS web page [24]. TETAŞ, which was established 

as the first and only public wholesale company of Turkey with the split of Turkish 

Electricity Generation and Transmission Company (TEAS) in 2001 as part of the 

liberalization activities in the energy sector, is an Economic State Entity limited to the 

responsibility of the State and is in compliance with the general energy and economy policy 

of the State electricity trading and contracting activities. 120 data were taken from the 

TETAŞ web page.  

DAM (Day Ahead Market), MCP (Market Clearing Price), DBA (Distribution 

Bilateral Agreement) and RBA (Retail Bilateral Agreement) were used as input data. The 

owning cost is considered as output data for each model. The statistics belong the data are 

given table 2. 

Table 2. The ranges of data set and their statistic 
Parameters Data Statistic  

 Ranges Mean ± 
S.D. 

Unit 

Input Layer    

MCP   10,1 - 227,2 149,6 ±  52,53  Lira 

DAM 302,8 - 647,8 450,6 ±  77,01      

DBA    4,0 -  248,0 116,5 ±  41,13 MWh 

RBA 150,0 – 386,0 271,3 ±  54,20  MWh 

Output Layer     

    O. Cost -12636,9-52258,2 13051,7 ± 14421,7 Lira 

 

This data was used as 100 training data and the remaining 20 pieces were used for 

testing purposes. RBA, the amount of energy received from the TETAŞ for the retail 
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company, DBA, the amount of energy received from the TETAŞ is estimated, and the 

estimate of the DAM is the estimate for the day. Depending on the structure of the energy 

market, companies can buy from the market in several different ways. As stated earlier, the 

prices in the liberalizing market and the electricity market are determined by hourly supply 

and demand amounts. The MCP shown in our data set shows the actual hourly prices, 

which are based on the supply and demand balance. 

And in order to obtain convergence within a reasonable number of cycles, the input 

and output data should be usually normalized. Normalization method as follows: 

 

                                                          [1] 

 

where  is the normalized value, x is the original data, xmax and xmin, respectively, 

is the maximum and minimum values, thus the scaled data ranging between 0,1 and 0,9. 

2.3. Network Properties  

Neural network based modeling were performed using MATLAB. 24 different 

models were developed to find the architect who made the most optimal prediction. The 

network properties used in these models are as follows: 

 Network type: Feed-Forward Back-Propagation. 

 Training function: TRAINLM. 

 Adaption learning function: LEARNGDM. 

 Performance function: MSE. 

 Number of hidden layers: 1,2. 

 Number of Neurons: 1-14 

 Input Layer Transfer function: logsig, purelin and tansig 

 Output Layer Transfer function: purelin 

 Iterations numbers : 1000 

The mean square error (MSE) was applied as the error function calculated from the 

following equation [25]: 
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RMSE=                                                       [2] 

 
 

                               [3] 
 
 

 
 

    MAE=                                                                                         [4]                            
                                                                                                                                                                                                            
 

where n is the number of data points,  is the network prediction, 

 is the experimental response and i is an index of the data. 

yi is the measurement, 

ŷi is the true value. 

 
3.   Result and Discussion 

In this study, ANN models were developed to estimate the imbalance loss caused by 

the electricity demand forecast deviation of energy market suppliers. Levenberg-Marquardt 

(TrainLM) backpropagation algorithm, Hyperbolic tangent sigmoid (TansiG), Log sigmoid 

(sigmoid) and Linear (Purelin) functions are used as transfer functions in hidden layer and 

output layer in ANN models. In addition, 1 or 2 hidden layers were used in each model and 

the training process of the model was performed using 1000 iterations. The number of 

neurons in the hidden layer was varied from 1-14, and the predictive value of each model 

was measured by MSE. The most optimal number of neurons is 14, the number of hidden 

layers is 1, and the learning function is trainlm. The regression values for the most optimal 

ANN model are shown in Fig 1.  

Statistical information showing the performance of the developed ANN model is 

summarized in Table 2. The correlation coefficient values obtained from the ANN model 

for the training and test data set were found to be 0.96 and 0.78, respectively. 
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Figure 1. Optimum Network Regression 

Table 2: Statistical information of optimum ANN model 

Optimum  
Structure 

Statistic Value 
Train Test

4-1(14)-
1 

RMSE MAE R RMSE MAE R 
0,080 0,032 0,976 0,105 0,079 0,952 

 

The accuracy of the improved ANN model is proved by the low low RMSE and high 

correlation coefficient values for the test data set. 

The results show that the ANN algorithm identifies the relation between input and 

output variables in a meaningful way and that the output variable can be estimated with 

high accuracy. 
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Figure 2. Compare the real and predicted value 
4. Conclusion 

 

Artificial Neural Networks (ANN) are used successfully in modeling the problem by 

learning the complex relationship between input and output data in the best way. In this 

study, ANN models were developed to estimate the imbalance loss caused by the electricity 

demand forecast deviation of energy market suppliers. For this purpose, 120 different data 

sets obtained from the TETAŞ web page were used in the development of the ANN model. 

Levenberg-Marquardt backpropagation algorithm is used as a learning algorithm in the 

ANN models developed to estimate the imbalance loss caused by demand forecast 

deviation, and tansig, sigmoid, purelin function is used as an activation function in the 

hidden layer and output layer.  

In addition, it was determined that the statistical comparison of the estimated values 

obtained from the established ANN models with the measurement results is the structure of 

the network architecture (4-1(14)-1) that best predicts the resultant R%, RMSE and MAE 

both traing and test study. 

In the results obtained from the developed model, it was seen that the best ANN 

model defined the relationship between the input and output variables in the data set very 

well and predicted the output variables at high accuracy. This has shown that ANN can be 

used as a successful tool in predicting the imbalance loss caused by energy market 

suppliers' deviation of electricity demand forecasts. 
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