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Abstract  
Students’ understanding of probability concepts have been investigated from various different 
perspectives. This study was set out to investigate perceived understanding of probability 
concepts of forty-four students from the STAT131 Understanding Uncertainty and Variation 
course at the University of Wollongong, NSW. Rasch measurement which is based on a 
probabilistic model was used to identify concepts that students find easy, moderate and difficult 
to understand.  Data were captured from the e-learning Moodle platform where students provided 
their responses through an on-line quiz. As illustrated in the Rasch map, 96% of the students 
could understand about sample space, simple events, mutually exclusive events and tree diagram 
while 67% of the students found concepts of conditional and independent events rather easy to 
understand. 
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Abstrak.  
Pemahaman siswa terhadap konsep peluang telah diteliti dari berbagai perspektif yang berbeda. 
Penelitian ini dilaksanakan untuk menyelidiki pemahaman yang dipersepsi oleh empat puluh 
empat siswa tentang konsep peluang dari perkuliahan STAT131 Memahami Ketidakpastian dan 
Variasi di University of Wollongong, NSW. Pengukuran Rasch yang didasarkan pada model 
probabilistik digunakan untuk mengidentifikasi konsep yang mudah, sedang dan sulit dimengerti 
oleh siswa. Data diambil dari platform Moodle e-learning dimana siswa memberikan tanggapan 
mereka melalui kuis on-line. Seperti digambarkan dalam peta Rasch, 96% siswa dapat 
memahami tentang ruang sampel, kejadian sederhana, kejadian saling eksklusif dan diagram 
pohon sementara 67% siswa mudah memahami konsep kejadian bersyarat dan independen. 
 
Kata Kunci: Pemahaman yang Dipersepsi, Konsep Peluang, Model Pengukuran Rasch 

 
  

Statistics is an important element of the curriculum for students in a variety of majors. Increasingly 

elements of data analysis and probability are also being emphasized in industry in a variety of disciplines 

including engineering and computer science.  It is becoming increasingly prevalent as students are 

required to learn the skills of statistical reasoning and develop the ability to translate information (Jensen 

& Kellogg, 2010).  

Students’ difficulties in learning and understanding probability have been known from several 

research studies and have been well documented (Garfield, 2003; Shaughnessy 1992; Konold, 1989; 

Garfield & Ahlgren, 1988).   According to Garfield and Ahlgren (1988), students have an underlying 

difficulty with fundamental ideas of probability.  Apart from their weakness with rational number 

concepts and proportional reasoning (Matthews & Silver, 1983), probability ideas appear to conflict 

with students’ experience about how they view the world.  In a recent study, Zamalia et. al. (2013) 
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discovered that about 38% of the students perceived little understanding on certain basic probability 

concepts such as conditional probability and independent events. Thus the main purpose of this study is 

to investigate the level of students’ perceived understanding of probability concepts and identify which 

concepts were found most difficult by the students to understand. 

Over the years, research into how students learn has evolved in many different directions. A large 

number of studies has been carried out in areas such as cognitive aspects of learning (Kolb, 1984; Sadler-

Smith, 1996; Garfield, 1995; Garfield and Chance, 2000). Students enter learning processes with 

different background characteristics such as a preference for deep learning versus surface learning, and 

specific subject attitudes, and different perceptions of the learning context. Most of these contexts allow 

all students to achieve satisfactory learning outcomes, with different learning paths (Tempelaar, 2006). 

Statistical concepts are the basis of learning statistics and therefore should be given extra attention 

by every educational institution. Much research in the different types of statistical reasoning such as 

reasoning about variation, distribution, and sampling distributions, has created important insights into 

the developmental process of a student’s learning of statistical reasoning skills (Tempelaar, 2006). 

Studies have also shown that students have difficulty with reasoning about distributions and graphical 

representations of distributions (Garfield and Ben-Zvi, 2004), understanding concepts related to 

statistical variation such as measures of variability (delMas, Garfield & Chance, 1999) and  sampling 

distributions (Saldanha & Thomson, 2001). Contemporary research in statistics education distinguishes 

an array of different but related cognitive processes in learning statistics: statistical literacy, statistical 

reasoning, and statistical thinking. Literacy, reasoning, and thinking are to some extent achieved even 

before formal schooling in statistics takes place. Those naïve conceptions learned outside school can be 

correct or incorrect in nature (Tempelaar, Schim & Gijselaers, 2007).   

Garfield (2003) made the attempt to assess student’s reasoning through the Statistical Reasoning 

Assessment (SRA) but the items in the SRA are focused more on the probability topics instead of basic 

statistical concepts.  The SCI (Statistics Concept Inventory) too was developed to assess statistical 

understanding but it was specifically designed for the engineering students (Reed-Rhoads, Murphy, & 

Terry, 2006).  After three years of research on their Assessment Resource Tools for Improving Statistical 

Thinking (ARTIST) project, funded by the NSF (National Science Foundation), delMas, Garfield, Ooms 

and Chance (2007) produced an online test, Comprehensive Assessment of Outcomes in Statistics 

(CAOS). The objective of CAOS is to measure students’ understanding on the topics contained in most 

introductory statistics courses. 

 

METHOD 

Study Design  

A survey was administered on 44 undergraduate students representing the mathematics and 

computer sciences. They enrolled in the STAT131 Understanding Variation and Uncertainty as part of 

the requirement for their various programmes of study. The students responding had volunteered to 
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participate by providing brief information about their profile. They were given a set of questionnaire to 

answer. The questionnaire asked how they perceived their understanding in probability concepts. The 

items constructed are related to the probability concepts where students would need to read through and 

understand the term, definition or examples. A sample of the items is shown in Table 1.  

The students had responded to the items based on the perceived level of understanding scales of 

between (1) and (5) as follows: 

1. I have NO UNDERSTANDING of the term, definition or example. 

2. I have LITTLE UNDERSTANDING of the term, definition or example. 

3. I have SOME UNDERSTANDING of the term, definition or example. 

4. I have GOOD UNDERSTANDING of the term, definition or example. 

5. I have FULL AND COMPLETE UNDERSTANDING of the term, definition and example. 

Table 1.  Items Representing Perceived Understanding of Probability Concepts 

B.    Relationships Among Events 

 

B1_i    Complementary Event 

Let E = Event E occurs 

Let E’ = Event E does not occur. 

then P(E’) = 1- P(E) 

B1_ii   Example: 

A die is toss once.  

The sample space   S={1,2,3,4,5,6}, so  n(S) = 6 

Let A = Event obtaining a 3 on the uppermost face 

Let B = Event not obtaining a 3 on the uppermost face 

        P(A) = 1/6 

        P(B) =1-1/6 = 5/6 

B2_i   General Addition Rule 

Given two events, A and B, the probability of their union, 

A  B is equal to P(A  B) = P(A) + P(B) – P(A  B)  

    

 

 

   (1)    (2)    (3)    (4)    (5) 

 

 

 

 

 

 

(1)    (2)    (3)    (4)    (5) 

 

 

 

 

(1)    (2)    (3)    (4)    (5) 

 

In order for the calibration to hold between person and test items, students’ responses to the 

questions were captured and raw scores obtained which are then converted to interval logit values using 

the Polytomous Rasch measurement model. Students’ responses to the questionnaires were captured in 

Moodle site and later exported as an Excel file.  Data were analyzed using Winsteps 3.74.0 software to 

produce the relevant Rasch output (Linacre, 2007).   
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Polytomous Rasch Model 

Also known as a probabilistic model, Rasch measurement takes into account two parameters – 

test item difficulty and person ability.  

The polytomous (rating scale) Rasch model establishes the relative difficulty of each item from 

the lowest to the highest levels the instrument is able to record. It is more complex than the dichotomous 

Rasch model as it is possible to endorse one of the many response categories on a scale. The items 

indicate a rather more complicated representation than the one for dichotomous data. For dichotomous 

data, each item is represented as having a single item estimate, with an associated error estimate. For 

rating-scale data, not only does each item have a difficulty estimate, but the scale also has a series of 

thresholds (i.e., the level at which the likelihood of failure at a given response category [below the 

threshold] turns to the likelihood of success at that category [above the threshold]).  

Response categories in Likert instruments may include ordered ratings, such as “Strongly 

Disagree/ Disagree/ Agree/ Strongly Agree”, to represent a respondent’s increasing inclination towards 

the concept questioned. The response rating scale, when it works, yields ordinal data which need to be 

transformed to an interval scale to be useful. This is achieved by the Rasch rating scale model (Andrich, 

1978). 

The polytomous “Rasch Rating Scale” model is a mathematical probability model, which 

incorporates an algorithm that expresses the probabilistic expectations of item and person responses, 

which estimates the probability that a person will choose a particular response category or an item as: 

 

  jinjninij FDBPP  )1(/ln                      

where,  

 ln  =  a natural logarithm 

 Pnij    =  the probability of respondent n scoring in category j for item i 

 Pni(j-1) =  the probability of scoring in category (j-1) 

 Bn   =  the person measure/ability of respondent n 

 Di =  the difficulty of item i 

 Fj  =  the difficulty of category step j  

(the threshold at which there is a 50-50 chance of scoring in category j and category j – 1) 
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Table 2.  Thresholds and Category Fit 

 

Information in Table 2 helps the investigation of the rating scale quality as to whether the 

categories fit the model sufficiently well and whether the thresholds indicate a hierarchical pattern to 

the rating scale. Basic examination of rating scale used in the Table 2 indicates that each category has 

provided enough observations for an estimation of stable threshold values. The recommended minimal 

number of responses per category is 10 (Linacre, 1999a).  Based on step calibrations of Andrich 

threshold, all categories are ordered and increases monotonically.  For example, Category 1 was 

recorded as -2.93 which can be interpreted as the average ability estimate, or logit score, for persons 

who chose Category 1 on any item in the questionnaire. Similarly for Category 2 until Category 5.   To 

further support this, observation based on outfit mean squares for each category shows the fit of each 

rating scale category to the unidimensional Rasch model meet the criterion of mean square statistics less 

than 2.0 (Linacre, 1999a).   

 

 
 

Figure 1. Probability curves for a well-functioning five category rating scale 
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The Rasch analysis places persons (Bn) and items (Di) on the same measurement scale where the 

unit of measurement is the logit (logarithm of odds unit). The person’s likely score is defined by the 

interaction between the person’s measure, the item’s difficulty, and the score’s category threshold. 

These parameters are assumed to be interdependent.  However, separation between the two 

parameters is also assumed.  For example, the items (questions) within a test are hierarchically ordered 

in terms of their difficulty and concurrently, persons are hierarchically ordered in terms of their ability.  

The separation is achieved by using a probabilistic approach in which a person’s raw score in a test is 

converted into a success-to-failure ratio and then into a logarithmic odds that the person will correctly 

answer the items (Bond & Fox, 2007). This is represented in a logit scale. When this is estimated for all 

persons, the logits can be plotted on one scale. 

 

RESULTS AND DISCUSSION 

Perceived Understanding in Probability Concepts  

Table 3 presents the summary statistics for perceived understanding in probability concepts based 

on the analysis of data using Rasch measurement tools. The statistics show the mean infit and outfit for 

person and item mean squares are close to 1.0 which indicate that in general the data had shown 

acceptable fit to the model. The mean standardized infit and outfit for person is between -0.3 and -0.2. 

The standardized outfit is within acceptable range of rasch measurement ( 1.0). The mean standardized 

infit and outfit for items is located at 0. This indicates the items measure are slightly overfit and that the 

data fit the model somewhat better than expected. (Bond & Fox, 2007). 

Table 3.  Summary Measures of Perceived Understanding in Probability Concepts 

 

 
Table 3 shows the standard deviation of the standardized infit as an index of overall misfit for 

persons and items. Using 2.0 as a cut-off criterion, standardized infit/outfit standard deviation for 
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persons is between 2.0 and 2.2 and standardized infit/outfit standard deviation for items is between 1.3 

and 1.5.  All show an overall acceptable fit.  

Separation is the index of spread of the person positions or item positions.  Separation of 1.0 or 

below indicates the items may not have sufficient breadth in position.  For persons, separation is 4.05 

for the data at hand (real) indicating approximately four levels of person ability. The item on the other 

hand has a separation index of 5.23 which indicates item difficulty can be separated into 5 levels.       

Person and item separation and reliability of separation assess instrument spread across the trait 

continuum.  Separation also determines reliability. Higher separation in concert with variance in person 

or item position yields higher reliability. The person separation reliability estimate for this data is 0.94 

which indicate a wide range of students’ ability.  The item separation reliability estimate is 0.96 which 

indicates items are replicable for measuring similar traits. 

The mean of the item logit position is always arbitrarily set at 0.0, similar to standardized z-score.  

The person mean is 0.94 suggesting that a small group of students had perceived their understanding of 

probability concepts quite well. From the perspective of Rasch measurement, this indicates some items 

were easily endorsed or easy to agree with.  

 

Person-Item Distribution Map for Perceived Understanding 

 
Figure 2. Person-Item Distribution Map of Perceived Understanding of Probability Concepts 
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Figure 2 shows the person-item distribution map of perceived understanding of probability 

concepts. The map display the distribution of students (on the left side of the map) according to their 

ability from most able to least able in endorsing items as agree or correct.  The map also displays the 

items according to the difficulty levels.      

It is expected that many students will have little or no understanding about Bayes’ theorem and 

conditional probability concepts.  At the time when this instrument was administered, conditional 

probability was exposed using few practical examples while the illustration of the Bayes’ Theorem 

formula was not emphasized.  Hence, there is a slight mismatch between how the concept was taught 

and the development of the items.  This explains why majority of the students could not endorse items 

B7i, B7ii, B7iii and B7iv (logit values between 2.0 and 2.5), items which are related to the Bayes’ 

Theorem concept.  On the other hand, about 97% of the students found concepts A1ii, B8iii and B9iii 

(at logit value of -1.0) which are directed to simple definitions of event, probability and tree diagrams 

are the easiest to endorse. Only about 33% of the students found concepts of conditional and independent 

events as difficult to understand. Generally students have perceived the items as quite easy to understand 

as the item mean logit is lower than the person mean logit.   

In the investigation of data fitting the model, the distribution of empirical data are plotted across 

the expected values for the perceived understanding Likert scale items (Group L) as shown in Figure 3. 

The characteristic curve for all empirical values in Group L falls along the expected ogive curve and 

within the upper and lower bound of the 95% confidence interval. This indicates a good item person 

targeting for the perceived understanding of probability items.  This also signals the data fit the model 

better than expected. 
 

 
Figure 3.  Empirical-Expected Item Characteristic Curves For Perceived Understanding Items 
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CONCLUSION AND SUGGESTION  

This study has shown that students’ level of perceived understanding of probability concepts can 

be identified using the Rasch polytomous measurement tools.  Generally a large number of students 

(96%) perceived a good understanding about sample space, simple events, complementary events, and 

mutually exclusive events. About 96% of the students could understand about sample space, simple 

events, mutually exclusive events and tree diagram while 67% of the students found concepts of 

conditional and independent events rather easy to understand. A brief interview with several students 

confirmed that they have difficulties learning these concepts due to lack of exposure to these concepts 

at schools.  However, current teaching in the STAT131 class has helped them to deal with prior 

misunderstandings of probability concepts.  Students who initially have little understanding of the 

probability concepts wish to demonstrate a greater understanding of the concepts after two weeks of 

exposure to the topics.   
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