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ABSTRACT A novel KPC variant, KPC-41, was identified in a Klebsiella pneumoniae
clinical isolate from Switzerland. This �-lactamase possessed a 3-amino-acid insertion

(Pro-Asn-Lys) located between amino acids 269 and 270 compared to the KPC-3

amino acid sequence. Cloning and expression of the blaKPC-41 gene in Escherichia
coli, followed by determination of MIC values and kinetic parameters, showed that

KPC-41, compared to those of KPC-3, has an increased affinity to ceftazidime and a

decreased sensitivity to avibactam, leading to resistance to ceftazidime-avibactam

once produced in K. pneumoniae. Furthermore, KPC-41 exhibited a drastic decrease

of its carbapenemase activity. This report highlights that a diversity of KPC variants

conferring resistance to ceftazidime-avibactam already circulate in Europe.
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As part of the antibiotic resistance crisis, carbapenemase-producing Enterobacterales
(CPE) are among the main concerns. Indeed, apart from their resistance to almost

all �-lactams, including carbapenems, which is observed most of the time, they are

frequently coresistant to other antibiotic families (1). The main carbapenemases iden-

tified worldwide are the serine carbapenemases of the KPC and OXA-48 types, and the

metallo-�-lactamases (MBLs) of the NDM, VIM, and IMP types (1). Development of novel

drugs is mostly driven by the spread of those determinants. Among the recently

developed drugs, combinations of �-lactams and �-lactamases inhibitors, such as

ceftazidime-avibactam (CZA) and ceftolozane-tazobactam, are very successful alterna-

tives (2). Although serine �-lactamases are inhibited by avibactam (AVI), this combina-

tion is not active against MBLs (2). Despite a still limited use of CZA at a worldwide

scale, KPC variants resistant to AVI have been already reported (3–9). Such resistance is

mostly driven by amino acid substitutions in the sequence of the KPC carbapenemase

that might be selected after a CZA treatment (22). Variants conferring CZA resistance

are derivatives of either KPC-2 or KPC-3 enzymes. Substitutions in the omega loop

(amino acid positions 164 to 179) have been often associated with concomitant

enhanced affinity toward ceftazidime and prevention of binding to AVI (7–10).

Here we describe �-lactamase KPC-41, a variant of KPC-3 conferring resistance to

CZA. This novel KPC variant possesses a 3-amino-acid insertion in its protein sequence

compared to KPC-3 and has been identified from a Klebsiella pneumoniae clinical

isolate.
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RESULTS AND DISCUSSION

K. pneumoniae strains FF and UM were recovered from rectal swabs of a 72-year-old

man with pancreatic cancer, hospitalized at the University Hospital Center of Lausanne,

Switzerland. Actually, this patient was living and previously hospitalized in Sicily before

his transfer with a known history of a ciprofloxacin-containing treatment for cholangitis.

At his admission in Switzerland, he screened positive for a KPC-3-positive K. pneu-
moniae strain (isolate FF). After pancreatic surgery performed in Switzerland, he was

treated with piperacillin-tazobactam. Following a peritonitis episode, colistin (loading

dose of 3 g, followed by 1.5 g/12 h) for 28 days and CZA (2/0.5 g for 5 days followed

by 1/0.25g/8h for 19 days) were administered (Fig. 1). Then systematic rectal screenings

identified another K. pneumoniae strain (isolate UM) (see below). Finally, this patient

developed a cholangitis episode as a result of a biliary stent occlusion. He was treated

successfully with colistin (one loading dose of 3 g followed by 3 g/day) for 10 days and

meropenem (2 g/8 h) for 12 days (Fig. 1).

K. pneumoniae isolate UM was resistant to expanded-spectrum cephalosporins,

ertapenem, CZA, and aztreonam and remained susceptible to imipenem and mero-

penem (Table 1). This isolate remained susceptible to colistin according to the negative

result of the rapid polymyxin test (data not shown). Carbapenemase activity was

assessed according to the results of the rapid Carba NP test, which was positive for both

K. pneumoniae FF and K. pneumoniae UM isolates. Hence, common procedures to

screen for carbapenem-resistant isolates and to detect any carbapenemase activity

allowed the identification of K. pneumoniae UM.

Analysis of the whole-genome sequences of both isolates ruled out any clonal

relationship. Isolate FF belonged to sequence type 307 (ST307), while isolate UM

belonged to ST395. The antibiotic resistome of K. pneumoniae isolate UM included

genes encoding �-lactamases TEM-1, SHV, and CMY.

Immediately after the isolation of isolate UM, it was found to be positive for blaKPC
by PCR. Sequencing of the amplicon revealed a KPC variant possessing a 3-amino-acid

insertion (Ambler 269-ProAsnLys-270) within a KPC-3 sequence, leading to a novel

variant named KPC-41.

In order to evaluate the differences in term of hydrolysis spectra between KPC-41

and KPC-3, the corresponding genes were cloned and expressed in Escherichia coli
TOP10. Once produced in this E. coli background, KPC-3 conferred resistance to all

�-lactams, including ceftazidime, but it remained susceptible to CZA. On the other

hand, KPC-41 conferred resistance to ceftazidime, reduced susceptibility to expanded-

spectrum cephalosporins such as cefotaxime and cefepime, and yielded only a slight

reduction in the susceptibility to carbapenems (Table 1). Noticeably, this recombinant

E. coli strain producing KPC-41 was resistant to CZA (Table 1).

Some KPC variants conferring CZA resistance have been previously reported, exhi-

FIG 1 Timetable of antimicrobial treatments and isolation of the K. pneumoniae strains FF and UM. Black

bars represent antimicrobial treatments, with numbers representing treatment length in days (d) or the

loading dose (ld). Gray arrows indicate the dates of isolation of K. pneumoniae isolates FF and UM.
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biting a single amino acid substitution often occurring in the omega loop, in particular

at position Ambler 179 (8). In contrast, the amino acid insertion identified in KPC-41 was

distantly located from the omega loop. Nevertheless, amino acid substitutions distantly

located from the omega loop but leading to resistance to CZA have been also reported

among KPC variants, such as KPC-8 (Val240Gly and His274Tyr) (6) and KPC-23

(Val240Ala and His274Tyr) (11).

The blaKPC-41-positive K. pneumoniae UM belonged to ST395, although the previ-

ously reported KPC producers exhibiting CZA resistance belonged to ST258 (6), ST307

(3), and ST1519 (11). It is noteworthy that an outbreak caused by a KPC-3-producing K.
pneumoniae ST395 isolate (susceptibility to CZA not reported) has been reported in a

neonatal intensive care unit in Palermo, Italy, and in our study the patient carrying K.
pneumoniae UM also originated from Sicily (12).

Mating-out experiments performed with K. pneumoniae UM and using E. coli as a

recipient (23) were successful and confirmed the plasmid location of the blaKPC-41 gene.
Analysis of the corresponding plasmid revealed it was ca. 70 kb and belonged to the

IncFII-type incompatibility group.

Purification of both KPC-3 and KPC-41 enzymes was performed, reaching a purity

estimated to be 90%, with a single dominant band on the SDS-polyacrylamide gel for

each protein (data not shown). Kinetic data showed that KPC-41 has a lower hydrolysis

activity of cefotaxime, aztreonam, and imipenem than that of KPC-3 (Table 2). Similar

decreased hydrolytic efficiencies for carbapenems of some KPC variants have previously

been reported, such as for the Asp179Tyr KPC-2 mutant (10). In contrast, MIC values of

aztreonam for KPC-41 and KPC-3 remained similar, as previously observed for the

Thr243Ala KPC-3 variant (13).

Kinetic analyses measuring the hydrolysis of ceftazidime were conducted for KPC-3

and KPC-41 enzymes. Although significant hydrolysis was detected with KPC-3, no

hydrolysis could be detected with purified KPC-41 under normal conditions (measure-

ment made over 5 min); however, by performing the assay for 1 h, ceftazidime

hydrolysis was detected with KPC-41, but the hydrolysis rate was much lower than that

of KPC-3 (Fig. 2A).

Considering that KPC-41 conferred significant resistance to ceftazidime once pro-

TABLE 1MICs of �-lactams for K. pneumoniae clinical isolates, E. coli TOP10 transformants,
and E. coli TOP10 recipient strains

�-Lactama

MIC (�g/ml)

K. pneumoniae E. coli

UM

(KPC-41)

FF

(KPC-3)

TOP10

(pTOPO-KPC-41)

TOP10

(pTOPO-KPC-3) TOP10

Amoxicillin �128 �128 �128 �128 8
Amoxicillin � CLA �128 �128 �128 �128 8
Ticarcillin �128 �128 �128 �128 4
Ticarcillin � CLA �128 �128 �128 �128 4
Piperacillin �128 �128 128 �128 2
Piperacillin � TZB �128 �128 128 �128 2
Cephalothin �128 �128 �128 �128 16
Cefotaxime 32 �128 16 �128 �0.125
Ceftazidime 1,024 1,024 2,048 2,048 0.25
Ceftazidime � AVI �128 4 128 2 0.25
Ceftaroline �256 �256 �256 �256 0.25
Cefepime 16 128 16 128 �0.125
Ceftolozane � TZB �256 64 �256 �256 0.06
Cefoxitin 32 32 8 128 8
Aztreonam �128 �128 64 64 �0.125
Imipenem 4 8 2 32 0.25
Meropenem 1 8 0.5 16 0.5
Ertapenem 4 16 0.5 32 �0.12

aClavulanic acid (CLA) was added at a fixed of 2 �g/ml, tazobactam (TZB) at 4 �g/ml, and avibactam at

4 �g/ml.
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duced by the recombinant E. coli clone, it was therefore speculated that KPC-41 could

strongly bind to ceftazidime but without efficient hydrolysis. Therefore, the affinities of

KPC-3 and KPC-41 for ceftazidime were measured using various concentrations of

ceftazidime, to inhibit the hydrolysis of a reporter substrate (nitrocefin). At the same

ceftazidime concentrations, a higher level of inhibition of nitrocefin was observed in the

presence of KPC-41 than in the presence of KPC-3 (Fig. 2B and C), and the Ki of
ceftazidime was found to be 3-fold lower for KPC-41 than for KPC-3. Decreased

ceftazidime hydrolysis and increased ceftazidime affinity have been also observed for

the KPC-2 Asp179Asn variant conferring resistance to CZA (7).

Comparative inhibitory activities of clavulanic acid, tazobactam, and AVI were

determined for KPC-41 and KPC-3 (Table 3). The inhibitory activity of AVI toward KPC-41

was much lower than toward KPC-3, while conversely, those of tazobactam and

clavulanic acid were similar toward KPC-41 and KPC-3. An increased inhibitory activity

of the �-lactamase inhibitor clavulanic acid, whose structure is basically very different

from that of AVI but is more related to that of tazobactam, has been also reported for

the Asp179Tyr mutant of KPC-2 (10).

Together, these results indicate that the 269-ProAsnLys-270 insertion observed in

TABLE 2 Kinetic parameters of purified �-lactamases KPC-41 and KPC-3a

�-Lactam

KPC-41 KPC-3

kcat (s�1) Km (�M)

kcat/Km
(mM�1·s�1) kcat (s�1) Km (�M)

kcat/Km
(mM�1·s�1)

Benzylpenicillin 5.07 36 0.15 5.6 33 0.2
Cephalothin 4.75 102 0.03 47 113.5 0.4
Cefotaxime 1 116.7 0.008 34.9 532.8 0.065
Ceftazidime ND ND ND �3.3 �700 �4.7 E�3
Aztreonam 1.9 190.16 0.01 5 194.8 0.03
Imipenem 0.17 43.8 0.004 4.7 71.5 0.07
Meropenem ND ND ND 0.47 18.5 0.03
Ertapenem ND ND ND 0.58 37 0.02

akcat, turnover; Km, Michaelis constant (affinity); kcat/Km, specificity constant (hydrolysis). ND, not determinable

due to a low initial rate of hydrolysis.

FIG 2 Analysis of ceftazidime hydrolysis. (A) KPC-41 and KPC-3 (1 �M enzyme) hydrolysis of 25 �M ceftazidime (CAZ) at room temperature. (B and C)

Competitive inhibition curves determined with 50 �M nitrocefin and increasing concentrations of CAZ with 0.1 �M KPC-41(B) and 0.1 �M KPC-3 (C) at room

temperature. For panels B and C, nitrocefin absorbance was measured.
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the KPC-41 sequence was responsible for reduced hydrolysis of cephalothin, cefo-

taxime, and imipenem, associated with a higher affinity toward ceftazidime and with a

reduced sensitivity to AVI. It is noteworthy that KPC-3 differs from KPC-2 by one amino

acid substitution at position 273 that confers already a ca. 30-fold increase of hydrolytic

efficiency towards ceftazidime (14).

Conclusion. We report here a multidrug-resistant K. pneumoniae isolate producing

KPC-41, a novel KPC variant conferring resistance to CZA. This is the first report of a K.
pneumoniae isolate exhibiting such a resistance pattern in Switzerland. The patient had

been treated with CZA. Several reports of KPC variants conferring CZA resistance

originate from Italy, and the ST395 background of the KPC-41-producing strain has

been shown to be widespread in some Italian hospitals. Therefore, it might be specu-

lated that this Italian patient, hospitalized in Sicily, had been colonized there by K.
pneumoniae producing KPC-41 and that the further treatment with CZA given in

Switzerland likely contributed to its selection.

From a therapeutic point of view, full or partial recovery of susceptibility to carba-

penems observed in such a KPC variant may be considered good news. In the present

case, a therapeutic combination of meropenem and colistin was successful. Use of

meropenem may be justified by the in vitro data of reversion of KPC-3 mutations

leading to CZA resistance after serial passages of cultures with meropenem (15). We

may also consider double-carbapenem therapy (ertapenem and meropenem, for ex-

ample) as suggested for treating carbapenemase producers in Enterobacterales (16).

Finally, the report underlines that such an isolate can be recovered by routine screening

of carbapenem-resistant strains (at least by using the SuperCarba CHROMagar me-

dium), since the isolate remained resistant to ertapenem, and subsequently by identi-

fication of the carbapenemase activity by using a biochemical test such as the rapid

Carba NP test.

MATERIALS AND METHODS

Clinical strains and genome analyses. The National Reference Center for Emerging Antibiotic

Resistance (NARA; Fribourg, Switzerland) received K. pneumoniae isolates FF and UM. The genetic

similarity of the K. pneumoniae isolates was evaluated by whole-genome sequencing using both the

Illumina and Nanopore technologies. DNA was extracted with the Wizard Genomic DNA purification kit

(Promega; A1120) and libraries were prepared with FC-131-1096 NexteraVRXT. Divergency between the

two strains was evaluated by mapping (bwa 0.7.17) reads of K. pneumoniae UM on the assembled

(Spades 3.11.1) genome of K. pneumoniae FF. Variant calling was performed with GATK’s HaplotypeCaller.

Only genotype calls with �10 reads or supported by �75% of the observations were retained.

Conjugation experiments. Mating-out assays were performed using K. pneumoniae UM as the

donor and E. coli J53 (azide resistant) as the recipient. Selection was made using Trypticase-soy plates

supplemented with amoxicillin (100 �g/ml) and sodium azide (100 �g/ml). Typing of plasmids was

performed as described previously (17).

Cloning and sequencing. The blaKPC-3 and blaKPC-41 genes were amplified from DNA of the K.
pneumoniae FF and UM isolates using primers KPC-3-all-Fw (5=-TATATGAATTCAAGGGCGGCTGAAGGAA
TAC-3=) and KPC-3-all-Rev (5=-ATATAGAATTCCGCCATCGTCAGTGCTCTAC-3=). PCR products were cloned

into pCR-BluntII-Topo (Invitrogen, Thermo Fisher). Recombinant plasmids were further transformed into

E. coli strain TOP10. Sequencing of the amplicons and recombinant plasmids was performed by the

company Microsynth (Balgach, Switzerland).

Carbapenemase activity and antimicrobial susceptibility testing. Carbapenemase activity was

detected by using the rapid Carba NP test (18). MIC determinations were performed in triplicate by the

broth microdilution method in Mueller-Hinton broth (Bio-Rad, Marnes-La-Coquette, France), with the

exception of the combinations CZA and ceftolozane-tazobactam, for which MICs were determined by

TABLE 3 Inhibitory concentrations and kinetic inhibition parameters of �-lactamase
inhibitors against KPC-41 and KPC-3a

Inhibitor

IC50 (�M) Ki (�M)

KPC-41 KPC-3 KPC-41 KPC-3

Clavulanic acid 15 20 10 20
Tazobactam 20 50 3 10
Avibactam 6 1 4 1

aIC50 represents the concentration of a drug that is required for 50% inhibition of the enzymatic activity. Ki
corresponds to a relative koff/kon to the inhibitor for the enzyme.
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Etest (AB bioMérieux, Solna, Sweden). Results were interpreted according to EUCAST breakpoints (19).

The CZA resistance breakpoint is defined as �8 �g/ml for Enterobacterales. MICs of �-lactams were

determined alone or in combination with a fixed concentration of clavulanic acid (2 �g/ml), tazobactam

(4 �g/ml), or AVI (4 �g/ml). The antimicrobial agents were obtained from standard laboratory powders

and were used immediately after their solubilization. The agents and their sources were as follows:

amoxicillin, piperacillin, cefepime, cephalothin, ceftazidime, and clavulanic acid, Sigma (Saint-Quentin

Falavier, France); ticarcillin and cefoxitin, ROTH (Arlesheim, Switzerland); benzylpenicillin and tazobactam,

Abcam (Cambridge, UK); cefotaxime, aztreonam, and ertapenem, Acros Organic (Geel, Belgium); imi-

penem, Carbosynth (Berkshire, UK), meropenem, Combi-Blocks (San Diego, CA); AVI, MedChem Express

(Luzern, Switzerland); and ceftolozane, ACS DOBFAR (Tribiano, Italy). Susceptibility to colistin was

evaluated by using the rapid polymyxin NP test (20).

Screening of carbapenem-resistant Gram negatives was performed by using mSuperCARBA plates

(CHROMagar, Paris, France).

�-Lactamase purification and relative molecular mass determination. Cultures of E. coli TOP10
harboring plasmid pTOPO-KPC-3 and pTOPO-KPC-41 were grown overnight at 37°C in 2 liters of Luria

broth with kanamycin (50 �g/ml). The bacterial suspensions were pelleted, resuspended in 20 ml of

50 mM morpholine ethanesulfonic acid (MES) buffer (pH 5.5), disrupted by sonication, and centrifuged

at 11,000 � g for 1 h at 4°C. The enzyme extract was loaded onto a preequilibrated HiTrap Q HP column

(GE Healthcare) with MES buffer. The resulting enzyme extract was recovered in the flowthrough and was

then eluted with a linear NaCl gradient (0 to 1 M). The fractions showing the highest �-lactamase activity

were pooled and dialyzed against 100 mM phosphate buffer (pH 7.0), prior to a 10-fold concentration

with a Vivaspin 20 (GE Healthcare). The purified �-lactamase extract was immediately used for enzymatic

determinations. To assess the relative purity of the extracts and to determine the molecular weight of the

KPC-3 and KPC-41 �-lactamases, purified enzymes were subjected to SDS-PAGE analysis. Enzyme extracts

and marker proteins were boiled for 10 min in a 1% SDS–3% �-mercaptoethanol solution before being

separated by electrophoresis (100 V for 1 h) at room temperature. In parallel, molecular weights were

determined in silico using the Compute pI/Mw tool on the Expasy server (21).

Kinetic measurements. Purified �-lactamases were used for kinetic measurements (Km and kcat),
performed at 30°C in 100 mM sodium phosphate (pH 7.0). A Genesys 10S UV-visible (UV-Vis) spectro-

photometer (Thermo Scientific) was used to determine the initial rates of hydrolysis. The following

wavelengths and absorption coefficients (��) were used: for benzylpenicillin, 232 nm and �1,100

M�1 cm�1; for cephalothin, 62 nm and –7,960 M�1 cm�1; for ceftazidime, 260 nm and –8,660 M�1 cm�1;

for cefotaxime, 265 nm and –6,260 M�1 cm�1; for imipenem, 297 nm and –9,210 M�1 cm�1; for mero-

penem, 298 nm and –10,940 M�1 cm�1; and for aztreonam, 318 nm and –640 M�1 cm�1.

Determination of enzyme parameters (Km and kcat) was unsuccessful for ceftazidime because of the

low level of hydrolysis. For this reason, to analyze ceftazidime hydrolysis, the antibiotic was incubated

with 1 �M KPC-3 or KPC-41 enzyme and hydrolysis was measured for 1 h, as reported previously (9). To

compare the affinities of ceftazidime for KPC-3 and for KPC-41, we performed competitive inhibition of

50 �M nitrocefin using 0.1 �M KPC-3 or 0.1 �M KPC-41 and various concentration of ceftazidime, as

reported previously (7).

The 50% inhibitory concentrations (IC50) were determined for clavulanic acid, tazobactam, and AVI for

each enzyme. Various concentrations of these inhibitors were preincubated with the purified enzyme for

5 min at 30°C to determine the concentrations that reduced the hydrolysis rate of 100 �M cephalothin

by 50%. The results are expressed in micromolar units. The total protein content was measured by

Bradford assay.

The Ki value was determined by direct competition assays using 100 �M cephalothin. Inverse initial

steady-state velocities (1/V0) were plotted against the inhibitor concentration ([I]) to obtain a straight

line. The plots were linear and provided y-intercept and slope values used for Ki determination. Ki was
determined by dividing the value for the y-intercept by the slope of the line and then corrected by taking

into account the cephalothin affinity by the following equation: Ki (corrected) � Ki (observed)/(1 �
[S]/Km). Here, “[S]” is the concentration of cephalothin (100 �M) used in the assay and Km is the Michaelis

constant determined for cephalothin (102 �M for KPC-41 and 113.5 �M for KPC-3). IC50 and Ki values
were determined in triplicate.

Accession number(s). Genome sequences were deposited at EMBL/EBI under EBI project

PRJEB33694. The sequence of KPC-41 was deposited in the NCBI database under GenBank accession

number MK497255.
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