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Abstract—Training inhibitory control, the ability to suppress motor or cognitive processes, not only enhances
inhibition processes, but also reduces the perceived value and behaviors toward the stimuli associated with
the inhibition goals during the practice. While these findings suggest that inhibitory control training interacts with
the aversive and reward systems, the underlying spatio-temporal brain mechanisms remain unclear. We used
electrical neuroimaging analyses of event-related potentials to examine the plastic brain modulations induced
by training healthy participants to inhibit their responses to rewarding (pleasant chocolate) versus aversive food
pictures (unpleasant vegetables) with Go/NoGo tasks. Behaviorally, the training resulted in a larger improvement
in the aversive than in the rewarding NoGo stimuli condition, suggesting that reward responses impede inhibitory
control learning. The electrophysiological results also revealed an interaction between reward responses and
inhibitory control plasticity: we observed different effects of practice on the rewarding vs. aversive NoGo stimuli
at 200 ms post-stimulus onset, when the conflicts between automatic response tendency and task demands for
response inhibition are processed. Electrical source analyses revealed that this effect was driven by an increase
in right orbito-cingulate and a decrease in temporo-parietal activity to the rewarding NoGo stimuli and the reverse
pattern to the aversive stimuli. Our collective results provide direct neurophysiological evidence for interactions
between stimulus reward value and executive control training, and suggest that changes in the assessment of
stimuli with repeated motoric inhibition likely follow from associative learning and behavior-stimulus conflicts
reduction mechanisms. � 2019 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION

Training inhibitory control (IC), the ability to suppress

cognitive or motor processes (Aron et al., 2004), not only

reinforces the capacity to override impulsive reactions but

also influences how the trained stimuli are assessed. Inhi-

bitory control training has notably been shown to reduce

the choice and the consumption of the trained NoGo stim-

uli (e.g. Houben and Jansen, 2011; Veling et al., 2013).

These ‘collateral effects’ of inhibitory control training

may prove to be clinically relevant because they could

help improving unhealthy eating habits or other types of

maladaptive reward-responses (Allom et al., 2016). For

instance, Lawrence and colleagues (Lawrence et al.,

2015a) showed that forty minutes of repeated inhibition

of motor response to high energy density food reduces

daily energy intake and participants’ weight (for review,

see e.g. Stice et al., 2016).

However, how repeated motoric inhibitions actually

modify the neurocognitive processing of the food stimuli

to eventually influence behavior toward them remains

largely speculative; three main non-exclusive

mechanisms have so far been advanced (Veling et al.,

2017), which all predict specific patterns of training-

induced behavioral and electrophysiological plastic

changes:

i) The training may first reinforce top-down inhibitory

control processes, in turn helping participants to vol-

untarily resist impulses toward palatable food items.

This mechanism predicts a modification of the brain

responses to the NoGo stimuli during the implemen-

tation of the inhibition command, as indexed by the

P3 ERP component 300 ms post-stimuli onset and
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within right ventrolateral prefrontal cortices (Manuel

et al., 2010; Lenartowicz et al., 2011; Spierer et al.,

2013; Berkman et al., 2014; Chavan et al., 2015;

Hartmann et al., 2016; De Pretto et al., 2017). In

addition, this account predicts larger behavioral

improvements with appetitive than aversive pictures

because higher rewarding value elicit stronger -

more difficult to inhibit- approach impulses.

ii) The IC training may also develop automatic associ-

ations between the food items used as the NoGo

stimuli and the inhibition goal (for review, see

Spierer et al., 2013). When stimulus-driven forms

of inhibition develop, IC improves because the

NoGo stimuli directly trigger behavioral inhibition

or withdrawal, bypassing the slow voluntary initia-

tion of the inhibition command. This mechanism

predicts modifications during the discriminative/

attentional N1/P1 components at 150 ms post-

stimulus onset (Salinas and Stanford, 2013; Logan

et al., 2014; Verbruggen et al., 2014b) and within

the parietal areas implementing stimulus-response

mapping rules (Manuel et al., 2010). In addition, this

account predicts larger improvement for aversive

than appetitive pictures as aversive NoGo stimuli

are already associated with inhibition and with-

drawal. A modification of the attentional biases to

the stimuli may also manifest if IC training influ-

ences automatic responses to the stimuli (Goolsby

et al., 2009; Kakoschke et al., 2015; Meule and

Platte, 2016).

iii) As a third account, the Behavior Stimulus Interaction

(BSI) theory suggests that IC training intervention

may result in a devaluation of the food items, which

would in turn influence behaviors toward them

(Veling et al., 2008; Chen et al., 2016). At the begin-

ning of the training, rewarding NoGo food stimuli eli-

cit strong response tendencies conflicting with the

task requirements for inhibiting motor responses.

The pleasant food items would then be devaluated

to reduce this action-related conflict (Chen et al.,

2016). This mechanism mainly predicts modifica-

tions during the conflict detection/decisional N2 com-

ponent at 200–300 ms (Falkenstein, 2006; Manuel

et al., 2010; van de Laar et al., 2010; Verbruggen

and Logan, 2015; Hartmann et al., 2016), and within

anterior cingulate performance monitoring and orbi-

tofrontal reward-related areas (Kringelbach and

Rolls, 2004; Rolls and Grabenhorst, 2008). In addi-

tion, this account predicts better initial performance

for the aversive than the rewarding pictures, and a

larger increase in performance for the rewarding

than the aversive pictures. Because of the tight link

between stimulus value and saliency (e.g.

Anderson et al., 2013), this account further predicts

a decrease in the attentional bias to the rewarding

but not aversive stimuli with training.

We tested these hypotheses using global, data-driven

analyses of the ERP combined with distributed electrical

source estimations recorded during Go/NoGo training

tasks with either rewarding or aversive food picture as

NoGo stimuli (i.e. with opposite reinforcing value and

action tendencies). We also measured attentional

biases to the stimuli before and after the training with a

Dot-probe task to further test the predictions of each of

the models on attentional capture.

EXPERIMENTAL PROCEDURES

We recorded two groups of participants, one participating

in the training with Rewarding and the other with Aversive

food pictures as NoGo stimuli during the Go/NoGo

training. Our data are available upon reasonable request

to the corresponding author.

Aversive group participants

The ‘Aversive’ group included a total of 19 women. One

participant was excluded from the analyses due to

outlying behavioral performance (error rate above 2.5

SD from the group mean). A total of 18 participants

were thus eventually included in the Aversive group

(mean age ± SD= 22.8 ± 2.2 years).

Reward group participants

The ‘Reward’ group included 21 women. Two of them

were excluded from the analyses, one because of a lack

of sleep and the other because she performed part of

the task with two fingers at the same time. A total of 19

participants were thus eventually included in the Reward

group (Mean age ± SD= 22.8 ± 2.3 years).

Since we chose chocolate pictures as the rewarding

stimuli (see the ‘Stimulus’ section), we further controlled

several demographic and psychological parameters

known to influence reward responses to food stimuli. We

first controlled that the participants were within a healthy

weight range (average body mass index of 21.5

± 2.2 kg/m2 (BMI: weight(kg)/[height(m)]2)). In addition,

to ensure that the chocolate pictures indeed had an

appropriate rewarding value, participants were selected if

they considered themselves as ‘chocolate lovers’, but

without pathological attitudes toward chocolate (ACQ;

Attitudes to Chocolate Questionnaire; Benton et al.,

1998; total score = 4.1 ± 1.3; Craving score = 4.2

± 1.8). We also verified that they did not have any dietary

restrictions (Restraint Scale (RS); Herman and Polivy,

1980; RS= 13.6 ± 3.2).

General criteria for participants’ selection

In addition to these group-specific criteria, we ensured for

both groups that they i) did not have any current states of

anxiety and depression (HADS; Zigmond and Snaith,

1983; Anxiety = 8.5 ± 4.4; Depression = 4.7 ± 3.1),

and ii) were free of medical treatment, without history of

diagnosed psychiatric or neurologic disorders, and had

normal or corrected-to-normal vision. Since hunger has

been shown to influence IC and the way food-stimuli are

processed (Nederkoorn et al., 2009; Nijs et al., 2010;

Loeber et al., 2013; Meule et al., 2014), we also controlled

hunger levels by instructing participants to eat two hours

before the experiment and by measuring participants’
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current level of hunger (Visual Analogue Scale for hunger;

Reward group: 1.5 ± 1.7; Aversive group: 2.6 ± 2.1).

Furthermore, given that IC deficits and impulsivity are

positively associated with several facets of unhealthy eat-

ing (Jasinska et al., 2012) we also controlled impulsivity

(BIS-11; Barratt Impulsiveness Scale; Patton et al.,

1995; BIS = 60.2 ± 6.6).

Stimuli

For the Rewarding group, we selected five chocolate

(rewarding NoGo stimuli) and twenty non-chocolate

digital colored photographs (Go stimuli; e.g. flower,

book, or butterfly) from a picture database (Blechert

et al., 2014). We used pictures of chocolate as rewarding

stimuli because of i) its hedonic value (pleasurable aroma

and texture), ii) the strong association between this cate-

gory of food and craving (Weingarten and Elston, 1990;

Rozin et al., 1991; Hill and Heaton-Brown, 1994; Zellner

et al., 1999; Rogers and Smit, 2000) – chocolate-

specific craving represents almost half of all food cravings

(Weingarten and Elston, 1991), and iii) the well-

established behavioral effects of training IC of responses

to chocolate (e.g. Houben and Jansen, 2011, 2015).

For the Aversive group, we selected for each

participant five specific vegetable pictures (Aversive

NoGo stimuli) and used the same twenty non-chocolate

digital colored photographs (Go stimuli) as for the

Rewarding group. We used pictures of vegetables as

aversive stimuli because of i) their unpleasant value (cf.

the picture selection procedure below), and ii) the weak

association between this category of food and craving

(Rozin and Fallon, 1980). The participants were asked

to rate 27 vegetable pictures using a scale from �10 to

+10 on the following dimensions: familiarity, emotional

response (positive-negative), wanting to eat, taste, con-

sequence to eat (positive-negative). Then, the five

images out of 27 possible pictures were chosen as the

NoGo stimuli for the aversive group based on each indi-

vidual participant’s lowest rating for taste (scale from

�10 (very bad) to +10 (very good)), and in case of equal-

ity between the rating of more than 5 pictures, for pleas-

antness (scale from �10 (negative) to +10 (positive)).

The 20 non-chocolate pictures were the same for the

two groups and chosen so that none of them could be

encoded in group formation strategies (e.g. tools, office

supplies, etc.), with varying colors, and without any

semantic link with cooking or food. We included more

Go than NoGo items to prevent categorization. All the

stimuli were displayed on a white background.

Procedure

The experiment took place at the laboratory of the

Neurology Unit of the University of Fribourg,

Switzerland. Participants first gave their written,

informed consent, and then completed the

questionnaires. Participants’ consent was obtained

according to the Declaration of Helsinki (BMJ 1991; 302:

1194) and all the procedures approved by our local

ethic committee. Participants received either course

credits or a monetary compensation for their participation.

Once the electroencephalogram (EEG) system was

set up, they sat comfortably in a sound proofed booth at

110 cm of the 19-inch LCD screen on which stimuli

were presented. The Go/NoGo and the Attentional Bias

tasks were explained orally before the first block of the

task and written instructions were presented again at

the beginning of each Attentional Bias and Go/NoGo

block.

Go/NoGo task

In the Go/NoGo paradigm, participants were instructed to

press as fast as possible on a button with their right index

finger in response to Go stimuli, and to withhold their

response to NoGo stimuli. The Go stimuli were all

pictures depicting non-food items and the NoGo stimuli

were all pictures depicting food items (Fig. 1a).

The Go/NoGo task consisted of 10 blocks of 80 trials

each (50% Go/50% NoGo) for a total duration of 50

minutes, with 2-minute breaks in between. A calibration

phase of 12 trials (6 Go/6 NoGo) preceded each block.

The calibration phase was used to measure the

baseline response speed of each participant and to give

them a feedback based on this baseline during the

subsequent experimental Go/NoGo block. Since a

calibration phase preceded each block, the feedback on

response speed induced a time pressure and in turn a

response prepotency, which was adjusted individually

and adapted dynamically across blocks. As a result, the

task difficulty was the same across participants and

remained stable during the experiment even when

participants’ performance improved (see Vocat et al.,

2008 for similar procedures, Manuel et al., 2010;

Hartmann et al., 2016). The baseline response speed

was calculated as follow: The mean response time to

the 6 Go calibration trials was used as the reaction time

threshold (RTt) against which each response times (RT)

to Go trials during the experimental blocks were com-

pared. The participants received feedbacks on accuracy

and RT: ‘‘V” for no response to NoGo trials (correct rejec-

tions) and for correct responses to Go trials with

RT < 90%*RTt (fast Hits); ‘‘too late” for correct

responses to Go trials with RT > 90%*RTt (slow Hits);

‘‘X” for button press to NoGo trials (False Alarms: FA)

and ‘‘no response” for not responding to Go trials

(Misses).

Each trial started with the presentation of a black

fixation cross at the center of the screen for a duration

varying randomly between 950 and 1650 ms. After the

offset of the cross, one of the 25 stimuli was presented

for 500 ms. Go and NoGo occurrence was equiprobable

and their presentation order randomized. At the stimuli

onsets, a response window opened for a maximum of

1500 ms, and terminated when the participant

responded. The feedback was then presented for

500 ms, and the next trial started. Stimulus presentation

and behavioral data recording were controlled with E-

Prime 2.0 (Psychology Software Tools, Inc.,

Sharpsburg, PA, USA).

Two measures of behavioral performance were

calculated from the Go/NoGo task: the average RT to

Go stimuli for each block separately after having
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excluded individual RT higher or lower than 2.5 standard

deviations from the participant’s mean RT; and the

percent of errors to NoGo trials (FA rate). On the basis

of these two indices, we computed the inverse efficiency

score (IES), calculated as the response time to the Go

stimuli divided by the percentage of correctly rejected

NoGo trials. This index thus takes into account

performance to all types of trials during the Go/NoGo

tasks, and since it is based on both speed and

accuracy, it captures the global inhibitory control

performance independently on potential speed-accuracy

trade-offs. To examine the effects of training, the IES

were averaged separately and then statistically

compared between the three first blocks (Beginning

condition, Beg) and the three last blocks of the training

(End condition, End).

Attentional bias task

We tested if the IC training would decrease attentional

biases toward the trained NoGo stimuli by asking the

participants to complete a Dot Probe attentional bias

task (MacLeod et al., 1986) before and after the Go/NoGo

training (Fig. 1b). Participants were presented with cues

(the chocolate/vegetable or non-chocolate pictures used

as NoGo and Go stimuli during the IC training) immedi-

ately replaced by vertically or horizontally aligned double

dots probe. The probes were two 1 mm diameter dots

spaced 2 mm from center. Based on evidence for larger

effect sizes when stimuli are displayed in a top-bottom

in comparison with side by side presentation (Hakamata

et al., 2010), the cues were displayed in a top-bottom con-

figuration. The pre- and post-Go/NoGo training differed

only in the order of the cues and the probes.

The attentional bias task included 100 randomly

presented trials. Each trial began with a black fixation

cross (500 ms) presented at the center of a white

screen. The cross was followed by the cues, one below

and one above the fixation cross, during 1000 ms. Then,

the probe appeared for 300 ms at the location of one of

the cues. Of the 100 trials, 40 trials had the probe

appearing at the same location as the chocolate picture

(Attend Rewarding Stimuli Condition), and 40 trials had

the probe appearing at the opposite location from the

chocolate picture (Avoid Rewarding Stimuli Condition).

To decrease the saliency of the task aims, 20 additional

trials contained cue pairs with only non-chocolate

pictures (Neutral Condition). The location of both the

cues and the probes was balanced within each block,

as was the horizontal or vertical alignment of the probe

dots.

The participants had to respond as fast as possible to

the probe by pressing a button during a response window

of 1000 ms. They had to press key 1 with the right index

finger when the double dots were presented vertically,

and press key 2 with the right middle finger when the

Fig. 1. Schematic representation of the Go/NoGo and the attentional bias tasks. (A) Go/NoGo task. Participants had to respond as fast as possible

to the Go Trials (Non-food pictures) while withholding their responses to the NoGo stimuli (chocolate in the Reward condition or vegetable pictures in

the Aversive condition). (B) Attentional bias Dot-probe task. Pairs of pictures (the cue, i.e. pictures from the Reward Go/NoGo task) were replaced

by horizontally or vertically aligned double dots (the probes). The probes were systematically presented at the same (Attend condition) or at the

opposite position (Avoid condition) of a given cue. Participants had to discriminate as fast as possible the orientation of the double dots. In both

tasks, the ’V’ and ‘X’ feedback respectively indicate correct and incorrect responses.
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double dots were presented horizontally. Following the

participant’s response, a blank period of 1000 ms was

presented, followed by a feedback (500 ms).

If the participants responded incorrectly or too slowly

(see details on response time thresholds below), they

had to wait 2500 ms before the next trial started as a

‘punishment’. This extra waiting time aimed to add time

pressure. After the feedback a 500–800 ms inter-trial

interval was presented, and the next trial started.

A calibration phase with 10 trials (4 Attend; 4 Avoid; 2

Neutral) preceded the 100 experimental trials. The role

and principle of this calibration phase was the same as

for the calibration phase during the Go/NoGo task: to

determine the reaction time threshold (RTt: average

reaction times of the 10 trials), which was used during

the experimental phase to add time pressure and

individually adjust the difficulty of the task. During the

experimentation phase, the feedback depended on the

RTt: ‘‘V” for correct responses with a RT < RTt; ‘‘too

late” for correct responses with a RT > RTt; ‘‘X” for

incorrect responses with RT < RTt; ‘‘X and too late” for

incorrect response with RT > RTt; and ‘‘no response”

for omission.

Attentional bias scores were calculated by comparing

the average RT to the correctly discriminated probes of

both conditions (Attend vs. Avoid). The RT of each trial

were averaged after excluding the RT higher and lower

than two standard deviations from the individual mean

for the pre-Go/NoGo block and the post-Go/NoGo block

separately.

EEG recording and preprocessing

Continuous EEG was recorded with a sampling rate of

1024 Hz through a 64-channel 10–20 Biosemi Active-

Two system (Biosemi, Amsterdam, Netherlands),

referenced to a ground circuitry (common mode

sense/driven right leg ground or CMS–DRL, placed on

each side of POz). This circuitry consists of a feedback

loop driving the average potential across the montage

as close as possible to the amplifier zero (cf. the

Biosemi website http://www.biosemi.com/pics/zero_ref1_

big.gif for a diagram).

Offline analyses were performed with the Cartool

software (Brunet et al., 2011), and statistical analyses

were performed with the RAGU (Koenig et al., 2011)

and STEN toolboxes (https://zenodo.org/record/

1164038).

Before segmenting the raw EEG into epochs, the

continuous raw EEG data were filtered with a second

order Butterworth with �12db/octave roll-off; 0.1 Hz

high-pass, 40 Hz low-pass; 50 Hz notch filter. Then, for

each participant, we extracted EEG epochs from

100 ms pre- to 500 ms post- stimulus onset. Epochs

with at least one electrode with at least one time frame

at ±80 mV were automatically rejected to remove eye

blinks and other artifacts. The event-related potential

(ERP) averaging was computed separately for each

condition, for the first three blocks (Beginning condition,

Beg), and the last three blocks of the Go/NoGo training

(End condition, End). We focused on the three first and

three last blocks as it allowed reaching a reliable

signal-to-noise ratio in the ERP while keeping the

duration of the training time separating these blocks as

long as possible. In addition, this approach ensured

comparability with our previous studies in which we

applied the same procedure (e.g. Manuel et al., 2010;

Manuel et al., 2013; Hartmann et al., 2016). Data from

electrode still showing artifacts after the epoch rejection

procedure and the ERP averaging were then interpolated

using 3D splines (Perrin et al., 1987) (mean ± SD= 4.1

± 2.5% electrodes were interpolated). ERPs were then

recalculated to the average reference.

Event-related potentials analyses strategy

We applied a global, data-driven analyses of the EEG

comparing the ERPs between the experimental

conditions for all peri-stimulus time frames and across

the whole electrode montage. This approach allows

minimizing biases and false negative induced by the a

priori selection of a limited number of periods and/or

electrodes of interest (for corresponding approaches

see e.g. Thelen et al., 2012; Hartmann et al., 2016).

Once the period showing modulations in the sensor

space were identified, we used it as period of interest

for the statistical analyses of the source estimation. We

calculated the sources of the ERP for each subject and

each condition previously averaged over the period of

interest (i.e. showing the ERP modulation). The sources

were then statistically compared using the same

statistical designs as for the ERP analyses.

ERP analyses

To identify the effects of training on the Go and NoGo

stimuli and between the experimental groups, we

computed a NoGo Type (Rewarding; Aversive) �
Stimulus (Go; NoGo) � Training (Beg; End) mixed

ANOVA on the ERP voltages at each electrode for each

time frame of the whole ERP time-period. We focused

only on the triple interaction term because it ensured

that any observed difference reflected the modification

that were specific to the NoGo Type (Rewarding vs.

Aversive), inhibitory or execution processes (Go vs.

NoGo) with training (Beg vs. End).

To correct for multiple comparisons and for temporal

and spatial autocorrelation in the EEG data, we took

into account only effects with a p-value <0.01 for at

least 11 continuous time points (i.e., here 11 ms at an

EEG sampling rate of 1024 Hz) on at least 10% of the

electrodes (Guthrie and Buchwald, 1991).

Electrical source analyses

The time periods showing ERP NoGo Type (Rewarding;

Aversive) � Stimulus (Go; NoGo) � Training (Beg; End)

interaction were used as periods of interest for the

analyses of the electrical source estimations. Brain

sources of ERP modulations were estimated using a

distributed linear inverse solution model (a minimum

norm inverse solution) combined with the local

autoregressive average (LAURA) regularization

approach, which describes the spatial gradient across
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neighboring solution points (Grave de Peralta Menendez

et al., 2001; Grave de Peralta Menendez et al., 2004).

LAURA enables investigating multiple simultaneously

active sources and selects the configuration of active

brain networks which better mimics biophysical behavior

of neural fields. In LAURA’s approach, the strength of

the potentials at a given location depends on the activity

of its neighbor nodes according to electromagnetic laws

derived from the quasi-static Maxwell’s equations stating

that the strength of a source falls off with the inverse of

the squared distance for potential fields (cubic distance

for vector fields; Grave de Peralta Menendez et al.,

2001; Grave de Peralta Menendez and Gonzalez

Andino, 2002; Grave de Peralta Menendez et al., 2004,

for a review see Michel et al., 2004). LAURA uses a real-

istic head model, and the solution space consists of nodes

selected from a grid equally distributed within the gray

matter of the Montreal Neurological Institute’s average

brain (grey matter segmentation courtesy of Grave de

Peralta Menendez and Gonzalez Andino; http://

www.electrical-neuroimaging.ch). The head model and

lead field matrix were generated with the Spherical Model

with Anatomical Constraints (SMAC; Spinelli et al., 2000).

As an output, LAURA provides current density measures;

their scalar values were evaluated at each node. We used

a realistic head model and the solution space included

3005 solution points, selected from a 6 � 6 � 6 mm grid

of voxels distributed within the grey matter of the average

brain of the Montreal Neurological Institute (MNI, courtesy

of R. Grave de Peralta Menendez and S. Gonzalez

Andino, University Hospital of Geneva, Geneva, Switzer-

land). Fundamental and clinical research has assessed

the spatial accuracy of this inverse solution and ensure

that the reliability of the estimation support the spatial res-

olution of the interpretation of the localization of the effect

in the present study (e.g. Grave de Peralta Menendez

et al., 2001; Michel et al., 2004; Gonzalez Andino et al.,

2005a; Gonzalez Andino et al., 2005b). The sources esti-

mations were first averaged over the period of interest

and the current density at each solution point was sub-

jected to the same NoGo Type � Stimulus � Training

design as for the ERPs analyses. A spatial correction

for multiple tests was achieved by taking into account only

clusters showing a p-value < 0.01 with a spatial-extent

criterion (kE) of �15 contiguous nodes. This spatial crite-

rion was determined using the AlphaSim program (avail-

able at http://afni.nimh.nih.gov) and assuming a spatial

smoothing of 6 mm full width at half maximum. This pro-

gram applies a cluster randomization approach. The

10,000 Monte Carlo permutations performed on our lead

field matrix revealed a false positive probability of

<0.005 for a cluster greater than 15 nodes (for a corre-

sponding approach see e.g. De Lucia et al., 2010;

Knebel and Murray, 2012; Manuel et al., 2012)

RESULTS

Behavior

Go/NoGo task. We analyzed the inverse efficiency

score (IES; RT / % correct NoGo) with a two-way mixed

ANOVA with Training (Beg; End) as a within-subject

factor and the NoGo Type (Reward; Aversive) as

between-subject factor (Table 1). There was a larger

improvement in IC in the Aversive than the Rewarding

condition as indexed by a Training � Stimuli interaction:

F(1,35) = 17.812; p< 0.001; gp
2 = 0.337. There was

also a main effect of training (F(1,35) = 35.879;

p< 0.001; gp
2 = 0.506), but no main effect of NoGo

Type (F(1,35) = 0.811; p= 0.374; gp
2 = 0.023; Fig. 2a).

As complementary analyses, we ran the same

statistics on the RT and FA rate separately, which

suggested that the effect on the IES were mainly driven

by changes in RT, as repeatedly observed in previous

studies on IC training (e.g. Hartmann et al., 2016; De

Pretto et al., 2017): For the RT, there was a Train-

ing � Stimuli interaction: F(1,35) = 17.010; p< 0.001;

gp
2 = 0.327), a main effect of training (F(1,35) = 43.865;

p< 0.001; gp
2 = 0.556), but no main effect of NoGo Type

(F(1,35) = 0.408; p= 0.527; gp
2 = 0.012). The same

analyses were conducted on FA rate, and showed no

interaction nor main effect of training (two-way mixed

ANOVA Training � NoGo Type; main effect of Training:

F(1,35) = 1.499; p= 0.229; gp
2 = 0.041; Interaction: F

(1,35) = 0.357; p= 0.554; gp
2 = 0.010), but a small main

effect of NoGo Type: F(1,35) = 6.286, p= 0.017;

gp
2 = 0.152. Of note, the same pattern was found when

analyzing median RT instead of mean RTs.

Attentional bias task (Pre- and Post-IC training). We

analyzed the attentional biases with a three-way mixed

ANOVA with Condition (Avoid; Attend) and Training

(Pre-; Post- GNG training) as within-subject factors, and

the NoGo Type (Reward; Aversive) as between-subject

factor. There was a main effect of Session, driven by a

decrease in RT between the pre- and the post- GNG

blocks (F(1,35) = 114.468; p< 0.001; gp
2 = 0.766;

Fig. 2b), indicating a general, unspecific retest effects.

There were no main effect of Condition (F(1,35)
= 2.862; p= 0.100; gp

2 = 0.076), and no interactions

(Session � NoGo Type: F(1,35) = 2.713; p= 0.109;

gp
2 = 0.072; Condition � NoGo Type: F(1,35) = 3.193;

p= 0.083; gp
2 = 0.084; Session � Condition � NoGo

Type: F(1,35) = 1.644; p= 0.208; gp
2 = 0.045),

indicating that the repeated inhibition to the NoGo

stimuli did not influence attentional biases to these stimuli.

Event-related potentials (ERP) and source
estimations

Time-wise electrode-wise ANOVA and source estima-
tion ANOVA. To test for the effect of the IC training to

rewarding vs. aversive NoGo items, we applied our

Training (Beg; End) by NoGo Type (Reward; Aversive)

by Stimulus (Go; NoGo) ANOVA. There was a

significant (p< 0.01; >10 ms; >10% electrodes)

Training � NoGo Type � Stimulus interaction 170–

236 ms post-stimulus onset; Fig. 3a,b).

The same NoGo Type � Training � Stimulus

statistical design was applied on the source estimation

previously averaged over the period of significant ERP

interaction (Fig. 3c).
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Table 1. Performance at the Go/NoGo tasks and behavioral effects of training

Mean

± SD

Reward NoGo Aversive NoGo Group � Training

Interaction
Beginning End Beg vs. End Beginning End Beg vs. End

IES 4.2 ± 0.4 4.1 ± 0.6 p= 0.213

dz = 0.27

4.2 ± 0.3 3.8 ± 0.2 p< 0.001

dz = 1.93

p< 0.001 gp
2 = 0.337

Go RT [ms] 371.3

± 29.9

359.3

± 45.2

p= 0.082

dz = 0.42

399.8

± 48.2

348.2

± 50.2

p< 0.001

dz = 1.74

p< 0.001 gp
2 = 0.327

NoGo FA

[%]

11.0 ± 6.3 11.7 ± 8.9 p= 0.656

dz = 0.09

5.7 ± 2.8 8.0 ± 6.8 p= 0.212

dz = 0.33

p= 0.554 gp
2 = 0.010

Behavioral performance at the Aversive and Reward Go/NoGo tasks. Mean, SD, as well as the effect size and p-values of comparisons are indicated. IES: Inverse efficiency

score; RT: Response time; FA: False alarms.

Fig. 2. Behavioral results expressed as the differences before and after training (DBeg-End in A, DPre-Post in B). (A) The difference mean

(horizontal line), and individual data (dots) are represented for the response times to Go trials, the difference false alarm rate to NoGo trials, and the

combined Inverse Efficiency Score (IES) of the Reward (REW) and Aversive (AVE) Go/NoGo trainings (see Table 1 for the detailed results of the

Go/NoGo task). For IES and RT, positive values indicate better scores after the training. For FA negative value indicate better score after the

training. (B) The same information is provided for the response time to the probes when they were at the same (Attend, AT) or at the opposite

(Avoid, AV) location to the NoGo cue (i.e. the rewarding stimuli used as the NoGo stimuli during the Go/NoGo training, see Table 2 for the detailed

results of the Attentional bias task). The Aversive Go/NoGo training improved inhibition performance, as indexed by decreases in response time

without concomitant increase of false alarm rate, but did not influence attentional biases to the trained stimuli. Training in the Reward Go/NoGo

condition did not result in inhibitory control performance improvement.
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This analysis revealed a significant interaction

(p< 0.05; KE � 15 nodes) within a right orbito-cingulate

network extending to the basal ganglia (MNI 10; 50; �7
to 21; 14; �4), and a right temporo-parietal network

extending to the precuneus (MNI 51; �55; 8 to 26; �80;
45). The anterior network showed an increase in activity

to the rewarding NoGo trials with training and the

posterior network an overall decrease in activity. The

reverse pattern was observed for the aversive stimuli.

DISCUSSION

We found that the effect of inhibitory control training

interacted with the trained NoGo stimuli reward/aversive

value at both the behavioral and electrophysiological

levels. We observed larger training-induced

performance improvements in the aversive than in the

rewarding NoGo stimuli condition. There was, however,

no effect of the training on the attentional biases to the

stimuli. Neurophysiologically, the training was

associated with changes around 200 ms post-stimulus

onset in the response to the NoGo stimuli, driven by an

increase in the activity of right orbito-cingulate and a

decrease in temporo-parietal areas to the rewarding

inhibition stimuli and the reverse pattern to the aversive

stimuli. Our findings are most compatible with the

associative learning and the behavior-stimulus

interaction (BSI) accounts of the effect of inhibitory

control training on the behavior toward rewarding

stimuli, which respectively posit that repeated motoric

inhibitions result in the development of stimulus-driven

forms of inhibition and in a devaluation of the stimuli to

reduce the conflict between response tendencies and

task demands for inhibition.

NoGo stimuli’s reward value influences training
induced improvements in inhibition performance

The behavioral effects of training motoric inhibition

replicated those reported in previous IC training studies

with neutral stimuli, namely a decrease in response

times to Go trials with no change in inhibition trials

accuracy (Manuel et al., 2010; Benikos et al., 2013;

Spierer et al., 2013; Enge et al., 2014; Hartmann et al.,

2016). While an improvement in IC would most intuitively

manifest as a decrease in commission errors to NoGo tri-

als (i.e. false alarm rate), the present pattern of behavioral

change can actually be interpreted as reflecting inhibition

enhancement, especially given the time pressure set dur-

ing the Go/NoGo task: ‘horse race’ models of inhibition

indicate that the IC performance in Go/NoGo and Stop-

signal tasks depends on the relative speed of the motor

execution and inhibition processes. Hence, a decrease

in RT without concomitant change in the rate of false

alarms necessarily indicates that the speed of inhibition

increased (Chavan et al., 2015; Logan et al., 2014;

White et al., 2014; Hartmann et al., 2016). Critically, the

effects of training were larger in the Aversive than Reward

condition. This finding is compatible with both the ‘rein-

forcement of top-down inhibition’ account, which pre-

dicted a general improvement for the two NoGo tapes

since domain-general process would be improved, and

the ‘associative learning’ account of the effect of training

on valuation, which predicted faster learning of the asso-

ciations between the stopping goals and the aversive pic-

tures because they already elicited withdrawal

tendencies. This pattern of results is however inconsistent

with the ‘Behavior Stimuli Interaction’ account, which pre-

dicted larger improvement in the aversive than rewarding

condition because the aversive pictures were already

associated with withdrawal tendencies. Yet, the interac-

tion might also be driven by a dominant effect of response

tendencies to rewarding stimuli over inhibition capacities,

which would in turn have reduced the effect of training to

the rewarding but not to the aversive stimuli.

Regarding the interaction between IC training and

attention, while negative results should be interpreted

with caution, the absence of effect of the training on

attentional biases to the trained NoGo stimuli speaks

against an explanation of changes in stimulus valuation

in terms of attentional modulations (Houben and Jansen,

2011; Veling and Aarts, 2011; Veling et al., 2013;

Wessel et al., 2014; Houben and Jansen, 2015; Wessel

et al., 2015). This finding is also in line with previous obser-

vation for an absence of interaction between changes in

executive control performance and in automatic atten-

tional allocation systems (Sallard et al., 2018). Interactions

between inhibitory control and attentional biases might

however manifest only during real food choices or con-

sumption, and/or in case of extreme biases or abnormally

weak IC (Dawe et al., 2004; Kakoschke et al., 2015).

Attentional biases might also be more susceptible to be

modified by training decision-related ‘‘cognitive” impulsiv-

ity than the ‘‘motor” impulsivity manipulated in our study

(de Wit and Richards, 2004; Olmstead, 2006).

NoGo stimuli’s reward value influences training
induced changes in the 200 ms latency orbito-
cingulate and temporo-parietal activity

Our effect manifested 170–236 ms post stimulus onset,

corroborating most of previous reports on the timing of

training-induced changes in IC (180–210 ms in Manuel

et al., 2013); 215–240 ms in De Pretto et al., 2017; though

effects at 290–400 ms were observed in Hartmann et al.,

2016). The 200 ms latency corresponds to the initiation of

Table 2. Performance at the Aversive and Reward Attentional bias tasks

Mean ± SD Reward NoGo Aversive NoGo

Pre Post Pre Post

Attend 675.3 ± 90.9 576.7 ± 75.1 619.3 ± 79.3 551.2 ± 78.4

Avoid 673.2 ± 80.8 577.8 ± 72.0 638.6 ± 90.4 564.5 ± 94.4

Behavioral performance at the Aversive and Reward Attentional bias tasks. Mean and SD are indicated.
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the N2 executive control ERP compo-

nents (Nieuwenhuis et al., 2003; Kok

et al., 2004; Ramautar et al., 2004). In

the multi-phase reactive motor inhibi-

tion process, this period corresponds

to the detection of the conflict between

response tendencies and task

demands for inhibition (van de Laar

et al., 2010; Huster et al., 2013; e.g.,

Salinas and Stanford, 2013; Logan

et al., 2014; Verbruggen et al., 2014a;

Verbruggen and Logan, 2015); this

phase follows stimulus discrimination

(ca 80–100 ms; Salinas and Stanford,

2013; Logan et al., 2014) and the

implementation of stimulus–response

mapping rules (100–150 ms; Manuel

et al., 2010), and precedes the proper

implementation of the inhibition com-

mand (250–400 ms; Huster et al.,

2013).

The latency of our effect during

conflict detection and monitoring

phases mostly supports the behavior-

stimulus interaction (BSI) theory as an

account for IC training-induced

changes in stimulus responses;

Previously observed reductions of the

stimuli reward value with IC training

may have taken place to decrease the

Fig. 3. Electrical Neuroimaging Results. Inter-

action terms of the 3-way ANOVAs with the

factors: Stimulus (Go; NoGo) � Training

(Beginning; End) � NoGo Type (Reward

NoGo; Aversive NoGo) and Training (Begin-

ning; End). (A) Group-averaged event-related

potentials (ERPs) at two exemplar electrodes

for the four experimental conditions (ERPs

voltage is on the Y axis, time on the X axis,

with zero representing the stimulus onset). (B)

The result of the ANOVAs’ triple interactions

for the ERPs at each electrode and each peri-

stimulus time point are represented as the

percentage of electrode showing a significant

interaction. There was a sustained significant

ERP interaction (p< 0.05; >11 ms; >10%

electrodes) around 200 ms after the onset of

the stimuli. The scalp topographies for each

condition and the electrodes showing the

interaction over this period are represented in

red on a flattened EEG cap (nasion upwards).

(C) The analyses of the distributed source

estimations over the period of significant ERP

modulation revealed significant interactions

(p< 0.05; ke � 15 nodes) within right orbito-

frontal-cingulate (OFC-ACC), right superior

temporal (STG), and right precuneus areas.

The bar graphs depict the difference (Beg–

End) of the mean cluster current densities

(interactions’ effect size reported). Positive

values indicate decrease in activity with

training.
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conflict between the inhibition demands and the response

tendency to the stimuli (Botvinick et al., 2004; van Veen

and Carter, 2002; for a corresponding finding with emo-

tional devaluation, see Kiss et al., 2007). This assumption

is also in line with hypotheses that repeated inhibitions

modify the motivational significance of the stimuli. In turn,

the conflict between the reward-driven response tendency

to the stimuli and the response inhibition demand would

decrease (Pourtois et al., 2004).

While the latency of the effect speaks against the ‘top-

down inhibition’ account (which predicted effect during

later inhibition implementation phases), it does not rule

out the ‘associative learning’ account. Different change

in stimulus–response mapping rules would have

typically manifested at earlier latencies (Manuel et al.,

2010), but they could also have influenced the subse-

quent behavior-stimulus interaction phase during which

our effect manifested.

Further compatible with the BSI and associative

learning accounts for the effect of IC training on

stimulus valuation, we observed an increase in orbito-

cingulate activity and a decrease in temporo-parietal

activity to the rewarding NoGo stimuli and the reverse

pattern for the aversive items. The orbitofrontal cortex is

a key node of the reward system involved in encoding

the reward values (Kringelbach, 2004, 2005; Rolls and

Grabenhorst, 2008), in the rapid reversal of stimulus-

reinforcement associations (Kringelbach, 2004), and in

linking food and other types of rewarding items to hedonic

experience (Kringelbach, 2005). The anterior cingulate

cortex has been repeatedly involved in conflict monitoring

(Carter and van Veen, 2007), notably during the N2 ERP

component (Ruggeri et al., 2019). Temporo-parietal

areas, notably including the cuneus, show a correspond-

ing functional profile. Activity in these areas are modu-

lated by reward magnitude (Delgado et al., 2003) and

by the more automatic signaling of rewarding stimuli sal-

iency (Litt et al., 2011). The direction of our effect sug-

gests an association between higher prefrontal reward-

related activity with lower-level ability to inhibit motor

response tendency, whereas posterior activity would

reversely facilitate motor inhibition.

Limitations

Our study suffers several limitations. First, we did not

address whether the observed functional effects would

also manifest when the reward value of the stimuli and

the associated response tendencies are as prominent

as with drugs in addiction (Smith et al., 2014) or food in

obesity (Lawrence et al., 2015b). In the same vein,

whether corresponding effects of training would take

place if other types of rewarding stimuli such as money

or smiling faces were used during the training should be

investigated in future studies.

Second, while corresponding effects of short and long-

term training have been found with neutral stimuli

(Chavan et al., 2015; Simonet et al., 2019), we cannot

rule out that long-term training might affect differently

reward responses.

Finally, we did not test whether our training actually

modified the perceived values of the stimuli. Our

primary focus was indeed to determine whether the

intrinsic reward value of the trained stimuli influenced

the neurophysiological effects of training. Hence, we

could not conclude if the perceived value of the stimuli

changed with the training, only that the value of the

stimuli modified the related training-induced changes.

Yet, since our training approach was very close to the

previous literature demonstrating such effects both in

terms of the paradigm and stimuli we used and of the

duration of the intervention (Jones et al., 2016; Turton

et al., 2016), our training also possibly influenced the per-

ceived value of the stimuli.

Our collective results provide a direct

neurophysiological confirmation for an interaction

between stimulus rewarding/aversive value and motor

inhibitory control training. Our findings further suggest,

in line with the predictions from the BSI and associative

learning theories, that stimulus devaluation by repeated

motoric inhibition observed in previous food IC training

studies most likely followed from modulations at the

level of the conflict between reward-driven response

tendencies and task demands for inhibition. Our study

also extends current neurocognitive models of training-

induced IC plasticity by showing that the nature of the

stimuli to which responses have to be inhibited during

the training directly influences its functional effects.
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