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Abstract

This work focuses on optimizing node placement for time-of-flight-based wireless
localization networks. Main motivation are critical safety applications. The first
part of my thesis is an experimental study on in-tunnel vehicle localization. In-
tunnel localization of vehicles is crucial for emergency management, especially
for large trucks transporting dangerous goods such as inflammable chemicals.
Compared to open roads, evacuation in tunnels is much more difficult, so that
fire or other accidents can cause much more damage. We provide distance mea-
surement error characterization inside road tunnels focusing on time of flight
measurements. We design a complete system for in-tunnel radio frequency time-
of-flight-based localization and show that such a system is feasible and accurate,
and that few nodes are sufficient to cover the entire tunnel.

The second part of my work focuses on anchor nodes placement optimiza-
tion for time-of-flight-based localization networks where multilateration is used
to obtain the target position based on its distances from fixed and known anchors.
Our main motivation are safety at work applications, in particular, environments
such as factory halls. Our goal is to minimize the number of anchors needed
to localize the target while keeping the localization uncertainty lower than a
given threshold in an area of arbitrary shape with obstacles. Our propagation
model accounts for the presence of line of sight between nodes, while geometric
dilution of precision is used to express the localization error introduced by multi-
lateration. We propose several integer linear programming formulations for this
problem that can be used to obtain optimal solutions to instances of reasonable
sizes and compare them in terms of execution times by simulation experiments.
We extend our approach to address fault tolerance, ensuring that the target can
still be localized after any one of the nodes fails.

Two dimensional localization is sufficient for most indoor applications. How-
ever, for those industrial environments where the ceiling is very high and the
worker might be climbing or be lifted from the ground, or if very high localiza-
tion precision is needed, three-dimensional localization may be required. There-
fore, we extend our approach to three-dimensional localization. We derive the

il
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expression for geometric dilution of precision for 3D multilateration and give its
geometric interpretation.

To tackle problem instances of large size, we propose two novel heuristics:
greedy placement with pruning, and its improved version, greedy placement
with iterative pruning. We create a simulator to test and compare all our pro-
posed approaches by generating multiple test instances. For anchor placement
for multilateration-based localization, we obtain solutions with below 2% an-
chors overhead with respect to the optimum on average, with around 5s average
execution time for 130 candidate positions. For the fault-tolerant version of the
same problem, we obtain solutions of around 1% number of anchors overhead
with respect to the optimum on average, with 0.4s execution time for 65 can-
didate positions, by using greedy heuristic with pruning. For 3D placement, the
greedy heuristic with iterative pruning produced results of 0.05 % of optimum on
average, with average execution time of around 6s for 250 candidate positions,
for the problem instances we tested.
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Chapter 1

Introduction

Localization aims at finding position of an object of interest. A wide range of
modern applications, from entertainment to critical safety systems, can benefit
from determining positions of objects, persons or animals. Some of the exam-
ples are navigation of vehicles, wildlife monitoring, care for elderly and infirm
people, museum guides, and safety at work. Global positioning system (GPS) is
a preferred solution for outdoor localization. However, GPS requires the line of
sight to satellites, and therefore, cannot be used indoors or even outdoors where
large buildings obstruct the visibility to the sky. Therefore, effective solutions for
indoor localization systems are needed.

Localization techniques that take advantage of wireless modules are com-
monly used for indoor localization. A set of wireless nodes, called anchors, are
placed at fixed and known positions in the area that needs to be monitored. We
will refer to the object of interest, that needs to be located, as target or tag. The
target object is equipped with a wireless node as well. The target is mobile and
needs to be localized at all times. As the target moves, different anchors will be
used to localize it, always those that are near the target.

The placement of anchors greatly influences the system functionality and lo-
calization precision. The number of nodes placed directly affects the system cost
and energy consumption. Therefore, our goal is finding placement strategies for
localization networks. Our work primarily focuses on critical safety applications.

We address several scenarios. All of them use time-of-flight (ToF)-based lo-
calization, where distances are measured by measuring the time a signal takes to
travel between the anchor and the target. Such localization offers high precision.

Our first scenario is in-tunnel vehicle localization. We design a system for
localization and characterize the distance measurement error in road tunnels.
We perform experiments in a road tunnel and propose best practices for placing
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anchors in this scenario.

In the second scenario, our goal is to optimize the placement of anchor nodes
for a ToF-based localization network, so as to minimize their number, thus mini-
mizing the cost and the power consumption of the network, while ensuring that
the target can be reliably localized at each point in the area of interest, in 2D.
Multilateration is a process used to combine the measured distances to obtain the
target position. We primarily have in mind critical safety at work applications in
factory halls. We extend this problem to include fault tolerance. Specifically, we
still want to be able to localize the target at any point in the area of interest,
even if one of the anchor nodes fails. Two-dimensional localization is sufficient
in many cases, as we can often assume that the target is only moving on the
ground. However, it is not always the case. In factories, the worker may climb
or be lifted from the floor. Therefore, we extend our approach to 3D scenarios.
Thus, our work covers 1D, 2D and 3D scenarios.

We take into consideration the obstacles that can obstruct wireless propa-
gation or significantly affect the distance measurement precision. The metric
we use is Geometric Dilution of Precision (GDoP), which is commonly used for
expressing precision of localization systems. We also derive the expression for
GDoP for 3D multilateration.

Much of our work focuses on exact approaches. We show that exact solu-
tions can be found for problem instances of anchor placement for localization
of reasonably large sizes. Exact solutions to these problem instances allow to
evaluate the quality of non-exact algorithms, by running simulation experiments
and comparing the number of nodes to that placed by exact methods. Our exact
approaches are based on integer linear programing (ILP). ILP enables to obtain
exact solutions to instances of NP hard problems in feasible computation times
by using state of the art ILP solvers. Where the problem instance size is too large
to find the exact solution, we propose greedy placement with pruning, and its
improved version, greedy placement with iterative pruning, that allow to solve
problem instances of very large sizes in short computing times. For the prob-
lem instances we tested, our non-exact approaches produced results of between
0.05% and 1.75% in terms of average overhead of the number of anchors placed
compared to the optimum.

1.1 Motivation

Our work is motivated by two different scenarios we encountered in two projects.
Both of them involve localization for critical safety applications. Our first sce-
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nario is in tunnel vehicle localization, that was required by PTA [[2010] project.
The project focuses on tracking large trucks transporting dangerous chemicals,
and our group focused on localizing vehicles inside tunnels. GPS signals that are
usually used to localize vehicles are not available in tunnels. Accidents, such as
fire, are especially dangerous and cause much more damage in tunnels than in
the open areas, as evacuation is more difficult. Therefore, localization in tun-
nels is particularly important, especially for vehicles transporting dangerous and
inflammable chemicals. As wireless propagation properties in road tunnels are
significantly different than in other environments, localization systems need to
be designed for road tunnels specifically.

The second scenario, required by the PTA-DESTNATION| [2015]] project, fo-
cuses on safety at work applications. In particular, the system can be deployed
in a factory hall, in order to localize workers in case of danger and thus increase
their safety. Apart from the localization functionality, both the anchors and the
target node may have other functionalities that can enhance the workers’ safety.
For example, the target node can be equipped with an inertial system that can
detect the fall, and anchor nodes can be equipped with sensors that detect smoke
or dangerous chemicals. In case of an accident, the system can identify the emer-
gency situation and send a notification about it. This notification has to include
the worker’s position, so that the person in danger can be rescued. We include
3D scenarios as the factory halls typically have tall roofs, and the worker may be
climbing or lifted off the floor.

For highly critical applications such as safety systems, using high precision
localization provided by ToF is preferred to cheaper and less precise alternatives,
such as WiFi or bluetooth-based solutions. For the same reason, the application
criticality, we also address fault-tolerant anchor placement in our work.

1.2 Ewvaluation Criteria

In our simulation experiments we often use the execution time for given prob-
lem parameters in order to compare and evaluate different solution approaches.
We generate a large number of random instances of a problem with the same
parameters, run the optimization for all the problem instances and look at the
execution time statistics. Even though the execution time depends on multiple
factors such as the processor used, the memory architecture and the operating
system, it provides a way to compare different approaches. Looking at how the
execution time increases with increasing problem size gives us an insight into
the size of a problem instance for which we can get a solution in realistic times,
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or in a given time. Comparing execution times is also accepted when addressing
practical problems in literature.

Our goal is to minimize the number of nodes in the network while the network
meets the localization requirements. In order to deal with non-polynomial com-
plexity of exact algorithms, we propose heuristic algorithms. In case of heuristics,
where no optimal solution is guaranteed, we use the number of nodes placed by
the heuristic compared to the number placed by the exact approach as the mea-
sure of quality. Again, we run the optimizations for a large number of randomly
generated instances and look at the statistics on the number of nodes placed. We
aim to set the problem parameters such that they correspond to real-life problem
instances.

1.3  Contents and Contributions

Our main goal is to optimize the placement of anchor nodes for a ToF-based
localization network, so as to minimize their number, thus minimizing the cost
and power consumption of the network, while ensuring that the target can be
reliably localized at each point in the area of interest. We extend this problem
to include fault tolerance. Specifically, we still want to be able to localize the
target at any point in the area of interest, even if one of the anchor nodes fails.
We address 1D, 2D and 3D localization.
Main contributions are:

* An experimental study of in-tunnel vehicle localization which shows that
radio frequency (RF) ToF-based in-tunnel vehicle localization is feasible
and provides recommendations for node placement in such systems.

* Time of flight distance measurement error characterization for road tunnels
which is useful for designing in-tunnel localization systems.

* An error model and an uncertainty function for a UWB-based localization
system that takes into account both Line of Sight (LoS) and GDoP effect on
localization uncertainty, for both 2D and 3D localization.

* Three different ILP formulations for anchor placement for trilateration-
based localization in 2D and their comparison by simulation experiments.
The formulations can be used to obtain optimal solutions to problem in-
stances of reasonable sizes.
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 ILP formulation for fault-tolerant placement for multilateration-based lo-
calization in 2D that can be used to obtain optimal solutions to problem
instances of sizes that are relevant for practical applications.

* ILP formulation for placement for multilateration-based localization in 3D
that can be used to obtain optimal solutions to problem instances of sizes
that are relevant for practical applications.

* Two novel heuristics which allow to tackle instances of all three above prob-
lems of large sizes: greedy placement with pruning, and its improved ver-
sion - greedy placement with iterative pruning. For the problem instances
we tested, these heuristics produced results of between 0.05% and 1.75 %
average overhead of the number of anchors placed compared to the opti-
mum values.

* GDoP expression for 3D multilateration and its geometric interpretation.

* Asimulator for testing and comparing proposed approaches as well as solv-
ing instances of real-life problems.

1.3.1 Simulator

We created a simulator that either accepts an existing floor plan as input, or
generates the floor plan randomly with given parameters. Random generation
of floor plan is useful for testing and comparing proposed approaches, while the
existing floor plan feature can be used to tackle the real-life problems. More
information about the simulator is given in Section We used this simulator
to generate test scenarios and run all our simulation experiments.

1.3.2  Contents

In Chapter[2] an overview of different localization techniques, with the emphasis
on ToF-based techniques, as well as the description of localization system we con-
sider in this work is given. In Chapter [3] the problem statement is given, and in
Chapter [4] we present a literature review on node placement for wireless sensor
networks, with the emphasis on placement for localization networks. In Chap-
ter [5| we present our system for in-tunnel vehicle localization, the experimental
study in a road tunnel, as well as our guidelines for node placement in road tun-
nels. The chapter also includes a literature overview on wireless propagation in
road tunnels. In Chapter [6l we propose three ILP formulations and the greedy
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placement with pruning heuristic for 2D placement of nodes for a localization
network. In chapter[7} we extend our solutions to 3D scenarios, propose a faster
heuristic: greedy placement with iterative pruning, and derive the expression for
GDoP for 3D multilateration. In Chapter [§we conclude the work.



Chapter 2

Preliminaries

Outdoor localization is almost exclusively based on global navigation satellite
systems (GNSSs). There are several such systems. The United States NAVSTAR
GPS, The European Union’s Galileo and the Russian GLONASS are fully globally
operational GNSSs. The People’s Republic of China is in the process of expanding
its regional Beidou navigation system into the global navigation system. The dif-
ferent GNSSs are using almost the same positioning principles. These principles
are based on the assumption that at a given place on the earth surface a GNSS
receiver is able to "see" a certain number of GNSS satellites. Each satellite of a
given GNSS constellation has a very accurate atomic on board time clock which
is continuously synchronized with respect to a common reference. Each satel-
lite individually broadcasts a set of parameters that can be inserted into a set of
known orbital equations (Ephemeris) allowing a receiver to compute, within a
few meters, the position of a satellite at a given time. GNSSs were initially de-
signed for military applications, but are now widely available for civil uses. GNSS
receivers are inexpensive, therefore, many devices in everyday use are equipped
with such receivers and can take advantage of GNSS localization. However, the
supplier of satellite navigations signals can also deny their availability. Another
disadvantage of GNSSs is that the line of sight to the satellites is necessary, which
means, the sky has to be visible in order to use it. This condition is not met in
indoor environments, tunnels, underground, and underwater environments, and
in so called urban canyons, where tall buildings obstruct the visibility to the sky.
Therefore, many different solutions and systems have been devised for indoor
environments, with different implementation costs and different precision, suit-
able for different environments and needs. Many of these systems are based on
radio signals. Other options are cameras, or in case of underwater networks,
sound waves.



Localization systems can be roughly divided into range-free and range-based
systems. Range-free systems are quick and easy to implement as a rule, but they
do not provide the same precision and reliability as range-based systems. They
are suitable for applications where high precision is not necessary, for example
location-based advertisements in shopping malls. We know that the target is in
the intersection of areas covered by the anchors it can detect, so we can approx-
imately determine its position. As the areas covered by different anchors are of
irregular shapes, this is most commonly implemented as so called fingerprinting.
There is a setup phase, which needs to be executed only once, in which signals
from all anchors are recorded in the entire area of interest. Then, during the
localization phase, the signals that the target can detect are compared with the
prerecorded database of signals and the position is determined based on the re-
sults. Existing WiFi access points can be used as anchors for such localization,
but usually additional anchors are needed. Bluetooth nodes are often deployed
for this purpose, as it is an inexpensive solution. Another range-free method is
estimating distances based on the number of hops. Signal cannot always reach
the receiver directly from the transmitter, but may have to be forwarded via other
nodes. The number of these intermediate nodes is the number of hops. As range-
based solutions are much more precise and reliable, and our work focuses on
safety critical applications, we use range-based solutions.

For range-based systems, localization process consists of two phases. In the
first phase, distances between the anchors and the target are determined. Mea-
suring distances is often referred to as ranging. Alternatively, angles can be
measured instead of distances. In the second phase, distances (or angles) are
combined in order to obtain the target position. Angles can be measured by us-
ing directional antennas and antenna arrays. These solutions require dedicated
hardware and their precision is only moderate. Also, angles can be measured by
using cameras.

The most commonly used methods for measuring distances by radio signals
are received signal strength indication (RSSI) and time of flight (ToF). RSSI mea-
sures the signal strength at the receiver, and estimates distance based on the path
loss, the signal attenuation from transmitter to receiver. In theory, the signal
strength decreases logarithmically with the distance. However, different signal
components take different paths and reflect from obstacles in the environment.
The sum of these components is what is detected at the receiver, and it is sig-
nificantly different from what we would obtain if the signal only reached the
receiver through the direct path and without any reflections. This effect is called
multipath propagation. It is the main reason why RSSI measurements are not
very reliable. Compared to RSSI, ToF-based methods are much more precise (see
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for example Vossiek et al.|[[2003]]). Part of our work was comparing ToF and RSSI
distance measurements precision in the tunnel environment. See Chapter |5|for
more details on our work on in-tunnel vehicle localization and our experimen-
tal comparison of RSSI with ToE Even though the road tunnel causes far fewer
reflections than the typical indoor or factory environment, we show experimen-
tally that ToF outperforms RSSI localization by far. Therefore, we will focus on
ToF-based localization in this work.

2.1 ToF-based Distance Measurements

While ToF measurements are based on the simple principle of measuring the
signal propagation time and multiplying by the known speed of signal propa-
gation, they require complex hardware for very precise time measurements and
time synchronization. There are several different variants of distance measure-
ments all using ToF as the basic principle. They all have different requirements
on synchronization and time measurement precision on both anchor and target
nodes. Time Difference of Arrival (TDoA) is one of the commonly used methods
(Gustafsson and Gunnarsson| [2003[]). Target broadcasts a message to multiple
anchor nodes at the same time. The anchors record the reception time of the
message, and send the reception time-stamp to one central location. Using the
time difference from several pairs of anchors, the unknown transmission time
can be calculated along with the unknown position of the target. Each pair of
anchor measurements constraints the target position to a hyperbola. The down-
side of this method is that very precise time synchronization of all anchor nodes
is required. As it is difficult to achieve such synchronization wirelessly, cables are
usually used for this purpose in indoor environments.

Another distance measurement method based on ToF is two way time of flight
(TWToF) (Jiang and Leung [2007]]). The target sends a message to each anchor
in turn and waits for the response. This measurement procedure is shown in
Figure The propagation time is calculated as:

round — Erepl
tp - %’ (21)
where t,,.q iS the time measured by the target from sending the request message
until the response arrives. The anchor processing time ¢, can be recorded by
the anchor and transmitted back to the target. Another solution is to use special
hardware which can guarantee that the response is sent at exactly defined time
after the reception of the message. With TWTOF the synchronization constraint
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Target Anchor

tround treply

Figure 2.1. Two way time of flight.

can be removed for all the devices in the system. In this work, we assume that
the distances are measured by using TWToE In this way, there is no need for
synchronization cables and deployment is simplified.

Silva et al.| [2014]] propose and test an Ultra Wide Band (UWB) based local-
ization system using multilateration in a small setting with four anchor nodes,
and show that such localization is accurate, fast and non-complex when line of
sight is present.

2.2  Ultra Wide Band

While it is possible to use time of flight with radio frequency signals, ultra wide
band is much more commonly used with time-of-flight-based localization, espe-
cially when high precision is necessary, in cluttered environments and for safety
critical applications. The use of UWB has many advantages making it an attrac-
tive solution for positioning and tracking applications. The use of ultra-short
pulses makes measurements with excellent time resolution possible. The trans-
mitted signals are well protected from unauthorized interception. The transmis-
sion is immune to narrowband interference and multipath phenomenon. The
average power of UWB emission is very low, so transmitters have low energy
requirements (Dardari et al.[[2009], Gezici et al. [[2005]]).

Due to all these reasons, ultra wide band has become a standard for high
precision indoor localization. As it is cheaper and provides sufficient precision
in tunnel environment, we have used radio frequency time of flight for our in-
tunnel experiments (see Chapter [5). In the rest of our work, for 2D and 3D
localization, we assume that UWB modules are used. UWB module measures the



11 2.3 Line of Sight

distances from anchor nodes to the target by using ToF technique. Two nodes
can communicate only if the distance between them is less than the node range.
The typical range of UWB nodes is around 20 m.

2.3 Line of Sight

Line of Sight (LoS) is a term that is used to indicate that there are no objects
in between the nodes that can significantly obstruct their communication or dis-
tance measurements, they can "see" each other. While UWB signals are highly
resistant to multipath propagation due to their high bandwidth, the absence of
line of sight between nodes adversely affects the UWB distance measurements
and significantly reduces the ranging accuracy. Therefore, it has to be taken into
account when designing UWB localization systems. Ranging error of UWB sys-
tems has been studied by Alavi and Pahlavan [2006]. They show that the error
can be modeled as a Gaussian random variable, with parameters depending on
presence of LoS. In presence of LoS, the mean error value is 0, while standard
deviation is low, and increases with the distance d between the transmitter and
the receiver as 0 = ¢ - log(1 + d). In the absence of LoS, error standard devia-
tion is much higher, while its mean value is positive. While small objects such
as chairs do not present an obstacle to UWB measurements, some walls, pillars
and large machines do. Therefore, we take LoS requirement into consideration
in our work. Moreover, our experiments in the tunnel environment have shown
that RF ToF is also sensitive to Non Line of Sight (NLoS) conditions (See Chapter
5).

Many solutions have been proposed to mitigate the adverse effect of NLoS
measurements on localization accuracy once the localization system is deployed
and operating. See, for example, Khodjaev et al. [2010],|Schroeder et al.|[[2007]],
Chen et al. [2012], Marano et al. [2010]]. These works focus on detecting dis-
tance measurements that are affected by NLoS condition, among all the measure-
ments between the target and different anchors. Some of them try to mitigate the
effect of NLoS by countering the bias introduced. Others focus on detection only
and discard the affected measurements. NLoS condition can be identified by us-
ing variance of distance measurements, channel statistics such as signal to noise
ratio at the receiver, or by using the maps of the environment and observing the
previous position of the target. Our work is complementary to these efforts. We
address the problem of how to deploy the localization system by optimizing an-
chor node placement, to ensure that there is sufficient number of measurements
not affected by NLoS at each point of interest.
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2.4 Combining Distances to Obtain Position

The second stage of localization aims at combining distance or angle measure-
ments obtained in the first stage to calculate the target position. The method
used depends on the measurement principle. When angles are measured, the
process used to combine them is called triangulation. At least two anchors are
needed for triangulation in 2D. The measured angles will determine the direc-
tions from anchors to the target. The target is located where those directions
intersect.

The method for combining the distance measurements from the target to
several anchors to obtain the target position is known as multilateration, or tri-
lateration, when exactly three anchors are used. This technique is based on the
principle that, knowing the anchor positions and the distances from target to the
anchors {r;},_; »3, the target position can be determined as the intersection of
circles (or spheres, for 3D localization) placed around the anchors, with radii
equal to those distances {r;};_; ,5 (Figure 2.2(a)). At least three non-collinear

.'\

(a)

Figure 2.2. Trilateration (a) The target, indicated by the diamond shape, is
located at the intersection of circles around three anchors, indicated by dots
(green). (b) Three collinear anchors cannot localize the target.

anchor nodes are needed to localize the target in two dimensions. As two cir-
cles intersect at two different points, the third anchor is required to distinguish
between these two and determine the target position. The three anchors must
not be collinear, because three circles would intersect at two different points and
that would create ambiguity (Figure [2.2(b)). Similarly, for 3D localization, at
least four non-coplanar anchors are needed.

As there is always a measurement error, the circles will not intersect at one
point. Weighted Least Squares (WLS) method can be used to determine the tar-
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get position based on distance measurements (see for example Spirito [2001]]).
For this method, we need to have an estimate of the target position (x(¥, y(©, z(©),
The estimate is typically the last known position of the target. By defining

x=[Ax Ay Az]" (2.2)

as the vector difference between the current target position and the previous
estimated position.

Ax=x—x9 Ay=y—yO Ag=27—20 (2.3)

and linearizing around the target, we obtain the current target position (x, y, %)
by finding the solution of the linear problem Ax = b, where

A=[u;, Uy Uiy Jiens (2.4)
is a unit vector originating at the target, directed towards the anchor i and
b=[d®—d,Jen, (2.5)

where dl.0 and d; are distance at previous iteration and measured distance from
anchor i to target respectively and A is the set of anchors. The WLS solution of
this system is the one that that minimizes the scalar cost function:

(Ax—b)"Q, ' (Ax—b), (2.6)

where Q,, is the covariance matrix of b (see Kay [[1993]]). If distance measure-
ment errors are independent and identically distributed with standard deviation
op, Qp is a diagonal matrix Q, = diag(c?2).

2.5  Geometric Dilution of Precision

As discussed, the localization process consists of measuring distances, and cal-
culating the target position based on these measurements. Thus, the errors in
distance measurements reflect on the localization error. The extent to which
the errors in distance measurements affect the localization error depends on
the position of anchors with respect to target, or in other words geometry. Ge-
ometric Dilution of Precision (GDoP) is a measure that expresses how much
the errors in measured data, in our case distances, affect the localization error:
GDoPp = -Alowiput location) _ ' \pare output location is the calculated target loca-

A(measured distances)’
tion and A is any useful measure of localization error, typically the error standard
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deviation. GDoP has been used to express precision of satellite based systems
(Yarlagadda et al.|[2000]) robot localization systems (Kelly [[2003]]), as well as
for mobile GSM device localization by using base stations (Spirito| [2001]]).

GDoP is the most popular metric used today for GNSS systems to express
the effect of geometric configuration of satellites on precision of localization. It
is common for modern GNSS receivers to show GDoP values as information for
the user. Unlike the system we consider in this work, which uses TWToE, GNSS
systems involve pseudo-ranges exclusively and include time offset error estima-
tion. GNSSs use time of flight, but while satellites have highly accurate clocks,
the target clock is not very accurate. Therefore, apart from the distances from
satellite to target, there is one more unknown, which is the time offset. It can be
shown that GDoP for satellite systems is approximately inversely proportional to
volume of the tetrahedron formed by connecting the endpoints of unit vectors
directed from target to four satellites. As we will show, this does not hold for 3D
TWToF systems. For more detail on GDoP used in GNSS systems see Yarlagadda
et al[2000].

Much valuable work on the topic of metrics expressing the effect of geometry
on system performance has been done for geolocation systems predating GNSS.
Lee| [[1975]] is one of the first to address error estimation for multilateration sys-
tems using WLS and provide the basis for the future results in the area.

In Spirito| [[2001]] GDoP for a multilateration system is derived and its geo-
metric interpretation is given. If the estimated target position is £ = [% § ]
then the accuracy can be expressed by the covariance matrix Cov(x). The diag-
onal entries of this matrix are the variances of the location error along x and y
axes. The accuracy measure considered is the square root of the sum of these
variances, the square root of the trace of the covariance matrix 4/ Tr{Cov(x)}.
The value of GDoP obtained is:

o N
Op i Sin” oy

where N is the number of anchors used to localize the target, and a;; are angles
formed by each pair of anchors and the target. GDoP depends on sines of bearing
angles, which are proportional to surfaces of parallelograms formed by each pair
of anchors with the target. However, the result is only valid for 2D systems.
As part of this work, we derive an expression for GDoP for 3D multilateration
systems.



Chapter 3

Problem Formulation

In this chapter we give our problem formulation. The work is divided in three
parts: one dimensional, two dimensional and three dimensional localization.

3.1 One Dimensional Localization

The goal of the part of my thesis focusing of one dimensional localization is to
design and test a working prototype for in-tunnel vehicle localization based on
sensors placed along the tunnel. The prototype should enable localization of
maximum 10 m precision, as required by Swiss regulations.

3.2 Two and Three Dimensional Localization

The second and the third part of my thesis consist of optimizing node placement
for ToF-based localization, in rooms of a given shape, taking into consideration
the obstacles. We describe our localization system, list our main assumptions,
explain how the model and the assumptions relate to the real-life scenario, give
the formal problem formulation and describe the error model we use for local-
ization.

We assume that positions where anchor nodes can be placed are given. We
call these positions candidate positions. We assume that the positions of obstacles
are also known. See Figure for 2D localization. Two nodes can commu-
nicate if the distance between them is lower than the known node range, and
there are no obstacles between them. Our goal is to select the minimized subset
of candidate positions, such that, if we place the anchor nodes at these positions,
localization uncertainty will be below the given threshold in the entire area of

15
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interest. We discretize the area of interest, which is the area that needs to be
monitored, to obtain the set of target positions. Localization quality at each tar-
get position depends on the configuration of nearby anchors, and is expressed
by the uncertainty function. We are optimizing for the UWB-based localization
system using TWToF and multilateration.
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Figure 3.1. A problem instance (left) and a solution (right) for 2D placement
for localization. Obstacles are represented as large blue squares, the candidate
positions as black circles and possible target positions are marked as small red
diamonds. The target is indicated by a human figure and the positions where
anchors should be placed by green filled dots. Bearing angles are a, 3 and 7.

3.2.1 Localization System Description

Here, we briefly describe a localization system that can benefit from our opti-
mization of anchor placement.

The target estimates its distance to each of the anchors it can communicate
with, sequentially. The target can communicate with an anchor if they are closer
than the node range and there are no obstacles that obstruct communication
between them. Anchors communicate their identification and coordinates to the
target. Asthree anchors are the minimum required for 2D trilateration, our place-
ment approaches will guarantee that there are always at least three anchors from
which the distance can be measured (four in 3D). The target does not have to
know which three (or four) anchors are ’assigned’ to its current position by the
optimization algorithm, but can use all anchors that are available.

It may happen that the distance measurements to some of the anchors are af-
fected by non line of sight condition. NLoS significantly reduces ranging accuracy
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of UWB measurements. Therefore, NLoS measurements may have to be detected
and discarded. Multiple methods to detect and discard NLoS measurements can
be found in literature. See Section [2.3|for a short overview. For example, since
the map of the area is available, knowledge of the anchors positions, the obstacles
positions, and the previous position of the moving target can be used to predict
the loss of the line of sight from one of the anchors. Detecting measurements
affected by NLoS is out of the scope of this work. The task of the optimization
algorithm is to ensure that there are at least three (or four, in 3D) measurements
that are not affected by NLoS at each possible target position.

The distances from the target to the anchors are measured by using TWToE
The target position is determined by using the WLS method. The target can
send the calculated position data to a central server either directly, or via the
network of anchors, depending on the application requirements. Also, depending
on the requirements, the data can be sent periodically, as often as the application
requires, or only in case of an emergency.

3.2.2 Assumptions

We list the main assumptions of our model and explain how they relate to real-life
applications. Our assumptions are as follows:

* The positions of obstacles are given and fixed. This assumption is realistic
because, as UWB is resistant to multipath propagation, smaller obstacles
should not affect the signal. Typically, we only have to consider large ob-
stacles to wireless propagation such as walls, pillars and large machines.

* We assume that the positions where anchor nodes can be placed, candidate
positions, are given. The scenario where the number of positions is limited
corresponds to real-life, because UWB nodes may require power plugs, as
well as support structures such as walls. If the anchor nodes can only be
placed at a set of points, those points are our candidate positions. If the
anchor nodes can be placed anywhere in the given area, this area will be
discretized to obtain the candidate positions.

* The node range is known, equal for all nodes and uniform in all directions.
To obtain the distance measurements between two nodes, their distance
has to be smaller than the node range.

* The distance measurement error can be modeled as Gaussian distribution
of mean 0 and known standard deviation o, if there are no obstacles be-
tween the target and the anchor and the distance between them is lower
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than the node range. Otherwise, the ranging error is modeled as infinite.
For the explanation of why this model is realistic for an UWB system, see

Section

3.2.3 Placement Optimization for Localization Problem Formula-
tion

We address anchor nodes placement optimization for UWB trilateration-based
localization and the fault-tolerant version of the same problem. We call the first
problem Placement Optimization for Localization (POL) for short, and the second
problem, Fault-tolerant Placement Optimization for Localization (FPOL). We first
define the POL problem formally, and then we extend the definition to FPOL.

We are given a set T, consisting of all possible target positions, and a set C,
consisting of all positions where an anchor can be placed, candidate positions.
For 2D version of the problem, we are also given a function U: CxCxCx T —
R, such that U(a;, a;, ay,t,) returns the uncertainty of localizing the target at
position t, by using anchors at positions a;, a;, ay. E| For the 3D version, we
are given a function U : C x C x C x C x T — R, such that U(a;,a;,a;, a;, t,)
returns the uncertainty of localizing the target at position t, by using anchors
at positions a;, a;, a, a;. Finally, we are given an uncertainty threshold U* . Let
P = {a;...a,} € C" be a placement of anchors. An uncertainty of localizing a
target at position t,, is given as:

U(Pt,) = minp U(a,..ay,t,), (3.1)

a;..ay€
where N = 3 for the 2D problem and N = 4 for the 3D problem. The target at
position t,, is localized by choosing the best triple/quadruple of anchors for that

target position. A set P is a solution to the POL problem, if uncertainty for every
target position in T is less than U*:

Vt,eT, U(Bt,)<U". (3.2)

Optimal solution to the POL problem is such set P of minimum cardinality.
A set P is a solution to the FPOL problem, if after removing any one element
from the set B uncertainty for every target position in T is less than U*:

Vt, €T, Va,€P, UP\{a},t,)<U". (3.3)

Optimal solution to the FPOL problem is such set P of minimum cardinality.

!The uncertainty function U can be any measure that reflects the localization error, such as
its standard deviation.
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3.2.4  Error Model for UWB Multilateration-based Localization

Both ranging, or determining distances from anchors to target, and multilatera-
tion, which combines those distances to determine the target position, introduce
an error into the localization process.

Ranging Error

Ranging error of UWB systems has been studied in Alavi and Pahlavan| [[2006].
The error is modeled as a Gaussian random variable, with parameters depend-
ing on presence of LoS. In presence of LoS, the mean error value is 0, while
standard deviation is low, and increases with the distance d between transmitter
and receiver as 0 = c - log(1 + d). In absence of LoS, error standard deviation
is much higher, while its mean value is positive. UWB nodes are only able to
communicate up to a certain distance we call node range.

Our ranging error model is an approximation of this model. As the error
standard deviation in the presence of LoS has been shown to increase slowly
with distance, we model the ranging error as Gaussian distribution of mean 0
and known standard deviation o, if LoS is present and distance between nodes
is lower than the node range. Otherwise, if there is no LoS, or the distance
between nodes is higher than the node range, the ranging error is infinite. The
value of o, depends on the hardware used and the environment, and can be
determined experimentally, as in|Alavi and Pahlavan|[[2006]].

In our experimental study on in-tunnel localization, we show that modeling
the time of flight distance measurement error as Gaussian distribution matches
the reality well for RF ToF systems (see Section [5.7.1). We cannot however di-
rectly use the experimental results from our in-tunnel study for our design of 2D
and 3D localization systems, as UWB systems have much higher accuracy than
RF ToF-based systems, and also properties of wireless propagation in tunnels are
significantly different than in other indoor environments. Therefore, in this part
of our work, we consider o, as known.

The information on whether a target can see an anchor is used in range-free
localization systems. See our discussion on range-free localization in Chapter
However, precision of such localization systems is by far inferior to UWB systems.
Therefore, the information that a target cannot detect an anchor, although it does
eliminate the area covered by the anchor as a likely target position, has little
value compared to the measured distance between a target and an anchor and
we model the ranging error as infinite if the target cannot detect an anchor.
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Trilateration Error in Two-dimensional Space

As discussed in Section [2.4] in 2D space, each possible target position needs to
be monitored by at least three anchor nodes. The three anchors that monitor a
target must not be collinear. For precision of trilateration, the relative placement
with respect to a target of anchor nodes that are used to localize it is particularly
important. Geometric Dilution of Precision (GDoP) is a measure that uses the
angles, called bearing angles (see Figure [3.1)), formed by the anchors and the
target, to quantify the effect that an error in measured distances will have on the
error of the position estimation (Spirito| [[2001[]]). GDoP for trilateration in 2D
space is given as:

o 3

GDoP = — =\| — — —, (3.4)
Op sin“ a + sin“ f + sin“y

where a, 8 and y are the bearing angles between the anchors and the target

position, and o, and o are standard deviations of distance measurement error

and localization error respectively.

Uncertainty Function

The uncertainty function can be any measure that reflects the localization error.
For uncertainty function U(a,...ay, t,), we choose the standard deviation of the
localization error o,. Given anchors, a;...ay, and a target position t,, we define
the localization uncertainty function as:

U(a,...ay,t,) = GDoP - o, (3.5)

if the distance from each of the anchors to the target is lower than the node
range, anchors are not collinear (not coplanar in 3D), and there is LoS between
each of the anchors and the target. Otherwise:

U(ay...ay,t,) = 0. (3.6)

This definition relies on the assumptions listed in Section that nodes
can only communicate if the distance between them is lower than the node range,
and the standard deviation of distance measurement error is known and con-
stant. This uncertainty function can be interpreted as follows. To guarantee
that a target at position t, can be localized with uncertainty lower than U*,
we need the target position to be monitored by three non-collinear anchors
(four non-coplanar anchors in 3D), in line of sight, not further from it than
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the node range, with GDoP formed by those anchors and the target position
GDoP < GDoP*= £

_O'D
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Chapter 4

State of the Art - Placement Problems
in Wireless Networks

Optimal node placement depends on the network functionality, goals and con-
straints it has to meet. Therefore, the research field of network node placement
includes a wide range of problems as well as different approaches to these prob-
lems. In this chapter we review node placement problems and approaches in
literature, with the focus on placement for localization networks.

It is difficult to compare the different approaches to node placement prob-
lems quantitatively, as different authors address different optimization problems,
and even a small change in problem formulation may significantly influence the
optimization problem complexity. Moreover, many authors do not provide com-
parison of different approaches, algorithm execution times or experimental com-
parison with exact solutions. However, to the extent to which it is possible, we
strive to provide quantitative results and the comparison of different approaches
in our literature review.

We review the related work by using several different taxonomies: by dif-
ferent approaches to addressing the problem, by problem dimension, from 1D
to 3D, and by network function. The most common goals the networks have to
meet are coverage and connectivity, as well as their extensions k-coverage and
k-connectivity, that provide fault tolerance, where the network will still satisfy
the coverage or connectivity condition after k—1 nodes are removed. Finally, we
focus on placement for localization networks.

23
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4.1 Placement Optimization Approaches

As node placement problems are NP hard as a rule, different approaches to op-
timizing node placement can be found in literature. For us, exact solutions, as
well as different heuristics and metaheuristics are particularly interesting, as our
approach is based on exact solutions and heuristics. We also review regular ge-
ometric patterns, as well as approximations.

4.1.1 Exact Approaches

Not many works focus on exact approaches for optimizing node placement as
these problems are NP hard as a rule. Most works focus on heuristics, approx-
imations, as well as addressing simplified versions of problems. Some papers
give the ILP formulation but do not test it by experimental simulation as the
time would be prohibitive. However, as computing power is increasing, poten-
tial for finding exact solutions to problem instances of larger sizes increases. In
addition to finding exact solutions to problem instances of reasonable sizes, ex-
act approaches are useful to have for comparison in order to evaluate non-exact
approaches.

Integer Linear Programs (ILP) can be used for finding exact solutions to rea-
sonably sized problem instances of NP-hard problems in manageable computing
times. ILP formulation consists of a system of linear equations, where variables
represent the solution to the problem instance. A good problem formulation is
very important in order to shorten computing times.

Point coverage problem is a problem of placing a minimum set of sensor
nodes, so that given points of interest are covered. Covering a plane can be
reduced to a point coverage problem by discretizing the plane, so that all points
on the grid need to be covered. This is known as grid coverage. For each position
where a node can be placed, we know which points of interest the node is going
to cover if placed there. Therefore, coverage problems can often be reduced to
different versions of classic set cover problem. (Chakrabarty et al.|[2002] provide
an ILP formulation for fault-tolerant coverage of bounded regular 2D and 3D
grids and tests the ILP on a small example. Xu and Sahni [2007]] propose an ILP
formulation for the same problem that reduces the number of ILP variables and
constraints, thus improving the ILP formulation.

The problem of placing additional wireless nodes to achieve connectivity be-
tween existing nodes can be reduced to Steiner tree problem on graphs. E] Polzin

!Given an undirected graph with non-negative edge weights and a subset of vertices, referred
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[2003] addresses exact solutions for instances of Steiner Tree problem. Con-
nectivity problem can be expressed as multicomodity flow packing Plotkin et al.
[1991]]. Multicomodity flow packing can be used for formulating 2-connectivity
placement problem as an ILP as shown in [Misra et al.|[[2010]] The authors do
not provide results to quantify the execution times. In Amaldi et al.|[2012]] an
ILP solution for wireless sensors placement to detect mobile targets traversing a
given area is proposed. Equations based on multicomodity flow packing are used
to add connectivity properties to detection solution.

Kirchhof [2013]] has suggested ILP formulations for 2D placement for both
triangulation and trilateration, but with only two nodes. Tekdas and Isler|[[2010]]
proposes an ILP formulation for triangulation problem, tests it on one problem
instance and reports the solution was not reached after 35 CPU hours.

4.1.2 Greedy Heuristics

Heuristics are often used to address NP-hard problems. The goal of a heuristic
is to produce a solution that is close to the optimal in short computing time.
Greedy heuristics are based on selecting the best local solution at each step. For
example, if a number of points, on a grid or not, needs to be covered, the most
straightforward greedy solution would consist of placing a sensor at each step,
that covers the largest number of points that are not covered so far, until all points
are covered. Xu and Sahni| [[2007]] propose a greedy approach for fault-tolerant
point coverage with different types of nodes and compare it with the approxima-
tion algorithms they propose for the same problem. |Zou and Chakrabarty|[[2004]]
and Dhillon and Chakrabarty [[2003]] propose greedy heuristics to address sensor
placement in a probabilistic optimization framework. Sensors are thrown from
an airplane or carried by water, so that there is an uncertainty in actual sensor
positions. Intended sensor position serves as a mean of a Gaussian distribution
for actual sensor position. The algorithms are targeted at maximizing average
coverage or coverage of the most vulnerable regions. The authors report that
their solutions outperform both random and uniform placement, when testing
on several case studies with obstacles and preferential coverage.

Howard et al. [2002] addresses mobile sensor networks, where nodes, apart
from sensing abilities, also have locomotion abilities and can deploy themselves
based on the information they get from previously deployed nodes. The algo-
rithm is designed to maximize coverage while ensuring that line of sight is present

to as terminals, the Steiner tree problem in graphs requires a tree of minimum weight that con-
tains all terminals and may include additional vertices.
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between the nodes, so the nodes can use other nodes to localize themselves. The
later constraint is necessary so that the nodes can localize themselves by using
other nodes as landmarks. The authors propose a greedy heuristic to deploy
nodes incrementally, one at a time. The algorithm is model free, meaning that
the floor plan of the area where the network is deployed is not needed. The
authors report that their model performs nearly as well as a map-based model,
with coverage value between 70% and 85 % that of a map-based model.

4.1.3 Metaheuristics

A metaheuristic is a high-level procedure designed to generate a search algorithm
for an optimization problem. Metaheuristics use different techniques in order to
avoid local optima, and try to find the global optimum solution. For that purpose
they may accept temporary deterioration of a solution. Most literature on meta-
heuristics is experimental in nature. Metaheuristic approaches are frequently
used to tackle all kinds of optimization problems, including placement for wire-
less networks. We describe some of the most frequently used metaheuristics and
their application to placement for wireless networks.

Genetic algorithms are inspired by the process of natural selection. Each
generation contains a set of candidate solutions. A subset of these solutions is
selected, based on fitness scores assigned to each candidate solution, to breed the
next generation by crossover. Crossover combines two of the solutions in order to
obtain new solutions. After crossover, random changes, mutations, are applied
to some of the solutions. The goal of Wu et al.|[2007] is to optimize coverage
within the given fixed cost. They use probabilistic sensing model, where the
probability of the target being detected by the sensor decreases as the target
gets further from the sensor. Sensors of several types, with different detection
probability density function are considered. The authors prove that the sensor
deployment problem is NP-complete. Crossover, in this example is the operation
of exchanging two square regions in two parent solutions. Mutation consists
of adding or deleting sensors, moving them to another place, or replacing by a
different type of sensors. The authors show by simulation experiments that their
algorithm outperforms the greedy heuristic. |Qu and Georgakopoulos| [2011]])
address the scenario where nodes are mobile. They use a genetic algorithm for
node relocation, to provide trade-off between coverage and traveled distance.

Ant colony metaheuristics are inspired by ants behavior. When ants search
for food, they leave pheromones where they have passed, so that other ants will
know where they can find food. (Li et al.|[[2010]]) propose an ant colony algo-
rithm for ensuring k-coverage of critical points and connectivity, where nodes can
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be placed at given candidate points. Obstacles are considered. Number of ants
and the total number of iterations are parameters of the algorithm. Ants move
and place sensor nodes at candidate points. At each step, an ant moves from
current point to the candidate, depending on the pheromone value on the link
and giving advantage to those candidate positions that can cover critical points
that are not covered thus far. They show their algorithm performs better than
MAX-MIN ant system (Stutzle and Hoos|[[1997]]) and validate it in a commercial
sensor network system.

Amaldi et al.|[[2012]] use tabu search to position wireless sensors to detect
mobile targets traversing a given area by using the concept of path exposure as
a measure of detection quality. Set of candidate positions where the sensors can
be placed are given. They address two problems. Maximizing exposure of the
least exposed path given maximum cost, and minimizing cost giving minimum
exposure of the least exposed path. Tabu search works as follows. Starting from
an initial feasible solution, a set of neighboring solutions are explored by apply-
ing moves to the solution. Moves consist of adding or removing some sensors.
Best neighbor solution is selected as the next iterate. In order to prevent cy-
cling (returning to feasible solutions that have already been generated) a list of
tabu moves is maintained. Tabu list is implemented as follows: sensors that are
installed (deleted) cannot be deleted (installed) during next L iterations. They
show by simulation experiments that, for the instances they tested, tabu search
resulted in solutions that are very close to optimal.

Simulated annealing is motivated by a physical process of annealing which
finds the low energy state of a metal by heating it and then cooling slowly. Tem-
perature is the controlling variable of the process which slowly decreases and
determines how random the energy state is. Desired properties of the system
are encoded as energy. Moves are generated randomly, and it is randomly de-
termined whether they will be accepted, depending on decrease in energy they
introduce, as well as the temperature. At the beginning, while the temperature
is high, moves will be accepted even if they increase the energy significantly. As
temperature gets lower, moves that increase the energy are less likely to be ac-
cepted. This approach is used for placement optimization inLin and Chiu/[2005]].
Two points in a field can be discriminated if they are covered by different com-
binations of sensors. Within a limited budget, the goal is to minimize maximum
distance between points that cannot be discriminated. The authors compare their
algorithm against exhaustive search on a field of very small dimensions and show
that in each of the experiments they performed, the algorithm reached the op-
timal solution. On a bigger field, they compare their algorithm against random
placement, and show their algorithm performs much better.
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In each iteration of greedy randomized adaptive search procedure (GRASP) a
greedy randomized feasible solution is found, which is later improved by search-
ing in the neighborhood of the solution. The best overall solution is kept as the
result. The greedy stage is randomized, because one of the best local solutions
is selected, but not necessarily the best one. |Sitanayah et al. [2011] proposed to
use a modification of GRASP algorithm for k-connectivity.

4.1.4 Regular Geometric Patterns

Under idealized conditions, where node placement problems on the plane with
no obstacles are addressed, it is often possible to find regular geometric patterns
that provide full coverage or connectivity. The problem of placement for coverage
is related to the covering problem in computational geometry, covering points on
a plane using a minimum number of given geometric bodies. Kershner| [[1939]
has shown that the regular triangle lattice pattern is optimal in terms of the
numbers of discs needed to achieve full coverage. This result naturally provides
6-connectivity when R, > +/3R,, where R, and R, are communication and sensing
range respectively. Bai et al.|[2006], Bai et al.|[[2008]], Yun et al.|[2010] complete
the set of deployment patterns to achieve full coverage and k-connectivity for all
k < 6 and all different R, /R, ratios.

Alam and Haas| [2006] found that the placement of sensors in the middle of
truncated octahedron cells, which are created by Vornoi tessellation of 3D space
is the best way to cover the space so that the number of nodes is minimized. They
also derive the minimum ratio of communication and sensing range required
for such network to be connected. Zhang et al. [2010] address the problem of
finding optimal patterns for full coverage and k-connectivity for k < 4 in three
dimensions.

These formulations do not consider obstacles or constraints in sensor deploy-
ment, which are especially important in indoor environments.

4.1.5 Approximations

Connectivity problems are usually presented in the form where some nodes,
needed to meet the network functionality, are already placed and additional
nodes need to be placed for the network to be connected, or k-connected, to
achieve fault tolerance. The problem of connectivity has been addressed by ap-
proximations in Hao et al.|[2004], Liu et al. [[2005], Misra et al. [[2010]], Bredin
et al.|[2010], Pu et al.[[2009]]. Many of these results rely on classic results from
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graph theory. Misra et al. [2010] use survivable network design problem (Fleis-
cher [2001]]). They obtain approximation factor of 5.5 for simple connectivity
and 7 for 2-connectivity. Bredin et al. [[2010]] use minimum-weight k-vertex con-
nected subgraph (Cheriyan et al. [2002]). They address the k-connectivity prob-
lem for any k and obtain the approximation factor of O(k*logk). None of these
works provides experimental comparison with other approaches or with exact
solutions.

Wang and Zhong [[2006]] propose an approximation algorithm for fault-tolerant
point coverage, for nodes of different ranges and different costs. The approxima-
tion factor is Zi.:l k; —o + 1, where k; denotes the maximum number of points
that can be covered by the sensor of i — th type and each point has to be covered
by at least o nodes. The authors provide numerical results that show that in sim-
ulation experiments they perform, the cost is at most three times the optimum.
Xu and Sahni [2007]] propose approximation algorithms for fault-tolerant point
coverage.

Placement for localization has also been addressed by approximations. Tek-
das and Isler| [2010] and Efrat et al.| [2005] address placement for triangulation
problem with no visual occlusions. Both approaches are based on GDoP, Tekdas
and Isler|[2010], propose an approximation algorithm that places at most 3n,,,,
sensors that observe each target position with at most 5.5 GDoP*, where n,,,
is the optimal number of nodes that observe each target position with at most
GDoP*. [Efrat et al.|[2005]] propose an approximation algorithm that places at
most O(n,,,logn,, ) sensors that observe each target position at the angle at
least a/2, where n,,, is the optimal number of nodes that observe each target
position at angle at least a.

4.2  Problem Dimension

One dimensional placement problems are rarely addressed. The most notable
case of one-dimensional structures are tunnels. Liu et al.|[[2010]] address node
placement to provide 2-tier network connectivity for in-tunnel networks. Relay
nodes need to be added to connect the sensor nodes that are already placed.
They use the greedy heuristic for the minimum set cover problem to choose clus-
ter heads among these sensor nodes, so that each sensor node has a 1-hop con-
nection to a cluster head. Then they use the search-and-find heuristic to add
more nodes and make all the relay nodes connected. They test the solution by
simulation. On the other hand, in our 1D placement study presented in Chapter
we use a real tunnel to derive empiric conclusions on how the nodes should
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be placed and test our solution.

Most wireless terrestrial networks operate in 3D. However, their deployment
is usually based on 2D design. This is justified in many cases, as usually, the
width and length of the areas where such networks are deployed are much larger
than differences in height, therefore, the resulting errors of such approximation
are not large. In this section, we provide an overview of node placement prob-
lems focusing on 3D scenarios. A good overview of coverage and connectivity
in wireless sensor networks is given in Mansoor and Ammari [2014]. Three-
dimensional networks are both more difficult to visualize and their analysis is
much more computationally intensive compared to 2D networks.

Three-dimensional placement problems naturally appear in underwater net-
works, so it has been these environments that have motivated most research in
the area. Unlike in indoor spaces, in underwater networks there is more free-
dom as to where the nodes can be placed, therefore, scenarios with no obstacles
and no constraints for placing anchors correspond well to reality. Atmospheric
and space communications are other such examples. Chakrabarty et al. [2002]
address k-coverage as well as a localization problem on a 3D grid, where every
grid point needs to be uniquely identifiable by the set of sensors that cover it.
Wang and Zhong| [[2006]] address k-coverage in 3D by using an approximation
algorithm. They provide numerical results showing that actual approximation
ratios in their examples are never bigger than 3. Ammari and Das| [2010] ad-
dress the sensor density necessary for k-coverage and connectivity of 3D space
with no obstacles. They prove that if every Reuleaux tetrahedron in such space
contains k nodes, the space will be k-covered. They also prove that connectivity
in such space is 9.926(R/r,)* x k, where R is the communication range, r is the
sensing range and r, = r/1.066. [Liu et al.|[[2017] consider relay node place-
ment and the flow allocation as a joint problem in underwater acoustic sensor
networks (UASN). Relay node placement is a problem that appears frequently
in node placement for WSNs. Sensor nodes are already placed in a way that is
determined by the application, and additional nodes, relay nodes, can be placed
to achieve certain network properties, in this case, to minimize power consump-
tion, which increases with the distance between nodes. Relay nodes have fixed x
and y coordinates and only z coordinate can change. The problem is formulated
into a nonlinear integer programming problem, and a heuristic scheme is pro-
posed. |Alam and Haas|[[2006(], Zhang et al.|[2010], Ammari|[[2017]] all focus on
optimal regular patterns for coverage and connectivity of 3D space (see Section
4.1.4).

Another kind of environments where 2D approximations are often not suf-
ficient, are outdoor environments with significant changes of altitude, such as
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mountains or volcanoes. As it is necessary to monitor volcanoes to detect their
activity, significant research has been dedicated to these environments. They
are modeled as a complex surface in 3D space where sensors can be only de-
ployed on the surface. [Liu and Ma [2012]] derive the expected coverage ratios
under stochastic sensor deployment for rolling terrain (mountainous regions).
Jin et al. [[2012]] studied the sensor deployment on complex surfaces embed-
ded in 3D space with minimized overall sensing unreliability, given the number
of sensors. Overall unreliability is defined as the integral unreliability over the
entire area to be covered. They designed a number of algorithms for practical im-
plementation. Kong et al. [[2014]] address two problems on such surface. First,
given the number of nodes and stochastic deployment, they find the expected
coverage ratio. Second, if sensor deployment can be planned, they look at a
strategy to adopt to guarantee full coverage with the least number of sensors.
For the second problem, the authors discretize the surface and thus reduce the
coverage problem to classic set cover problem. Since the problem is NP-hard,
they also propose approximation algorithms.

4.3 Placement Problem Depending on Network Func-
tion

Wireless networks have different functionalities and have to meet different goals.
The optimal placement will depend on the requirements the network has to meet,
the environment, as well as the type of nodes available. In this section we review
the literature on node placement depending on network function. The most
basic and the most frequently addressed requirement in the literature is coverage,
where network nodes have to cover a given area or a set of points in order to
sense some parameters in their environment. Connectivity is the second most
frequently analyzed requirement and we will give a short overview of works that
focus on node placement for connectivity. Finally, we focus on node placement
for localization networks.

4.3.1 Coverage

Networks consisting of multiple nodes with processing and communication abili-
ties that are equipped with different kinds of sensors are known as wireless sensor
networks (WSN). The main goal of many WSNs is to monitor some parameters
in the environment. For that, covering the area of interest is necessary. Coverage
is one of the most important performance metrics in wireless sensor networks
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and reflects how well the area of interest is monitored. Coverage problems were
among the first ones to be explored. A survey on coverage problems can be found
in Wang [[2011]].

Network nodes can be deployed deterministically or randomly. With a ran-
dom deployment, many nodes are scattered, for example from an airplane, and
we do not know the exact positions where they are going to land. Nodes are de-
ployed randomly when the environment is hostile and it is not possible to reach
every point deterministically. In that case, the problem that is often explored is
a number of nodes that should be deployed to achieve certain network proper-
ties with given probability. Such a problem is studied for example by |Liu and
Ma| [2012] and [Kong et al.|[2014], for 3D coverage (see Section [4.2)). [Zou and
Chakrabarty [[2004]] and Dhillon and Chakrabarty [[2003] propose greedy algo-
rithms for determining sensor placement, where exact sensor locations are not
known, but intended coordinates serve as mean values for their positions (see
Section |4.1.2)).

With deterministic deployment, we have to decide where exactly the nodes
should be placed among all available candidate locations. Deterministic deploy-
ments are applicable when the number of nodes is not too large and in a friendly
environment, where every location can be reached. Given the points of interest
to be covered, and given the points where sensors can be placed, placement for
coverage problem can be seen as a set cover problem, as placing each sensor cov-
ers a set of points of interest. The problem of covering an area can be related to
the problem of covering a set of points by discretizing the area to obtain a grid.
In Ke et al.[[2007]] the authors prove that the problem of deploying a minimum
number of sensors on a grid vertices to fully cover a given set of critical grids is
NP-complete.

To provide fault-tolerant coverage, some works require each point to be cov-
ered by at least k nodes, so that the network can continue functioning after k —1
nodes fail. Huang and Tseng|[2005(] address the decision version of this problem.
Given the sensor positions and ranges, they show that the problem of deciding
whether each point on a plane is covered by at least k nodes, can be solved
in polynomial time. Chakrabarty et al.|[2002]], Wang and Zhong| [2006] and Xu
and Sahni|[2007]] address generalization of placement for k-coverage, where dif-
ferent types of nodes are available, with different ranges and costs. |Chakrabarty:
et al.|[2002] propose an Integer Linear Programming (ILP) formulation for fault-
tolerant coverage of bounded regular 2D and 3D grids. They tests the ILP on a
small example. For problem instances of larger sizes they propose a divide and
conquer approach: tiling the grid by using optimal solutions for smaller subgrids.
Wang and Zhong| [2006]] propose an ILP formulation and an approximation al-
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gorithm (see Section for grid coverage where both target locations and
candidate locations where sensors can be placed are on a regular grid. Xu and
Sahni [[2007]] propose an ILP formulation and a greedy algorithm for a general-
ization where the set of locations to be monitored and the set of points where it
is feasible to place sensors do not have to be on a regular grid, as well as sev-
eral approximation algorithms for grid coverage. Like fault-tolerant coverage,
localization systems also require each point of interest to be covered by several
nodes. However, the difference is that in fault-tolerant coverage each node can
estimate the target state independently, while localization requires several nodes
to jointly estimate the target state, which makes the placement for localization
problem more complex.

4.3.2 Connectivity

Connectivity problems require placing additional nodes in an existing network,
so that there are k node-disjoint paths between each pair of nodes. These prob-
lems have been extensively researched, and we include them here for complete-
ness. Node placement problems to achieve network connectivity can be reduced
to connectivity problems in graph theory. Therefore, results from graph theory
research are often used to address this class of problems.

As shown in Misra et al.[[2010]], ILP formulation for 2-connectivity problem
can be found based on multicomodity flow packing Plotkin et al. [[1991]].

The problem of multiple-connectivity has been addressed by approximations
in Hao et al. [[2004]], Liu et al. [2005], [Misra et al.|[2010]], Bredin et al. [[2010],
Pu et al.|[2009]]. We gave an overview of these results in Section In Al
masaeid and Kamal [2009] a greedy placement algorithm is used to show how
the approach of Bredin et al. [2010] can be improved by giving preference to
candidate nodes in the intersection of communication ranges of other nodes. |Si-
tanayah et al.|[2011]] proposed a GRASP-ARP algorithm, a local search algorithm
based on Greedy Randomized Adaptive Search Procedure (GRASP) algorithm for
k-connectivity and compared it to the approximation algorithm proposed in [Pu
et al.|[2009]].

4.3.3 Localization

Node placement problems for different localization methods have also been ad-
dressed in literature. We review them in this section.

Cramer Rao Lower Bound (CRLB) is the lower bound on the variance of an
unbiased estimator. It is frequently used to compare different estimators, where
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the estimator with the lowest CRLB is best. CRLB is defined as the inverse of the
Fisher Information Matrix (FIM) (see [Kay [[1993]]). To minimize localization un-
certainty, determinant of FIM should be maximized. The method of minimizing
CRLB is used by many authors to determine optimal placement of a predeter-
mined number of sensors around the target on a plane or in 3D space (Glotzbach
et al.|[2013], [Yang [[2007]]) or in well-defined regular regions with no obstacles
(Zhou et al. [2010]], [Perez-Ramirez et al.|[2013]]). Best practices and guidelines
for node placement can also be obtained by using CRLB (Sheng and Hu [[2005]],
Ash and Moses|[[2008]]).

Sheng and Hu![[2005]] address localization by acoustic signal energy measure-
ments. They use the CRLB to formally confirm the conventional wisdom that to
improve localization, anchors should be placed uniformly and densely. Ash and
Moses [2008] use CRLB to show analytically that, for optimal localization, an-
chors should be placed uniformly around the perimeter of the area of interest.

Optimal Anchor-Target Geometries

Several works address optimum anchor-target geometries for 2D and 3D, for dif-
ferent localization methods and different numbers of nodes. Yang and Scheuing
[2005]; [Yang [[2007]] use CRLB to find optimum sensor positioning relative to
the target for both 2D and 3D on a surface/space with no obstacles for differ-
ent numbers of sensors, for TDoA. The results represent, intuitively, a uniform
placement on a circle/sphere. In 2D case this implies regular angular separation.
For 3D there are only five regular solids offering perfect symmetry, so called Pla-
tonic solids: for 4, 6, 8, 12 and 20 vertices. Platonic solids as well as their
centered superpositions are CRB optimal. For odd number of nodes, the authors
assume there are no CRB optimal solutions in 3D case and propose to use patterns
that maximize the minimum distance between any pair of sensors, the problem
known as spherical codes problem. Bishop et al.[[2010]] use CRLB to derive op-
timal anchor target geometries for range-only, bearing-only and time of arrival
based localization, for any number of anchors in 2D. They give necessary and
sufficient conditions on the anchor-target angular positions which if satisfied,
minimize localization uncertainty and show that in general, these configurations
are not unique.

Zhao et al. [2013]] unify formulation for optimal anchor-target configurations
for range-only, bearing-only and RSSI sensors. They prove necessary and suffi-
cient conditions for optimal geometry in 2D and 3D, based on the given esti-
mated target position and a given number of sensors. propose a control strategy
to address 3D placement for range only sensors. They minimize the objective
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function which consists of two terms: inter-sensor potential and external poten-
tial. Inter-sensor potential is the objective function for optimal sensor placement
and sensor trajectory constraints are described as external potential. The formu-
lation can be adapted for a moving target, assuming sensors can also move and
follow the target in order to position themselves optimally. Unlike these works
that address the local placement problem with the limited number of nodes, our
work addresses the global placement problem in the entire area of interest.

Well-Defined Regular Regions

A number of works addresses localization in well-defined regular regions, that is,
in indoor spaces of rectangular shape, where there are no obstacles to wireless
propagation. These works also assume that the node range is higher than room
dimensions, therefore few nodes are sufficient to cover the entire area of interest.

Chen et al. [2006] use nonlinear least squares (minimizing the sum of the
error squared) to express analytically and experimentally test the optimal place-
ment of anchors in well-defined regular regions for multilateration systems. They
obtain deployment patterns for three to eight nodes, that consist of nested tri-
angles and squares and should scale depending on the size of the room. They
do not consider obstacles and assume the room dimensions are smaller than the
node range. |Zhou et al.|[2010]] address the scenario where only four anchors are
available to be placed in a rectangular facility and optimize their positions. They
show analytically that all rectangular landmark layouts have the same minimum
CRLB. They use Monte Carlo simulation to show that the optimal layout in terms
of the expected CRLB changes with aspect ratio of the facility geometry, though
the optimal positions are always at the edge of the area. Perez-Ramirez et al.
[2013] also focus on indoor localization. Optimized positions of sensors in 3D
space are obtained given their number, assuming the target position is known.
The authors address optimal placement of anchors in indoor facilities, where the
cubic room has no obstacles, and the given number of anchors can be placed at
the walls and ceiling. The optimization relies on the fisher information matrix.

All of the works listed so far in this section study sensor positioning relative to
the target, rather than optimizing anchor placement to cover large areas where
the target can move.

Range-free Localization

As a simpler alternative to distance-based and angle-based localization, where
distances and angles are measured, the target position may be determined based
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only on knowing which anchors can detect the target. Then we know that the tar-
get is in the intersection of areas these anchors cover. This localization approach
is less precise, but sufficient for many applications where high localization pre-
cision is not necessary, such as location-based advertisements. It is cheaper as it
does not require dedicated hardware. Off the shelf RE, WiFi or bluetooth sensors
can be used instead. (Chakrabarty et al.|[2002] show that for regular grids in 2D
and 3D, coding theory framework can be used to determine sensor placement so
that every point on the grid is covered by the unique combination of sensors and
the target position on every grid point can be uniquely identified. |Lin and Chiu
[2005] use simulated annealing metaheuristic (see Section[4.1.3) to address the
same problem and extend it to irregular sensor fields. They show by compar-
ing their solution with exhaustive search that their algorithm can find optimal
solutions for the small number of nodes. For the higher number of nodes, they
show their solution performs better than random placement. [Liao et al.|[2011]]
propose regular patterns on a plane to achieve full coverage while enabling to lo-
calize the target within a certain area not larger than a given parameter, based on
the unique set of access points covering the target. Bulusu et al.|[2001] address
the scenario where the target position is determined as a centroid of positions of
all the anchors the target can communicate with. They propose several simple
heuristic algorithms to determine the position where an additional node should
be placed, given an existing deployment. A robot or a person equipped with GPS
and able to measure localization error scans the area and places the additional
nodes.

Global Placement Problem for Angle-based and Distance-based Localization

Tekdas and Isler|[[2010] propose approximation algorithms for triangulation sys-
tems, where each point on a plane has to be covered at a good angle by two
sensors having infinite ranges. This problem is similar to ours in that it requires
more than one node for localization and addresses the global placement prob-
lem across the entire workspace. The authors propose an ILP formulation for
triangulation problem and report that it takes too long to obtain exact solution
for the realistic problem instance they used. Their approximation algorithm does
not consider obstacles. [Efrat et al.|[2005] propose an approximation algorithm
for the same problem. For more information on the approximation algorithms
see Section

In Kirchhof|[[2013]] node placement for both triangulation and trilateration is
considered. The author also uses GDoP as a quality measure. However, in his
approach, only two nodes are required to cover the target in case of trilateration,
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while in reality, three nodes are necessary (see Figure [2.2(b)). Kirchhof| [2013]]
provides the execution times of exact algorithms and experimental comparison of
proposed non-exact solutions to exact solutions in terms of the number of nodes
placed, but only for triangulation. The author reports the number of nodes placed
within 1.5 times of the optimal solutions, while our heuristic algorithms achieve
much lower overhead of below 2% on the average with respect to the optimal
number of anchors, for the problem instances we tested.

The summary of comparison of our approach with the state of the art solu-
tions is given in conclusion, in Section (8.2
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Chapter 5

One-Dimensional Localization

We first focus on 1D localization, in particular, localizing vehicles in road tunnels.
Road tunnels generally do not contain forks and prevent the vehicles from going
off the road. The position component transversal to the lanes can be neglected
because of the consistently small width of the tunnel. Therefore, the majority of
road tunnels can be represented as a one dimensional structure.

Numerous vehicular applications and services rely on knowing distances be-
tween vehicles and surrounding infrastructure. Vehicle localization systems are
among the most common applications that are based on distance measurements.
The most widely used technology for vehicle localization is GNSS. As GNSS re-
quires an unobstructed line of sight to satellites. Therefore, it cannot be used in
tunnels and other indoor environments.

Wireless Sensors Networks (WSNs) have been widely accepted as an alterna-
tive solution to GNSS for vehicle localization: vehicles are equipped with radio
transmitter/receiver and interact wirelessly with a network of nodes distributed
along the roadside. Wireless nodes are often embedded in existing infrastruc-
ture, such as lighting systems, allowing to build ad-hoc WSNs "for free", without
dedicated installation. On top of such WSNs, it is possible to design various
applications including localization systems. Moreover, safety requirements in-
side tunnels are particularly important as accidents, such as a fire, will cause
more damage due to difficult evacuation. WSNs are ideal for such critical en-
vironments as they can be used to monitor other environmental conditions like
temperature and smoke (Boukerche et al. [[2008]]).

Numerous works have shown that in road tunnels, due to tunnel shape, radio
communications have significantly different properties than in free space and in-
door environments (Dudley et al.[[2007]]; Liénard et al. [[2000]];|[Sun and Akyildiz
[2010]). In this chapter, we estimate in-tunnel performance of Received Signal
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Strength and Time of Flight. We then focus on the ToF approach due to its promis-
ing results. We analyze the dependency of the ToF ranging error on factors such
as node position, distance between transmitter and receiver and measuring at
different frequencies. We also derive statistical properties of ToF ranging error.
Using the results of our analysis, we design and evaluate a localization system to
demonstrate a possible application of ToF-based ranging in a tunnel. The results
have shown that such a localization system is not only accurate, but also cheap
and scalable as few nodes are necessary even for long tunnels.

We further improve the localization algorithm by performing calibration with
the aim of compensating the measurement error. We design an error compensa-
tion unit and demonstrate via in-tunnel experiments that the use of such com-
pensation unit significantly improves the performance of an existing localization
algorithm.

Our analysis may be very useful to other researchers and engineers aiming to
design applications for vehicle ranging and localization, especially considering
that testing and measuring campaigns in a real road tunnel are quite complex to
arrange (e.g., blocking traffic, sensor nodes installation, etc.).

For our experimental measurements we used two tunnels. The first one is
a tunnel located between Vedeggio and Cassarate in Lugano, southern Switzer-
land. The second one is an underground pedestrian tunnel located at the train
station in Lugano, having the similar shape to a road tunnel.

The work in this chapter has been motivated by the PTA project [[PTA![[2010]]],
which focused on tracking and localizing vehicles transporting dangerous goods.
The results from this chapter are published in Widmann et al.|[2013] and Balac
et al [2014].

5.1 Wireless Propagation in Tunnels

The characteristics of wireless propagation in tunnels have been researched in
numerous works covering mine tunnels (Exslie et al. [[1974]; [Lienard and De-
gauque [[2000]), subway tunnels (Didascalou et al.| [2001]) and road tunnels
(Dudley et al.|[2007]; [Liénard et al.[[2000]; |Sun and Akyildiz|[[2010]]).
Generally, a tunnel behaves as a multimodal waveguide for wireless propaga-
tion. Attenuation is much lower compared to outdoor or other indoor environ-
ments. In smooth tunnels without obstacles path loss can be very close to zero.
Communication distance between wireless devices is significantly increased, and
so is the distance at which devices can interfere with each other. The tunnel
can be divided into two zones. The zone near the transmitter is dominated by
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strong fluctuations of the signal power for small changes in position, while in the
far zone, path loss increases linearly with distance rather than logarithmically as
in the near zone and outdoor areas. The attenuation increases with the num-
ber and size of vehicles present in the tunnel. The presence of traffic will result
in stronger signal fluctuations, especially close to the vehicles (Yamaguchi et al.
[1989]). The propagation in a tunnel strongly depends on the used frequency
(Dudley et al.|[2007])).

Several localization systems have been created for underground mines, that
typically consist of rooms connected with tunnels (Dayekh et al. [2010]). How-
ever, wireless propagation in road tunnels has significantly different properties
than in mine tunnels. Mine tunnels are much more irregular. Their walls are not
covered by smooth concrete and there are variations of the wall surface in order
of one meter, which result in significantly increased attenuation and scattering
(Lienard and Degauque, [2000]).

Our analysis of related work indicates that using localization systems and
algorithms designed for other environments may not be an optimal solution for
road tunnels. This is due to very different properties of radio wave propagation
in road tunnels than in free space, inside buildings, or in mine tunnels. Also,
while other works focus on wireless propagation, we analyze the properties of
time of flight distance measurement error in road tunnels.

5.2 Hardware

Concerning the hardware, not all transceivers can be used for ToF-based rang-
ing. Exact measurement of frame reception and transmission timestamps are
necessary, as well as the right type of modulation. We have chosen NXP JN5148,
developed by Jennic NXP, [2011]]. It implements IEEE 802.15.4 standard, that
uses direct sequence spread spectrum modulation, reducing the time quantiza-
tion error. NXP JN5148 also provides a built-in dedicated hardware unit for
precise packet detection and timestamp measurement and libraries for TWToF
ranging. Unfortunately, the ranging technique used by Jennic is proprietary and
the libraries cannot be customized. We have used the Jennic solution ’as is.’

5.3  Tunnels

We used two different tunnels for our measurements. The first tunnel is the road
tunnel named Vedeggio-Cassarate, located in Lugano, Switzerland. It has been
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completed in 2012 and at the time of experiments was not open to traffic. The
tunnel is 2.6 km long, mainly straight. It has two lanes, and a side-walk on each
side. Safety bays are located at every 600 m, and the emergency exits at every
300m. The Figure shows the map of the tunnel.

2 v

% . ' Y CANOEBIO
' COMANO' “) \

CUREGLIA . 7 ¢"

i “GEOFO¥O &4
<. Sgrengo @

Figure 5.1. Experimental environment: Map of Vedeggio-Cassarate tunnel.

The second tunnel we used is a pedestrian tunnel located near the train sta-
tion in Lugano. The tunnel is 65m long, and straight as shown in Figure
The tunnel is covered by two different kinds of roof: the first part from the stairs
is based on concrete square roof and the second part is a curved tin ceiling. Tin
ceiling increments the number of reflections and multipath propagation. There
is a door in between the two types of roof.

5.4  Comparing RSS to ToF-based Ranging

As RSS systems are cheaper, while ToF is more precise, we characterize and com-
pare RSS and ToF-based ranging in the tunnel environment in order to decide
which one is more appropriate for our in-tunnel localization system. These ex-
periments were done in Vedeggio-Cassarate road tunnel. Only two nodes are
used: a stationary node on the side of the tunnel and a mobile node placed in
the middle of one of the road lanes. The mobile node position was fixed during
each measurement phase and then moved to another known location for a new
measurement phase. The total distance of about 1 km has been covered with no
presence of other vehicles or obstacles. The measurements for RSS and ToF were
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Figure 5.2. Experimental environment: Pedestrian tunnel near the train station

in Lugano.

taken at the same time, for the same packets. Their characteristics are reported
in the following.

5.4.1 Received Signal Strength

RSS measurement capabilities are included with all WSN hardware which makes
this technology cheap to use and readily available.
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Figure 5.3. RSS measurements depending on distance transmitter-receiver.
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For estimating distance based on the RSS, we adopted the well-known ap-
proach based on the logarithmic path loss curve (Rappaport/[[1996]]). In order to
estimate RSS localization accuracy, we calculated the logarithmic curve param-
eters as the best fitting curve on the measured data itself. Although this method
is very simple and no optimizations have been used, it allowed us to roughly es-
timate the possibility of using RSS based localization in the tunnel environment.

Figure shows the measured RSS with respect to distance between the
stationary and the mobile node. We observed two zones: the near zone, up to
200 m, with very strong fluctuations, and far zone, above 250 m, with less fre-
quent and less intensive fluctuations. In the near zone path loss is approximately
logarithmic, while in the far zone it is linear, as can be seen in Figure where
a logarithmic curve has been fitted to data up to 250m, and a straight line to
data above 250 m. Our results are in accordance with the results from literature
(Dudley et al.[[2007]).

The first row of Table shows RSS error depending on distance between
transmitter and receiver. The RSS ranging error significantly increases with dis-
tance.

5.4.2 Time of Flight

Figure[5.4]shows the ToF distance measurements we obtained in the tunnel. The
straight line shows the correct distance and the measured distance is shown by
circles. In order to reduce the effects of position independent noise, we aver-
aged 100 ToF measurements per target position. We can observe that most of
the measurements are very close to the correct position, as well as that for ToF
measurements there is no significant influence of distance between transmitter
and receiver on the ranging error. However, some measurements still report a
significant error that is always higher than the real distance transmitter-receiver.
These outliers may be the result of a non line of sight condition between the
transmitter and the receiver, caused by obstacles such as signs, emergency exits
and safety bays.

The last two rows of Table show the mean absolute error for distance
estimation with and without outliers. This experiment shows that that the in-
tunnel ToF distance measurement precision is high, even for very long distances,
as well as that outliers are the main source of error for ToF ranging.
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Figure 5.4. ToF measurements in the road tunnel depending on distance
transmitter-receiver. The reference, correct, distance is shown by the straight
line and measured distance by circles.

Table 5.1. RSS and ToF localization error.

Distance 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | overall
Mean Absolute Error RSS [m] 48.6 175.9 117.2 244.6 278.9 203.3
Mean Absolute Error ToF [m] 5.5 67.7 32.8 5.7 3.8 31.2
Mean Absolute Error ToF Without Outliers [m] | 5.5 6.2 5.1 5.7 3.8 6.4

5.4.3 RSS and ToF Comparison

Table shows the error comparison for RSS and ToF-based ranging. ToF-based
ranging, even in presence of the outliers, gives drastically better results. Note
that, in this comparison we considered the RSS and ToF mechanisms available
with the Jennic nodes “as is”, without applying any further optimizations. As
the RSS measurement error significantly increases with distance, anchor nodes
would have to be placed at about every 50 m in order to obtain the vehicle posi-
tion with sufficient precision using RSS. This would greatly increase the number
of nodes necessary for long tunnels and might affect scalability of the system.

On the other hand, ToF is very well suited for ranging in tunnels. Since the
error does not strongly depend on distance transmitter-receiver, only few nodes
may be necessary to have high ranging accuracy.
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Due to the ToF outstanding ranging performance in comparison to the RSS,
in the rest of our work we we focus on the ToF approaches.

5.5 Characterization of Time of Flight Ranging

In this Section, we analyze the dependency of ToF ranging error on different
environmental factors, as well as statistical properties of ToF ranging error. The
goal of our analysis is to help provide the guidelines needed to design our in-
tunnel localization system. We also hope our analysis will aid other researchers
and engineers in understanding the characteristics of in-tunnel ToF ranging to
better model and design localization systems.

Experiments were performed in Vedeggio-Cassarate tunnel, by placing 10 an-
chor nodes, 5 on each side of the tunnel, with the spacing of 300 m over the whole
tunnel length. Four of the nodes were placed in the safety bays as in Figure|5.5
The target was placed in a car, and its distance from the anchors was measured
at every 50 m while the vehicle was stopped.

® 19 19 19 19

600m 1200m 1800m 2400m

Figure 5.5. Tunnel schematics. Anchor positions are marked with circles.

We provide further details about the ranging error in following sections. To
quantify the ranging error, we used its statistical properties: the standard devia-
tion and the mean value.

5.5.1 Time-dependent Error Component

Firstly, we analyze the time-dependent component of ToF ranging error. This is
the error component that changes with time, even if the target position is fixed.
The ToF distance measurement error can change with time due to changes in
the atmospheric conditions, time quantization error, and moving objects in the
environment, specifically, traffic in case of tunnels. We calculate the standard
deviation of distance measurements depending on the distance between nodes.
The anchor node stays at the beginning of the tunnel, and the target moves along
the tunnel. At each fixed target position, we take 10 measurements shorty after
each other. We assume that the channel characteristics do not change within this
short period of time. The results are shown in Figure
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Figure 5.6. Dependency of error standard deviation on distance between nodes.

We can observe that there is a small increase of error standard deviation with
the distance between nodes, but it stays well below 3m over the entire tunnel
length, except for some outliers.

Since the atmospheric conditions are not expected to change in short peri-
ods of time, the main sources of time-dependent error in tunnels are traffic and
quantization. As our experiments were performed with no traffic, the quanti-
zation error (see Thorbjornsen et al. [2010]) was probably the main source of
time-dependent ranging error we observed.

Averaging measurement samples taken at the same location is an effective
way to reduce the error. This method can also be applied to a moving node if
the measurements are taken frequently enough with respect to the node speed.
In sections - we evaluate the position-dependent error component,
therefore we average the available data samples at each position, to reduce the
time-dependent component.

5.5.2 Ranging Error Dependency on Anchor Position

Another component of ranging error is time independent: it is only influenced
by the positions of target and anchors as it is mainly caused by channel charac-
teristics which strongly depend on the environment.

We evaluated the time-independent error component by comparing the mea-
sured distance and the real distance between the target and the anchors by using
the following experiment: For each vehicle position, we measured the distance
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from each anchor at all 16 frequency channels provided by the IEEE 802.15.4
standard. We grouped the measurement errors by the distance from target to
anchor into 300 m intervals, then we computed the average measurement error
for each interval, using measurements with all available frequencies.

We observed that for most anchors the error mean value was between 0 m
and 5m for all target positions and some other anchors had a significant mean
value from 10 to 40 m, again, regardless of the target position. By looking at the
anchor positions, we noticed that all of the anchors that had a high measurement
error were placed at the safety bays. Moreover, the error mean value was always
positive. These errors could be caused by the radio waves reflecting of the walls
of the safety bay and resulting in multipath propagation.

Our conclusion is that the anchor nodes should have the best possible line of
sight with the target, so to reduce to the minimum the multipath propagation.
Thus, anchors should not be placed in the safety bays or close to them.

5.5.3 Ranging Error Dependency on Distance Tag-Anchor

To analyze the error dependency on distance between target and anchor, we used
the same data from the experiment described above. We performed statistical
analysis on distance intervals of 50 m containing measurements from all anchors
and frequencies. The error variance with distance is shown in Figure|5.7

We can observe distinct peeks of error variance at multiples of 300 m. This
mainly happens when the vehicle is close to a safety bay. It could be caused by
the same multipath effect that occurs if the anchor is placed close to the safety
bay.

5.5.4 Combining Measurements at Different Frequencies

Lanzisera et al.|[2011]] reported that combining measurements at different fre-
quencies can significantly reduce the noise caused by multipath propagation. To
evaluate the effect of frequency on the ToF ranging error, we calculated the dis-
tance tag-anchor for each anchor and vehicle position as the median of distances
obtained from all 16 frequency channels. We achieved the improvement of error
variance from 6.26 m when using only one channel, to 4.7 m.

As can be seen in Figure by combining measurements from different
channels, not only the average error variance can be significantly reduced, but
also the peaks at multiples of 300m that appear when the vehicle is close to
safety bays. However, the outliers could not be eliminated completely, and at
300 m distance there is still a significant error peak.
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Figure 5.7. Ranging error variance depending on distance between target and

anchor.
Table 5.2. Statistical characteristics of ToF ranging error.
Time-dependent Time Independent
excluding outliers | outliers (p = 0.03)
u[m] 0 0 13.7
o[m] 2.05 6.26 31.9

5.5.5 Statistical Properties of Ranging Error

We considered as outliers the measurements that differ by more than 3 error
standard deviations from the correct value. In our case, the outliers appear in
3% of all measurements, which is much higher than the 0.3 % probability we
would expect for a normally distributed random variable. The outliers are biased:
in most cases, the measured distance is higher than the correct distance, which
strengthens our previous assumption that the non line of sight propagation is the
main cause of outliers.
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Table|5.2|summarizes the influence of time-dependent and time-independent
noise component, as well as the effect of outliers. We further decomposed time-
independent noise into two components: noise in the absence of outliers, and
another component for outliers only.

Our analysis results in two main conclusions:

* time-independent error component is dominant with respect to time-dependent
component;

* the outliers are the dominant source of measurement error.

5.6 Localization Algorithm

The goal of a localization algorithm is to combine the distances obtained in rang-
ing phase in order to get the target position. A straightforward solution to obtain
position by using measured distances would be lateration. We will show that
by using median filter instead, the localization precision can be significantly in-
creased. To reduce complexity of the algorithm, which is particularly important
for resource constrained wireless nodes, we exploit specific shape of a tunnel,
representing the tunnel as a one dimensional structure.

The analysis in the previous section showed that the precision can be in-
creased if the algorithm is able to cope with the outliers, that are particularly
pronounced when the vehicle is close to a safety bay (see Figure [5.7). There-
fore, our main criterion when designing the localization algorithm is robustness
in the presence of outliers. Resistance to outliers is achieved by using the me-
dian filter, as shown in Algorithm |1} Each of the anchors within the wireless
range of the vehicle (Anchors) sends its own distance from the vehicle to the
central location. Using the obtained set of distances (Distances), we first make
a rough initial guess of the vehicle position (initialX). Note that only one
coordinate of vehicle position is computed. We used the lateration algorithm
for the initial guess but using any other less complex algorithm is also possi-
ble. For each anchor a we compute one candidate vehicle position as follows.
The anchor position AnchorsX[a] and its reported distance from the vehicle
Distances[a], yield two possible vehicle positions: AnchorsX[a]+ Distances[a]
and AnchorsX[a] — Distances[a]. We chose one of the two options which is
closer to the initial guess and add it to the set of candidate positions, Candidates.
Finally, the vehicle position x is computed as the median of all candidate posi-
tions.
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Algorithm 1: Localization algorithm for road tunnel.

Data: Distances - from each anchor to target, PositionsX - position of

each anchor

Result: x - target position
1 initialX = Lateration(Distances);
2 forall the a in Anchors do
3 if initialX > PositionsX[a] then
4 ‘ Candidates[a] = AnchorsX[a]+ Distances[a];
5 else
6
7
8
9

‘ Candidates[a] = AnchorsX[a]— Distances[a];
end

end
x = median(Candidates);

We tested our localization algorithm in Vedeggio-Cassarate road tunnel. As
our main motivation for designing a localization system is tracking vehicles trans-
porting dangerous goods, the system accuracy is especially important in an emer-
gency scenario, particularly, in case a vehicle would stop inside the tunnel due to
an accident. Therefore, we evaluated the algorithm performance for a stationary
vehicle. As we can accurately determine the position where the vehicle stops, we
can give a precise evaluation of the proposed algorithm.

We placed 6 anchors over the tunnel length of 2.6 km. The anchor positions
were similar to the ones used in Section except for the nodes placed in the
safety bays that were not used. Figure[5.8|shows the Cumulative Density function
(CDF) of the localization error. Table shows the mean absolute error, root
mean square error, as well as the ratio of errors that were above 10 m in our
experiments, for the median filter and the lateration algorithm. It can be seen
that the median filter provides highly superior performance. We believe this is
due to its ability to cope with the outliers. The localization error for the median
filter is under 6m in all cases even with only 6 nodes over the entire tunnel
length. Using frequency diversity could further improve the results, as shown in

Section

Our results show that the radio frequency time of flight can provide precise
in-tunnel localization. Regarding the anchor placement, the main conclusions
from the previous section are that the anchors should not be placed in or around
the safety bays, and that a small number of anchors should be sufficient to cover
the entire tunnel. Due to the wave guide effect a single node placed at one end
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Figure 5.8. Cumulative Density Function (CDF) of the localization error for a
stationary vehicle.

Table 5.3. Localization error summary for a stationary vehicle.

Lateration | Median
Mean Absolute Error [m] 4.06 3.08
Root Mean Square of Error [m] 5.36 3.54
p(error > 10m) 0.103 0

of the tunnel can measure distance to the target at the other end, for a tunnel
that is 2600 m long.

5.7 Time of Flight Error Compensation
for In-Tunnel Vehicle Localization
We further improve the localization algorithm by performing calibration with

the aim of compensating the measurement error. The experiments in this section
have been performed in the pedestrian tunnel at the train station in Lugano,
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having a similar shape to a road tunnel. In this section, we first present the ToF
error measurement results obtained in the pedestrian tunnel. Then we propose
a localization system model and implement and test both static and dynamic
calibration.

5.7.1 Measurements and Error Characterization in the Pedestrian
Tunnel

Figure[5.9] shows the measurements between one anchor placed near the tunnel
wall and the tag at a fixed position in the middle of the tunnel, at 20m from
the tag. We took N = 200 samples, in a short time period. Similar as in the
road tunnel, we can notice two error components: a fixed offset, which is time
independent, and a time-dependent component. We will refer to these error com-
ponents as offset and noise. We assume that the offset is due to multipath signal
propagation, while the noise component might be partially due to quantization
error in ToF measurements. As can be seen in Figure the offset component
is more significant than the noise component.
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Figure 5.9. Distance measurement samples between the anchor placed near the
tunnel wall and the tag at a fixed position in the middle of the tunnel.
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Figure 5.10. Distance measurement error PDF between an anchor placed near
the tunnel wall and the tag at a fixed position in the middle of the tunnel.

Figure[5.10]shows the noise distribution as Probability Density Function (PDF)
of the error. A Gaussian curve is plotted on the same graph. The offset compo-
nent is the mean of the Gaussian distribution, and the noise component can be
represented as a Gaussian function with mean 0.

In the following experiment, we placed six anchors alternately on both sides
of the tunnel. The distance between two anchors at the same side was 20m,
interleaved with the anchors at the opposing wall (see Figure[5.11)). The tag was
moved along the middle of the tunnel at positions (2.5m : 5m : 47.5m). For each
pair of anchor-tag position N = 20 measurements were taken. The maximum
localization error over all experiments was 5.38 m, and the mean error was 2.2 m.

To quantify the noise we use standard deviation of the measurement error:

N
. 1 _
noise = N iéo (x—x;)? (5.1)

where x is the measurement vector, X is the mean of this vector, and N is the
number of measurements taken.
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Figure 5.11. Tunnel near Lugano train station - Measurement scenario.

The dependency of the noise on the distance between anchor and tag is shown
in Figure where different anchors are presented with different shapes. We
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Figure 5.12. Noise standard deviation vs distance tag-anchor.

observe that, similar as for the Vedeggio-Cassarate tunnel, the noise neither de-
pends on the distance between tag and anchor, nor on the anchor position. Such
noise can easily be reduced by applying an averaging filter. The offset of a mea-
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surements vector of N samples is computed as:

1 N
of fset = N;(xi —d,), (5.2)

where d; is the real distance from anchor to tag. Figure shows the offset
values obtained in our experiment. The offset is mostly positive, which confirms
our assumption that it comes from multi-path propagation. The error does not
correlate with the anchor-tag distance and there are no significant differences
depending on anchor position. In Figure[5.14we compare the offset distribution
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Figure 5.13. Offset vs distance between tag and anchor.

to the Gaussian distribution.

5.7.2 Localization System Model

Based on our error analysis, we propose a model of our localization system. We
developed a simulator in Python based on this model, that can be used to quickly
prototype and evaluate localization algorithms.

The localization system model is shown in Figure[5.15] It consists of K anchor
models and a localization algorithm model. Each anchor model takes as input the
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Figure 5.14. Offset PDF.

anchor position (a,, a, ). The tag position (t,, t, ), is the same for all anchors, and
can change with time. The positions and the number of anchors can be chosen
arbitrarily. From these inputs, the real distance d between anchor and tag can
be computed. For each anchor, the random Gaussian noise ~ A (0, 0?) with
the mean (u = o) and variance (02) is added to d. To represent our tunnel
environment, we chose the noise variance as in Figure and for each anchor
an offset distribution as in Figure

A localization algorithm is used to compute the tag position based on the
distances measured by the anchors. We used the algorithm presented in Section

5.7.3 Compensation Unit

With static calibration, preliminary measurements are collected during the sys-
tem setup phase. These measurements are used to determine the shape of the
corrective function which is later applied to the acquired distance measurements
so as to reduce their error. The corrective function can be either linear, poly-
nomial, or wavelet based. A disadvantage of this approach is that it does not
consider changes over time of the channel characteristics and it also requires
some work to be done in the system setup phase.
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Figure 5.15. Localization System Model.

Automated on-line calibration approaches have been proposed for RSS based
systems, where RSS values between anchor nodes with known positions are mea-
sured periodically to calibrate the effect of a mutating wireless channel on dis-
tance measurements, thus the corrective function is computed at run-time (Gwon
and Jain|[2004]]; Lim et al.|[[2010[]; Redondi et al.|[2010])). Inspired by these ap-
proaches, we implemented dynamic calibration for our ToF-based distance mea-
surement system.

Static Calibration

We implemented and tested both static calibration and dynamic self-calibration.
For static calibration, we train the system by calibrating the distance measure-
ments using a linear regression model. The error compensation unit is located
as in Figure with the goal of reducing the error between the measured and
the real distances. The error compensation process is performed in two phases:
the training and the on-line phase, respectively.

The training phase takes place at the system installation time. We use the
tag as a probe, moving it along the tunnel at known positions and take distance
measurements from each anchor to the tag, as in Figure The real distances
and the measured distances in the training phase are used to train an individual
model for each anchor.

We chose a linear regression model, as the ToF measurement principle is
based on a linear relationship between the time the signal flies and the distance
traversed. For each anchor k, we determine the coefficients m* and b* that we
use to compensate the measurements from anchor to tag. The coefficients m*
and b* are obtained as follows. We measure the distance between the tag and
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Figure 5.17. Static calibration scenario.

the given anchor, for different tag positions. We denote the obtained vector of
measurements as {xfj}n and the known vector of real distances as { yff}n. The
coefficients m* and b* are selected so as to minimize the mean square error
> (yF—g(x¥))* where g is a linear predictor function: g(x*) =m*x* + b*.

The second phase of the error compensation process is the on-line phase,
where, for a given anchor, the model parameters computed in the training phase
are used to correct the measurements anchor-tag as d.,,, (k) = d, * m* + b.

The training and the online phase were performed on different days.

Dynamic calibration

Inspired by the RSS-based localization systems in literature, we implemented
and evaluated an alternative error compensation method, based on dynamic cal-
ibration. This approach avoids calibration in the initial setup phase, but instead
calibrates the system periodically, while it is running. The advantage of this
approach is that it should mitigate the error variation as the wireless channel
changes with time, for example, due to the weather and atmospheric conditions.

To determine the calibration coefficients for each anchor, we used the known
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position of the other anchors compared with the measured distance anchor-
anchor. Like for static calibration, we used the linear regression model and the
mean square error to determine the optimal coefficients. For each anchor k,
coefficients m* and b* that minimize > ,(y* — g(x"))?, the mean square error
between {y*'}, and the linear predictor function {g(x*")}, are determined, but
this time, instead of determining the calibration coefficients in the setup phase
and keeping them fixed, they are determined periodically in the on-line phase.
The vector {y*'}, is a known vector of distances between the anchor k and all
other anchors [, and xfl is measured distance between the anchor k and anchor
l.

5.7.4 Calibration Algorithm Evaluation

We evaluate the performance of our error compensation unit, both for static and
dynamic calibration, by comparing the results of the localization system with and
without calibration. The anchors were located as in Figure [5.11]

Standard deviation [m] | Mean error [m]
No Calibration 3.08 3.08
Static Calibration 1.26 1.26
Dynamic Calibration 1.92 1.32

Table 5.4. Static and dynamic calibration.

Table compares the performance of static and dynamic calibration. Both
methods significantly decrease the localization error. While the mean error is
similar for both approaches, static calibration performs better in terms of error
standard deviation. As static calibration is also much simpler to implement, it
is overall a better choice for our case study. One of the reasons that static cal-
ibration exhibits better performance, might be that the tunnel wireless channel
characteristics do not change significantly with time, therefore, there is no sig-
nificant advantage to performing calibration periodically, as in the case with dy-
namic calibration. Moreover, in the case of dynamic calibration, anchors located
next to the tunnel walls are used as a reference for calibrating the system, while
the object being localized is in the middle of the tunnel. Wireless propagation
characteristics are different near the walls than elsewhere.

Figure shows the localization estimation error, with and without static
calibration. We can see that static calibration is very effective for increasing lo-
calization precision. A reported disadvantage of static calibration in literature
is that, with changing environmental conditions, model parameters obtained in
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Figure 5.18. Static calibration performance.

the training phase may no longer correspond to the environment and localiza-
tion precision may decrease. In our opinion, static calibration works well in our
case because the environment conditions remain mainly constant with time, as
tunnels are semi-closed areas and thus external whether conditions do not sig-
nificantly affect the signal propagation.
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Chapter 6

Two-Dimensional Localization

Our goal in this chapter is to minimize the total number of anchors while guar-
anteeing that the localization uncertainty is lower than the uncertainty threshold
U* for every target position, or equivalently, that every target position is mon-
itored by at least three non-collinear anchors, in line of sight, not further from
it than the node range, while keeping the GDoP lower than GDoP* (see Section
3.2.4).

Due to the availability of advanced tools for integer linear programs, ILP
based formulations allow to obtain exact solutions for reasonably sized instances
of NP-hard problems. Availability of optimal solutions for problem instances of
limited sizes facilitates the evaluation of any heuristic addressing the same prob-
lem by generating different test scenarios. In this chapter, we propose three ILP
formulations for the POL problem and compare their performances by simulation
experiments. Two of the ILP formulations are general, as they are applicable to
any uncertainty function, whenever three anchors are needed to jointly estimate
the state of the target. As we will show in Section which one of them
performs better depends on the problem parameters. The remaining formula-
tion is proposed specifically for trilateration based systems. It can be executed
in shorter computing time than the other two for the same problem instances. It
exploits the results from Section that allow us to present GDoP in terms of
only one angle, rather than all three bearing angles.

We also propose an ILP formulation for the problem of anchor nodes place-
ment optimization for fault-tolerant trilateration-based localization network, where
we ensure precise localization at any target position even if any one of the in-
stalled anchor nodes fails.

For the case where the problem instance size is too large to handle by using
ILE we propose to use the greedy placement with pruning algorithm. We show by
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simulation experiments that this algorithm, in addition to short computing times
provides the solutions very close to optimal in terms of the number of anchors
placed, for problem instances of sizes relevant for practical applications.

Our results from this section have been published in Balac et al.|[2015]] Bala¢
et al.|[2016].

6.1 Integer Linear Programing Formulations for Place-
ment Optimization for Localization

In this section we propose three different ILP formulations for the anchor place-
ment optimization problem.

6.1.1 The First Integer Linear Programming Formulation for Place-
ment Optimization for Localization
The first ILP formulation for POL can be used for any placement problem where

three anchors are needed to jointly estimate the target state. We call this formu-
lation ILP1. It is given by:

min : in (6.1a)

D=3, (Yu, (6.1b)

2! < x;, (Vi,uw), (6.1¢)

D=2 (Viw, (6.1d)
j.k

Yo =0 (Vi,j,ku|U(a;a;a,t,)>U") (6.1€)

We define one variable x; for each candidate position a; € C. The variable x;
will be set to 1 if an anchor is placed at the candidate position a;. The variable
yé‘i’j’k) will be set to 1 if anchors at candidate positions a;, a; and a, are assigne
to monitor the target position t,. The variable z;' will be set to 1 if an anchor at
candidate position q; is assigned to monitor the target position t,.

Equation is the objective function, indicating that the total number of
anchors in the solution has to be minimized. Equation indicates that each

!Note that, when the localization system is implemented, the target does not have to know
which three anchors are assigned by the placement optimization algorithm to monitor its current
position. The target can use more anchors to localize itself, if available. See also Section
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possible target position is assigned three candidates to monitor it. Equation
indicates that if position qa; is assigned to monitor the target, an anchor has to
be placed at position a;. Equation indicates that an anchor g; is assigned to
target t, if and only if a triple of anchors containing q; is assigned to t,. Equation
[6.1€| ensures that anchors cannot be assigned to a target if they do not meet the
quality constraints, imposed by the upper limit on uncertainty function.

Efrat et al.|[2005]] propose a similar formulation for two nodes that are needed
to cover a target. This formulation can be seen as its extension to three nodes. It
is well known that high number of variables affects adversely the execution speed
of an ILP Unfortunately, the number of variables in this ILP formulation is very
high. Indeed, variables y(”i’j’k) are defined for combinations of three candidates
in the range of each target, therefore, their number is roughly in the order of
N (;), where N is the total number of targets and r denotes the average number
of candidates in the range of each possible target position. The main motivation
behind our second ILP formulation is to reduce the number of variables, by avoid-
ing those variables that are defined for combinations of three candidates. Since
three nodes are needed to localize a target jointly, this is not straightforward to
achieve.

Our second ILP formulation for POL shows how the number of variables can
be reduced. To achieve this, we first derive the alternative condition for the
requirement that the GDoP has to be lower than GDoP*, that allows to present
the GDoP in terms of only one angle, rather than all three bearing angles, in
Section The second ILP formulation will be given in Section|6.1.3

6.1.2 Geometric Dilution of Precision for 2D Trilateration

As defined in Section the localization uncertainty is directly proportional
to GDoB given fixed and known distance measurement standard deviation o .
The GDoP for 2D trilateration is given in Equation and depends on all three
bearing angles in a complex way. In this section, we derive alternative condition
for the requirement that the GDoP has to be lower than GDoP*. This alternative
condition will allow us to propose an ILP formulation that can tackle problem
instances of larger sizes by significantly reducing the number of variables in the
ILP formulation.

To limit the localization uncertainty, our goal is to place the anchors in such
a way that GDoP is limited from above at every possible target position. Since
sin0% = sin180° = 0, if all three bearing angles are very close to either 0° or
180°, the denominator in Equation 3.4 will be close to 0 and the value of GDoP
will be very high. We want to avoid this scenario. Therefore, intuitively, at least
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one bearing angle should be far enough from both 0° and 180°. In Proposition
[6.1] we express this condition more formally, by proving that if at least one of the
angles a, 8 and y is separated by 6 from both 0 and 180°, then GDoP is limited
from above by a function of 6.

Proposition 6.1. Let a, 3 and y, a + f3 +y = 360° be the bearing angles and
0(a, B,y) = max(min(|a|, 180°—al), min(|], [180°—p]), min(ly|, 180°—y])),
then GDoP < g(0)-GDoP,,;,, where GDoP,,;, = %,

GDoP is defined in Equation and g(0) = m.

If 0 < 60° then GDoP > h(60)-GDoP,,,, where h(0) = Nﬁ’

Proof. We have 0 < 0 <90°

0<a, B, y <360°

We can assume without loss of generality that a < 8 and
ye€ {0, 180°—0, 180° + 6, 360° — O}, from which we have
a+fB€{0, 180°—09, 180°+ 8, 360°— 0}, and

min(|a|, [180°—a|) < 0,

min(|3], |180° — B]) < 6 which give us four different cases:

1. a+f=6,0<a<0,0<p<6
sin®a +sin?f +sin?y = sin?a +sin%(0 — a) +sin6.
By differentiating the right hand expression over a we get that it has its
minimum for a = % which equals 2 —cos0 —cos?, and a maximum at the
edge of the interval for a = 0 which equals 2sin?(8) = 2 —2cos?(8).

2. only for 6 > 60°
a+f=180°—0,0<a<6,0<p<0,
sin®a +sin?f +sin’y = sin*a +sin%(0 + a) +sin6.
This expression has its minimum for a = 0 which equals
2—2c0s%0 > 2 —cos0 —cos?0.

3. a+=180°4+0,0<a<6,180< 5 <180°+0
sin®a +sin?f +sin’y = sina +sin?(0 — a) +sin6.
By differentiating the right hand expression over a we get that it has its

minimum for @ = 4, B = 180° + £ which equals 2 — cos0 — cos20, and a
maximum at the edge of the interval for a = 0 which equals 2sin%(8) =
2 —2cos%(0).

4. a+p=360°—6,180°—0 <a, p <180°+ 6.
sin®a +sin?f +sin’y = sin*a +sin*(0 + a) +sin%6.
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By differentiating the right hand expression over a we get that it has its
minimum for a = § = 180° — %, which equals 2 — cos® — cos?0, and a
maximum at the edge of the interval for a = 180°—0, 3 = 180°— 6 which
equals 2sin?(0) = 2 —2cos%(0).

From 1, 2, 3 and 4 we get sin®a + sin’f3 + sin®*y > 2 — cos0 — cos*6. By sub-
stituting in Equation [3.4] we directly prove the first part of our proposition:
GDoP < g(0)-GDoP,,,.

From 1, 3 and 4 we get sin®a + sin?f3 + sin®*y < 2sin0 for 6 < 60°. By substi-
tuting in Equation we prove the second part of our proposition:

GDoP > h(6)-GDoP,,,. O

GDoP,,;, is the minimum possible value for GDoP and is used here for nor-
malization.

Based on this proposition, we will replace the condition GDoP < GDoP* by
a more conservative condition 8(a, 3,y) > 6*, where GDoP* = g(6*)GDoP,,;,.

The functions g and h are close in values. See Figure For example, we
have g(37°) = 2, h(37°) = 1.76. The cases where GDoP is required to be very
close to GDoP,,;,, are not of much significance. The ranging error standard de-
viation in LoS conditions, o, is typically very low (Alavi and Pahlavan! [2006]).
Therefore, in order to keep the localization error standard deviation o low, it
is not necessary to limit GDoP to very low values and it is unlikely that higher
values of 6 will be required.

We will also show graphically that if at least one bearing angle is far enough
from both 0 and 180°, then the GDoP is limited from above. Here, we introduce
new notation. Each pair of anchors forms two conjugate bearing angles with the
target, for example a and 360° —a . We introduce a,, 8, and v, such that these
angles are always less than 180°, defined as: a, = a, if a < 180°, a, = 360°—a,
otherwise. Analogously for f, and y, (see Figure|6.2(b)|-[6.2(c)). Notice that
if we substitute, for example, a for a, in Equation the value of GDoP will
not change. We change both a and 3 from 0 to 360° in small increments and
calculate GDoP, as given by Equation for each value pair. note that y is
dependent on a and 3. The minimum value of GDoP, GDoP,,;, = % is achieved
for a = p =y = 120°. Figure shows all of the values where GDoP <
GDoP* = 2-GDoP,,, in white, and those where GDoP > GDoP* in black. The
black regions are marked with numbers from 1 to 6.

By observing Figure we can see that if at least one bearing angle a,,
Bo Or 7,, is between 6* and 180° — 6*, then the value of GDoP is not in any of

the black regions. For example, we can show that in Black Region 2 none of the
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Figure 6.1. The functions g(0) and h(6).

bearing angles is between 6 and 180° — 6 as follows. We describe Black Region

(2) in Figure and we get:

180°— 0* < a < 180° + 6* — a, > 180° — 6*.
B <6*(lineb) — B, =p<6".

a+f <180°+ 0* (line c) — y > 180°— 6%, (6.2)
a>180°—0* — y < 360° —a < 180° + 6%,
180°—0* < y < 180° + 0* — y, > 180° — 6.

In a similar way, we can show that in all six black regions in Figure all
angles a,, 3y, 1, are either less than 0* or greater than 180° — 6*. Also, we can
see that the gray dashed line in Figure approximates the border between
the white and black area quite closely.
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Figure 6.2. @ Regions where GDoP > 2-GDoP,,;, are shown in black. @ -
Bearing angles. Three anchor nodes, indicated by diamond shapes, cover
the target, indicated by the black dot.

6.1.3 The Second Integer Linear Programming Formulation for
Placement Optimization for Localization

Our second ILP formulation for POL shows how the number of variables can be
reduced, by exploiting the results from Section that allow us to present
GDoP in terms of only one angle, rather than all three bearing angles. We will
show in Section [6.7] that this indeed results in much lower execution times. We
call this formulation second ILP formulation for placement optimization for lo-
calization (ILP2).

Before proceeding to ILP formulation we introduce some notation. Given U*,
we define 0* such that g(6*)GDoP,,;,0, = U*. This will guarantee that if place-
ment of anchors P is such that a target t,, is monitored by tree non-collinear nodes
in range, within the LoS and at least one of the bearing angles is between 6* and



70 6.1 ILP Formulations for Placement Optimization for Localization

180°—06*, then U(P, t,) < U*. For each possible target position t, we define a set
R(t,) such that the candidate position a; € R(t,) if the distance between a; and
t, is lower than the node range and there is line of sight between t, and a;. We
will also say that the candidate a; reaches t, if a; € R(t,). Notation Col(a;, a;, a;)
denotes that candidate positions a;, a; and a, are collinear. Notation Z(a;, t,,a;)
denotes the bearing angle formed by candidate positions a; and a; with vertex at
target t,. We say that an angle Z(a;, t,, a;) is adequate if it is bigger than 6* and
smaller than 180°— 6*, and denote this as a boolean function A(Z(a;, t,, a;),0%),
which takes value true if Z(a;, t,,q;) is adequate.

We assign three anchor nodes at non-collinear candidate positions: a;, a;
and ay, such that a;, a;, a, € R(t,) to monitor each target t,. Two of these three
candidate positions, a; and a; have to form an adequate angle with the target
(Figure [6.3). We do not place any constraints on the angles formed by a; with
other candidate positions.

Figure 6.3. The anchor nodes, indicated by the filled circles, monitor the target,
indicated by the diamond shape. The angle marked with an arc is guaranteed
to be adequate.

Instead of variables Yiin indicating that candidate positions a;, a; and a;
are assigned to monitor target position t,, we have two new sets of variables.
The variable y(“l.’j) will be set to 1 if a; and a; are those two candidate positions
assigned to target t, that have to form an adequate angle with ¢, and the variable
w will be set to 1 if a; is the third candidate assigned to monitor target t,,
without any constraints on angles formed with other positions. This is how the
reduction of the number of variables is achieved. The variable x; will be set to 1
if an anchor is placed at the candidate position a;. The variable z}' will be set to 1
if a; is one of the two candidate positions assigned to target t, that is guaranteed
to form an adequate angle with another candidate position assigned to t,,.

The ILP formulation is given by:

min : Z X, (6.32)
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D> at=2, (Yu), (6.3b)
Dowi=1, (Yu), (6.30)
> ox=3, (Vu), (6.3)

x;€R(t,)
z! <x;, (Vi,u), (6.3e)
Wlll < Xi, (Vla u); (6-3f)
z! =0, (Vi,ula; ¢R(t,)), (6.32)
w'=0, (Yiul|g ¢R(,)), (6.3h)
>yl =zt (Viu), (6.3)

J

.y(lid) = 07 (vlyja u | _'A(Z(ai: tu: aj)s 0*)) (63_])
y(‘i)j) +w, <=1, (Vi,j,k,ulCol(a;,qa;,aq)). (6.31)

Equation [6.3astates that the total number of anchors used has to be minimized.
Equations and ensure respectively that for each target t, there are ex-
actly two anchors assigned to it that have to form an adequate bearing angle with
t,, and exactly one anchor that does not have to form any adequate angles. Each
possible target position has to be reached by at least three anchors (6.3d)). Equa-
tions [6.3¢| and ensure that a candidate position can be assigned to monitor
a target only if an anchor is placed at that candidate position. Equations
and ensure that a candidate position cannot be assigned to target t,, if it
does not reach t,. Equation ensures that a candidate a; is one of the nodes
assigned to target t, that have to form an adequate angle with t, and another
candidate, if at only if a pair of candidates that contains q; is assigned, forming
an adequate angle, to t,. Equation ensures that if candidates a; and a; are
assigned to t, such that they have to form an adequate angle, then indeed they
do form an adequate angle with t,. Equation indicates that the two points
assigned to a target that have to form an adequate angle with it are distinct from
the third point assigned to this target. Finally, Equation ensures that the
three candidate positions assigned to a target are not collinear.
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6.1.4 The Third Integer Linear Programming Formulation for Place-
ment Optimization for Localization

In our third formulation, we reduce the number of variables even more by com-
pletely avoiding variables that combine several anchors that cover the target to-
gether, and only have one anchor assigned to a target in each variable. The idea
behind this formulation is that instead of expressing which nodes can monitor
the target together, we express the negative condition - which of the neighbor-
ing nodes cannot monitor the target together. As we will also show in Section
this formulation scales better than ILP1 for the small number of obstacles,
due to the lower number of variables. However, with the increased number of
obstacles, its performance decreases, as the number of equations grows due to
more combinations of nodes that cannot cover the target together. The same as
ILP1, this ILP can be used wherever three nodes are needed to cover the target
together.

The set R(t,) is the set of all nodes that reach the target t,, defined in the
same way as in We define following variables:

* x; = 1 if a node is placed at the candidate position i, equivalently, if can-
didate position i belongs to the solution. There is one variable x; for each
candidate position i.

* z! =1 if the candidate position i is assigned to target u.

All variables can only take values O or 1.
The ILP3 formulation is given by:

min : in, (6.4a)

D at=3, (Vu), (6.4b)

z! <x;,  (Vu,i), (6.4¢)

z! +z;.‘ +z; <3, (Vi,j,k,ulU(a;,qaj,a,t,)>U") (6.4d)
z! =0, x;¢€R(t,). (6.4e)

Equation states that the total number of anchors used has to be minimized.
Equation states that each target u has to be assigned three anchors to mon-
itor it. Equation ensures that an anchor at candidate position i can be as-
signed to a target only if that candidate location belongs to a solution, that is, if
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an anchor is placed at the position i. Equation ensures that anchors cannot
be assigned to a target if they do not meet the quality constraints, imposed by
the upper limit on uncertainty function. Equation |6.4€| ensures that an anchor
can only be assigned to a target if it reaches the target.

6.2 Integer Linear Programing Formulation for Fault-
tolerant Placement Optimization for Localization

In this section, we propose an ILP formulation for the fault-tolerant placement
for UWB trilateration-based localization problem.

Each target has to be 2-monitored by four anchors. We say that a target is
2-monitored by a set of K anchors if, when any of these anchors is removed, the
remaining K—1 anchors are sufficient to monitor the target. As derived in Section
three anchors monitor a target in 2D if they are not collinear, closer to the
target than the node range with no obstacles in between, and at least two of
them form an adequate angle with the target. All configurations of four anchors
and a target, such that the anchors 2-monitor the target, can be classified into
two categories (see Figure[6.4). Either there are two pairs of anchors such that
each pair forms an adequate angle with the target (Figure [6.4(a))), or three out
of four anchors form three adequate angles with the target (Figure [6.4(b)). In
both cases, no three out of the four anchors are collinear.

If a subset of candidate positions is a solution to our problem, then to each
target, we can assign four anchors from this solution that 2-monitor it together.
These four anchors form one of the two configurations in Figure All angles
marked by an arc in Figure[6.4/have to be adequate, and this is guaranteed by our
ILP formulation. Angles not marked with an arc may or may not be adequate.

(a) (b)

Figure 6.4. Possible configurations that 2-monitor the target. The target is
marked by the diamond shape, and anchors by the filled circles. All angles
marked by an arc are guaranteed to be adequate.
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Before we proceed to the ILP formulation, we introduce the short notation
A((a;, a;, ar), t,, 0%) which stands for A(Z(a;, t,, a;), 0%) NA(L(a;, t,, ar), 0°) A
A(4(aj, t,,a,),0"), meaning that the anchors a;, a;, a; pairwise form adequate
angles with target t,. If we denote the three anchors in Figure that form
the angles marked by arcs with the target with a; , a; and a; and we denote the
target in the same figure with t,, then we have A((a;, a;, a), t,, 0*) = true.

We define the following variables. The variable x; is set to 1 if a node is
placed at the candidate position a;. The variable w, u is set to O if the target
t, is assigned anchor nodes in configuration [6.4(a)}, and w, = 1 if it is assigned
anchors in configuration m The variable yg; ;) will be set to 1 if target t, is
assigned anchors in configuration [6.4(a)}, and nodes q; and a; have to form an
adequate angle with t, (a; and a; are a pair of nodes with an arc between them
in Figure 6.4(a)). The variable 2} is set to 1 if target ¢, is assigned configuration
and the candidate position a; is assigned to target t,. The variable v}
will be set to 1 if configuration assigned to target u is node q; is assigned
to target t,, while a; has to form three adequate angles with other two nodes
assigned to t,. The variable ¢} will be set to 1 if configuration assigned to target
t, is the candidate q; is assigned to target t,, and does not have to form
an adequate angle with any other node and t,. All variables can only take values
Oorl.

The ILP formulation is given by:

min : in (6.5a)
yllfj <1- Wy, (Vl: j) U), (65b)
z! <1l—w,, (Vi,u), (6.5¢)
Dyt =201—w,), (Yu), 6.5d)
(@.5)

D a=4(1-w,), (Vu), (6.5¢)
2 <x;, (Vi,uw, (6.50)
Dyl =2t (Vi) 6.59)

J
y(”i’j) +y(“l.,k) <1, (Yi,u), (6.5h)
z;+2;+2. <2, (Vi,j,kulCol(a;,a;,a)), (6.51)
vi<w,, (Vi,u), (6.5))

t! < w,, (Vi,u), (6.5k)
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D vi=3w,, (Yu), (6.51)
v+ v]l.‘ <1, (Vi,j,u|-A(L(a;t,q;),0%)), (6.5m)

Z t! =w,, (Yu), (6.5n)
v+ vJ‘.‘ +v, <2, (Vi,j,k,u|Col(a;,aj,ar)), (6.50)
v+ v]?‘ +t/<2, (Vi,j,L,u|Col(a;a;,ap)), (6.5p)
vi<x;, (Vi,uw), (6.5q)

t! <x;, (Vi,u), (6.51)

e =0, (Vi,j,ul “A(L(a; t,a,), 0%), (6.5
VERti <1, (Vi,u), (6.51)
=0, (Vi,ula; €R(t,), (6.5u)

vi=0, (Vi,ula; €R(t,)), (6.5v)

wi=0, (Vi,ul|a; €R(t,)), (6.5w)

z' =0, (AjeR(t,)|AL(at,,qa;),0%), (6.5x%)

v =0, (Ajk ER(t ) |A((ai;ajsak): tuw, 07)), (6.5y)

X, Wy, Y vt €{0,1}. (6.52)

l]’

Equation [6.5a|states that the total number of anchors used has to be minimized.
Equations [6.5b) - and|[6.5d state that the variables y(; ., and z;' can only be equal to
1 if anchor ¢, is a551gned configuration as in F1gure m Analogously, Equa-
tions [6.5j and [6.5K] state that the variables v} and t{' can only be 1 if node ¢, is
assigned conﬁguration as in Figure Equation states that, if the node
t, is assigned the first configuration, it has to be assigned exactly two pairs of
nodes with adequate angles, and Equation that it has to be assigned four
anchors. Equations |6.5f, [6.5g and [6.51] ensure that an anchor at candidate po-
sition a; can be assigned to a target only if that candidate location belongs to
a solution, that is, if an anchor is placed at the position a;. Equation en-
sures that, for the configuration in Figure a candidate is assigned to a
target position, if and only if at least one pair of candidates it belongs to is as-
signed to this target position. Equation [6.5h| ensures that, for the configuration
in Figure two pairs covering the target with adequate angles are disjoint.
Equations[6.51, [6.50|and [6.5p| guarantee that no three candidates assigned to the
same target are collinear. Equation |6.5] states that, if the node t, is assigned
the second configuration, the number of nodes assigned to it that pairwise form
adequate angles with the target is exactly three, and Equation that it has
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to be assigned exactly one other node with no guarantee about angles. Equation
6.5m|ensures that in second configuration, all angles between the three anchors
are adequate. Equation |6.5tl ensures that in the second configuration, the three
anchors that have to form adequate angles pairwise with the target are not in-
cident with the fourth point, that has no guarantee about angles. Equation
ensures that if candidates a; and a; are assigned to t, such that they have to form
an adequate angle, then indeed they do form an adequate angle with t,. Equa-
tions [6.5u, [6.5v] and [6.5w] ensure that a candidate position cannot be assigned
to target t,, if it does not reach t,. Equation ensures that z;' can be set to 1
only if it forms adequate angles with the target u together with some other nodes
that reach t,. Equation ensures that v can be set to 1 only if it forms three
adequate angles with the target u together with some other two nodes that reach
u.

6.3 Greedy Placement with Pruning

If the size of a problem instance is too large to tackle by using ILE we propose to
use our greedy placement with pruning algorithm. This algorithm can be used
both for POL and FPOL. Where necessary, we will make the distinction between
the two.

The algorithm consists of two stages. The first stage, greedy placement of an-
chor nodes, has extremely short computation times and low overhead in terms
of the number of anchors placed with respect to the optimum, for the problem
instances of reasonable sizes, for which we were able to compare with the ILP
based solutions. The second stage, pruning, performs the refinement of a so-
lution to anchor nodes placement optimization problem obtained in the greedy
placement stage. The greedy placement algorithm works as follows. We define
a score function S : C — R*, that assigns a score to each candidate position.
We start from an empty set P. In each iteration, the element with the highest
score from C/P is added to P, that is, we place an anchor at the candidate posi-
tion with the highest score. The scores are updated, and the procedure repeated
until P is the solution to POL/FPOL problem, in other words, until all possible
target positions are covered. We say that a target position is covered if it is mon-
itored in case of the POL problem, or 2-monitored in case of the FPOL problem.
Choosing a good score function is crucial for the algorithm performance. Our
score function, for each candidate position is a sum over all target positions of
contributions that depend on two factors. The first factor quantifies how much
placing an anchor at the candidate position will contribute to covering the target.
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It is zero if placing an anchor at the candidate position will not affect covering
the target at all, one if it is necessary for covering the target and otherwise, it is
in between. The other factor quantifies to which extent the target in question is
already covered. Targets that are less covered so far are given advantage.

Pruning consists of any number of independently executed levels. At each
pruning level [, [ = 1,2, 3... combinations of [ nodes that can be replaced by [ —1
nodes, so that all possible target positions still remain covered, are identified.
In this way, the number of anchors in the solution is reduced. Each subsequent
level, as [ increases, is more complex and requires more time. The number of
pruning levels can be selected to achieve the desired trade-off between the solu-
tion quality in terms of the number of nodes placed and execution time.

In Section we will show by simulation experiments how the algorithm
scales and that by using pruning, it is possible to get the results same or very close
to that of the ILP algorithm with shorter execution times, for the same problem
instances. For problems of large sizes, run-times can be reduced by decreasing
the number of pruning levels, while keeping the quality of results in terms of the
number of anchors placed much better than with greedy placement only.

6.3.1 Greedy Placement

To define the score function for greedy placement, we first introduce some defi-
nitions. We say that a subset of candidate positions W C C covers the target t,
if U(W, t,) < U*, in case of POL problem, and in case of FPOL, if for all sets W~
obtained by removing any one element from W, UW™,t,) < U*. We denote
this as the binary relation WAt,. We use the variable K to denote the minimum
number of anchors that are needed to cover one target: K = 3 for POL, K = 4
for FPOL. Given the set P of candidate positions selected for placing anchors, the
coverage of target t, € T , denoted as cov(t,) is the maximum cardinality of set
W C P such that for some candidate positions q; ...a; € C, {a;...a; } covers t,
and W is a subset of the K-element set {q;, ...a;,

cov(t,)= max |W]|. (6.6)

Hay, .ay }cC
{a;; ..ay, JAL,
wca, ...

aiK

Such a K-tuple of candidate positions {a; ...a; } is then called the maximum K-
tuple for the target position t,. If a candidate position from C/P which is in
a maximum K-tuple for a target is added to P, the coverage of this target will
increase. Coverage of a target is an integer between 0 and K and it indicates the
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maximum number of anchors that are already placed out of any K-element set of
anchors that can cover the target.

We define the function p(a;, t,) as the number of maximum K-tuples for t,
that a; belongs to, divided by the total number of maximum K-tuples for t,. This
function quantifies how important a; is for covering t,. If p(a;,t,) = 1, then
adding q; to P is necessary for covering t,, and if p(a;, t,) = 0, then adding a; to
P will not contribute to covering t, at all. The score for each candidate position
S(a;) is then calculated as:

S(a;) = Z p(a;, t,)" * (c, —cov(t,)). (6.7)

u
cov(t,)<K

There is one element in the sum for each possible target position whose coverage
will increase if a; is added to P. Target positions with lower coverage should be
given preference, which is reflected by the factor (c, —cov(t,)).

The parameter c; has to be greater than 0 and it determines the relative in-
fluence of each of the two factors in the score function. Bigger the value of c;,
more influence on the cost function will p(a;, t,) have with respect to current
coverage of a target. The parameter c, reflects the extent to which the targets
with low coverage are favored with respect to targets with high coverage. If c, is
very close to K —1, the target with coverage K —1 will account for very little with
respect to a target with current coverage 0, while as ¢, increases, the difference
becomes less important. The parameter c, has to be greater than K — 1, as for a
target t, that is not already covered the value of cov(t,) is between 0 and K — 1,
and all members of the sum in Equation have to be positive.

The parameters c; and c, are determined by simulation experiments. We run
the greedy algorithm for different values of ¢; and c,. We repeat for different
randomly generated problem instances, and for each pair of parameter values
(cq,¢,) we look at the average number of anchors placed over all instances. The
values that provide the best performance are ¢; = 2.15, ¢, = 2.35 for localization
with no fault tolerance, and ¢; = 0.85, ¢, = 3.55 for fault-tolerant localization.
These values are used in all our simulation experiments in Section

The greedy algorithm with pruning is given by Algorithm First we cal-
culate the scores for all the candidate positions (Lines 1-3). In Lines 4-6, we
initialize all targets to not covered. In Lines 7-16, we add one candidate at the
time until all targets are covered. This proceeds as follows: we select a candi-
date a; with the highest score where an anchor is not already placed (Line 8),
place an anchor there (Line 9), and recalculate scores for all possibly affected
candidates that are not already placed (Lines 10-12). The candidates a; whose
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Algorithm 2: The Greedy Placement with Pruning.
Data: C-candidates, T-targets, (Vt, € T): {W Cc C | WAt,},
L - number of pruning levels
Result: P C C: candidates with anchors placed

1 for (a; €C) do

2 ‘ S(a;) « calculate;

3 end

4 for (t,€T)do

5 ‘ covered(t,) < false;

6 end

7 while (3¢, € T | not covered(t,)) do

8 select a; € C/P - with highest score;

9 add q; to P ;

10 for (t,eT|(IW)a, €W, WAt,) do

11 ‘ (Va; | 3W') aq; e W', W'At,) S(a;) < update;
12 end

13 for (t,eT|(3W),a;, € W,WAt,) do

14 ‘ covered(t,) < update;

15 end

16 end

17 forl <~ 1to L do
18 ‘ Prune(B D);
19 end

score functions may be affected by placing the anchor q; are those that cover any
target that anchor a; also covers. In Lines 13-15 we check if any targets that may
be affected by adding anchor a; are now covered, and update this information.
In Lines 17-19, we perform L levels of pruning.

Complexity of Greedy Placement

To calculate the complexity of greedy placement, we denote the total number
of candidates |C| = ¢ and the total number of targets |T| = t. We denote the
maximum number of candidate positions that can reach a target, meaning the
distance between them is less than the node range and there are no obstacles
in between as d.. This value depends on maximum density of candidate posi-
tions and node range. Similarly, we denote the maximum number of possible
target positions that can reach a candidate, depending on the maximum density
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of possible target positions, as d,.

The loop in Lines 1-3 is repeated c times. Calculating p(a;, t,) takes O(df )
time, since it requires iterating over all K-tuples of candidate positions that can
cover each target, and the number of such K-tuples is in the order of (‘Iig) The
sum in Equation has O(d,) elements which means that the code 1-3 can be
executed in O(chK d,). The loop in Lines 4-6 is executed t times. In loop in Lines
7-16, one anchor is added in each iteration, therefore, the maximum number of
iterations is the number of candidate positions O(c). The loop in Lines 10-12 is
executed O(d,) times, once for each target the added anchor node covers. The
pseudo-code in Line 11 can be executed in O(df ) times, as it takes one iteration
through all the K-tuples that cover the target t;. This gives us the execution time
of the Greedy placement, without the pruning part O(cdtdf +t).

6.3.2 Pruning

Pruning consists of any number of independently executed levels. At each prun-
ing level [, [ = 1,2,3... combinations of [ nodes that can be replaced by [ — 1
nodes, so that all possible target positions still remain covered, are identified.
Pruning stage at level [ can be executed in O(t(?)(,%,)) = O(tc?™'), where p is
the number of anchors placed in the greedy placement stage and c is the total
number of candidate positions. We used p = O(c). For the total of L pruning
stages the complexity is O(tc*~1), which is polynomial in the number of target
and candidate positions, although it grows quickly with the number of pruning
levels L. In Section we will present an improved pruning algorithm that
decreases this complexity.

Our implementation of the pruning procedure is given in Procedure
The algorithm takes P, the set of anchor nodes selected by the greedy placement
algorithm and lower pruning levels, and identifies all subsets of P of [ nodes,
that can be replaced by at most [ — 1 nodes, so that all targets remain covered.

We denote by:

* P - set of all selected candidate positions where anchors are placed. P is a
solution to POL/FPOL.

* R(I) - a set of replacements for anchors I where I € P. R(I) contains
all sets of at most [ — 1 not selected (not in P) candidate positions that
can replace all anchors in I. A set of candidate positions S € R(I), if after
removing all anchors in I and adding to P all anchors in S, all targets are
still covered.



81 6.3 Greedy Placement with Pruning

Procedure Prune(B 1)
Input: P - set of selected candidates, [ - level of pruning
Output: new set of selected candidates
foreach a; € P do
‘ R(a;) < calculate;
end
fori < 2tol do
foreachI C P, |I| =i do
Ro(I) « calculate;
R() —R(D)N(() st RU));
end
9 end
if [R(I)| >0, |I| =1 then
11 ‘ P « Select and replace sets of [ anchors by [ —1 candidates.
12 end

N O b~ W N =

o]

1

[=}

» We will also use notation R(a;) for a set of sets that replaces a single anchor
a;.
* Ry(I) - asetof sets of at most [ —1 not selected candidate positions that can
replace all anchors in I C P at positions they all reach. A set of candidate
positions S € Ry(I) if after removing all anchors in I and adding to P all
anchors in S, all targets that are reached by all anchors in I are still covered.

The pruning algorithm can be implemented based on the following recursive
relation:

R =R(DN( (] RW)). (6.8)
JcI
I=lr-1

A set of candidate positions S can replace a set of anchors I if it can replace all
anchors in I at positions they all reach (R,(I)) and it can replace all set of anchors
J where J is subset of I. Because sets of candidates that replace J also replace
subsets of J it is enough to only consider J of size by 1 smaller than I.

The Pruning Procedure at level [ consists of [ steps (see Procedure Prune). In
eachstepi, i =1...[, R(I) is identified for all subsets I of P of size i. Replacements
for single anchors (i = 1) are computed in Lines 1-3. In Lines 4-9 replacements
are determined for sets of sizes 2...[ by using the relation given by Equation
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In Lines 10-12, among all subsets of P of | elements that can be replaced, a
number of subsets is selected and replaced.

For higher [, most of the sets R(J) (see Equation will be empty, and
intersection will not have to be computed.

6.4 Greedy Placement with Iterative Pruning

We propose an improved version of greedy placement with pruning algorithm
that shortens execution times. We call it greedy placement with iterative prun-
ing algorithm. The greedy placement stage is the same as described in Section
and the pruning stage is significantly improved. This algorithm will be par-
ticularly useful in 3D, due to intrinsically larger problem sizes.

The main improvement compared to the algorithm described in Section
is that, rather than trying to replace | anchors by [ — 1, where [ = 2,3...[ we
try to replace two anchors by one multiple times, so that the complexity does
not increase with the number of attempts to reduce the number of anchors. In
between the attempts, we replace some anchors by other anchors, so that all the
targets are still covered, while the total number of anchors remains the same.
This allows us to attempt the reduction again. This phase is called shuffling. The

Procedure Prunelterative(P)
Input: P - set of selected candidates
Output: new set of selected candidates
1 fori<1to L do
2 Prune(P 2);
3 Shuffle(P);
4 end

algorithm is given in Procedure [Prunelterative| L is the number of iterations that
can be large, we use 100 in our experiments. Iterative pruning consists of two
phases: reduction (Line 2) and shuffling (Line 3). Reduction and shuffling are
performed interchangeably until shuffling gives a configuration that has already
appeared before, or until the given maximum number of iterations is reached.
In the reduction phase, combinations of two nodes that can be replaced by one
node, so that all the targets still remain covered, are identified and the replace-
ments are performed. In this way, we attempt to reduce the number of anchors
in the solution. This phase is identical to pruning procedure (Procedure
in Section [6.3) for [ = 2.
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Shuffling is performed as follows, where C is the set of all candidate positions,
and P is the set of candidate positions where anchors are already placed. All pairs
r = (c,p) where c € C, p € P\ C are identified, such that if ¢ is replaced by p,
all targets remain covered. We will call these pairs possible replacements. Then,
possible replacements are selected and performed in random order. Randomiza-
tion is used to provide different configurations at each shuffling step. Performing
some replacements will make others impossible. Therefore, as the result, a ran-
dom subset of possible replacements will be performed.

If the number of candidate positions is ¢, the number of target positions is t
and L is the number of pruning iterations, then the complexity of the reduction
stage is O(tc®), while the complexity of shuffling is O(tc?), which gives us total
complexity of iterative pruning procedure of O(Ltc?).

This algorithm is an improvement of the pruning algorithm we proposed in
Section where we attempted to replace [ nodes by [ — 1 nodes at each step,
for I = 2,3...L, resulting in complexity of O(tc*:~1). In the new algorithm, by
attempting to replace two nodes by one at a time, in each iteration, we keep
the algorithm complexity low, while the shuffling stage allows to attempt the
reduction multiple times.

6.5 Preprocessing

Before running optimization, preprocessing has to be executed. Preprocessing
takes as input the floor plan, consisting of room dimensions, coordinates of ob-
stacles, coordinates of target positions and candidate positions. For any of the
optimization methods we have described, this block has to produce, for each
target position, the set of all triples/quadruples that cover it, and for the opti-
mization methods where this is required, also a set of good pairs: the pairs of
anchors that form an adequate angle with the target. The optimization algo-
rithms are then designed to select one of the triples/quadruples that cover each
target, while minimizing the total number of anchors selected.

It is important to notice that, if two targets are covered by the exact same sets
of triples/quadruples, one of those targets is redundant and can be eliminated.
Moreover, if the set of triples/quadruples that cover target t; is a superset of the
set of triples/quadruples that cover target t;, the target t; can be eliminated, as
one of the triples/quadruples that cover t; will have to be selected in order to
cover t;. Preprocessing can reduce the number of targets, and thus the problem
size significantly, especially if the number of target positions is large compared
to the number of candidate positions, as in that case there will be many targets
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that are covered by exact same tuples of candidate positions. Intuitively, if two
targets are very close to one another, conditions to cover them are likely to be the
same. Preprocessing algorithm needs to detect such cases in order to reduce the
number of targets, while not reducing coverage in any way. Algorithm 3|gives the
preprocessing algorithm for the simpler case where good pairs are not needed.

Algorithm 3: Preprocessing.
Data: C - candidates, {(c,,c,)}-candidate coordinates, T, - targets,
{(t,,t,)}-target coordinates, {(o,,0,)} - obstacle coordinates
Result: C-candidates, T C T,, (Vt, € T): K(t,)={W c C | WAt,},
(e, t, € Tp) | K(t,) S K(t,),
(Yt, € T,\ T), (3¢, € T) | K(t,) S K(t,)
1 for (t; € T,) do
2 ‘ R(t;) « calculate;
3 end
4 while T, not empty do
5 select t; € T \ T, - with lowest |R(t;)|;
6
7
8
9

K(t;)={W} «calculate;
remove all t;; € Ty, such that (YW € K(t;) | WAt));
T=Tu{t};

end

Input is the set of candidates and their coordinates, targets T, with their
coordinates, and obstacle coordinates. The result is a minimal subset of targets
T C T, such that if all targets in T are covered, all targets in T,, will be covered,
as well as for each t, € T, a set of all triples/quadruples that cover t,: K(t,).
In Lines 1-3 we calculate for each target, all candidate positions that reach it.
In Lines 4-10, we select targets from T, one by one, in order of the number
of candidates that reach them (Line 5). We calculate all tuples that cover the
selected target (Line 6). In Line 7 we remove all targets that will also be covered
if the selected target is : all targets t; such that if a tuple W covers the selected
target t; it also covers t;. In line 8 we add ¢; to T.

6.6 The Simulator

For testing our approaches, we designed and implemented a simulator. The sim-
ulator block diagram is given in Figure Our simulator can work with either
square or triangular grid in 2D. It either accepts an existing floor plan as input, or
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generates the floor plan randomly with given parameters. Random generation
of floor plan is useful for testing and comparing proposed approaches. Instance
Generator block takes as input the problem parameters: percentage of obsta-
cles, number of candidate positions where anchors can be placed, the room size
and the grid resolution. Instance Generator then generates a specific problem
instance by placing the given number of obstacles and candidate positions at
random points on the grid. The problem instance is then fed into Preprocessing
and from there into Optimization block. Alternatively, the floor plan is fed di-
rectly to the preprocessing block, allowing to tackle the real-life problems. The
optimization block executes either ILP optimization programs or greedy place-
ment with pruning heuristic, and gives the solution in terms of positions where
anchors should be placed. The code is implemented in C++.

6.7 Evaluation

In this subsection we test and compare ILP formulations and greedy placement
with pruning for both placement optimization for localization and fault-tolerant
placement optimization for localization problem.

6.7.1 The Simulation Setup

Experiments in this section, unless if otherwise stated, are run on Intel(R) Core(TM)
i5-3470S 2.90GHz processor. We use the node ranges of 20 m, which is the typ-
ical range for ultra wide band system and a triangular grid. We limit GDoP to
2-GDoP,,;, which corresponds to 6* = 37°.

In our simulation experiments, all grid points where there are no obstacles
are possible target positions. We average all our simulation results in this sec-
tion, for both times and numbers of anchors, over 100 different test instances.
This is done as follows. We run the simulation 100 times, each time with the
same parameters: percentage of obstacles and number of candidate positions.
However, the problem instance will be different each time, as simulator places
the candidate positions and obstacles randomly. Therefore, for each of the 100
test instances, we will get different numbers of anchors placed and execution
times.

The problem parameters are chosen in such a way that the problem size is
large enough to allow to clearly see the difference between the different ap-
proaches, and still small enough to allow executing a large number of simula-
tion experiments (100) in a not too long period of time (less than a week for the
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large squares (in blue), the candidate positions represented as empty circles (in black) and possible target positions
represented as small diamond shapes (in red). The positions where anchors should be placed are shown as green
filled circles in the solution block. The target positions that cannot be covered even if anchors are placed at all
candidate positions are marked by crosses.
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slowest solution we have tested). For example, see Table where we started
with 130 candidate positions.

Since the candidate positions and obstacles are placed randomly, there may
be some target positions that cannot be covered, even if anchors are placed at all
candidate positions. This happens more frequently as the number of obstacles
increases, as those points that cannot be covered are mostly behind obstacles.
When this is the case, we simply remove those target positions from the set of
target positions, and do not cover them. However, when running simulation ex-
periments, we always choose the input parameters in such a way, that the num-
ber of target positions that cannot be covered is below 5% of the total number
of target positions.

6.7.2 Simulation Results for Placement Optimization for Localiza-
tion

We first test the ILP1 and ILP2 formulation and the greedy placement with prun-
ing heuristic applied to POL problem. In the second simulation experiment, we
test how these three approaches behave with increasing problem size. Then we
test the behavior of ILP2 and heuristic with changing grid resolution. Next we
evaluate how much the more conservative condition for GDoP to be limited from
above, derived in Section[6.1.2)and implemented by ILP2, influences the number
of nodes in the solution. Finally, we compare the performances of ILP1, ILP2 and
ILP3 in terms of execution time and test the improved heuristic: greedy place-
ment with iterative pruning.

Comparison of Integer Linear Programming and Greedy Placement with Dif-
ferent Levels of Pruning

In the first simulation experiment, we fix the size of the area of interest to 100 m x
100m and the resolution of the triangular grid to 5m. We run the test for 0%,
10%, 20% and 30 % of vertices occupied by obstacles. Increasing the number
of obstacles makes the search space smaller, therefore, solutions can be found
in much shorter times. Also, increasing the number of obstacles increases the
number of target positions that cannot be covered, as discussed in Section[6.7.1]
To increase the search space and thus execution times and have a better com-
parison of the approaches, as well as to keep the number of uncovered target
positions low, we increase the number of candidate positions as we increase the
percentage of space occupied by obstacles.



Table 6.1. Experimental results - placement optimization for localization.

Time avg/std [s]

Obstacles | Candidate Greedy Greedy Greedy Greedy Greedy
[%] positions ILP 1 ILP 2 Greedy +1 prune | +2prune | +3 prune | +4 prune | +5 prune
0 130 4864/10045 | 805/1657 | 0.02/0.01 | 0.02/0.003 | 0.13/0.18 | 0.35/0.20 | 1.08/0.41 | 5.19/2.16
10 149 1112/1579 | 161/193 | 0.01/0.001 | 0.02/0.002 | 0.08/0.08 | 0.25/0.14 | 0.70/0.28 | 3.19/1.54
20 171 421/619 60/76 0.01/0.001 | 0.01/0.002 | 0.06/0.04 | 0.17/0.08 | 0.50/0.19 | 2.62/1.17
30 196 188/391 29/46 0.01/0.001 | 0.01/0.001 | 0.05/0.04 | 0.13/0.05 | 0.45/0.19 | 3.47/1.63
Average number
of anchors placed Anchors overhead [%] avg/std
0 130 41.89 41.89 9.11/2.98 | 8.13/2.77 | 5.39/2.31 | 3.54/1.89 | 2.59/1.73 | 1.75/1.68
10 149 54.64 54.64 6.75/2.27 | 6.00/2.21 | 3.97/2.12 | 2.45/1.58 | 1.77/1.41 | 1.21/1.32
20 171 68.55 68.55 6.08/2.07 | 5.41/2.00 | 3.45/1.51 | 2.32/1.20 | 1.55/1.03 | 1.01/0.85
30 196 81.63 81.63 5.72/1.85 | 4.97/1.71 | 2.87/1.42 | 1.85/1.17 | 1.28/1.07 | 0.86/0.91
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We compare ILP1, ILP2 and greedy placement with different levels of pruning.
these simulation experiments do not include ILP3,as we only included ILP3 in
the later stages of our work. We will present the comparison of ILP3 with other
methods later in this section.

For this simulation experiment, we want to use equivalent conditions for
the anchors to cover a target for both ILP1 and ILP2, as well as the greedy
placement with pruning heuristic, so we can compare their speeds for the same
problem complexity. Therefore, for this experiment, we replace the condition
U(a;,a;,ay, t,) > U* in Equation for ILP1, by the condition that at least one
of the angles formed by the candidate positions a;, a;, a; with the target t, has to
be adequate, all three anchor positions reach the target and they are not collinear.
We do similarly for the heuristic. We will evaluate later in other experiments, in
Sections "Influence of the GDoP Condition" and "Comparison of ILP1, ILP2, ILP3
and Greedy Algorithm with Iterative Pruning", how using the more conservative
expression for GDoP to be limited, formulated in Section influences the
result in terms of the number of anchors placed.

The comparison of ILP1, ILP2 and the greedy heuristic with different levels
of pruning is given in Table The upper part of the table gives information
on execution times. For each combination of the total percentage of obstacles
and the number of candidate positions generated, it gives the average and the
standard deviation of the execution times for both ILPs and greedy heuristics
with different numbers of pruning levels. The lower part of the table gives infor-
mation on the number of anchors placed. For each combination of parameters:
total percentage of obstacles and the number of candidate positions generated,
the average number of anchors placed for ILPs and the average and standard
deviation of overhead in terms of the number of anchors placed for the greedy
heuristics with different numbers of pruning levels are given. The numbers of
candidate positions are chosen in such a way that they are high enough for real-
istic scenarios in a factory environment.

The results in Table show that the ILP2 has significantly lower execution
times than ILP1. As discussed in Section we believe this is primarily due
to the lower number of variables used. For the problem size we used, the ILP2
execution time is about 4 hours at most.

Our simulation experiments show that the greedy heuristic with pruning has
very low execution times while the number of anchors placed is within one or two
percent from the optimum for five pruning levels. As expected, by increasing the
number of pruning levels, the number of placed anchors gets closer to optimal,
and the execution time increases. With only three pruning levels, and the average
execution time of under 0.5s, we have the overhead in the number of anchors of
less than 4% on the average.
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Behavior with Increasing Problem Size

In the second simulation experiment, to test the scalability of our solutions, we
look at how the execution times increases when increasing the size of the area of
interest. The area is of square shape, with 20 % of grid points occupied by obsta-
cles, the grid resolution is 5m and the number of candidate positions increases
proportionally to the area size. Results are again averaged over 100 randomly
generated instances for each area size.

Figure shows the results for ILP1, ILP2 and greedy placement with dif-
ferent levels of pruning on one graph for comparison. On the scale used in this
graph, all five lines for the greedy heuristic with 0 to 4 levels of pruning overlap,
therefore, they are shown as one line only. ILP1 and ILP2 formulations have only
been tested up to the area of 14900 m? and 19900 m? respectively, because for
larger sizes, the time required to execute the simulations would be prohibitive.
As we can see, the difference between ILP1 and ILP2 execution times becomes
much larger with larger problem sizes. For the area of size 120m x 120m, 230
candidate positions and 20 % of obstacles, ILP2, on the average, executes in 24
times shorter time than ILP1. We can also see that greedy placement with prun-
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Figure 6.6. Execution time of two integer linear programs and the greedy place-
ment with pruning algorithm depending on the size of the area of interest, with
20% of area occupied by obstacles. Results are averaged over 100 instances.
The number of candidate positions increases proportionally to the area.

ing has much lower computing time, and scales better than ILP based solutions.
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Changing Grid Resolution

Distance measurement precision and localization precision do not directly de-
pend on grid resolution and are not limited by the grid edge. Our solutions
guarantee that the target will be localizable at grid vertices and we implicitly as-
sume that if a target is localizable at grid vertices, it is also localizable in between
them. This will be the case if the grid resolution is high enough with respect to
node range, so that the bearing angles do not significantly change within a sin-
gle grid cell. If this condition is not met, the localization precision far from the
grid vertices could be decreased. Therefore, low grid resolution may still affect
localization precision indirectly.

In the previous simulation experiment in this section, we set the grid edge to
5m. Figure shows how the ILP2 and greedy heuristic with 5 pruning levels
behave with increase of the grid resolution. We tested for 130 candidate positions
and no obstacles. ILP2 algorithm takes around an hour and a half for a grid edge
of 2.5m, while the greedy heuristic scales well and takes around three minutes
for the grid edge of 0.5m. The number of anchors placed also increases with
increasing grid resolution: from the average of 42.41 at 5m resolution, to the
average of 63.11 at 0.5 m resolution for greedy placement with 5 pruning levels.

Here we can already see some limitations of the greedy placement with prun-
ing algorithm. It slows down as the grid resolution increases. This is one of the
reasons that we proposed another heuristic algorithm, greedy placement with
iterative pruning, that scales much better.

Influence of the GDoP Condition

For the rest of Section |6.7.2] our simulations are run on a different processor:
Intel(R) Core(TM) i7-7500U 2.70GHz.

Now we evaluate by simulation, how much using the more conservative con-
dition for GDoP to be limited from above, derived in Section |6.1.2] influences
the number of anchors placed by the ILP We run a simulation experiment where
we compare ILP1 and ILP2 as the number of obstacles increases. ILP1 uses the
uncertainty function U given by Equation where GDoP is given by Equation
ILP2 uses the more conservative condition from Section[6.1.2] where at least
one bearing angle has to be adequate.

We compare the resulting number of anchors placed by ILP1 and ILP2 for the
same problem instances as well as the number of target positions that cannot
be covered. In the first experiment, the grid resolution is 5m, the room size is
100 x 100 m, the number of candidate positions respectively 130, 149, 171 and
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Figure 6.7. Execution time of ILP2 and the greedy placement with 5 pruning
levels depending on the grid resolution, in a 100m x 100m room with no
obstacles and 130 candidate positions. Results are averaged over 100 instances.

196, for 0, 0.1, 0.2 and 0.3 percent of the area covered by obstacles. We generate
100 different problem instances for each number of obstacles. Both the resulting
number of nodes placed and the number of uncovered positions were the same
for each execution, for ILP1 and ILP2. Thus, at 5m resolution, using a more
conservative condition for GDoP to be limited, did not influence the results. This
means that the approximate GDoP from Section is quite close to the exact
GDoP.

We run another experiment to compare the number of anchors placed and
the target positions uncovered for ILP1 and ILP2 with 2m resolution and no
obstacles. The room size is fixed to 100 m x 100 m, while the number of candidate
positions increases. The results are given in Table We can observe that at
this resolution there are very small differences in the number of anchors placed
and the number of positions uncovered: The difference in the average number
of anchors placed is below 1% and the difference in the number of positions
that cannot be covered below 0.1 % of total area. This confirms that the GDoP
representation from Section |6.1.2]is close to the exact one, although, as the grid
resolution increases, we start to see some difference in the results.
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Table 6.2. Experimental results - Comparison of Exact and Approximate
GDoP.

Average number of anchors placed

Candidate
positions | ILP 1 | ILP 2 Difference [%]
100 52.32 | 52.65 0.631
105 51.97 | 52.43 0.885
110 51.92 | 52.42 0.963
115 51.43 | 51.83 0.778

Average percentage of uncovered positions [%]

ILP1 | ILP2 Difference
100 2.035 | 2.122 0.087
105 1.473 | 1.553 0.080
110 1.285 | 1.359 0.074
115 1.129 | 1.177 0.048

Comparison of ILP1, ILP2, ILP3 and Greedy Algorithm with Iterative Pruning

As discussed in Section the advantage of ILP3 is that it has fewer vari-
ables than both ILP1 and ILP2 formulation. However, the number of equations
is larger and increases with the increasing number of obstacles. In the following
simulation experiment we compare ILP1, ILP2 and ILP3 formulation as the num-
ber of candidate positions, and thus the complexity, increases. So far we only
evaluated the greedy placement with different levels of pruning. In this simula-
tion experiment we evaluate the improved version, the greedy placement with
iterative pruning (GIP) algorithm.

We compare the three ILP formulations for 2D placement for localization and
the GIP heuristic by randomly generating test instances. We use the triangular
grid with 2 m resolution and the room size of 100 x 100 m. For the different per-
centage of the total area covered by obstacles, ranging from 0 to 20 %, we run
experiments for the increasing number of candidate positions. For each combi-
nation of parameters, number of obstacles and candidate positions, we average
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all our simulation results in this section, for both times and numbers of anchors,
over 100 different test instances. All grid points where there are no obstacles are
possible target positions.

In Figure[6.8lwe show the average execution times as the number of candidate
position increases, for an area with no obstacles. Figure and Figure
respectively show the average execution times for 10% and 20 % of total area
covered by obstacles, for the increasing number of candidate positions. Table
shows the execution times and the number of anchors placed for ILP1, ILP2,
ILP3 and the greedy heuristic with iterative pruning. For each percentage of
obstacles, the table shows results for the largest number of candidate positions
that was generated for all four of the solutions. The left part of the table gives the
average and the standard deviation of the execution times for all three ILPs and
the GIP heuristic. The right part of the table gives information on the number of
anchors placed. Since ILP1 and ILP3 provide optimal solutions in terms of the
number of anchors placed, the average number of anchors placed is given for
these two approaches. The average and standard deviation of overhead in terms
of the number of anchors placed are given for the ILP2 and for the GIP algorithm.
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Figure 6.8. Execution times depending on the number of candidates for GIP
and ILP for a room without obstacles.

Both ILP1 and LP3 provide optimal results in terms of the number of anchors
placed. In Figures and [6.10} we can see that which one of these formu-
lations has lower execution times will depend on the number of obstacles. For
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Figure 6.9. Execution times depending on the number of candidates for GIP
and ILP for 10% of area covered by obstacles.
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Figure 6.10. Execution times depending on the number of candidates for GIP
and ILP for 20% of area covered by obstacles.

the area with no obstacles (Figure ILP3 is faster than ILP1. We assume this
is because the number of variables for ILP3 is lower. However, as the number of
obstacles increases, the number of equations for ILP3 increases, so for 10% of
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Table 6.3. Experimental results - placement optimization for localization.

Average number
Time avg/std [s] of anchors placed | Anchors overhead [%] avg/std
Obstacles | Candidate
[%] positions ILP1 ILP 3 ILP2 GIP ILP1 ILP 3 ILP2 GIP
0 115 5118/9805 | 3022/3967 | 1163/4416 | 0.57/0.37 || 51.43 51.43 0.79/1.24 0.94/1.02
10 130 1609/7342 | 1676/6734 55/125 0.74/0.43 61.3 61.3 0.75/1.79 0.53/0.81
20 140 350/444 | 1126/3998 | 27/158 | 0.66/0.39 || 69.17 | 69.17 | 0.47/1.79 0.27/0.61

area covered by obstacles, these two formulations are close in execution times
and for 20% of area covered by obstacles, ILP1 is faster than ILP3.

ILP2 is significantly faster than both formulations in all cases, which may be a
result of the good trade-off between the number of variables and equations. The
formulation we use for ILP2 is a little more conservative. We can see in Table[6.3]
that average overhead in terms of the number of anchors placed for ILP2 is less
than 1 %.

The execution time of the GIP algorithm is very low, as can be seen both in
the figures and in the table. The overhead in terms of the number of anchors for
GIP algorithm is lower than 1% on the average for our experiment and similar
to that of ILP2. As can also be seen in Table standard deviation of execution
times for ILP algorithms is rather high. Indeed, depending on a different ran-
domly generated instance, ILP solver may take much longer to solve the problem
instance. This is not the case with the GIP algorithm which has low variance of
execution times.

6.7.3 Simulation Results for Fault-tolerant Placement Optimiza-
tion for Localization

Next, we test the ILP formulation and greedy placement with pruning heuristic
for fault-tolerant placement optimization for localization and evaluate the exe-
cution times for both approaches, as well as the quality of the solutions in terms
of the number of anchors placed. Since we only propose one ILP formulation
for fault-tolerant placement (see Section [6.2), we simply refer to it as ILP in this
section.

Comparison of Integer Linear Programming and Heuristic

We compare the results obtained by ILP to our greedy placement with pruning
heuristic with different numbers of pruning levels. We run simulation experi-
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ments in the 70 m x 70 m square area with no obstacles, where 65 candidate po-
sitions are randomly selected, and average results over 100 different test cases,
with different randomly selected candidate positions. Table|6.4/shows the results
for ILP and greedy heuristic with up to 8 pruning levels. It shows the average
number of anchors placed, average and standard deviation of execution time,
and average and standard deviation of overhead in the number of anchors placed
with respect to the exact solution obtained by ILR We see that the greedy heuris-
tic with pruning has the number of anchors placed within several percent of the
optimum while executing in much shorter time than ILP We also observe that
the standard deviation for ILP is very high compared to the average. Indeed, the
optimization time for the ILP solver can be dramatically different for different
randomly generated instances, even for the same number of candidate positions.

Figure shows the effect of adding more pruning levels in terms of the
number of anchors overhead and the execution time. Although the execution
times increase when adding pruning levels, this is not a serious limitation as the
number of anchors overhead is very low after a small number of levels, and a
large number of pruning levels is not necessary. We see that after only four prun-
ing levels the number of anchors overhead drops to 1% only, and the execution
time for this number of pruning levels is about 0.4s on the average.

Table 6.4. Experimental results for fault-tolerant placement optimization for
localization.

| | Anchors avg | Time [s] avg/std | Overhead [%] avg/std |

| ILP | 338 | 354/600 | 0/0 |

Greedy 35.8 0.01/0.002 5.84/3.49
Greedy + 1 prune 35.3 0.02/0.01 4.53/3.09
Greedy + 2 prune 34.6 0.09/0.20 2.50/2.21
Greedy + 3 prune 34.4 0.18/0.20 1.66/1.75
Greedy + 4 prune 34.2 0.38/0.27 1.08/1.64
Greedy + 5 prune 34.1 0.79/0.44 0.84/1.49
Greedy + 6 prune 34.0 1.91/1.07 0.61/1.36
Greedy + 7 prune 34.0 7.15/6.50 0.46/1.25
Greedy + 8 prune 33.9 40.28/43.98 0.40/1.19
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Figure 6.11. Fault-tolerant placement optimization. Overhead in terms of the
number of anchors and execution time of the greedy algorithm depending on
the number of pruning levels.

Scalability of Heuristic and ILP for Fault-tolerant Placement Optimization

In the next simulation experiment, we show how the execution time of both the
greedy heuristic with pruning and ILP increase with the problem size for FLPO
problem. We increase the size of the area of interest, with no obstacles, while the
number of randomly selected candidate positions increases proportionally. We
average the result for each size over 100 randomly generated problem instances.
The Figure shows the execution times as the problem size increases, for
greedy heuristic with different numbers of pruning levels, and for ILP In Figure
[6.13]results for ILP are omitted for better visualization. We can see that in case of
heuristic, the execution time is dominated by pruning stage, and increases with
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the number of pruning levels. The line for no pruning (0 pruning levels) is not
shown on the graph, because it is coincident with the line for 1 pruning level. In
Figure 6.12]it is clearly visible that the heuristic, even with the high number of
pruning levels, is much more scalable than the ILE which confirms the usefulness
of the greedy placement with pruning heuristic.
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Figure 6.12. Fault-tolerant placement optimization execution times depending
on the problem size for ILP and the proposed heuristic.

Evaluating Quality of Greedy Placement

Our heuristic consists of two stages. The greedy placement and multiple pruning
levels. It is possible to perform only greedy placement without pruning, while
pruning can be performed after any other algorithm that will ensure all targets
are 2-covered. The goal of this simulation experiment is to evaluate the quality
of our greedy placement algorithm, by comparing it to another, simple placement
algorithm, as well as to evaluate the quality of pruning alone, by performing it
after this simple algorithm.

We call this simple placement algorithm quasi-random placement. With quasi-
random placement, we place one anchor after another, placing a new anchor at a
random candidate position, with the only condition being that placing an anchor
at this position should increase the coverage of at least one target. We run exper-
iments in the 100 m x 100 m square area, with 130 randomly selected candidate
positions. We compare our greedy placement algorithm to quasi-random place-
ment, both followed by 6 pruning stages, and average the results over 50 dif-
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Figure 6.13. Fault-tolerant placement optimization execution times depending
on the problem size for greedy heuristic with different numbers of pruning
levels.

ferent problem instances, with different randomly selected candidate positions.
The results are shown in Figure where the average number of nodes is
shown after each pruning step, and Figure showing the average number
of nodes over time for both algorithms.

We can see from the initial values in both graphs that our greedy placement is
much superior to quasi-random placement. The quasi-random algorithm places
over 40 % more nodes. However, after 4 pruning stages, the difference between
these two algorithms is about 1 extra anchor, on the average. Pruning is very
effective, and can work with any placement algorithm, even random, but it is
much more time consuming than the greedy placement. Our greedy placement
algorithm has very short execution times, and performs very well also on its own,
which can be significant for very large problem instances. We also see that after
about 4 stages the number of nodes decreases very little, and judging from our
previous experiment, this is probably because the optimum is nearly reached.
We can also notice that the slope of decrease in the number of anchors is much
steeper at the beginning in Figure with respect to Figure This is
because lower levels of pruning have very short execution times, while providing
excellent benefits in terms of the number of anchors. Pruning allows an easy
trade-off between speed and quality of the solution.

For the problem size we use in this simulation experiment, the time require-
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ment of ILP would already be prohibitive. This is the reason we do not include
the optimal solution in our analysis.
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Figure 6.14. Comparison of greedy placement and quasi-random placement.

number of anchors

Coverage After Node Failure

Our fault-tolerant approach guarantees that after any one anchor fails all tar-
gets will remain covered, in a sense that they can be reliably localized. In the
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worst-case scenario, failure of two nodes will already leave at least one target
not covered. However, this worst-case scenario is unlikely.

The goal of this simulation experiment is to understand what percentage of
targets that will remain not covered, on the average, after a certain percentage
of anchors, placed according to our heuristic, fails. In the square area of size
100m x 100m, 130 candidate positions are randomly placed, and our greedy
heuristic is used to place the anchor nodes. After that, we remove anchors in
random order, and record the percentage of targets that remain covered. The
results are averaged over 100 executions. The results are shown in Figure
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Figure 6.15. Percentage of targets that remain covered after a given percentage
of anchors fail.

As expected, when only few anchors are removed the percentage of targets
covered decreases very slowly. After 10 % of anchors fail, 99 % of targets are still
covered, and after 30 % of anchors are removed more then 85 % of targets are
covered. At that point, many targets are already covered without redundancy,
therefore, the coverage starts to decrease more quickly as more anchors are re-
moved.

The experiment shows that although 1-fault tolerance only guarantees that
one node can fail while leaving all targets covered, on an average case, this per-
centage is much higher.



Chapter 7

Three-Dimensional Localization

In this chapter we improve on the solution we proposed in Chapter|[6]and extend
it to 3D scenario. When using the 2D model we assume that the differences in
heights of positions at which the anchors can be placed and where the target is
moving are small in comparison to the measured distances from anchors to the
target and to the maximum localization error allowed. If the target is a person
walking on the ground level, and anchors are placed on the walls, this would be
the case. Moreover, if the ceiling is not very high and the localization precision
of several meters is sufficient for the given application, the precision will still be
in the desired range even if the anchors are placed on the ceiling. Such model
is sufficient for many applications. However, the application scenario we focus
on is safety at work in industrial environments such as factory halls. For those
industrial environments where the ceiling is very high and the worker might be
climbing or be lifted from the ground, or if very high localization precision is
needed, 3D localization may be required. Therefore, in this chapter we focus on
3D localization.

The main challenge when moving from 2D to 3D is increased problem com-
plexity, due to the increased problem size: the number of candidate and target
positions. Moreover, four anchors are needed to localize the target instead of
three. If distances of target from the anchors are {r;};_; , 5, the target will be
located at the intersection of the spheres with the centers at the anchors and the
radii {r;};—;,34. As three spheres intersect at two different points, the fourth
anchor is required to distinguish between these two and determine the target
position. Therefore, each target position needs to be reached by at least four
anchor nodes, to be covered. The four anchors that cover a target must not be
coplanar. This is because, in the ideal case where no distance measurement er-
rors exist, the four spheres around coplanar nodes will intersect at two points,

103
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and it will not be possible to distinguish at which of the two the target is.

In this chapter, we propose an ILP formulation which enables to obtain exact
solutions for problem instances of reasonable sizes in 3D scenario. We will show
that the greedy placement with iterative pruning algorithm we proposed in Sec-
tion [6.4]is able to handle problems of large sizes that appear in 3D. While GDoP
expression for 2D multilateration can be found in literature, in this chapter we
derive the expression for GDoP for 3D multilateration system.

7.1 Geometric Dilution of Precision

As for the 2D case, we use GDoP to express precision of localization in 3D. How-
ever, the expression from Equation that was derived in |Spirito [[2001]], is
only valid in 2D. We were not able to find a similar expression for GDoP for 3D
multilateration. Therefore, we derive it in this section. We also give a geometric
interpretation of the result.

Let (x, y,2) be the target position, (x;, y;,2;) the position of anchor i, and d,
the distance from target to anchor i. Then we have:

Vo —x )2 +(y—y 2 +E—2)2=d 7.1)

The target coordinates are estimated by using the linear weighted least squares
(WLS) algorithm. We assume that an a priory estimate of the target position
(x©@, y© 50 is available. This estimate is typically the target position at the
previous WLS algorithm iteration. Then we can linearize Equation|7.1] as:

di ~ dl(O) - ui,xAX' - uLyAy - ui’ZAZ, (7.2)
where:
Ax = x —x©; Ay =y—y©; Az =z —2z; (7.3)
(0) (0) O]
X;—X yi—Y 2, —32
Ui = - di(o) ) U, = S S dl.(o) , U, = ld(o) , (7.4)

and &; = u; &, +u; ,&,+u, &, is the unit vector originating at the target, directed
towards the anchor i. By representing Equations in matrix form we get the

system Ax = b, where:

A=[u;,u

>
Il
>
<
S
Il
‘.

O —diJien, (7.5)

i,y UizlieAs
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where A is the set of anchors.

The WLS solution of the linear problem Ax = b that minimizes the scalar cost
function (Ax —b)"Q, '(Ax —Db) is:

£=G'g where G=ATQ,'A, g=A"Q,'b (7.6)

and Q, is the covariance matrix of b. Since we assume that the distance measure-
ment errors are independent and identically distributed with standard deviation
op, Qp is a diagonal matrix Q, = diag(o2).

GDoP is defined as the square root of the trace of covariance matrix Q; of X:
GDoP = 4/Tr{Q,}, where Q; = E{xx"}. Fromwe get Q; =G 1. From
and [7.5|we get:

Gl 1 G12 G13
G == Glz GZZ G23 ) (7-7)
G13 G23 G33

with:

— 2 E 2 _ 2 E :
Gll - GD uix’ G12 - O-D uixuiy:

i€eA i€A
— 2 2 2
Gy =0, E U, G3 =0, E Ujy Uiy, (7.8)
i€eA icA
2 2 _ 2
G33 - O-D E :uiz, G23 - O-D z :uiyuiz'
i€eA i€eA

By inverting the matrix G we get:

1 GyG33 — G%g G13Go3 — G12G33  G12Go3 — G13Gyy
~t= detG G13G23 - G12G33 G11G33 - Gi; G12G13 - G11G23 > (79)
G12G23 - G13G22 G12G13 - G11G23 G11G22 - G%z
1 4| G2G33 — G2, + G1;G33 — G2, + GG,y — G2
GDoP = _% 2233 23 11~33 13 1122 12 ) (710)
op detG
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The numerator in Equation [7.10| equals:
Gp2Gss — Gyy + G11G33 — Gy + G131 Gy — G,
= 0, Z u? u? +utu? +u?u?

ix jy ix jz iy ]z_
i,jEA
Uy Uy Uy Uy — Uy Ui U Uy — Uy U U Uy (7.11)
= 0, E ulxu]y+u u +ulxu]z+u u +ulyujz+u u
i,jeA
i>j
—2u; ulyu]xu]y 20 U Uy Uy — 205, U U U, (7.12)
_ —4 A N _ — .
= o, E |ui><uj —O'D E sin? Qs (7.13)
i,j€A i,jeA
i>j i>j

where a;; is the angle between unit vectors ; and #;, which is equal to the
absolute Value of the cross product between these vectors |u X 1 | We have
used:

<
n

é, €
Uy Uy U |- (7.14)
u

Ujx Ujy Ujg

For the denominator in Equation we have:

|”i>‘”f|: ix

— 2 2 2
_ =06 _
=0p : : ulxu]yukz ulxu]}’ UjpUpyUpz — lqux Ujp Uy Ugez

i,j,keA

ulzu]xu]yukxuky + 2ulxulyu]xujzukyukz (7.16)
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where V;; is the volume of tetrahedron formed by the target, and the endpoints
of unit vectors #i;, 4;, and {i,. Here we used:

N

U -

1 » o
Vi = G i; x uj| =3 Uy Uy Uy |- (7.19)

Finally, from Equation |7.10}, Equation and Equation we have:

Dlijeasin’ay;
1 i>j
GDoP =~ | 21—
6\ Dijker Vi

i>j>k

(7.20)

We also give the geometric interpretation of the expression. V;; in the de-
nominator is the volume of tetrahedron formed by the target and the endpoints
of unit vectors directed from the target to the anchors. sina;; we have in the
numerator is proportional to the surface of the triangle formed by the target
and the endpoints of unit vectors directed from the target to the anchors. We
can compare this with the 2D GDoP expression in Equation where we have
surfaces of the triangles formed by the target and the endpoints of unit vectors
directed from the target to the anchors (sin a;;) in the denominator. Volumes of
the tetrahedron in the denominator of Equation are the 3D equivalent of
the triangle surfaces in the denominator of Equation

7.2 Integer Linear Programming Formulation

The main challenge for proposing an ILP formulation for 3D compared to 2D is
increased problem complexity due to the increased number of target and can-
didate positions, as well as the fact that four anchors are needed to cover each
target. Our goal is to propose a formulation which allows to obtain exact so-
lutions to 3D problems of realistic sizes in moderate computation times. Each
target position has to be assigned four anchors, which must not be coplanar and
have to meet the GDoP requirement.

We could define one ILP variable for each combination of four candidates in
the range of each target, similarly as our ILP1 formulation (see Section [6.1.1).
However, if using such an approach with four nodes, the number of variables
would be very high, in the order of N (Z,), where N is the total number of targets
and r denotes the average number of candidates in the range of each possible
target position. It is well known that high number of variables affects adversely
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the execution time of an ILP. Therefore, we completely avoid variables that com-
bine several anchors that cover the target together, and only have one anchor
assigned to a target in each variable. Thus we obtain an ILP system that allows
to tackle moderate problem sizes in 3D. This formulation is similar to the ILP3
formulation we had for 2D (Section|6.1.4])).

For each possible target position t,, we define the set R(t,) such that the
candidate position a; € R(t,) if the distance between a; and t, is lower than the
node range and there is line of sight between ¢, and q;.

We define following variables:

* x; = 1 if a node is placed at the candidate position i, equivalently, if can-
didate position i belongs to the solution. There is one variable x; for each
candidate position i.

* z! = 1if the candidate position i is assigned to monitor target u.

All variables can only take values 0 or 1.
The ILP formulation is given by:

min : in, (7.21a)
>at=4, (Yu), (7.21b)

z' <x;, (Yu,i), (7.21¢)
zl.”+zJ‘.‘+z;<‘+zl” <4, (Vi,j,k,LulU(a;aqa;,a,a,t,)>U") (7.21d)
z! =0, x;¢R(t,). (7.21e)

Equation|7.21a|states that the total number of anchors used has to be minimized.
Equation states that each target u has to be assigned four anchors to mon-
itor it. Equation ensures that an anchor at candidate position i can be
assigned to a target only if that candidate position belongs to the solution, that
is, if an anchor is placed at the position i. Equation ensures that four
anchors cannot be assigned to monitor a target if they do not meet the qual-
ity constraints, imposed by the upper limit on uncertainty function (see Section
for the definition of uncertainty function). Equation ensures that an
anchor can only be assigned to a target if it reaches the target.
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7.3 Evaluation

Figure 7.1. A problem instance (above) and a solution (below) for 3D place-
ment for localization. Obstacles are shown as large gray cubes. Candidate
positions are shown as small green cubes, and the positions where anchors
should be placed are shown by red cubes.

In this section we test both our solutions for 3D placement for localization
and give an insight into the speed of both approaches, as well as the quality of
the solutions in terms of the number of anchors placed. The code is implemented
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in C++ and the simulation experiments are run on Intel(R) Core(TM) i5-3470S
2.90GHz processor. For all experiments, unless if otherwise stated, we use a
square grid of resolution (square side) 2m, and the node ranges of 20m. An
example of a problem instance and a solution for the 3D problem is shown in
Figure(7.1

7.3.1 Comparison of ILP and Heuristic

We compare the results obtained by ILP to our greedy placement with iterative
pruning heuristic. We run simulation experiments in the 100m x 100m x 10m
cubic area. Obstacles are randomly placed so that 20 % of floor area is covered
by obstacles. Obstacles can be of two types: pillars or cubes. The dimensions of
cubes are 5m x 5m x5m, and the dimensions of pillars are 2mx2mx10m. One
of the two types is randomly selected with equal probability for each obstacle.
Then 250 candidate positions are randomly selected, so that they can only be
placed next to the obstacles, floor, ceiling and walls. Hereby we aim to achieve
a realistic scenario, where anchor nodes have to be either placed on the wall,
or mounted on the ceiling, or on obstacles such as pillars or large machines.
We average results over 100 different test instances, with randomly generated
obstacles and candidate positions. Results are as follows. Overhead in terms of
the number of anchors placed is 0.048 % on the average with 0.15% standard
deviation. Average time for ILP is 134s and for heuristic 6.02s which constitutes
a speedup of 22 times. We will show in the next experiment that the speedup
increases with increasing problem size.

7.3.2 Scalability of Heuristic and ILP

In the next simulation experiment, we show how the execution time of both
greedy placement with iterative pruning (GIP) heuristic and ILP increase with
the problem size. We increase the size of the area of the room, with the num-
ber of randomly selected candidate positions increasing proportionally, while the
ceiling height is kept at 10 m and 20 % of floor area is covered by obstacles. The
obstacle shapes are the same as in the previous experiment. We average the re-
sult for each size over 100 randomly generated problem instances. Figure|7.2
shows the execution times as the problem size increases, for the greedy place-
ment with iterative pruning heuristic and for the ILP. It is clearly visible that the
heuristic is much more scalable then the ILE which confirms the usefulness of
the heuristic.
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Figure 7.2. Execution times depending on the problem size for greedy place-
ment with iterative pruning and ILP.

7.3.3 Heuristic Parameters

The number of iterations of the heuristic can be changed to achieve the trade-off
between the results in terms of the number of nodes placed and the execution
time. In this simulation experiment we run the greedy placement with iterative
pruning and record the number of anchors and the execution time after each
iteration. The room size is 200 m x 200 m x 20 m with 20 % of floor area covered
by obstacles. We average the results over 100 problem instances. The results are
shown in Figure We can see that the execution time increases linearly with
the number of iterations, while most nodes are removed in the initial iterations.
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Chapter 8

Conclusions and Future Work

My thesis focuses on node placement for time-of-flight-based wireless localiza-
tion networks. We address 1D, 2D and 3D scenarios. Our main motivation are
critical safety applications.

We address 1D environments through the experimental study on in-tunnel
vehicle localization. In-tunnel localization of vehicles is crucial for emergency
management, especially for large trucks transporting dangerous goods such as
inflammable chemicals. Compared to outdoor roads, evacuation in tunnels is
much more difficult in case of fire or other accidents. We compared character-
istics and performance of RSS and ToF ranging inside the road tunnel between
Vedeggio and Cassarate in Lugano, Switzerland. We provided detailed distance
measurement characterization inside road tunnels concentrating on ToF mea-
surements. We analyzed the dependency of ToF ranging error on node positions
and possibility to reduce the error by combining measurements from different
channels. We provided statistical characterization of ToF ranging error, based
on which a simulation model to use for design of localization algorithms and
systems can be made. We designed a complete system for in-tunnel-based local-
ization and showed that such a system is feasible, accurate, and cheap to realize
as only few nodes are necessary for high localization accuracy.

Main conclusions of this study are that the radio frequency time of flight can
provide precise in-tunnel vehicle localization and that few nodes are sufficient
to cover the entire tunnel. Also, the ToF distance measurement precision does
not significantly change with the distance in tunnel environments. The NLoS
condition affects the distance measurement precision negatively.

We also designed an error compensation unit which used either static or dy-
namic calibration. We showed that the use of such compensation unit signifi-
cantly improves the performance of the localization system.

113
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The second part of our work addresses anchor nodes placement optimization
for ToF-based localization networks where multilateration is used to obtain the
target position based on its distances from fixed and known anchors. The goal
is to optimize the placement of anchor nodes, so as to minimize their number,
thus minimizing the cost and power consumption of the network, while ensur-
ing that the target can be reliably localized at each point in the area of interest.
Our propagation model accounts for the presence of line of sight between nodes,
while geometric dilution of precision is used to express the localization error in-
troduced by multilateration. We address this problem in a comprehensive way,
including localization in 2D and 3D. We also address the fault-tolerant localiza-
tion in 2D, that ensures the target can be localized in the whole area of interest,
even after any one of the nodes fails.

Our main motivation are critical safety at work applications. Most approaches
in literature dealing with optimal configuration for localization in indoor envi-
ronments, only address 2D scenarios. The extension to 3D is useful when the
target is moving in 3D space, for example, if a person is lifted off the floor or
climbing. It also allows to fully exploit possibilities of UWB systems by increasing
the localization precision. For this purpose, we also derived the GDoP expression
for 3D multilateration and gave its geometric interpretation.

We used ILP formulations to obtain exact solution for instances of our place-
ment problems of moderate sizes. We proposed and compared three different
ILP formulations for the placement optimization for multilateration-based lo-
calization system in 2D. We proposed ILP formulations for the fault-tolerant
extension of the same problem, as well as for the placement optimization for
multilateration-based localization system in 3D. We also proposed an alternative
way to represent GDoP in 2D in terms of only one angle, which allowed to design
an ILP formulation in 2D providing shorter computation times.

For the problem instances of large sizes we proposed a greedy placement
heuristic with pruning, and its improvement, greedy placement with iterative
pruning. The heuristic consists of the greedy node placement stage with execu-
tion times in the order of 0.01-0.02 seconds for several hundreds of candidate
positions, followed by the iterative pruning which further increases the solution
quality.

In addition, we created a simulator that either accepts an existing floor plan
as input, or generates the floor plan randomly with given parameters. Random
generation of floor plan is useful for testing and comparing proposed approaches,
while the existing floor plan feature can be used to tackle the real-life problems.
We tested all our approaches through simulation.

For the anchor placement for multilateration-based localization problem, we
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obtained solutions of below 2 % overhead in terms of the number of anchors with
respect to the optimum on average, with around 5s average execution time for
130 candidate positions. For the fault-tolerant version of the problem, we ob-
tained solutions of around 1% anchors overhead with respect to the optimum
on average, with 0.4s execution time for 65 candidate positions, by using greedy
heuristic with pruning. For the 3D placement, the greedy heuristic with iterative
pruning produced results within 0.05 % of optimum on average, with average ex-
ecution time of around 6s for 250 candidate positions, for the problem instances
we tested.

8.1 Main Contributions

The main contributions of this thesis are:

* An experimental study of in-tunnel vehicle localization which shows that
RF ToF-based in-tunnel vehicle localization is feasible and provides recom-
mendations for node placement in such systems.

* Time of flight distance measurement error characterization for road tun-
nels.

* An error model and an uncertainty function for a UWB-based localization
system that takes into account both Line of Sight (LoS) and GDoP effect on
localization uncertainty, for both 2D and 3D localization.

* Three different ILP formulations for 2D multilateration and their compari-
son by simulation experiments.

* ILP formulation for fault-tolerant placement for multilateration-based lo-
calization in 2D that allows to solve problem instances of sizes that are
relevant for practical applications.

* ILP formulation for placement for multilateration-based localization in 3D
that allows to solve problem instances of sizes that are relevant for practical
applications.

* An approximate expression for GDoP for 2D multilateration in terms of only
one angle that allows to design ILP formulation for 2D multilateration as
well as for fault-tolerant 2D multilateration with shorter execution times.



116 8.2 Comparison With State-of-the-Art Solutions

* A novel greedy placement heuristic with iterative pruning that can tackle
instances of placement for multilateration-based localization problem of
large sizes. For the 3D placement, the greedy heuristic with iterative prun-
ing produced results within 0.05 % of optimum on average, for the problem
instances we tested.

* A GDoP expression for 3D multilateration and its geometric interpretation.

* A simulator for testing and comparing proposed approaches as well as for
handling instances of real-life problems.

8.2 Comparison With State-of-the-Art Solutions

The main novel aspects and the differences of our approach from the state of the
art are:

* Other works that analyze electromagnetic propagation properties in tun-
nels mostly focus on signal power (see Section[5.1). We analyze the time of
flight measurement error in road tunnels, which is important for designing
localization systems. We design a system for in-tunnel vehicle localization.
Most existing localization systems involving tunnels focus on mine tun-
nels, which have significantly different propagation properties than road
tunnels.

* Few of the existing works propose exact solutions for node placement prob-
lems (see Section for an overview). We propose several new and dif-
ferent ILP formulations to tackle placement for multilateration and com-
pare them by simulation experiments. We also derive a new approximate
expression for GDoP for 2D multilateration that results in an ILP formula-
tion that provides shorter execution times.

* Our solutions for 3D scenarios are based on the GDoP expression we de-
rived for for 3D multilateration. The GDoP expression usually found in
literature is only valid for 2D problems.

e Itis difficult to compare performances of different optimization approaches
found in literature. This is in part because many authors do not provide
quantitative comparison of heuristics and metaheuristics with exact algo-
rithms ( see Section[4.1.2]and Section [4.1.3). We have designed a simula-
tor implementing all of our solutions and we tested and compared them.
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Our non-exact solutions are tested by comparing with exact solutions for
different randomly generated problem instances.

* Kirchhof [2013]] reports the experimental results where the number of an-
chors placed is within 1.5 times of the optimal solutions, while our greedy
placement with pruning achieves overhead in terms of the number of an-
chors placed with respect to the optimal one of below 2% of the average.
Also, our 2D solution requires each position to be covered by three nodes
while the solution of [Kirchhofi [2013] requires each point to be covered by
two nodes. As explained in Section [2.4] at least three non-collinear nodes
are needed to localize a target in 2D space.

* We consider 3D localization networks for indoor environments. Majority
of works on indoor localization are restricted to 2D, while the majority of
works on 3D anchor placement focus on underwater networks, where the
space is free, with no obstacles (see Section.

Our results on in-tunnel vehicle localization have been published in Balac
et al.|[2014] and Widmann et al.|[[2013]. The results on anchor placement for
2D localization have been published in Balac et al.|[2015]] and Bala¢ et al.|[2016]].

8.3 Limitation of the Proposed Approach

In Section [3.2.2)we adopted somewhat simplifying assumptions regarding signal
propagation properties that we used throughout the work. In particular, we as-
sume that standard deviation of distance measurement error does not depend on
distance from the transmitter. We also assume that the standard deviation does
not depend on the environment as long as the line of sight between transmitter
and receiver is present. These assumptions are needed in order to define the
localization uncertainty by means of the GDoP metrics as given by Equation |3.4
for 2D and Equation [7.20] for 3D.

However, most of our solutions do not require the localization uncertainty
to be defined by using GDoP. The only exception are ILP2 we proposed for 2D
placement in Section[6.1.3]and the ILP formulation we proposed for fault-tolerant
placement optimization in Section[6.2] All other ILP formulations, as well as both
heuristic solutions we proposed for 2D and 3D placement work directly with the
localization uncertainty function U, which can be defined in any way, the only
requirement being that U is known for given anchor and target positions. For
example, the localization uncertainty function could be modified to incorporate
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the distance from the anchor, or it could be obtained experimentally by mea-
suring directly in a known environment. If different ranging errors have to be
introduced, a similar ILP formulation as for 3D could be used for fault-tolerant
2D placement instead of the one proposed in Section All other methods,
with the exception of ILP2, could be used directly as they are.

8.4 Future Work

Related to our work on in-tunnel vehicle localization, future work may include
in-tunnel ToF measurement characterization and evaluating localization system
performance in the presence of traffic.

For our placement for localization in 2D and 3D, incorporating connectivity
will be useful for scenarios requiring wireless data transfer via the network of
anchors. For the network to achieve its functionality, it is necessary for the lo-
calization data, as well as possibly other data collected by the network, to be
transmitted to the central server. As in our proposed system with TWToF (See
Section the target can collect all the information needed to calculate its
own location, the target node can communicate its location to the central server,
by means of a GSM signal, for example. Therefore, for localization purposes
only, it may not be necessary for the anchor nodes to be able to communicate
with one another. However, in some cases, communication among anchor nodes
may be needed. For example, the anchors may have other functionalities besides
localization. Since our work focuses on safety applications, they may have sen-
sors to detect smoke or dangerous chemicals. Also, the target node may send its
location data via the network of anchors, to a designated node known as sink
node, which then sends it to the central server. In this case, all anchor nodes
have to form a connected network. Since TWToF-based systems, unlike TDoA,
do not require cables for synchronization (see also Section if anchor nodes
need to form a connected network, this should be achieved wirelessly.

The communication graph of a wireless network is a graph where each anchor
is represented by a graph node, and there is an edge between those nodes that
can directly communicate with each other wirelessly. The network is connected
if its communication graph is connected, alternatively, if there is a path between
any two nodes in the network. We say that a network is k-node-connected if
the network will remain connected after removing any k-1 nodes, equivalently,
if there are k node disjoint paths between any two nodes in the network. k-
connectivity makes the network (k-1)-fault-tolerant.

The future work may include optimizing node placement, such that the net-
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work, in addition to providing precise localization in the entire area of interest,
is also either connected or 2-connected by means of wireless links.

The ILP formulation can be obtained by adding equations that will guaran-
tee connectivity or 2-connectivity to the existing ILP system of equations pro-
viding precise localization. While the execution times for 2-connected network
repair using ILP may be too long even for problem instances of moderate sizes,
we expect problem instances of realistic sizes of localization with 2-connectivity
problem to be manageable in limited times. This is because optimization with
multiple criteria, in this case localization and connectivity, reduces the search
space with respect to a problem where only one criterion needs to be optimized.
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CDF
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FIM
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Time of Flight
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