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Abstract

Utility companies collect usage data from meters on a regular basis. The usage data are

collected automatically using radio-frequency identification (RFID) technology. Each me-

ter transmits signals from an RFID tag that are read by a vehicle-mounted reading device

within a specified distance. Routing the vehicles can be modeled by a close enough vehicle

routing problem on a street network. In practice, there is uncertainty while reading meters.

The signal transmitted by an RFID tag is discontinuous, and the range that each meter can

be read is different and stochastic due to weather conditions, surrounding obstacles, inter-

ference, and decreasing battery life of the RFID tags. These factors can lead to meters not

being read. A vehicle has to be sent at a later time to read the missed meters, and this leads

to increased costs for a utility company due to additional operational costs and overtime

payments to drivers. Our aim is to address the uncertainty issues of the RFID technology by

generating routes that are both cost-effective and robust (we seek to minimize the number

of missed reads). We use data analytics, optimization, and Bayesian statistical models to

address the uncertainty. Simulation experiments using real data show that the hierarchical

Bayesian statistical model gives better results compared to other Bayesian statistical mod-

els. Utility companies can potentially integrate the results from the hierarchical Bayesian

statistical model into their route generating software as a decision-support tool to produce

routes that are more cost-effective and robust than the routes that they currently generate.

Keywords: Bayesian statistics, Integer programming, Vehicle routing, Meter reading
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1 Introduction

1.1 Background and Literature Review

Utility companies have to read many thousands of electric, gas, and water meters of residen-

tial and commercial customers on a regular monthly basis. Meters are read automatically using

a short distance wireless technology called radio-frequency identification (RFID) technology.

An automatic meter reading (AMR) system has two parts: an RFID tag and a vehicle-

mounted reading device. An RFID tag is connected to a physical meter. The tag encodes the

identification number of the meter and its current reading into a digital signal. The vehicle-

mounted reading device collects the data automatically when it approaches an RFID tag within

a specified distance. Utility companies would like to design the routes of the vehicles to cover all

customers (meters) in the service area while minimizing the total cost or length of the routes.

The use of RFID technology in meter reading changes the routing problem from a standard

Table 1: A brief chronological summary of the meter reading problem.

Early 1960s RFID technology was first tested by AT&T in cooperation with a group of
utility companies and Westinghouse.

Late 1970s Stern and Dror (1979) made one of the earliest efforts to solve the meter
reading problem. They developed a route-first, cluster-second approach.

Early 1990s Geographic data became available in the form of GBF/DIME (geographic
base file/dual independent map encoding) files. This led to the development
of optimization algorithms, graphics, and interactive features in meter-reader
software systems. The computerized routing system of Bodin and Levy (1991)
produced much better routes than the routes generated by utility companies.

Early 2000s Geographic information systems (GISs) were combined with powerful (near-
optimal) routing algorithms to form highly visual computerized systems. Levy
et al. (2002) described how several layers of data can be displayed in a service
area by a GIS. The displayed layers can then be used to select a subset of
meters to read within the service area for route planning purposes.

Late 2000s RFID technology was used extensively in many industries for tracking re-
sources since it holds down cost while increasing accuracy compared to tra-
ditional labor-intensive reading methods. The accuracy of transmitters and
receivers improved and the cost decreased gradually with the advancement
of technology, making RFID technology even more viable and useful. Eglese
et al. (2014) summarized the meter reading problem from the late 1970s until
the late 2000s.
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vehicle routing problem (VRP) to a close-enough VRP (CEVRP). Substantial savings over

traditional solutions are possible by developing routes that exploit this close-enough feature,

i.e., the meter readers only have to be within a specified distance from the meters to read them

and not manually visit each one. Table 1 gives a brief chronological summary of the meter

reading problem.

Most of the research on the close-enough problem is limited to Euclidean distances and uses a

node routing formulation. Dumitrescu and Mitchell (2003) studied approximation algorithms for

the close-enough traveling salesman problem (CETSP). Gulczynski et al. (2006) and Dong et al.

(2007) presented clustering and convex hull heuristics for the CETSP in the context of meter

reading. Mennell (2009) and Behdani and Smith (2014) formulated mixed integer programs

for the CETSP. Coutinho et al. (2016) proposed an exact algorithm for the CETSP based

on a branch-and-bound procedure and second order cone programming. Groër et al. (2009)

addressed the balanced billing cycle vehicle routing problem (BBCVRP) which occurs when,

over time, routes become inefficient and fractured with imbalanced workloads for the meter

readers. Their three-stage algorithm for solving the BBCVRP used partitioning heuristics and

integer programming to reduce the length of the routes and to balance the workload.

Shuttleworth et al. (2008) were the first to model the CETSP with an arc routing formu-

lation. They developed a two-stage process to solve the CETSP over a street network for a

single meter-reader route. In the first stage, two heuristics (weighted bang for buck, distance

weighted bang for buck) and two integer programs specify a subset of street segments that have

to be traversed by a meter reader. All meters are within distance r from at least one location

on at least one of the specified street segments. In the second stage, a travel path (cycle) is

generated that traverses the specified street segments. Hà et al. (2014) proposed mathematical

formulations and heuristics for the close-enough arc routing problem (CEARP). In the CEARP,

traversed street segments only have to be within a specified distance from the points of interest.

Ávila et al. (2016) proposed a new mathematical formulation for the CEARP and descibed its

polyhedra. Renaud et al. (2017) considered a version of the CEARP in the context of meter

reading in which the probability of reading a meter from a street segment decays exponen-

tially as the distance from the meter to the street segment increases. They proposed an integer

programming formulation and presented several heuristics.

There are issues with RFID technology that are not considered in the literature that we need
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to take into account. The signal transmitted by an RFID tag occurs at regular time intervals

that are not continuous. This is done to extend the battery life of the RFID tags. This leads to

the possibility of a missed capture of a signal if the vehicle with the receiver is within the range

of the meter only for a short time. Also, the signal range of a meter can vary from the distance

specified by the manufacturers of the RFID devices due to weather conditions, surrounding

obstacles, signal interference from other meters in the vicinity, and decreasing battery life of the

RFID tags.

On average, utility companies read more than 1.5 million RFID meters on a monthly basis.

It is observed that around 5-10% of those meters are missed from the planned routes of the

meter reading vehicles. Currently, utility companies generate meter reading routes by solving

the CEVRP such that all meters are within a specified distance (range of the signal as specified

by the manufacturers of the RFID devices) from at least one location on the route. Utility

companies always make a special attempt to read the missed meters for commercial and indus-

trial customers because these tend to generate higher revenues. For residential customers, they

want to use estimated billing for the missed meters. However, the public utility commission in

many areas will not allow estimated billing. For example, in Illinois, utility companies have to

perform actual meter reading at least every second billing cycle (Illinois Administrative Code

2018). Similar examples can be found in Colorado (Colorado Department of Regulatory Agen-

cies 2018), Michigan (Michigan Department of Labor and Economic Growth 2018), and Irving,

Texas (Irving, Texas - Code of Ordinances 2018). A vehicle has to be sent at a later time to

read the missed meters, and this leads to increased costs due to additional operational costs

and overtime payments to drivers.

1.2 Research Goal and Contributions of the Paper

In the meter reading context, we will address the above-mentioned issues of the RFID

technology by generating routes for the CEVRP that are both cost-effective and robust (in the

sense that we seek to minimize the number of missed reads). This is done by bringing together

data analytics, statistical modeling, and optimization techniques. The idea is to significantly

reduce the number of missed meters even though the routes that are generated may be somewhat

longer than those currently used by a utility company. For the utility companies, it is much easier

and cost-effective if they know ex-ante that they have to traverse a somewhat longer route that
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leads to fewer missed meters. This substantially reduces the need to dispatch a vehicle to read

the missed meters that may be spread throughout the street network. While past research has

focused on mathematical formulations and computational experiments on artificially generated

networks, we use real networks and actual meter reading data from utility companies to solve a

more realistic version of this problem. Real networks that we use are a few orders of magnitude

larger than the artificial networks used in the literature. The most important factor is that

the way in which street segments and meters are distributed on real networks, is very different

from that in artificial networks. Hà (2012) gives a detailed description of how artificial meter

reading networks are systematically generated. Therefore, the computational performances of

the heuristics discussed in the literature do not have enough practical relevance.

We summarize the main contributions of our paper as follows.

1. We formulate the stochastic meter reading problem as a two-stage integer program (IP),

where the Stage 1 IP is a linear IP that guarantees a pre-specified likelihood of reading

the meters. The Stage 2 IP adds deadhead segments to the solution of the Stage 1 IP to

generate the full route. The two-stage IP formulation is deterministic even though the use

of the RFID technology makes the meter reading problem inherently stochastic.

2. We develop three Bayesian updating learning models, namely, a logit model, a probit

model, and a hierarchical probit model to capture the uncertainty in the data and also to

avoid the shortcomings of regression. We show that the hierarchical probit model gives

a more accurate estimate of the probability that a meter is read successfully compared

to logit and probit models. We perform simulation experiments using an actual street

network with meter locations to show that the hierarchical probit model generates robust

routes, i.e., the number of missed meters is significantly less compared to the other two

Bayesian models, even though the routes may be slightly longer.

3. We present an iterative algorithmic framework. We start by learning from the incoming

data every time the meter reading vehicle collects readings. We then re-solve the two-stage

IP with the updated probability of a meter being read successfully to generate routes

that are more robust for addressing the uncertainty. Utility companies can integrate this

algorithm into their route generating software as a decision-support tool.
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Table 2: Summary of the data set.

Total number of meters in the service location layer 6,067
Number of meters in the service location layer that are read 5,720
Total number of read events 337,870
Total number of street segments in the network 1,575
Number of street segments traversed in the route 578
Number of street segments traversed in the route counting repetitions 829
Total number of nodes in the network 1,072
Duration of the route (hours) 6
Time gap between consecutive signal transmission (sec) 3

1.3 Structure of the Paper

The remainder of the paper is organized as follows. In Section 2, we describe the size and

content of the data set. In Section 3, we give the mathematical programming formulation for

our problem. In Section 4, we conduct computational experiments to show the performance of

the Stage 1 IP. In Section 5, we describe the metaheuristic for solving the Stage 2 IP. In Section

6, we develop the Bayesian updating learning models to capture the uncertainty in the data. In

Section 7, we conduct simulation experiments using our data set to compare and quantify the

performance of the Bayesian updating learning models and also describe our decision-support

tool. In Section 8, we summarize our contributions and provide future research directions.

2 Description of the Data Set

The data set was gathered during the first half of 2016 by ITRON (a technology and services

company that manufactures RFID equipment) and provided by RouteSmart Technologies. Table

2 summarizes the data set which gives meter locations and reading data serviced by Connecticut

Natural Gas in Hartford, Connecticut. The data are in GIS format and have three layers.

1. Street Level Data. Information about the shape, length, and type of street segments.

2. Service Location Data. Geographic locations of all meters that should be read and the

unique account identifier of each meter.

3. Reading Events Data. Records of all read events by the meter reading vehicle in the form

of the time of read (with a resolution of one second), the account identifier of the meter

that is read, and the geographic location of the vehicle during the read.
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Figure 1: (Color online) A view of the street layer, the service location layer, and the reading
events layer. The red lines represent the street segments. The green dots represent a portion of
the route traversed by the meter reading vehicle. The blue dots and the yellow dots represent
meters (customers) in the service location layer that are read and that are missed, respectively.
If multiple meters have the same geographic location, then they are represented by a single dot,
although they have distinct account identifiers.

The data are represented using ArcGIS (Steiniger and Hunter 2013). In Figure 1, we show

how the data appear in GIS format with views of the street layer, the service location layer,

and the reading events layer. After the vehicle has traversed a portion of the route marked by

the green dots, Figure 1 shows the meters in the service location layer that are read (blue dots)

and those that are missed (yellow dots). Even though ITRON specifies the range of the RFID

signals to be around 500 feet, some missed meters are well within that range, while some meters

that are read are well outside of it. The routes generated should address these variabilities.

From the data, we make the following observations. There are many account identifiers

in the reading events file that have no corresponding entry in the service location file, i.e.,

the RFID readers are picking up signals from nearby RFID tags that do not require reading

by the utility company. There are a total of 337,870 read events from a route that took six

hours and traversed 829 street segments (counting repetitions). Many of those read events are

from unwanted RFID tags. The read events data have a many-to-one relationship to a service
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location account identifier, i.e., some of the meters are read more than once by the meter reading

device. Out of the 6,067 meters in our data set, 347 meters are missed. The vehicle location

is tracked every second. However, when the read events for a single meter are recorded, they

do not occur every second along a street segment that seems to be within range. Rather, there

is generally a regular time gap between occurrences of read events for the same meter. This

confirms the fact that the signal transmitted by an RFID tag is at regular time intervals and

is not occurring continuously. Some meters that are very close to the vehicle route have been

missed, probably due to a discontinuous signal. There is a time gap of three seconds between

successive signal transmissions from the RFID tags in our data set. Missed reads can also be

due to the variability of the range of a meter to transmit a signal.

3 Integer Programming Formulation

We formulate the meter reading problem with RFID technology as a two-stage IP. The

Stage 1 IP finds the street segments that are to be traversed for reading each meter with a

pre-specified chance of being read. The solution of the Stage 1 IP gives street segments spread

across the street network, which does not necessarily form a full route. A mixed rural postman

problem finds the shortest way of connecting a given set of required street segments to form

a full route on a mixed graph with edges (two-way street segments) and arcs (one-way street

segments). The Stage 2 IP solves a mixed rural postman problem that adds deadhead segments

(extra street segments not required for reading meters) to the solution of the Stage 1 IP to

obtain the full route and it ensures that the depot (denoted by a node on the graph) is a part

of the route.

3.1 Stage 1 IP Formulation

Consider a street network as a mixed graph denoted by G = (V,E∪A), where E denotes the

set of the edges, A denotes the set of the arcs, and V denotes the set of nodes. Let cj ≥ 0 be the

cost (length) of street segment j. Let I be the set of the meters. Let pij be the probability that

meter i is read at least once from street segment j. Let Li ∈ [0, 1] be the specified likelihood of

reading meter i from the full route. We define xj to be the binary decision variable denoting

whether or not street segment j should be traversed. The Stage 1 IP formulation is given by
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the following.

(Stage 1 IP) min
∑

j∈E∪A
cjxj (1)

s.t.
∏

j∈E∪A
(1− pij)xj ≤ (1− Li) ∀i ∈ I (2)

xj ∈ {0, 1} ∀j ∈ E ∪A (3)

The objective function (1) minimizes the total cost (length). Constraints (2) select the values

of the binary decision variables (xj) so that the probability of reading meter i is at least Li.

Constraints (3) define the decision variables. In general, the solution of the Stage 1 IP, i.e., the

graph induced by the required edges and arcs GR = (V,ER ∪AR), where ER ⊆ E and AR ⊆ A

denote the set of required edges and arcs, respectively, is not connected. The objective value

of the Stage 1 IP will be greater for larger values of Li. The greater the need to read meter

i during the next meter reading trip, the larger should be the value of Li set by the utility

company. In cases where the utility company can manage using estimated billing for meter i

during the next billing cycle, the value of Li should be set close to 0. We note that constraints

(2) can be linearized in the decision variables
∑

j∈E∪A xj × log(1− pij) ≤ log(1 − Li) for all

meters i yielding a linear Stage 1 IP.

For values of Li close to 1, constraints (2) can be infeasible for some meter i even when the

meter reading vehicle traverses all street segments in the network (xj = 1 for all street segments

j), i.e., meter i cannot be read automatically with probability of at least Li. In that case, the

driver of the meter reading vehicle will need to park the vehicle on the closest street segment

and read meter i manually. This means that meter i is read with probability 1 from the closest

street segment, i.e., the Stage 1 IP is solved with pij = 1, where j is the closest street segment

to meter i. This will enforce xj = 1 in the Stage 1 IP solution, and, therefore, street segment

j will be in the set of required street segments. Let MR ⊆ ER ∪ AR denote the subset of the

required street segments that are needed to manually read some of the meters, i.e., pij = 1 for

all j ∈MR. We consider a constant stoppage time to manually read meter i from street segment

j. Accordingly, we add a penalty to the Stage 2 IP objective value as a proxy for the distance

that could have been traversed during the stoppage time.
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3.2 Stage 2 IP Formulation

For S1, S2 ⊆ V , (S1 : S2) denotes the set of edges and arcs with one endpoint in S1 and

the other endpoint in S2. A(S1 : S2) = {(i, j) ∈ A : i ∈ S1, j ∈ S2} denotes the set of

arcs with one endpoint in S1 and the other endpoint in S2. E(S1 : S2) = {(i, j) ∈ E :

i ∈ S1, j ∈ S2} denotes the set of edges with one endpoint in S1 and the other endpoint in

S2. For S ⊆ V , δ+(S) = A(S : V \ S), δ−(S) = A(V \ S : S) and δ(S) = E(S : V \ S),

where E(S) and A(S) denote the set of edges and arcs, respectively, with both endpoints in S.

δ∗(S) = δ(S) ∪ δ+(S) ∪ δ−(S) = (S : V \ S). If S = {vi}, we simply write δ(i), δ+(i), δ−(i)

or δ∗(i). The vertex sets of the connected components of GR are denoted by V1, . . . , Vp. The

depot is denoted by the node v0 ∈ V . We consider a single meter reading vehicle. We define yj

to be the non-negative integer decision variable denoting the number of times street segment j

is traversed in the full route. For F ⊆ E ∪ A, Y (F ) =
∑

j∈F yj . The Stage 2 IP formulation is

given by the following.

(Stage 2 IP) min
∑

j∈E∪A
cjyj (4)

s.t. Y (δ∗(0)) ≥ 1 (5)

Y (δ∗(i)) ≡ 0 mod 2 ∀i ∈ V (6)

Y (δ+(S)) ≥ 1 ∀S = ∪k∈QVk, Q ⊂ {1, . . . , p} (7)

Y (δ+(S))− Y (δ−(S)) ≤ Y (δ(S)) ∀S ⊂ V (8)

yj ≥ 1 and integer ∀j ∈ ER ∪AR (9)

yj ≥ 0 and integer ∀j ∈ E ∪A \ ER ∪AR (10)

The objective function (4) minimizes the total cost (length) of the route. Constraint (5) ensures

that the depot is a part of the route. Constraints (6) are the flow conservation constraints, i.e.,

every node has an even degree in the route. Constraints (7) are the disjoint subtour elimination

constraints, i.e., the required street segments obtained in the Stage 1 IP are connected in the

route. Constraints (8) are the balanced-set inequalities, i.e., the difference between the number

of arcs in the route entering S and the number of arcs in the route leaving S cannot be more

than the number of edges in the route between S and V \S. Constraints (9) define the decision
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variables for those street segments j which are required to be traversed by the Stage 1 IP, i.e.,

xj = 1. Constraints (10) define the decision variables for those street segments j which are

not required to be traversed by the Stage 1 IP, i.e., xj = 0. The Stage 1 IP solution already

meets the specified likelihood Li of reading each meter i. The deadhead segments added in the

Stage 2 IP increase the likelihood of reading the meters because the meter reading vehicle is also

receiving signals while traversing the deadhead segments. The Stage 2 IP formulation without

constraint (5) is the formulation for the mixed rural postman problem (Corberán et al. 2014).

4 Computational Experiments for the Linear Stage 1 IP

We perform computational experiments that are designed to examine the performance of

the linear Stage 1 IP and how performance varies with respect to the size of the data set.

Understanding the performance of the linear Stage 1 IP on a large data set is important because

our data set has 6,067 meters and 1,575 street segments.

We test the linear Stage 1 IP for different values of the number of meters (|I|) and the number

of street segments (|E∪A|), where the range of both values is 10 to 2000. The probabilities (pij)

are generated randomly from a Uniform (0, 1) distribution. The costs (cj) of the street segments

are generated from three different distributions. In the first case, costs are generated randomly

from a Uniform (0, 1) distribution, and then the values are multiplied by 100. In the second

case, unit costs are considered for all street segments. In the third case, costs are generated

randomly from a truncated Normal (0, 1) distribution with the left tail truncated at 0 and the

right tail truncated at 1, and then the values are multiplied by 100. We use R software version

3.3.1 to generate the data for the computational experiments and Gurobi version 7.0 to solve

the models. We ensure that the generated data are feasible for the linear Stage 1 IP and that

all entries in the constraint matrix are non-zero (the pij ’s in the real word will be non-zero).

The constraint matrix has dimension |I| × |E ∪ A|. We use an i7 CPU with 32 GB RAM and

a one-hour time limit. If an optimal value is not found within the time limit, the best feasible

solution value (denoted by V) and the best available bound (denoted by B) are reported.

In Table 3, we show the comparison of the performance for the linear Stage 1 IP for the

three cost structures with respect to the running times (in seconds) and the optimality gap

(100(V−BB )). The value of the specified likelihood Li is set at 0.95 for all i. For each pair of |I|
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Table 3: Comparison of the linear Stage 1 IP performance for the three different cost structures.

Uniform Cost Unit Cost Normal Cost
|I| |E ∪A| Time Gap Time Gap Time Gap

20 10 0.000 Optimal 0.016 Optimal 0.016 Optimal
10 20 0.047 Optimal 0.016 Optimal 0.031 Optimal

100 20 0.190 Optimal 0.105 Optimal 0.111 Optimal
20 100 0.031 Optimal 0.081 Optimal 0.043 Optimal

200 100 0.224 Optimal 68.857 Optimal 0.237 Optimal
100 200 0.172 Optimal 56.458 Optimal 0.158 Optimal

1000 200 2.359 Optimal 3600.025 60% 2.269 Optimal
200 1000 0.688 Optimal 3600.026 50% 0.762 Optimal

2000 1000 10.327 Optimal 3600.063 125% 10.564 Optimal
1000 2000 6.102 Optimal 3600.249 100% 6.201 Optimal

Table 4: Comparison of the linear Stage 1 IP objective value for specified likelihood values of
0.95 and 0.75 for all meters.

Uniform Cost Unit Cost Normal Cost
|I| |E ∪A| 0.95 0.75 0.95 0.75 0.95 0.75

20 10 210.3068 90.1101 5 3 185.8380 77.9464
10 20 90.9012 44.0025 4 2 78.6606 37.7965

100 20 185.6485 101.2878 6 4 161.9885 88.9582
20 100 42.0435 23.7557 4 3 36.0238 20.3450

200 100 60.6152 27.9134 6 4 51.9349 23.9070
100 200 31.1048 16.9587 5 3 26.6314 14.5172

1000 200 50.0808 23.3395 B = 5, V = 8 B = 3, V = 5 42.8871 19.9795
200 1000 5.0900 2.7574 B = 4, V = 6 B = 3, V = 4 4.3551 2.3593

2000 1000 7.4823 3.8587 B = 4, V = 9 B = 2, V = 6 6.4021 3.3016
1000 2000 1.9747 0.9722 B = 4, V = 8 B = 2, V = 5 1.6896 0.8319

and |E ∪A|, the linear Stage 1 IP had similar performance for both the uniform cost structure

and the normal cost structure in terms of the running times and the optimality gap. All the

models are solved to optimality with the running times ranging from one-hundredth of a second

for |I| × |E ∪A| value of 200 to 10 seconds for |I| × |E ∪A| value of 2,000,000. For each pair of

|I| and |E ∪ A|, the running times are significantly larger for the unit cost structure compared

to the other two cost structures. This is probably due to the inherent symmetry in the linear

Stage 1 IP for the unit cost structure, since each street segment has the same weight in the

objective function. The models are not solved to optimality within the one-hour time limit for

|I| × |E ∪ A| values greater than 20,000. The optimality gap is more than 50% and more than

100% for |I| × |E ∪A| value of 200,000 and 2,000,000, respectively.

In Table 4, for each of the three cost structures we show the comparison of the objective
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value for the linear Stage 1 IP for Li values of 0.95 and 0.75 for all i. If the linear Stage 1 IP

is solved to optimality, the objective value is smaller for Li values of 0.75 compared to 0.95 for

each pair of |I| and |E ∪A| and for each of the three cost structures. For the unit cost structure

and for |I|× |E ∪A| values greater than 20,000, the interval [B,V] is tighter and shifted towards

zero for Li values of 0.75 compared to 0.95. This demonstrates the fact that the smaller the

specified likelihood values for reading meters, the smaller is the Stage 1 IP objective value.

The Stage 1 IP selects the street segments with the lowest total cost (length) that guarantee

the specified likelihood of reading the meters. The Stage 2 IP adds deadhead segments with the

lowest total cost (length) to complete the full route, starting and ending at the depot. It might

be the case that the street segments selected by the Stage 1 IP are not the best selections for

the full route. The street segments selected by the Stage 1 IP might be farther away from each

other. This may lead to a larger total length for the full route. To help prevent this, an alternate

objective function for the Stage 1 IP may be minimizing the total number of street segments

(unit cost structure), i.e., cj = 1 for all j. For the unit cost structure, our computational

experiments showed that the linear Stage 1 IP with a one-hour running time had an optimality

gap of more than 100% for the |I| × |E ∪ A| value of 2,000,000. Since the |I| × |E ∪ A| value

for our data set (6, 067 × 1, 575) is an order of magnitude larger, it is not possible to arrive at

Stage 1 IP solutions with smaller optimality gaps in a reasonable amount of time. So, rather

than using the unit cost structure as the only objective function in the Stage 1 IP, it might be

useful to explore the option of having the unit cost structure added to the Stage 1 IP as the

second objective function. We compare the routes generated using the single-objective Stage

1 IP (discussed in Section 3) and the bi-objective Stage 1 IP in the simulation experiments

conducted in Section 7 with our data set. The bi-objective Stage 1 IP is given by the following.

(Bi-objective Stage 1 IP) min
∑

j∈E∪A
cjxj (11)

min
∑

j∈E∪A
xj (12)

s.t.
∏

j∈E∪A
(1− pij)xj ≤ (1− Li) ∀i ∈ I (13)

xj ∈ {0, 1} ∀j ∈ E ∪A (14)
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The objective function (11) is the same as the objective function (1) in the single-objective

Stage 1 IP. The objective function (12) minimizes the total number of street segments selected.

Constraints (13) and (14) are the same as constraints (2) and (3), respectively, in the single-

objective Stage 1 IP. A lexicographic approach (establishing a pre-defined ordering between the

competing objective functions) is used to solve the bi-objective Stage 1 IP. First, the single-

objective Stage 1 IP is solved with the objective function (11). Then, the value of the objective

function (12) is improved without allowing the value of the objective function (11) to increase.

5 Heuristics for the Stage 2 IP

Frederickson et al. (1978) showed that the mixed rural postman problem is NP-complete.

A mixed rural postman problem with a particular node (depot) that is a part of the route is

also NP-complete. This is the problem we solve in the Stage 2 IP. Therefore, for any realistic

large data sets, similar to the size of our data set (6,067 meters, 1,575 street segments, and

1,072 nodes), any exact method of solving the Stage 2 IP potentially has long running times

with solutions that have large optimality gaps. We discuss a fast metaheuristic to generate

near-optimal solutions in a short amount of time.

5.1 Route Generator

Given a set of required street segments, the goal is to find the shortest route for the meter

reading vehicle that starts and ends at the depot and traverses all required street segments.

By assuming that the vehicle always takes the shortest path between any two required street

segments, the aim of the route generator is reduced to finding an optimal permutation of all

required street segments and, in the case of edges, the direction in which they should be tra-

versed. This shortest path between each pair of nodes is computed using Dijkstra’s algorithm

(Dijkstra 1959).

The route generator has two phases, the constructive phase and the improvement phase.

During the constructive phase, the route starts from the depot node and, based on the nearest-

neighbor method, consecutively visits the closest required street segments. Since the edges can

be traversed in both directions, the node (among the two nodes representing an edge) closest to

the preceding node in the route is visited first. After a complete initial route is constructed, the
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Table 5: Local search operators in the variable neighborhood descent metaheuristic.

Reverse Change the direction in which a required edge is traversed by the vehicle.
Required arcs remain unaffected.

Relocate Remove a required street segment from the current solution and insert it at a
different location in the route.

2-opt Reverse the order in which the vehicle visits the street segments in a subse-
quence of required street segments.

improvement phase improves the solution using three different local search operators embedded

in a variable neighborhood descent metaheuristic. The three local search operators are briefly

described in Table 5. The variable neighborhood descent metaheuristic framework is considered

very effective for solving routing problems (Defryn and Sörensen 2017, Hansen et al. 2017,

Wassan et al. 2017).

5.2 Route Trimmer

The full route obtained from the route generator contains deadhead street segments in addi-

tion to the required street segments. This leads to the fact that the probabilities of successfully

reading the meters are more than the specified likelihoods (Li), which is already guaranteed by

the required street segments. Although this will further reduce the chance of missing meters,

it comes at a cost of increased route length. To account for this, the route trimmer aims at

decreasing the total route length while still assuring feasibility, i.e., the probability of success-

fully reading each meter i from the full route is at least the specified likelihood Li. The route

trimmer makes use of a remove and repair procedure to decrease the number of required street

segments and, therefore, the total route length. In the Appendix, we give the algorithm for the

remove and repair procedure of the route trimmer in Table 10.

When the remove and repair procedure terminates, a second procedure of the route trimmer

looks for remaining redundancies in the list of required street segments for the current route.

When a required street segment lies on the shortest path between its predecessor and successor

required street segments, that particular required street segment would be visited by the vehicle

as a deadhead segment. Therefore, it can be removed from the list of the required street segments

without affecting feasibility or the total route length. This simplifies the representation of the

vehicle route and speeds up the simulation experiments conducted in Section 7.

The route generator is used extensively in the route trimming procedure. This strengthens
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Figure 2: (Color online) The route generator and the route trimmer applied to a small example.
Red lines denote the required street segemnts. Blue lines denote the deadhead segments. Yellow
line denotes the required street segment that is removed. Green line denotes the new street
segement added to the route as a replacement for the yellow line.

(a) Street network (b) Stage 1 IP solution

(c) Route generator solution (d) Route trimmer solution

our motivation for choosing a fast metaheuristic for the route generator. To further speed up

the route generator and to avoid solving the same instance multiple times during our simulation

experiments, a pool of solutions is maintained. Before using the route generator, this pool is

checked for instances that have been solved already.

In Figure 2, we show how the route generator and the route trimmer work for a small

example. Figure 2a shows the street network. The route of the vehicle starts from and ends

at the depot denoted by the black square. The remaining nodes in the network are denoted

by black dots. The black lines are the edges in the network (assume that there are no arcs).

Figure 2b shows the Stage 1 IP solution. The red lines are the required street segments that

the meter reading vehicle needs to traverse to guarantee the specified service levels (Li). Figure

2c shows the route produced by the route generator. The blue lines are the deadhead segments

added by the route generator to connect the required street segments in the shortest possible
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manner. Figure 2d shows the route produced by the route trimmer. The route trimmer finds

the required street segment that has the largest marginal cost in the current route (Figure 2c),

denoted by the yellow line, and replaces it with another street segment, denoted by the green

line, such the new route (Figure 2d) has a smaller length and the specified service levels (Li)

are still satisfied.

6 Bayesian Updating

In order to solve the Stage 1 IP, we need to estimate the values of the probabilities (pij). Ev-

ery time the meter reading vehicle collects readings, it adds more data to the previous readings.

With more data, we expect that the estimates of the pij ’s will be more accurate. Therefore, the

routes generated by the two-stage IP will be of higher quality. They will be better at capturing

the uncertain signals thereby further reducing the number of missed reads.

There are some serious issues if we use regression to estimate the pij ’s at every time period

with the new data. Suppose in time period 1 we observe the first set of i.i.d. data denoted

by y1. We run the regression on y1. In time period 2, we observe a second set of i.i.d. data

denoted by y2, independent of y1. We run the regression on y1 and y2 together as a single data

set, and so on. We are regressing on the older data sets repeatedly which makes this process

of estimation inefficient. Data sets from different time periods are given equal weights in the

regression. In practice, utility companies need to use different weights for the data based on

seasonality and other factors. For example, during the summer season, meter reading data from

the previous summer is more important and accurate compared to the meter reading data from

the previous winter. Also, new obstacles may appear between a meter and a street segment, new

meters may appear in the vicinity of a meter causing more interference, and a decrease in the

battery level of an RFID tag will reduce the signal range of the meter. All these factors make

the most recent meter reading data more accurate. Therefore, utility companies should be able

to apply different weights to parts of the data accordingly. If we estimate the pij ’s at every time

period with new data, i.e., every time the meter reading vehicle collects data from traversing

a route, using concepts from Bayesian statistics, then we can avoid the two drawbacks faced

while updating using regression.
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Bayesian updating works as follows:

π(β|y1) ∝ p(β)L(β|y1)

π(β|y1, y2) ∝ π(β|y1)L(β|y2)
...

π(β|y1, . . . , yT ) ∝ π(β|y1, . . . , yT−1)L(β|yT ) = p(β)L(β|y1, . . . , yT ).

In time period 1, p(β) is the prior information on the unknown parameter vector β, and L(β|y1)

is the likelihood function obtained from i.i.d. data y1. The posterior distribution is π(β|y1).

In time period 2, the prior is π(β|y1), which is the posterior from time period 1, and so on.

This process can be repeated and the model will continue to update the posterior distributions

as we collect new data. In time period T , the posterior is π(β|y1, . . . , yT ), which does not

depend on the sequence in which data arrive. This is exactly the same result that would

have obtained if all the i.i.d. data (y1, . . . , yT ) had been gathered at the same time because

L(β|y1, . . . , yT ) =
∏n
i=1 L(β|yi). Bayesian updating is much faster than regression since analysis

is done only on the new incoming data at each time period. Data from different time periods

can be weighted differently in Bayesian updating depending on the requirements of the utility

companies. The idea is to re-solve the two stage IP at the end of each time period with

the new posterior distribution of the probabilities (pij) that is obtained and, thereby, have an

iterative algorithm to generate more robust routes at the end of each time period. The unknown

parameters in the Bayesian models are estimated using Markov Chain Monte Carlo (MCMC)

simulations.

The dependent variable in the data is denoted by Read OR Notij (whether or not meter i

was read from street segment j). The data elements have the form of 1 and 0, where 1 indicates

that meter i is read from street segment j and 0 indicates that meter i is not read from street

segment j. The predicted values of the dependent variable have to be between 0 and 1 which

will denote the probabilities (pij). Based on the type of the data we have and our requirements

on the predicted values of the dependent variable, logit and probit models are considered. The

independent variables are: Shortest Distanceij (shortest distance between meter i and street

segment j), No of Pulsesj (number of pulses the meter reading vehicle can receive from the

meter while traveling on street segment j), and No of Customersi (number of meters within
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500 feet from meter i; 500 feet is the range of the RFID signals as specified by ITRON, so

the signals are strong enough to interfere with each other within 500 feet). Shortest Distanceij

should have a negative coefficient because the larger the shortest distance between meter i and

street segment j is, the smaller the value of pij . No of Pulsesj is obtained from the amount of

time the meter reading vehicle spent on street segment j divided by the time interval between

the RFID signal transmissions. If the meter reading vehicle travels at a higher speed through

street segment j, then the time spent by the vehicle on street segment j is smaller and, therefore,

the No of Pulsesj is lower. No of Pulsesj should have a positive coefficient because the greater

the number of pulses the meter reading vehicle can receive from the meters while traveling on

street segment j, the larger the value of pij . No of Customersi is a measure of the density of

meters in a region. It is important because, with a large number of meters in a region, the

interference of the RFID signals is greater, so the signals die out quickly. No of Customersi

should have a negative coefficient because the greater the number of meters surrounding meter

i, the smaller the value of pij .

We use only the traversed street segments to estimate the parameters of the models. We

can only determine that a meter was read or not read on street segments traversed by the meter

reading vehicle. Thus, the data used for estimating the parameters of the models has 6,067

meters and 829 street segments (counting repetitions).

6.1 Logit Model and Probit Model

The logit and probit models are given by

g(pij) = β̂1 + β̂2 × Shortest Distanceij + β̂3 ×No of Pulsesj + β̂4 ×No of Customersi

where g is the link function, pij = E(Read OR Notij), β̂k = E(βk), and E() denotes the expected

value. For the logit model, g(pij) = ln(pij/1− pij), and for the probit model g(pij) = Φ−1(pij),

where Φ is the cumulative Normal (0, 1) distribution function. We have to estimate the unknown

parameter vector β = (β1, β2, β3, β4)
> which is a 4-dimensional vector of coefficients. The data

matrix X is (N × 4)-dimensional, where N is the size of the data set, and the entries in the

first column of X are 1’s. Xk denotes row k of X. In time period 1, we do not have any prior

information about β. We rely on the information obtained from the data. Therefore, the prior
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is set to a vague prior, i.e., the prior will have minimal effect on the posterior distribution of

time period 1.

Both models have their pros and cons. Error terms in logit models have a logistic distribu-

tion, whereas error terms in probit models have a normal distribution. The logistic distribution

has heavier tails compared to the normal distribution, so logit models are more robust than

probit models. Logit models have a better fit to data that are more spread out in the tails. The

normal distribution is the conjugate prior for the likelihood function in probit models. There-

fore, the unknown parameters in the probit model can be estimated using an exact algorithm.

However, neither the normal distribution nor any other distribution from the exponential fam-

ily is the conjugate prior for the likelihood function in logit models. Therefore, the unknown

parameters in the logit model have to be estimated using a non-exact algorithm.

The Metropolis-Hastings (MH) Random Walk algorithm (Metropolis et al. 1953, Hastings

1970) is used to estimate the parameters of the logit model and has four steps.

Step 1. Choose a starting value for β.

Step 2. The random walk chain βnew = βold+ε where ε ∼Multivariate Normal (0, s2H−1)

generates candidate realizations for β, s = 2.3/
√

dimension(β) (Marin and Robert 2014,

Press 2003), and H is the Hessian of the log likelihood function for the logit model.

Step 3. Accept βnew with probability α = min{1, π(β
new|y,X)

π(βold|y,X)
}.

Step 4. Repeat Steps 2 and 3.

The Gibbs sampling algorithm (Albert and Chib 1993) is used to estimate the param-

eters of the probit model. The setup for this algorithm is as follows. The prior distribu-

tion is p(β) = Multivariate Normal (B0, V0). We have y∗k ∼ Normal (Xkβ, 1) and yk =

Indicator (y∗k > 0), where y is the dependent variable and y∗ is the latent variable. The

distribution of y∗ is given by p(y∗k|yk = 0, β) = Normal (Xkβ, 1) × Indicator (y∗k ≤ 0) and

p(y∗k|yk = 1, β) = Normal (Xkβ, 1) × Indicator (y∗k > 0). Therefore, the posterior distribution

is π(β|y∗) = Multivariate Normal ((X>X + V −10 )−1(X>y∗ + V −10 B0), (X
>X + V −10 )−1). The

Gibbs sampling algorithm for the probit model has four steps.

Step 1. Choose a starting value for β.
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Step 2. Draw [y∗|y, β].

Step 3. Draw [β|y∗].

Step 4. Repeat Steps 2 and 3.

6.2 Logit Model and Probit Model Results

The size of the data set used for estimating the parameters of the logit model and the probit

model is N = 6, 067× 829 (∼ 5 million). To verify that our choice of the prior distribution on

the unknown parameters for both the logit model and the probit model does not have much

effect on the posterior distribution, we also estimate the parameters of both the models using

regression. If the parameter values for the regression and the Bayesian estimation match, this

indicates that our choice of the prior for the Bayesian estimation fulfills our requirement of a

vague prior. In subsequent time periods, when new data are gathered, the parameters can be

updated using the Bayesian updating algorithms.

In logistic regression and probit regression, the parameters are estimated using the maximum

likelihood estimation (MLE) method. We use McFadden’s Adjusted R2 to assess our models

where values between 0.2 and 0.4 indicate similar quality model fit as Ordinary Least Squares

Adjusted R2 values between 0.7 and 0.9 (Domencich and McFadden 1975, Louviere et al. 2000).

In the MH random walk algorithm for the logit model, the prior for β is set to a multivariate

normal distribution with the mean vector as the zero vector, the variances are 10,000, and the

covariances are zero. The first 5,000 samples are considered as the burn-in period and the

next 10,000 samples are collected for analysis. The starting value for β is set to the maximum

likelihood estimator for the likelihood function of the logit model. The acceptance rate for the

new values of β generated from the Markov chain is around 33% (the acceptance rate should

be between 30-35% for an optimal combination of exploration and exploitation steps).

In Table 6, we give the logit model results. The mean and standard deviation of the βi’s from

the MH random walk algorithm and logistic regression are presented. Since for each i, βi values

match for both the logistic regression and the MH random walk algorithm, our choice of the

prior in the MH random walk algorithm serves the purpose of a vague prior. The McFadden’s

Adjusted R2 value of 0.223 for the logistic regression indicates very good model fit. Also, all

coefficients of the regression model are significant at the 1% level, and the signs of the coefficients
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Table 6: Logit model results.

Coefficient Logistic Regression MH Random Walk Algorithm

Intercept (β1) −1.242∗∗∗ −1.242
(0.010) (0.010)

Shortest Distance (β2) −0.003∗∗∗ −0.003
(0.000009) (0.000009)

No of Pulses (β3) 0.019∗∗∗ 0.019
(0.00008) (0.00008)

No of Customers (β4) −0.003∗∗∗ −0.003
(0.00005) (0.00005)

McFadden’s Adjusted R2 0.223
∗∗∗p<0.01

Table 7: Probit model results.
Coefficient Probit Regression Gibbs Sampling Algorithm

Intercept (β1) −1.000∗∗∗ −1.024
(0.004) (0.091)

Shortest Distance (β2) −0.001∗∗∗ −0.001
(0.000004) (0.000105)

No of Pulses (β3) 0.007∗∗∗ 0.007
(0.00003) (0.00069)

No of Customers (β4) −0.002∗∗∗ −0.002
(0.00002) (0.00011)

McFadden’s Adjusted R2 0.200
∗∗∗p<0.01

of the three independent variables are what we expected. This indicates that we can perform

Bayesian updating for the logit model after receiving new data points instead of using logistic

regression.

In the Gibbs sampling algorithm for the probit model, in order to set the prior for β, B0 is

set to the zero vector and V0 is set to the diagonal matrix with diagonal entries of 10,000. We

collected 10,000 samples for analysis. The starting value for β is set to the zero vector.

In Table 7, we give the probit model results. The mean and standard deviation of the βi’s

from the Gibbs sampling algorithm and probit regression are presented. Since for each i, βi

values match for both the probit regression and the Gibbs sampling algorithm, our choice of

the prior in the Gibbs sampling algorithm serves the purpose of a vague prior. The McFadden’s
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Adjusted R2 value of 0.200 for the probit regression indicates very good model fit. Also, all

of the coefficients of the regression model are significant at the 1% level, and the signs of the

coefficients of the three independent variables are what we expected. This indicates that we

can perform Bayesian updating for the probit model after receiving new data points instead of

using probit regression.

6.3 Hierarchical Probit Model

For our meter reading problem, hierarchical models consider the signal transmission behav-

ior of individual meters and their interactions with the signals from other meters. Bayesian

updating for the hierarchical probit model is a more complex method for estimating the pij ’s

but the estimates are more accurate compared to Bayesian updating for the logit model and the

probit model. The hierarchical probit model accounts for the uncertain behavior of each meter

separately while also accounting for the similarity between meters.

The rationale behind using a hierarchical model for updating the probability estimates is

that each meter is inherently different from every other meter. Some meters are surrounded

by physical obstacles, some are on elevated ground, and some are old. New meters have better

technology. The meters have different stages of battery life. As the battery level of the meters

drop below a certain threshold, the signal transmission range decreases. All of these factors

affect the signal transmission behavior of the meters.

Let n be the number of meters and m be the number of street segments (counting repetitions)

traversed by the meter reading vehicle. Group the observations Read OR Notij into n buckets,

where bucket i contains observations on meter i. Each bucket contains m observations with one

from each traversed street segment. The probit model for each group i is called the lower level

model for meter i and is given by

Φ−1(pij) = β̂i,1 + β̂i,2 × Shortest Distanceij + β̂i,3 ×No of Pulsesj .

where β̂i,k = E(βi,k) and E() denotes the expected value. The lower level unknown parame-

ter vector βi = (βi,1, βi,2, βi,3)
> for each group i are 3-dimensional vector of coefficients and

are used as dependent variables in a multivariate linear model called the higher level model.

The data matrices Xi for each group i are (m × 3)-dimensional and the entries in the first
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column of each matrix are 1’s. The multivariate linear model is B = ZΘ + ∆, where ∆ is

the error term. B = (β>1 , . . . , β
>
n )> is an (n × 3)-dimensional matrix of the dependent vari-

ables. Z = (z>1 , . . . , z
>
n )> is an (n× 2)-dimensional matrix of the independent variables, where

zi = (1,No of Customersi)
> for each i is a 2-dimensional vector. The higher level unknown

parameter matrix Θ =

θ1,1 θ2,1 θ3,1

θ1,2 θ2,2 θ3,2

 is a (2 × 3)-dimensional matrix of coefficients from

the multivariate linear model. For each i, the multivariate linear model can be written as

βi = Θ>zi + δi, where δi ∼ Multivariate Normal (0,Λ) is the error term for the group i. We

have to estimate the lower level parameters βi’s for each meter i and the higher level parameters

Θ and Λ. In time period 1, we do not have any prior information about the parameters, so we

rely on the information obtained from the data. Therefore, the priors are set to vague priors.

The Gibbs sampling algorithm is used to estimate the parameters of the hierarchical pro-

bit model. The setup for this algorithm is as follows. The prior distributions for the lower

level parameters are p(βi) = Multivariate Normal (Θ>zi,Λ) for each i. The prior distri-

butions for the higher level parameters are p(vec[Θ>]) = Multivariate Normal (M0, V0) and

p(Λ) = Inverse-Wishart (c0, D0), where vec denotes the operator that transforms a matrix

into a vector by concatenating columns. We have y∗i ∼ Multivariate Normal (Xiβi, 1) and

yij = Indicator (y∗ij > 0), where yi = (yi1, . . . , yim)> is the dependent variable vector and y∗i =

(y∗i1, . . . , y
∗
im)> is the latent variable vector for group i. Therefore, the posterior distributions for

the lower level parameters are π(βi|y∗i ,Θ,Λ) = Multivariate Normal ((X>i Xi + Λ−1)−1(X>i y
∗
i +

Λ−1Θ>zi), (X
>
i Xi + Λ−1)−1) for each i, and the posterior distributions for the higher level pa-

rameters are π(vec[Θ>]|{y∗i },Λ, {βi}) = Multivariate Normal ((Z>Z ⊗ Λ−1 + V −10 )−1((Z> ⊗

Λ−1)vec[B>]+V −10 M0), (Z
>Z⊗Λ−1 +V −10 )−1) and π(Λ|{y∗i },Θ, {βi}) = Inverse-Wishart (c0 +

n,D0 + (B−ZΘ)>(B−ZΘ)). The Gibbs sampling algorithm for the hierarchical probit model

has six steps.

Step 1. Choose starting values for βi’s, Θ, and Λ.

Step 2. Draw [y∗i |yi, βi] for each group i.

Step 3. Draw [βi|y∗i ,Θ,Λ] for each group i.

Step 4. Draw [Θ|{y∗i },Λ, {βi}].
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Table 8: Hierarchical probit model results for the higher level parameter matrix.

Coefficient Gibbs Sampling Algorithm

θ1,1 −0.890
(0.241)

θ2,1 −0.002
(0.0009)

θ3,1 0.004
(0.002)

θ1,2 −0.0002
(0.0001)

θ2,2 −0.000003
(0.000004)

θ3,2 0.0000006
(0.000005)

Step 5. Draw [Λ|{y∗i },Θ, {βi}].

Step 6. Repeat Steps 2 to 5.

6.4 Hierarchical Probit Model Results

The size of the data sets used for estimating the lower level parameters in the probit models

for each meter i is m = 829. The size of the data set used for estimating the higher level

parameters in the multivariate linear model is n = 6, 067.

In the Gibbs sampling algorithm for the hierarchical probit model, in order to set the priors

for βi’s, Θ, and Λ, M0 is set to the zero vector and V0 is set to the diagonal matrix with diagonal

entries of 1,000. We set c0 to seven and D0 to the diagonal matrix with diagonal entries of three

(Press 2003, Rossi et al. 2005). We collected 10,000 samples for analysis. The starting values

for the βi’s and the starting value for Θ are set to the zero vector. The starting value for Λ is

sampled from Inverse-Wishart (c0 + n,D0).

In Table 8, we give the hierarchical probit model results for Θ. The mean and standard

deviation of the θi,j ’s from the Gibbs sampling algorithm are presented. Using these values, the

βi’s are calculated for each meter i.

In Figure 3, we show the histograms of the means of the βi’s from the Gibbs sampling
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Figure 3: Histograms of the means of the lower level parameters from the Gibbs sampling
algorithm for the hierarchical probit model.

algorithm for the hierarchical probit model. The three histograms belong to the coefficients of

the Intercept (β̂i,1), the Shortest Distance (β̂i,2), and the No of Pulses (β̂i,3), respectively, for

the lower level probit model in the hierarchical probit model. The histograms show the variation

in the coefficients for different meters that are not captured in the logit model or the probit

model. All of the meters have the same equation for estimating the pij ’s for the logit model and

the probit model. The hierarchical probit model gives individualized probability predictions pij

for each meter i. Thus, for the hierarchical probit model, each meter has its unique equation

for estimating the pij ’s.

7 Simulation Experiments

To compare and quantify the performance of the three Bayesian updating models on route

quality, simulation experiments are conducted using the data set with 6,067 meters, 1,575 street

segments, and 1,072 nodes. As the meter reading vehicle makes more trips and collects more

data, the parameters of the Bayesian updating models should get closer to the actual parameter

values. The actual parameter values depend on the street network and the distribution of the

meters in the street network. This will be demonstrated by the fact that the vehicle routes will

be adjusted over time to reduce the number of missed meters and still being cost-effective.
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7.1 Actual Reading Probabilities

To calculate the probabilities pij ’s for the three Bayesian updating models, we use the

parameter values estimated in Section 6. The pij ’s obtained are considered to be the actual

probabilities, denoted by pij ’s, with which meter i is read from street segment j at least once.

This assumption is reasonable since the size of the data set on which the model parameters are

estimated is very large (N ∼ 5 million for the logit model and the probit model, andm = 829 and

n = 6, 067 for the hierarchical probit model). To determine whether or not meter i is successfully

read from street segment j, we consider a binomial random variable Yij ∼ Binomial (M,pij),

where M is the number of times street segment j is traversed in the route. Meter i is considered

missed from the route of the vehicle if Yij = 0 for all street segments j in the route, i.e., meter

i has not been read from any of the street segments traversed by the vehicle.

For the logit model, ln(pij/1 − pij) = −1.242 − 0.003 × Shortest Distanceij + 0.019 ×

No of Pulsesj − 0.003×No of Customersi, where Shortest Distanceij is in meters.

For the probit model, Φ−1(pij) = −1.024−0.001×Shortest Distanceij+0.007×No of Pulsesj−

0.002×No of Customersi, where Shortest Distanceij is in meters.

For the hierarchical probit model, E(βi) = E(ΘT )zi for each i. Therefore,


β̂i,1

β̂i,2

β̂i,3

 =


−0.890 −0.0002

−0.002 −0.000003

0.004 0.0000006


 1

No of Customersi

 .

So, Φ−1(pij) = (−0.890−0.0002×No of Customersi)+(−0.002−0.000003×No of Customersi)×

Shortest Distanceij + (0.004 + 0.0000006×No of Customersi)×No of Pulsesj , where Shortest -

Distanceij is in meters.

7.2 Simulation Model Overview

A simulation starts from an initial vehicle route. This is iteration zero or the initialization

step. To construct the initial route, pij is set to 1 if meter i is within 500 feet from street

segment j and 0 otherwise. First, the linear Stage 1 IP is solved to obtain the required street

segments. The specified likelihood (Li) values do not affect the Stage 1 IP solution in iteration

zero because of the particular choice of the pij ’s. Then the full route is produced using the route
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generator and the route trimmer. This initial route is a deterministic CEVRP solution which is

currently used by utility companies. Therefore, we use this initial route as a benchmark for our

experiments. In the first iteration, the Yij ’s are generated based on the initial route. Since we

do not have any information about the pij ’s during the first iteration (this is analogous to time

period 1 as described in Section 6), the prior distributions for the parameters of the Bayesian

updating models are set to the vague priors. Using the priors and the meter reading data (Yij

as the dependent variable and Shortest Distanceij , No of Pulsesj , and No of Customersi as the

independent variables), we obtain the posterior distributions of the parameters, and thereby

the updated pij ’s. A new route is produced based on the updated pij ’s. For all subsequent

iterations, the Yij ’s are generated based on the current route; the posterior distributions from

the previous iteration are used as the prior distributions.

An iteration in the simulation experiment represents the generation of a new route for the

next meter reading day after updating the probabilities pij ’s using the previous meter reading

data. Therefore, our simulation model can be used by a utility company as a decision-support

tool to generate robust and cost-effective routes. The only difference would be that the utility

companies have access to the actual dependent variable values (Read OR Notij) after the vehicle

has traversed the route, whereas, for the simulations, we generate the Yij ’s based on the pij ’s

and the route to identify the missed meters.

7.3 Generating the Network

Our data set is from Hartford, Connecticut. The OAR Bench software (Lum et al. 2018)

is used to extract the metadata of the street network (information about nodes, edges, and

arcs). The coordinate system used by OAR Bench is the World Geodetic System (WGS) 84.

The meter locations in the ArcGIS data are also in WGS 84 format. WGS 84 is the reference

coordinate system used by the Global Positioning System (GPS). The Universal Transverse

Mercator (UTM) conformal projection (map projections that preserve angles locally) uses a

2-dimensional Cartesian coordinate system to give locations on the surface of the Earth by

dividing the Earth into sixty zones. The metadata of the street network and the meter locations

are converted from the WGS 84 format to the UTM format using the UTM zone number of

Hartford, Connecticut. The street network and the meter locations in the UTM format are

considered to be on a flat surface. Therefore, Euclidean geometry can be used to find spatial
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Figure 4: (Color online) A view of a portion of the actual street network with meter locations in
the UTM format serviced by Connecticut Natural Gas in our data set from Hartford, Connecti-
cut. The red dots represent the meters. This network is used for our simulation experiments.

distances between any two points in the network. Figure 4 gives a view of the actual street

network with meter locations in the UTM format.

7.4 Simulation Results

Simulations are conducted for each of the three Bayesian updating models, for both the

single-objective and the bi-objective linear Stage 1 IP, and for Li values of 0.95 and 0.75 for all

i. In total, we perform 12 (3 × 2 × 2) simulation experiments. Each simulation is run for nine

iterations. The initial route in iteration zero depends on the version of the Stage 1 IP used for

that particular simulation experiment. A simulation using the single-objective linear Stage 1 IP
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Figure 5: (Color online) Simulation results for the route length.
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(a) Single-objective Stage 1 IP and likelihood values of 0.75
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(b) Single-objective Stage 1 IP and likelihood values of 0.95
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(c) Bi-objective Stage 1 IP and likelihood values of 0.75
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(d) Bi-objective Stage 1 IP and likelihood values of 0.95

has a different initial route compared to a simulation using the bi-objective linear Stage 1 IP.

The meter reading vehicles are driven at five miles per hour in residential neighborhoods.

Drivers are encouraged to drive at a slow speed to increase the chances of reading the uncertain

RFID signals. We assume five minutes to manually read a meter (these are the meters that

are infeasible with respect to constraints (2) in the Stage 1 IP) after parking the vehicle on the

closest street segment. The route lengths are in miles. For each meter that is supposed to be

manually read, we add 0.42 miles to the full route length as a proxy for the distance that could

have been traversed in five minutes at five miles per hour. We use an i7 CPU with 32 GB RAM

for the simulations. We use R software version 3.3.1 to run the Bayesian updating models and

Gurobi version 7.5 to solve the linear Stage 1 IP. Each time the linear Stage 1 IP is solved or the

route generator is used, a time limit of 10 minutes and two minutes, respectively, is imposed.

In Figures 5 and 6, we show the results of the simulation experiments for the route length

and the number of missed meters, respectively. Both figures show the results of the three
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Figure 6: (Color online) Simulation results for the number of missed meters.
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(a) Single-objective Stage 1 IP and likelihood values of 0.75
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(b) Single-objective Stage 1 IP and likelihood values of 0.95
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(c) Bi-objective Stage 1 IP and likelihood values of 0.75
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(d) Bi-objective Stage 1 IP and likelihood values of 0.95

Bayesian updating models in four different scenarios, namely, single-objective linear Stage 1 IP

and likelihood values of 0.75 (scenario a), single-objective linear Stage 1 IP and likelihood values

of 0.95 (scenario b), bi-objective linear Stage 1 IP and likelihood values of 0.75 (scenario c),

and bi-objective linear Stage 1 IP and likelihood values of 0.95 (scenario d). Figure 5 shows the

results from iteration 0 (initial route) through iteration 9, whereas, Figure 6 shows the results

from iteration 1 through iteration 9. The missed meters (Figure 6) in iteration k are based

on the route (Figure 5) in iteration k − 1 and also leads to the formation of the new route in

iteration k.

In each of the four scenarios depicted in Figures 5 and 6, the logit model and the probit

model do not show any significant differences. The initial routes are approximately 20 miles

and there are 279 missed meters in scenarios a and b and 379 missed meters in scenarios c and

d. The logit model and the probit model, on average, generated routes 17 miles long and missed

148 meters in scenarios a and c, and routes 37 miles long and missed 60 meters in scenarios b

and d. An increase in the likelihood values from 0.75 to 0.95 increased the route length from
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17 miles to 37 miles and reduced the number of missed meters from 148 to 60. However, the

choice of the Stage 1 IP did not have any substantial impact on the results. For the routes to

be operationally impactful to the extent that there is no need to send another vehicle at a later

time to read the missed meters, the number of missed meters needs to be reduced further.

The hierarchical probit model, in each of the four scenarios shown in Figure 5, shows a large

increase in route lengths compared to the initial routes of 20 miles. However, the route lengths

gradually decreased to around 28 miles in scenarios a and c, and around 52 miles in scenarios

b and d. The hierarchical probit model, as shown in Figure 6, on average, missed six meters

in scenarios a and c and one meter in scenarios b and d. The choice of the Stage 1 IP did not

have any significant impact on the results. The probability estimates of the hierarchical probit

model get very close to the actual probabilities within a few iterations. Therefore, even with

likelihood values of 0.75, the routes generated are very high quality (only six meters are missed

from these routes that are just 8 miles longer than the initial routes). These routes should be of

high operational and practical relevance for a utility company. Likelihood values of 0.95 make

the routes substantially longer, thereby, increasing the cost.

In Bayesian updating, the posterior distribution of the model parameters is a compromise

between prior information and the information provided by the new data. This helps in the

inference on the parameters since, if the new data are smaller in size (this leads to model param-

eters with distributions of high variance), we want to rely more on prior knowledge. Conversely,

if the data are plentiful and contain high-quality information, then we should not care much

about the form of the prior information. The Bayesian updating process automatically considers

this trade-off. For the hierarchical probit model, the meter reading data obtained from a route

are divided into small segments to learn about the behavior of each meter separately. Therefore,

the size of the data is effectively a few orders of magnitude smaller for the hierarchical probit

model compared to the logit model and the probit model. This leads to more dependence on

the priors for the posterior distributions of the hierarchical probit model. When we estimated

the parameters of the Bayesian updating models in Section 6 using our real meter reading data,

the logit model and the probit model used 6, 067× 829 (∼ 5 million) data points, whereas, the

hierarchical probit model used 829 data points for each of the lower level probit models and

6,067 data points for the higher level multivariate linear model. The simulation experiments

were started using vague priors because we did not have any prior information on the param-
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Table 9: Average comparison of the total time to read all the meters.

Model d1 h d2 Total time

Initial (benchmark) route 20 329 25.58 33.12
Logit or Probit for likelihood values of 0.75 17 148 24.62 17.37
Logit or Probit for likelihood values of 0.95 37 60 18.37 13.62
Hierarchical Probit for likelihood values of 0.75 28 6 8.35 6.65
Hierarchical Probit for likelihood values of 0.95 52 1 6.99 10.95

eters. Therefore, to lower the variance of the posterior distributions, the hierarchical probit

model produced longer routes to gather more meter reading data and, thereby, improved the

quality of the probability estimates.

For a utility company, the total cost of reading meters in each time period (iteration) is

divided into two phases. The first phase is the cost of the CEVRP routes to read the meters

automatically. The second phase is the cost of reading the meters that are missed from the

first phase route. Typically, a public utility commission does not allow billing cycles to shift

more than two or three days. Therefore, it is necessary to send out another vehicle to manually

read the missed meters within a few days after the completion of the first phase. We compare

the quality of the initial (benchmark) route and the routes generated by the three Bayesian

updating models taking into account the cost from both phases. Let d1 denote the length (in

miles) of the route in the first phase. A meter reading vehicle is driven at five miles per hour,

so the first phase route will take d1/5 hours to complete. Let h denote the number of meters

missed from the first phase route. During the second phase, the missed meters are read manually

to ensure success with probability one (a vehicle is driven at a speed of around 15 miles per

hour and stops at each missed meter to read it). The second phase is a standard VRP route. A

utility company knows which meters are missed from the first phase route. It will have the exact

standard VRP route length to read the missed meters. In our simulations, we discuss the results

averaged over the nine iterations and need to estimate the route length for the second phase.

Kwon et al. (1995) showed that (0.8326−0.0011(h+1)+1.1147G/(h+1))
√

(h+ 1)D, where D

is the area of the rectangular network and G is the ratio of length and breadth of the network

such that G ≥ 1, gives a reasonable estimate of the standard VRP route length as a function

of the number of customers (h) on the route. For our data set, G = 1.5 and D = 8.8 square

miles. Let d2 denote the estimate of the length (in miles) of the route in the second phase; the

route will take d2/15 hours to complete. If we assume five minutes to manually read a meter,
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it will take h/12 hours to read h missed meters. The total time (in hours) required to read all

meters is the sum of the first phase time (d1/5) and the second phase time (d2/15 + h/12). In

Table 9, we show the average comparison of the total time for the benchmark route and the

routes generated by the three Bayesian updating models. All three models took much less time

than the benchmark route. For the logit and the probit models, the total time was a few hours

less for likelihood values of 0.95 compared to likelihood values of 0.75. This is because the time

required to read the missed meters in the second phase was smaller even though the first phase

routes were longer for likelihood values of 0.95. The hierarchical probit model does considerably

better than the logit or the probit models. For likelihood values of 0.75, the hierarchical probit

model takes only 6.5 hours to read all the meters. The hierarchical probit model for likelihood

values of 0.95 has a longer first phase route without significantly reducing the second phase time

compared to the likelihood values of 0.75.

8 Conclusions and Future Directions

We developed an iterative methodology to read uncertain RFID signals from utility meters

using vehicles at some distance. Every time we get access to new meter reading data, we learn

about the probabilities pij ’s. The two-stage IP, representing the meter reading problem, is then

re-solved to generate routes that are robust for addressing the uncertainty. Even though the

routes generated by our procedure are a few miles longer than the benchmark route, the routes

are cost-effective when compared to the costs incurred by sending a vehicle at a later time to

read the missed meters. The two-stage IP formulation is deterministic even though the meter

reading problem has an inherent stochastic set up. The Stage 1 IP, which gives us the required

street segments to reach a specified service level for each meter, is linear in the decision vari-

ables. Computational experiments showed that the linear Stage 1 IP can be optimally solved

within a few seconds for large data sets. Since the Stage 2 IP is NP-complete, we developed a

fast metaheuristic that generated and further improved the full route, and still maintained the

specified service levels for each meter. We developed three Bayesian updating models to learn

from the new incoming data in an efficient way and avoid the drawbacks faced in regression.

We cross-checked our choice for the priors in the Bayesian models by comparing the parameter

estimates of the logit model and the probit model with their regression counterparts. We showed
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that the hierarchical probit Bayesian updating model produces more accurate probability esti-

mates for each meter compared to the other two models. We conducted simulation experiments

to compare the route qualities for the three Bayesian models and the benchmark routes used

by utility companies. In our simulations, we used an actual street network and meter locations,

which is different from the artificial networks used in the literature. Our simulation results

showed that the routes generated by the hierarchical probit model with likelihood values of 0.75

are operationally useful because almost all meters are read with only a few miles of extra travel

compared to the initial route and the total time in the two phases to read all the meters is 6.5

hours which fits into a typical 8 hour workday schedule for the drivers.

Typically, the drivers of service vehicles are more comfortable traveling through the same

neighborhoods on their routes. For a utility company, this leads to meter reading routes that look

similar in every period. Because of this, we do not have any information about the actual meter

reading potential from most of the street segments in the network. The iterative framework

proposed and discussed in this paper to generate robust routes will be more effective when we

have actual meter reading data from a larger set of street segments. In future work, using

Bayesian decision theory and route optimization, we would like to be able to identify new street

segments to traverse at each time period so that the information gain is maximized without

having to travel many extra miles.

Appendix. Remove and Repair Procedure of the Route Trimmer

In Table 10, we give the algorithm for the remove and repair procedure of the route trimmer.

Lines 1-4 are the initialization steps. HaveToBeRequired is the subset of the required street

segments that should be a part of the route. CandidateList is the subset of the required

street segments that could potentially be removed from the route or replaced with other street

segments. RequiredSegments is the set of required street segments that will be used by the

route generator to generate the full route. BestRoute is the route that is feasible and shortest

in length. Line 5 indicates that the algorithm will loop until the CandidateList is empty. Lines

6-13 represent the remove procedure. Street segment smc in the CandidateList with the highest

marginal cost in the BestRoute is removed. CandidateList and RequiredSegments are updated

and route Rsmc is generated using the route generator. If Rsmc is feasible, CountInfeasible,
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Table 10: Algorithm for the remove and repair procedure of the route trimmer.

1: HaveToBeRequired ←MR;
2: CandidateList ← ER ∪AR \MR;
3: RequiredSegments ← ER ∪AR;
4: BestRoute ← Full route obtained using route generator;
5: while CandidateList 6= ∅ do
6: Find smc ∈ CandidateList which has the highest marginal cost in BestRoute;
7: CandidateList ← CandidateList \ smc;
8: RequiredSegments ← HaveToBeRequired ∪ CandidateList ;
9: Generate full route Rsmc using route generator;
10: if Rsmc meets the specified likelihood Li of reading each meter i then
11: CountInfeasible ← 0;
12: if Length of Rsmc < Length of BestRoute then
13: BestRoute ← Rsmc ;
14: else
15: Success ← FALSE;
16: PossibleSegments ← ∅;
17: for all sn /∈ RequiredSegments ∪ smc do
18: if constraint (2) is feasible for all the meters with xj = 1 and j ∈

RequiredSegments ∪ sn then
19: PossibleSegments ← PossibleSegments ∪ sn;
20: for all sp ∈ PossibleSegments do
21: RequiredSegments ← RequiredSegments ∪ sp;
22: Generate full route R

sp
smc using route generator;

23: RequiredSegments ← RequiredSegments \ sp;
24: if Length of R

sp
smc < Length of BestRoute then

25: BestRoute ← R
sp
smc ;

26: Success ← TRUE;
27: if Success = FALSE then
28: HaveToBeRequired ← HaveToBeRequired ∪ smc;
29: CountInfeasible ← CountInfeasible + 1;
30: if CountInfeasible > 10 then
31: break;

an infeasibility counter for a route, is set to zero, and if the length of Rsmc is smaller than

the length of the BestRoute, Rsmc becomes the new BestRoute. Lines 14-30 represent the

repair procedure. If Rsmc is infeasible, the repair procedure tries to add another street segment

to remove the infeasibility. Success, a binary variable representing the success of the repair

procedure, is initialized to FALSE. PossibleSegments is the subset of street segments outside

of RequiredSegments and smc, each of which, if added to RequiredSegments, has the potential

of generating a shorter route compared to the current BestRoute. If any street segment sn,

outside of the RequiredSegments and smc, satisfies constraint (2) of the Stage 1 IP along with

the RequiredSegments, then sn is added to the PossibleSegments. For each street segment sp
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in PossibleSegments, a route R
sp
smc is generated using the route generator with the required

street segments being the RequiredSegments and sp. The routes R
sp
smc , for each sp, and the

BestRoute are compared and the shortest route is set as the new BestRoute. If the repair

procedure improves the BestRoute, Success is updated to TRUE. If Success is FALSE after the

repair procedure, i.e., both the remove and the repair procedures involving street segment smc is

unsuccessful, then smc is added to the HaveToBeRequired and the CountInfeasible is increased

by one. The loop repeats by choosing a new smc from the current CandidateList, given that it is

non-empty, based on the current BestRoute unless CountInfeasible is greater than the stopping

criterion, which is set to 10.
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Online Appendix. Analysis and Insights from a Smaller Data Set

A smaller data set was gathered during the second half of 2015 by ITRON and provided

by RouteSmart Technologies. This data set gives meter locations and reading data in Liberty

Lake, Washington. A summary of the data set is given in Table A.1.

A Detailed Data Analysis

In Figure A.1, we use box plots to show the relationship between the minimum time interval

between reads and the number of reads. Consider the value of three on the x-axis, i.e., the

number of reads is three. We are considering meters in the service location layer that are read

exactly three times from the route traversed by the meter reading vehicle (there are 29 such

meters). For these meters, we have a time interval between their first read and second read,

and a time interval between their second read and third read. We take the minimum of these

Table A.1: Summary of the data set.

Total number of meters in the service location layer 474
Number of meters in the service location layer that are read 209
Total number of read events 28,745
Number of read events from meters in the service location layer 827
Number of street segments traversed in the route 7
Time gap between consecutive signal transmission (sec) 13
Maximum read distance among all meters in the service location layer (feet) 3,510

Figure A.1: Minimum time interval between reads.
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Figure A.2: Maximum read distance.

two time intervals for each of the 29 meters. The 29 minimum time interval values, which range

from 13 seconds to 59 seconds, are shown using a box plot at x = 3. We observe that most of

the large values of the minimum time interval occur with a fewer number of reads. When the

number of reads is less for a meter, the vehicle is probably farther from the meter most of the

time on the route. The vehicle probably came close to the meter for small portions of the route.

When the number of reads is larger for a meter, the vehicle is probably closer to the meter for

a longer duration. The vehicle should have read that meter every second. However, this is not

the case. Instead, for this data set, the minimum time intervals attain a constant value of 13

seconds. This value is the time gap between consecutive signals sent by the RFID transmitters.

In Figure A.2, we use box plots to show the relationship between the maximum read distance

and the number of reads. Again, consider the value of three on the x-axis. For the 29 meters,

we have the read distances for each of their three reads. We take the maximum of these three

read distances for each of the meters. These 29 maximum read distance values, which range

from 808 feet to 3,052 feet, are shown using a box plot at x = 3. From our observations, it seems

that the chances of having larger values of the maximum read distance increases for meters with

a smaller number of reads. This also confirms our observations from Figure A.1. When the

number of reads is less for a meter, the vehicle is farther from the meter most of the time on a

route; when the number of reads is larger for a meter, the vehicle is closer to the meter for a

longer duration.
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Table A.2: Results based on the analysis from Step 4.

Radius (feet) Cumulative Success Non-Cumulative Success

100 14/14 = 1.00 14/14 = 1.00
200 35/35 = 1.00 21/21 = 1.00
300 53/54 = 0.98 18/19 = 0.95
400 64/67 = 0.96 11/13 = 0.85
500 74/78 = 0.95 10/11 = 0.91
600 85/94 = 0.90 11/16 = 0.69
700 97/108 = 0.90 12/14 = 0.86
800 117/131 = 0.89 20/23 = 0.87
900 129/147 = 0.88 12/16 = 0.75

1000 149/171 = 0.87 20/24 = 0.83

We perform additional analysis on the data set with respect to a meter being read or not

being read. In the first step, the route traversed by a meter reading vehicle is discretized using

the distinct geographic coordinates of the vehicle’s location during the read events. In the second

step, the shortest distance of the meters from the route traversed by a vehicle is calculated using

the distinct locations of the vehicle. In the third step, around each of the distinct points in the

discretized route, a circular disc (radius of 100 feet to 1000 feet with steps of 100) is considered.

In the fourth step, for each radius, we count the number of meters within at least one of the

circular discs and the number of meters that are read (regardless from where the meters are

read).

In Table A.2, we provide the results based on the analysis from the four steps described

above. The fraction of meters read are calculated both cumulatively and non-cumulatively for

each of the 10 different radii, ranging from 100 feet to 1000 feet. The entries in the two columns

have the form a/b, where b denotes the number of meters within that radius for the cumulative

case and the number of meters between that radius and the preceding lower radius considered

for the non-cumulative case, and a denotes the number of meters read out of those b meters.

The fractions in the cumulative case show a gradual decrease in success with an increase in the

distance of meters from the route. We do not observe any specific trend for the non-cumulative

case. In the non-cumulative case, we note that the smallest value of the fraction occurs for

meters that are at a distance of 500 feet to 600 feet from the route. This observation indicates

that the shortest distance of meters from routes is not the only key factor for reading a meter

successfully. Otherwise, the non-cumulative case would have followed the same trend as the

cumulative case.
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B Regression and Bayesian Updating

We constructed six logistic regression models and six probit regression models. For the

logistic and probit regressions, Model 1 uses three independent variables: Shortest Distanceij ,

No of Pulsesj , and No of Customersi. Model 2 adds indicator variables for the traversed street

segments to Model 1. Model 3 adds indicator variables for the meters to Model 1. Model 4

adds indicator variables for the traversed street segments to Model 3. Model 5 uses Short-

est Distanceij , No of Pulsesj , and indicator variables for the meters. Model 6 adds indicator

variables for the traversed street segments to Model 5. The data used for estimating the pa-

rameters is N = 474 (number of meters)× 7 (number of traversed street segments) = 3, 318.

In Tables B.1 and B.2, we present the logistic regression results and the probit regression

results, respectively. We give the means of the coefficients of the independent variables and

their standard deviations in parenthesis. The results in Tables B.1 and B.2 for the six models

are similar for both logistic regressions and probit regressions. For each of the six models in

both regressions, the coefficient of Shortest Distance is always significant and negative; the

coefficient of No of Pulses whenever significant is positive; the coefficient of No of Customers

whenever significant is negative. In Figures B.1 and B.2, we give the histograms for the fitted

values of the dependent variable from the logistic regression models and the probit regression

models, respectively. The histograms for each of the six logistic regression models are similar

to the histograms for each of the six respective probit regression models.

In Tables B.1 and B.2 for both regressions, all three independent variables are significant

at the 1% level in Model 1. In Model 2, for both regressions, No of Pulses is not significant,

and the other two independent variables are significant at the 1% level in the presence of street

dummies. In Model 3, for both regressions, No of Customers is not significant, and the other

two independent variables are significant at the 1% level in the presence of customer dummies.

In Model 4, for both regressions, No of Customers is not significant, Shortest Distance is sig-

nificant at the 1% level, and No of Pulses is significant at the 5% level and the 10% level for

logistic regression and probit regression, respectively, in the presence of both street dummies

and customer dummies. In two of the first four models, No of Customers is not significant, so we

construct two models with customer dummies that leave out No of Customers. In Model 5, for

both regressions, the two independent variables are significant at the 1% level in the presence of
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Table B.1: Logistic regression results.
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customer dummies. In Model 6, for both regressions, Shortest Distance is significant at the 1%

level, and No of Pulses is significant at the 5% level and the 10% level for logistic regression and

probit regression, respectively, in the presence of both street dummies and customer dummies.

Based on the results in Tables B.1 and B.2, Model 1 and Model 2 perform the best for both

logistic regression and probit regression, with Model 2 performing slightly better than Model

1. The simplicity of Model 1 without any dummies, however, makes it preferable to Model 2.
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Table B.2: Probit regression results.
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Model 1 has McFadden’s Adjusted R2 values of 0.514 and 0.512 for logistic regression and probit

regression, respectively. These values indicate very good model fits. We also tried models with

higher powers of independent variables and with interactions between independent variables but

none of them performed better than Model 1 for both logistic regression and probit regression.

In Tables B.3 and B.4, we give the logit model results and the probit model results, respec-

tively. The mean and standard deviation of the βi’s from the MH random walk algorithm and
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Figure B.1: Histograms of fitted values from the logistic regressions.
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logistic regression, and the Gibbs sampling algorithm and probit regression are presented. Since,

for each i, βi values match for both the logistic regression and the MH random walk algorithm,

and both the probit regression and the Gibbs sampling algorithm, our choice of the prior in both

algorithms serves the purpose of a vague prior. This indicates that we can perform Bayesian

updating for the logit model and the probit model after receiving new data points instead of

using logistic regression or probit regression, respectively.

In Table B.5, we give the hierarchical probit model results for Θ. The mean and standard
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Figure B.2: Histograms of fitted values from the probit regressions.
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deviation of the θi,j ’s from the Gibbs sampling algorithm are presented. In Figure B.3, we show

the histograms of the means of the βi’s from the Gibbs sampling algorithm for the hierarchical

probit model. The three histograms belong to the coefficients of the Intercept (β̂i,1), the Short-

est Distance (β̂i,2), and the No of Pulses (β̂i,3), respectively, for the lower level probit model in

the hierarchical probit model. The histograms show the variation in the coefficients for different

meters that are not captured in the logit model or the probit model. The hierarchical probit

model gives individualized probability predictions pij for each meter i. The size of the data sets
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Table B.3: Logit model results.

Coefficient Logistic Regression MH Random Walk Algorithm

Intercept (β1) 2.852 2.860
(0.258) (0.267)

Shortest Distance (β2) −0.003 −0.003
(0.0002) (0.0001)

No of Pulses (β3) 0.060 0.060
(0.010) (0.009)

No of Customers (β4) −0.017 −0.018
(0.005) (0.005)

Table B.4: Probit model results.
Coefficient Probit Regression Gibbs Sampling Algorithm

Intercept (β1) 1.721 1.733
(0.147) (0.166)

Shortest Distance (β2) −0.002 −0.002
(0.0001) (0.0001)

No of Pulses (β3) 0.032 0.032
(0.005) (0.005)

No of Customers (β4) −0.013 −0.013
(0.003) (0.003)

used for estimating the lower level parameters in the probit models for each meter i is m = 7.

The size of the data set used for estimating the higher level parameters in the multivariate linear

regression model is n = 474.
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Table B.5: Hierarchical probit model results for the higher level parameter matrix.

Coefficient Gibbs Sampling Algorithm

θ1,1 11.685
(4.008)

θ2,1 −0.010
(0.009)

θ3,1 −0.101
(0.090)

θ1,2 0.013
(0.061)

θ2,2 −0.0002
(0.0002)

θ3,2 0.005
(0.002)

Figure B.3: Histograms of the means of the lower level parameters from the Gibbs sampling
algorithm for the hierarchical probit model.
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