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INTRODUCTION 

Surgery is the cornerstone of medical treatment of numerous benign conditions such as 

gallstone disease, but also of malignancies such as colorectal and thyroid cancer. Every 

surgical procedure does incorporate a risk for complications.1,2 Part of these complications 

occur during surgery and are caused by incorrect identification of vital anatomical structures. 

For example, with respect to the most frequently performed laparoscopic procedure, 

laparoscopic cholecystectomy, bile duct injury is the most feared complication because of 

its associated significant morbidity and even mortality. Misidentification of the extrahepatic 

bile duct anatomy during the laparoscopic cholecystectomy seems to be the main cause of 

bile duct injury.3 

Another example is iatrogenic injury of the ureter during colorectal or gynecologic 

surgery. In order to prevent such injury during procedures in which the ureter is specifically 

at risk, time is spent to identify the exact location of the ureter. A third example is 

inadvertent resection of parathyroid tissue during thyroid surgery. Preservation of the 

parathyroid glands during thyroid surgery is important to maintain calcium homeostasis. 

These parathyroid glands can be very hard to identify, causing unwilling resection of the 

parathyroid tissue, potentially resulting in hypoparathyroidism, which occurs in 18% of 

thyroidectomy patients.4

Hence in various procedures it is of great importance to be able to distinguish vital 

structures in the surgical field such as bile ducts, parathyroid glands, ureters and arteries. 

An optical tool that can help identify anatomy might facilitate the surgeon in critical 

intraoperative decision-making, thereby improving the safety and outcome for the patients. 

One potential optical tool is near-infrared fluorescence (NIRF) imaging. The use of NIRF 

imaging is based on the administration of an exogenous contrast agent (i.e. a fluorescent 

dye), which can be visualized in the human body using a dedicated imaging system. The dye 

can be excited when exposed to a specific wave length in the near-infrared light spectrum, 

see Figure 1. When excited, the dye becomes fluorescent and can then be visualized and 

detected by using a special filter in front of the camera. 

In Figure 2 a schematic overview of the use of this technique in practice is given. First, a 

fluorescent dye is administered, mostly intravenously. Then, a laser controller shines light in 

the exact right wavelength on this fluorescent dye, making it fluorescent. The fluorescent 

signal can then be detected using a camera which is equipped with a specific filter, only 

allowing the wavelength the fluorescent dye produces. The video-recordings can then 

be seen on the screen, with illuminating caused by the fluorescent dye in the patient’s 

body. When the dye is located in the vascular system, fluorescence angiography can be 

performed using this technique. This opens the possibility to visualize perfusion of the 
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intestines e.g. before and after constructing bowel anastomoses in colorectal surgery. 

When the dye is cleared by the liver, it will be collected in the bile ducts, facilitating the 

visualization of the extra-hepatic biliary anatomy. When cleared by the kidneys, the dye can 

be applied for ureteral delineation during pelvic interventions, e.g. in gynecologic, urologic 

or gastrointestinal surgery.

Figure 1 Wave length of visible and near infrared light 
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In Figure 2 a schematic overview of the use of this technique in practice is given. First, a fluorescent 
dye is administered, mostly intravenously. Then, a laser controller shines light in the exact right 
wavelength on this fluorescent dye, making it fluorescent. The fluorescent signal can then be 
detected using a camera which is equipped with a specific filter, only allowing the wavelength the 
fluorescent dye produces. The video-recordings can then be seen on the screen, with illuminating 
caused by the fluorescent dye in the patient’s body. When the dye is located in the vascular system, 
fluorescence angiography can be performed using this technique. This opens the possibility to 
visualize perfusion of the intestines e.g. before and after constructing bowel anastomoses in 
colorectal surgery. When the dye is cleared by the liver, it will be collected in the bile ducts, 
facilitating the visualization of the extra-hepatic biliary anatomy. When cleared by the kidneys, the 
dye can be applied for ureteral delineation during pelvic interventions, e.g. in gynecologic, urologic or 
gastrointestinal surgery. 
 
 
Figure 2 Schematic overview of the use of NIRF in surgery 

  
 

The great potential of NIRF imaging is that the fluorescent dye can shine through a bile duct wall or 
vascular walls, because of a higher penetration depth (up to 5-10 mm) compared to light in the 
visible light spectrum. Another advantage is that no radiological support is needed, which is for 
example mandatory in conventional x-ray cholangiography. Moreover, the patient is not exposed to 
any ionizing radiation. 

Figure 2 Schematic overview of the use of NIRF in surgery
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The great potential of NIRF imaging is that the fluorescent dye can shine through a bile duct 

wall or vascular walls, because of a higher penetration depth (up to 5-10 mm) compared 

to light in the visible light spectrum. Another advantage is that no radiological support is 

needed, which is for example mandatory in conventional x-ray cholangiography. Moreover, 

the patient is not exposed to any ionizing radiation.

Nowadays, several fluorescent dyes are used. The most commonly used dye, approved for 

clinical use, is indocyanine green (ICG). The use of ICG is reported since 1960 for assessing 

hepatic blood flow.5 In 1969, the use of infrared angiography was first reported to study 

pial vessels in dogs.6 In 1972, the first use of this technique in humans was described.7 

Later, in 1973, Flower and Hochheimer actually report to have performed ICG-fluorescence 

angiography to visualize the choroidal vessels using a fundus camera with filters, showing 

only the exited light from the vessels filled with ICG and blocking the reflection in the 

fundus.8 This application is used to assess the choroidal vessels and thereby assess possible 

pathological choroidal patterns such as in senile macular degeneration, diabetic retinopathy 

and choroidal tumors.9 

ICG binds quickly to albumin after intravenous administration.5 As mentioned, ICG is 

exclusively cleared by the liver. ICG is a small molecule (molecule mass 775 Dalton) and 

the plasma-half-life is short with 1-2 minutes.10 The excitation and emission peaks are 

respectively near 780 and 830 nm.11

Another fluorescent dye approved for human use is methylene blue. Apart from the 

fluorescence, methylene blue is used for its pharmacological properties and as a staining 

agent. The pharmacological properties are used for treatment of methemoglobinemia12, 

treatment of resistant plaque psoriasis13 and as antimalarial medication.14 In very high doses 

it can be used as a vasopressor.15 Methylene blue is cleared by the kidneys and can therefore 

possibly be used to visualize the ureters. The peak excitation of methylene blue is 668nm, 

and peak emission at 688nm.16

New NIRF dyes are being developed but are still at an experimental stage. The IR-Dyes (LI-

COR, Licon, Nebraska) are such agents. FDA approval for in-human use is expected to be 

obtained soon for the dyes IRDye® 800CW, IRDye® 800BK and IRDye® 800NOS.17 The excitation 

and emission peak of these dyes are 775 and 796 nm for IRDYE® 800NOS, 774 and 790nm 

for IRDye® 800BK and 767 and 786nm in IRDye® 800NOS. The advantages of these dyes are 

the similar wavelengths as compared to ICG, enabling the use of the presently available 

commercial systems and its improved hydrophilicity, causing faster biliary secretion and 

thereby earlier illumination of the bile ducts. In addition, these dyes are cleared both by 

the liver and the kidneys, making visualization of both the biliary anatomy as the ureters 

possible. 
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As described, the NIRF imaging technique is not entirely new, as it has already been used for 

almost fifty years in ophthalmology. In surgery, this technique was first used in humans by 

Mitsuhashi in 2008, followed by Ishizawa et al in 2010, both to visualize the biliary anatomy.18,19 

In 2012, the first publication on NIRF imaging during laparoscopic cholecystectomy from 

our research group was published online.20 Hereafter, many more publications from all over 

the world followed. Other applications were described, such as the use of fluorescence 

imaging for assessment of bowel perfusion in anastomotic surgery21, intraoperative ureteral 

visualization22 and real-time parathyroid gland identification.23 In these studies, almost 

exclusively promising results were found. However, the use of NIRF imaging was not yet 

implemented in standard clinical practice at the start of this thesis. 

AIMS AND OUTLINE OF THIS THESIS 

The overall aim of this thesis was to investigate some of the presently possible applications 

of near infrared fluorescence imaging during surgery in order to prevent iatrogenic damage 

due to misrecognition of the anatomy. 

PART I NEAR INFRARED FLUORESCENCE CHOLANGIOGRAPHY

In this part, the use of near infrared fluorescence imaging in visualizing the biliary structures 

during laparoscopic cholecystectomy is described. Chapter 2 contains the protocol of an 

international multicenter international randomized controlled trial to investigate the added 

value of the use of near infrared fluorescence in laparoscopic cholecystectomies. Chapter 3 

presents possible parameters of influence on the obtained intensity of the fluorescence 

signal during laparoscopic cholecystectomies. In Chapter 4, testing of two new fluorescent 

dyes for the visualization of the cystic duct and cystic artery is described. In Chapter 5, the 

objective measurement of fluorescence intensity in current literature is critically evaluated. 

PART II NEAR INFRARED FLUORESCENCE IMAGING IN COLORECTAL SURGERY 

In this part, the use of near infra-red fluorescence imaging in visualizing both the bowel 

perfusion and the ureter during colorectal surgery is described. Chapter 6 presents a 

systematic review investigating the added value of near infrared fluorescence angiography 

in anastomotic colorectal surgery. In Chapter 7, we present a clinical study to investigate 

the relation between fluorescence intensity of the bowel and postoperative inflammatory 

markers characterizing anastomotic leakage in order to explore the value of the intensity 

of the signal in predicting anastomotic healing. In Chapter 8 the use of Methylene Blue as 

a fluorescent dye for visualization of the ureter during colorectal surgery is evaluated. In 
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Chapter 9, two new fluorescent dyes for ureter visualization are tested. In Chapter 10, a 

search for the optimal dose to gain the best fluorescent signal using a new fluorescent dye 

to visualize the ureters is presented. 

PART III NEAR INFRARED FLUORESCENCE IMAGING IN THYROID SURGERY

Chapter 11 describes the use of near infrared fluorescence imaging in 30 thyroid surgeries 

to identify and assess remaining perfusion of the parathyroid glands.
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cholangiography assisted 
laparoscopic cholecystectomy 
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Gooitzen M. van Dam, Nicole D. Bouvy, Laurents P.S. Stassen. 

BMJ Open. 2016;6(8):e011668.

FALCON: study protocol



Chapter 2 | FALCON: study protocol

22

ABSTRACT 

Introduction

Misidentification of the extrahepatic bile duct anatomy during laparoscopic cholecystectomy 

(LC) is the main cause of bile duct injury. Easier intraoperative recognition of the biliary 

anatomy may be accomplished by using near-infrared fluorescence (NIRF) imaging after 

an intravenous injection of indocyanine green (ICG). Promising results were reported 

for successful intraoperative identification of the extrahepatic bile ducts compared to 

conventional laparoscopic imaging. However, routine use of ICG fluorescence laparoscopy 

has not gained wide clinical acceptance yet due to a lack of high-quality clinical data. 

Therefore, this multicentre randomised clinical study was designed to assess the potential 

added value of the NIRF imaging technique during LC. 

Methods and Analysis

A multicentre, randomized controlled clinical trial will be carried out to assess the use of 

NIRF imaging in LC. In total, 308 patients scheduled for an elective LC will be included. These 

patients will be randomised into a NIRF imaging laparoscopic cholecystectomy (NIRF-LC) 

group and a conventional laparoscopic cholecystectomy (CLC) group. The primary end 

point is time to ‘critical view of safety’ (CVS). Secondary end points are ‘time to identification 

of the cystic duct (CD), of the common bile duct, the transition of CD in the gallbladder and 

the transition of the cystic artery in the gallbladder, these all during dissection of CVS’; ‘total 

surgical time’; ‘intraoperative bile leakage from the gallbladder or cystic duct’; ‘bile duct 

injury’; ‘postoperative length of stay’, ‘complications due to the injected ICG’; ‘conversion to 

open cholecystectomy’; ‘postoperative complications (until 90 days postoperatively)’ and 

‘cost-minimisation’.

Ethics and dissemination

The protocol has been approved by the Medical Ethical Committee of Maastricht University 

Medical Center/Maastricht University; the trial has been registered at ClinicalTrials.gov. The 

findings of this study will be disseminated widely through peer-reviewed publications and 

conference presentations.
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INTRODUCTION

Laparoscopic cholecystectomy (LC) is the most commonly performed laparoscopic 

procedure in the Netherlands, with almost 23 000 procedures annually.1 Bile duct injury 

during this procedure is rare with an incidence of 0.3–0.7%.2–5 However, when bile duct injury 

or vascular injury is present, it results in significant clinical relevant morbidity and mortality, 

lower quality of life and extra costs.6–10 Bile duct injury will generally lead to bile leakage and 

abdominal sepsis and can lead to bile duct obstruction with obstructive jaundice eventually 

leading to orthotropic liver transplantation or both.7 Late recognition and management of 

bile duct injuries can lead to severe deterioration in the patient’s condition, progressing 

to biliary peritonitis, sepsis, multiorgan failure and eventually death. Therefore, early 

recognition and treatment is important.7, 11 Misidentification of the extrahepatic bile duct 

anatomy during LC is the main cause of bile duct injury.12

To reduce this risk of bile duct injury, the critical view of safety (CVS) technique was 

introduced by Strasberg in 1995.13 A recent Society of American Gastrointestinal and 

Endoscopic Surgeons (SAGES) expert Delphi consensus deemed the CVS as being the 

most important factor for overall safety,14 in accordance with the current Dutch Surgical 

Society Guideline for Laparoscopic Cholecystectomy.15 To establish CVS, two observation 

windows need to be created: one window between the cystic artery (CA), cystic duct (CD) 

and gallbladder and another between the CA, gallbladder and liver (see Figure 1). The CVS 

technique is especially aimed at mobilising the gallbladder neck from the liver, in order 

to obtain a circumferential identification of the transition of the CD into the gallbladder. 

Nowadays, the CVS technique is the gold standard to perform a safe cholecystectomy with 

identification of the vital structures such as the CD.16–20

According to a Dutch nationwide survey in 2011, 97.6% of the Dutch surgeons use the 

CVS technique.21 However, according to a recent study by Nijssen et al,22 only in 10% of the 

laparoscopic cholecystectomies CVS is actually established. This could mean that it is more 

difficult to establish CVS than thought before, thus resulting in more bile duct injury than 

necessary.

Nowadays, there are several imaging techniques, such as intraoperative cholangiography 

(IOC) and near infrared fluorescence (NIRF) imaging, to identify the relevant anatomical 

structures easier. IOC has been advised to reduce the risk of bile duct injury.2, 16, 23

However, this radiological imaging of the biliary tree is not adopted worldwide 

in standard LC, as the procedure takes time, involves radiation exposure and requires 

additional equipment and manpower. Moreover, the interpretation of an intraoperative 

cholangiogram with potentially distorted anatomy clearly depends on the expertise of the 

surgeon. Therefore, worldwide consensus about implementation of IOC is still lacking.24

NIRF imaging after intravenous injection of indocyanine green (ICG) is a promising new 

technique for easier intraoperative recognition of the biliary anatomy.25, 26 ICG is cleared 
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quickly and exclusively by the liver after intravenous administration and has a very well-

known pharmacokinetic and safety profile. Neither radiological support nor additional 

intervention such as opening the cystic or common bile duct (CBD) is required, making it 

an easy, real-time and flexible technique to use during surgery. By real-time identification of 

the vital structures being the CD and CBD within the already adapted CVS technique, it may 

improve the outcome of LC.16, 27, 28 NIRF imaging using ICG has been evaluated in various animal 

models29–31 and in open, laparoscopic and single-incision laparoscopic cholecystectomies.30, 

32–34 Promising results were presented for safe and successful intraoperative identification 

of the CBD and the CD, compared to conventional laparoscopic imaging. Furthermore, a 

clinical study (n=30) showed that the NIRF imaging technique provided significantly earlier 

identification of the extrahepatic bile ducts during the CVS dissection phase: up to 10 min 

earlier identification of the CD and CBD could be obtained.35 Real-time imaging of the 

hepatic and cystic arteries was also achieved when a repeated dose of ICG was given.35–37

Despite these encouraging results derived from clinical feasibility studies, the routine 

use of ICG fluorescence laparoscopy has not gained wide clinical acceptance yet due to a 

lack of high-quality clinical data.

Therefore, a multicentre randomised clinical study was designed to assess the added 

value of the NIRF imaging technique during LC. The ultimate goal of this technique is to 

perform a safer procedure leading to a reduction in vascular and bile duct injuries. The 

primary objective of the present study is to evaluate whether earlier establishment of CVS 

can be obtained using the NIRF imaging technique during LC.

METHODS AND ANALYSIS

Primary aim 

The main objective of the study is to evaluate whether earlier establishment of the CVS can 

be obtained using the NIRF imaging technique during elective LC, by applying NIRF imaging 

as an adjunct to conventional laparoscopic imaging versus conventional laparoscopic 

imaging alone.

Hypothesis

It is hypothesised that standard application of NIRF imaging during LC will result in 

establishment of CVS at least 5 min earlier and with more certainty regarding visualisation 

of biliary anatomy when compared to conventional laparoscopic imaging alone.

Study design 

This multicentre randomised controlled clinical trial includes two randomisation arms: a 

NIRF-LC (laparoscopic cholecystectomy) group—this group of patients will undergo NIRF 
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cholangiography assisted laparoscopic cholecystectomy and a conventional laparoscopic 

cholecystectomy (CLC) control group—this group will undergo CLC.

Setting 

In the FALCON trial, a total of 308 patients will be included at the Departments of Surgery of 

the participating centres. The centres will be supported by the trial coordinator (JvdB) and 

by the Clinical Trial Center Maastricht (CTCM) (see also under the ‘data monitoring’ section). 

Further, no additional strategies for achieving adequate participant enrolment to reach the 

target sample size are considered necessary, as LC is a commonly performed surgery.

Sample size calculation 

The number of 308 participants is based on pilot data,35, 38 where the identification of 

the CD and CBD was established, respectively, 11 and 10 min earlier using fluorescence 

laparoscopic imaging compared to conventional laparoscopic imaging. A sample size 

of 131 for each randomisation arm has been calculated to detect a reduction in ‘time to 

establishment of CVS’ of at least 5 min with a power of 80% and an α of 0.05 (95% CI). 

Assuming a withdrawal rate of 15% (due to usual reasons for dropout in combination with 
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identification of the extrahepatic bile ducts during the CVS dissection phase: up to 10 min earlier 
identification of the CD and CBD could be obtained.35 Real-time imaging of the hepatic and cystic 
arteries was also achieved when a repeated dose of ICG was given.35–37 
Despite these encouraging results derived from clinical feasibility studies, the routine use of ICG 
fluorescence laparoscopy has not gained wide clinical acceptance yet due to a lack of high-quality 
clinical data. 
Therefore, a multicentre randomised clinical study was designed to assess the added value of the 
NIRF imaging technique during LC. The ultimate goal of this technique is to perform a safer 
procedure leading to a reduction in vascular and bile duct injuries. The primary objective of the 
present study is to evaluate whether earlier establishment of CVS can be obtained using the NIRF 
imaging technique during LC. 
 
 
Figure 1a Anterior view of CVS    Figure 1b Posterior view of CVS 
 

 

 
 
  

Window of CVS between cystic artery, cystic duct and gallbladder 
 
Window of CVS between cystic artery, gallbladder and liver  
 
Gallbladder bed where detached from liver  

Figure 1a Anterior view of CVS Figure 1b Posterior view of CVS
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technical difficulties concerning the video recordings) during the trial, we will require a total 

of 308 (n=2×131+15%).

All patients (age >18 years) scheduled for an elective LC and meeting the inclusion 

criteria will be suitable for inclusion.

Inclusion criteria 

The inclusion criteria are as follows: male and female patients, aged 18 years and above, 

scheduled for elective LC, with normal liver and renal function, no hypersensitivity for 

iodine or ICG, able to understand the nature of the study procedures, willing to participate 

and give written informed consent and Physical Status Classification of ASA I/ASA II.

Exclusion criteria 

The exclusion criteria are as follows: age <18 years, liver or renal insufficiency, known iodine 

or ICG hypersensitivity, pregnancy or breastfeeding, not able to understand the nature of 

the study procedure and a Physical Status Classification of ASA III and above.

Participants can leave the study at any time for any reason if they wish to do so without any 

consequences.

The investigator can decide to withdraw a participant from the study for urgent medical 

reasons. Conversion to open cholecystectomy, before CVS is established, is a reason for 

study withdrawal. Furthermore, if the video recordings of the laparoscopic procedure were 

not successful, the procedure will be unsuitable for analysis of all predefined end points. 

There are no other specific criteria for withdrawal. In case of withdrawal, participants will 

be replaced to achieve the calculated sample size. All inclusions will be analysed on an 

intention-to-treat basis.

Randomisation

All included patients will be randomised centrally using block randomisation with sealed 

envelopes and stratification per participating centre. After signing the informed consent 

form, the next sealed envelope in line will be opened by the coordinating investigator. 

There will be no blinding of patients or surgeons.

Intervention 

The CLC group will undergo conventional laparoscopic cholecystectomy. The NIRF-LC 

group will undergo near infrared fluorescence cholangiography using a laparoscopic NIRF 

imaging system (Karl Storz GmbH, Tuttlingen, Germany). To obtain fluorescence imaging 

of the biliary tract and CA, a NIRF contrast agent will be administered. Directly after the 

induction of anaesthesia, 2.5 mg of ICG (2.5 mg/mL; Diagnostic Green, Aschheim, Germany) 

will be given intravenously. A repeat injection of 2.5 mg will be administered for concomitant 

arterial and biliary fluorescence delineation after achievement of CVS.
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Outcome measures 

The primary outcome measure is time to identification of CVS. This end point is used as a 

surrogate for bile duct identification without surgical exploration. CVS is established if the 

following three criteria are met:

1. Mobilisation of the gallbladder infundibulum for one-third of the length of the 

gallbladder from the liver bed.

2. Circumferential exposure of the CD and confirmation of its transition in the 

gallbladder.

3. Circumferential exposure of the CA and confirmation of its transition in the 

gallbladder.

Secondary outcome measures are listed in Table 1.

Data collection 

Intraoperatively, a case report form will be filled in. A structure is scored as ‘identified’ if its 

localisation is confirmed with great certainty by the experienced surgeon. The attending 

surgeon will be consulted to decide whether he believes CVS is established.

In accordance with regular care, all laparoscopic surgical procedures will be digitally 

recorded. An expert panel, consisting of three highly experienced laparoscopic surgeons, 

will analyse the data using video recordings: time until identification of the CD and of its 

transition into the gallbladder; time until identification of the CA and its transition into the 

gallbladder during dissection of CVS and when and whether CVS is established. Eventually, 

all five observers (the surgeon or surgical trainee, PhD researcher or local researcher during 

the operation and the three postoperative observers) will individually assess the above-

mentioned end points. The mean values of these five assessments will be used for each of 

the end points. All clinical data are prospectively registered in a database.

OsiriX V.5.5.1. Imaging Software (Prixmeo, Geneva, Switzerland) will be used for objective 

assessment of the degree of fluorescence illumination in the extrahepatic bile ducts. The 

fluorescence images will be analysed by determining the target-to-background ratio (TBR). 

TBR is defined as the mean fluorescence intensity (FI) of two-point regions of interest (ROIs) 

in the target (ie, CBD, CD or CA) minus the mean FI of two background (BG) ROIs in the liver 

hilum, divided by the mean FI of the two background ROIs in the liver hilum; that is TBR = (FI 

of target−FI of BG)/FI of BG.

The costs made in the two groups will be compared, resulting in a cost-minimisation 

analysis. This analysis will include the costs made by using the operation theatre in terms 

of fluorescence laparoscopy equipment, the fluorescent dye ICG, morbidity, mortality and 

postoperative hospital stay.

In Figure 2, flow charts of the study procedure for the CLC-group and the NIRF-LC group 

are presented.
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Data validation and management 

Patient data will be anonymously registered and analysed by comparing NIRF-LC with CLC. 

Only the investigators will have access to the patient data after informed consent is given.

Table 1 Secondary outcome measures 

Outcome measure Definition 
Time until identification of the cystic duct (CD) Time in minutes

Time until identification of common bile duct Time in minutes

Time until identification of the transition of CD 
into the gallbladder

Time in minutes

Time until identification of the transition of the 
cystic artery (CA) into the gallbladder

Time in minutes

Total Surgical time Time in minutes from skin incision to the end of 
skin closure

Visualization of CVS and visualization of the 
transition of the cystic duct and cystic artery into 
the gallbladder

Time in minutes

Intraoperative bile leakage from the gallbladder 
or cystic duct

 Visualized bile leakage or spill during surgery. 

Bile duct injury Any injury to the main biliary tree; will be 
classified using the Strasberg Classification 
System13

Type A: Injury to the cystic duct or from minor 
hepatic ducts draining the liver bed.
Type B: Occlusion of biliary tree, commonly 
aberrant right hepatic duct(s).
Type C: Transection without ligation of aberrant 
right hepatic duct(s).
Type D: Lateral injury to a major bile duct.
Type E: Injury to the main hepatic duct; classified 
according to level of injury. 

Postoperative length of hospital stay Duration from date of admission (included) to 
date of discharge (included)

Complications due to injected contrast agent  Any complication potentially caused by injected 
ICG

Conversion to open cholecystectomy Laparoscopic approach converted to an
open operation, or in which an abdominal 
incision to assist the procedure was needed. 

90-day all-cause postoperative complications Any complication, up to 90 days, described by 
the Clavien-Dindo classification of postoperative 
complications39

Specific attention to bile leak, CBD injury, wound 
infection, intra-abdominal collection, pancreatitis, 
CBD stones, ICU/HDU readmissions; prospectively 
assessed during admission; thereafter 
immediately to be reported to study coordinator

Cost Minimization Difference in costs (in Euros) between 
conventional LC and NIRF LC

CA: cystic artery; CBD: common bile duct; CD: cystic duct; CVS: critical view of safety; LC: laparoscopic cholecystectomy; NIRF: near-
infrared fluorescence.
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Study timeline 

In Figure 3, the study timeline is presented. From January 2016 until January 2018, data will 

be collected; in September 2016, March 2017, September 2017 and March 2018, the expert 

panel will evaluate the video material for end points; around July 2018, data analysis is 

expected to be complete. 

Participants will be informed about the study during their preoperative visit to the 

outpatient clinic. Thereafter, patients have at least a week to consider participation in the 

Figure 3 Study timeline 
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individually assess the above-mentioned end points. The mean values of these five assessments will 
be used for each of the end points. All clinical data are prospectively registered in a database. 
OsiriX V.5.5.1. Imaging Software (Prixmeo, Geneva, Switzerland) will be used for objective 
assessment of the degree of fluorescence illumination in the extrahepatic bile ducts. The 
fluorescence images will be analysed by determining the target-to-background ratio (TBR). TBR is 
defined as the mean fluorescence intensity (FI) of two-point regions of interest (ROIs) in the target 
(ie, CBD, CD or CA) minus the mean FI of two background (BG) ROIs in the liver hilum, divided by the 
mean FI of the two background ROIs in the liver hilum; that is TBR = (FI of target−FI of BG)/FI of BG. 
The costs made in the two groups will be compared, resulting in a cost-minimisation analysis. This 
analysis will include the costs made by using the operation theatre in terms of fluorescence 
laparoscopy equipment, the fluorescent dye ICG, morbidity, mortality and postoperative hospital 
stay. 
In Figure 2, flow charts of the study procedure for the CLC-group and the NIRF-LC group are 
presented. 
 
Figure 2a Flow chart of study procedures: conventional laparoscopic cholecystectomy (CLC) group  

 
 
  

Figure 2a Flow chart of study procedures: conventional laparoscopic cholecystectomy (CLC) group 
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Data validation and management  
Patient data will be anonymously registered and analysed by comparing NIRF-LC with CLC. Only the 
investigators will have access to the patient data after informed consent is given. 
 
Study timeline  
In Figure 3, the study timeline is presented. From January 2016 until January 2018, data will be 
collected; in September 2016, March 2017, September 2017 and March 2018, the expert panel will 
evaluate the video material for end points; around July 2018, data analysis is expected to be 
complete.  
Participants will be informed about the study during their preoperative visit to the outpatient clinic. 
Thereafter, patients have at least a week to consider participation in the study. During their elective 
surgery, the near-infrared fluorescence laparoscopy will be used if the patient is randomised in the 
NIRF-LC group. After surgery, a 90-day follow-up period follows, and then possible complications will 
be evaluated. 
 
 
Figure 3 Study timeline  

 
 
 
Statistical analysis 
For statistical analysis, the most recent version of SPSS (IBM, Armonk, New York, USA) will be used. 
Baseline characteristics such as patient clinical history (including previous surgery), age, body mass 
index and indication for the procedure will be recorded and compared between the intervention 
(NIRF-LC) and control groups (CLC). Categorical baseline variables will be compared using a χ2 test, 
while numerical variables will be compared by the independent sample t-test or the Mann-Whitney 
U test, depending on the distribution. 
The primary outcome measure, namely, time until establishment of CVS, will be given in minutes, 
with a mean and SD. A linear regression analysis will be applied for determination of possible 
significant differences between the time measurements, therewith comparing the NIRF-LC group to 
the CLC group. This will be conducted to determine whether a reduction in time can in fact be 
achieved using the NIRF imaging technique compared to CLC. 
All numerical secondary outcomes such as time until visualisation of CD and CA will be analysed using 
a linear regression model. In case of missing values, a Cox regression analysis will be performed. 
Missing values can occur especially in the postoperative analysis by the expert panel, when the panel 
concludes that, contrary to the opinion of the operating team, actually no CVS was obtained or that 
the transition of the CD or CA in the gallbladder had actually not been properly identified. All 
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Figure 2b Flow chart of study procedures: NIRF laparoscopic cholecystectomy (NIRF-LC) group 
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Figure 2b Flow chart of study procedures: NIRF laparoscopic cholecystectomy (NIRF-LC) group  

  
 
 
 
 
 
 
 

study. During their elective surgery, the near-infrared fluorescence laparoscopy will be used 

if the patient is randomised in the NIRF-LC group. After surgery, a 90-day follow-up period 

follows, and then possible complications will be evaluated.
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Statistical analysis

For statistical analysis, the most recent version of SPSS (IBM, Armonk, New York, USA) will be 

used. Baseline characteristics such as patient clinical history (including previous surgery), age, 

body mass index and indication for the procedure will be recorded and compared between 

the intervention (NIRF-LC) and control groups (CLC). Categorical baseline variables will be 

compared using a χ2 test, while numerical variables will be compared by the independent 

sample t-test or the Mann-Whitney U test, depending on the distribution.

The primary outcome measure, namely, time until establishment of CVS, will be given in 

minutes, with a mean and SD. A linear regression analysis will be applied for determination of 

possible significant differences between the time measurements, therewith comparing the 

NIRF-LC group to the CLC group. This will be conducted to determine whether a reduction 

in time can in fact be achieved using the NIRF imaging technique compared to CLC.

All numerical secondary outcomes such as time until visualisation of CD and CA will be 

analysed using a linear regression model. In case of missing values, a Cox regression analysis 

will be performed. Missing values can occur especially in the postoperative analysis by the 

expert panel, when the panel concludes that, contrary to the opinion of the operating team, 

actually no CVS was obtained or that the transition of the CD or CA in the gallbladder had 

actually not been properly identified. All categorical secondary outcomes such as bile duct 

injury and conversion to open surgery will be analysed with a logistic regression model.

Data monitoring 

An independent data monitoring committee will monitor the study procedures and data 

management. This team consists of independent and certified persons from the CTCM. 

No interim analysis will be performed. Adverse events and serious adverse events will be 

centrally reported in the online database, toetsingonline.nl.

ETHICS AND DISSEMINATION 

The proposed study is approved by the Medical Ethics committee of Maastricht University 

Medical

Center/Maastricht University. Possible protocol amendments will be sent to the Medical 

Ethics Committee of Maastricht University Medical Center/Maastricht University. After 

approval, the changes will be communicated on clinicaltrials.gov and to the relevant parties.

Is there scientific and clinical value in conducting this study?

Despite the promising results from previous feasibility studies, a lack of solid clinical data 

precludes wide clinical acceptance of the routine use of ICG fluorescence laparoscopy. This 

multicentre randomised clinical study can provide such data.
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Risk-benefit assessment

There are no additional risks accompanied by the laparoscopic NIRF imaging systems, 

compared to conventional laparoscopic imaging. The gifts of ICG are the only additional 

(minimally) invasive interventions for the patient. ICG preparations can, in very rare cases, 

cause nausea and anaphylactoid or anaphylactic reactions (<1:10 000). Patients with 

terminal renal insufficiency seem to be more prone for such an anaphylactic reaction. 

Estimated death due to anaphylaxis is reported as <1 per 330 000.40–43 Symptoms include 

anxiety, feeling of warmth, pruritus, urticaria, acceleration of heart rate, decrease in blood 

pressure, shortness of breath, bronchospasm, flushing, cardiac arrest, laryngospasm, facial 

oedema and nausea. Together with the anaphylactoid reaction, hyper-eosinophilia may 

occur. If, contrary to expectations, symptoms of anaphylaxis occur, the following measures 

will be taken: stop further administration of ICG, leave injection catheter or cannula in the 

vein, keep airways free, inject 100– 300 mg hydrocortisone or a similar preparation by rapid 

intravenous injection, substitute volume with isotonic electrolyte solution, give oxygen and 

monitor the circulation and slowly administer antihistamines intravenously. In case of an 

anaphylactic shock, the patient will be placed in the recumbent position with legs raised, 

volume will be rapidly substituted with, for example, isotonic electrolyte solution (pressure 

infusion), plasma expanders. Furthermore, 0.1–0.5 mg epinephrine will be administered 

and immediately diluted to 10 mL with 0.9% saline intravenously. If necessary, this will be 

repeated after 10 min.

The benefit for the patients in the NIRF-LC group will possibly include a shorter 

period to the establishment of CVS and the clearer identification of CVS and its anatomical 

components. 

Do the individuals give informed consent?

To each patient, that is, a potential candidate for inclusion, thorough patient information 

will be given. From each individual who is willing to participate, written informed consent 

will be obtained by one of the investigators.

The ethical issues of the trial will be thoroughly explained and discussed, verbally and 

in writing. The basic principles laid down in the Declaration of Helsinki44 will be followed 

throughout the execution of the trial. Accordingly, each participant has the right to withdraw 

from the study at any given moment without having to explain this decision in any way.
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ABSTRACT 

Background 

Though often only brie y described in the literature, there are clearly factors that have an 

influence on the fluorescence intensity, and thereby the usefulness of the technique. This 

article aims to provide an overview of the factors influencing the fluorescence intensity 

of fluorescence imaging with Indocyanine green, primarily focused on NIRF guided 

cholangiography.

Methods

A systematic search was conducted to gain an overview of currently used methods in NIRF 

imaging in laparoscopic cholecystectomies. Relevant literature was searched to gain advice 

on what methods to use. Ex vivo experiments were performed to assess various factors that 

influence fluorescence intensity and whether the found clinical advices can be confirmed.

Results 

ICG is currently the most widely applied fluorescent dye. Optimal ICG concentration lies 

between 0.00195 and 0.025 mg/ml, and this dose should be given as early as achievable—but 

maximum 24h—before surgery. When holding the laparoscope closer and perpendicular 

to the dye, the signal is most intense. In patients with a higher BMI and/or cholecystitis, 

fluorescence intensity is lower, but NIRF seems to be more helpful. There are differences 

between various marketed fluorescence systems. Also, no uniform method to assess 

fluorescence intensity is available yet.

Conclusions

This study identified and discussed several factors that influence the signal of fluorescence 

cholangiography. These factors should be taken into account when using NIRF 

cholangiography. Also, surgeons should be aware of new dyes and clinical systems, in order 

to benefit most from the potential of NIRF imaging.



Optimizing the image of NIRF cholangiography | Chapter 3

39

Ch
ap

te
r 3

INTRODUCTION

The most common laparoscopic procedure in the Nether- lands is laparoscopic cholecystec-

tomy (LC), which is per- formed 23,000 times each year.1 The most feared complication in 

this surgery is bile duct injury. Even though LC is a very common procedure, bile duct injury 

still has an incidence of 0.3–0.7%.2–5 Generally, bile duct injury leads to bile leakage, causing 

abdominal sepsis. It can also lead to obstruction, with obstructive jaundice, eventually 

potentially leading to a need for liver transplantation in the worst case.6 Late recognition 

is common in bile duct injuries, resulting in significant morbidity and mortality, a lower 

quality of life and extra costs.6–9 The main cause for bile duct injury is misidentification of the 

anatomy.10, 11 Therefore, techniques to improve the visualization of the anatomy are desired.

Several imaging techniques to improve recognition of the relevant anatomical 

structures have been proposed. One is intra-operative cholangiography. Although this 

imaging technique is advised to reduce the risk of bile duct injury, there are disadvantages 

such as radiation exposure and need for additional equipment, knowledge and personnel 

to perform this procedure and extra costs.2, 11–13 Because of these disadvantages, there is no 

worldwide consensus about implementation of intra-operative cholangiography.14

Another technique to help identify the relevant anatomical structures is the use of near-

infrared fluorescence (NIRF) imaging. This is a relatively new and promising technique to 

improve recognition of the biliary anatomy by injecting a fluorescent dye.15, 16 The clinically 

used dye is Indocyanine green (ICG), belonging to the family of cyanine dyes.17 ICG is a water-

soluble tricarbocyanine with a molecular weight of 774.96 absorbing excitation light at 

800–835 nm while emitting fluorescent light at 740–793 nm.18–20 Generally, ICG is considered 

safe with a very low incidence of complications, although there is a possibility of an allergic 

reaction to the sodium-iodine in the ICG.21–23 Other dyes are not generally available yet, 

either because they are not excreted in bile or because they are still in a research phase and 

thus not yet available for routine clinical use.24, 25

In addition to this small risk for an allergic reaction, all researchers and surgeons working 

with near-infrared (NIR) fluorescence-imaging experience limitations of the technique. 

Though often only briefly described in the literature, there are clearly factors such as the 

given dose and distance between the laparoscope and the target that have an influence on 

the fluorescence intensity, and thereby the usefulness of the technique. Since this technique 

is nowadays commonly used, it is of importance to obtain more general knowledge about 

the factors that influence the fluorescence intensity. Therefore, this article aims to provide 

an overview of these factors influencing the fluorescence intensity, primarily focused on 

NIRF guided cholangiography during laparoscopic cholecystectomy.



Chapter 3 | Optimizing the image of NIRF cholangiography

40

MATERIALS AND METHODS

To provide an overview of the factors influencing the fluorescence intensity in NIRF-guided 

cholangiography during laparoscopic cholecystectomy, three strategies were combined.

First a systematic review of the literature was performed. Secondly, using free searches, more 

information about specific suspected factors of influence was sought. Thirdly, factors of 

influence identified from the literature were further investigated with ex vivo experiments.

Since no (new) patients are included in this study, IRB approval or patients informed consent 

was not needed for this study.

Literature search 

A Pubmed search on methods used for fluorescence cholangiography and its influencing 

factors was performed by two reviewers through November 2017. Used search terms were 

as follows: ((((((((((((near-infrared imaging) OR fluorescence imaging) OR fluorescent imaging) 

OR near-infrared fluorescence) OR fluorescent dyes) OR fluorescent dye) OR “Fluorescent 

Dyes“[Mesh]) OR ICG) OR infracyanine green) OR indocyanine green) OR “Indocyanine 

Green“[Mesh])) AND ((((((“Cholecystectomy“[Mesh]) OR Cholecystectomy) OR laparoscopic 

cholecystectomy) OR “Cholecystectomy, Laparoscopic“[Mesh]) OR gallbladder removal) OR 

laparoscopic cholecystectomies). No Language restrictions were applied. Studies presenting 

original data on performing near-infrared fluorescence-guided cholecystectomy in human 

subjects were included. Therefore, animal studies, protocol-articles, reviews and case 

reports were excluded. From the included reports, data regarding the used methods and 

outcomes (visibility of anatomical structures) was extracted.

Ex vivo experiments 

In addition, ex vivo experiments were performed to further analyze certain aspects. The 

aim of these experiments was to evaluate whether albumin is needed in the medium used 

for ICG to become fluorescent and to study the influence of the concentration of ICG, the 

distance between the laparoscope and the target, the angle between the laparoscope and 

the target and the penetration depth on the fluorescent signal.

A laparoscopic Near-infrared Fluorescence Imaging System (Karl Storz GmbH, Germany) 

was used, as we use in daily clinical practice. This system includes a D-light P xenon light 

source, an IMAGE 1 camera and a 30-degree 10 mm fluorescence laparoscope (Karl Storz 

GmbH, Germany).

Experiments were performed both with ICG diluted in NaCl 0.9% and with ICG dilution 

in 35 mg/ml albumin in a 0.9% NaCl dilution. This was done as ICG is considered in vivo to 

bind to albumin. The aim was to assess whether such binding ex vivo was necessary in order 

to obtain a signal.

Initially, we used ten different concentrations of ICG, ranging between 10 and 0.125 mg/ml.  
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In these experiments, a lower concentration gave a better signal. To find the optimum, 

eventually twenty-one solutions ranging from 10 to 0.000121875 mg/ml were used. From 

each dilution, 9 times 1 ml of the ICG was placed on a wells plate.

The influence of distance was measured holding the endoscope at distances from 14 

to 1 cm from the surface of the dye. Also, the maximum distance at which the fluorescence 

could still be detected was measured for each concentration.

The influence of angle between the laparoscope and the surface of the dye was 

measured by comparing the middle cup, at which the laparoscope was aimed, with the 

surrounding cups with ICG and by holding the endoscope at different angles.

The penetration depth was evaluated with the use of beeswax plates stacked to 

different thicknesses. This medium was chosen because it approaches the scattering 

behavior and translucent light penetration of human tissue quite well.26 In fact, from the 

renaissance until the early twentieth century, anatomical wax models were used for medical 

education and until today provide an impressive visual display.27 Beeswax plates of exactly 

0.9 mm thickness were one by one progressively stacked on the wells plate to stepwise 

increase the thickness of scattering material on top of the fluorescent dye. In all experiments, 

fluorescence intensity was measured using Osirix (version Lite 8.5.2, Pixmeo). The setup of 

the ex vivo experiment is shown in Figure 1.

Additional information for this article was retrieved by a free search in the PubMed 

database, hand-searches of the retrieved references and personal experience with the 

technique.

RESULTS 

The systematic search was performed to retrieve insight in the currently used methods of 

performing near-infrared fluorescence guided cholangiography and the factors influencing 

its signal intensity. This search resulted initially in 126 articles, of which 80 were excluded 

9 times 1 ml of ICG in a dilution of 0.125 mg/ml in the cups of a Wells plate. Left: in white light. Middle: in NIRF light. 
Right: in NIRF light with one plate (0.9 mm) of beeswax on top of the Wells plate.

Figure 1 Setup of ex vivo experiments 
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based on title and abstract and 18 more after full text assessment. 28 articles were included 

in this review. Figure 2 presents the flowchart of this search.13, 19, 28–53 An overview of the 

included articles and their results is given in Tables 1 and 2 (Supplementary Material), 

respectively.

The results of literature search and the results of the performed experiments will be 

discussed in this section.

Fluorescent dye and concentration 

In all studies, ICG is used as the fluorescent dye. Both Indocyanine green and Infracyanine 

green where used. ICG was administered intravenously, except in the study by Graves et al.29 

and Liu et al.53, who injected the fluorescent dye directly into the gallbladder. Graves et al. 

made a special solution for this intra-gallbladder injection. First, a 0.25 mg/ml solution of 

ICG in sterile water was created. Once the gallbladder fundus was grasped and retracted, a 

needle tipped Kumar cholangiogram catheter (Nashville Surgical Instruments, Springfield, 

TN) was introduced through the 12-mm port and used to puncture the infundibulum of the 

gallbladder. 9 ml of bile was aspirated from the gallbladder through this catheter and mixed 

with the 0.25 mg/ml ICG solution. The new 0.025 mg/ml ICG-bile solution was reinjected 

into the gallbladder. The authors describe an immediately glow-up of the solution with no 

lag time, quickly filling the gallbladder and through the cystic duct the extrahepatic ducts. 

Due to the absence of background fluorescence from the liver, improved visual contrast was 

claimed as compared to intravenous injection.29 Liu et al. used a less complicated method, 

in which the ICG was diluted to a concentration of 0.125 mg/mL. 10 mL of this ICG dilution 

was injected through a gallbladder drain when this was already in situ, or through a Veress 

needle after draining the gallbladder from bile.53 In these patients, although background 

fluorescence was absent, results comparable to intravenous administration were found.

The most commonly used doses of ICG for intravenous administration where a fixed 

dose of 2.5 mg bolus (in 13 of the studies) or a dose adjusted to the patient’s weight of 0.05 

mg/kg (in 6 of the included studies). Other used doses are fixed dosed of 0.25, 3.75, 5, 10 

and 12.5 mg and weight-adjusted doses of 0.1–0.4, 0.2, 0.4 and 0.5 mg/kg (see Table 1 in 

Supplementary Material). When using a 2.5 mg bolus, the cystic duct was visualized in an 

average of 94% patients. When using 0.05 mg/kg, the average percentage of visualization 

of the cystic duct was 98%.

Zarrinpar et al.54 undertook a study with systematic variation of dosing (and timing) of 

injection of ICG. In 37 patients, the given dose varied between 0.02 and 0.25 mg/ kg. With 

an increasing dose, the visualization of the extrahepatic biliary tract improved. No decrease 

at the highest doses was observed. Boogerd et al.30 compared a dose of 5 and 10 mg with 

optimal signal at the lower dose of 5 mg.

The results of our ex vivo experiments are depicted in Figure 3. When ICG was diluted 

in NaCl 0.9%, no fluorescent signal could be obtained. Therefore, all further experiments 
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Legend:  A Maximum distance of visibility fluorescent signal for the tested concentrations
B Fluorescence intensity at 2 cm distance for the tested concentrations
C Maximum penetration depth of fluorescent signal for the tested concentrations
D Fluorescence intensity at increased distance between laparoscope and dye-surface

Figure 3 Results of ex vivo experiments 

Figure 2 Flow chart of search 
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were performed with ICG diluted in 35 mg/ml albumin in a 0.9% NaCl solution. The optimum 

concentration in which the highest measured fluorescence intensity at 2 cm distance was 

between 0.00195 and 0.025 mg/ml. A concentration of 0.0039 mg/ml would be a dose of 

19.5 mg to obtain this ideal concentration in the blood in an average patient with 5L blood, 

which is much higher than current used concentrations. However, when using this technique 

in laparoscopic cholecystectomy, we would want the concentration of 0.0039 mg/ml in the 

cystic duct. With a content of 60 ml of bile in the gallbladder, a dose of 0.234 mg would then 

be desirable assuming all ICG is cleared by the liver.

The used concentration of the administered ICG solution was not clearly described in 

every study. The studies that do provide information on ICG concentration use 2.5 mg/ml.19, 

33, 34, 40, 46, 49–52 In all, except two studies, the fluorescent dye was administered intravenously.

Timing of administration 

The timing of administration differed among the studies and ranged mostly between 1 

and 2 h and 15 min before surgery. Verbeek et al.55 investigated whether a longer period 

between the administration of ICG and the imaging resulted in an improved visibility 

of the biliary anatomy. They found that application 24h prior to surgery does result in a 

significant better signal-to-background ratio.55 This is mainly caused by a lesser fluorescent 

signal coming from the liver. Kono et al.56 found a significant difference in interval between 

injection and imaging between patients in whom the cystic duct-common hepatic duct 

confluence could be visualized by NIRF imaging and the patients in whom this could not, 

with median intervals of 90 (15–65) minutes and 47 (21–205) minutes, respectively. The 

above is in line with the advice of Boogerd et al.30, for an optimal time interval of 3h between 

administration of ICG and intra-operative fluorescence cholangiography.

Penetration depth 

Circumstances that result in thicker tissue covering the structures to identify are obesity and 

cholecystitis. These require a higher penetration depth of the signal.

Average BMI in the included studies ranged between 20.4 and 32.3 kg/m2 with a 

weighted average of 30.0 kg/m2 for all studies who report mean BMI. Dip et al.35 specifically 

investigated the accuracy of NIRF-guided surgery in morbidly obese subjects undergoing 

laparoscopic cholecystectomy. No differences in hepatic duct, common bile duct and 

accessory duct visualization were detected in the obese and non-obese groups (p value 

0.09, 0.16 and 0.66, respectively). Imagi et al.34 state that obesity is an important factor that 

can prevent identification of biliary structures under fluorescent cholangiography. Other 

studies notice that when not all aimed structures where visualized under

fluorescent cholangiography in every patient, the patients in which the structures were 

not visible were all obese.40, 42, 44, 51 Ankersmit et al.31, however, found no differences in ability 

to visualize the biliary structures in obese patients. Their hypothesis is that other patient 



Optimizing the image of NIRF cholangiography | Chapter 3

45

Ch
ap

te
r 3

and surgical-related factors, including inflamed tissue, may interfere with and influence the 

success rate of fluorescence visualization of the bile ducts in complicated cases.31

Of the included patients in the studies found, 17% had acute cholecystitis. Four of 

the studies make a comment about the influence of cholecystitis on the usefulness of 

the NIRF technique. Zroback et al.33 note that in their experience, during dissection of 

the most inflamed gallbladders was when the technology was most appreciated, but no 

specific remark is made on the hindrance by thickened tissue. The other articles mention 

that the patients in which the biliary structures were not visible with NIRF more often 

had cholecystitis than the patients in which they were visible.13, 39, 42 Although in several 

studies the indication for surgery was also cholecystitis and the number of patients with 

this condition was given, no specific comparison was made with regard to the successful 

imaging of the desired structures between the patients with and without cholecystitis in 

most studies. Liu et al.53 make this comparison and conclude that in these patients, NIRF 

helped to significantly improve the visualization rates of the cystic duct in patients with 

cholecystitis compared to white light, whilst in cases with lithiasis without inflammation, the 

visualization rate of the cystic duct was similar in NIRF and white light.

In our ex vivo experiments, the penetration depth was studied at all concentrations 

separately. We observed a correlation between the thickness of material to be penetrated 

and the resulting signal, with an optimum and a maximum. A maximum penetration depth 

of 3.6 mm was measured. The optimum is at the same concentrations as we observed in our 

experiments on the concentration of ICG namely between 0.00195 and 0.025 mg/ml. See 

also Figure 3.

Distance to the target 

Kono et al.56 described a decrease by 50% of the contrast signal when the distance from the 

bile duct and tip of the laparoscope increased from 5 to 15 cm. However, other manuscripts 

do not clearly describe the distance used between the bile ducts and the laparoscope.

In our ex vivo experiments, a lower fluorescence intensity was found in all concentrations 

when the laparoscope was held at a greater distance. A 5 up to 30 times lower fluorescence 

intensity was observed when increasing the distance from 5 to 14 cm of the ICG solution, 

as is illustrated in Figure 3. When looking at the different concentrations, the maximum 

distance at which the fluorescent signal was still detectable was higher at the ‘optimal 

concentrations’ as shown in Figure 3.

Angle between laparoscope and tissue 

Kono et al.56 point out that the tip of the laparoscope should be placed vertically to 

Calot’s triangle to directly irradiate exciting light on the bile ducts and obtain the optimal 

fluorescence signal. However, as with the distance of the laparoscope, other manuscripts do 

not mention whether the laparoscope was placed vertically or in another angle. Some of the 
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articles use a zero-degree laparoscope, while others use a 30-degree laparoscope, which 

may be of influence on the angle of examination. In our experiments, a higher fluorescence 

intensity was found when holding the laparoscope more vertically towards the tissue.

Differences between systems 

The systems used in the included studies were 10 times a system by Karl Storz; 6 times the 

Firefly system; 3 times an Olympus system; 5 times a Hamamatsu system and 2 Stryker 

systems. Two studies did not mention which system was used. When comparing the studies 

using the different systems studies using Karl Storz can visualize the cystic duct in 93%; 

Firefly in 97% Olympus in 92% Hamanatsu in 92% and Stryker in 94%.

Kono et al.56 compared five imaging systems. Namely, a prototype fluorescence imaging 

system from Hamamatsu Photonics (Hamamatsu, Japan and Shinko Optical, Tokyo, Japan), 

the system from Olympus Medical Systems (Tokyo, Japan), thirdly a high-definition model 

From Hamamatsu Photonics (Hamamatsu, Japan and Shinko Optical, Tokyo, Japan), the high-

definition fluorescence imaging system from Karl Storz (Tuttlingen, Germany) and fifth, the 

high-definition imaging system from Novadaq (Toronto, Canada). A significant difference 

between these systems tested for signal contrast was found.56 It is not clear whether the 

systems tested are exact alike with the systems that are at present commercially available 

and clinically used.

Interpretation of the signal 

Most studies only state whether a certain anatomical structure is visible or not, without 

quantification of the fluorescence intensity. There is no generally applied analytic measure 

to objectify the fluorescence intensity yet. When the fluorescence intensity is measured in 

literature, several methods based on the color-intensity are used. In most of these methods, 

only the fluorescence intensity of the target is measured.

Schols et al.43, 46 uses in both articles measurement of the Target to Background Ratio 

(TBR) to objectify the degree of fluorescence illumination. For this, OsiriX 5.5.1 Imaging 

Software was used. The TBR was defined as the mean fluorescence intensity (FI) of two-

point regions of interest (ROIs) in the target (i.e. CBD, CD, or CA) minus the mean FI of two 

background ROIs in the liver hilum, divided by the mean FI of the two Background ROIs in 

the liver hilum; The used formula was as follows: TBR = (FI of target−FI of background)/FI of 

background.

Ashitate et al.57 apply the same formula, but do not mention which software was used. 

Also, the exposed rectus muscle was used as background57. Objectively this is correct, as any 

consistent background can be chosen, but subjectively, it is more logical to use the liver as 

background, as this is the actual observed background during the operation. 

Kono et al.56 also use a signal to background ratio. In their series, Photoshop CS5 

software (Adobe Systems, San Jose, CA) was used to calculate the fluorescence intensity in 
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the regions of interest with a range of 0–255 from still images. The used formula here was as 

follows: Signal contrast= (FI in fluorescence regions−FI in background)/225.

Zarrinpar et al.54 used ImageJ (US National Institutes of Health, Bethesda, MD; http://

image j.nih.gov/ij/) software to calculate intensity ratios. They divided the fluorescence 

intensity signal of the common bile duct by that of the surrounding fat or liver. Verbeek et 

al.55 use the same formula as Zarrinpar, but do not mention which software was used.

DISCUSSION 

The aim of this article is to give an overview of factors influencing the signal intensity during 

fluorescence imaging, primarily focused on NIRF-guided cholangiography with ICG during 

laparoscopic cholecystectomy. These influences can be divided in patient factors, the 

applied fluorescent dye, the equipment and the method of assessing fluorescence intensity.

Regarding patient factors, obesity and inflammation, i.e. cholecystitis, are of importance. 

These may cause thickening of tissue covering the structures to be visualized, thereby 

decreasing signal intensity. Although fluorescence imaging has a better tissue penetration 

than white light, due to its emission in the near-infrared wavelength zone, penetration is 

limited by such factors.

In several studies, patients with cholecystitis were included. In four studies, a comment 

is given about the influence of cholecystitis on the usefulness of the NIRF technique.

Zroback et al.33 appreciated the NIRF technology most while dissecting the most 

inflamed gallbladders. On the contrary, three other authors mention that in patients in whom 

the biliary structures could not be visualized, more often cholecystitis was present than in 

patients in whom imaging was successful13, 39, 42. Liu et al. report a significant difference in 

visibility of the cystic duct with NIRF compared to white light in patients with cholecystitis.53 

This is an indication that NIRF imaging might be more helpful in cholecystitis patients. No 

difference in complications due to NIRF imaging was reported between patients with and 

without cholecystitis.

Obesity may result in more fatty tissue overlying the extrahepatic biliary tree. The average 

BMI in the included studies ranged between 20.4 and 32.3 kg/m2 with an overall average 

of 30.0 kg/m2. Considering this high average BMI and the good results the manuscripts 

describe; a high BMI seems not to be a burden in the use of NIRF cholangiography. Dip et 

al.35 specifically investigated the accuracy of NIRF guided surgery in morbidly obese subjects 

undergoing laparoscopic cholecystectomy and could not find differences in biliary duct 

visualization between the obese and the non-obese groups.35 Some studies confirm this 

absence of influence of BMI on the visualization scores.54, 56 On the contrary, other studies 

claim that BMI has a negative influence on the visibility of the structures using NIRF.34, 40, 42, 44, 

51 It is even suggested that also a more common inflammatory response is present in these 
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patients.42 The practice of using fluorescence cholangiography is that it is applied while 

gradually dissecting the surgical area. Sooner or later during this dissection, NIRF will lead to 

confirmation of the anatomical structures. More fatty tissue requires more dissection and—

most likely—later visualization of structures. The earlier or later recognition may influence 

the surgeon’s satisfaction with the NIRF technique. Another explanation for differences 

between studies may be that the signal of ICG depends on the concentration used.58 It is 

possible that in patients with a higher bodyweight, the concentration of ICG differs when 

using a fixed and not a weight-adjusted dose. This will be discussed hereunder. 

In the performed ex vivo experiments, a maximum penetration depth of 3.6 mm was 

achieved. This confirms the limits of penetration of the NIRF signal. However, bees wax was 

used to measure the penetration depth. Although spectral properties are similar to human 

tissue, it is possible that the penetration depth in human tissue is different. Anyhow, this in 

vitro method at least offers an objective and simple tool to compare the performance of 

different laparoscopes, light sources, and camera systems.

In conclusion, NIRF seems also to be beneficial in circumstances where penetration 

depth is limited due to thickened overlying tissue. In these cases, the image will be obtained 

later, after relatively more dissection has been performed. The surgeon should be aware of 

this, but with this in mind, can use the technique to enhance recognition of the essential 

structures.

Concerning the fluorescent dye used, several factors may be of influence on the signal 

obtained: the type of dye, the dose used and its concentration, the timing and the route of 

administration.

Regarding the type of dye, there are several factors that determine the effectiveness of 

a fluorescent dye. These are probe targeting (a dye for bile duct imaging should be able to 

reach the bile ducts and to some extent accumulate there), activation, pharma kinetics (how 

fast is the dye at the desired place and how long will it stay there?), biocompatibility and 

photo physics.59 The dye should ideally be in the near-infrared range, since this offers the 

spectral range with best light penetration (so-called near-infrared window). Also, the use 

of a near-infrared filter and light source eliminate autofluorescence.60 Wavelengths below 

600 nm encounter this higher auto-fluorescence due to the presence of many endogenous 

fluorophores and strong scattering. Below 600 nm, there is a strong absorbance of 

haemoproteins such as haemoglobin, myoglobin and cytochromes causing less deep tissue 

penetration.59, 61

Indocyanine green is currently the only clinically used dye for fluorescence cholan-

giography, illustrated by the fact that it was used in all 27 studies of this review. In most of 

these studies, ICG was mostly an abbreviation for indocyanine green, but in four studies 

the iodine-free infracyanine green was used. The absence of iodine in infracyanine seems 

to make it less toxic and available for patients with an iodine allergy. We did not perform in 

vitro experiments with infracyanine green, but the absorption and emission spectra of both 

dyes do not differ62, and thus the signal is expected to be equivalent.
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Another previously tested fluorescent dye is Methylene Blue (MB). This has not been 

used in the studies reported. MB and ICG have been compared in an animal study using 

pigs in which both dyes were directly injected into the gallbladder through a 10 Fr catheter 

that was inserted into the gallbladder fundus.63 Using this method, ICG had a higher target 

to background signal, due to a higher extinction coefficient and higher fluorescence rate. 

An advantage of MB is limited liver uptake resulting in less background signal. The signal 

becomes visible within minutes and remains adequate for 120 min.63 A disadvantage of MB 

is the absorption and emission around 700 nm which is subject to a higher background 

auto-fluorescence63 but also requires different settings of the equipment. Another drawback 

is the need for intra-gallbladder administration of the dye, since methylene blue is cleared 

by the kidneys, not the liver.64 Ashitate et al.57 combined two dyes in an animal study. Herein, 

they compared three different combinations; first methylene blue for visualization of the 

cystic artery and indocyanine green for visualization of the bile duct; secondly ICG for the 

artery and Methylene blue for the bile duct; thirdly ZW-800-1 for the artery and methylene 

blue for the bile duct. The authors’ conclusion is that the third combination had the best 

overall performance, and the second combination was the best combination of clinically 

available dyes.57

Apart from the above mentioned ZW-800, other new preclinical dyes such as VM678, 

IRDye®800CW, IRDye®800BK and IRDye®800NOS have been tested in animals and show very 

promising results.24, 65 These are due to better pharmacokinetic characteristics and target-

to-background ratio of these dyes.24, 66 The IRDyes have the same spectral characteristics as 

ICG, which enables the use of the same equipment. IRDye®800CW is expensive, with a price 

tenfold that of ICG; IRDye®800BK and IRDye®800NOS however cost the same as ICG.65 But 

these dyes are not yet FDA approved.

In conclusion, ICG is currently the most used and preferred dye. Only limited data are 

available on MB and it is not used in clinical practice for cholangiography, probably based on 

the characteristics described above. New preclinical dyes are promising but await approval 

for clinical practice.

The dose used may also be of influence on the performance of the dye. In the studies 

presented, a bolus was given (2.5 mg in 13 studies, 12.5 mg and 3.75 mg in two others); or a 

weight-adjusted dose (0.05 mg/kg in seven studies and 0.04 mg/kg in three other studies). 

Zarrinpar et al.54 undertook a prospective study with systematic variation of dosing and 

timing from injection of ICG to visualization. In 37 patients, doses were given varying between 

0.02 and 0.25 mg/kg. Their conclusion was that with increasing dose, the visualization of the 

extrahepatic biliary tract improved. Visualization was also better with increased time after 

ICG administration (10 min vs. 45 min vs. 3h). Boogerd et al.30 compared a dose of 5 and 10 

mg and advise to use the lower dose of 5 mg.

Our ex vivo experiments suggest that the 2.5 mg bolus that is used in most studies, 

is probably below the optimal clinical dose. One should however take into account that 

these ex vivo experiments are a controlled setting, which is not entirely comparable to the 
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complex in vivo biological system in which we use the NIRF cholangiography. Therefore, a 

recommendation regarding the optimal dose cannot be given based on these experiments. 

Nevertheless, the conclusion can be drawn that applying a weight-adjusted dose seems 

preferable over a fixed dose.

The used concentration of the administered ICG solution was not clearly described in 

every study. The studies that describe the used concentration all use 2.5 mg/ml.19, 33, 34, 40, 46, 

49–52 This is remarkable since the leaflet that comes with ICG advises to dilute the ICG to a 

solution of 5 mg/ml. However, a concentration of 2.5 mg/ml is more feasible in daily practice 

since 1 ml can be retrieved more precise than just 0.5 ml.

Hiratoglou et al.62 investigated the influence of the concentration and solvent medium 

on the light-absorbing prosperities in ICG. When glucose 5% was used as a solvent medium, 

the absorption between 600 and 700 nm was decreased, compared with the absorption 

with Balanced Salt Solution (BSS) or BSS Plus. These differences between BSS/BSS Plus- and 

glucose 5%-diluted ICG decreased when the concentration was lowered. They conclude 

that depending on the used solvent medium, the absorption spectrum of ICG changes with 

different concentrations.62 Based on these findings, it might be advisable to use sterile water 

as a solvent medium, as most groups currently do, and not a glucose solution. 

Kono et al.56 found a lower fluorescence intensity when using a more diluted solution of 

ICG. Our ex vivo experiments show an optimum of ICG concentration. This optimum seems 

to be at a higher concentration than is currently achieved in the clinical situation.

However, this conclusion is an extrapolation of the experimental data to the clinical 

situation for the concentration of ICG in the blood. The extrapolation may not be correct 

and is also not directly translatable to the concentration in the bile ducts. And one must 

be aware that not so much the concentration of the solution applied, but the total dose 

administered determines the systemic concentration of the dye.

The timing of administration ranged mostly between 2 hours and 15 minutes before 

surgery. Verbeek et al.55 investigated whether a longer time between the administration 

of ICG resulted in an improved visibility of the biliary anatomy. The authors found that 

administration 24h prior to surgery results in a significantly better signal to background 

ratio.55 This is mainly caused by a lesser fluorescent signal coming from the liver. A problem 

with this approach is the practical applicability: in day care admissions and in acute 

cholecystitis an injection 24h before surgery often is not feasible. Also, since only 30 min 

versus 24h before surgery were tested, the optimum may lie between these timeslots. 

Kono et al.56 and Boogerd et al.30 also conclude that earlier administration results in better 

visualization. In conclusion, administration closer to the time of surgery can result in a more 

prominent background signal from the liver. Therefore, administration as early as possible 

(but not earlier than 24h) should be considered.

In all studies, except for the study by Graves et al.30 and Liu et al.53, the fluorescent 

dye was administered intravenously. This is easy and convenient for the patient, since 
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intravenous access is needed anyway for induction of anesthesia. However, systemic 

injection results in the disadvantage of occurrence of (background) fluorescence of the 

liver, which considerably decreases the signal to background ratio. Another limitation of 

this administration route is the dependency on the refilling of the gallbladder and cystic 

duct with fluorescent bile by reflux, which is unpredictable.38 A solution might be direct 

injection of ICG into the gallbladder. Lui et al.67 previously examined the feasibility of this 

technique in pigs. They conclude that fluorescence cholangiography through direct intra-

gallbladder injection can rapidly provide an adequate visualization of the gallbladder neck 

and cystic duct. The problems with a high background signal from the liver and the needed 

time for the ICG to be extracted from the blood and secreted into the biliary system are 

solved by this administration route. This is in line with their newer study in humans53 and the 

study by Graves et al.10, who injected the Indocyanine green in eight patients and achieved 

comparable encouraging results as described in the animal study. However, spill of ICG 

at the puncture site of the gallbladder may decrease overall visibility of the structures to 

be visualized. This is illustrated by the remark of Osayi40 that in three of the patients the 

visualization was impaired due to bile leakage from the gallbladder, albeit that this was not 

caused by puncture, but by surgical trauma.

With regard to the imaging system, the distance and the angle between the endoscope 

and the target, and the properties of the system, have influence on the signal.

The distance between the fluorescent dye and the laparoscope seems to be of influence 

on the fluorescence intensity. Kono et al56 describe a decrease by 50% of the signal when 

the distance between the laparoscope and the target increased from 5 to 15 cm. Other 

manuscripts do not describe the distance between the bile ducts and the laparoscope. In 

our experiments, a clear relation was found between the distance of the laparoscope to the 

target and the measured fluorescence intensity (Figure 3). In practice, the distance at which 

the endoscope is held, is primarily dictated by the optimal overview for surgical dissection. 

Ideally, the properties of the dye and the system enable the surgeon to maintain the same 

distance for dissection and for NIRF imaging. However, the surgeon must be aware that for 

optimal fluorescence signal temporarily adjusting of the distance may be necessary.

Kono et al56 point out that the tip of the laparoscope should be held vertically to Calot’s 

triangle to directly irradiate exciting light on the bile ducts to efficiently obtain fluorescence 

signals. However, as with the distance of the laparoscope, other manuscripts do not mention 

whether the laparoscope was held vertically or in another angle. Some of the articles use a 

zero-degree laparoscope, while others use a 30-degree laparoscope, which is also a factor 

that should be kept in mind when aiming for the optimal angle.

In the ex vivo experiments, a better signal was seen when the laparoscope’s central 

viewing axis was aligned perpendicular to the target (i.e. an angle between the tip of the 

laparoscope and the fluid level in het Well’s plate of 90 degrees). Because a 30-degree 

laparoscope was used, this needed to be held at 120 degrees to obtain the highest 
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fluorescence intensity. This confirms the clinical findings of Kono et al.56 As with the distance, 

the position of the endoscope is mainly aimed at facilitating dissection. At moments of 

attention to the NIRF signal, focus should also be on the 90-degree angle to the target.

Five different systems were used in the included studies. As discussed before, the tissue 

depth to which NIRF imaging can detect agents is dependent upon their brightness and 

the sensitivity of the device.68 The main components of a fluorescent imaging device are a 

spectrally adjusted light source for exciting ICG; optical filters for separation of the emitted 

fluorescent light and the background scattering and ambient light; camera(s) for detecting 

the emitted fluorescent signals; display software and display hardware.69 The performance 

of a device is mainly determined by these components.68

The most used light source type in the included studies is a xenon light for laparoscopy, 

and a laser diode in the robotic cases. Laser diodes enable the greatest sensitivity since 

the background due to background excitation light is the lowest. A xenon light source has 

a very broad bandwidth and has therefore a lower sensitivity.68 The detection sensitivity 

in all fluorescent imaging systems is limited by the background signals. There is a spectral 

overlap between the backscattered excitation light and emitted fluorescence signals. In 

this way, non-fluorescent signals can be seen as fluorescence. Another problem is a limited 

optical density that allows passage of a small amount of ambient light, also called filter 

light leakage. This causes a ‘noise floor’, which makes it less probable that a device can 

detect small amounts of the fluorescent dye in tissues.68, 70 A sufficient level of noise floor 

is needed to identify tissues of the surrounding, but when the noise floor is close to the 

fluorescent signal, the sensitivity of the imaging device and depth penetration of the signal 

will be reduced. A way to solve the issue of balancing between visualizing the surroundings 

and signal sensitivity is to superimpose images in real time by using separate cameras for 

reflectance and fluorescence.69, 71

Kono et al.56 performed the only comparative study to date with five laparoscopy 

systems for NIRF during cholecystectomy: Hamamatsu Photonics, Hamamatsu, Japan and 

Shinko Optical, Tokyo, Japan; Olympus Medical Systems, Tokyo, Japan; a high-definition 

unnamed model Japanese system; Karl Storz, Tuttlingen, Germany; Novadaq, Toronto, 

Canada. According to this study, the signal contrast was significantly different among the 

laparoscopic systems used for fluorescence imaging. In the meantime, since this study, 

systems and their properties have changed. The surgeon should be aware that differences 

exist which may influence the choice for a system.

Finally, it is important to evaluate the way the fluorescence intensity is assessed. Most 

studies only state whether a certain anatomical structure is visible or not, without quantitative 

measurement of the fluorescence intensity. There is no uniformly agreed analytic measure 

to objectify the fluorescence intensity. In most methods, only the fluorescence intensity of 

the target is measured, and not the fluorescence of the background.

The target-to-background ratio (TBR) is determined used by some authors (Schols et al.43, 46,  
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Ashitate et al.57, Kono et al56, Zarrinpar45, Verbeek48). Unfortunately, formulas that are used 

to calculate the ratio, the backgrounds chosen, and the software used for measurement of 

the signal are not uniformly. In practice, the absolute signal and the subjective observation 

by the surgeon is what determines the clinical usefulness of the NIRF image. But for 

research purposes and comparison between studies an objective, uniform and validated 

quantification is necessary, which, as illustrated by the differences described, is not available 

yet.

Our in vitro setup offers a simple and very cheap method for objective comparison 

between different system, but it would be recommendable that this topic is further refined 

and preferably standardized (e.g. by IEC). 

The present review has some limitations. The majority of the studies are non-

comparative. Especially to fulfil the purpose of the review, i.e. identify factors that influence 

the fluorescent image, such comparison would have been preferable. To partially address 

this drawback, ex vivo experiments were added to the review. In vivo studies would have 

been preferable, including the effect of human or animal tissue and circumstances on the 

acting of the fluorescent dye.

In conclusion, this study identified and discussed several factors that influence the 

signal of fluorescence cholangiography. Some are patient-specific and cannot be altered, 

such as BMI and cholecystitis. Even with a higher BMI and the presence of inflammation, 

NIRF is often successful. Other factors can be controlled by the surgeon. To maximize the 

fluorescence intensity during laparoscopic cholecystectomies, a weight-adjusted dose 

seems preferable over a fixed dose, especially in overweight patients; administration of 

this dose should take place as long as possible (max 24 h) before surgery; the laparoscope 

should be held at a right angle and close to the target tissue. Surgeons should be aware of 

new dyes that may come to the market and of differences in the properties of systems used, 

in order to benefit most of the potential of NIRF imaging. Further research should focus 

on the possibility of intra-gallbladder injection of ICG, other fluorescent dyes with a higher 

fluorescence intensity and faster clearance from the liver and the validation of a method to 

objectify the degree of fluorescence illumination in order to enable comparison between 

studies.
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ABSTRACT 

Background

Imaging techniques that enhance visualisation of the anatomy may help prevent bile duct 

injury. Near-Infrared Fluorescence Imaging is such a technique. Previous experiments with 

ICG have shown that illumination of the extra-hepatic bile ducts is feasible. Yet, there is 

room for improvement in the visualisation of the target as compared to the background. 

Experiments with IRDye® 800CW show promising results. However, this dye is too expensive 

for routine clinical use. The aim of this study is to test the first applicability of two newly 

developed preclinical dyes regarding intraoperative imaging of the cystic duct and cystic 

artery, compared with IRDye® 800CW.

Methods 

Laparoscopic cholecystectomy was performed in three pigs, using a laparoscopic 

fluorescence imaging system. Each pig received 6 mg of one of the fluorescent dyes 

(1 mg/mL; IRDye® 800CW, IRDye® 800BK or IRDye® 800NOS) by intravenous injection. 

Intraoperative recognition of the biliary system and cystic artery was registered at set time 

points. All procedures were digitally recorded, and the target to background ratio (TBR) was 

determined to assess the fluorescence signal.

Results 

With all three fluorescent dyes, the cystic artery was directly visualized. For the visualization 

of the cystic duct, 15, 34 and 30 min were needed using IRDye® 800BK, IRDye® 800NOS 

and IRDye® 800CW, respectively. The maximum TBR of the cystic duct was the highest with 

IRDye® 800NOS (4.20) after 36 min, compared to 2.45 for IRDye® 800BK and 2.15 for IRDye® 

800CW, both after 45 min. There were no adverse events.

Conclusion 

IRDye® 800BK and IRDye® 800NOS seem to be good alternatives for IRDye® 800CW for the 

visualization of the cystic duct and cystic artery in pigs.
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INTRODUCTION 

Laparoscopic cholecystectomy is standard care for symptomatic gallbladder stones or 

acute cholecystitis and is one of the most commonly performed surgical procedures in the 

Western hemisphere. The reported incidence of bile duct injuries in laparoscopic surgery is 

0.4–1.4%.1, 2 Such injuries are associated with increased morbidity, reduced survival, impaired 

quality of life and have economic consequences for society.2, 3 Anatomical variations of the 

biliary ducts or vascular system are not uncommon and represent operative challenges 

and looming sources for operative complications.3, 4 Therefore, enhanced intraoperative 

visualization of the biliary anatomy is needed to reduce the incidence of bile duct injuries.

Near-infrared fluorescence (NIRF) imaging is a promising technique for real-time delineation 

of the perioperative anatomy. Among other applications, it is used for visualization of 

the extra-hepatic bile ducts and the cystic artery in laparoscopic cholecystectomy, and 

visualization of the ureter in colorectal, urological and gynecological surgery.5–7 In the 

clinical setting, ICG is the dye used for bile duct imaging, with reasonable visualization results 

that makes clinical use possible. Both the extra-hepatic bile ducts and the cystic artery can 

be identified.8 Subjectively however, imaging of the target is not optimal in all patients. 

Better contrast between target and background is expected to increase the usefulness of 

the technique. Adaptation in the equipment and its characteristics is one way to address 

this issue. Alteration in the dye or its use is another. One such alteration is the suggestion 

to inject the dye a day before surgery.9 However, due to usually performed same-day 

admission, this is undesirable from a logistic standpoint. Applying another fluorescent dye 

is a further possibility.

IRDye® 800CW (LICOR Biotechnology, Lincoln, United States) is an experimental dye, 

which in combination with laparoscopic imaging allows intraoperative visualization of 

crucial anatomical structures. In a previous animal experiment, performed by our group, 

this dye was compared to ICG for imaging of the extra-hepatic bile ducts and the cystic 

artery in the pig. The main results were an earlier visualization of the cystic duct, when 

using IRDye® CW-800 and a higher target-to-background ratio for the cystic artery.10 This is 

in line with two other studies and makes this new dye promising for future clinical use.10–12 

However, a major disadvantage of IRDye® CW-800 is its cost, which is almost tenfold that of 

ICG. Therefore, more affordable alternatives are needed.

Recently, the manufacturer of IRDye® 800CW developed two new preclinical dyes, 

IRDye® 800BK and IRDye® 800NOS, that can be produced at a cost that is comparable to 

commercially available ICG. In general, the three dyes have similar properties. Emission 

and absorption are at about the same wavelength as for ICG. The dyes differ in hydrophilic 

properties, with IRDye® 800NOS being the least hydrophilic. This influences their excretion 

and their uptake in the liver and may make them more potent with regard to their imaging 

capabilities of the cystic duct.
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The aim of the present study was to evaluate the performance of these dyes as compared to 

IRDye® 800CW for NIRF laparoscopy of the extra-hepatic bile ducts and the cystic artery in 

pigs using a commercially available laparoscopic fluorescence imaging system.

MATERIALS AND METHODS

This study was conducted at the central animal facilities of Maastricht University (Maastricht, 

The Netherlands). Animals were used in compliance with the regulations of the Dutch 

legislation for animal research and following a protocol that was approved by the local 

animal ethics committee. A pig model was chosen because of its similarity with human 

hepatobiliary anatomy and because previously successful experiments have been conducted 

with NIRF imaging in pigs.10 Three female Dutch landrace pigs, weighing 40 kg, were used 

for the current study. After surgery, the pigs were sacrificed by the anesthesiologist.

Laparoscopic fluorescence imaging system 

A commercially available laparoscopic fluorescence imaging system (Karl Storz GmbH & CO. 

KG, Tuttlingen, Germany) was used. The NIR light source D-Light P is a xenon-based system 

providing illumination light for fluorescence applications in the near-infrared wavelength 

range. It enables the excitation of all presented dyes: IRDye 800CW ( EX/EM = 775/796 nm), 

IRDye 800BK ( EX/EM = 774/790 nm) and IRDye 800NOS ( EX/EM = 767/786 nm). A foot pedal 

allows the surgeon to easily switch between the two imaging modalities. All procedures 

were digitally recorded. For all three dyes, the same NIRF imaging settings were used.

Characteristics and preparation of near-infrared dyes

IRDye® 800CW is a tetrasulphonated heptamethine indocyanine dye. Intravenous injection 

is rapidly cleared by the liver and excreted into bile. It is also cleared by the kidneys and 

excreted into urine. The peak absorption of this dye is 775 nm and peak excitation emission 

at 796 nm. The molecular weight is 1090.11 Da.13,14

IRDye® 800BK (LICOR Biotechnology, Lincoln, United States) is a newly developed dye, 

primarily developed for intraoperative visualization of the ureters. This hydrophilic dye 

has a maximum absorption of 774 nm and a maximum emission of 790 nm. Because of 

its hydrophilic nature, it is primarily cleared by the kidneys. Nevertheless, being similar in 

structure as IRDye® 800CW, some additional clearance by the liver can be expected.

IRDye® 800NOS (LICOR Biotechnology, Lincoln, United States) is also a newly developed 

dye, less hydrophilic, mainly developed for intraoperative visualization of the biliary system. 

This dye is primarily cleared by the liver and has a maximum absorption of 767 nm and a 

maximum emission of 786 nm.
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All three dyes were prepared following instructions of the manufacturer. They were 

diluted in a sterile phosphate buffered saline (PBS) solution to a concentration of 1 milligram 

per milliliter. Six milligrams of each dye in this dilution was prepared for intravenous injection.

Surgical technique 

Premedication consisted of intramuscular injection of azaperone 3mg/kg, ketamine 10mg/

kg and atropine 0.05mg/kg. Anesthesia was induced with intravenous thiopental 10-15mg/

kg. After intubation, the pigs were maintained under anesthesia with isoflurane and oxygen. 

Two expert endoscopic gastrointestinal surgeons (NB and LS) performed the operations 

and were assisted by residents experienced in the procedure. In each pig, a laparoscopic 

cholecystectomy was performed, according to the Dutch Guidelines and best practice 

for laparoscopic cholecystectomy applying the Critical View of Safety technique.15,16 One 

dye was tested per animal using a 6mg dose (1mg/mL). This was twice the dose proven 

sufficient in an earlier study.10 The dose was chosen to obtain maximal visualization since 

our hypothesis was that a higher dose of the dye would result in better biliary imaging. 

Fluorescence imaging was initiated immediately after dye injection and subsequently 

imaging was performed intermittently in fluorescence mode and white light mode. Intra-

operatively, the researcher systematically documented on a form whether the cystic duct 

or cystic artery could be identified, in either of the imaging modes. For agreement on the 

identification on the aforementioned structures, the attending surgeon was consulted. A 

structure was scored as ‘identified’ if its localization was confirmed with great certainty by 

the experienced surgeon.

Postoperative quantitative fluorescence analysis

The video recordings of the procedures were assessed for the degree of fluorescence 

illumination using OSIRIX v7.0.1 Imaging software (Pixmeo, Geneva, Switzerland). With this 

software, the Target-to-Background Ratio (TBR) could be determined. The TBR was defined 

as the mean fluorescence intensity (FI in arbitrary units, A.U.) of three points of interest in the 

target (cystic artery or cystic duct), minus the mean fluorescence intensity of three points of 

interest in the background (liver hilum), divided by the mean fluorescence intensity of three 

points of interest in the background. In formula: TBR = (FI of target – FI of background)/ (FI 

background).8, 10 Areas with light scattering were avoided in these points of interest.

RESULTS 

In all experiments, the identification of the cystic duct and cystic artery with NIRF imaging 

was successfully conducted. Results obtained during the operation are presented in the 

intraoperative registration form in Table 1.
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In the first pig (IRDye® 800BK), direct clear visualization of the cystic artery was present 

after injecting the fluorescent dye. Already after 15 min, the cystic duct showed NIRF signal. 

The second pig (IRDye® 800NOS) showed immediate visualization of the cystic artery 

after injection of the dye. However, due to a technical problem early in the procedure, this 

visualization was not recorded, and therefore no TBR could be obtained from this fluorescent 

cystic artery. After 34 min, the cystic duct was clearly visible. However, manipulation of the 

gallbladder proved to be of influence on the visualization of the cystic duct. Too much 

stretching of the fragile duct prohibited influx of fluorescent dye. This was corrected at 34 

min. As in the first two pigs, the cystic artery was also clearly visible in the third pig receiving 

IRDye® 800CW dye. After 30 min, the cystic duct could be identified in the fluorescence 

mode. In all three pigs, apart from the cystic duct and cystic artery, other structures became 

visible. The bicornate uterus was subjectively the most fluorescent in the abdomen of all 

three pigs. Also, the ureters, small bowel and lymph nodes were visible in fluorescence 

mode in all three pigs.

Target-to-background ratio

Postoperatively, the video recordings were analyzed by measuring the Target-to-Background 

Ratio (TBR). The TBR’s of cystic artery for IRDye® 800BK and IRDye® 800CW were 6.78 and 

7.54, respectively. The TBR of the cystic artery for IRDye® 800NOS could not be measured 

because of a technical problem regarding the video recording procedures early in the 

operation. The maximum measured TBRs from the three dyes for the cystic duct were 2.45 

(at 45 min), 4.20 (at 35 min) and 2.15 (at 45 min) for IRDye® 800BK, IRDye® 800NOS and IRDye® 

800CW, respectively. Images 1–3 show the cystic ducts during these maximum measured 

TBRs. All images were made in the same fluorescence settings of the Image1 SPIES system. 

However, as can be seen in the images, with the IRDye® 800NOS, the laparoscope was at 

further distance from the cystic duct. The images with the maximum TBR for each dye are 

shown in Fig. 1, 2 and 3.

Safety

In none of the pigs complications or adverse reactions were registered during surgery 

that could be attributed to one of the dyes. In particular, no alteration in heart rate and 

Table 1 Intraoperative registration form 

Experiment
Injected dye 
(6mg)

Visualization of 
cystic artery?

Visualisation of 
cystic duct?

Time to 
identification 
cystic duct

1 IRDye® 800BK Yes Yes 15 minutes

2 IRDye® 800NOS Yes Yes 34 minutes

3 IRDye® 800CW Yes Yes 30 minutes
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blood pressure of respiratory status was observed. Only a slightly and transient decrease 

in intraoperative monitoring of the Saturation of peripheral Oxygen (SpO2) was observed 

during the first minute after injection of the fluorescent dyes.

DISCUSSION

In the present study, the use of two new preclinical dyes for NIRF imaging of the extrahepatic 

bile ducts with a commercially available laparoscopic imaging system was investigated. The 

new dyes resemble the structure and spectral characteristics of the previously favorably 

tested IRDye® 800CW but are much less costly, now being in the range of commercially 

available ICG. Both features are essential for possible future clinical application. The aim of 

Figure 1 Visualization of the cystic duct, 45 min 
(time point of maximal signal) after injecting 6 mg of 
IRDye® 800BK (1 mg/mL).

Figure 2 Visualization of the cystic duct (pointed 
by arrow), and the base of the gallbladder 35 min 
(time point of maximal signal) after injecting 6 mg of 
IRDye® 800NOS (1 mg/mL)

Figure 3 Visualization of the cystic duct (pointed by 
arrow) and common bile duct, 45 min (time point 
of maximal signal) after injecting 6 mg of IRDye® 
800CW (1 mg/mL).

Note: the little white spots are caused by scattering, and do 
not represent the fluorescent signal
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the experiments was to perform a first assessment of the NIRF properties of the new dyes 

and compare these to the performance of IRDye® 800CW. Eventually, these dyes could be 

an alternative to ICG, the only dye presently available for human use in NIRF imaging of 

the biliary system. This would be desirable, as with ICG, although NIRF visualization of the 

bile ducts can be achieved, the observed contrast of target-to-background leaves room for 

improvement.

Other advantages are a shorter period between injection of the dye and visualization 

of the target structures and the fact that these new dyes contain no iodine, whereas some 

of the commercially available ICG preparations do.17 These new dyes are therefore also 

applicable in patients that are known with an iodine allergy or hypersensitivity. A final 

benefit could be that these dyes are not only exclusively cleared by the liver, but also by the 

kidneys, a fact that is known from IRDye® 800CW. This may make these dyes appropriate for 

ureter imaging.

All three dyes showed clear visualization of the cystic artery directly after intravenous 

injection. Between 15 and 35 minutes, with all three dyes, clear visualization of the cystic 

duct was achieved. Both IRDye® 800BK and IRDye® 800NOS caused a more prominent 

fluorescent signal than the earlier tested IRDye® 800CW. The TBR of 2.15 found for IRDye® 

800CW in this study is comparable with that in an earlier study, where the TBR was 2.3.10 The 

signal from IRDye® 800NOS was stronger than that from IRDye®800BK. This was expected, 

as IRDye® 800NOS is less hydrophilic and supposed to be excreted through the bile more 

exclusively than IRDye® 800BK. In a previous study, the TBR’s of ICG and IRDye® CW800 were 

comparable.10 The present results suggest that the IRDye® 800NOS might be more potent 

for bile duct imaging. This corresponds to the subjective impression of the surgeons. Of 

course, these data have to be interpreted with caution and need confirmation. A possible 

limitation in the measurement of the TBR in this study is the not uniformly defined distance 

between laparoscope and cystic duct at varying time points. As shown in Images 1–3, this 

distance is greater in the pig with IRDye® 800NOS. A larger distance between the region of 

interest and the laparoscope may lead to a lower fluorescence intensity.18 However, the TBR 

for IRDye® 800NOS was the highest of all found TBRs.

There were no adverse reactions as a result of the administration of the dye. A very early 

and transient decrease in oxygen saturation was measured; this is a common phenomenon 

with the use of intravenous fluorescent dyes.19–21 The transient changing of the color of the 

blood results in the oxygen measurements becoming falsely lower than the real value.

During the experiment, it was observed that the three dyes were all cleared by both 

the liver (and excreted into bile) and the kidneys (and excreted into urine). Therefore, all 

three dyes might be eligible for both imaging of the biliary anatomy and of the ureters, 

although, as previously mentioned, IRDye® 800NOS is more exclusively excreted in bile and 

IRDye® 800BK more in urine. This was confirmed by the higher TBR in the bile duct for IRDye® 

800NOS in this experiment. The exact behavior of these dyes needs further study for both 
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biliary and urinary imaging. Because of the uncertainty on the amount of the dyes that is 

lost in urine, the given dose was set twice as high as in a previous experiment with successful 

bile duct imaging with IRDye® 800CW.10 The TBR of IRDye® 800CW in the present study was 

comparable to the previous observation which might indicate that the double dose is of 

no influence when using IRDye® 800CW. In the present study, IRDye® 800CW took longer 

to become visible than reported in the study by Schols et al. 2014, where the cystic duct 

was distinguishable after 11 min.10 Tanaka et al. 2014 measured fluorescence in the cystic 

duct after around 20 min, which is comparable to the current results.11 The different doses 

used may have had an influence on the time until the appearance of fluorescence. Neither 

can it be ruled out that another dose than the one chosen gives superior imaging. Further 

experiments are needed to determine optimal dosing and timing that are influenced by the 

pharmacokinetic properties of the dyes.

This study has two other limitations. First, because of the limited series of experiments, 

the results have to be interpreted with caution. Since only three pigs were used, each dye 

was tested only in one pig. This resulted in the fact that the failure to start video recordings 

early in the second pig, in which IRDye® 800NOS was tested, could not be corrected in a 

subsequent experiment. Measurement of the visualization of the cystic artery with TBR was 

therefore not possible in this pig. Another limitation is the fact that we observed influence 

of the manipulation with the gallbladder and cystic duct on flow of the fluorescent dye 

in the bile through the cystic duct in the second pig. It cannot be ruled out that earlier 

imaging could have been obtained with adaptation of manipulation. This may have 

influenced the bile flow and the detailed time measurements in the other pigs. A drawback 

of the procedures was the necessity to switch intermittently between NIRF- and white light 

imaging of the biliary system. This is inherent to the equipment used. Although likely that 

simultaneous white- and fluorescent light imaging is more practical, the surgeons did not 

experience this as hindering, and measurements could be performed at a sufficient number 

of time points to perform relevant observations.

This study focusses fully on the evaluation of new dyes to optimize NIRF imaging. 

Another way to improve NIRF imaging is adaptation of the equipment and its properties. 

Such approach is also very important, but outside the scope of the present experiments.

CONCLUSION

The present study shows promising results on two new and affordable dyes for NIRF 

imaging: IRDye® 800BK and IRDye® 800NOS with respect to near-infrared fluorescence 

imaging of the cystic duct and cystic artery. At this moment, these dyes are not yet FDA 

approved, which also still is the case for IRDye® 800CW, and are therefore not applicable for 

human clinical practice yet. The new dyes seem to be good alternatives for IRDye® 800CW 
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in the visualization of the cystic duct and cystic artery in pigs. In order to be an alternative 

for the only dye that is at present available for human use, ICG, further studies and FDA 

approval are needed.
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ABSTRACT 

Aim 

To investigate whether different calculation methods to express fluorescence intensity (FI) 

as target-to background ratio are comparable and which method(s) match with human 

perception. 

Methods 

Comparison of three calculation methods from current literature (OsiriX, ImageJ and 

Photoshop) to objectify FI intensity during laparoscopic cholecystectomy measured at 

the exact same locations within recorded images of two categories: ex-vivo and in-vivo. 

Currently applied formulas to present FI in relation to the background (BG) signal are 

compared with the subjective assessment by the human observers. These three formulas 

are ‘Signal contrast = (FI in fluorescence regions - FI in BG) / 255’; ‘Target-to-background ratio 

= (FI of target - FI of BG) / FI of BG’; ‘Signal-to-background ratio = FI of Cystic duct / FI of liver’ 

and ‘Target-to-background ratio = (FI of Target - Noise) / (FI of BG - Noise)’. 

Results

In our evaluation OsiriX and ImageJ provided similar results, while OsiriX values were 

structurally slightly lower compared to ImageJ. Values obtained via Photoshop were 

less evidently related to those obtained with OsiriX and ImageJ. The formula Target-to-

background ratio = (FI of Target - Noise) / (FI of BG - Noise) was less corresponding with human 

perception compared to the other used formulas. 

Conclusions

Fluorescent intensity results based on measurements using the programs OsiriX and ImageJ 

are similar, allowing for comparison of results between these programs. Results using 

Photoshop differ significantly, making direct comparison impossible. This is an important 

finding when interpreting study results. We propose to report both target and background 

FI in manuscripts, so that proper interpretation between articles can be made. 
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INTRODUCTION 

Intraoperative near infrared fluorescence (NIRF) imaging is gaining both more applications 

and more users. The current main applications for the use of NIRF imaging with indocyanine 

green (ICG) in gastrointestinal surgery are: visualization of the cystic duct during laparoscopic 

cholecystectomy, perfusion assessment of gastrointestinal anastomoses and lymph node 

identification (1-5). The growing popularity of NIRF applications is accompanied by an 

increasing number of (pre)clinical studies published on this topic. In these studies, different 

applications, different fluorescent dyes and different methods for reporting the intensity of 

the signal are used. For objective inter-comparison between studies, a uniform objective 

quantification of the signal is mandatory. For instance, in the application of NIRF angiography, 

the fluorescent signal is reported in several ways, like: ‘adequate/sufficient or inadequate/

insufficient’ (6), ‘good, average or bad’ (7). It is difficult to compare the outcomes of studies 

when only such subjective evaluation is used. Our research group and many others use 

objective assessment of the fluorescence intensity (FI) (8). A review we recently performed 

showed that both different software packages and different formulas are used, still making 

inter-comparison of studies difficult (9). In random order, these software programs are 

OsiriX, ImageJ and Photoshop. Commonly used formulas in current literature are presented 

in Table 1. 

The aim of this technical note is to investigate whether measurements concerning FI 

reported in current literature are comparable and matching with human visual perception. 

A second aim is to evaluate the formulas that are currently used to correct the signal of the 

target with respect to the signal of the background, and to provide an advice on which 

formula to use in future research.

Table 1 Applied formulas as reported in literature and their results 

Reported formulas in literature
Type of image in 
articles

Mean accuracy 
when using grey-
value 

Mean accuracy 
when using blue-
value 

Signal contrast = 
(FI in fluorescence regions - FI in 
BG) / 255

Black and white 10.7 / 18 (range 9-13) 11 / 18 (range 9-14)

Target-to-background ratio = 
(FI of target - FI of BG) / FI of BG

Color (fluorescent 
image in blue) 

10.3 / 18 (range 9-11) 8.8 / 18 (range 6-12)

Signal-to-background ratio = 
FI of Cystic duct / FI of liver

Both black and 
white and color 
(fluorescent image 
in blue or green) 

10.2 /18 (range 9-11) 9.1 / 18 (range 7-12)

Target-to-background ratio = 
(FI of Target - Noise) / (FI of BG - 
Noise)

Black and white 8.5 / 18 (range 7-10) 7.3 / 18 (range 5-10)

FI: Fluorescence intensity; BG: Background
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METHODS 

To explore software packages and formulas used to report FI in laparoscopic cholecystectomy, 

the results of an earlier performed systematic literature search were used (9). 28 articles were 

screened for the use of software packages to measure FI and the applied formulas to quantify 

the intensity of the signal in the cystic duct compared to the background fluorescence. The 

identified software packages were then used in a controlled ex vivo setting to measure the 

FI of ICG in known concentrations with the laparoscope at a fixed distance. Subsequently, 

FI was measured using these programs on screenshots made during NIRF laparoscopic 

cholecystectomies. Finally, with the aforementioned screenshots, the formulas presented in 

literature were evaluated by assessing which formula corresponded best with the subjective 

assessment by the observers. See Figure 1 for an overview of study methods. 

Analysis of NIRF images obtained during ex vivo experiments 

Images from an earlier ex vivo experiment were used (9). In this ex vivo experiment, ICG was 

diluted with 35mg/ml albumin in a 0.9% NaCl solution to known concentrations. For the 

current experiment, images from dilutions of 5mg/ml ICG, 0.5mg/ml and 0.001mg/ml were 

used. For each dilution, 9 times 1ml of the dilution was placed on a wells plate. Images were 

obtained by making screenshots (PNG image) in the videos (mp4) that were made with the 

laparoscopic system (D-Light-P Fluorescence system, Karl Storz, Tuttlingen, Germany). For 

all concentrations, the FI was measured at 5cm and 9, 10, 11, 12, 13 and 14cm distance. The 

FI was measured at three points in the image, by two observers. The points of interest were 

placed on the exact same location; the exact same pixels were included, in the middle of the 

wells-cup, while no light reflections were included in the regions of interest. 

Analysis of NIRF images in laparoscopic cholecystectomy 

We randomly selected four laparoscopic cholecystectomies with NIRF imaging; these 

concern elective procedures performed in the Maastricht University Medical Center 

(Maastricht, the Netherlands). Screenshots were collected from the surgical videos. In these 

screenshots, at least the liver and cystic duct had to be visible in fluorescence light. In all 

screenshots, the FI was measured in three regions of interest (ROIs) in the cystic duct, three 

ROIs in the liver (two on the right of the cystic duct, one left). The regions in the liver were 

used as background reference. Three other regions in the surroundings were measured and 

were assessed as noise. The FI in these ROIs was measured in all programs by two observers 

and both the grey-value and blue-value were measured. Again, care was taken that per 

image, the ROI positions were pixel to pixel aligned on the same locations in all software 

programs. See Figure 2 for an example on the chosen regions of interest in a screenshot. 

Determination of a conversion formula for comparison of data from different programs 

measured FI in the respective programs was compared in order to obtain a conversion 
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formula to enable comparison of obtained FI in the one study with another. Analysis was 

performed in SPSS version 23 (IBM corp. Armonk, NY). First, observations were visualized 

in a scatter plot. A linear regression analysis was performed to assess how results of one 

formula could be converted to another. These analyses were initially performed separately 

for the ex vivo and the in vivo measurements. Then, agreement was quantified using an 

intraclass correlation coefficient and linear regression analysis.

ROI= Region of interest M.D.= Medical doctor.

Figure 1 Overview of Study methods

The ROIs are color-coded as follows: cystic duct in green, liver (Background) in red and noise in orange.

Figure 2 Example of assigned Regions of Interest (ROI) for in-vivo fluorescence intensity measurement 

In-vivo experiments Ex-vivo experiments 

3 Dilutions
7 Distances
-------------------------- +
21 Images in total 

4 laparoscopic 
cholecystectomies 
In total 18 images 

2 observers placed
3 ROIs in the target (Cystic duct) in each image
-------------------------------------------------------------- +
108 ROIs in the target in total 

Visually ranked by 3 
human observers (M.D.) 

18 Images ranked by filling 
in the 4 formula’s 

Formula most accurate 
in ranking compared to 
human perception 

Analysed by two observers
3 ROIs in each image 
---------------------------- + 
126 ROIs in total  

Comparison between ImageJ, Osirix and Photoshop for exact same ROIs 

2 observers placed by using Osirix
3 ROIs in background (liver) in each image 
3 ROIs in the noise (dark surroundings) in 
each image
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Comparison of the objectively measured and calculated fluorescence intensity with 

subjective assessment

The assessed screenshots from the aforementioned NIRF laparoscopic procedures were 

ordered from “very clearly visible fluorescent delineation” of the cystic duct compared to the 

surroundings to “weak fluorescence” of the cystic duct compared to the surroundings based 

on the opinion of three experts. This subjective assessment was compared with the results 

from filling in the formulas identified from literature for both the measured grey values and 

the measured blue-values. The FI and BG intensity used therefore were measured with Osirix. 

A difference in ranking of more than 5 places was considered a mismatch. A ranking score 

within 5 places was scored as an accurate match between subjective order and calculated 

order with the respective formula. The used ROIs were the same for all four formulas as the 

example in Figure 2. The ROIs from both observers were filled in in all formulas. 

RESULTS 

Programs used to objectively measure fluorescence intensity 

In the literature, three software programs were identified for objective quantification of the 

signal, namely OsiriX (Pixmeo, Bernex, Switzerland) (2, 8, 10-12), ImageJ (National Institutes 

of Health, Bethesda, USA) (13-15) and Photoshop CS (Adobe systems, San Jose, USA) (16). 

OsiriX, ImageJ and Photoshop were used in respectively five, three and one of the reviewed 

studies. 

Ex vivo NIRF-images analysis 

Twenty-one images were analyzed for the three ICG concentrations (5mg/ml, 0.5mg/ml 

and 0.001mg/ml) at different distances. Because two observers analyzed three points in 

every image, a total of 126 points were analyzed. As shown in Figure 3, the values obtained 

with ImageJ are very strongly related to the FI measured with OsiriX (Intraclass correlation 

coefficient = 1.0; R2= 0.9999; p <0.001). With the regression analysis, a formula was obtained 

to convert the measured value from ImageJ to a value when OsiriX would have been used: 

Value measured with OsiriX = -0.44 + 0.98(Value measured with ImageJ).

In reverse, the formula value for conversion from OsiriX to ImageJ would be:

Value measured with ImageJ = 0.46 + 1.02(value measured with OsiriX).

When comparing the values obtained with OsiriX with the values obtained with Photoshop, 

also a statistical significant relation between results was found, however with a lower 

interclass correlation coefficient (Interclass correlation coefficient= 0.78; R2 = 0.93; p <0.001). 

As shown in Figure 4, no obvious straight line is formed by the data points obtained with 

Photoshop and OsiriX (in contrast to comparing between OsiriX and ImageJ). Therefore, no 



Measuring the fluorescence intensity in NIRF cholangiography | Chapter 5

89

Ch
ap

te
r 5

straightforward formula to convert between values derived from OsiriX versus Photoshop 

could be obtained using a regression analysis. An approximate conversion formula based on 

a linear regression analysis would be:

OsiriX = 1.26 + 1.88(value measured with Photoshop)

The inverse approximate conversion would be:

Photoshop value = 0.01 + 0.49(value measured with OsiriX)

Note that values obtained with OsiriX are on average roughly two times as high as values 

measured with Photoshop (while using the same FI as input). 

Comparing measured FI values between Photoshop and ImageJ, a similar statistical 

significant relation is found (Interclass correlation = 0.78; R2 = 0.93; p <0.001). This relation is 

shown in Figure 5:

Figure 5 Relation between measured fluorescence 
intensity using Photoshop and ImageJ in ex vivo 
images

Figure 4 Relation between measured fluorescence 
intensity using Photoshop and OsiriX in ex vivo 
images

Figure 3 Relation between measured fluorescence intensity using ImageJ and OsiriX in ex vivo images
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Value obtained with ImageJ = 1.88 + 1.90(value obtained with Photoshop).

With the corresponding inverse approximate conversion:

Value obtained with Photoshop = -0.26 + 0.49 x (Value obtained with ImageJ). 

In vivo NIRF-images analysis (from laparoscopic cholecystectomy) 

Eighteen screenshots in four patients were analyzed. These patients all underwent 

elective laparoscopic cholecystectomy for symptomatic cholecystitis. In these images FI 

was measured on exact the same ROIs with the three software programs, with two sets 

of ROIs chosen independently by two observers. Comparing OsiriX and ImageJ based on 

the measured gray-values in the images, revealed a very strong correlation (Intercorrelation 

coefficient= 1; R2=1; p <0.001) and when data is plotted, a straight line can be drawn between 

the points, as is shown in Figure 6. The conversion formulas from linear regression analysis 

between OsiriX and ImageJ are:

OsiriX = -0.69 + 1.00(value obtained with ImageJ), and

ImageJ = 0.75 + 1.00(value obtained with OsiriX)

When measuring the blue-values, a perfect correlation (interclass correlation = 1; R2 = 1.00; p 

<0.001) was found with the following conversion formulas:

Blue-value OsiriX = 0.42 + 1.00(blue-value obtained with ImageJ), and

Blue value Image J = -0.30 + 1.00(blue-value obtained with OsiriX)

In the in vivo experiments, statistically there seems to be a relation between the values 

measured in Photoshop and OsiriX (interclass correlation = 0.76; R2 = 0.63; p <0.001). However, 

as shown in figure 7, no straightforward conversion formula can be identified to compare 

between studies.

This is the same for Photoshop and ImageJ (Interclass correlation = 0.76; R2 = 0.63; p 

<0.0001), see also figure 8. 

For the blue-values outcomes are comparable. Between OsiriX and Photoshop an 

interclass correlation of 0.96 was found (R2= 0.92, P<0.001), between ImageJ and Photoshop 

the interclass correlation was 0.96 (R2= 0.93, P <0.001). 

Reported formulas for assessment of fluorescence intensity:

As mentioned, the FI in the articles is often presented using a formula. The four formulas 

identified are reported in Table 1. 

Using the described method, the formula Signal contrast = (FI in fluorescence regions - FI 

in BG) / 255 seemed to be the most comprehensive with what the experts reported as their 

visual perceptions. However, as shown in table 1, differences are small. 

As the formulas were applied to grey values in colour images with fluorescence in 

blue, we also tested these formulas using the blue-value. From this refinement, also the 

formula Signal contrast = (FI in fluorescence regions - FI in BG) / 255 emerged as showing the 
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strongest match with the subjective order of FI of the ductus. However, the formula Signal-

to-background ratio = FI of Cystic duct / FI of liver was somewhat more accurate than Target-to-

background ratio = (FI of target - FI of BG) / FI of BG. 

Figure 7 Relation between measured fluorescence intensity using Photoshop and OsiriX in in-vivo images

Figure 8 Relation between measured fluorescence intensity using Photoshop and ImageJ

Figure 6 Relation between measured fluorescence intensity using ImageJ and OsiriX in in-vivo images for both 
grey-value and blue-value 
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DISCUSSION

Despite an increasing number of publications in the field of NIRF imaging, no standard yet 

exists for objective assessment of fluorescence images. This problem has recently been 

highlighted by reports from the American Association of Physicists in Medicine (AAPM) (18). 

Different software packages are used to quantify the fluorescent signal, and also different 

formulas are applied to correct for the background fluorescence. The latter is important as 

for human visual perception not only the absolute signal of the target is important, but also 

the contrast in relation to its surroundings. Such a formula actually is an imitation of the 

human visual perception system that naturally uses such contrast for object identification. In 

the present study we focused on two goals. First, to investigate whether different software 

packages used for measuring FI reported in the current literature yield comparable results. 

Secondly to identify the formulas used in literature to calculate a target-to background ratio 

and try to provide an advice on what formula to use in future research for comparison of 

studies.

In our ex-vivo analysis, a very clear relation between values measured with OsiriX and ImageJ 

was detected. The values obtained with OsiriX were approximately 0.5 units lower than 

those obtained with ImageJ. The relation between the values from Photoshop and from the 

other two programs was less evident as illustrated by a lower correlation coefficient. 

From our in vivo images, a slightly different conversion factor between OsiriX and 

ImageJ was observed. This may be due to the fact that images from an operative field are 

less standardized and influenced by subtle differences in scattering and light intensity. A 

possible explanation for the differences in correlation between the results from the different 

programs is a difference in measuring which is probably more likely to occur when using 

Photoshop. It is our experience that it seems more difficult to exactly select the same pixels 

for analysing the ROI. The various applied analysis programs were treated as a black box 

within this study. However, the software that provides results that are matching well with 

human perception seems to be more promising than others.

Apart from differences in used software, different formulas are used to present the FI. It is 

essential to take the signal from the surroundings due to uptake of the dye into account, 

because this influences the contrast as observed by the surgeon (9). When using a formula, 

the influence of the background is taken into account and thereby might provide a number 

more consistent with human perception. Several formulas are used that use target- and 

background signal, but in different dependency. It is difficult to decide on theoretical 

grounds which approach is best. Some points of attention should be kept in mind. Of 

course, the ROI’s should be chosen carefully, reflecting the signal of the subject best. Next, 

when using a formula, the distance between the laparoscope and the background should 
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be about the same as the distance between the target and the laparoscope. An observation, 

for which the present way of measuring doesn’t correct, is the fact that a small darker zone 

is observed surrounding the cystic duct, which influences the observed contrast, but is not 

taken into account when taking the liver as background.

In current literature, four different formulas were found. We tested these formulas against 

the assessment by the human eye. One formula seemed to be most accurate. This was the 

formula used by Kono et al (16), namely Signal contrast = (FI in fluorescence regions - FI in BG) 

/ 255. However, even though this was the best of the four formulas, there was not a 100% 

match between the subjective order and obtained order with this formula and differences 

with the other formulas were small. The only deviating formula was the formula ‘Target-

to-background ratio = (FI of Target - Noise) / (FI of BG - Noise)’ which provided results less 

compatible with human perception. Most likely this is due to the noise which is taken account 

in this formula. The cystic duct is often directly surrounded by a dark signal due to the shape 

of the cystic duct and shows more light reflections compared to the liver. Therefore, this 

cystic duct is sometimes easier recognizable with the naked eye than what is suggested by 

the outcomes of the formulas. Based on these observations it is not possible to advice one 

formula or the other. From our own experience, it is of great importance, independent from 

the formula used, that the ROI for signal analysis, are very carefully chosen. In the digital 

image, as discussed earlier, subtle differences in signal intensity and scattering occur within 

the same ROI, for example the cystic duct. 

Both OsiriX and ImageJ measure the intensity of the signal on a grey scale. However, the 

fluorescence signal is most often presented in color images, especially in blue or green. 

The equipment used in the present study gives a blue image for fluorescence. This is the 

reason why not only the grey values but also the blue values were measured. However, we 

observed comparable outcomes using both methods. These results may be influenced by 

the fact that the used fluorescence system gives a very dark background, hardly without any 

observable color. The background reference values and therefore the results of the formula 

might have been different when had been used that contains a more mixed light source, 

filtering out less of the white light and therefor showing more of the environment.

A limitation of this study is that it no uniformity existed in the equipment used between 

studies nor in the exact application of the technique. There are more relevant factors of 

influence than only the software used (16, 19). The equipment itself, the used laparoscope 

and the software in the laparoscopic system is of influence. Also, the timing of the application 

of the dye yields different results. As is shown in earlier studies, a longer time between ICG 

administration and assessment causes a more fluorescent cystic duct compared to the liver 

than an injection just 30 minutes before assessment (13, 14). And last, probably the most 

important factor is the selection of the ROI’s and the background, which is a subjective 
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action. We advocate minimizing this influence by choosing three points in both target and 

background and use the mean value of these three. However, the risk for selection bias 

remains. 

CONCLUSION 

When comparing fluorescence values obtained from analysis with different programs, this is 

easiest with those from OsiriX and ImageJ. A conversion with a correction factor as indicated 

in this article is possible, enabling the reader to interpret the presented values correctly. The 

relation between these two programs and Photoshop is less clear, hindering comparison 

of results. Furthermore, to overcome the present use of different formulas by different 

authors to further evaluate the signal, we propose to report both ROI and Background FI 

in the manuscript. This enables calculations to be made between articles independently of 

the preferred formula by the authors. Lastly in interpreting results, other influences on the 

FI and the risk for selection bias in chosen regions of interest for evaluation of the signal 

should be taken into account. 
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ABSTRACT

Purpose

The aims of this review are to determine the feasibility of near-infrared fluorescence (NIRF) 

angiography in anastomotic colorectal surgery and to determine the effectiveness of the 

technique in improving imaging and quantification of vascularization, thereby aiding in 

decision making as to where to establish the anastomosis.

Methods

A systematic literature search of PubMed and EMBASE was conducted. Searching through 

the reference lists of selected articles identified additional studies. All English language 

articles presenting original patient data regarding intraoperative NIRF angiography were 

included without restriction of type of study, except for case reports, technical notes, and 

video vignettes. The intervention consisted of intraoperative NIRF angiography during 

anastomotic colorectal surgery to assess perfusion of the colon, sigmoid, and/or rectum. 

Primary outcome parameters included ease of use, added surgical time, complications 

related to the technique, and costs. Other relevant outcomes were whether this technique 

changed intraoperative decision making, whether effort was taken by the authors to 

quantify the signal and the incidence of postoperative complications.

Results 

Ten studies were included. Eight of these studies make a statement about the ease of use. In 

none of the studies complications due to the use of the technique occurred. The technique 

changed the resection margin in 10.8% of all NIRF cases. The anastomotic leak rate was 3.5% 

in the NIRF group and 7.4% in the group with conventional imaging. Two of the included 

studies used an objective quantification of the fluorescence signal and perfusion, using ROIs 

(Hamamatsu Photonics) and IC-Calc respectively.

Conclusions

Although the feasibility of the technique seems to be agreed on by all current research, 

large clinical trials are mandatory to further evaluate the added value of the technique.
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INTRODUCTION

Anastomotic leakage is the most feared complication in colorectal surgery. With an incidence 

of 3%–15%1–8 in colorectal surgery, it remains a common problem. Anastomotic leakage 

concerns a severe complication that leads to significant morbidity, prolonged hospital stay, 

considerable extra costs, and increased short-term and long-term mortality.6–9 Known risk 

factors for anastomotic leakage are male sex, American Society of Anesthesiologists-score 

above 3, chronic steroid use, preoperative weight loss, smoking, preoperative chemotherapy, 

disease location (infra-peritoneal anastomosis), and prolonged operation time.6–8,10 Karliczek 

et al.11 discussed in their article that there is a lack of a reliable intraoperative predictive 

test for anastomotic leakage by the operating surgeon. Intraoperatively, the selection of an 

optimal site for anastomosis is now depending on subjective clinical indicators such as color 

of the bowel wall, palpable or visible pulsations of the mesenteric arteries, or bleeding of 

the resection margins.12 Tests to determine the colorectal anastomotic integrity are air leak 

testing or more invasive or complex techniques such as endoscopic visualization, Doppler-

flowmetry, pH readings in the colon, all of which are not very convincing techniques 

according to the review by Nachiappan et al.12 Also, these tests are performed after 

construction of the anastomosis, while a predictor before making the anastomosis could 

prevent anastomotic leakage.

It is thought that a better vascularization of the anastomosis will cause less anastomotic 

leaks.13–16 There is a large variability of the colonic vascular anatomy and many patients 

suffer from arteriosclerotic disease of the mesenteric vasculature.17 Therefore, an easy and 

reliable method to assess the vascularization is desirable. With near-infrared fluorescence 

(NIRF) imaging it is expected that real-time visualization of the vasculature can be improved 

and, ultimately, anastomotic leaks reduced. The use of fluorescence angiography was first 

described in 1976 for choroid angiography18 and is common practice in ophthalmology. 

Applying the technique intraoperatively during colorectal surgery is comparable to this first 

application; by intravenous administration of the dye and its intravascular transportation, 

the vessels in the target region can be seen by illumination of the fluorescent dye.

Indocyanine green (ICG) is the most frequently used NIRF dye in humans. ICG is a 

sterile tricarbocyanine dye composed of N-hydro-3,3,3’,3-tetramethyl-1,1-di(4-sulfobutyl)-

4,5,4’4’5-dibenzoindotricarbocyanine hydroxide sodium and absorbs light between 790 

and 805 nm and re-emits light with an excitation wavelength of 835 nm.19,20 Since a better 

vascularization of the bowel anastomosis is thought to result in less anastomotic leakage, 

identifying the degree of vascularization through fluorescence angiography might help 

reduce the risk of anastomotic leakage.

The first objective of the review was to determine the feasibility of NIRF angiography 

in anastomotic colorectal surgery, with emphasis on ease of use, added surgical time 

and complications related to the technique. A second objective was to determine the 
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effectiveness of the technique in improving imaging of vascularization, thereby aiding in 

the decision making of where to make the anastomosis. Attention was given whether the 

signal was quantified or validated in an objective manner or only subjectively assessed.

MATERIALS AND METHODS

This study was registered in PROSPERO under the number: CRD42015025514 (www.crd.york.

ac.uk/PROSPERO/display_record.asp?ID=CRD42015025514).

Search Strategy 

A systematic literature search was performed in PubMed and EMBASE. The following search 

strategy was followed: (‘‘Indocyanine Green’’ [Mesh] OR Indocyanine Green OR Infracyanine 

Green OR ICG OR ‘‘Fluorescent Dyes’’ [Mesh] OR Fluorescent Dyes OR Near-Infrared Fluorescence 

OR Fluorescent imaging OR Fluorescence imaging OR Near Infrared Imaging) AND (‘‘Laparoscopy’’ 

[Mesh] OR Laparoscopy OR laparoscopic OR Robotic surgery) AND (‘‘Anastomosis, Surgical’’ 

[Mesh] OR Bowel anastomosis OR Anastomotic bowel surgery OR ‘‘Colorectal Surgery’’ [Mesh] 

OR Colorectal Surgery).

First, titles and abstracts were screened. In case of uncertainty, full text reports were 

read to assess eligibility. To complete the search, references within selected articles were 

searched as well. The search was performed by 2 independent reviewers (JvdB and MAT) 

who selected potentially relevant articles by title and abstract.

Inclusion and exclusion criteria

Articles had to be written in English. The aim of the literature search was to identify articles 

that reported on the use of intraoperative NIRF angiography during colorectal anastomotic 

surgery. The NIRF angiography had to be used to assess the perfusion of the exterior surface 

of the bowel. Studies were found eligible for inclusion when the participants were adults, 

aged above 17 years, in whom open, laparoscopic or robotic anastomotic bowel surgery 

was performed for either benign or malignant disease. The intervention had to consist of 

fluorescence angiography during the anastomotic bowel surgery. If a control group was 

present, anastomotic bowel surgery should have been performed without the use of 

fluorescence imaging, also for either benign or malignant disease. Studies only describing 

other applications of fluorescence imaging were excluded. Conference abstracts, animal 

studies, case reports, technical notes, and video vignettes were not included. Studies not 

presenting original patient data were excluded as well.
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Methodological quality appraisal

The Methodological Index for Non-Randomized Studies (MINORS) was used to assess the 

methodological quality of the included articles.21 This validated quality assessment system 

is based on 8 items for noncomparative studies and 12 for studies with a control group.

Data extraction

All the studies were analyzed by 2 independent reviewers (JvdB and MAT). A standard 

form to extract the following data was used addressing the characteristics of the study 

(design, allocation concealment, blinding, method of randomization, withdrawals, or dropouts), 

participants (age, sex, baseline characteristics, indication for surgery), intervention (type of 

fluorescent dye, used dose, timing of administration during surgery, used fluorescence system), 

and the outcomes (influence on duration of surgery, type of outcome measuring, quantification 

of the signal, complications intra- and postoperatively).

Data from all included trials were extracted and presented in the appropriate paragraph. 

Baseline data are summarized as mean or proportion for continuous and categorical 

variables, respectively. Outcome variables are reported as absolute number and percentage 

stratified by intervention, for all studies combined and separately for only those studies 

with a control group. Differences in the proportion of anastomotic leaks between NIRF and 

control using all studies, and using only studies with a control group, were computed using 

a two-sample test for proportions.

RESULTS

The search was performed by 2 independent researchers and resulted in the inclusion of 

10 articles. The search of PubMed (Medline) and EMBASE resulted in 111 citations. Checking 

reference lists of the selected articles identified seven additional studies. After adjusting 

for duplicates, 60 remained. Of these, 46 were discarded after reviewing the abstracts. The 

full text of the remaining 14 articles was examined in more detail. It appeared that 10 of 

these met the inclusion criteria. Four of these contained a comparison-group and were used 

for further quantitative analysis. The flowchart of the performed search and inclusion are 

depicted in Figure 1. 

In total, the outcomes of 1328 patients were described: 894 operated with the use of 

NIRF imaging and 434 patients with conventional imaging.22–31 The study characteristics of 

the included studies can be found in Table 1.
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Figure 1 Flowchart of systematic search

 

Number of records excluded: 4 

Other application of fluorescence 
imaging during colorectal surgery 

(transanal) (n = 2) or for 
identification of inferior 

mesenteric artery only (n = 1) 
Complete overlap in patient 

cohort with other study (n = 1) 

Number of records identified 
through database searching:  

PubMed: 69 
EMBASE: 42 
Total: 111 

 

Number of additional records 
identified through other 

sources:  
References from found articles  

(n =7) 
 

Number of records after duplicates removed (n = 60) 
 

Number of records screened 
(n = 60) 

 

Number of full text articles 
assessed for eligibility (n=14) 

 

Number of records excluded: 46 
No fluorescence imaging (n = 9) 

Other application of fluorescence 
imaging (n = 14) 

Conference abstract (n = 10)  
Review (n = 5) 

Case report (n = 3) 
Technical note (n = 3)  

Language restriction (n = 1) 
Animal study (n = 1) 

   
Number of articles included for 
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Methodological quality of studies 

Since all of the included studies were nonrandomized, the risk of bias in the studies was 

evaluated with the MINORS methodological index.21 For studies without a control group, 

the maximum possible score was 16, and 24 for the studies with a control group. The 

overall quality score for the assessed studies ranged between 9 and 14 (mean 10.1) for the 

noncomparative studies and between 12 and 20 (mean 16) for the studies with a control 

group (Table 2). All studies clearly stated the aim and had endpoints appropriate to this aim. 

Five of the studies were prospective feasibility studies, two retrospective feasibility studies, 

and four were retrospective matched pairs studies. The retrospective nature of most of 

the included studies caused an inability to control for unmeasured potential confounders 

between the two groups. Only three studies described loss to follow-up; the period of 

follow-up was unclear in most of the studies. None of the studies performed a prospective 

calculation of the study size. The sample size of all studies was inadequate to detect 1%–2% 

differences in anastomotic leakage rates at 80% power.27 Since from Boni et al.23,25,26 and 

Jafari et al.24,30 more than one article is included in this review, it was checked by the authors 

whether those articles were based on different patient cohorts. The authors confirmed 

there is no cohort overlap.

Baseline characteristics of patients 

The baseline data (number of patients, mean age, gender, and body mass index) are given 

in Tables 3 and 4.

Feasibility of the technique 

Factors contributing to the feasibility of the technique are considered to be the ability to 

obtain a signal illustrating perfusion, ease of use, complications due to the technique, and 

added surgical time. Eight of the 10 included studies make a statement on the feasibility of 

the technique and the ease of use22–29; NIRF imaging of colorectal anastomosis is considered 

‘‘feasible’’ and ‘‘readily achievable.’’ Four of these studies illustrate this by giving the number 

of patients in which images that demonstrate the perfusion were successfully obtained. 

Jafari et al.24 acquired NIRF images in 98.5% of the patients. The imaging was not successful 

in 2 patients due to equipment malfunction. Boni et al.25,26 obtain real-time images 

demonstrating the perfusion in all patients in both studies, as did Wada et al.22 In the study 

by Ris et al.28 the system failed to detect any visible fluorescence in 1 patient.

Complications related to the technique

In none of the articles complications attributable to the use of ICG were observed.
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Added surgical time 

The added surgical time is given in five articles.23,28–31 A mean added time of 4.5 minutes 

to the total duration of the surgical procedure is described. Ris et al.28 noted that a shorter 

additional imaging time is accompanied by experience in the use of this technique. Jafari et 

al.30 described a mean operation time of 4.75 h in NIRF group, compared with 4.4 h in control 

group. Boni et al.23 report a 7-minute shorter mean operative time when using NIRF.

Costs

No comments about the additional costs of using the technique where made in the 

included articles22,23,25,27–30 except for Jafari et al.24 who described a cost of $167,500–223,750 

for the PinpointTM system, which resulted in cost per case of $999–1099. Boni et al.26 state the 

technique seems to be cost effective. However, no cost evaluation to support this is given 

in the article.

Table 3 Table 3 Baseline data of all included studies 

NIRF Control Total
Number of participants 894 434 1328

Mean age 63.4* 64.2 63.7

Male (%) 493 (55) 216 (50) 709 (53) 

Mean BMI (kg/m2) 26.6 # 26.3 26.5

* Wada22 and Ris28 are not included in this number as mean ages are not mentioned. Instead, they give ages as a median of 67 
and 64 respectively
# The studies of Boni25 and Wada22and are not included in this figure. Boni described no BMI in the article; Wada gives BMI as 
median 22.8 (range 15.8-3.43kg/m2) 

Table 4 Baseline data of the four studies with a control group23, 27, 30, 31 

NIRF Control Total

Number of participants 432 434 866

Mean age 63.7 64.1 63.9

Male (%) 218 (50.4%) 223 (51.4%) 441(50.9%)

Mean BMI 26.1 26.3 26.2

ASA I
ASA II
ASA III
ASA IV

10 (5%)*#
78 (41%)*#
98 (52%)*#
3 (2%)*#

17 (9%)*#
83 (43%)*#
93 (48%)*#
2 (1%)*#

27 (7%)*#
161 (42%)*#
191 (50%)*#
5 (1%)*#

Smoking 80 (35%)* 97 (42%)* 177 (38%)*

Preoperative chemotherapy 78 (34%)* 74 (32%)* 152 (33%)*

Indication for surgery:
   Diverticular disease
   Cancer 
   IBD
   Other 

47 (11%)
358 (83%)
4 (1%)
23 (5%)

31 (7%)
367 (85%)
6 (1%)
30 (7%)

78 (9%)
725 (84%)
10 (1%)
53 (6%)

* Kusdzus et al described no ASA classification, smoking and preoperative chemotherapy; these patients are therefore not 
included in the overview of these parameters. 
# Boni et al described no ASA classification in their baseline characteristics; these are not included in the overview of this 
parameter. 



NIRF imaging in anastomotic colorectal surgery: review | Chapter 6

113

Ch
ap

te
r 6

Quantification or validation of the fluorescence signal and perfusion

Only Wada et al.22 and Kudszus et al.31 performed an objective quantification of the 

fluorescence signal. One of the aims of the study by Wada et al.22 was to evaluate whether 

quantitative assessment of intestinal perfusion by measuring ICG signal intensity could 

predict postoperative outcomes such as anastomotic leakage and bowel movement 

recovery.

For these quantitative measurements analyzing software ROIs (Hamamatsu Photonics) 

was used to assess the pixel intensity. A time curve of this fluorescence intensity was made 

and fluorescence difference between maximum and baseline was measured, as were 

time from first fluorescence to maximum signal, time from first fluorescence to half of the 

maximum signal, and the slope of this graph. For the regions of interest at the transection 

line, the midpoint between the mesenteric and antimesenteric sites was chosen. The 

maximum fluorescence intensity turned out to be lower in the 5 patients with anastomotic 

leakage in this study, compared to the patients in which no anastomotic leakage occurred.

Also, Kudszus et al.31 used an objective quantification of the fluorescence signal and 

perfusion. For this, IC-Calc® software was used. With this software, the perfusion index is 

calculated (i.e., the perfusion between different sites) and curves are plotted.32 The authors 

show the curves but unfortunately no cutoff value of fluorescence intensity for adequate 

perfusion is calculated or given, neither is the fluorescence intensity linked to the risk for 

anastomotic leakage. All other included studies only use a subjective assessment of the 

fluorescence signal. The surgeons’ opinion is used,23,25,27,29,30 or that of the whole surgical 

team (main surgeon, main assistant, fellow in minimally invasive surgery, and the assisting 

resident)26 to assess whether the fluorescent signal was enough to maintain the planned 

resection point. In these studies, no grading was used other than ‘‘adequate/sufficient’’ or 

‘‘inadequate/insufficient.’’ Jafari et al.24 and Ris et al.28 divided the subjective assessment 

in three categories, namely ‘‘optimal, adequate, or inadequate’’ and ‘‘good, average, and 

bad’’ respectively. Neither study describes when a revision of the surgical plan will take 

place based on this classification. Moreover, Ris et al.28 graded the quality of perfusion in all 

patients as ‘‘Good,’’ while Jafari et al.24 doesn’t report the results of this grading.

Added value of the technique 

The outcomes regarding perioperative decision making for all studies are summarized in 

Table 5, for the studies with a control group separately in Table 6.

Influence of NIRF angiography on intraoperative decision making

In total, surgical plan was changed in 97 (10.8%) cases after NIRF, of which in 90 the proximal 

resection margin was initially considered insufficient with NIRF. In this group, anastomotic 

leakage occurred in 8 patients (8.9%), compared to 23 anastomotic leakages (2.8%) in 

the NIRF patients with initially good fluorescent signal. In 7 NIRF patients, initial clinical 

impression of malperfusion was not confirmed by NIRF and resection was not extended.
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In the studies with a control group, the surgical plan was changed in 47 cases (10.9%) 

of the NIRF group and in 1 case of the control group. Of these, in 41 patients the proximal 

resection margin was considered insufficiently vascularized and therefore extended to 

well perfused tissue. In the other 6 patients, a clinical impression of malperfusion of the 

resection margins was not confirmed by NIRF angiography and therefore the resection 

was not extended.23,27,30,31 The change of plan therefore consisted of neglecting the clinical 

impression and instead following the NIRF imaging. In 1 of the 41 patients of the first group, 

two anastomotic leakages occurred. No further information about this anastomotic leakage 

was provided.27 In the second group of 6 patients, no anastomotic leakage occurred.30,31

In the studies without a control group, the surgical plan was revised in 50 patients (10.8%) 

after NIRF imaging. In 49 of these, a revision was performed of the proximal transection site. 

Six of these patients (12%) developed an anastomotic leak, at days 8, 15, 17, and 40.22,29

The other patients in whom the plan was revised, a clinically malperfused anastomosis 

was left unchanged because the NIRF angiography revealed good perfusion. No anastomotic 

leakage occurred in these patients.

Anastomotic leakage and other complications

The definition of anastomotic leakage differed between the studies. Wada et al.22 used the 

following definition: ‘‘Anastomotic leakage was defined as any disruption of the anastomosis 

that was confirmed by digital rectal examination, sigmoidoscopy, and radiographic examination 

(e.g., extravasion of endoluminally administered water-soluble contrast enema, abscess at the 

level of anastomosis and fluid/air bubbles surrounding the anastomosis). Only symptomatic AL 

was included.’’ Kin et al.27 used a broader definition and defined an anastomotic leak as ‘‘at 

least one of the following criteria: 1. An anastomotic defect noted on physical examination; 2. An 

Table 5 Added value of the technique based on all included studies 

NIRF 
(n = 894)

Control
(n = 434)

Total
(n = 1328)

Revision of surgical plan 97 (10.8%) 1 (0.2%) 98 (7.4%)

Anastomotic leak after revision  
of surgical plan 8 (8.3%) 0  8 (8.2%)

Total number of anastomotic leaks 31 (3.5%)* 32 (7.4%)* 63 (4.7%)

* P-value: 0.002

Table 6 Added value of the technique based on the four studies with a control group23, 27, 30, 31 

NIRF 
(n = 432)

Control
(n = 434)

Total
(n = 866)

Revision of surgical plan 47 (10.9%) 1 (0.2%) 48 (5.5%)

Anastomotic leak after revision  
of surgical plan 

2 (4.3%) 0 1 (1.9%) 

Total number of anastomotic leaks 21 (4.9%) 32 (7.4%) 53 (6.1%)
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anastomotic defect confirmed in the operation room; 3. An anastomotic defect seen on 

proctoscopy; 4. Radiologic evidence of a leak consisting of either a defect in the anastomosis 

and an adjacent fluid collection, or stranding or the extravasion of rectal contrast into the 

extraluminal space; or 5. Clinical evidence of a leak such as feculent output from a pelvic drain.’’ 

The other included articles did not give a clear definition of anastomotic leakage.23–26,28–31

Tables 5 and 6 show a summary of the occurrence of anastomotic leaks. A total of 63 

anastomotic leakages occurred in the 10 included studies (NIRF group n = 31; control group 

n = 32). This means that 3.5% (31 out of 894) of all NIRF patients and 7.4% (32 out of 434) of 

all control patients developed an anastomotic leakage (P-value for difference = .002). If only 

considering the studies with a control group, a 4.9% (21 out of 432) leakage rate in the NIRF 

group was found versus 7.4% (32 out of 434) in the control group (P= .123).

Other complications that occurred were inconsistently reported in the included articles. 

Boni et al.,25 Kin et al.,27 and Kudszus et al.31 reported no complications other than anastomotic 

leakage. Ris et al.28 described only the grade of the occurred complications (grades I–IV 

Clavien-Dindo classification): all seven complications were grades 1–3. In the remaining 

six studies detailed information was given about the complications (Table 7). Ileus, urinary 

retention, urinary tract infection, pulmonary complications and wound infection were the 

most common complications, occurring relatively more in the control group.22,24,26,29,30

Table 7 Complications other than anastomotic leakage described by Wada et al22, Boni et al23, Jafari et al24, Boni 
et al26, Hellan et al29 and Jafari et al30 

NIRF (n = 456) Control (n = 60) Total (n = 516)
Ileus (%) 22 (4.8) 6 (10) 28 (5.4)

Urinary retention (%) 10 (2.2) 5 (8.3) 15 (2.9)

Wound infection (%) 7 (1.5) 3 (5) 10 (1.9)

Urinary tract infection (%) 14 (3.1) 7 (11.7) 21 (4.1)

Requiring blood transfusion (%) 10 (2.2) 2 (3.3) 12 (2.3)

Pulmonary complications (%) 16 (3.5) 6 (10) 22 (4.2)

Fever (%) 4 (0.9) 0 4 (0.8)

Sepsis (%) 1 (0.2) 3 (13.6) 4 (0.8)

Incisional Hernia (%) 3 (0.7) 0 3 (0.6)

Rectal bleeding (%) 2 (0.4) 0 2 (0.4)

Pelvic abcess (%) 2 (0.4) 0 2 (0.4)

Bleeding at anastomotic site (%) 1 (0.2) 0 1 (0.2)

Other * (%) 26 (5.7) 5 (8.3) 31 (6.0)

Total (%) 110 (32.0) 37 (61.7) 147 (36.4)

* Thrombosis left renal artery, pancreatic fistula, atrial fibrillation, C difficile colitis acute renal failure, peristomal hernia, 
obstruction at stoma and death by suicide: all occurred once, other complications where described as ‘other’, without further 
specification. 
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DISCUSSION

The aim of this study was to investigate the feasibility of the use of NIRF angiography during 

anastomotic bowel surgery and determining the added value of the technique. Regarding 

the latter, attention was paid to whether the fluorescent signal was quantified or validated 

in any way.

Based on the included studies, it can be concluded that the use of fluorescence 

angiography in anastomotic bowel surgery is feasible. No complications attributable to the 

use of the technique were recorded. This makes the technique easily applicable in daily 

practice. Only few problems were encountered in its application, as system failure occurred 

only in 3 patients. This may be due to the relative inexperience of the team with this novel 

approach. A learning curve in the use of this technique might be present. Therefore, it can 

be expected that such system failure will be less frequent when this technique is used more 

often. It cannot be ruled out that a learning curve effect has been of influence on other 

observed differences between studies.

Minimal additional time is described in most articles. Jafari et al.30 describe an average 

21 minutes extra operation time in NIRF group. In these series, the decision to use NIRF 

angiography was at the discretion of the attending surgeon. Correspondence with the 

author reveals that the ICG imaging was reserved for more complex surgeries, with a longer 

duration for that reason. The NIRF angiography itself was thought to add maximally 10 

minutes to the operation time.

Apart from safety and ease of use, the ability of the technique to change the surgical 

plan with positive outcome on operative results reflects the value of this technique. The 

overall rate of anastomotic leakages in the included studies was 4.7% (63 of 1328 patients); 

this percentage is comparable to what can be found in the literature.33–38 Fluorescence 

angiography changed the surgical plan in 10.8% of all NIRF cases. Anastomotic leakage 

was less prevalent in the NIRF group (3.4%) than in the control group (7.4%). This may be 

considered an indication of the benefit of the technique adding in improving the surgeons’ 

ability to detect areas of poor blood supply. This consideration is supported by a pig 

study by Diana et al.,39 that showed that NIRF angiography allows qualitative assessment 

of the bowel perfusion. Yet, based on the still limited quality of the current research no 

solid evidence is provided to state that NIRF imaging significantly reduces the incidence of 

anastomotic leaks. Likewise, the studies comparing the NIRF technique with a control group 

of conventional imaging, still lack the strength and the evidence. Kin et al.27 published the 

biggest study comparing the NIRF angiography with a control group. Their conclusion is 

that the benefit of NIRF angiography is equivocal. However, in this study only the proximal 

bowel was assessed and the perfusion of the rectal stump was not evaluated. This could 

explain the absence of difference between the two groups, as a malperfusion of the rectal 

stump may have been missed, leaving the potential advantage of the NIRF technique 
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underestimated. This is also identified as a limitation by the authors. The same technique 

was used by Wada et al.22 and Boni et al.26

An anastomotic leak rate of 8.9% was found after revision of the surgical plan, compared 

to 2.8% in the patients with initial good fluorescence signal. This could mean that a good 

fluorescence signal is predicting a good outcome, while a lesser fluorescent signal could 

mean a higher risk of anastomotic leakage, whether or not the transection line is moved.

In this review, attention was given to whether the signal was quantified or validated 

in an objective manner or only subjectively assessed. Unfortunately, in only two studies 

this was attempted. As described, Kudszus et al.31 used an objective measurement using 

IC-Calc. Although this method is validated in rabbits,32 in their present study, no cutoff value 

was given on which revision of the resection margin was based. Wada et al.22 used other 

software, namely ‘‘ROIs’’ (Hamamatsu Photonics K.K.) to measure the fluorescence intensity. 

In this study, four parameters were measured, namely difference in fluorescence between 

maximum signal and baseline, time from first fluorescence to maximum signal, time 

from first fluorescence to half of maximum signal, and the slope; fluorescence difference 

divided by the time until maximum fluorescence. A lower maximum fluorescence signal 

was observed in the patients who developed anastomotic leakage compared to the other 

patients. Also, a less steep slope appeared predictive for anastomotic leakage. The time 

until maximum fluorescence and time to half of maximum fluorescence appeared not to be 

predictive for anastomotic leakage.

In the other studies, the signal was subjectively assessed by the surgeon or his team. The 

assessment was mostly binary: considered sufficiently or not.23,25–27,29,30 Jafari et al.24 and Ris 

et al.28 divided the subjective assessment in three categories, namely ‘‘optimal, adequate, 

or inadequate’’ and ‘‘good, average, and bad’’ respectively. However, no specific relation of 

the three categories on peroperative decision making and outcome was described in their 

articles.

Another possible method to objectively assess the NIRF signal is ad hoc imaging 

software (VR-render) as described by Diana et al.40 This software constructs a cartography 

of the perfused area based on the fluorescence time-to-peak and makes a real-time overlay 

of this cartography on the laparoscopic image. This technique has not yet been used in 

humans, but was validated in an animal study by Diana et al.40

Other methods described in literature are the postoperative measurement of the 

Target to Background Ratio using the fluorescence intensity using OsiriX (Pixmeo, Geneva, 

Switzerland)41; and the Signal to Noise ratio using ImageJ software (National Institutes of 

Health, Washington, DC).42 Unfortunately, these techniques are used for postoperative 

measurement and not applicable yet in the intraoperative setting. Further studies should 

focus on this validation. It may be expected that this will lead to more accurate recognition 

of imperfect perfusion levels that will contribute to the chance of anastomotic leakage and 

therefore to better use of the potential of the NIRF technique.
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In the control group, apart from more anastomotic leakages, also other complications 

occurred more often (61% in the control group as compared to 32% in the intervention 

group). It is unclear from the included articles whether this higher complication rate is due 

to the higher rate of anastomotic leakage.23,30

In the present review, no statement on the cost or savings due of the technique can be 

given, as this is not studied in the majority of the included articles. Yet, this is an interesting 

result to be included in future research. The technique has the potential to reduce anastomotic 

leaks. A rough estimate of its cost is between $10,000 and $50,000 more per patient with 

an anastomotic leak as reported in current literature.8,43,44 Any extra time still spent with its 

application may decrease in more routine use. And further, the fluorescence imaging mode 

is or will soon be commercially available in frequently used endoscopic systems, eliminating 

the need for obtaining a separate and therefore costly extra set of equipment. This leaves 

only about $80 for the required ICG as extra costs. Based on the above given estimate of cost 

per leak, this means that in every 125–625 (10,000/80–50,000/80) patients operated with 

NIRF 1 anastomotic leak should be avoided for this technique to be cost effective.

This review should be viewed with consideration based on the following. First, the 

included studies were all of limited quality. All the included studies were nonrandomized, 

and the studies with a control group were retrospective case matched studies. The case 

matching could prevent bias by selecting comparable groups when taking all risk factors 

for anastomotic leakage in account. However, in the study by Jafari et al.30 the controls were 

selected from cases performed in the same period and it was not described why those 

patients did not undergo fluorescence imaging. This particular reason could be of influence 

on the outcome. Boni et al.,23 Kin et al.,27 and Kudszus et al.31 all selected cases from the 

period before the introduction of the NIRF technique. Although the articles discussed the 

lack of difference in treatment between the two periods of time, minor changes might still 

be present and could therefore have had an influence on the outcome. Furthermore, the 

retrospective nature prohibits correction for unmeasured confounders between the two 

groups. Another limitation is the inclusion of mostly small studies with an unclear follow-up 

period and lack of prospective sample size calculation. Because of the inconsistent reporting 

and the small number of patients no conclusions on the occurrence of complications can be 

made.

In summary, fluorescent imaging for assessment of bowel perfusion in colorectal 

resectional surgery is feasible and easy to use and based on the reports so far, holds great 

potential. All authors are positive about its added value over the usual clinical assessment 

methods. Nevertheless, data are still limited and results on quantification and validation of 

the signal are scarce. Further studies are needed to validate the technique and establish its 

contribution to the prevention of anastomotic leakage.
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ABSTRACT Objective

Near-infrared fluorescence (NIRF) imaging using indocyanine green (ICG) might help 

reduce anastomotic leak-age (AL) after colorectal surgery. This pilot study aims to analyze 

whether a relation exists between measured fluorescence intensity (FI) and postoperative 

inflammatory markers of AL, C-reactive protein (CRP), Intestinal fatty-acid binding protein 

(I-FABP), and calprotectin, to AL, in order to evaluate the potential of FI to objectively predict 

AL.

Methods 

Patients scheduled for anastomotic colorectal cancer surgery were eligible for inclusion 

in this prospective pilot study. During surgery, at three time points (after bowel 

devascularization; before actual transection; after completion of anastomosis) a bolus of 0.2 

mg/kg ICG was administered intravenously for assessment of bowel perfusion. FI was scored 

in scale from 1 to 5 based on the operating surgeon’s judgment (1 = no fluorescence visible, 

5 = maximum fluorescent signal). The complete surgical procedure was digitally recorded. 

These recordings were used to measure FI postoperatively using OsiriX imaging software. 

Serum CRP, I-FABP, and calprotectin values were determined before surgery and on day 1, 3, 

and 5 postoperative; furthermore, the occurrence of AL was recorded.

Results

Thirty patients (n = 19 males; mean age 67 years; mean BMI 27.2) undergoing either 

laparoscopic or robotic anastomotic colorectal surgery were included. Indication for 

surgery was rectal (n = 10), rectosigmoid (n = 2), sigmoid (n = 10), or more proximal colon 

carcinomas (n = 8). Five patients (16.7%) developed AL (n = 2 (6.6%) grade C according to 

the definition of the International Study group of Rectal Cancer). In patients with AL, the 

maximum fluorescence score was given less often (P = 0.02) and a lower FI compared to 

background FI was measured at 1st assessment (P = 0.039). However, no relation between FI 

and postoperative inflammatory parameters could be found.

Conclusion 

Both subjective and measured FI seem to be related to AL. In this study, no relation between 

FI and inflammatory serum markers could yet be found.
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INTRODUCTION

Anastomotic leakage (AL) is the most feared complication in colorectal (cancer) surgery. 

The severity of leakage may vary from a contained peri-anastomotic fluid collection to 

generalized peritonitis. Furthermore, long-term morbidity including stricture formation, 

bowel dysfunction, and an increased chance of locoregional cancer recurrence has been 

described.1–3 Clinically apparent anastomotic insufficiency occurs in 5.6–11.9% of all 

colorectal resections.4–6 As reported in literature, up to 32% of patients with AL die because 

of this postoperative complication.4 These numbers show the urgent need to prevent 

AL. Prevention starts with eliminating provoking factors. Decreased blood perfusion at 

the anastomosis is such a factor that contributes to anastomotic leakage.7–9 Therefore, it 

is hypothesized that a better visualization of the vascularization of the anastomosis will 

aid in preventing anastomotic leaks. Intraoperatively, the selection of an optimal site for 

anastomosis with adequate perfusion is now dependent on subjective clinical indicators 

such as color of the bowel, bleeding of the resection margins, and palpable or visible 

pulsations of the mesenteric arterial vessels (i.e., the clinical judgement of the surgeon). 

Karliczek et al.8 discussed that there is a lack of reliable intraoperative predictive test for 

AL by the operating surgeon. Earlier studies used Doppler ultrasound and laser Doppler 

to assess colorectal anastomotic vascularization.9 Peri-anastomotic tissue oxygenation has 

been evaluated but has not been incorporated in routine practice due to the complexity 

and limited effectivity of the technique.10 There is need for a technique that can accurately 

and consistently assess bowel perfusion at the anastomotic site in real time. Near-infrared 

fluorescence (NIRF) imaging allows surgeons to visualize the micro-perfusion of the bowel 

in real time.11 This technique, with perioperative indocyanine green (ICG) administration, 

has been shown feasible in assessing the vascularization of the bowel to be anastomosed. 

Fluorescence angiography with perioperative ICG administration seems to improve the 

outcome of laparoscopic anastomotic bowel surgery, in terms of safety and efficiency.11, 12 

However, in studies confirming the lower incidence of AL, no objective quantification of 

the signal was performed.1, 2, 7, 13–15 Such quantification is desired to make the technique a 

reliable tool to accurately and consistently assess bowel perfusion at the anastomotic site 

in real time. C-reactive protein (CRP) is an early predictor of postoperative infection and has 

been shown to correlate with AL.16–18 Intestinal fatty-acid binding protein (I-FABP) is a marker 

for enterocyte damage.19, 20 Earlier research showed a significant higher I-FABP at day 3 

postoperatively in patients with AL.21 In the same study, calprotectin levels were elevated on 

day 2 up to day 5 in patients with AL. In this pilot study, we aim to analyze whether a relation 

exists between the objectively quantified signal of ICG fluorescence angiography during 

laparoscopic or robotic colorectal surgery and the levels of the serum markers related to 

anastomotic leakage: CRP, I-FABP, and calprotectin, in order to evaluate the potential of FI 

to objectively predict AL. To our knowledge, this is the first effort to assess the existence of 

such a correlation.
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METHODS

All patients provided written informed consent. This study was approved by the Medical 

Ethical Committee of Maastricht University Medical Center and conducted according to the 

Declaration of Helsinki (October 2013, Fortaleza). Included patients were part of the REVEAL 

study22, which is registered at clinicaltrials.gov (NCT02347735).

Study subjects

Colorectal cancer patients scheduled for either laparoscopic or robotic anastomotic surgery 

were eligible for inclusion. Patients with inflammatory bowel disease were excluded because 

this could influence plasma levels of the inflammatory markers. Additional exclusion 

criteria were known iodine or indocyanine green hypersensitivity, impaired renal function 

(eGFR <45), pregnancy or breast-feeding (all are contraindications for the use of ICG), and 

inability to give informed consent. None of the included patients used non-steroidal anti-

inflammatory drugs (NSAIDs) or corticosteroids. Patient characteristics (sex, age, BMI, 

medical history, tumor location) and surgical characteristics (type of surgery, anastomotic 

technique, ostomy, operation time, conversion rate) were collected.

Surgical techniques

The surgical procedures were performed by experienced laparoscopic colorectal surgeons 

and started as usual in white light. In laparoscopic cases, a system equipped with fluorescence 

imaging (Karl Storz GmbH & CO. KG, Tuttlingen, Germany) with a xenon-based light source 

(D-light P) was used and in robotic surgeries, the da Vinci® System with Firefly fluorescence 

imaging (Surgical Intuitive, Sunnyvale, United States of America) was used. Surgery was 

performed as usual except for three time points, at which a bolus of 0.2 mg/kg ICG (Verdye; 

Diagnostic Green Aschheim, Germany) was administered. These three set time points were:

1. Directly after transection of all the vessels supplying the bowel segment to be 

resected (i.e., after devascularization of the segment)

2. Just before actual transection

3. Directly after the anastomosis is made

After each gift of ICG, the system was switched to NIRF mode and the surgeon was asked 

to rate the fluorescence intensity of the bowel both proximal and distal to the planned 

proximal transection line or stapler line on a scale from 1 to 5. Herein, a score of 1 meant 

no fluorescent signal, while a score of 5 meant ‘maximum fluorescent signal.’ Also, the 

surgeon was asked whether he or she changed the location of transection based on the 

visualized fluorescent signal. When proximal transection was performed extra-corporally, 

the operative room was completely darkened in order to capture the fluorescent signal with 

the respective imaging device.
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Fluorescence intensity measurement 

Postoperatively, the images of the bowel were assessed with OsiriX imaging software 

(Pixmeo, Geneva, Switzer-land) to quantify the FI. This software measures the gray value 

in arbitrary units (AU). At the aforementioned three time points, the FI was measured 

approximately 1 cm proximal and 1 cm distal from the proximal transection point or 

anastomosis and of the background (abdominal wall or fat directly surrounding the relevant 

bowel part) in a screenshot taken approximately 1 min after ICG administration. In the right 

hemicolectomies, the distal transection point was used. In case of extracorporeal proximal 

transection, also three points in the direct surrounding of the bowel were measured as 

background. The target-to-background ratio (TBR) was defined as the mean FI in arbitrary 

units (A.U.) of the bowel wall 1 cm proximal or distal from the planned proximal (or in right 

hemicolectomies distal) transection location or 1 cm from the staple line of the anastomosis 

minus the FI of the background divided by the mean FI in the background (abdominal wall 

or fat directly surrounding the relevant bowel part).

Definition anastomotic leakage 

The patients were followed up to 30 days after surgery, during which the occurrence of 

complications and especially AL was recorded. Clinically relevant AL was defined and 

classified according to the definition from the International Study group of Rectal Cancer.23 

In this definition, AL is a defect of the anastomotic wall integrity at the colorectal or 

coloanal anastomotic site leading to a communication between the intra-and extraluminal 

compartments. A pelvic abscess close to the anastomosis is also considered AL. We applied 

this definition also to the included colocolic and ileocolic anastomoses in our study. A 

distinction is made between the severity of AL based on the intervention required:

 – Grade A: Anastomotic leakage requiring no active therapeutic intervention

 – Grade B: Anastomotic leakage requiring active therapeutic intervention but 

manageable without relaparotomy;

 – Grade C: Anastomotic leakage requiring relaparotomy23

Analysis of inflammatory markers 

Venous blood was drawn at hospital admission (preoperative sample) and on day 1, 3, and 5 

after surgery, unless the patient was discharged home earlier. C-reactive protein (CRP) plasma 

levels were determined by using Immunoturbidimetric assay for the in vitro quantitative 

determination of CRP in human serum and plasma (Roche diagnostics, Germany). Serum 

calprotectin concentration was determined using a commercially available calprotectin 

ELISA (Hycult Biotechnology, Uden, The Netherlands). Intestinal fatty-acid binding protein 

(I-FABP) plasma levels were determined using an in-house ELISA that selectively detects 

human I-FABP.21
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Statistical analysis 

Basic descriptive statistics were applied to calculate means and standard deviation of the 

baseline characteristics. Because of the small sample size, non-parametric tests were used 

to analyze the data retrieved in this study. To compare continuous variables between two 

groups, the Mann–Whitney test was performed. To compare categorical outcomes between 

two groups, a Pearson Chi-square crosstab was used. The relation between the measured 

fluorescence intensity and the values of the inflammatory markers was evaluated using a 

regression analysis. P < 0.05 was considered to denote statistical significance. All statistical 

analyses were performed with SPSS version 23 (IBM, Armonk, NY, USA).

RESULTS

Study population 

Thirty patients were included with a mean age of 67.2 (SD 8.2) years of whom 19 (63%) 

were male. All under-went elective surgery for colorectal cancer, of which 10 (33.3%) 

concerned sigmoid carcinoma, 10 (33.3%) rec-tum carcinoma, 5 (16.7%) colon carcinoma 

in the right hemi-colon, 3 (10%) cecum carcinoma, and 2 (6.7%) rectosigmoid carcinoma. 

Five patients were treated with concomitant chemoradiotherapy before surgery, 4 with 

only chemotherapy (CAPOX–bevacizumab), and 3 received only radiotherapy (5 × 5Gy). A 

conversion to open surgery was needed in 7 patients in whom a laparoscopic procedure 

was started, due to unclear anatomy in obese patients. Further baseline characteristics and 

surgical characteristics are summarized in Table 1.

Near Infrared fluorescence imaging 

A bolus of 0.2 mg/kg ICG was administered intravenously. Thus, the total dose ranged 

between 10.3 and 21.8 mg with a mean of 16.4 mg (SD 3.3). NIRF imaging was aimed to 

be performed at three time points. In 19 patients, fluorescence imaging was achievable at 

all three time points. In 10 patients, the first time point was very close to the second time 

point; therefore, in these patients only just before transection (second time point) and after 

completion of the anastomosis, the bowel was assessed using NIRF imaging, in order to 

prevent potential accumulation of the dye at the second time point. In two patients, the 

anastomosis was too low to visualize the NIRF signal. The time between the first and second 

time point was on average 68.6 min (range 9–201) and between the second and third time 

point on average 40 min (range 11–84).

Intraoperative decision making based on fluorescence imaging 

In six patients, the dissection location was changed, based on the fluorescent signal. One of 

these patients developed AL; the remaining 5 patients did not.
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Anastomotic leakage (AL) 

In 5 patients (16%), AL occurred. In 2 of these cases, only a small abscess around the 

anastomosis was seen on CT scan and could be treated non-surgically with intravenous 

administration of antibiotics and CT-guided drainage. These leakages were considered as 

grade B AL. In 1 patient, AL could be treated with an endo-sponge applied via endoscopy 

and was also considered as Grade B AL. The remaining 2 patients (6% of the total study 

population) needed relaparotomy for AL treatment (grade C). All patients with AL underwent 

a low anterior resection of a rectum or rectosigmoid carcinoma. Two of the AL patients had 

undergone pre-operative chemoradiotherapy: one preoperative radiotherapy and one 

preoperative chemotherapy. The remaining patient was not preoperatively treated with 

neoadjuvant radiotherapy or chemotherapy. There were no statistical differences in age at 

the time of surgery, preoperative chemotherapy, BMI, administered dose of ICG per bolus 

(mg), conversion to open surgery, type of anastomosis, TNM classification after surgery, 

and difficulty of surgery between the patients who developed AL and the patients who did 

not. There were significantly more smokers in the AL group (P = 0.046).  The postoperative 

hospital stay was on average 16 days (median 12 days) in the patients with AL, which was 

Table 1 Baseline characteristics and surgical characteristics 

n (%) Mean (SD)
Male 19 (63.3)

Age, years 67.2 (8.2)

Weight, kg 82 (16.4) 

BMI, kg/m2 27.2 (4.9)

Smoking 12 (40)

Both preoperative chemo- and radiotherapy 5 (16.6)

Preoperative chemotherapy 4 (13)

Preoperative radiotherapy 3 (10)

Location of suspected tumor 
     Cecum
     Right hemi colon
     Sigmoid 
     Recto-sigmoid 
     Rectum 

3 (10)
5 (16.7)
10 (33.3)
2 (6.7) 
10 (33.3)

Type of surgery 
     Laparoscopic right hemicolectomy
     Laparoscopic sigmoid resection
     Laparoscopic low anterior resection
     Robot-assisted low anterior resection

8 (26.7)
11 (36.7)
4 (13.3)
7 (23.3)

Deviating stoma 11 (36.7)

Type of anastomosis 
     Side-to-end
     End-to-end
     Side-to-side

16 (53.3)
9 (30) 
5 (16.7)

Conversion to open surgery 7 (23.3)
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significantly longer compared to the patients without this complication, who stayed on 

average 5 days (P =   0.004). A deviating ileostomy had been constructed more often in 

the AL group. See Table 2 for an overview of these characteristics. Other postoperative 

complications were postoperative ileus in one patient, which resolved without further 

consequence. The two patients who needed relaparotomy due to anastomotic leakage 

both developed pneumonia after the second surgery which was treated with antibiotics.

Subjective fluorescence intensity (FI) 

The FI was scored by the surgeon on a scale from 1 to 5. In all cases, in all three assessments, 

this score ranged between 3 and 5 for the bowel proximal to the proximal transection 

site, or distal transection site in right hemi-colectomies. In the second assessment, the 

subjective score given for the FI was 4 in four of the anastomotic leakage cases. In one of 

the anastomotic leakage cases, a score of 5 was given, this was one of the cases in which 

only an abscess close to the anastomosis was present. In the patients who did not develop 

AL the maximum score of 5 was given in 16 cases (73%), which was significantly more often 

Table 2 Characteristics of patients with anastomotic leakage compared to those without

No AL (total 25) AL (total 5) P-value 
Male n 15 /25 4 /5 0.397

Age, years (median (IQR)) 65.5 (11.5) 65.0 (17) 0.787

BMI, kg/m2 (median (IQR)) 28.3 (5.27) 24.4 (14.1) 0.627

Smoking n 8 /25 4 /5 0.046*

Preoperative chemoradiation 3/25 2/5 0.183

Preoperative chemotherapy 3 /25 1/5 0.538

Preoperative radiotherapy 2/25 1/5 0.433

Indication for surgery 
Cecum carcinoma 
Right hemi colon carcinoma 
Sigmoid carcinoma
Rectosigmoid carcinoma 
Rectum carcinoma

3 
5 
10 
1 
6 

0 
0 
0 
1 
4 

0.058

Type of surgery 
Laparoscopic right colectomy
Laparoscopic sigmoid resection 
Laparoscopic low anterior resection 
Robotic low anterior resection 

8 
10 
2
5 

0
1 
2 
2 

0.107

Change of dissection place 5 /25 1 /5 1.000

Ileostomy 7/25 4/5 0.028*

Type of anastomosis 
Side-to-end 
Side-to-side
End-to-end

13
9 
3 

3
0 
2 

Conversion to open surgery 6 /25 1 /5 0.847

Surgical time, minutes (median (IQR)) 203.5 (95) 287.0 (358) 0.344

Postoperative hospital stay, days (median (IQR)) 4 (2.25) 12 (22) 0.004*
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compared to the AL group (P = 0.02). In both the first and third assessment, no significant 

differences in subjective fluorescence intensity between the patients with and without 

anastomotic leakage were seen. See Table 3 for the given scores.

Measured fluorescence intensity

Next to subjective scoring by the surgeon, the FI of the bowel proximal and distal from the 

proximal transection or distal in right hemicolectomies and the background was measured 

by image quantification. As shown in Tables 4, 5, 6, and 7, the FI in patients without AL 

was higher at almost all measurements compared to the FI in patients who develop AL. 

This difference is however only statistically significant when we take the background into 

account and assess the bowel distal from the proximal anastomosis in the 1st assessment (P 

= 0.039) (see Table 7).

Inflammatory serum markers 

As shown in Table 8, CRP was significantly higher on postoperative day 5 in anastomotic 

leakage patients. As is shown in Table 8, all other measured markers do not show a statistical 

difference between the occurrence of anastomotic leakage and serum levels on day 1, 3, or 5. 

Fluorescence intensity in relation to inflammatory serum markers 

The relation between the respective serum markers CRP, Calprotectin and I-FABP, and 

the fluorescent signal was assessed using a regression analysis. For none of the serum 

markers on any time point, a significant relation could be found with the fluorescence both 

proximal and distal or measured as TBR, with one exception. At the third time point, after 

the anastomosis is made, a higher TBR of the distal part of the anastomosis was related to a 

lower serum calprotectin level on postoperative day 5 (P = 0.046).

Table 3 Subjective fluorescence intensity (FI) scores and anastomotic leakage (AL)

FI score 3 FI score 4 FI score 5

Total no of 
patients 
assessed

1st assessment No AL 1 5 10 16

AL 0 1 3 4

2nd assessment No AL 3 4 18 25

AL 0 4 1 5

3rd assessment No AL 2 11 11 24

AL 1 1 2 4

The fluorescence intensity on first and second assessment is scored on the distal side of the distal anastomosis in laparoscopic 
right hemicolectomies, whilst on the proximal site of the proximal anastomosis in all remaining procedures.
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DISCUSSION 

NIRF angiography with ICG is used more and more in colorectal surgery as this technique 

holds the potential to lower the risk for anastomotic leakage.11 However, it is unknown 

when the bowel is fluorescent enough to actually predict optimal anastomotic healing. In 

this respect, a cut-off value is desirable. To come to such consensus, we first need to know 

Table 4 Fluorescence intensity (FI) bowel proximal from the proximal transection line and anastomotic leakage 
(AL) (distal from distal transection line in right hemicolectomies, thus side from the transection line that stays 
in the patient). 

Median FI no AL Median FI AL P-value 
1st assessment 38.8 (61.2) 34.2 (28.7) 0.494

2nd assessment 49.2 (45.0) 44.1 (94.6) 0.385 

3rd assessment 86.5 (54.8) 99.5 (68.1) 0.336

Median fluorescence intensity (interquartile range) 

Table 5 Fluorescence intensity (FI) bowel distal from the proximal transection-line and anastomotic leakage 
(AL) (proximal from the distal transection line in right hemicolectomies, thus side from the transection line that 
will be resected) 

Median FI no AL Median FI AL P-value 

1st assessment 31.7 (23.7) 36.7 (27.1) 0.064

2nd assessment 40.8 (32.4) 64.5 (72.8) 0.448

3rd assessment 59.9 (37.6) 55.9 (30.5) 0.952

Median fluorescence intensity (interquartile range)

Table 6 Target to background ratio (TBR) bowel proximal from the proximal transection line and anastomotic 
leakage (AL) (distal from distal transection line in right hemicolectomies, thus side from the transection line 
that stays in the patient)

Median TBR no AL Median TBR AL P-value 

1st assessment 2.8 (4.7) 1.1 (1.4) 0.820

2nd assessment 2.2 (13) 0.5 (2.1) 0.229 

3rd assessment 1.4 (2.6) 1.4 (1.0) 0.669

Median fluorescence intensity (Interquartile range)

Table 7 Target to background ratio (TBR) bowel distal from the proximal transection line and anastomotic 
leakage (AL) (proximal from distal transection line in right hemicolectomies, thus the side from the transection 
line that will be resected) 

Median TBR no AL Median TBR AL P-value 

1st assessment 3.4 (6.9) 1.2 (1.3) 0.039 

2nd assessment 2.6 (13.5) 1.8 (4.0) 0.482

3rd assessment 1.4 (2.9) 0.9 (0.1) 0.364

Median fluorescence intensity (interquartile range)
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whether a “more fluorescent bowel” actually is indicative for a lower risk for anastomotic 

leakage and accompanying lower postoperative inflammatory parameters. Therefore, we 

performed this clinical pilot study, in which we aimed to correlate the signal strength of 

fluorescence angiography with the occurrence of AL and with the level of the serum markers 

that are thought to be predictive of AL: CRP, calprotectin, and I-FABP. The fluorescence 

intensity was measured after administration of 0.02 mg/kg ICG intravenously at three time 

points. CRP, calprotectin and I-FABP were determined preoperatively and on day 1, 3, and 5 

after surgery. Follow-up for anastomotic leakage was until 30 days postoperatively. 

In the current study, 5 (16.7%) patients developed AL. Three of these leakages were 

considered a grade B leakage, while the remaining two were grade C anastomotic leakages 

which needed re-laparoscopy. The number of patients with AL is somewhat higher 

compared to the literature (5.6–11.9%) 4–6, and especially when compared to other studies 

in which NIRF angiography is used during colorectal surgery.11 This could be explained by 

the fact that both grade B and grade C anastomotic leakage were taken into account in this 

study, while other studies may have only considered grade C leakage only. In addition, 40% 

of patients smoked, which is a risk factor for developing AL.4, 24 Remarkably, preoperative 

radiotherapy, which is also a known risk for leakage was not identified as such in our study. 

The limited number of patients may have contributed to this discrepancy. 

In all cases, the subjective score for FI proximal from the (planned) proximal transection 

line or distal from distal transection line (in right hemicolectomies), ranged between 3 and 

5 on a scale from 1 to 5. For the bowel proximal from the transection line, the maximum 

score of 5 was given significantly more often in the patients that healed without a leak. This 

is in line with the study by Ris et al.2 in which the fluorescence score ranges from ‘good,’ 

‘average,’ to ‘bad.’ In all patients, the fluorescence was scored ‘good’ by the surgeon and 

Table 8 Serum markers anastomotic leakage versus no anastomotic leakage. 

No anastomotic 
leakage

Anastomotic 
leakage

p-value

Mean CRP 
     Pre-operative (mg/ml) ±SD 
     Postoperative day 1 (mg/ml) ±SD
     Postoperative day 3 (mg/ml) ±SD
     Postoperative day 5 (mg/ml) ±SD

2.9 ±2.3
87.4 ±35.8
101.1 ±48.0
48.5 ±24.66

2.1 ±0.9
87.4 ±35.3
183.6 ±123.5
152.8 ±90.7

0.69
0.90
0.09
0.01*

Mean Calprotectin 
     Preoperative (ng/ml (SD) 
     Postoperative day 1 (ng/ml) ±SD
     Postoperative day 3 (ng/ml) ±SD
     Postoperative day 5 (ng/ml) ±SD

822.9 ±765.4
7587.3 ±17589.9
2467.0 ±1430.3
3326.7 ±2783.0

3451.6 ±3987.1
7743.5 ±12026.8
1683.3 ±1549.4
2756.1 ±1974.3

0.41
1.0
0.15
0.68

I-FABP 
     Preoperative (pg/ml) ±SD
     Postoperative day 1 (pg/ml) ±SD
     Postoperative day 3 (pg/ml) ±SD
     Postoperative day 5 (pg/ml) ±SD

805 ±376.6
644.7 ±370.4
574.8 ±431.4
496.9 ±291.4

520.1 ±516.1
383.2 ±160.4
373.9 ±335.3
143.0 ±49.6

0.16
0.14
0.31
0.05
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none of the patients developed AL. Other studies scored the fluorescence intensity as 

‘good enough’ or ‘not good enough’ based on subjective score of the surgeon. In these 

studies, if the fluorescence intensity was considered not good enough, the dissection place 

was changed.13, 25–29 The anastomotic leakage rate in patients with changed dissection level 

was equal13, 25–27, 29 or higher 28 compared to the patients in which no change was needed 

after NIRF imaging. A possible explanation for a higher leak rate after change of transection 

location may be the fact that a clearly insufficiently perfused bowel end may be indicator 

of a longer segment of moderate perfusion. This emphasizes the need for cut-off values 

for level of perfusion.11 In the current study, revision of surgical plan based on the FI of the 

bowel occurred in six patients. One of these developed AL. These numbers are too low to 

draw conclusions. 

In the present study, the objectively measured FI was higher in the patients who did not 

develop AL. This difference was only significant when taking the background into account 

and expressing data as TBR. By using TBR, a correction is made for the distance between 

the endoscope and the bowel. A shorter distance between the laparoscope and the target 

causes a higher FI.30 By taking the background into account, this effect is minimized, since the 

background will also show increased fluorescence intensity when holding the laparoscope 

closer to the tissue. Such correction of the signal seems necessary, as in practice, it is not 

always possible to exactly measure and standardize the distance to the bowel. 

According to literature, the CRP trajectory is highly predictive for AL.6 In the current 

series, CRP on postoperative day 5 was significantly higher in patient who developed AL. 

This observation is in line with findings reported in literature. An earlier study by Reisinger 

et al.21 showed a rise in postoperative CRP in patients with an anastomotic leak, which was 

only significant on day 4. Bigin et al.31 showed a significant higher CRP on postoperative day 

3, but unfortunately CRP was not measured on postoperative day 5. Reynolds et al.17 found a 

significantly higher CRP level in patients with grade C AL on day 5 up to day 7. Unfortunately, 

in the current study, no relation of CRP and subjective or measured fluorescence intensity 

or TBR could be found. 

Calprotectin is a non-specific marker for acute inflammation32. An earlier study by 

Reisinger et al.21 showed higher calprotectin levels on postoperative day 2, 3, 4, and 5 in 

patients who developed AL. Similar results were found by Cikot et al.33 In the current study 

however, no statistical difference in serum calprotectin levels could be found between 

patients with and without anastomotic leakage on postoperative day 1, 3, or 5. Interestingly, 

serum calprotectin levels on postoperative day 5 were negatively correlated with TBR of 

the distal part of the anastomosis. This relation needs to be confirmed in a larger study to 

determine its clinical relevance. 

I-FABP is an intestinal cell damage marker.21 An earlier study by Reisinger et al.21 showed 

significantly higher I-FABP levels preoperatively in patients who developed anastomotic 

leakage. The I-FABP levels remained higher in these patients after surgery, but only 
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statistically significant on postoperative day 3. In the current study however, I-FABP levels 

were lower at all time points in the patients who developed anastomotic leakage, although 

this difference was not significant. Moreover, we could not detect a significant relation 

between FI and serum I-FABP values in this study. 

A possible explanation for this discrepancy might be the low specificity of I-FABP. This 

marker for enterocyte dam-age is not only elevated in case of inflammation, but also in 

patients with colorectal cancer compared to patients with-out colorectal cancer.34 When 

only taking the patients with a grade C anastomotic leakage into account, a (non-statistically 

significant) higher I-FABP value is found in the leakage patients. More research is needed to 

determine its place in the management of the colorectal operative patient. 

A higher fluorescence intensity was found in all cases in the bowel at the side that will 

remain in the patients after surgery. This means that the de-vascularized bowel results in a 

lower signal, indicating that the fluorescent signal does reflect bowel perfusion. 

This study has some limitations. First, it was designed as a pilot study to explore 

whether there is a potential relation between FI and inflammatory serum markers that 

correspond with AL. A relatively small and heterogenous group of patients was included. 

With the markers and the patient group chosen here, it was not yet possible to identify a 

cut-off value of fluorescent signal that indicates an optimal anastomotic healing potential. 

A more homogenous patient group (e.g., only right hemicolectomies or rectal resections) 

might have given different results. Another factor of influence could be that only the 

measurements at single time points were performed, and not an evaluation of the signal 

intensity over time after administration of the respective boluses of ICG. The small number 

of included patients can be an explanation for finding few statistical significant differences 

for most outcome parameters. 

In this study, several time points of ICG administration were chosen. Although arterially 

the dye washes out very quickly—which is evident when observed with the naked eye—it 

cannot be ruled out that some retention of the dye occurred. Although this phenomenon 

will take place in both the bowel wall and the background, this may have influenced the 

objective measurements.  The time between the first and second dose administration was 

on average 68.6 min (range 9–201) and between the second and third bolus of ICG 40 min 

(range 11–84). A cut-off value for the optimal interval is not known in literature. 

In conclusion, both subjective and measured FI seem to be related to the occurrence 

of AL. In this pilot study, no relation between FI and inflammatory serum markers could yet 

be found nor a cut-off value of FI predicting AL. A larger study based on the current study, 

with a single time point of measurement in a homogenous population seems preferable 

to enhance the chance that an objective cut-off value of the fluorescent signal to predict 

AL will be identified. Ideally, future research identifies such cut-off value, but also leads 

to presenting the objective result of fluorescence measurement real time to the surgeon, 

thereby supplying the surgeon with essential per-operative information for the optimal 

transection point to prevent anastomotic leakage.
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ABSTRACT 

Background 

Ureteral injury during laparoscopic surgery is rare, but when it occurs, it can be a serious 

problem. Near-infrared fluorescence (NIRF) with methylene blue (MB) administration is a 

promising technique for easier and potentially earlier intraoperative visualization of the 

ureter. Aim of this prospective study was to assess the feasibility of NIRF imaging of the 

ureter during laparoscopic colorectal surgery, using MB.

Methods

Patients undergoing laparoscopic colorectal surgery were included and received intravenous 

injection of MB preoperatively. The ureter was visualized using a laparoscope, which offered 

both conventional and fluorescence imaging. Intraoperative recognition of the ureter 

was registered. The precision of ureter distinction with MB imaging was compared to the 

conventional laparoscopic view.

Results

Ten patients were included. All procedures were initially performed using a laparoscopic 

approach. Dose per injection ranged between 0.125 mg/kg and 1.0 mg/kg bodyweight. 

There were no adverse effects attributable to MB administration. The ureter was successfully 

detected in five patients, with highest contrast between ureter and surrounding tissue at an 

administered dose of 0.75–1.0 mg/kg. The fluorescent signal was only picked up after the 

ureter was already visible in the conventional white light mode.

Conclusion

Ureteral fluorescence imaging using MB proved to be safe and feasible. However, the 

present technique does not provide practical advantage over conventional laparoscopic 

imaging for identification of the ureter during laparoscopic colorectal surgery. Future 

research is necessary to explore more extensive dose finding, alternative fluorescent dyes, 

or improvement of the imaging system to make this application clinically beneficial.
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INTRODUCTION 

There is great public attention on the safety of surgery, especially in laparoscopic surgery.1 

In addition, efficiency is of constant concern in modern healthcare. Laparoscopic colorectal 

surgery is an advanced procedure requiring a high level of endoscopic skills. Finding the 

right tissue structures and anatomical planes takes time and incorporates risks. Iatrogenic 

ureteral, vascular, or nerve injury are complications that may occur.

Ureteral injury during surgery is rare, but when it occurs, constitutes a serious problem. 

The major causes are trauma, iatrogenic injury during open surgery, and injury during cath-

eter or endoscopic intervention. Ureteral injuries are often insidious since they are found 

only after other, more profound injuries are addressed, which may lead to worse outcomes. 

Risk factors for iatrogenic injury during colorectal surgery are previous pelvic operations, in-

fection, and inflammatory bowel disease, but most ureteral injuries occur in patients lacking 

these risk factors.2 Earlier studies have reported an incidence of 0.1% to 7.6% in colorectal 

and gynecologic surgery, with more than 80% of cases going unrecognized intraopera-

tively.3–6 Assimos et al.6 compared the incidence of iatrogenic ureteral injuries between the 

pre-laparoscopic and laparoscopic era and found that the incidence of iatrogenic ureteral 

injuries was significantly greater in the latter. Thus, the early detection and prevention of 

ureteral injury are important. If in any other way than with normal vision and common an-

atomical knowledge, essential anatomical planes and structures could be identified, this 

would beneficially influence the safety and efficiency of laparoscopic colorectal surgery.

To help avoid injury, intravenous pyelography, retrograde pyelography, or urologic 

computed tomography can be performed preoperatively; however, none of these imaging 

techniques provides real-time guidance during the actual procedure.7 Another applied 

method is ureteral stent placement. However, in laparoscopic surgery, the results are not 

convincing and apart from added operation time, can cause complications itself.2,8,9

Intraoperative fluorescence ureteral identification with preoperative optical dye 

administration is a promising new technique for easier and earlier intraoperative 

visualization of the ureter and could thereby improve the outcome –safety and efficiency–

of laparoscopic colorectal surgery.10,11

Matsui et al.10 showed that the clinically available dye methylene blue (MB) has 

near-infrared (NIR) fluorescence properties (even in very low doses) that permit real-

time intraoperative visualization of the ureters in a pig model in open and laparoscopic 

procedures. Verbeek et al.12 were able to visualize the ureters during open human surgery, 

using MB in combination with a near-infrared fluorescence (NIRF) imaging system.

We hypothesize that the application of the NIRF technique using MB during laparoscopic 

colorectal surgery can improve the visualization of the ureter, thereby speeding up the time 

of dissection and identification of the ureter, which increases patient safety by lowering the 

risk of ureteral injury. Therefore, in this study, we assessed the feasibility of this technique 

for the detection of ureters in patients undergoing elective laparoscopic colorectal surgery.
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MATERIALS AND METHODS

Patients 

This prospective observational study has been approved by the Medical Ethics Committee of 

the Maastricht University Medical Center and was performed in accordance with the ethical 

standards of the Helsinki Declaration of 1975. The study was conducted in the Maastricht 

University Medical Center (MUMC) and registered in the Netherlands National Trial Register: 

registration number NTR3605 (www.trialregister.nl/trialreg/adminrctview.asp?TC=3605). 

Randomly chosen patients meeting the inclusion criteria (Table 1) were enrolled between 

January 2014 and July 2015. All patients scheduled to undergo laparoscopic colorectal 

surgery, in which identification of the left ureter was part of the standard procedure, were 

eligible for participation in the study. All included patients provided written informed 

consent and the collected data were anonymized.

Intraoperative imaging system 

A commercially available laparoscopic fluorescence imaging system (Karl Storz GmbH 

& CO. KG, Tuttlingen, Germany) was used. This system has been described in more detail 

previously.13 For this study, the system had been adapted with a special filter to detect the 

fluorescent signal of MB, which is at around 670 nm. The equipment included a plasma light 

guide and a 30-degree 10-mm laparoscope applicable for NIRF imaging. Procedures were 

digitally recorded.

MB preparation and injection 

Methylthionine chloride (Methylene blue [MB]) 10 mg/mL was prepared by the hospital 

pharmacy of the Catharina Hospital (Eindhoven, the Netherlands). After intravenous 

administration, MB is rapidly taken up by the tissues. The majority of the dose is excreted in 

the urine, usually in the form of leucomethylthioninium chloride. Peak MB absorbance and 

emission occur at 668 and 688 nm, respectively.10 An intravenous MB solution for injection 

was administered preoperatively. Fluorescence imaging was performed at various moments 

during the phase of surgical dissection in which ureteral identification was relevant.

Surgical technique

The operations were performed by gastrointestinal surgeons with extensive experience 

in laparoscopic colorectal surgery. MB was administered using a preoperative intravenous 

injection in a vein of the upper extremity. Doses ranged from 0.25 mg/kg up to 1.0 mg/

kg body weight. In the course of the study, these were increased based on previous 

publications.10,14 The dye administration occurred during the induction of anesthesia and 

ranged between 40 and 0 minutes before the introduction of the first trocar.
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After surgery, the NIRF technique was assessed using an intraoperative registration 

form and visual recordings. Visual (both conventional and fluorescence) recordings were 

obtained during the same laparoscopic procedure. Urine from four included patients was 

collected from the bladder catheter at the end of the surgical procedure for NIRF imaging.

Ex vivo assessment of the NIRF technique

As a quality check of the procedure, in an ex vivo experiment, urine samples of two healthy 

volunteers were collected and accumulating concentrations of MB diluted in urine were 

made. Thereafter, fluorescence imaging was performed in a dark room with the camera at 

a 2cm proximity of the sample. For each sample, a target to background ratio (TBR) was 

calculated as explained below. For this calculation, a vial filled with sterile phosphate-

buffered saline was used as the background.

Target-to-background ratio

In image-guided surgery research, the target-to-background ratio is commonly used for 

analyzing recordings. For assessment of the degree of fluorescent illumination, OsiriX 5.0.1 

Imaging Software was used. The fluorescent images were analyzed by determining the TBR. 

The fluorescence intensity of the target was measured as a mean of three point regions 

of interest in the ureter minus the mean fluorescence intensity of three regions in the 

immediate surrounding tissue as background, divided by the mean fluorescence intensity 

of the background. Hence, the following formula was used: TBR = (Fluorescence intensity of 

Target - Fluorescence intensity of Background)/Fluorescence intensity of Background.

RESULTS

A total of ten patients were included in this study. Patient characteristics and clinical data are 

summarized in Table 2. Median age was 73.4 years (range 52–87) and median BMI was 27.44 

kg/m2 (range 23.24–37.04). All patients were scheduled to undergo elective laparoscopic 

Table 1 Inclusion and exclusion criteria for participation in the study

Inclusion criteria Exclusion criteria 
Patients scheduled for laparoscopic colorectal 
surgery (i.e., rectal surgery, sigmoid resection)

Not able to give written informed consent

No hypersensitivity for methylene blue Known methylene blue hypersensitivity

Males and females (not pregnant) Pregnant, breast-feeding women

Age >18 years Age <18 years

Able to understand the nature of the study and 
what will be required 

Medication use: SSRI’s

Willing to participate Not willing to participate
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surgery for colorectal cancer. Administration of the dye ranged from 0 to 40 minutes before 

the introduction of the first trocar.

A dose of 0.125 up to 1.0mg/kg resulting in a total dose of 8–90 mg per patient was 

administered preoperatively. The dose was gradually increased during the time span of the 

study, due to disappointing results of the low doses. In only two of the six patients in which 

a concentration of 0.125–0.25 mg/kg MB was administered, there was (weak) visualization of 

the ureter in the fluorescence mode. In the other four, up to 100 minutes after administration, 

no fluorescent imaging of the ureter could be obtained, even after the detection of the 

ureter in white light mode. One of these procedures was converted to open procedure (due 

to intra-abdominal adhesions) before it was possible to analyze the ureter in fluorescence 

mode.

In one of two patients with a dosing of 0.5 mg/kg, the ureter was detected in fluorescence 

mode. This occurred with a weak signal and after the ureter had already been identified in 

white light mode. In the other patient, conversion to an open procedure was performed 

(because of intra-abdominal adhesions) before actual imaging of the ureter in fluorescence 

mode could take place.

In the remaining two patients, a concentration of 0.75 and 1 mg/kg showed a clear 

delineation of the ureter during the pulsatile movement of the urine through the ureter 

(see example screenshot in Fig. 1). The laparoscope had to be held close (within a few 

centimeters) to the ureter to obtain this visualization.

In four consecutive patients (patients number 5–8 in Table 2), urine was collected from 

the bladder catheter at the end of the procedure. Ex vivo fluorescence imaging with the 

same camera system as explained in the methods section showed a clear fluorescence 

signal of all four urine samples with a TBR varying between 6.88 and 9.2 (Table 3).

In the ex vivo experiment, a strong fluorescence signal in a wide range of considerable 

dilutions was obtained (Table 4).

Very high concentrations of MB revealed no signal (TBR <0) and in very high dilutions, 

only a weak, although still present, signal.

Figure 1 Screenshot of ureter visualization with fluorescence imaging at dosing of Methylene Blue of 1.0 mg/
kg (top screenshot) and 0.75 mg/kg (bottom screenshot). In this screenshot, red is the illumination of the ureter 
and black is surrounding tissue 
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Table 2 Patient characteristics and ureteral identification results 

No. Sex
Age 
(years)

Weight 
(kg) 

BMI 
(kg/m2)

Dose 
(mg/kg) 

Total dose 
(mg) NIRF imaging of the ureter 

1 F 69 61 23.24 0.50 30.5 Ureter detected with scope very 
close to tissue.
Ureter is also visible in white light 
mode

2 M 67 78 26.06 0.50 40 Conversion due to intra-abdominal 
adhesions
before NIRF imaging

3 M 68 98 31.64 0.25 25 Left ureter detectable with scope 
very close to
tissue, but weak signal. Ureter is also 
visible in
white light mode

4 F 87 66 23.04 0.125 8 Left ureter detectable with scope 
close to tissue,
but very weak signal. Ureter is also 
visible in
white light mode.

5 F 60 72 27.44 0.25 18 No visualization of ureter in NIRF 
mode during the procedure. Ureter is 
visible in white light mode.

6 M 63 103 32.15 0.25 26 Conversion due to intra-abdominal 
adhesions
before NIRF imaging.

7 M 63 89 31.53 0.25 22 No visualization of ureter in 
fluorescence mode.
Ureter is visible in white light mode.

8 M 67 120 37.04 0.25 30 No visualization of ureter during the 
procedure.
Ureter is visible in white light mode.

9 M 69 70 25.10 0.75 52.5 After 45 min: good visualization of 
both right and
left ureter. In left ureter, better 
visualization of
peristaltic movements. Ureter is also 
visible in
white light mode.
After 60 min: good visualization of 
left ureter.
After 90 min: good visualization of 
left ureter.

10 M 52 90 25.74 1.00 90 After 30 min: good visualization of 
ureter. Ureter is also visible in white 
light mode.
After 50 min: pulsatile movement of 
urine through ureter.

NIRF: near-infrared fluorescence
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Table 3 Target-to-Background Ratio measurement for urine samples from patients 5–8 collected for the urine 
catheter at the end of the surgical procedure

Patient Target-to-background ratio
5 6.88

6 8.81

7 7.15

8 9.20

(Target-to-background ratio: target = urine in vial; background is saline in vial)

Table 4 Target-to-Background Ratio for different dilutions of methylene blue in urine of two healthy volunteers

Sample No.
Dilution
MB:Urine

TBR urine
sample 1

TBR urine
sample 2

1 1:1 -0.64 -0.64

2 1:2 -0.196 1.04

3 1:4 0.18 3.32

4 1:8 0.76 4.12

5 1:16 5.58 5.82

6 1:32 8.23 8.21

7 1:160 9.40 8.88

8 1:800 10.33 8.52

9 1:4000 10.33 9.27

10 1:20000 9.90 9.30

11 1:100000 8.70 8.53

12 1:500000 5.08 6.88

MB: methylene blue; TBR: target-to-background ratio (target = urine in vial; background is saline in vial) 

DISCUSSION

Various recent studies have paid attention to the use of NIRF imaging in minimally invasive 

surgery.15 This report describes a clinical feasibility study investigating the utility of NIRF 

imaging using MB for ureteral recognition during human laparoscopic colorectal surgery. 

Previously, promising results were reported with MB in an animal model10 and in two 

human studies during open and laparoscopic surgical procedures.12,16 The primary objective 

of this study was to investigate the feasibility of intraoperative NIRF imaging using MB 

administration for detection of the left ureter during laparoscopic colorectal surgery.

In this study, it was found that this type of imaging provides additional visual distinction 

of the left ureter from its surrounding tissues, compared to the conventional laparoscopic 

view. However, this signal was not strong enough to support the surgeon with enhanced 

ureteral visualization over the conventional white light mode. When the ureter was identified 

in fluorescent mode, it could already be seen in white light mode. Another disadvantage is 

the close proximity (few centimeters) that was required between the endoscope and the 

ureter to obtain a signal. In the aforementioned previous studies, the authors described 
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a distance of 18 and 30 cm between the camera and the surgical field in open surgery. No 

distance was given for the laparoscopic experiments.10

In this study, higher doses of MB resulted in better visualization of the ureter. The dose 

chosen in the beginning of our study was based on the study of Matsui et al.10 The better 

recognition with higher doses is in accordance with the observations of Verbeek et al.14

The ex vivo experiments with MB dilutions in urine of healthy volunteers showed a 

strong fluorescence signal in a wide range of dilutions (Table 3), revealing that even very 

small concentrations of methylene blue in urine can give a clearly visible fluorescence 

signal. This confirms the possibility to obtain a good signal using the present equipment. 

Also, in the collected urine from four patients at the end of the surgical procedure, we 

were able to clearly obtain a fluorescent signal in these urine samples, even though in vivo 

ureteral detection in these patients was not possible with NIRF imaging. It is hypothesized 

that the absence of a clear fluorescence signal in the included cases may be influenced by 

anatomical barriers, such as the ureteral wall thickness and the fatty tissues surrounding the 

ureter, hindering fluorescence signal detection. Currently, fluorescence imaging at the NIR 

range of wavelengths has the potential of a better tissue penetration than visible light, up 

to 10 mm, but the in vivo situation often exceeds this tissue thickness.17

The results found in this study are not compatible with the results found in the study 

by Matsui et al.10 in which the feasibility of methylene blue application in open surgery in 

20 pigs was investigated. In all animals, the ureter was identified successfully. A possible 

explanation for these results is the thinner ureteral wall and sub-retroperitoneal layer in 

pigs and less intra-abdominal fat compared to humans. Verbeek et al. found similar results 

in humans.10,12 However, in their study, they only investigated the feasibility of the use of 

methylene blue in open surgery. A clear identification of the ureters was observed at doses 

between 0.25 and 1.0 mg/kg. Perhaps, in the setup of this study, the optimal combination 

of dye (e.g., dosage and timing of administration) and laparoscopic system has not yet been 

reached to obtain similar results.

There were no adverse (immediate or delayed) reactions with regard to the clinical 

outcome following MB administration in this study. However, shortly after the administration 

of the dye intravenously, a transient decrease of the oxygen saturation was observed, which 

was measured by a finger pulse oximeter. This phenomenon is known and is caused by 

the principle of pulse oximetry, which is based on the red and infrared light absorption 

characteristics of oxygenated and deoxygenated hemoglobin, which is influenced by the 

transient passage of MB18. Preoperatively, the patient should be notified that intravenous 

MB administration could potentially cause a severe anaphylactic reaction; however, this risk 

is very low to negligible.

Main limitation of this study is that the study population is too small to draw firm 

conclusions regarding variables such as optimal timing and dosage of dye administration. 

Furthermore, the patients were included over a relatively long time-span. This was due to 
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changing of the involved researchers. This is not likely to have had a negative effect on the 

performance of the study.

In the cases where the ureter was recognized using the fluorescence mode of the 

laparoscope, recognition was only possible after the ureter had already been identified 

using the conventional white light mode, suggesting that fluorescence imaging of the 

ureter using MB does not provide any added clinical value to this procedure. Therefore, this 

particular imaging modality in this setup is not yet deemed to be suitable in aiding the 

identification of the ureter during laparoscopic colorectal surgery.

In conclusion, we report the human clinical experience with near-infrared fluorescence 

imaging and methylene blue during laparoscopic colorectal surgery for intraoperative 

ureteral detection. Although promising, as indeed visualization of the ureter could be 

obtained, this imaging modality did not provide added value in the delineation of the 

ureter because simultaneous with the fluorescent signal, the ureter could be visualized even 

in conventional white light mode. Future research should focus on exploring alternative 

fluorescent dyes (for example preclinical dyes19) and optimization of the equipment to 

make this promising technique clinically relevant.
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ABSTRACT 

Background 

Ureteric injury is reported to occur in 1–7.6% of colorectal surgeries. To reduce the incidence 

of ureteral injury, it is essential to identify the ureters. The use of near-infrared fluorescence 

(NIRF) imaging with intravenously administered dyes might be of added value for ureteral 

visualization during laparoscopy. The aim of this study is to assess the performance of 

three preclinical dyes; IRDye® 800BK, IRDye® 800NOS and IRDye® 800CW, for near-infrared 

fluorescence laparoscopy of the ureter in pigs.

Methods 

In three female Dutch landrace pigs, the new dyes were evaluated. In each pig, 1 dye was 

tested using a 6-mg intravenous dose in a concentration of 1 mg/ml. Imaging was performed 

in fluorescence mode and white light mode with a laparoscopic imaging system. In order 

to further evaluate the dyes, an ex vivo imaging experiment was performed, in which 8 

decreasing concentrations per dye, diluted in PBS, were evaluated in a transparent test tube 

with NIRF mode at a distance of 1, 5 and 10 cm from the laparoscope.

Results 

All three dyes were effective in allowing the identification of the ureter with NIRF imaging. 

The ureter became fluorescent after 35, 45 and 10 min, respectively, for IRDye® 800BK, 

IRDye® 800NOS and IRDye® 800CW with a maximum target-to-background ratio (TBR) of 

2.14, 0.66 and 1.44, respectively. In the ex vivo imaging experiment, all three dyes produced 

a strong fluorescence signal at all concentrations and all distances evaluated.

Conclusions 

Intravenous administration of the preclinical dyes IRDye® 800CW, IRDye® 800 BK and IRDye® 

800NOS facilitated successful identification of the anatomical course of the ureter in living 

pig models. The highest measured TBR occurred with the use of IRDye® 800BK. Ex vivo, 

a correlation was observed between the fluorescence intensities of the signal with the 

concentration of the dye and with the distance to the object.
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INTRODUCTION 

With a reported incidence rate of 1% up to 7.6%, the occurrence of ureteric injury is one 

of the feared complications in colorectal surgery.1–4 Ureteric injury can result in pain, intra-

abdominal sepsis, systemic infection, abscesses, urinoma, ureteral stricture, ureteric fistula, 

renal failure and loss of the ipsilateral renal unit.4–6

Failure to identify the relevant anatomy seems to be the main factor leading to ureter 

damage.7 To avoid ureteric injury, it is therefore essential to identify both ureters during 

surgery. However, this may be difficult and time-consuming. Ureter stent placement is a 

technique which can be used in open surgery to help identify the ureters.4 In laparoscopic 

surgery, however, in which tactile feedback is limited, this application is hardly useful. A 

technique improving the visualization of ureters in laparoscopic surgery is therefore 

needed. The use of near-infrared fluorescence (NIRF) imaging might be able to meet this 

need. This technique is already used in hepatobiliary surgery to visualize the bile ducts8 or 

the perfusion of the liver9, and in colorectal surgery to assess the perfusion of the bowel 

anastomosis.10–15 A few studies have also been published on the use of NIRF imaging to 

identify the ureters.

The most commonly used fluorescent dye in laparoscopic surgery is indocyanine green 

(ICG). However, administering this dye intravenously does not facilitate the visualization of 

the ureters, as it is exclusively cleared by the liver, and therefore not excreted via the urine.16 

Alternatively, ICG might have potential for visualizing the ureters if administered through a 

ureter stent.17, 18 Disadvantages of this technique include its invasiveness, the requirement 

of cystoscopy and possible complications such as urinary tract infections, hydronephrosis 

and hematuria.4 This indicates that the use of ICG is a less than optimal option for the 

visualization of ureters during laparoscopy.

The above illustrates that there is a need for a potent fluorescent dye that can be 

administered intravenously, is cleared by the kidneys and has no side effects. A previous 

study showed that the preclinical IRDye® 800CW (LI-COR Inc., Lincoln, NE, USA) provided 

clear ureter visualization in a porcine model19 and, as such, has the potential to be such a 

dye. As this dye is quite expensive for this application, the manufacturer of IRDye® 800CW 

developed two new, less expensive dyes: IRDye® 800BK and IRDye® 800NOS. These dyes 

proved to be very promising in cystic duct and cystic artery visualization after intravenous 

administration.20 They are both partially cleared by the liver and by the kidneys, which makes 

them eligible to be used in NIRF imaging of the ureters after intravenous administration.

The aim of this study is to assess the performance of IRDye® 800BK, IRDye® 800NOS and 

IRDye® 800CW in visualizing the ureter in pigs during near-infrared fluorescence laparoscopy.
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MATERIALS AND METHODS 

This study was conducted at the central animal facilities of Maastricht University (Maastricht, 

The Netherlands). Animals were used in compliance with the regulations of the Dutch 

legislation concerning animal research, and the study was done according to a protocol that 

was approved by the local animal ethics committee. A pig model was chosen because of 

the similarities between pig anatomy and human anatomy and because of earlier successful 

application of NIRF imaging in pigs.19 The experiments were done in three female Dutch 

landrace pigs (each weighing 40 kg).

Laparoscopic fluorescence imaging system

A laparoscopic fluorescence imaging system (Karl Storz GmbH &CO. KG, Tuttlingen, Germany) 

with a xenon- based light source was used. This system enables excitation and detection of 

all three dyes used in this experiment: IRDye 800CW ( EX/EM = 775/796 nm), IRDye® 800BK 

( EX/EM = 774/790 nm) and IRDye® 800NOS ( EX/ EM = 767/786 nm). All procedures were 

digitally recorded with the built-in recording equipment. The same NIRF imaging settings 

were used for all three dyes tested.

Characteristics and preparation of the dyes 

IRDye® 800CW is a tetrasulphonated heptamethine indocyanine dye. After intravenous 

injection, it is cleared by the kidneys and excreted into urine. It is also partially cleared by the 

liver and excreted into bile. It can therefore be used for both bile duct and ureter visualization. 

Its maximum absorption occurs at 775 nm and its maximum excitation emission at 796 nm. 

The molecular weight of IRDye® 800CW is 1090.11 Da.21

IRDye® 800BK and IRDye® 800NOS are two newly developed dyes. IRDye® 800BK is a 

hydrophilic dye with a maximum absorption of 774 nm and a maximum emission of 790 

nm. Because of its hydrophilic nature, it is primarily cleared by the kidneys. This makes the 

dye especially useful for intraoperative ureter imaging. Nevertheless, some clearance by the 

liver takes place.

IRDye® 800NOS is less hydrophilic and, as such, primarily cleared by the liver. This 

theoretically makes it especially useful for visualization of the biliary system. However, 

this dye is also partially excreted by the kidneys and could there- fore also facilitate the 

visualization of ureters. The maximum absorption occurs at 767 nm and its maximum 

emission at 786 nm.

The dyes were prepared and used following instructions of the manufacturer.

Surgical technique and assessment guidelines 

The surgical procedures were performed under general anesthesia, as has been previously 

described in an earlier study.20 Surgical residents performed a laparoscopic partial excision 
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of the bicornate uterus, mimicking a laparoscopic appendectomy. These procedures were 

strictly supervised by two expert endoscopic gastrointestinal surgeons (NB and LS). Each 

pig received one of the three dyes intravenously at a total dose of 6 mg (1 mg/ml).

Imaging was performed intermittently in fluorescence mode and white light mode. 

Intraoperatively, the first authors (MA and JvdB) systematically documented whether 

the ureters could be identified in fluorescence mode, by filling in a registration form. The 

attending surgeon was consulted to reach agreement on the identification of the ureters. 

A structure was defined as ‘identified’ if its localization was confirmed with certainty by the 

experienced surgeon.

Ex vivo NIRF imaging 

In the ex vivo experiment, 8 decreasing dye concentrations, diluted in PBS, were evaluated 

in NIRF mode, in a completely darkened room with the laparoscope held at a distance of 

1, 5 and 10 cm, respectively. A transparent 10 ml test tube was filled with 10 ml of each 

dye concentrations. The initial dilution consisted of 10 mg of the dye being diluted in 10 

ml of PBS. From this basic concentration, decreasing dye concentrations were made. The 

evaluated concentrations of dye/PBS were 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 and 1:128.

Postoperative analysis of the fluorescence

For an objective assessment of the fluorescence illumination, OSIRIX Lite v9 imaging software 

(Pixmeo, Geneva, Switzerland) was used. Fluorescence was analyzed by deter- mining the 

fluorescence intensity (FI) and the target-to-back- ground ratio (TBR). By doing so, it could 

be objectified whether the target organ (the ureter) was more fluorescent compared to the 

surrounding tissues. The TBR is defined as the mean fluorescence intensity (FI in arbitrary 

units, A.U.) of three points of interest in the target (ureter), minus the mean fluorescence 

intensity of three points of interest in the background divided by the mean fluorescence 

intensity of three points of interest in the background. In formula: TBR = (FI of target − FI 

of background)/(FI background).19, 20, 22 Areas with light scattering were avoided in these 

points of interest. The background FI in the ex vivo experiments was negligible due to the 

completely darkened room, and therefore, no TBR was calculated.

For the FI of the target, three centrally located regions of interest were chosen in the 

ureter. The mean fluorescence intensity of these three regions was the FI of target. When 

using this technique to establish the TBR, choosing a reproducible background is important. 

Therefore, as background 3 regions of interest 1 cm bilateral (2 right and 1 left) from the 

ureter were chosen in the in-vivo study. The mean scores of these three fluorescence 

intensities were used as the FI of background.

For the ex vivo study, the mean of three regions of interest at the center of the test tube 

filled with dye dilution was chosen as a target.
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RESULTS 

In all three experiments, it was possible to successfully identify the ureters with NIRF imaging. 

Results obtained during the operations are presented in the intraoperative registration 

form in Table 1. A representative screenshot in fluorescence mode was made of each of the 

three pigs.

The first witnessed identification of the ureters occurred within minutes after dye 

administration with all three dyes. The ureteral wall became fluorescent in NIRF mode 

together with the uterus, bowel and lymph nodes. No peristaltic movement of urine within 

the ureters could yet be seen. Therefore, we could not identify the course of the ureter with 

absolute certainty at this stage. 

Thirty-five minutes after the administration of the IRDye® 800BK dye, peristaltic 

movement of the urine was clearly visible in NIRF mode due to the fluorescent dye excreted 

in the urine. The ureters remained fluorescent until the final assessment 3.5 h after dye 

administration. The highest measured TBR was 2.14 (Figure 1a).

The first appearance of fluorescence of the ureters in the second pig (IRDye® 800NOS) 

occurred 45 min after dye administration with clear peristaltic movement of urine within the 

ureters. The highest measured TBR was 0.66 (Figure 1b).

In the third pig, the first fluorescent imaging of the ureters occurred 10 min after the 

IRDye® 800CW dye was administered. Both ureters were clearly distinguishable from their 

surroundings. A second evaluation, 25 min after dye administration, showed a persistent 

clear delineation of the ureters in NIRF mode. The highest measured TBR was 1.44 (Figure 

1c).

No complications or adverse reactions were observed in any of the experiments.

Ex vivo NIRF imaging 

With all three dyes, a strong fluorescence signal was achieved in all concentrations and at all 

distances evaluated. The results are depicted in Figure 2a–c.

At 1 cm distance, all dyes in all concentrations showed comparable FI without clear 

fluctuations. At 5 cm distance, the FI of all dyes was lower in the highest concentrations. In 

these concentrations, IRDye® 800CW showed the highest FI. This effect disappeared in the 

lower concentrations. At 10 cm distance, also an inverse relation between concentration 

and FI was observed for all three dyes. IRDye® 800CW and IRDye® 800BK showed a higher FI 

in all concentrations when compared to IRDye® 800NOS. All three dyes showed a decrease 

in FI when the laparoscope was held at a 10 cm distance, as compared to when it was held 

at 1 and 5 cm distance, respectively. The highest FIs were achieved at 1 cm distance for the 

higher concentrations and at a 5 cm distance for the lower concentrations.
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Figure 1 Visualization of the ureter with the experimental dyes: a with IRDye® 800BK with highest TBR (2.14), b 
with IRDye® 800NOS with highest TBR (0.66), c with IRDye 800CW with highest TBR (1.44)

Table 1 Intraoperative registration form 

Injected dye
Visualization 
left ureter 

Visualization 
right ureter 

Time to first certain 
visualization of 
ureter 

Highest 
measured TBR 

IRDye® 800BK Yes Yes 35 min 2.14

IRDye® 800NOS Yes Yes 45 min 0.66

IRDye® 800CW yes Yes 10 min 1.44

TBR: Target-to-background ratio
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Figure 2 Fluorescence intensities (FI) for the three dyes for different dye concentrations with the laparoscope 
held at 1 cm (A), 5 cm (B) and 10 cm (C) distance from the object. 
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DISCUSSION

The most frequently used near-infrared fluorescent dye, indocyanine green, is exclusively 

cleared by the liver20 and can therefore not be used for ureteral imaging after intravenous 

administration. Such imaging requires a dye that is excreted in urine or invasive techniques 

with a ureter catheter insertion through which the fluorescent dye can be introduced into 

its lumen.18, 23

Verbeek et al. used methylene blue as a fluorescent dye for ureter visualization in open 

pelvic surgery in 12 patients. In all 12 patients, the ureters could be clearly visualized.24 

Yueng et al. showed visualization of the ureters in 10 out of 11 included patients. The 

technique was considered useful in 4 of these 10 cases. A recent study by Barnes et al. 

showed promising results allowing visualization of the ureter in a clinical study in which 

fluorescence imaging with methylene blue was of added value compared to white light 

in 14 of 69 ureters assessed.25 However, in another study that used methylene blue as a 

fluorescent dye in laparoscopic colorectal surgery, this technique was not found to be 

superior to conventional white light laparoscopy in any of the included cases.26 Although 

no side effects are reported in these studies, a disadvantage of using methylene blue is that 

it comes with some potential side effects, such as a small risk of anaphylactic reaction27 and 

the potential occurrence of vasoconstriction.

A promising near-infrared fluorescent dye that is cleared by the kidneys is IRDye® 

800CW.23 However, this dye is expensive for this application. Newer pre- clinical dyes which 

are cheaper to produce are IRDye® 800NOS and IRDye® 800BK. The manufacturer estimates 

their cost to be in the range of commercially available ICG (personal communication). In 

the present study, the usefulness of three preclinical dyes for NIRF imaging of the ureters 

was explored. IRDye® 800BK is especially developed for excretion via the urine, being 

hydrophilic in nature. It is therefore expected that this dye will equal or outperform the 

imaging capabilities that have previously been described for IRDye® 800CW.20

All three dyes enabled clear and satisfactory visualization of the anatomical course 

of both ureters, as can be seen in Fig. 1a–c. The highest maximum in-vivo FI and TBR was 

measured with the IRDye® 800BK, and the lowest maximum FI and TBR was found with the 

IRDye® 800NOS. This is in line with expectations, as the hydrophilic IRDye® 800BK is mainly 

cleared by the kidneys, while IRDye® 800NOS is less hydrophilic and only partially cleared 

by the kidneys. Nevertheless, all three dyes give clear visibility of the ureters. The TBRs for 

IRDye® 800CW were comparable with previous experiments.19

In the ex vivo study, a clear fluorescence signal was achieved with all concentrations 

and at all the tested distances. The highest FIs were achieved when the laparoscope was 

held at 1 and 5 cm distance, whereas the lowest FI was achieved at a distance of 10 cm. This 

supports earlier studies which showed that the FI is negatively influenced by an increase in 

the distance of the laparoscope from the target.28
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Further studies evaluating more concentrations and distances may be helpful in 

identifying the ideal distance/concentration combination.

There were no adverse reactions as a result of the administration of the dyes. A transient 

decrease in SpO2 oxygen saturation is known with the use of intravenous fluorescent dyes, 

temporarily resulting in falsely lower oxygen levels.29, 30 An advantage of these new dyes 

over iodine containing ICG is that these dyes can also be used in patients with a known 

hypersensitivity to iodine or iodine allergy. Due to the low number of pigs assessed, no 

conclusion may yet be drawn regarding the safety of the dyes.

Despite the promising results, the findings of this study have to be interpreted with 

caution. Since each dye was only tested in-vivo at one specific dosage and each dye was 

only tested in one pig, further experiments are needed to determine optimal dosing and 

timing of the dyes which are dependent on the pharmacokinetic properties of the dyes. 

Furthermore, testing in human subjects should be awaited in order to assess the clinical 

value of the dyes.

CONCLUSION

Intravenous administration of the preclinical dyes IRDye® 800CW, IRDye® 800BK and IRDye® 

800NOS allowed for successful NIRF identification of the course of the ureters in a live 

pig model. The use of IRDye® 800BK resulted in the highest contrast between ureter and 

background.

Ex vivo, a correlation of the signal was observed with the concentration of the dye and 

with the distance to the object.
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ABSTRACT 

Background 

Iatrogenic ureteric injury remains a risk in laparoscopic pelvic procedures. Near-infrared 

fluorescence (NIRF) imaging is a promising new technique for enhanced intraoperative 

visualization of anatomical structures that could improve the safety of laparoscopic surgery. 

A new fluorescent dye, IRDye® 800BK has been developed for intraoperative visualization of 

the ureters using NIRF. The present study was a first evaluation of the performance of IRDye® 

800BK for ureteric imaging during NIRF laparoscopy. 

Methods

This study consisted of three parts: real-time in vivo NIRF imaging using IRDye® 800-BK in 

pigs during laparoscopic surgery, ex vivo NIRF imaging of freshly explanted pig ureters and 

ex vivo NIRF imaging of explanted human ureters.

Results 

In all animals, both left and right ureters were visualized throughout the laparoscopic 

procedure for 120 min, with the best results at a dose of 0.15 mg dye per kg bodyweight. 

NIRF imaging was successful in all human and porcine ureters studied, with a range of dye 

concentrations.

Conclusions

NIRF imaging of the ureters using IRDye® 800-BK was used successfully both in vivo in a 

porcine model, and ex vivo in porcine and human ureters.
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INTRODUCTION 

Despite advances in laparoscopic surgery, iatrogenic ureteric injuries during laparoscopy 

may still occur.1 Several studies2–5 have reported an incidence of between 0.1 and 7.6 per 

cent in colorectal and gynecological surgery, with more than 80 per cent of injuries going 

unrecognized during surgery. Ureteric injury leads to significant postoperative morbidity 

even if identified and repaired during the same procedure.6 Near-infrared fluorescence (NIRF) 

imaging is a promising new technique for easier and earlier intraoperative visualization of 

target organs with the potential to improve the safety of laparoscopic surgery.7,8 Indocyanine 

green (ICG) and methylene blue are currently the only clinically available dyes that may be 

helpful in intraoperative visualization of the ureter.9–11 However, a feasibility study12 recently 

showed that, even though imaging using methylene blue was safe and feasible, it did not 

provide a practical advantage over conventional laparoscopic imaging for identification of 

the ureter during laparoscopic colorectal surgery.

IRDye® 800CW (LI-COR Biosciences, Lincoln, Nebraska, USA) is an experimental dye 

that allows intraoperative visualization of crucial anatomical structures using NIRF imaging. 

Animal studies have successfully demonstrated the potential of this dye for identification of 

the ureters.13 – 15 However, a major disadvantage of IRDye® 800CW is its cost, which is almost 

tenfold that of ICG. 

Recently a new preclinical dye, IRDye® 800-BK (LI-COR Biosciences), has been developed 

specifically for intraoperative NIRF visualization of the ureters. Because of its hydrophilic 

nature, it is primarily cleared by the kidneys and may therefore have great potential for real-

time NIRF imaging of the ureter. According to the manufacturer, the price of IRDye® 800-BK 

is expected to be similar to that of ICG. The aim of the present study was to evaluate this dye 

for ureteric imaging during NIRF laparoscopy.

METHODS

This study was conducted at the central animal facilities of Maastricht University (Maastricht, 

The Netherlands). Animals were used in compliance with the regulations of Dutch legislation 

for animal research and following a protocol approved by the local animal ethics committee. 

Three female Dutch Landrace pigs were used as well as explanted porcine and human 

ureters. The ARRIVE guidelines16 were followed for reporting these experiments.

A laparoscopic fluorescence imaging system (Karl Storz, Tuttlingen, Germany) was used. 

The D-Light P system includes a plasma light guide and a 30degree 10-mm laparoscope 

applicable for white light and NIRF imaging. It enables excitation of the dye under evaluation. 

A foot pedal allows the surgeon to switch easily between the two imaging modalities. All 

procedures were recorded digitally.
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IRDye® 800BK has a maximum absorption at 774 nm and a maximum emission at 790 

nm. The dye was prepared before use according to the manufacturer’s instructions and 

diluted in sterile phosphate-buffered saline (PBS) to a concentration of 1 mg/ml.

The experiments consisted of three parts. The performance of the dye was tested in 

vivo in a pig model, as a dose-finding study. Then, the influence of the thickness of the 

ureter wall and the dose administered on the signal achieved was tested during ex vivo 

experiments using both porcine and human ureters.

In vivo fluorescence imaging 

The dye was tested during laparoscopic surgery in three female Landrace pigs, each 

weighing between 39 and 39.6kg. Premedication consisted of intramuscular injection of 

azaperone 3mg/kg, ketamine 10mg/kg and atropine 0.05mg/kg. Anesthesia was induced 

with intravenous thiopental 10-15mg/kg. After intubation, the pigs were maintained under 

anesthesia with isoflurane and oxygen. Vital parameters were monitored continuously.

The pigs were placed supine in a steep Trendelenburg position and three trocars were 

introduced: a 12-mm trocar in the midline superior to the umbilicus and two 5-mm trocars 

on either side. Pneumoperitoneum was established with carbon dioxide. Surgery and NIRF 

imaging were performed by two surgeons specifically experienced in laparoscopic surgery 

and NIRF imaging. The ureters were not dissected or exposed in any animal.

The first pig received an intravenous dose of 6 mg (6 ml) IRDye® 800BK as a bolus, which 

was in the range of doses used in previous experiments with IRDye® 800CW. The second 

and third pigs received half (3mg) and double (12mg) this dose respectively. The dye was 

administered directly after introduction of the laparoscopic trocars. Observation of the left 

and right ureters, in white light and fluorescence mode, was planned for every 10 min for 

1h, starting after 20min, and every 20min during the second hour. However, the ureter was 

visualized clearly after 20 min in the first pig, so it was decided to initiate visualization right 

from the start of the operation in the next two animals. After surgery, the pigs were killed in 

accordance with the guidelines of the Dutch legislation for animal research.

Ex vivo fluorescence imaging of porcine ureters 

Freshly explanted pig ureters were collected from the abattoir on the day of the experiments. 

Ureters were flushed with PBS followed by flushing with the diluted IRDye® 800-BK, during 

which first the distal and then the proximal part of the ureter was clamped, ensuring 

watertight closure on both sides. The whole process was recorded with the laparoscope in 

fluorescence mode at a distance of 10 cm from the ureter. The same background was used in 

all ureters studied. The following dilutions were examined: 1:4, 1:16, 1:64 and 1:256.

Ex vivo fluorescence imaging of human ureters

Tissue was obtained from the Maastricht Pathology Tissue Collection. Collection, storage, 
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and use of tissue and patient data were in agreement with the code for proper secondary 

use of human tissue in the Netherlands (http://www.federa.org). A pathologist explanted 

the ureters during post-mortem examination of patients not previously known to have 

urological diseases or ureteric abnormalities. All ureters were explanted within 2weeks 

before experimentation and stored at -20 degrees Celsius. They were defrosted at room 

temperature 3h before the experiments. The NIRF imaging procedure was similar to that for 

ex vivo porcine ureters. Dilutions examined were: 1:1, 1:4, 1:16, 1:64, 1:256, 1:1024 and 1:4096.

Measurement of ureter wall thickness

In ex vivo experiments, a representative cross-section of the distal third of the ureter was 

analyzed microscopically, on the basis that this part of the ureter is usually of interest during 

laparoscopic colorectal and gynecological surgery.17 Ureter wall thickness was defined as 

the distance from the surface of the luminal urothelium to the outer layer of smooth muscle. 

Wall thickness values presented are the mean of nine measurements per cross-section.

Analysis

Video recordings of the laparoscopic procedures were assessed for the degree of 

fluorescence illumination using OSIRIX version 5.0.1 imaging software (Pixmeo, Geneva, 

Switzerland). Signal and target-to-background ratio (TBR) were determined from 

representative screenshots. The TBR was defined as the mean fluorescence intensity (FI) of 

three points of interest in the target (ureter) minus the mean FI of three points of interest 

in the background directly adjacent to the ureter, divided by the mean FI of three points of 

interest in the background.18

The ex vivo experiments were performed in a completely darkened room with the 

laparoscope 10cm from the explanted ureter. The fluorescence from an area 1 cm lateral to 

the ureter was chosen as the background fluorescence for each ureter.

RESULTS

In vivo fluorescence imaging 

Pig 1, with a bodyweight of 39.4 kg, received an intravenous bolus of 6 mg dye, resulting in 

a dose of 0.15mg dye per kg bodyweight. The first clear and distinct visualization of both 

the left and right ureters in fluorescence mode occurred 20 minutes after administration 

of the dye. Pig 2, with a bodyweight of 39.0 kg, received an intravenous bolus of 3mg dye 

(0.08 mg dye per kg bodyweight). The first clear and distinct visualization of both ureters in 

fluorescence mode occurred 20 minutes after dye administration. Pig 3, with a bodyweight 

of 39.6 kg, received an intravenous bolus of 12 mg dye (0.30 mg per kg bodyweight). The first 

visualization of both ureters in fluorescence mode occurred 1 minute after administration 
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of dye. At this stage, it was the wall of both ureters that became clearly visible. The first 

peristaltic movements of urine through the ureter were observed 10 minutes after 

administration of dye.

In all three pigs, both the left and right ureter were visualized with peristaltic movement 

until the end of the experiment after 120 minutes, confirming transportation of the dye-

containing urine through the ureter. A very clear and certain course of the ureter could be 

observed subjectively in pigs 1 and 3. In contrast, the FI of the ureter in pig 2 was significantly 

lower than in the other two pigs, making it difficult to distinguish the ureter from the 

surrounding tissues. The measured FI is shown in Figure 1. Pig 1 had the highest absolute 

FI measured, followed by pig 3 and pig 2. Figure 2 shows TBRs at various points during the 

laparoscopy for the left ureter in the three pigs. The TBR was highest for the highest doses 

administered.

In all pigs, the subjective maximum intensity of the fluorescence signal was seen at 

moments of peristaltic contractions of the ureter, showing transport of intraluminal urine 

from proximal to distal. Screenshots of the left ureter 30 and 120 min after injection of 6 mg 

IRDye® 800-BK in pig 1 are shown in Figure 3, with the ureter distinct from the surrounding 

tissue.

Ex vivo fluorescence imaging of porcine ureters

The wall thickness of the four pig ureters ranged from 93.3 to 129.0 (mean 113.6) μm. A clear 

delineation of all four ureters was possible using fluorescence imaging, even at the lowest 

concentration of dye tested. FI and TBR ranged from 38 to 56 and 6.60 to 10.20 respectively 

(Table 1). An initial lowering of the concentration seemed to improve the signal, despite 

increasing wall thickness (TBR ureter 2 versus 1). Further dilution gave varying results: an 

initial decrease in the signal, as observed in ureter 3, but an increase in ureter 4. Variations in 

concentration and wall thickness are shown in Table 1. A further observation was that fatty 

tissue on the ureter strongly influenced the fluorescence signal (Figure 4). A signal could be 

obtained only in areas where the ureter was not covered by fat as seen by the naked eye. 

This effect was consistent across all ureters and at all concentrations tested.

After rinsing the ureter extensively with pure PBS, a low fluorescence signal remained in the 

ureter, both in the lumen and in the outer layer of the ureter (Figure 5), suggesting uptake of 

the dye in the wall of the ureter.
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Figure 1 Absolute fluorescence intensity (FI) at various time points for the left ureter in a pig 1 (IRDye® 800-BK 
dose 6 mg), b pig 2 (dose 3mg) and c pig 3 (dose 12 mg), showing the mean FI for the target (ureter) and its 
background

Table 1 Influence of wall thickness and dye concentration on fluorescence intensity and target-to-background 
ratio of pig ureters

Ureter 
No

Concentration of 
IRDye® 800BK in 
PBS 

Ureter wall 
thickness (μm)

Fluorescence 
intensity

Target to 
background ratio 

1 1:4 119.2 38 6.6

2 1:16 129.0 56 10.2

3 1:64 112.7 40 7.0

4 1:256 93.3 46 8.2

PBS: phosphate-buffered saline 
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Figure 2 Target-to-background ratio (TBR) at various time points during laparoscopy for the left ureter in a pig 
1 (IRDye® 800-BK dose 6mg), b pig 2 (dose 3 mg) and c pig 3 (dose 12 mg)

Figure 3 Screenshots of left ureter after 30 min (right) and 120 min (left) after injection of 6mg IRDye® 800-BK 
in pig 1. Arrow indicates the ureter.
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Right: inner surface of the ureter. Left outer layer of the same ureter. The blue arrow indicates the luminal surface of the ureter, 
the red arrow the outer layer of the ureter, and the yellow arrow the overlying fatty tissue.

Figure 5 Screenshots of explanted pig ureter 1

The blue arrow indicates the ureter, and the yellow arrow the overlying fatty tissue

Figure 4 Screenshot of explanted pig ureter 2
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Ex vivo fluorescence imaging of human ureters

Wall thickness of seven post-mortem human ureters ranged from 133.8 to 189.0 (mean 162) 

μm. Clear delineation of all seven ureters was possible using fluorescence imaging, at all dye 

concentrations, with FI and TBR ranging from 11 to 49 and 1.20 to 8.80 respectively (Table 2). 

Again, areas of ureter covered by a layer of fatty tissue did not show fluorescence.

DISCUSSION

IRDye® 800-BK has been developed specifically for intra- operative NIRF visualization of the 

ureters. The goals of the present experiments were to see whether the new dye would be 

suitable for visualization of the ureter and to perform a first preliminary evaluation of factors 

likely to influence the signal produced.

The study confirmed visualization of the ureters in real time both in vivo and ex vivo. 

In vivo, administration of a bolus of 6 and 12 mg (0.15 and 0.30mg/kg respectively) allowed 

excellent and clear visualization of the ureters in NIRF mode. The dose of 3mg (0.08mg/kg) 

also provided enhanced imaging of the ureter, although the FI was weak.

The maximum intensity of the fluorescence signal was seen during contractions of the 

ureter, showing the transport of intraluminal urine from proximal to distal. The relationship 

with peristalsis is a slight drawback, as the signal is not present permanently, although this 

will be the case for every signal produced by a dye transported in urine. This seems greatly 

surpassed by the excellent signal during these episodes of contractions.

A signal was observed for up to 120 min after the administration of dye, when the 

surgical procedures were terminated. A study with longer continuous NIRF visualization of 

the ureter may be beneficial.

Each ureter showed varying FI and TBR throughout the in vivo study. A possible 

explanation may have been failure to standardize the laparoscope-target distance. It is 

Table 2 Influence of wall thickness and concentration of dye on fluorescence intensity and target-to 
background ratio of human ureters 

Ureter 
No

Concentration of 
IRDye® 800BK in 
PBS 

Ureter wall 
thickness (μm)

Fluorescence 
intensity

Target to 
background ratio 

1 1:1 150.8 42 7.4

2 1:4 171.6 49 8.8

3 1:16 158.9 37 6.4

4 1:64 167.8 45 8.0

5 1:256 189.9 25 4.0

6 1:1024 133.8 22 3.4

7 1:4096 162.1 11 1.2

PBS: phosphate-buffered saline 
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possible that the laparoscope was at different distances from the ureter, resulting in different 

amounts of fluorescence being detected and influencing the TBR. Kono and colleagues19 

reported that the signal contrast on fluorescence images of bile duct samples differed 

significantly between the laparoscopic imaging systems, and tended to decrease as the 

laparoscope-target distance increased and porcine tissues covering the samples became 

thicker.

In the in vivo study, all concentrations of dye tested resulted in enhanced visualization 

of the ureter compared with conventional white light, as indicated by a positive TBR value. 

Doses of 6 and 12 mg gave the best intraoperative results. Doses that resulted in a subjectively 

better signal and a higher measured absolute intensity did not always result in a higher TBR. 

This may be explained by the influence of the dose both on target and background signals. 

A low FI of the target may be accompanied by a very low FI of the background, whereas a 

higher FI of the target may be accompanied by a high background signal.

At all doses studied it was observed that urine flow in the ureter was not continuous 

but related to contractions, with the fluorescent signal related to urine flow, resulting in 

fluctuations in the fluorescence signal detected. As a result, the observed and measured 

signals and TBRs may vary over time during in vivo studies. In contrast, in the ex vivo 

experiments a uniform background could be chosen, which enabled comparison of the TBR 

between experiments.

To further study the dose-visibility relationship, explanted pig ureters and dye dilutions 

ranging from 1:4 to 1:256 were used. A clear delineation of the ureters was obtained at 

all doses, with a TBR ranging from 6.6 to 10.20. As it has been suggested previously that 

ureter wall thickness may have a negative influence on NIRF intensity12, and that findings 

in animal studies may not be representative of humans, human ureters with their thicker 

walls were also subjected to ex vivo NIRF imaging. Dye concentrations from 1:1 up to 1:4096 

showed successful NIRF imaging in all human ureters, with TBRs ranging from 1.20 to 8.80. 

The increased wall thickness therefore did not prevent the fluorescence signal, although a 

decrease in FI was observed at the lowest concentrations. In both the porcine and human 

ex vivo experiments, not all results for TBR had a logical explanation, but it seems that the 

concentration of dye had a greater influence than thickness of the ureter wall.

No complications or adverse reactions attributable to the dye were observed during 

any operations. Only a slight and transient decrease in intraoperative peripheral oxygen 

saturation was noted during the first minute after injection of the fluorescent dyes.

A limitation of the ex vivo experiments is that two influences were studied at the same 

time: dye concentration and wall thickness. Ideally, different concentrations of dye should 

be tested in the same ureters, and the same con- centration in different ureters. The first of 

these types of experiment is not feasible, because the fluorescent signal was retained in the 

ureter wall. Such an experiment can therefore be performed only using artificial material. 

The second experiment has not yet been undertaken.
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Despite the promising results, the present findings must be interpreted with caution. 

Owing to the limited availability of pigs and ureters, it was not possible to study enough 

ureters for solid statistical conclusions to be drawn. Another limitation is that concentrations 

of dye in the urine were not measured. This requires availability of the structural formula of 

the dye and a method for such measurement. These were not available to the authors in this 

early phase of development and application of the dye.

It was disappointing in the ex vivo study that even the smallest layer of fat covering the 

ureter prevented a decent signal from being obtained. It is known that penetration of the 

NIRF signal is limited to approximately 10 mm.20 NIRF imaging with a stronger dye or with 

optimized equipment was hoped to enhance such penetration. The present experiment 

illustrates that the signal may be improved with use of a better dye, but that this does not 

affect depth penetration per se. In the in vivo study, nevertheless, the porcine ureters could 

be identified clearly without any manipulation or dissection of the overlying tissues. This 

suggests that IRDye® 800BK has the potential to detect the ureter in spite of the overlying 

peritoneum. Future studies should evaluate the maximum depth of penetration of the NIRF 

signal and the clinical value of this dye in human subjects.

This novel dye enables visualization of the ureters. NIRF imaging with this dye seems a 

valuable addition to conventional white light laparoscopy. Further studies are needed to see 

if it can become a worthwhile addition to improve clinical practice.
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ABSTRACT 

Background

This study assessed the feasibility of near-infrared fluorescence imaging with indocyanine 

green (ICG) to identify the parathyroid glands (PGs) intraoperatively and to assess their 

perfusion after thyroid resection.

Methods

Patients undergoing elective thyroidectomy were enrolled in this prospective study. An 

intravenous bolus of 7.5 mg ICG was administered twice: the first bolus to identify the PGs 

before resection of the thyroid and the second to assess vascularization of the PGs after 

resection.

Results

A total of 30 operations in 26 patients were included. In 17 surgeries (56.7%), fluorescence 

imaging was of added value, especially to confirm the presence of a suspected PG. No 

intraoperative or postoperative complications occurred because of the use of ICG.

Conclusion

Near-infrared fluorescence imaging with the use of ICG for intraoperative identification of 

the PGs and the assessment of its vascularization is feasible and safe and can provide more 

certainty about the location of the PGs.
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INTRODUCTION 

Iatrogenic injury of the parathyroid glands (PGs) is the most common complication after 

total thyroidectomy.1 Damage of the PGs can cause hypoparathyroidism, which results 

in hypocalcemia. The reported incidence of hypocalcemia after total thyroidectomy 

varies widely: between 1.6% and 50%.2–4 Hypocalcemia can result in increased morbidity, 

including cardiac arrhythmias and tetany leading to pro-longed hospitalization and even 

death.5 To avoid parathyroid injury, it is essential to identify the PGs and preserve their blood 

supply. However, this can be challenging due to their small size and the fact that they can 

be difficult to distinguish from their surrounding tissues. Intraoperative guidance to help 

identify and assess the PGs during thyroid surgery may prevent surgical damage and thus 

provide a better post-operative outcome and quality of life. A few intraoperative imaging 

techniques have been described. Dudley6 was the first to use intravenous administration 

of methylene blue (MB) to stain parathyroid tissue in vivo in 1971. After publication of 

this study, MB has been implemented by other surgeons.7 The chance of complications 

due to intravenous administration of MB, including neurotoxicity and acute MB-induced 

phototoxicity, pain at infusion site and nausea is a major drawback of thistechnique.7–10 

To avoid these complications due to a high dose of MB, a lower dose in combination with 

near-infrared fluorescence (NIRF) imaging was investigated.11However,in analogy with the 

use of MB for staining without NIRF-imaging, this technique mainly visualizes abnormal 

PGs. To avoid iatrogenic damage, visualization of normal PGs is essential. A technique in 

which both abnormal and normal PGs can be identified is fluorescence imaging with 

5-aminolevulinicacid.12 However, this technique also has its side effects and requires 

extensive photosensitization preparation and thereby, patients have to be shielded from 

direct light exposure for 48 hours to prevent phototoxic reactions.13 A promising technique 

to visualize healthy and diseased parathyroid tissue has emerged in the use of intraoperative 

NIRF imaging using intravenously administered indocyanine green (ICG). This safe and 

rapidly evolving intraoperative imaging modality is described for use in a wide range of 

surgical procedures, such as identification of the biliary anatomy, assessment of anastomotic 

perfusion, and sentinel lymph node mapping.14–16 Suh et al. showed fluorescent PGs when 

using NIRF imaging with ICG in three dogs.17 Other studies showed the possibility of ICG 

fluorescent angiography to assess the remaining blood supply to the PGs in humans.18–20 

Thus, NIRF imaging with ICG seems to be a promising technique to identify PGs during 

thyroid surgery and assess remaining perfusion of the PGs after thyroid removal. The aim 

of this study was to assess the feasibility of NIRF imaging with ICG to identify PGs during 

thyroid surgery and to get an impression of the vascularization of the preserved PGs.
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METHODS 

This study was conducted at the Department of Surgery of the Maastricht University Medical 

Center (MUMC, Maastricht, Netherlands) between March 2017 and October 2017.The Medical 

Ethical Committee approved of this study, the study was conducted in full accordance with 

the ethical principles in the Declaration of Helsinki 201421 and the protocol was registered 

on Clinicaltrials.gov with registration number NCT03012438. Consecutive men and women 

patients, aged 18 years and older, scheduled for elective total, hemithyroidectomy or 

completion thyroidectomy, with a normal liver and renal function and with written 

informed consent were eligible for inclusion. Subjects were excluded in case of known ICG, 

iodine, penicillin or sulfa-hypersensitivity; pregnancy or breastfeeding; intravenous heparin 

injection in the last 24 hours (all contraindications for the use of intravenous ICG). A flowchart 

of the study procedures is shown in Figure 1. 

Laparoscopic fluorescence imaging system and ICG administration

A commercially available laparoscopic fluorescence imaging system (Karl Storz GmbH & 

CO., Tuttlingen, Germany), including a plasma light guide, a 30-degree 10 mm laparoscope 

applicable for near infrared (NIR) light was used. Observations were done using white light, 

from the regular operation room-lights and without camera, and in NIRF mode, using the 

dedicated system. Video recordings were made using the laparoscopic system. ICG is a 

fluorescent contrast dye, which binds to plasma proteins and becomes fluorescent once 

excited by NIR light between about 820 and 840 nm. The dye was diluted with sterile water 

to a concentration of 2.5 mg/mL. Although having the laparoscopic imaging system in 

NIRF modus pointed at the thyroid, a bolus of 7.5 mg (3 mL) ICG (VERDYE, Diagnostic Green 

GmbH, Aschheim-Dornacht, Germany) was administered intravenously at two different 

time points. The aim of the first bolus was to identify the PGs before removal of the (hemi-)

thyroid. The second bolus was used to assess vascularization of the PGs directly after 

thyroid resection. Both boluses of ICG were given just before using the NIRF-modus of the 

fluorescence system. In all total thyroidectomies, the surgeons searched for four PGs. In all 

hemithyroidectomies and completing thyroidectomies the surgeons searched for two PGs.

Data collection 

The following intraoperative parameters were registered: whether PGs were identified, 

subjective fluorescence intensity of the PGs according to the surgeon, opinion of the 

surgeon about the usefulness of the technique, occurrence of intraoperative complications, 

the amount of time used for fluorescence imaging, and total surgical time.

The fluorescence intensity was scored by the performing surgeon on a 1-3 grading scale: 

1 means that the PG is black after injection of ICG, no fluorescence visible, 2 means that the 

PG is fluorescent, but no more than the surrounding tissue, and 3 if the PG is more fluorescent 
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than the surrounding tissue. Postoperatively, the thyroid specimen was checked by the 

pathologist for the presence of parathyroid tissue in the thyroid specimen. Perioperative 

complications were registered and fluorescence intensity on the video images was analyzed. 

The fluorescence intensity was analyzed using OsiriX Lite V8.5.2 Imaging software (Pixmeo, 

Geneva, Switzerland) to determine the target-to-background ratio (TBR). The TBR was 

defined as the mean fluorescence intensity (FI) of three points region of interest (ROIs) in the 

target (i.e., PGs) minus the mean FI of three ROIs in the back-ground (BG) (i.e., surrounding 

tissue) divided by the mean FI of the BG ROIs. In formula TBR = (fluorescence intensity of 

target−fluorescence intensity of background)/fluorescence intensity of background.22 When 

this score is zero, there is no difference between the fluorescence intensity of the PG and 

the surrounding tissue. A TBR above zero indicates a more fluorescent PG compared to 

surroundings, and a TBR below zero indicates that the surroundings are more fluorescent 

compared to the PG.

Figure 1 Flowchart of the study procedures 
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Statistical analysis 

Statistical analysis was performed using the Statistical Package for the Social Sciences 

v23 (IBM, Amonk, NY). A descriptive analysis was conducted for the patients’ baseline 

characteristics and the following outcome measurements: total operation time, extra 

operation time, the presence of PGs in the resected thyroid, number of PGs identified in 

white light and NIRF, occurrence of perioperative complications, and the usefulness of the 

technique. The independent sample-test was used to assess whether there was a relation 

between the fluorescence intensity and factors, such as malignant or benign disease and 

normal or low calcium.

RESULTS

A total of 30 surgeries (hemi-, total or completion thyroidectomy) in 26 patients were 

included. The majority of participants were female (73%) and the most common indication 

for thyroid surgery was suspected thyroid cancer (56.7%). Median body mass index (BMI) 

was 25.21 kg/m2. Further patient characteristics are shown in Table 1.

Feasibility 

No perioperative or postoperative complications due to the use of ICG occurred. 

Complications that occurred were an arterial bleeding after surgery for which reoperation 

was needed and a postoperative wound infection that required antibiotic treatment in 

another patient. The mean surgical time was 92 minutes (±32 minutes) for all surgeries. 

Herein, on average 5 minutes and 35 seconds (±94 seconds) were used for NIRF imaging. For 

a total thyroidectomy, mean surgical time was 126 minutes (±54 minutes); herein, 6 minutes 

and 27 seconds (±95 seconds) were spent using NIRF. A hemithyroidectomy took on average 

83 minutes (±17minutes) of which 5 minutes and 29 seconds (±55 seconds) were used for 

NIRF imaging. A completing thyroidectomy took on average 92 minutes (±22 minutes), 4 

minutes and 51 seconds (±55 seconds) were spent using NIRF imaging.

Subjective usefulness of the technique 

In 17 patients (57%), fluorescence imaging was rated as useful by the performing surgeon. In 

these patients, NIRF imaging provided certainty on both the localization and the preserved 

vascularization of the PGs. In two of the 17 patients, without the use of ICG, the surgical team 

would not have succeeded to identify a PG. In the remaining 15 patients, NIRF imaging was 

mainly helpful to confirm the suspicion of parathyroid tissue. An example of the obtained 

images is given in Figure 2 and an overview of reasons for usefulness or a lack of usefulness 

is given in Table 2. Three reasons were given for a lack of additional value in the remaining 

13 patients. In five patients, the PGs were already clearly visualized in white light, no extra 
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certainty was needed for these patients. A second reason given for a lack of added value 

was that the PGs remained black after ICG administration in three patients. However, in 

these patients, the surgeon notes that itis possible that the PG was already dissected (n=1 in 

which a PG was found in the histology assessment), or the thyroid was already manipulated 

extensively before using NIRF, possibly causing damage of the blood supply toward the PG 

(n= 2 hemithyroidectomies in which no calcium levels were determined due to the expected 

remaining two PGs in the other half thyroid). Therefore, although not for localization, the 

found black PG in these patients could have been of added value to indicate the surgeon 

that auto transplantation of this PG should be considered. The third reason surgeons gave 

for a lack of added value was in two patients of lymphatic metastatic disease and two 

patients of non-metastatic malignant cases: “the well-vascularized cancerous tissue seemed 

to show misleading fluorescence intensity.” Because this tissue was so well vascularized, a lot 

Table 1 Demographic and clinical details of included patients

Patients (n=30) *
Age (years) 56.3 ± 16

Weight (kg) 78.9 ± 17.6

BMI (kg/m2) 28.3 ± 6.9

Gender 
    Male 8 (26.7)

    Female 22 (73.3)

ASA-classification 
     1 3 (10)

     2 25 (83.3)

     3 2 (6.7)

Type of surgery 
     Total thyroidectomy 6 (20)

     Completion thyroidectomy 6 (20)

     Hemi-thyroidectomy 18 (60)

Indication for surgery 
     Multinodular goiter 5 (16.7)

     Graves’ disease 1 (3.3)

     Suspected thyroid cancer 17 (56.7)

     Proven thyroid cancer 7 (23.3)

Histology thyroid specimen 
     Multinodular goiter 10 (33.3) 

     Thyroid cancer 11 (36.7) 

     Normal thyroid 3 (10)

     Follicular adenoma 5 (16.7)

     Thyroiditis 1 (3.3)

*The 4 patients with two included surgeries are counted twice.
Data are presented as mean ± SD or number (%). 
SD: Standard deviation
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of background fluorescence was present in these patients, making it difficult to distinguish 

between the cancerous tissue and the PGs based on NIRF imaging. Further perioperative 

data are listed in Table 3.

Objective imaging and PG identification 

In all total thyroidectomies and hemithyroidectomies, at least one PG was seen in either 

white or NIRF light before thyroid resection. In total, 41 PGs were visualized in white light in 

25 patients, whereas with NIRF imaging in total 31 PGs could be identified in 23 patients. In 

three patients, no PG was identified during thyroid resection. All three patients underwent 

a completion thyroidectomy. In two hemithyroidectomy patients in whom initially no PG 

could be identified in white light, one PG was seen after the use of NIRF. In one patient, 

only one PG was seen in white light, whereas two were seen in NIRF light. These three 

patients underwent a hemithyroidectomy and no PGs were found in the resected material. 

In nine patients, more PGs were visualized in white light. This group consisted of three total 

thyroidectomies and six hemithyroidectomies. In three of these patients, NIRF was used 

after extensive manipulation of the thyroid. In 18 patients, the same number of PGs was 

seen in white light as in NIRF light. In three patients, the number of PGs seen in white light is 

higher than expected, indicating a possible wrong identification of a PG. In NIRF imaging, a 

lower number of PGs were seen in two of these patients.

Histology 

In seven patients, parathyroid tissue was found in the histopathology specimen. As can be 

seen in Table 4, in all these patients, only one PG was found in the specimen. Three out of 

these seven patients underwent a total thyroidectomy. In one of these patients, three PGs 

were seen both in white and NIRF light; in another patient, three PGs were seen in white 

light and one in NIRF; and in the third patient, two PGs were seen in white light and no PGs 

were seen with NIRF imaging. Another patient underwent a completion thyroidectomy in 

whom two PGs were seen in both white and NIRF light. The remaining three patients under-

went a hemithyroidectomy. In all of them, two PGs were identified in white light; in one 

of those patients, no PG was seen with NIRF; and in the other two, only one PG was seen 

with NIRF imaging. Because in these patients parathyroid tissue was found in the resected 

thyroid, it is possible that what the surgeon called parathyroid tissue in white light actually 

was other tissue. No significant correlation was found between the existence of parathyroid 

tissue in the histology specimen and the subjective fluorescence intensity during surgery.

Fluorescence intensity

Mean subjective fluorescence before and after thyroid re-section was 2.53 (±0.6) and 2.37 

(±0.7), respectively. Mean TBR before and after thyroid resection was 4.2(±7.6) and 2.5 (±4.7), 

respectively. The subjective score on a scale 1-3 was compared with the measured TBR. In 
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two PGs, a subjective score of 1 (meaning PG is darker com-pared to surrounding) was given 

before thyroidectomy. In these patients, a mean TBR of 0.8 (±1.4) was found for those PGs, 

compared to a mean TBR of 0.7 (±0.3) in the PGs with a score of 2 (meaning PG as fluorescent 

as sur-rounding) and a mean TBR of 6.0 (±8.9) in the PGs in which a score of three was given 

(PG more fluorescent com-pared to surrounding). After thyroid resection in two patients, a 

score 1 was given, with a mean TBR of 0.2 (±0.2), a score of 2 resulted in a mean TBR of 2.4 

(±6.1) and a subjective score of 3 in a TBR of 2.8 (±4.1). In none of the PGs which was scored 

as 3, a TBR below zero was measured. A higher TBR of the PGs before thyroid re-section was 

seen in patients with benign pathology com-pared to patients with a malignancy (P= 0.044; 

CI =−9.6 to−0.14). This fluorescence intensity was on average 6.01(±2.2) for benign histology 

and 1.1 (±0.8) in patients with malignant disease of the thyroid. The TBR after thyroid 

removal was with 3.0 (±5.1) and 1.8 (±4.0), respectively, not significantly different in patients 

with benign histology compared to malignant disease. No other factors contributing to a 

significant higher or lower TBR or subjective fluorescence intensity were found.

Function

In all patients who underwent total thyroidectomy, calcium supplementation was started 

postoperatively to prevent hypocalcemia, according to standard care practice. Normal 

calcium levels were found in all patients 6 hours after surgery. In three patients who 

underwent total thyroidectomy, calcium ion levels dropped temporarily below the normal 

calcium-ion value of our laboratory (normal range = 1.1-1.3mmol/L) the day after surgery. 

Calcium ion levels of these patients were 1.02, 1.03, and 1.09 mmol/L, respectively. Measured 

TBR in these patients after thyroid resection was lower than average with a mean TBR of 0.6 

(±0.7), compared to a mean TBR of 5.1 (±2.4) in patients with a normal calcium ion level the 

day after surgery (P= 0.12). Calcium levels in these patients were restored after 2 weeks to 

2.16, 2.30, and 2.32 mmol/L, respectively.

Left: the suspected PG indicated by tweezers in white light. 
Right: the suspected PG illuminated bright blue in fluorescence light. The NIRF signal outside the parathyroid gland is caused 
by the blood vessels towards and from the parathyroid gland.

Figure 2 Example of obtained images
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Table 3 Usefulness of the technique 

NIRF imaging considered useful: Total 17 cases
Reasons:
PG was only identified using NIRF
Confirmation of suspected location PG

No. of cases
2
15

NIRF imaging considered not useful: Total 13 cases
Reasons:
PGs already clearly visualized in white light, no extra certainty 
needed
PGs remained black after ICG administration 
Surroundings too fluorescent to distinguish PGs

No. of cases

6
3
4

Table 4 Number of identified parathyroid glands in both white and NIRF light

Surgery 
ID

Type of 
thyroidectomy 

Number of PGs 
to be expected 

Number of PGs 
visible in white 
light

Number of 
PGs visible in 
NIRF 

Number of PGs 
in resected 
thyroid 

1 Total 4 4* 1 1
2 Hemi 2 2 1 0
3 Total 4 3 3 1
4 Hemi 2 2 0 1
5 Total 4 2 1 0
6 Hemi 2 2 2 0
7 Hemi 2 2* 1 1
8 Hemi 2 0 1 0
9 Hemi 2 2 2 0
10 Hemi 2 0 1 0
11 Completion 2 0 0 0
12 Total 4 1 1 0
13 Total 4 1 1 0
14 Completion 2 2* 2* 1
15 Completion 2 1 1 0
16 Completion 2 0 0 0
17 Hemi 2 2 2 0
18 Hemi 2 1 1 0
19 Hemi 2 1 2 0
20 Hemi 2 2 1 0
21 Hemi 2 2 2 0
22 Completion 4 1 1 0
23 Hemi 2 1 1 1
24 Hemi 2 1 1 0
25 Hemi 2 1 1 0
26 Completion 2 0 0 0
27 Hemi 2 1 0 0
28 Hemi 2 1 1 0
29 Hemi 2 1 0 0
30 Total 4 2 0 1
Total 72 41 31 7

*The tissue called parathyroid tissue in these cases could possibly be wrongly identified as PG tissue, since parathyroid tissue 
is found in the resected thyroid specimen.  
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DISCUSSION 

The main aim of this prospective, clinical study was to assess the feasibility of NIRF imaging 

with ICG to intraoperatively identify the PGs and to assess the perfusion after thyroid 

resection. The use of NIRF imaging seems safe with no occurrence of complications due to 

the use of ICG in this study. The marginal extension of operation time in this study, related 

to the use of fluorescence imaging, will probably further decrease with growing experience. 

Eventually, it is expected that the total operation time will be shorter because of earlier 

identification of the PGs. The NIRF technique has been evaluated frequently in previous 

studies for several purposes, but the experience with this technique in thyroid surgery is 

limited. In 2014, Suh et al.17 were the first to evaluate ICG for NIRF imaging of the PGs in an 

animal model. In three dogs, several doses of intravenous ICG ranging from 12.5 to 100μg/

kg were administered to illuminate the PGs. In all dogs, NIRF imaging was able to detect the 

PGs. The optimal dose of ICG based on these experiments was estimated to be 18.75μg/kg. 

Sound et al.23 used NIRF imaging with ICG in three patients who underwent re-operative 

neck surgery for primary hyperthyroidism. In these series, initially, a dose of 5 mg ICG was 

given, and a second dose of 5 mg in one patient, and 3.25 mg in the other two patients. In 

all three patients, the PGs could be visualized after 2 minutes and stayed fluorescent up to 

20 minutes. According to Yuet al.,24 a dose of 10 mg ICG might give better PG visualization 

intensity and time. 

In the current study, PGs could be visualized in all 6 total thyroidectomies and all 18 

hemi thyroidectomies. In three of the six completion thyroidectomies, the PGs could not 

be detected in either NIRF or white light. This is unfortunate, as especially in these more 

difficult cases facilitation of PG identification is helpful. Possible, explanations are the 

absence of PGs in the remaining thyroids or the perfusion of these PGs might have been 

cut off before performing fluorescence imaging. The absence of parathyroid tissue in the 

resected specimen shows that PGs in these patients were not located deeper in the thyroid. 

Possible explanations for the inability to visualize PGs seen in white light with NIRF light 

are manipulation of the thyroid, causing damaged blood supply toward the PG. A second 

possible explanation is bright background signal due to highly vascularized malignant tissue. 

This is supported by the lower TBRs seen in patients with malignant histology conclusions. 

A third possibility is that those PGs seen in white light were not actually PGs, as parathyroid 

tissue was present in two patients in which more PGs were seen in white light compared to 

NIRF light. The anatomical location of the inferior PGs can make it hard to visualize the PGs. 

The PGs can be found around the crossing of the recurrent nerve and the inferior thyroid 

artery. As we use the NIRF angiography to identify the PGs, the nearby artery could confuse 

the location of the PG.

As the NIRF imaging is meant as a tool to assist the surgeon, we consider the scoring of 

the technique by the surgeon the most relevant. The operating surgeons were, therefore, 
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asked to give a subjective score for the visibility of the PG compared to the surrounding 

tissue. This score ranged between 1 and 3. On average, a higher subjective score had a higher 

TBR although it had a broad SD. This means that the subjective observed score does not 

always correspond to the measured TBR. One possible explanation is the possible difference 

between the moving images during surgery based on which the subjective fluorescence 

intensity is determined and the screenshot in which the TBR is measured. Furthermore, the 

subjective score might be blurred by expectations, whereas the TBR is a more objective 

measurement, but influenced by the chosen regions of interest and background. Also, 

the operating surgeons were asked whether they considered the used NIRF imaging of 

added value. In majority, NIRF imaging was considered of added value. In two patients, it is 

expected that no PGs would have been visualized without the use of ICG. In other patients, 

the added value consisted of reassuring the surgeon who is in doubt over the location of the 

PGs. Reasons for a lack of added value were mainly the surgeon who is already very certain 

about the location or other well-vascularized tissue such as cancerous tissue that was also 

very fluorescent, causing the PGs not to be more fluorescent than the surroundings.

Apart from using ICG to identify the PGs, we also investigated the possibility to assess 

postoperative perfusion of the PGs. Earlier studies described the use of NIRF angiography of 

the PGs to estimate postoperative function.18 In our study, the post-resection TBR was lower 

than before resection, suggesting confirmation of decreased vascularization. Lang et al.18 

used NIRF for intraoperative angiography with ICG to evaluate postoperative functioning 

of the PGs. They included70 patients and found that a high fluorescent light intensity was 

even more predictive for postoperative hypocalcemia than hypocalcemia immediately 

after operation. Vidal Fortuny et al.25 found that in all patients who had at least one well-

vascularized PG demonstrated by ICG-angiography, the PTH levels 1 day postoperatively 

were normal. In our study, we did not measure postoperative PTH levels. This is only standard 

care in parathyroid surgery in our institute. However, we do have information on calcium 

levels. Postoperatively calcium supplementation was started 1 day after surgery in all 

patients who underwent total thyroidectomy as standard care. Blood is drawn the day after 

a total thyroidectomy, before calcium supplementation was started. A normal calcium-ion 

level 1 day postoperatively would suggest normal parathyroid function, whereas calcium-

ion levels below normal can indicate reduced parathyroid function. In three patients, calcium 

levels were below normal value (1.1 mmol/L). In these patients, also TBR-values seemed 

lower compared to patients with normal calcium levels the day after surgery, although 

not statistically significant. This is in line with the study performed by Zaidi et al.20 where a 

possible relation between fluorescence intensity and remaining function was found. In the 

current study, none of the patients developed permanent hypoparathyroidism.

In the current and the other available studies,17,20,23,25 ICG is administrated just before 

aiming to visualize the PGs, as it is meant as angiography. After intravenous administration 

of the ICG, it takes about 30 seconds to reach the PG and thereby illuminate the gland of 
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interest. We observed that not only the PG but also the thyroid gland and, to a lesser extent, 

the surrounding tissue are illuminated because of their vascularization, which causes ICG-

staining of the background and diminishes the contrast, both subjectively and objectively 

by the TBR. Previous studies have shown that ICG has the property of accumulation in 

pathological, hyperplastic PGs, which attributes to higher fluorescence intensity of the 

PG contrary to the surrounding tissues.26 It is not yet known whether this is also the case 

in normal PGs. Further studies are warranted with earlier administration of the ICG to 

evaluate its influence on contrast and accumulation in the normal PG. The present study 

has some limitations. As the study was designed to be a feasibility study, a small number 

of patients were included, of which a minority of patients underwent a total or completion 

thyroidectomy. Therefore, only 12 patients were actually at risk of permanent hypo-

parathyroidism. The calcium-ion level was measured postoperatively in the patients after 

a total thyroidectomy. However, a limitation of this study is that we could not histologically 

check the tissue we saw as parathyroid tissue in NIRF because of ethical reasons. We did, 

however, ask the pathologist to cut extra thin samples of the removed thyroid gland to 

check if parathyroid tissue was found in the extracted tissue.

In summary, this study showed that NIRF imaging with ICG for identification of the PGs 

during thyroid surgery is feasible. For the cases in which the ICG was helpful, it especially 

confirmed the suspicion of the presence of a PG as seen in white light and helped to assess 

its vascularization after thyroid resection. In a minority of cases, NIRF identifies more PGs 

than white light imaging. However, it seems that in white light more wrongly identified 

PGs occurred. The findings of this pilot study confirm a possible role for ICG fluorescence 

imaging in the identification of the PGs, mainly in benign disease. Directions of further 

research should be aimed at improving the technique. Also, more in-depth study of the 

correlation between the signal and the postoperative function of the PGs will further 

substantiate the relevance of the technique. In conclusion, NIRF imaging with the use of 

ICG for intra-operative identification of the PGs and the assessment of its vascularization is 

feasible and safe and can provide more certainty about the location of the PGs.
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Summary 

Misidentification of vital anatomical structures such as bile ducts, arteries and ureters may 

lead to iatrogenic injury. Therefore, detection of these structures is of utmost importance. An 

optical tool to enhance identification of structures might be helpful in preventing iatrogenic 

damage. One such optical tool is Near Infra-Red Fluorescence (NIRF) imaging. Preliminary 

studies, concerning experimental and limited human series, report encouraging results. 

However, at the start of the studies of this thesis, the technique was yet not standardly 

incorporated in daily practice. The overall aim of this thesis was to investigate and critically 

assess some of the possible applications of near infrared fluorescence imaging during 

surgery in order to prevent iatrogenic damage due to misrecognition of the anatomy. 

The first part of the thesis concerns the use of NIRF cholangiography in laparoscopic 

cholecystectomy. In the second part, we investigated the possibilities of NIRF anatomical 

imaging in colorectal surgery. In the third part a pilot study is presented exploring the use 

of NIRF imaging to identify the parathyroid glands and to assess its remaining perfusion at 

the end of surgery. 

PART I NEAR INFRARED FLUORESCENCE CHOLANGIOGRAPHY 

Laparoscopic cholecystectomy is the most commonly performed laparoscopic procedure. 

The most feared complication in this type of surgery is bile duct injury. Although fortunately 

not occurring commonly (0.3-0.7% of cholecystectomies), bile duct injury results in major 

morbidity and in some cases even mortality.1-9 Misidentification of the extrahepatic bile 

duct anatomy is the main cause for the occurrence of this complication.10 The Critical View 

of Safety (CVS) technique is developed to minimize the chance for misidentification of the 

anatomy.11 Pilot studies have shown that by the use of near infrared fluorescence (NIRF) 

cholangiography the visualization of the biliary anatomy can be enhanced, and the CVS 

can be achieved earlier. We assume that the CVS is thus easier to achieve using NIRF. In 

Chapter 2, the study protocol for an international multicenter randomized controlled trial 

is presented. This trial should prove whether the use of NIRF cholangiography does help the 

surgeon by obtaining earlier CVS or not. 

When using NIRF cholangiography, great differences in obtained fluorescent signals in 

the images are found. These differences may originate form (differences in) background 

fluorescence from the liver and in the penetration depth of the dyes used, but more factors 

are of influence.12 In Chapter 3, currently used techniques during NIRF cholangiography 

are compared. Factors of influence on the fluorescence intensity are explored in ex vivo 

experiments combined with knowledge presented in current literature. The factors found 
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to be of influence are given dose, timing of ICG administration, route of administration, 

distance between the laparoscope and the area of interest, patient factors such as BMI 

and presence of cholecystitis, used system and used software to analyze the data. In this 

chapter, advise is given on how to use NIRF cholangiography. The concentration of ICG in 

the bile ducts should be between 0.00195 and 0.025 mg/ml, ICG should be given as early as 

logistically possible (up to 24h before surgery), the laparoscope should be held close to the 

tissue and the best available system should be used.

In Chapter 4, two new pre-clinical dyes are compared to a third, earlier tested preclinical 

dye. This third dye, IRDye® 800CW was very promising in previous experiments and possible 

even better than ICG.13 However, this dye is expensive, and more expensive compared to 

the newly developed dyes IRDye® 800BK and IRDye® 800NOS. When comparing these three 

dyes in a pig model, the cystic artery was immediately visible using all three dyes. The cystic 

duct appeared later, but with the new dyes at least as good as with the use of IRDye®800CW. 

Thereby, IRDye® 800BK and IRDye® 800NOS seem to be good alternatives for IRDye® 800CW. 

Our conclusions are based on the subjective evaluation, but also based on the measured 

target to background ratio. 

In Chapter 5, we compared the used methods in literature for objectification of the 

fluorescent signal. We found that the most commonly used software programs (Osirix and 

ImageJ) are compatible and comparison of results obtained with these programs seems 

legitimate. A third used software program (Photoshop) gives less comparable results and 

these are therefore not easily comparable with the results obtained with the other programs. 

When using the software programs both grey and blue-value (or green-value depending on 

the used system) can be measured to determine fluorescence intensity. However, in our 

images no clear difference between using the grey- and blue- value could be seen. Another 

aspect is that different formulas are used in literature to assess fluorescence intensity 

compared to the background. No clear advice can be given on the best formula to be used. 

Therefore, reporting of both target and background fluorescence intensity in manuscripts 

is recommended and not only the Target-to-background ratio. This will enable researchers 

and readers to make a more proper comparison of results between studies.

PART II NEAR INFRARED FLUORESCENCE IMAGING IN COLORECTAL 
SURGERY

During colorectal surgery there are two complications surgeons fear most. These two 

complications are anastomotic leakage in the patients in whom an anastomosis is made 

and ureter damage in pelvic surgery. Unfortunately, reported incidence of anastomotic 
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leakage is high, namely 3-15% in colorectal surgery.14-21 Anastomotic leakage is a very serious 

complication since it has a great impact on the patient by increasing morbidity, often 

requiring a second surgery, but also mortality rates are high.16, 20-22 Several risk factors for 

anastomotic leakage have been identified, of which an important factor is perfusion of the 

bowel segments adjacent to the anastomosis.23-25 A good perfusion is required for adequate 

anastomotic healing. Since the perfusion can be visualized using near infrared fluorescence 

imaging, it is thought that the use of near infrared fluorescence imaging can prevent part 

of the anastomotic leakages. In Chapter 6, we investigated this hypothesis in a systematic 

review and found that the use of NIRF angiography in anastomotic colorectal surgery seems 

easily applicable. After NIRF angiography, the resection margin was changed in 10.8% of 

cases and a significant lower anastomotic leak rate was found in published literature 

when using NIRF angiography. Especially an initially bright fluorescent signal seems to be 

predictive for good anastomotic healing. 

In our systematic review in chapter 6, we found that in most studies, the place of resection 

margin after NIRF angiography was based on the subjective view of the surgeon: whether 

the bowel was ‘fluorescent enough’. However, a clear cut-off value of fluorescence intensity 

indicating sufficient perfusion is not available yet by would be desirable to base such 

decisions on rather than on a subjective view. 

In Chapter 7 therefore, we explored whether the fluorescent signal correlates to serum 

markers of anastomotic leakage and postoperative inflammation such as CRP, I-FABP and 

calprotectin. In the heterogenous pilot-group of 30 colorectal cancer-patients we included, 

no relation between the fluorescence intensity and the inflammatory markers studied 

could be found. However, a higher measured fluorescence intensity of the proximal bowel 

compared to the background both before and after surgery was found in the patients who 

did not develop anastomotic leakage. Also, a subjective scoring of the surgeon during 

surgery just before transection of the proximal bowel was higher in the patients who did 

not develop anastomotic leakage. 

A second major complication after colorectal surgery is iatrogenic ureter damage. In this 

surgery, the ureter can be very close to the surgical field and may be hard to identify. 

Identification of the ureter is the most important step in avoiding ureter damage. By using a 

near infrared dye that is cleared by the kidneys, the ureters may be visualized during surgery 

and thereby lessen the chance of iatrogenic ureter damage. In Chapter 8, we investigated 

the feasibility of NIRF imaging with methylene blue to visualize the ureter in patients 

undergoing elective laparoscopic colorectal surgery. This dye is registered for clinical use 

and cheap: NIRF using this dye would be a very practical and promising technique. The only 

drawback was that a dedicated filter had to be developed, as the commercially available 
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equipment didn’t have filters for the appropriate wavelength. Ten patients were included, 

and different doses were tested. We could detect the ureter in five patients, who received 

the highest doses, namely between 0.75 and 1mg/kg. However, in all five cases the ureter 

was also visible in white light before detection in NIRF light. The results were disappointing. 

Therefore, the use of NIRF imaging with methylene blue in these cases was not considered 

of added value in clinical practice. 

A potent dye with excitation and emission in the range of ICG would be preferable as the 

commercially available equipment can be used for obtaining the fluorescent signal. In 

Chapters 9 and 10, we explored the use of two new such dyes. These are still pre-clinical 

dyes, emitting fluorescent light at around 800nm instead of the 688nm at which methylene 

blue emits fluorescent light. The wavelength of 800nm is more in the near infrared range 

and thus has a higher penetration depth. Based on this theory we expected to see the 

ureters more clearly using these new dyes, IRDye® 800BK and IRDye® 800NOS. We compared 

these with another, earlier tested preclinical dye, IRdye® 800CW in a pig model. In these 

experiments three pigs were used, one of the three dyes each. These three dyes are cleared 

by the kidneys and showed a bright fluorescent signal, very clearly delineating the ureters 

in the pigs, especially during pulsatile movement of urine through the ureter. IRDye® 800BK 

seemed to give the best results of these two new dyes and is further explored in Chapter 10. 

Three different doses of the IRDye800BK were administered in three different pigs to search 

for the optimal dose. The used doses were 3mg, 6mg and 12 mg. The results obtained with 

these three doses were comparable. Also, the dye was used in explanted human and pig 

ureters to see if the penetration depth of the emitted light from the dye was high enough to 

penetrate through the human ureter. We found that this was possible, but that the presence 

of fat on the ureter is a limiting factor. 

PART III NEAR INFRARED FLUORESCENCE IMAGING IN THYROID SURGERY

In thyroid surgery, iatrogenic injury of the parathyroid glands should be prevented. Here 

again, the key to prevention is identification of the anatomical structure, the parathyroid 

gland. However, in this type of surgery, only identifying is not enough to prevent injury. 

In some cases, the parathyroid glands are identified and kept in the patient, but due to 

manipulation of the thyroid, the blood supply towards the parathyroid is impaired, resulting 

in an insufficient remaining function of the parathyroid glands. In Chapter 11 we evaluated 

the possibility of both identifying the parathyroid glands and assessing post-thyroidectomy 

perfusion of the parathyroid gland. In 30 (hemi) thyroidectomies, NIRF imaging was used. 

This technique was found safe and easily applicable. In 17 surgeries NIRF imaging was of 

added value, mainly due to providing more certainty to the operating surgeon about the 
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location and remaining function of the parathyroid glands. In all patients, normal calcium 

levels were found 6 hours after surgery, however a temporary drop in calcium level the day 

after surgery occurred in three patients in whom the average TBR was lower compared to 

the measured TBR in the remaining patients. The calcium levels in these patients restored 

after two weeks. 
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General discussion and future perspectives 

PART I NEAR INFRARED FLUORESCENCE CHOLANGIOGRAPHY 

The RCT as described in Chapter 2 is meant to identify the advantages of NIRF in laparoscopic 

cholecystectomy. The main aim of applying this imaging technique is to make the operation 

safer in terms of reduction of bile duct injury (BDI). However, due to its low incidence BDI 

can unfortunately not serve as a primary endpoint for the study described in Chapter 2. 

The decision to choose a surrogate primary endpoint such as time till CVS in our RCT can be 

considered as a limitation of this study.

Depending of the future outcomes of this trial, the use of NIRF cholangiography should 

be incorporated in clinical practice or not, as is suggested already in current literature 

that appeared after publishing this study protocol.12,26-28 Reduced operating time but also 

enhanced surgeon’s satisfaction will promote the use of NIRF for this indication. This opens 

the possibility of future large prospective registration studies that will reveal whether 

indeed with this technique surgery has also become safer.

In Chapter 3 some clear advice is given on how to perform NIRF imaging and how to obtain 

the best images with current techniques. However, this advice is not perfect. For example, 

holding the laparoscope close to the cystic duct gives a brighter fluorescent signal of the 

cystic duct. But also, the fluorescent signal from the liver in the background will increase by 

holding the laparoscope closer. The background fluorescence-noise can be reduced when 

administrating the dye earlier, preferably the day before surgery.29 Unfortunately, this is not 

always logistically feasible. A solution to this problem of background fluorescence might 

come from using another way of administration, as is shortly discussed in the article. By 

injecting the fluorescent dye directly into the gallbladder, the gallbladder and cystic duct 

become fluorescent without the liver having to clear the fluorescent dye from the blood and 

thereby becoming fluorescent. This is investigated by Liu et al30 and seems to be a promising 

method which merits further evaluation. In this way, one does not have to decide beforehand 

whether or not to use NIRF cholangiography during a laparoscopic cholecystectomy, but 

this technique can be started in selected, difficult, cases when needed. On the other hand, 

from our personal experience observing the surgeon’s satisfaction resulting from the 

clearer anatomical picture and ease of use of the technique, we expect most surgeons will 

prefer applying the technique in all cases instead of selected ones. This of course, will be 

influenced by the results of trials, such as the FALCON trial described in chapter 2.

Apart from the used route of administration, also other fluorescent dyes need to be 

explored further. In current practice, ICG is used for nearly all applications of identifying 

normal anatomy. There is a lot of experience with this dye and this dye is generally assessed 
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as a very safe dye, although in rare instances, Indocyanine green can cause an allergic 

reaction due to the iodine present in the dye.31,32

Chapter 4 explores dyes that may provide a better signal in NIRF cholangiography 

compared to current practice. One of the downsides of this study is that we had to use 

an animal model to investigate these dyes and were not able to perform human testing 

yet, as the dyes are not registered for use in humans yet. Fortunately, our results are part 

of the process of obtaining FDA approval. As soon as the dyes IRDye® 800 BK and IRDye® 

800NOS become available for clinical practice their role in fluorescence cholangiography 

in humans should be determined. IRDye® 800CW, the predecessor of the new dyes, is 

also promising for bile duct imaging, but a major downside is its high cost. An interesting 

property of IRDye® 800CW however is that it can be coupled to another substance. It can for 

example be coupled to bevacizumab in order to enable targeted imaging, e.g. to visualize 

colorectal neoplasms.33 Another application is the conjugation of cetuximab-IRDye® 800CW 

to identify metastatic disease in lymph nodes in patients with head and neck cancer.34 These 

very promising and interesting applications are beyond the scope of this thesis but will be 

subject of future research.

The experiment described in Chapter 5 focusses on the comparability of the fluorescence 

signal as reported between studies performed by different study groups. Used techniques 

in assessment of fluorescence intensity are explored. In this experiment also, the use of grey-

values and blue-values are compared. These results did not differ as much as the authors 

expected. Caution must however be taken that apart from the used software and chosen 

formula the selection of regions of Interest is also of influence on the measured fluorescence 

intensity.

In summary, the future concerning NIRF-cholangiography is dependent on the outcomes 

of randomized controlled trials such as presented in Chapter 2 but should also include a 

search for ways to improve currently used techniques further, for example by using better 

fluorescent dyes, optimizing equipment and keeping in mind the factors of influence on the 

signal during application of the technique.

PART II NEAR INFRARED FLUORESCENCE IMAGING IN COLORECTAL 
SURGERY 

Regarding NIRF for colorectal perfusion measurement, large clinical trials are needed. 

Since the publication of the systematic review presented in Chapter 6, a large cohort 

study is published.35 This multicenter study included a heterogenous group of 504 patients 
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undergoing colorectal surgery involving resection and anastomosis. In all included patients, 

NIRF was used to assess perfusion just before and after construction of the anastomosis. An 

anastomotic leak rate of 2.6% was found in this cohort. Compared to reported incidence 

in literature, this is very low. It is very well possible that in persisting anastomotic leakage 

cases other risk factors than impaired perfusion play a role, since anastomotic leakage is a 

multifactorial problem. 

A randomized controlled trial concerning the technique is not published yet but a 

research group in Leeds took the initiative to start such a randomized trial.36 The results of 

this trial are planned to be presented in 2021 and will give us further arguments whether or 

not to use this technique in all anastomotic colorectal surgery. Awaiting the results of such 

trials, one could defend the standard use of NIRF during colorectal anastomotic surgery, 

given the promising results of clinical studies so far. Another way to go, apart from an RTC, 

is a prospective registry in which all such patients are collected. This will give insight in the 

results of the technique in daily practice.

The information of previous studies that a higher fluorescence intensity at the bowel ends 

adjacent to the (future) anastomosis at certain time points was related to less anastomotic 

leakage, brought us to the study as performed in Chapter 7. The limitation of all studies 

so far is that no objective clear cut-off point for adequate perfusion has been studied or 

identified. We hoped to find a correlation between the objective value of the fluorescent 

signal and other parameters indicative of inflammation and predictive of anastomotic 

leakage. Unfortunately, no such correlation was found. This is in part due to the small pilot. 

Another factor may be that the other parameters studied are not as predictive as previous 

studies suggested. A next step is to investigate in a larger cohort of NIRF patients what 

an optimal cut-off value would be to reassure the surgeon that the bowel is fluorescent 

‘enough’. And even further: to come to an absolute cut-off value that can be actually used 

during surgery. During our experiments, such a measurement for use during surgery was not 

available, as our measurements were done after surgery. However, the technique for intra-

operative evaluation of the fluorescence intensity is being developed and tested. Diana et al 

explored the possibility of real-time fluorescence measurement in a pig model.37,38 Not only 

the eventual signal itself, but also the time it takes for the tissue to produce this signal seems 

indicative of adequate perfusion. To date, no results on in-human use of this technique are 

reported yet. 

For now, it seems that we can and have to depend on the subjective assessment of 

fluorescence intensity by the surgeon, just before transection of the proximal bowel. As soon 

as more data on in-human intra-operative objective fluorescence intensity measurement is 

available, a cut-off value should be determined for more reliable use of the technique.
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From Chapter 8 on, we evaluated the possibility of visualizing the ureter during laparoscopic 

colorectal surgery. The experiments we performed on dyes for ureteral NIRF imaging are 

promising and relevant as this technique might help to prevent ureteral injury and diminish 

this feared complication. The first logical step was to test the performance of methylene 

blue, as this dye is already registered for human use, albeit in other indications. A downside 

of the use of methylene blue is its excitation and emission wavelength. Although called a 

near infrared dye, the wavelengths concerning this dye are 668 and 688nm for excitation and 

emission respectively, which is on the lower limit of being in the near infrared range.39 This 

requires equipment that is specifically adjusted with adequate filters. For other applications, 

a dye with a wavelength of 800nm which is more clearly in the near infrared range is chosen 

because of a lack of disturbance of the normal white light image, and a higher penetration 

depth.39 Such dye is indocyanine green, which is cleared solely by the liver, thus this dye will 

not end up in the ureters after intravenous administration. ICG can be brought in the ureters 

by the use of ureteral catheter and ureters can be visualized using this method.40,41 However, 

ureter catheter placement is an invasive procedure, requires additional expertise and adds 

to operation time.42 While using a dye cleared by the kidneys is easy to apply without added 

surgical time. Thus, a dye emitting light at around 800nm which is cleared by the kidneys is 

desired. Three of these dyes are tested in Chapters 9 and 10. This concerned experimental 

dyes tested in a pig model. The experimental dyes tested are promising, because of their 

characteristics concerning their wavelengths, their performance with regard to the very 

clearly observed signal and their price. The images obtained were subjectively by far 

superior to the images obtained with methylene blue.

Future research should be performed in humans as soon as approval of authorities is 

obtained to use these dyes in humans.

Apart from the mentioned dyes, other possible new dyes are also explored. Mahalingam 

et al published in 2018 an article in which they describe the use of ‘Ureter-glow’ to visualize 

the ureters.43 This new dye is highly water soluble and has an excitation wavelength of 

800nm and emission wavelength of 830 nm. The dye was tested in mice and pigs and seems 

promising.43 Whether the signal will be of the same quality in the human situation, with the 

presence of peri-ureteral fat, will have to be awaited as is the case with the dyes tested in 

our own experiments. 

In summary, currently we do not have an ideal tool to visualize the ureters in human 

colorectal surgery using near infrared fluorescence imaging. Nevertheless, promising 

experimental dyes have been tested with good results. Future research is needed to test 

the new fluorescent dyes for ureter imaging as soon as authorities allow human application.
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PART III NEAR INFRARED FLUORESCENCE IMAGING IN THYROID SURGERY

Concerning the application of NIRF in thyroid surgery we concluded in Chapter 11 that in 

17 of 30 surgeries the technique was of added value, increasing the certainty of the location 

of the parathyroid glands and their function. 

One can debate whether such reassuring the surgeon is enough for daily clinical use. 

To our opinion, this technique should be further improved before entering daily practice. 

Currently, the background signal of the thyroid is quite high. Another downside of the 

technique was that in our patients, this background fluorescence was especially high in 

patients with lymph node metastases. Especially in these cases parathyroid glands may 

be hard to distinguish from surrounding tissue by the naked eye and thus a technique to 

enhance visualization might be most helpful. Recently, other positive research results were 

published. A randomized controlled trial was performed by Fortuny et al.44 This research 

group used a lower dose (2.5mg) compared to our experiment (7.5mg) and a different 

fluorescence imaging system (Pinpoint® instead of the Karl Storz system). Adult patients 

were included undergoing total thyroidectomy or completion thyroidectomy in whom 

an ICG score of 2 was observed in at least one identified parathyroid gland, meaning the 

parathyroid gland was bright fluorescent. These patients were randomized in two groups. 

The control group recieved standard follow-up with calcium and PTH measurements on 

day 1 and 10-15 postoperatively and oral supplementation with 1 mg calcium and 800 units 

25-hydroxyvitamin D twice daily upon the postoperative appointment after 10 to 15 days. 

In the intervention group patients were assessed for symptoms of hypocalcemia, but no 

blood test was done the day after surgery, nor supplementation of calcium and vitamin D 

was given. On day 10-15, calcium and PTH levels were measured to confirm that levels were 

normal. The results show that in all included patients postoperative calcium levels were 

normal. The conclusion of this RCT is that the use of NIRF angiography in thyroid surgery 

obviates the need for postoperative measurement of calcium and PTH and supplementation 

with calcium in patients with at least one well perfused parathyroid gland.44

Other methods for parathyroid visualization are being assessed. One of these methods 

is using methylene blue instead of ICG as a fluorescent dye.45 However, high doses of 

Methylene blue are needed, causing a risk for serious hemodynamic complications caused 

by methylene blue and its effectiveness is not proven. Because of this risk and limited 

benefit, the use of this technique is discouraged.46 Using a lower dose would lower the risk 

of side effects but another disadvantage of the use of methylene blue as a fluorescent dye 

is that equipment with other filters than used with ICG are needed because of the different 

excitation and emission wavelength of the dyes.47 A comparative study between methylene 

blue and ICG as a fluorescent dye in this application should be performed to determine 

what dye to prefer. 
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Autofluorescence is another promising method for intra-operative parathyroid identi-

fication.48-50 Using this technique, no exogenous fluorescent dye administration is needed. 

However, for perfusion assessment of the remaining parathyroid gland an intravenously 

administered fluorescent dye is still needed and might then as well be used for identification 

of the parathyroid glands, instead of using multiple systems and techniques. A comparative 

study by Kahramangil et al51 concluded that earlier detection with autofluorescence imaging 

was possible, but autofluorescence and ICG NIRF imaging have similar high detection rates. 

In conclusion, in this thesis we critically assessed the possible applications of near infrared 

imaging during laparoscopic cholecystectomy, colorectal anastomotic surgery and thyroid 

surgery. We described positive results of this technique, points of attention and future 

directions of development and research. Randomized trials but also prospective cohorts 

will give valuable information. The availability of potent dyes for human use will further 

enhance its application. It seems likely that for the next years this technique will not only 

remain but will be increasingly incorporated in daily practice. 
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Wanneer anatomische structuren zoals galwegen, arteriën en ureteren tijdens operaties 

niet goed herkend worden kan dit leiden tot iatrogene schade. Het is daarom van groot 

belang om deze anatomie optimaal te detecteren. Een hulpmiddel dat het identificeren 

van deze structuren makkelijker maakt zou er daarom voor kunnen zorgen dat de kans op 

iatrogene schade verminderd wordt. Het gebruik van nabij-infrarode fluorescentie (NIRF) 

beeldvorming zou zo’n hulpmiddel kunnen zijn. Eerdere studies in de (dier)experimentele 

setting laten veelbelovende resultaten zien. Deze techniek werd voorafgaand aan het 

schrijven van deze thesis echter nog niet in de dagelijkse praktijk gebruikt. Het doel van 

deze thesis is het onderzoeken en kritisch beoordelen van de mogelijke toepassingen van 

NIRF-beeldvorming in het voorkomen van iatrogene schade als gevolg van misidentificatie 

van de anatomie. 

Het eerst deel van de thesis omvat het gebruik van NIRF-cholangiografie bij 

laparoscopische cholecystectomie. In het tweede deel worden de mogelijkheden van NIRF-

beeldvorming ter voorkoming van iatrogene schade in colorectale chirurgie onderzocht. Het 

derde deel betreft het gebruik van NIRF-beeldvorming ter identificatie van de bijschildklier 

en voor de resterende perfusie van de bijschildklier na een schildklieroperatie. 

DEEL 1 NABIJ-INFRARODE FLUORESCENTIE CHOLANGIOGRAFIE

Laparoscopische cholecystectomie is de meest uitgevoerde laparoscopische procedure. 

Hierbij is schade aan de galwegen de meest gevreesde complicatie. Gelukkig komt deze 

complicatie niet vaak voor (0.3-07%), maar deze zorgt wel voor veel morbiditeit en soms zelfs 

mortaliteit.1-9 Het niet juist interpreteren van de anatomie van de extra-hepatische galwegen 

wordt gezien als de belangrijkste oorzaak voor het optreden van deze complicatie. 10 De 

‘Critical view of safety’(CVS)- techniek is ontwikkeld om galwegletsel te voorkomen, door de 

kans op misidentificatie te minimaliseren.11 Pilotstudies hebben laten zien dat het gebruik 

van NIRF-cholangiografie de anatomie van de galwegen duidelijker maakt, en dat zo de CVS 

eerder bereikt kan worden. In hoofdstuk 2 wordt het studieprotocol voor een internationale 

multicenter gerandomiseerde studie gepresenteerd. Het doel van deze studie is om te 

evalueren of het gebruik van NIRF-cholangiografie leidt tot het eerder bereiken van de CVS. 

Bij het gebruik van NIRF-cholangiografie worden grote verschillen in het behaalde 

fluorescentiesignaal gevonden. Deze verschillen kunnen komen door verschillen in de 

achtergrondfluorescentie van de lever, de penetratiediepte van de gebruikte kleurstof en 

verschillende andere factoren.12 In hoofdstuk 3 worden de technieken die nu gebruikt 
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worden voor NIRF-cholangiografie met elkaar vergeleken. Factoren van invloed op de 

fluorescentie-intensiteit worden onderzocht in ex vivo experimenten, gecombineerd met 

de kennis uit de huidige literatuur. De volgende beïnvloedende factoren zijn gevonden: 

dosis, timing van de indocyanine groen (ICG)-toediening, toedieningsweg, afstand tussen 

de laparoscoop en de kleurstof, patiëntfactoren (zoals BMI), aanwezigheid van ontsteking, 

het gebruikte systeem en de software om de beelden te analyseren. In dit hoofdstuk 

wordt op basis van deze bevindingen een advies gegeven hoe NIRF-cholangiografie toe te 

passen. Zo moet er gestreefd worden naar een concentratie ICG in de gal tussen de 0.00195 

en 0.025mg/ml, moet de ICG zo vroeg mogelijk toegediend worden, moet de laparoscoop 

dicht bij het te beoordelen weefsel gehouden worden en dient het best beschikbare 

systeem gebruikt te worden. 

In hoofdstuk 4 worden twee nieuwe, preklinische fluorescente kleurstoffen vergeleken 

met een derde, eerder geteste preklinische fluorescente kleurstof. Deze derde stof, IRDye® 

800CW (LICOR Biotechnology, Lincoln, United States), was zeer veelbelovend in eerdere 

experimenten en leek zelfs beter dan het ICG dat men in de huidige praktijk gebruikt.13 

Echter, deze kleurstof is erg duur. De nieuwere kleurstoffen IRDye® 800BK en IRDye® 800NOS 

zijn een stuk goedkoper. Deze drie kleurstoffen worden met elkaar vergeleken in een studie 

met varkens, waarbij de arteria cystica direct zichtbaar was met alle drie de kleurstoffen. 

Met de twee nieuwere kleurstoffen verscheen de ductus cysticus later, maar net zo goed 

als met IRDye® 800CW. De nieuwere IRDye® 800BK en IRDye® 800NOS lijken daarom goede 

alternatieven te zijn voor IRDye® 800CW. 

In hoofdstuk 5 worden de gebruikte methodes voor objectivering van het fluores-

centiesignaal in de huidige literatuur geanalyseerd. We vonden dat de twee meest gebruikte 

softwareprogramma’s (Osirix en ImageJ) vergelijkbare resultaten geven. Een derde 

softwareprogramma dat soms gebruikt wordt is Photoshop. Dit programma geeft minder 

goed vergelijkbare resultaten. Verder worden er in de huidige literatuur verschillende 

formules gebruikt om de fluorescentie-intensiteit van het doelorgaan af te zetten tegen 

de fluorescentie-intensiteit van de omliggende weefsels. De gebruikte formules zijn met 

elkaar vergeleken, maar er kan geen eenduidig antwoord gegeven worden welke formule 

te gebruiken. Wel is het advies om zowel de fluorescentie-intensiteit van het doelorgaan als 

de fluorescentie-intensiteit van de achtergrond te rapporteren om zo verschillende studie-

uitkomsten met elkaar te kunnen vergelijken in de toekomst. 
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DEEL 2 NABIJ-INFRARODE FLUORESCENTIE BEELDVORMING BIJ 
COLORECTALE CHIRURGIE 

Twee belangrijke complicaties bij colorectale chirurgie zijn naadlekkage nadat er een 

anastomose is aangelegd, en ureterschade bij chirurgie in het kleine bekken. Helaas is de 

incidentie van naadlekkage hoog, 3-15% van colorectale operaties. 14-21 Dit is een ernstige 

complicatie omdat het de morbiditeit verhoogt, er vaak een heroperatie nodig is, en er ook 

kans op mortaliteit is 16, 20-22 Er zijn verschillende factoren van invloed op het voorkomen van 

naadlekkage bekend, waarvan de perfusie van de darmsegmenten die aan elkaar gemaakt 

worden een belangrijke is. 23-25 Zonder goede perfusie van de anastomose zal deze niet 

goed genezen. Met het gebruik van NIRF-beeldvorming kan deze perfusie in beeld worden 

gebracht tijdens de operatie. Derhalve is de verwachting dat het gebruik van NIRF-angiografie 

tijdens de operatie een deel van de naadlekkages kan voorkomen. In hoofdstuk 6 hebben 

we deze hypothese onderzocht door middel van een systematische review en vonden 

we dat het gebruik van NIRF-angiografie in colorectale chirurgie makkelijk toepasbaar en 

veilig is. Na NIRF-angiografie werd de plaats van doornemen van de darmen verplaatst 

in 10.8% van de patiënten. Er werd significant minder frequent naadlekkage gezien in de 

gepubliceerde literatuur wanneer NIRF-angiografie werd gebruikt. Met name een initieel fel 

fluorescent signaal lijkt een voorspeller voor goede genezing van de anastomose. 

In de studies geanalyseerd in hoofdstuk 6 werd de plaats van het doornemen van de 

darmen met name bepaald op basis van het subjectieve oordeel van de chirurg wanneer het 

signaal ‘fluorescent genoeg’ was. Er is geen duidelijke afkapwaarde wanneer het signaal fel 

genoeg is om zeker te zijn van voldoende perfusie, terwijl dit wel wenselijk is. In hoofdstuk 

7 hebben we daarom onderzocht of de intensiteit van het fluorescente signaal samenhangt 

met serologische markers voor naadlekkage en postoperatieve inflammatoire markers zoals 

CRP, I-FABP en calprotectine. In een pilotstudie met een heterogene groep van 30 patiënten 

konden wij geen relatie vinden tussen fluorescentie-intensiteit en deze inflammatoire 

markers. Er werd wel een hogere fluorescentie-intensiteit van de darm gemeten in relatie 

tot de intensiteit van de achtergrond bij patiënten die geen naadlekkage ontwikkelden. Ook 

de subjectieve score voor fluorescentie-intensiteit van de darm was hoger in de patiënten 

die geen naadlekkage ontwikkelden. 

Tijdens colorectale chirurgie kan de ureter zich erg dicht bij het operatiegebied bevinden 

en kan het moeilijk zijn om de ureter te onderscheiden van het andere omliggende weefsel. 

Toch is het herkennen van de locatie van de ureter de belangrijkste stap in het voorkomen 

van schade aan de ureter. Door gebruik te maken van een fluorescente kleurstof die wordt 

geklaard door de nieren kunnen de ureteren tijdens de operatie beter zichtbaar gemaakt 

worden. In hoofdstuk 8 werd het gebruik van methyleenblauw als fluorescente kleurstof 

om de ureter in beeld te brengen onderzocht in patiënten die electieve colorectale 
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chirurgie ondergingen. Deze kleurstof is vrij beschikbaar en goedkoop. Een nadeel is echter 

dat deze kleurstof fluorescent is op een andere golflengte dan het veelgebruikte ICG, 

waarop de meeste apparatuur is ontworpen. Er zijn dus andere filters en software nodig 

om fluorescentie imaging met methyleenblauw te doen dan bij gebruik van ICG. In deze 

studie werden 10 patiënten geïncludeerd en werden verschillende doses methyleenblauw 

uitgeprobeerd. In vijf van de tien patiënten kon de ureter worden geïdentificeerd met 

methyleenblauw. Dit waren de patiënten die de hoogste dosis kregen, namelijk 0.75 tot 

1mg/kg. In al deze vijf patiënten was de ureter in normaal (wit) licht ook zichtbaar. Vanwege 

deze teleurstellende resultaten lijkt het gebruik van methyleenblauw niet van toegevoegde 

waarde in de dagelijkse praktijk.

Een potente kleurstof met de excitatie en emissiegolflengte vergelijkbaar met die van ICG, 

die ook nog eens geklaard wordt door de nieren, zou ideaal zijn voor de beeldvorming 

van de ureters tijdens colorectale chirurgie. In hoofdstuk 9 en 10 worden twee nieuwe 

fluorescente kleurstoffen die aan deze eigenschappen voldoen, onderzocht. Dit zijn de 

preklinische dyes (IRDye® 800BK en IRDye® 800NOS) welke door hun excitatie en emissie 

rond de 800nm een veel grotere penetratiediepte hebben dan methyleenblauw met een 

excitatie en emissie net onder de 700nm. Deze nieuwe fluorescente kleurstoffen zijn getest 

in varkens en vergeleken met een eerder onderzochte preklinische stof: de IRDye® 800CW. 

Elk varken kreeg één van deze stoffen intraveneus toegediend. Alle stoffen toonden een fel 

fluorescent signaal waarbij de ureters in de varkens zeer goed zichtbaar waren. Van de drie 

stoffen was het IRDye® 800BK welke het beste signaal gaf, en deze fluorescente kleurstof 

is daarom verder onderzocht in hoofdstuk 10. Drie verschillende doses van IRDye® 

800BK, namelijk 3mg, 6mg en 12mg, werden toegediend in drie verschillende varkens. De 

resultaten verkregen met elk van de drie verschillende doses waren vergelijkbaar. Dezelfde 

kleurstof hebben we daarna nog gebruikt in geëxplanteerde humane en varkensureters 

om na te gaan of de penetratiediepte genoeg was om ook door de dikkere humane ureters 

de fluorescentie te kunnen zien. We observeerden dat dit mogelijk was, maar dat de 

aanwezigheid van vet op de ureter het fluorescente signaal wel duidelijk verminderde. 

DEEL 3 NABIJ-INFRARODE FLUORESCENTIE BEELDVORMING BIJ 
SCHILDKLIERCHIRURGIE 

Bij schildklierchirurgie is het belangrijk om schade aan de bijschildklieren te voorkomen. 

Ook hier is de belangrijkste factor in het voorkomen van iatrogene schade het identificeren 

van de anatomische structuur. Het is echter niet genoeg om enkel de bijschildklier te 

identificeren om schade aan de bijschildklier te voorkomen. Door manipulatie van de 

schildklier kan de bloedvoorziening naar de bijschildklier verminderd worden, waardoor de 
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functie van een gespaarde bijschildklier alsnog onvoldoende is. In hoofdstuk 11 evalueren 

we zowel het identificeren van de bijschildklier als het beoordelen van de perfusie na het 

verwijderen van de schildklier. In 30 (hemi-)thyroidectomieën werd NIRF-beeldvorming 

gebruikt. De techniek was veilig en makkelijk toe te passen. In 17 van de 30 operaties werd 

het gebruik van NIRF-beeldvorming als toegevoegde waarde gezien door de operateur, 

met name door het geven van extra zekerheid over de locatie van de bijschildklier en de 

resterende functie.
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Valorisation 

Every surgical procedure incorporates a potential risk for complications. As described in the 

introduction of this thesis, part of these complications is caused by misidentification of the 

anatomy. A technique which improves intra-operative visualization of the anatomy could 

help avoid such complications, thereby prevent morbidity and mortality and lower health 

care costs. Near infrared fluorescence (NIRF) imaging concerns an innovative technique that 

might improve the intraoperative distinction of vital anatomical structures. 

The aim of this thesis was to investigate a selection of the currently possible applications 

of NIRF imaging during surgery in order to prevent iatrogenic injury due to anatomical 

misrecognition. 

Relevance of scientific results in this thesis 

The use of the aforementioned technique (NIRF imaging) is aimed at preventing iatrogenic 

complications during surgery. Avoiding complications has multiple advantages. First, it 

prevents morbidity and, possibly, even mortality in patients. Second, complications are 

always accompanied with an increase in health care costs. As mentioned in the discussion 

of Chapter 6, the use of NIRF imaging is quite cheap, since indocyanine green costs only 

about 80 euros per vial, and for most applications, 1 vial can be used for multiple cases. 

The fluorescence modality is now incorporated in all new endoscopy systems and therefore 

does not result in additional costs. By preventing complications with a low-cost intervention, 

health care costs can be saved. Third, it is assumed that the use of NIRF imaging makes the 

surgical procedures easier. This means safer and faster, improving speed and outcome and 

thereby quality of care. 

The three parts of this thesis cover four complications that are attempted to be prevented.

The first complication is iatrogenic bile duct injury during laparoscopic cholecystectomy. In 

this case the use of NIRF imaging is applied for visualization of the cystic duct. We started 

a multicenter randomized controlled trial (Chapter 2) to investigate whether the use of 

NIRF imaging is actually as promising during elective laparoscopic cholecystectomies, 

as was suggested by earlier research. Next, in a systematic review combined with ex vivo 

experiments (Chapter 3) we found important factors to take into consideration while using 

the technique to obtain the best possible results. Also, a new fluorescent dye showed very 

promising images of the cystic duct, facilitating clear visualization of this structure during 

surgery (Chapter 4). 

The second investigated complication is anastomotic leakage in colorectal surgery. 

Sufficient perfusion of the bowel at the location of the anastomosis is essential for 
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anastomotic healing. By visualizing the bowel perfusion with NIRF imaging, it is expected 

that anastomotic leakage will occur less often. A systematic review was performed, indeed 

describing a lower anastomotic leak rate when using NIRF imaging (Chapter 6). Based 

on these results, the use of NIRF imaging to prevent anastomotic leakage is increasingly 

becoming standard practice.  Our experiments show a possible relation between subjective 

and measured fluorescence intensity of the bowel using NIRF imaging and anastomotic 

leakage (Chapter 7), further supporting its use in practice. 

The third complication we focused on is ureter damage in colorectal surgery. The use of 

NIRF imaging could facilitate visualization of the ureter. When the surgeon knows the exact 

location of the ureter, ureteral damage seems to be less likely. We showed that the ureter 

could be visualized using methylene blue as a fluorescent dye (Chapter 8), however, without 

added value compared to the naked eye. Novel dyes were tested in pigs and seemed more 

promising by providing a clear visualization of the ureters during surgery (Chapter 9 and 

10). 

In part four of the thesis, unwillingly parathyroid removal during thyroid surgery was the 

subject of investigation. Using NIRF imaging in thyroid surgery to identify the parathyroid 

glands provided more certainty about the location of the parathyroid glands (Chapter 11). 

Target population 

This thesis contributes to the patients requiring surgery, especially elective laparoscopic 

cholecystectomy, colorectal surgery or thyroid surgery. Based on the results of this thesis, 

other researchers and surgeons might be encouraged and inspired to further explore aspects 

of these applications, thereby improving these further and exploring other applications of 

the technique, helping patients undergoing other specific types of surgery. 

Innovation and future

At the start of this thesis, the use of NIRF imaging was merely used in research settings. 

The protocol of the RCT described in Chapter 1 is the first started RCT regarding the 

intraoperative use of NIRF imaging. This RCT is the first step to assess whether the technique 

should be used in standard practice and should be incorporated in guidelines. The RCT in 

itself also improved the cooperation between surgeons, industry and research facilities since 

all these parties are actively involved in the RCT. However, although the RCT is an important 

step in the application of NIRF imaging, it might be unfit to illustrate the benefit of reduction 

of a complication with low frequency. This is the case with both bile duct injury and ureteral 

injury. The way to go here is prospective registration of all procedures performed in an 

international multicenter database. Our group is part of the international community 

of fluorescence imaging that is at present taking such initiatives. This community is also 

evaluating by several Delphi rounds the present status of application of the NIRF technique 
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in any field that has been described so far. All these initiatives have in part been stimulated 

by the contribution of our group, by its research and by its active communication.   

The use of methylene blue as a fluorescent dye seemed not of added value in this thesis. 

The excitation and emission wavelength of MB is different compared to the more successful 

indocyanine green. To visualize these dyes, a fluorescence imaging system providing the 

right excitation wavelength and filtering the right emission wavelength are needed. Since 

the use of MB was somewhat disappointing in our experiments, these wavelengths are not 

incorporated in standard fluorescence imaging systems. This led to the development of 

new dyes on the same excitation and emission wavelength as indocyanine green, so that 

standard fluorescence imaging systems can be used. This shows that the results of research 

in NIRF imaging influences the actions of the industry and the products that are developed 

and made commercially available.  

During the progression of this thesis the use of NIRF imaging has become standard 

practice in several hospitals, mainly for the application of assessing perfusion during 

anastomotic bowel surgery. 

One of the problems in assessing perfusion of anastomotic surgery is the decision when 

the bowel is ‘fluorescent enough’. A start to answer this question was made in Chapter 7 

of this thesis, although further research in a large cohort is needed to set a cutoff value of 

the fluorescence intensity that is ideally intra-operatively measured. Other future point of 

improvement of this technique include standard quantification of the signal (of which we 

made a start by writing Chapter 5), but also better dyes, better equipment and standard 

overlay of white and fluorescent light images 

The application of NIRF imaging in thyroid surgery requires additional research to 

further assess the added value of the technique and improve the application. Because of 

the results produced in this thesis, one of the manufacturers of NIRF imaging systems is now 

re-evaluating their system to further improve the application of this technique in thyroid 

surgery. As soon as this system is available new research is required to re-assess the added 

value of this technique in thyroid surgery. 
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Dankwoord

Ontzettend veel mensen hebben mij door deze promotie-tijd heen getrokken, geduwd en 

gelukkig ook soms gewoon enthousiast langs de lijn geapplaudisseerd voor de successen. 

Professor Stassen, Laurents, ik wil jou ontzettend bedanken voor alles wat ik van jou heb 

mogen leren. Ik begon als WESP student, als een zenuwachtig meisje dat eigenlijk helemaal 

niet zo veel van onderzoek doen wist, en ook niet zo goed Engels kon. Met als resultaat 

heel veel ‘rode tekst’ in de protocollen die ik je toe stuurde. Gelukkig werden de teksten 

ook steeds minder rood, maar bleef jij wel het oog voor detail houden en is uiteindelijk 

elke komma in dit proefschrift weloverwogen geplaatst. Ik kon tijdens mijn promotie 

veranderen van dat zenuwachtige meisje naar een zelfverzekerde onderzoeker die met 

trots de resultaten presenteert op congressen; Waar jij dan ook zodra het maar enigszins 

kon halverwege in de zaal goedkeurend aan het knikken was bij wat ik zei. Ontzettend 

bedankt daarvoor!

Professor Bouvy, Nicole, als ik even het overzicht kwijt was, me onnodig zorgen maakte 

over dingen en gewoon even concrete afspraken en actieplannen nodig had was jij altijd 

daar. Met een oplossing. Jij hebt me geleerd dat er altijd een manier is om moeilijke dingen 

op te lossen, zelf danwel door de juiste persoon te zoeken die je daarbij kan helpen. Dat is 

een les die ik nooit zal vergeten. 

Dr Schols, Rutger, jij was eigenlijk vanaf het moment dat ik me begon te verdiepen in 

de fluorescentie imaging mijn grote voorbeeld in dit veld. Ik denk dat ik jouw proefschrift 

misschien wel vaker heb gelezen dan jijzelf. Bij jou kon ik terecht voor de kleine dingen ‘op 

welk knopje moest ik nu drukken?’ en de grotere als het reviseren van de manuscripten 

en dit proefschrift. Onze reis naar Miami voor het fluorescentie congres zal me altijd bij 

blijven, en dan met name ons kort maar krachtige bezoek aan de Kennedy space center, de 

tour langs de highlights van Miami, de biertjes en burgers en natuurlijk onze fantastische 

praatjes die we daar gaven op het congres. 

Fokko, officieel misschien niet in mijn promotieteam maar onofficieel ben jij dat eigenlijk 

wel een beetje. Jouw enthousiasme is ontzettend aanstekelijk. Na een kwartiertje met jou 

over het onderzoek praten kon ik zo weer 3 maanden door. Ik denk dat ik in de toekomst 

gewoon een paar projecten zal verzinnen waarbij jij nodig bent, alleen maar om weer met 

je samen te mogen werken. 
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Mahdi, onze samenwerking verliep niet altijd vloeiend, maar ik denk wel dat we daarmee 

allebei uiteindelijk een stuk meer uit het onderzoek hebben kunnen halen. Al die uren die 

wij samen besteed hebben aan het analyseren van de videobeelden en het meten van de 

target to background ratio hebben zich uitbetaald in een aantal mooie publicaties, praatjes 

op congressen, een deel van dit proefschrift en ik weet zeker dat ook jouw proefschrift ook 

spoedig zal volgen.  

Verder wil ik alle co-auteurs en iedereen die mee heeft geholpen aan de FALCON trial via 

deze weg bedanken. In het bijzonder Sander van Kuijk, wat fijn dat ik altijd bij jou terecht 

kon met mijn statistiek-vragen. Maar ook Jarno Melenhorst, Tim Lubbers en Sanne 

Engelen, Liza Mitalas en alle aiossen die de lap chols deden wil ik graag bedanken voor 

hun geduld op OK als ik weer eens hun patiënten had geïncludeerd in mijn studies. 

Audrey, roooooomy! Wij deelde een werkkamer, soms wat studenten, af en toe onderzoeks-

projecten en maar ook een afkeer voor veel dingen die voor andere de gewoonste zaak van 

de wereld waren. Dit maakte ons misschien soms wat gemeen, maar daar konden wij ook 

niets aan doen. Ik heb zo ontzettend veel lol met jou gehad, op het werk, op de fiets, in de 

zomer in het park, op congres en de korte vakanties die we daar soms aan vast plakte. Met 

jou waren zelfs vage congressen in the middle of nowhere van Tsjechië één groot feest. 

Sebastiaan, Steen, jouw foute-uur afspeellijst heeft me door de laatste loodjes van deze 

promotie heen getrokken. In combinatie met onze ochtend-koffie, lunch-koffie en middag-

koffie natuurlijk. Wald, Waldo, wat een feest is alles als jij er ook bij bent! (Behalve als we 30 

seconds spelen, dat doe ik nooit meer met of tegen jou). Ons zeilweekendje was een van de 

vele hoogtepunten tijdens deze tijd, maar ook de feestjes, jouw Daniel Arends imitaties, de 

avonturen op de wielrenfiets en op het trailrun-pad. Cathelijne, Cath (geen kat want katten 

zijn niet jouw ding). Ik heb nog spierpijn van het lachen, denk niet dat die ooit nog weg gaat. 

Jouw doorzettingsvermogen en enthousiasme zijn inspirerend en aanstekelijk. Rob, met 

jou fietsen heet niet voor niets ‘huilen met Rob’. Gelukkig breng je naast wat tranen vooral 

veel gezelligheid, mooie routes en ben jij een ontzettend goede organisator van lab-uitjes, 

sinterklaasfeestjes, wielertours op groot scherm kijken en eigenlijk zo’n beetje alle leuke 

dingen die er op het lab gebeurde. Met jullie vier zeilen was één van de leukste weekendjes 

weg die ik ooit heb gedaan. Maar ik zal ook mijn tafelvoetbal-skills nooit meer verliezen na 

al die uren training met jullie. 

Marissa, jij begon ongeveer tegelijkertijd met mij vanuit de semi stage als promovendus 

op het lab. ’s avonds of tijdens de koffie konden wij uren praten, roddelen en ons verbazen 

over onze nieuwe collega’s, METC, onze grote RCTs en de wereld van de chirurgen. Op de 

chirurgendagen deelde wij vanzelfsprekend een kamer met 8 mensen en probeerde we zo 



Addendum  | Dankwoord

230

het ‘mamma-team’ en de rest van de chirurgie-promovendi enigszins te verbinden. Romy, 

de hoeveelheid energie die jij hebt is ongekend. Ik bewonder jou enorm om de manier 

waarop jij zelf beslist wat je belangrijk vindt in het leven en er ook nog eens voor zorgt dat 

jij al die dingen gewoon allemaal tegelijk kan doen. 

Leontine, Kim, Bas, David, Martine, Yvonne, Frans en Jasper jullie waren er vanaf het 

begin van mijn promotie-onderzoek bij en ik ben ontzettend blij met jullie ontvangst in de 

groep. Ook het licht dwingende advies om een wielrenfiets te kopen, was misschien wel een 

van de beste adviezen in mijn leven. Ik wil jullie ontzettend bedanken voor de gezellige tijd 

op het lab, op de fiets in het prachtige heuvelland en tijdens de vrijdagmiddagborrels waar 

jullie toch wel een van de key-ingredients voor waren. 

Claire, Mirjam, Rianne, Merel, Cathy, jullie waren/zijn de échte lab-mensen. Met grote 

verbazing ontvingen jullie mij soms in het lab als ik af en toe een buisje voor Audrey moest 

afdraaien. Wat blijkbaar heel simpel is, maar waarbij ik dan meestal toch jullie hulp een 

beetje nodig had, waarvoor dank. 

Collega’s uit het Viecuri: Michael, Frans, Anne, Stan, Maarten, Freek, Maud, Martijn, 

Tim, Tom, Marlies, Rutger, Eliza, Alexandra, Mintsje, Melissa; in het jaar, of voor 

sommige enkele maanden dat ik met jullie samen heb mogen werken heb ik het enorm 

naar mijn zin gehad. Jullie hebben mij de eerste stapjes als dokter (niet doctor) helpen 

maken. Julie waren allemaal ontzettend fijne collega’s! Ook mijn nieuwe collega’s bij de 

KNO in het Zuyderland ontzettend bedanken voor de kansen die jullie mij geven om dit vak 

te ontdekken en de fijne nieuwe werkplek. 

Lieve angels, who the F*** is Els? En waarom staat ze in dit dankwoord? Geen idee. Jullie 

heb ik grotendeels pas na mijn fulltime promotie-tijd leren kennen, maar jullie hebben er 

wel voor gezorgd dat ik voldoende energie had voor de laatste loodjes van dit proefschrift. 

En jullie zorgen er natuurlijk voor dat ik nooit meer van de triatlon-verslaving af zal komen 

zolang jullie ook mee doen. Ik doe mijn uiterste best om jullie soort van bij te blijven houden.  

Lieve Malou, wat ben ik blij dat ik jou heb leren kennen. Het is super om iemand te hebben 

die over zo veel dingen hetzelfde denkt, dezelfde kledingsmaak heeft, maar dan net een 

ander figuur waardoor de leuke dingen die jou niet perfect staan mij vaak wel en andersom, 

even fanatiek is en gewoon snapt wat ik wil, wens en bedoel. Ik vind het ontzettend jammer 

dat je zo ver weg woont maar ben ook heel erg blij jij desondanks zo’n goede vriendin voor 

mij blijft. 
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Lieve Aline, wat mis ik ons borrel-plank en wijn diner op zondag af en toe, zoals wij dat 

deden in de studententijd. Ook mis ik soms jouw al dan niet mislukte baksels, tripjes naar 

Parijs, Disney en Milaan. Gelukkig heb ik daar af en toe gezellige telefoontjes, appjes en 

dates ergens tussen Den Haag en Maastricht voor terug gekregen en ben ik vooral heel blij 

voor jou dat alles voor zover gelukt is waar je op gehoopt had. 

Leslie, wat hou ik van de luie zondagmiddagen waarin we lekker uit lunchen gaan en door 

een stad wandelen. Nog even wachten en dan kunnen we met de kinderwagen met daarin 

jouw mooie kindje door die steden lopen. Anne, met jou lekker de natuur in op de fiets 

of met de hardloopschoenen is zo heerlijk ontspannend. Daarna kan ik alles weer aan. 

Kimberley, Hester en Marloes, wat ken ik jullie al lang zeg! We spreken elkaar niet heel 

vaak meer maar ik vind het altijd super gezellig om bij jullie te zijn.

Mijn schoonfamilie, Carroll, Marianne, wat fijn dat ik altijd bij jullie terecht kan en zo vaak 

van jullie kook-kunsten mag genieten.  

Paps, mams en Stefan, ookal kon ik soms niet goed uitleggen wat ik nou de hele dag 

deed. Jullie en (vooral paps) snapte wel goed dat dit proefschrift een keer af moest. Door 

jouw subtiele vragen ‘heb je al een datum?’ werd menig treinreis met een goed boek toch 

veranderd in een reis waarin op de laptop werd gewerkt aan een manuscript. Ook was hotel 

mamma altijd beschikbaar als ik weer eens een slaapplek nodig had voor congres of reis, of 

gewoon voor de gezelligheid. Ik hoop dat ik jullie trots maak met wat ik doe en dat jullie je 

realiseren dat jullie daar altijd, al is het soms op afstand, een steentje aan bij hebt gedragen. 

Lieve Casper, Cas, eigenlijk ben jij de reden dat ik überhaupt ben gaan nadenken over het 

doen van promotieonderzoek. Jouw enthousiasme en vastberadenheid over de toege-

voegde waarde van het doen van onderzoek heeft mij aan het denken gezet dat ik dat dan 

misschien ook wel wilde, en heeft ervoor gezorgd dat ik me vanaf het begin als een pitbull 

in deze promotieplek heb vastgebeten. Op de moeilijke tijden was jouw schouder er om 

even op uit te huilen, bij de kleine en grote successen was jij er om het glas te heffen. Die 

researchgate score van mij zal denk ik nooit hoger worden dan die van jou, but one can 

always dream… Ik hoop dat jij er altijd voor mij zou willen zijn als schouder om op uit te 

huilen en als liefste om het glas mee te heffen in goede tijden. Want samen met jou zijn de 

zware tijden minder zwaar en de goede tijden het best. 
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