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Abstract: As part of more stringent energy targets in Switzerland, we witness the appearance of 
new green-certified dwellings while many existing dwellings have undergone energy efficiency 
measures. These measures have led to reduced energy consumption, but rarely consider their 
impact on indoor air quality. Consequently, such energy renovation actions can lead to an 
accumulation of radon in dwellings located in radon-prone areas at doses that can affect human 
health. This study compared the radon levels over 650 energy-efficient dwellings in western 
Switzerland between green-certified (Minergie) and energy-renovated dwellings, and analyzed the 
building characteristics responsible of this accumulation. We found that the newly green-certified 
dwellings had significantly lower radon level than energy-renovated, which were green- and non-
green-certified houses (geometric mean 52, 87, and 105 Bq/m3, respectively). The new dwellings with 
integrated mechanical ventilation exhibited lower radon concentrations. Thermal retrofitting of 
windows, roofs, exterior walls, and floors were associated with a higher radon level. Compared to 
radon measurements prior to energy renovation, we found a 20% increase in radon levels. The 
results highlight the need to consider indoor air quality when addressing energy savings to avoid 
compromising occupants’ health, and are useful for enhancing the ventilation design and energy 
renovation procedures in dwellings. 

Keywords: dwellings; indoor air quality; energy efficiency; building characteristics; thermal 
retrofitting 

 

1. Introduction 

Radon (222Rn) is a colorless and odorless radioactive gas that has been strongly linked to 
deleterious human health outcomes, specifically lung cancer [1–4]. It is the most important source of 
ionizing radiation among those that are of natural origin, as it constitutes the second cause of death 
by lung cancer after tobacco [5]. While the outdoor radon rarely reaches epidemiologically significant 
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levels due to atmospheric dispersal and dilution, in enclosed environments such as residences, the 
level of radon can accumulate at levels as much as two orders of magnitude higher than outdoors in 
inadequately ventilated spaces [6]. Radon mainly infiltrates indoors from the soil adjacent to the 
building foundation and construction materials [7,8]. The World Health Organization (WHO) [5] 
recommends maintaining the level of indoor radon at an annual average concentration limit lower 
than 100 Bq/m3 in order to avoid the increase in prevalence of lung cancer [9–12]. In regions where 
the natural emission is too high to reach this target, a value of 300 Bq/m3 should not be exceeded [5]. 
The US Environmental Protection Agency (EPA) also recommends remediation actions for radon 
concentrations higher than 4 pCi/L (equivalent to 148 Bq/m3) [13]. The EU Council as well as the Swiss 
Federal Office of Public Health (FOPH) adopted the reference value of 300 Bq/m3 [14,15]. Identifying 
the causes of residential radon accumulation at levels higher than these limits is therefore of high 
priority, as to develop effective interventions for radon level control. 

Extensive international indoor radon investigations contributed to the worldwide indoor radon 
map [5,16–23], and revealed strong associations between indoor radon concentration and outdoor 
radon emissions as well as dwelling characteristics. Demoury et al. [24] evaluated the statistically 
significant association between indoor radon and geogenic radon potential, building materials and 
age, and foundation type in French residences. Collignan et al. [25] reported that dwellings in radon-
prone parts of France, which are equipped with mechanical ventilation systems, had significantly 
lower radon concentrations than naturally ventilated ones. They also found that the construction 
materials were the most influencing factors, followed by the type of foundation. A similar 
relationship between indoor radon concentrations and aforementioned dwelling characteristics was 
observed in Denmark [26], England [27], Germany [28], Italy [29], and in Switzerland [30,31]. 

Radon in energy-efficient buildings is another area of increased public interest and concern 
[32,33]. The requirement for airtightness in energy-efficient buildings can lead to extremely low air 
infiltration, which can lead to build-up of radon concentrations if not sufficiently diluted by 
intentional ventilation. Thermal retrofitting, an effective approach to achieve energy-efficient 
dwellings via reducing air infiltration and increasing thermal insulation of building envelop, has 
been associated with elevated indoor radon concentrations. A recent study by Meyer [34] reported 
two times higher radon concentrations in retrofitted houses than in passive homes in Germany. A 
significant increase in indoor radon concentrations owing to energy retrofits was also observed in 
dwellings in the USA [35] and Lithuania [36]. In the case study by Jiránek and Kačmaříková [37], 
addition of an exterior thermal insulation in homes and retrofitting windows led to 3.4 times higher 
radon concentration. Based on the UK national radon database, Symonds et al. [38] found a significant 
increase of indoor radon levels in houses with double glazed windows, attic and wall insulation. In 
summary, radon alteration caused by thermal retrofitting could be a critical issue in energy-efficient 
dwellings. 

Switzerland introduced the Energy Strategy 2050 policy to reduce energy-related environmental 
impact [39]. Key efforts include construction of energy-efficient buildings and nation-scale building 
energy renovation program (Programme Bâtiment) [40]. A building certification scheme, named 
Minergie, was also established to attest the high-energy efficiency of dwellings and occupants’ 
comfort [41]. However, since Switzerland is predominantly situated in radon-prone area of Europe, 
energy-efficient measures of dwellings could lead to a build-up of indoor radon because of suspected 
lack of ventilation. Though a national indoor radon level database has been launched in Switzerland 
[42] which provides an informative Swiss radon map, limited emphasis is put on understanding the 
radon levels in energy-efficient dwellings. Pampuri et al. [43] found a significant increase in radon 
concentration after thermal retrofitting based on radon survey in 154 dwellings in southern 
Switzerland. Nevertheless, the study was restricted to only one Swiss canton and it did not take into 
account Minergie-certified dwellings. 

To bridge this knowledge gap, we conducted indoor radon investigation in 650 energy-efficient 
dwellings in western Switzerland from 2013 to 2015. The objectives of this study were (1) to determine 
the indoor radon levels in Swiss energy-efficient homes and to compare them between green-certified 
(Minergie) and energy-renovated dwellings; (2) to probe the associations between radon and 
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dwelling characteristics; and (3) to investigate the influence of thermal retrofitting on indoor radon 
level. Passive samplers were applied for the radon measurements, and questionnaire surveys were 
used to collect information about dwelling characteristics and thermal retrofitting. The results of this 
study could be used to better understand the radon levels in energy-efficient dwellings and, 
potentially, to interpret the associated health risks. The study is also useful for improving the 
accuracy of exposure assessment of indoor radon, and for developing improved energy renovation 
strategies in terms of radon control. 

2. Materials and Methods  

2.1. Study Sample and Approach  

Passive sampling of radon was performed within the framework of the ‘Mesqualair’ project on 
indoor air quality in energy-efficient dwellings from January 2013 to March 2016 in the western part 
of Switzerland. The owners of energy-efficient dwellings were selected from a list provided by the 
Romand Minergie Agency and the Cantonal Energy Service Offices. A total of 650 gave their consent 
to take part in the study (shown in Figure 1). A radon dosimeter was sent by post to each participating 
dwelling, together with a step-by-step instruction of sampling procedure (detailed in Section 2.3), 
and questionnaire regarding building characteristics. After sampling, the dosimeters were sent back 
to the project team for analysis. Two radon measurement campaigns took place during winter 2013–
2014 (93 homes) and 2014–2015 (557 homes) to complete the 650 dwellings, while 616 homeowners 
returned the responded questionnaire in total. 

 
Figure 1. Distribution of the three types of sampled dwellings across different radon risk regions, 
according to the Swiss radon regulation based on radon measurements in over 150,000 homes [44]. 

2.2. Characteristics of Selected Dwellings 

Most of the participating dwellings were individual or semidetached houses and most were 
occupied by owners. Among the 650 radon-tested energy-efficient dwellings, Minergie labelled 
buildings (M) accounted for 37% (217), and the remaining 433 homes were part of the national energy 
renovation program (Programme Bâtiment) for buildings (R). It is noteworthy that out of the 217 M 
buildings, most were newly built (NM, 182) and only 35 were renovated (RM), illustrated in Figure 1.  
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Table 1 summarizes the collected information for the 616 dwellings, including 170 NM, 32 RM, 
and 414 R homes. Most NM dwellings were built after 2000, while a large proportion of energy-
renovated ones, both RM and R, were constructed between years 1950 and 1975. Masonry was the 
predominant building structure in more than 50% of the sampled dwellings. A larger proportion of 
NM and RM dwellings had no natural ground floors (floors directly adjacent to the natural ground) 
compared to R dwellings. The majority of both M and R dwellings had completely excavated or back-
grounded basements (schemed in Figure S1). The NM and R dwellings shared a similar distribution 
of garage type, while RM dwellings had higher proportion of outdoor parking. Only 36% of the 
selected dwellings were equipped with mechanical ventilation systems, distributed across 167 NM 
dwellings, 28 RM dwellings, and only 15 R dwellings. A relatively higher percentage of NM and RM 
dwellings were located in low radon risk regions.  

We received 432 effective responses regarding thermal retrofitting during energy renovation. 
The thermal retrofit included replacement of windows to reduce the air infiltration, renovation of 
roofs, and retrofitting of floors and exterior walls to increase the thermal insulation of the building 
envelop. A majority of the dwellings experienced replacement of windows and renovation of roofs, 
while <50% got floors and exterior walls retrofitted. Only 27% of renovated dwellings had all the 
three types of thermal retrofitting, as we called full retrofit. Since the focus of this study is to 
investigate the impact of energy efficiency status, as well as energy renovation on indoor radon level, 
we did not acquire information regarding radon remediation actions in the involved dwellings via 
the questionnaire. 

Table 1. A summary of the characteristics of the 616 dwellings including newly built Minergie (NM), 
renovated Minergie (RM), and energy-renovated (R) dwellings. Reponses with ‘I do not know’ or 
missing are excluded. 

Dwelling Characteristics NM No. (%) RM No. (%) R No.  
(%) Total No. (%) 

Built Year 

2000–2015 169 (99) 2 (6) 1 (0) 172 (28) 
1975–1999 1 (1) 5 (16) 143 (35) 149 (25) 
1950–1974 0 (0) 9 (29) 146 (35) 155 (25) 
1925–1949 0 (0) 3 (10) 34 (8) 37 (6) 
1900–1924 0 (0) 4 (13) 27 (7) 31 (5) 

Before 1900 0 (0) 8 (26) 61 (15) 69 (11) 

Building Structure 

Masonry 78 (46) 11 (35) 261 (63) 350 (57) 
Wood 56 (33) 2 (6) 12 (3) 70 (11) 
Mixed 29 (17) 17 (53) 103 (25) 149 (24) 

Other or not clear 7 (4) 2 (6) 38 (9) 47 (8) 

Radon Risk Region 
Low 57 (34) 9 (28) 67 (16) 133 (21) 

Medium 87 (51) 19 (59) 225 (54) 331 (54) 
High 26 (15) 4 (13) 122 (30) 152 (25) 

Mechanical Ventilation 
Yes 168 (99) 29 (90) 14 (4) 211 (36) 
No 1 (1) 3 (10) 376 (96) 380 (64) 

Basement Type 

Completely excavated  50 (30) 8 (25) 126 (31) 184 (30) 
Semi-excavated 27 (16) 8 (25) 82 (20) 117 (19) 
Back-grounded 46 (28) 12 (38) 156 (38) 214 (35) 
No basement 44 (26) 4 (12) 47 (11) 95 (16) 

Garage Type 

Outdoor 43 (27) 19 (61) 123 (30) 185 (31) 
Independent 40 (25) 5 (16) 113 (28) 158 (27) 

Attached 42 (27) 5 (16) 97 (24) 144 (24) 
In basement 33 (21) 2 (7) 72 (18) 107 (18) 

Natural Ground 
Yes 46 (28) 14 (44) 204 (52) 264 (45) 
No 119 (72) 18 (56) 192 (49) 329 (55) 

Thermal retrofitting 

Window 
Yes -- 12 (60) 334 (81) 346 (80) 
No -- 8 (40) 78 (19) 86 (20) 

Roof Yes -- 13 (65) 238 (58) 251 (58) 
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No -- 7 (35) 174 (42) 181 (42) 

Floor and Exterior Wall 
Yes -- 14 (70) 185 (45) 199 (46) 
No -- 6 (30) 227 (55) 233 (54) 

Level of Retrofit 
Partial -- 9 (45) 305 (74) 314 (73) 

Full -- 11 (55) 107 (26) 118 (27) 

2.3. Radon Measurement  

In January 2013 and 2014, a radon dosimeter was sent to each participating dwelling. The owners 
were asked to follow the step-by-step instruction to install the passive sampling dosimeter (Radtrak2, 
Sweden, three-month detection range: 15–25,000 Bq/m3) at least 1.5 m above the ground, and away 
from windows and doors in a heated and regularly-occupied room at the closest floor of the dwelling 
from the ground. The sampling was performed over three months during the heating season, to allow 
a reliable representation of the average annual indoor radon concentration, as per ISO 11665-8 
Standard [45]. During the sampling period, the occupants were asked to keep their living habits as 
usual, without touching or moving the dosimeter. After three-month collection, the dosimeters were 
sealed by the occupants and shipped back to the project team. We stored the dosimeters in a dry place 
protected from light, and organized the shipment to the laboratory of Landauer Nordic, Sweden 
within one month. The dosimeters were then analyzed following the ISO 11665-4 standard [46].  

2.4. Statistical Analyses 

The statistical analyses were performed using SPSS 21 software and customized coding in 
MATLAB R2014 software. The concentrations of indoor radon were log-normally distributed (seen 
in Figure S2). Therefore, the parametric t-test (number of categories k = 2) and analysis of variance 
(ANOVA) test (k > 2) were performed to test the relationship between the logarithmical transformed 
radon concentrations and the dwelling characteristics, and thermal retrofitting. Since the distribution 
of detected radon concentrations followed the lognormal pattern, the geometric mean (geo-mean) 
can better represent the mean value of radon concentrations in different categories for comparison. 
On the other hand, the median value is always important for statistics of a dataset, regardless of data 
distribution. Therefore, we considered both in the study. 

3. Results and Discussion  

3.1. Radon Concentration 

The distribution of indoor radon concentrations in Swiss energy-efficient dwellings is shown in 
Figure 2. Across 650 dwellings, the median value of detected radon concentrations was 71 Bq/m3, 
while the geo-mean was 85 Bq/m3 with a geometric standard deviation of 2.8. The results were similar 
to those collected in the radon database of the FOPH for Swiss buildings (median value of 87 Bq/m3 
[30]), where the difference was mainly attributed to the disparity in sampling amount, period, and 
geographic distribution between this study and the FOPH radon database. Compared to the 
maximum recommended value of 300 Bq/m3, by the WHO [5] and the FOPH [14], radon 
concentrations in only 11% of sampled dwellings exceeded the threshold. However, considering the 
reference value of 100 Bq/m3 by the WHO [5], around 40% of dwellings failed to meet the reference 
value. Notably, the maximum detected indoor radon level reached as high as 4280 Bq/m3, which is 
more than 40 times higher than the reference value. 
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Figure 2. Cumulative frequency of radon concentration in 650 sampled energy-efficient dwellings. 
The two dashed lines represent the reference value of 100 Bq/m3 by the WHO and maximum 
recommended value of 300 Bq/m3 by the WHO and the Federal Office of Public Health (FOPH), 
respectively. 

 
Figure 3. Comparison across different dwelling types of radon concentrations. NM = newly built 
Minergie; RM = renovated Minergie; R = energy renovated, **p < 0.01 = significant; ***p < 0.001 = highly 
significant, n = the number of dwellings. The dashed line represents the maximum recommended 
value of 300 Bq/m3 by the WHO and the FOPH. Box plots indicate minimum, 1st quartile, median, 
3rd quartile, and maximum values. Dots represent outliers. 

Figure 3 summarizes detected radon concentration as a function of three types of dwellings: 
newly built Minergie (NM), renovated Minergie (RM), and energy renovated (R). We observed 
significant differences in the radon concentrations in the three types of dwellings. The Minergie-
labeled (M) dwellings had significantly lower radon concentrations compared to energy-renovated 
(R) dwellings (geo-mean 56 and 105 Bq/m3, respectively). Interestingly, we detected different radon 
levels even between new (NM) and renovated Minergie (RM) dwellings. Radon concentrations in 
NM dwellings were significantly lower than those in RM and R ones: the geo-mean radon of NM 
dwellings (52 Bq/m3) were 40% less than that of RM ones (87 Bq/m3), and were only half of that in R 
homes (105 Bq/m3). The difference in radon levels of the RM and R dwellings was not significant (p = 
0.302). Compared to the FOPH reference level (300 Bq/m3), radon concentrations in around 3% of NM, 
6% of RM, and 14% of R dwellings exceeded the limit value, while the proportions of levels beyond 
the reference threshold (100 Bq/m3) across the three types of dwellings became 20%, 37%, and 44%, 
respectively. The results indicate that energy-renovated dwellings (either Minergie or non-Minergie) 
had generally higher indoor radon levels than newly built Minergie-certified dwellings. The results 
imply the importance of the thermal retrofitting on indoor radon concentrations, which is discussed 
in Section 3.3. 
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3.2. Associations with Dwelling Characteristics  

As shown in Figure 4, the year of dwelling construction was strongly associated with indoor 
radon concentration (p < 0.001). Older houses had higher radon levels relative to more recently built 
dwellings, which was in agreement with the findings reported elsewhere [24,25]. We observe a 
negative linear relationship between log-transformed radon concentration and built year of 
dwellings (β = −0.002, R2 = 0.09, p < 0.001, Figure S3). With the increase in building age, the geo-mean 
indoor radon concentration elevated gradually from 51 Bq/m3 in dwellings built in 2000–2015, to 150 
Bq/m3 in dwellings built before 1900. Considering the reference level, only 3% of houses built in 2000–
2015 exceeded 300 Bq/m3, while the exceed-limit proportion increased to 20% in dwellings built 
before 1900. We hypothesize that elevated levels of radon in old dwellings come as a combined result 
of inadequate sealing of the lowest floor against the ground and enhancement of airtightness of the 
dwellings without adjusting for ventilation needs. 

 
Figure 4. Influence of the dwelling construction year on indoor radon concentrations (p < 0.001). The 
dashed line represents the maximum recommended value of 300 Bq/m3 by the WHO and the FOPH, 
while n indicates the number of samples. Box plots indicate minimum, 1st quartile, median, 3rd 
quartile, and maximum values. Dots represent outliers. 

Another important variable associated with indoor level of radon was geographical location of 
dwellings, as shown in Figure 5. The geo-mean radon concentration in dwellings located in a high 
radon risk region was more than three times higher than in dwellings built in a low risk region (200 
vs. 56 Bq/m3, p < 0.001). Houses located in a low radon risk region also had significantly lower indoor 
radon levels than those in a medium risk region (geo-mean, 56 vs. 69 Bq/m3, p < 0.05). Only 0.01% of 
dwellings in low-risk areas and 5% of dwellings in medium-risk areas failed to meet the 
recommended radon exposure value. In contrary, 32% of the dwellings situated in high-risk zones 
exceeded the limit. The richness of radon in soil of high radon risk region can lead to the higher 
indoor radon levels caused by soil-building foundation transfer of radon [47], indicating the high 
importance of preventions for radon control in dwellings located in high radon risk regions. 
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Figure 5. Association between radon risk region where dwellings are located and indoor radon 
concentrations (p < 0.001). The dashed line represents the maximum recommended value of 300 Bq/m3 
by the WHO and the FOPH; n represents number of samples. Box plots indicate minimum, 1st 
quartile, median, 3rd quartile, and maximum values. Dots represent outliers. 

Indoor radon concentration is highly associated with building ventilation, which can dilute 
accumulated radon with outdoor air, and in some specific cases prevent the radon infiltration 
through pressurization [48]. Figure 6 demonstrates that the mechanical ventilation can have a 
profound effect on indoor radon. Relative to naturally ventilated residences, dwellings with 
mechanical ventilation systems had significantly lower radon concentrations (geo-mean, 58 vs. 105 
Bq/m3, p < 0.01). Similar findings were reported by other studies as well [25]. The need for mechanical 
ventilation in controlling the indoor radon is a priority for dwellings located in high radon risk 
regions, as evidenced by the increased difference in radon concentrations between mechanically and 
naturally ventilated houses (geo-mean, 96 vs. 251 Bq/m3, p < 0.001). 

 
Figure 6. Association between installation of mechanical ventilation and indoor radon concentrations 
(p < 0.01). The dashed line represents the maximum recommended value of 300 Bq/m3 by the WHO 
and the FOPH; n represents number of samples. Box plots indicate minimum, 1st quartile, median, 
3rd quartile, and maximum values. Dots represent outliers. 

We also observed significant associations between indoor radon concentrations and other 
dwelling characteristics, including type of the ground, building structure, type of basement, and type 
of garage. Specifically, dwellings with natural ground floor exhibited higher indoor radon levels 
compared to the ones without (geo-mean, 100 vs. 77 Bq/m3, p < 0.01), shown in Table S1. The natural 
ground floor allowed higher radon infiltration from the natural ground indoors, as similarly reported 
by Diallo et al. [49] and Collignan et al. [25]. The geo-mean radon concentration in dwellings with 
wood structures was less than half of that in residences of masonry or mixed structures (Table S2). 
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The significantly higher radon levels in houses with masonry and mixed structures can be attributed 
to lower air infiltration. With respect to the influence of basement type, dwellings with semi-
excavated or back-grounded basements had significantly higher radon levels than houses with 
completely excavated basements, as shown in Table S3. A possible interpretation is that dwellings 
with back-grounded basements had a living space directly above the soil, where the radon test took 
place, unlike the dwellings with fully excavated basements. The construction of semi-excavated 
basements may also entail greater risk of radon infiltration, given the larger number of cutouts in the 
building envelope in contact with the ground. Moreover, the completely excavated basement can act 
as a buffer for radon transmission between the soil and the living space. We obtained the analogous 
results for the garage type: dwellings with garage in the basement had significantly lower radon 
concentrations (Table S4).  

There is a clear link between dwelling characteristics and indoor radon concentrations, which 
may explain the lower radon levels in newly built dwellings compared to renovated ones. In addition 
to exogenous important factors such as geographical region of Switzerland, building construction 
features that led to reduced radon levels and that should be recommended include installation of 
mechanical ventilation or controlled natural ventilation, and building airtight ground floors, as we 
noticed that all the seven homes with extremely high radon levels (>2000 Bq/m3) were renovated ones 
located in high radon risk region but without mechanical ventilation. 

3.3. Influence of Thermal Retrofitting 

Based on 432 collected responses about type of thermal retrofit during energy renovation, we 
analyzed their influence on indoor radon concentrations. As presented in Figure 7a, dwellings with 
replaced windows with a goal to minimize heat exchange with the exterior led to slightly higher 
indoor radon concentrations compared to houses without retrofitted windows (geo-mean, 105 vs. 99 
Bq/m3, respectively, p = 0.69). Similarly, renovated roof elevated radon levels by 9%, from geo-mean 
99 to 107 Bq/m3, though without statistical significance either (p = 0.47). Retrofitting the floors and 
exterior walls increased the geo-mean radon concentration significantly by 38 Bq/m3 (p < 0.001). 
Altogether, the 118 dwellings that fully implemented all the thermal retrofitting strategies, had the 
geo-mean radon concentration of 131 Bq/m3, 50% higher than other residences that had undergone 
partial thermal retrofit. 
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Figure 7. Influence of thermal retrofit on indoor radon: (a) window retrofit, (b) roof retrofit, (c) floor 
and exterior wall retrofit, and (d) level of retrofit. n represents number of samples. Box plots indicate 
minimum, 1st quartile, median, 3rd quartile, and maximum values. Dots represent outliers. 

The influence of thermal retrofitting can be further interpreted by comparing the radon 
concentrations before and after energy renovation. From the Swiss national radon database, we 
retrieved radon concentrations data from 60 dwellings prior to their retrofit, which were involved in 
the current campaign. By calculating the ratio of radon concentration prior and after the energy 
renovation, we found on average 20% increase in indoor radon levels caused by thermal retrofitting: 
the geo-mean value increased from 165 to 197 Bq/m3. However, as shown in Figure 8, this increase in 
radon levels was not statistically significant (p = 0.15). In some dwellings, the radon concentrations 
increased by as much as 4–8 times after thermal retrofitting. Owing to increase in airtightness of 
dwellings after thermal retrofit, the air exchange rate decreased, leading to elevated indoor radon 
concentrations. Similar findings were reported in other studies with radon [33,37] and other air 
pollutants, such as formaldehyde and volatile organic compounds [36,50]. The influence of thermal 
retrofit on radon concentration explains the relatively higher radon level in RM dwellings than NM 
ones. 
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Figure 8. Distribution of ratio of radon concentrations after and before energy renovation in 60 
dwellings. The dashed line represents the value of 1. Box plots indicate minimum, 1st quartile, 
median, 3rd quartile, and maximum values. Dots represent outliers. 

3.4. Implications 

The strong association between the presence of the mechanical ventilation in dwellings and 
reduced radon concentrations highlights the importance of adequate ventilation in limiting indoor 
radon exposure. Therefore, in both new constructed and energy-renovated dwellings, attention 
should be given to effective ventilation design and operation for control of indoor radon. 
Nonetheless, as indicated by the relatively high radon level in RM dwellings, installation of 
mechanical ventilation was not enough to ensure low levels of radon. We identified that occupants 
living in RM dwellings were not aware of the necessity to operate the mechanical ventilation in 
homes: some of them have never switched on the system. Relatively high radon levels in naturally 
ventilated homes imply the importance of raising awareness of residents about window opening 
behaviors, which should accompany building retrofitting actions or new constructions.  

It is also strongly recommended to implement radon measurements prior to energy renovation 
in order to adjust the renovation plan to effectively control indoor radon exposure. Radon prevention 
technologies need to be applied in cases of high radon concern. The main action is to install a specific 
sub-slab drainage against radon in order to make a depressurization and to extract radon from the 
ground before it enters a dwelling, as well as to enhance indoor ventilation [51]. In summary, to 
capitalize on the potential co-benefits of thermal retrofit in reducing energy consumption and 
maintaining high level of indoor air quality, we encourage stakeholders to pay special attention to 
adapting retrofit design based on specific building conditions (such as building age, construction 
type, and geographical location). 

4. Conclusions 

This study investigated the radon level in 650 energy efficient dwellings in western Switzerland. 
We examined the influences of building characteristics and thermal retrofit in new (NM) and 
renovated (RM) green-certified Minergie dwellings and in energy-renovated noncertified dwellings 
(R). We observed 40% lower radon levels in Minergie-certified dwellings, but there was no 
statistically significant difference between renovated Minergie (RM) and energy-renovated (R) 
dwellings. Indoor radon concentration was higher in older houses, especially in those built with 
masonry or mixed structures, and natural ground floors. Dwellings situated in high radon risk 
regions were prone to elevated radon risks. Installation of mechanical ventilation and completely 
excavated basement contributed to reduced radon concentrations in the living spaces. Thermal 
retrofitting of windows, roofs, floors, and external walls increased indoor radon concentrations, likely 
owing to reduced air exchange through air leakage.  

Our results indicate that energy renovation measures without attention to indoor environment 
can adversely influence the level of indoor radon. Alongside the aggressive energy efficiency 
initiatives in Swiss buildings, these efforts should be accompanied with measures to minimize radon 
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infiltration indoors and to secure adequate ventilation. Radon prevention constructions should take 
place in specific conditions, particularly for dwellings located in radon-prone areas like Switzerland. 
Alongside minimizing radon penetration from the group, the ventilation design should take into 
account provision of a sufficient amount of outdoor air to dilute indoor radon either by mechanical 
means or by controlled natural ventilation. Occupants should be informed of the importance of 
indoor radon control, including renovating their ground floors and ventilating more often, especially 
in winter seasons. The recommendations should become part of the Swiss building renovation 
strategies and green-certification programs. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Scheme of 
different basement types: (a) completely excavated; (b) semi-excavated; (c) back-grounded, and (d) no basement. 
Figure S2: P-P plot of measured log-transformed radon concentrations. Figure S3: Relationship between log-
transformed radon concentration and built year of dwellings. Table S1: Influence of natural ground floor on 
indoor radon concentrations (p < 0.01). Table S2: Influence of building structure on indoor radon concentrations 
(p < 0.001). Table S3: Influence of basement type on indoor radon concentrations (p < 0.001). Table S4. Influence 
of garage type on indoor radon concentrations (p < 0.001). 
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