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CO2 induced reactions in low salinity aquifers overlying CO2 storage sites are of interest to 12 

understand potential reactions or impacts in the possible case of a leak.  Previous investigations of 13 

overlying aquifers in the context of CO2 storage have focused on pure CO2 streams, however 14 

industrial captured CO2 streams may contain ancillary gases including SO2, O2, NOx, H2S, N2 etc., 15 

some of which may be more reactive than CO2 when dissolved in formation water.  Eight drill cores 16 

from two wells in a low salinity sandstone aquifer that overlies a target CO2 storage complex are 17 

characterised for porosity (helium, mercury injection, or micro CT), permeability, and mineral 18 

content.  The eight Hutton Sandstone cores are variable with porosities of 5.2 – 19.6%, including 19 

carbonaceous mudstones, calcite cemented sandstones, and quartz rich sandstones, common 20 

lithologies that may be found generally in overlying aquifers of CO2 storage sites.  A chlorite rich 21 

sandstone was experimentally reacted with CO2 and low concentrations of SO2 to investigate the 22 

potential reactions and possible mineral trapping in the unlikely event of a leak.  Micro CT 23 

characterisation before and after reaction indicated no significant change to porosity, although some 24 

fines movement was observed that could affect permeability.  Dissolved concentrations of Fe, Ca, 25 

Mn, Cr, Mg, Rb, Li, Zn etc. increased during reaction including from dissolution of chlorite and trace 26 

amounts of ankerite.  After ~ 40 days dissolved concentrations including Fe, Zn, Al, Ba, As and Cr 27 

decreased. Chlorite was corroded, and Fe-rich precipitates mainly Fe-Cr oxides were observed to be 28 

precipitated on rock surfaces after experimental reaction.  Concentrations of Rb and Li increased 29 

steadily and deserve further investigation as potential monitoring indicators for a leak.  The reaction 30 

of chlorite rich sandstone with CO2 and SO2 was geochemically modelled over 10 years, with mainly 31 

chlorite alteration to siderite mineral trapping 1.55 kg/m3 of CO2 and removing dissolved Fe from 32 

solution. Kaolinite and chalcedony precipitation was also predicted, with minor pyrite precipitation 33 

trapping SO2, however no changes to porosity were predicted.          34 

Keywords: CO2 storage; CO2 impurities; Hutton Sandstone; CO2-water-rock experiments; 35 
geochemical modelling  36 

 37 

1. Introduction 38 

Owing to existing and potential CO2 storage sites in deep saline aquifers internationally, the 39 
majority of experimental CO2–water–rock reactions have been performed in brines and with pure 40 
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CO2.  There have however been international studies of CO2-water-rock interactions of core from 41 
low salinity or fresh water aquifers overlying CO2 storage sites to understand any potential changes 42 
in the unlikely event of a leak.  Examples of field studies relevant to low salinity aquifer conditions 43 
are limited in number.  A controlled shallow injection of CO2 into the Zert field site, USA, was 44 
performed and resulted in a rapid pH decrease, and increases of Fe, Mn, Mg and Ca concentrations 45 
from mineral dissolution, desorption and ion exchange [1]. Associated experiments were used to 46 
determine that calcite and dolomite dissolution, with clay or Fe-oxyhydroxide ion exchange and 47 
desorption, and Mn oxyhydroxide dissolution and reduction were metal sources; where Mn was 48 
correlated with Ca, and Co with Ba and U.  Dissolved As and Pb was reported to remain below 49 
drinking water guideline concentrations.  Experimental studies specifically looking at low salinity 50 
conditions for CO2 leakage studies have included reactions of limestone or dolomite with CO2 [2, 3].  51 
The release of Sr, Co, Mn, Tl, Zn, and Ni were correlated with Ca and mainly attributed to the 52 
dissolution of the dolomite rather than pyrite or oxides, with high concentrations of As, Ni and Mn 53 
from some rocks.  Limestone samples released Ca, Mg, Sr, Ba, Tl, and U, with only dissolved Ni and 54 
As at concentrations of concern.  The main source of metals was determined to be from calcite 55 
dissolution, even though higher concentrations were sometimes present in pyrite or clays.  The 56 
metals mainly present in carbonates were reported to be Ba, Sr, As, S and Ni, as determined from 57 
extraction experiments.  The authors predicted that pyrite would be an important source of metals 58 
at longer reaction time scales up to 30 years, after carbonates reached saturation.  Crushed cores 59 
from the Edwards limestone aquifer, USA, containing calcite, quartz and montmorillonite were 60 
reacted with pure CO2 [4].  Mobilisation of Ca, Mg, Mn, Ba, Sr, Si, Mo, and transient increases of As, 61 
Pb, Zn, etc. were attributed to calcite dissolution and exchange reactions.  The pH was buffered by 62 
carbonate dissolution and therefore the reported concentrations of metals were low.  Batch 63 
experiments and geochemical modelling were performed for the low salinity Albian Aquifer core 64 
from the Paris Basin, France, to look for potential geochemical leakage monitoring tools [5, 6].  Those 65 
authors reported increases of several dissolved elements during reaction with pure CO2, however Fe 66 
and Ba overall decreased.  They also suggested the potential of carbon and strontium isotopes as 67 
monitoring tools.  Core material from several low salinity aquifers in the USA were batch reacted 68 
with CO2, with dissolved elements including Ba, U, Co, Li, and transition metals such as Mn, Zn, and 69 
Fe increasing in concentration [7].  The elements Mo and As however generally decreased during 70 
some core reactions.  Released concentrations were variable with the aquifer core.  The authors also 71 
reported that interaquifer mineral heterogeneity influences the chemical impacts of a leak.  Five 72 
studies performed a series of experiments on core from the Precipice Sandstone, Evergreen 73 
Formation, and one sample from the Hutton Sandstone, reacting them with water or 1500 ppm NaCl 74 
and pure CO2 or CO2 containing 0.16 % SO2 +/- 2 % O2 [8, 9, 22, 25, 26].  They observed reaction of 75 
both carbonate and silicate minerals and release of metals such as Fe and Mg from siderite and 76 
chlorite, and Ca, Mn, Sr from calcite and ankerite, with released concentrations higher when SO2 was 77 
present acidifying solution.  With SO2 and O2 additionally present, gypsum precipitation generally 78 
occurred in calcite cemented core, or Fe-oxide precipitation in Fe-rich and Ca-poor core.  In all their 79 
experiments with calcite cemented cores the measured porosity increased after experimental reaction 80 
through calcite dissolution.    81 

Overall the above published studies on low salinity aquifer response to CO2 storage or potential 82 
leakage have generally shown that carbonate minerals calcite, dolomite, ankerite, siderite can 83 
dissolve releasing various elements to solution, dependent on the host mineralogy.  However, in 84 
carbonate cemented or limestone cores for example fast pH buffering can result in subsequent re-85 
precipitation or adsorption of elements back to the rock.  In addition clays have been observed to 86 
react and provide dissolved cations, and therefore there is the potential for subsequent precipitation 87 
or mineral trapping to impact porosity or minimize the impacts of a potential leak, although this has 88 
not generally been studied.    89 

In Queensland, Australia, the Surat Basin has been reported as one of the most prospective sites 90 
for CO2 storage [10, 11].  The feasibility or potential for storage in the Precipice Sandstone is being 91 
appraised, where the Evergreen Formation is an overlying caprock [12].  The Hutton Sandstone is 92 
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an overlying low salinity aquifer above the Evergreen Formation caprock.  Previously the Hutton 93 
Sandstone was also suggested as a potential CO2 storage reservoir [13].  The Hutton Sandstone is 94 
also of interest as it is part of the Great Artesian Basin and water is extracted from it in other areas 95 
for agriculture and stock use.  In addition the Hutton Sandstone underlies the Walloon coal 96 
measures, an important coal seam gas production interval [14, 15].  Differences in the groundwater 97 
hydrochemistry have been reported, as being fresh in the north and western outcrops with higher 98 
salinity to the south and east, especially east of the Burunga Leichhardt fault zone [16, 11].  99 
Hydrochemical analyses of groundwater have indicated that a dual permeability is likely in the 100 
Hutton Sandstone of the northern Surat Basin near the Mimosa syncline, with groundwater flow 101 
limited to ~ 50 m of its total thickness [17, 18].  There is also reported evidence for possible 102 
groundwater movement from the Precipice Sandstone to the Hutton Sandstone up the Hutton 103 
Wallumbilla fault, and Burunga Leichhardt fault zone [17, 18].  Sequence stratigraphy and also non-104 
quantitative well core scale mineral identification have been performed by Hylogger on several wells 105 
including West Wandoan 1, GSQ Chinchilla 4, and Woleebee Creek GW4 [19].   106 

Here we quantitatively characterize in detail sandstone, mudstone and calcite cemented cores 107 
from two wells in a low salinity aquifer, the Hutton Sandstone, overlying a potential storage reservoir 108 
and caprock.  One core is characterized before and after experimental reaction with supercritical 109 
CO2, SO2 and low salinity water by automated mineral quantification (QEMSCAN), scanning electron 110 
microscopy (SEM-EDS) and micro Computed Tomography (CT) to determine potential changes to 111 
minerals and porosity.  Dissolved metals released in the reaction waters were determined, and 112 
longer term geochemical modelling performed to predict potential for mineral trapping of CO2.  113 

   114 

2. Materials and Methods  115 

Drill core was sampled from the Hutton Sandstone of the GSQ Chinchilla 4 well (latitude 116 

-26.72722, and longitude of 150.2014 decimal degrees, approximately 10 km SSE of Miles), and the 117 

West Wandoan 1 (WW1) well (latitude -26.181622, longitude 149.812422, approximately 19 km south 118 

west of the town of Wandoan), in Queensland, Australia.  The stratigraphic column and a map 119 

showing the well locations in given in supplementary material Figure S1.  The West Wandoan 1 well 120 

was drilled for a CO2 storage feasibility study of a demo scale injection into the Precipice Sandstone.  121 

Core air permeability, mercury intrusion porosimetry (MICP), and Helium porosity of the Chinchilla 122 

4 well cores described here were performed at Weatherford.  MICP, He pychnometry, permeability, 123 

and X-ray diffraction of West Wandoan 1 core was performed at the University of Queensland (UQ) 124 

by methods reported previously [20, 21, 22].  Scanning electron microscopy (SEM) and Energy 125 

Dispersive Spectroscopy (EDS) in back scatter detection mode (BSE) with both a low-vacuum 126 

JEOL6460LA environmental SEM, and Hitachi TM3030 with a Bruker EDS was performed on 127 

polished thin sections and blocks.  Core total acid digestions or lithium metaborate fusions and loss 128 

on ignition were performed in the UQ Environmental Geochemistry Laboratory.  129 

Micro CT was performed on sub-plugs to visualise and calculate pore space.  QEMSCAN is an 130 

automated mineral quantification based on SEM-EDS that also provides visualisation of mineral 131 

associations and grain sizes.  These were performed on polished sub-plug sections by FEI Australia 132 

(and more recently at the Australian National University) as described in detail previously [23, 24, 133 

25].  Briefly, for the WW1 724.1 m sample that was reacted, a 3 mm diameter sub-plug was digitally 134 

characterised in 3D by X-ray micro computed tomography (μCT) with a voxel size of 2.2 µm.  The 135 

3D μCT images were registered into perfect geometric alignment with higher-resolution 2D SEM 136 

images and automated quantified SEM-EDS (QEMSCAN® ) mineral maps were produced of a 137 

polished sub-plug slice from a trimmed end. The sub-plug was reacted, before being imaged again 138 
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after reaction, and the two sets of before and after reaction images registered to one another to 139 

characterise the changes.   140 

Long term batch experiments were performed in Parr reactors at 120 bar and 60 °C for approximately 141 

10 weeks with the reactors described in detail previously [26].  A low salinity water (100 ml of 1500 142 

ppm NaCl) was added with the WW1 724.1 m rock core (15 mm cube, sub-plug and offcut) at a 143 

water:rock ratio of 7 by mass.  Data on the in situ formation water chemistry was not available, 144 

however measurements in other regions of the aquifer range from ~ 282 – 1863 mg/kg NaCl with 145 

variable bicarbonate alkalinity ~ 136 – 733 mg/kg [16].  The simplified synthetic formation water 146 

chemistry was chosen to both be in the range of possible formation water salinities, and to be 147 

consistent with previous studies for comparison.  Reactors were purged with N2 and pressurised to 148 

120 bar at 60 °C for 5 days to provide a baseline water-rock soak chemistry.  This time was similar 149 

to previous work given time constraints, however it is possible that full equilibration of water and 150 

rock may not have occurred.  After fluid sampling, N2 was depressurised and reactors filled with 151 

160 ppm SO2 in a balance of CO2.  After another 18 days sodium bicarbonate was added (to 105 ppm) 152 

to approximate reservoir buffering.  Note that this likely introduced some O2 from air contact, 153 

however O2 or air may be present anyway in injected CO2 streams especially from oxyfuel firing.  154 

Fluid was sampled during the experiments, with pH and electrical conductivity immediately 155 

measured with a TPS WP81 meter and probes.  Aliquots were diluted 20 times and acidified to 2% 156 

ultra-pure nitric acid for analysis of ions in the UQ Environmental Geochemistry Laboratory by ICP-157 

OES (Perkin Elmer Optima 3300 DV ICP-OES) with an error of ~ 5 % for major elements. Trace 158 

element concentrations were measured by ICP MS (Agilent 7900 ICP-MS with collision cell) with 159 

errors of less than 10 %. Total inorganic and organic carbon, alkalinity, and sulphate were determined 160 

on selected unacidified samples (total organic carbon analyser, and ion chromatography performed 161 

at ALS environmental), and also NOx and phosphate at the end of the reaction (UQ, Lachat 162 

QuikChem8500 Flow Injection Analyser).  A blank experiment without core was also performed to 163 

determine if cations were leached from the reactor.   164 

Kinetic geochemical models were constructed for the reaction of the WW1 724.1 m Hutton Sandstone 165 

for up to 10 years from the characterization data, with the input minerals given in Supplementary 166 

material.  The upscaled reactive surface areas of minerals used are also given in supplementary 167 

material, with the water-rock ratio based on the porosity and an equilibrated water chemistry based 168 

on formation water measurements [16].  The general methods and mineral kinetic and 169 

thermodynamic parameters have been published in detail previously for other rock reactions [26, 27, 170 

28, 29].  Briefly, geochemical models were run in the react module of Geochemist work Bench (GWB) 171 

version 9, using the EQ3/6 database, with minerals input via mineral script files to describe acid 172 

neutral and basic mechanisms [29, 30, 31].  CO2 fugacity was calculated at 12 MPa and 60°C from 173 

Duan and Sun (2003), with SO2 gas added by mass, models were also run with the CO2 fugacity at 174 

half of the full fugacity to test the effect on pH [32].  Saturated minerals were allowed to precipitate 175 

based on observations of experiments and natural analogue systems, e.g. the carbonates siderite and 176 

ankerite/dolomite have been observed to precipitate in natural systems along with kaolinite, 177 

smectites, silica, and pyrite [33, 34, 35, 36].   178 

3. Results 179 

3.1. Core characterisation 180 
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The Hutton Sandstone cores from the two wells show a variety of pore throat distributions (Figure 181 
1A).  The Chin 4 828.76 m core with large pore throats corresponds to the coarsest grained sandstone 182 
with visible open pores (Figure 2A), and Chin 4 835.48 m with a relatively high clay content has the 183 
majority in the range 0.01 – 0.1 µm (Figure 1A, Figure 2B, Figure 3).  The Chin 4 828.76 m sandstone 184 
corresponds to a region with high measured air permeabilities up to 1228 mD (Figure 1B).  Table 1 185 
compares the corresponding MICP porosities with those by µCT or Helium (He) porosities (along 186 
with Table 2).  The He porosities tend to give the highest estimates likely owing to the small size of 187 
the He molecule, with MICP and µCT values generally in reasonable agreement with each other.  188 
Selected µCT tomograms and SEM images of the Chinchilla 4 well cores are shown in Figure 2 and 189 
Figure 3.  The 799.5 m core for example is calcite cemented, the 835.48 m core contains 10 % chlorite 190 
which along with kaolinite fills and rims pores.  QEMSCAN images and quantified mineral 191 
components by QEMSCAN or XRD are given in Supplementary material Figure S2, Table S1 and 192 
Table S2.  The WW1 cores are equally variable in lithology, including chlorite rich and calcite 193 
cemented sandstones, two also contain coal (Figure 4, and supplementary material Figure S3).   194 

 195 
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Figure 1. (A) Pore throat distributions of Hutton Sandstone cores from the Chinchilla 4 (Chin 4) and 196 
West Wandoan 1 (WW1) wells by depth (m).  (B) Core air permeability measured in the Chinchilla 4 197 
well core Hutton Sandstone. 198 
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 199 

Figure 2. Micro CT tomogram images of Chinchilla 4 core sub-plugs (A) 828.76 m sandstone 200 
containing 9 % clay (28 mm diameter sub-plug);  (B) 835.48 m chlorite-rich sandstone (3 mm sub-201 
plug); (C) photo of 835.48 m sub-plug; (D) 867.94 m (2 mm sub-plug). 202 

 203 



Geosciences 2018, 8, x FOR PEER REVIEW  8 of 25 

 

 204 

Figure 3. SEM BSE images of Hutton Sandstone from the Chinchilla 4 well (A) calcite cemented 205 
sandstone from 799.5 m; (B) chlorite and Fe-oxide in 867.94 m; (C) – (F) 835.48 m, chlorite and kaolinite 206 
have rimmed and filled porosity.  Qz = quartz, Cl = calcite, Chl = chlorite, FeO = Fe-oxide, Ca-Pl = Ca-207 
plagioclase, Na-Pl = Na-plagioclase/albite, Ka = kaolinite. 208 

 209 

 210 

 211 

 212 
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Table 1. Chinchilla 4 well Hutton Sandstone core porosity measured by different techniques.  213 
Connected open porosity is a component of the total µCT porosity.  He = helium.  SS = sandstone, 214 

MS = mudstone. 215 

depth (m) 
Porosity 

% 

Porosity 

% 

connected 

open 

porosity 

Porosity 

% 

He 

density 

(g/cm3)  

 

 MICP µCT µCT He   

745.1    11.9 2.64 
carbonaceous 

MS 

799.5 10.1   11 2.68 
Calcite 

cemented SS 

828.76 11.2 13.1 8.6 19.6 2.65 SS 

835.48 5.5 7.7 0.5 8.5 2.63 

carbonaceous 

MS/sandy 

mudstone 

867.94 14 15 3.5 16.1 2.67 
SS carbonate 

laminations 

 216 
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 217 

Figure 4. Core photo and SEM BSE images of Hutton Sandstone from the West Wandoan 1 well (A) 218 
photo of core from 723.5 – 727.43 m; (B) SEM BSE image of 724.1 m with a bright zircon layer; (C) 219 
724.1 m blocky kaolinite; (D) 800.7 m calcite cemented sandstone containing minor coal; (E) 800.7 m 220 
detail of calcite cementing quartz grains, with bright sphalerite spot.   221 

 222 

 223 

 224 

 225 

 226 
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Table 2. West Wandoan 1 well Hutton Sandstone core porosity measured by different techniques.  227 
He = helium.  Brine and N2 permeability (perm) are also shown where able to be measured on 228 

selected cores, H = horizontal 1 or 2 direction, V = vertical.   229 

 230 

depth (m) 
Porosity 

% 

Porosity 

% 

Post 

Reaction 

%  

He 

density 

(g/cm3)  

Brine 

perm 

(mD) 

N2 perm 

(mD) 
 

 MICP µCT µCT     

724.1  7.0 7.0 2.71   SS 

727.4    2.65   MS 

800.7 6.7 5.2, 3.8  2.65  0.2, 4.47 V  
Calcite 

cemented SS 

821.55 6.4   2.63 
23 V, 18 

H1  

83 V, 123 H1, 

125 H2 

Feldspathic 

SS  

900.02    2.63    
 SS calcite 

laminations 
 

 231 

 232 

 233 

3.2. Hutton Sandstone WW1 724.1 m before and after reaction 234 

The chlorite rich sandstone WW1 724.1 m was reacted with CO2 and SO2 since chlorite is known to 235 
alter to siderite and ankerite mineral trapping CO2 in natural systems.  The µCT image of the sub-236 
plug before and after reaction is shown in Figure 5 along with the mineral segmentation image.  The 237 
porosity did not change measurably after reaction (Table 2).  SEM and QEMSCAN of a sub-plug 238 
slice before reaction show that chlorite tended to rim porosity, the sub-plug also contained ~ 7 % 239 
plagioclase and K-feldspar (Figure 6 , Figure 7).  After reaction the mineral content by QEMSCAN 240 
did not appear to change significantly (Figure 7).  Some movement of fine material was however 241 
observed in pores (Figure 7, and supplementary material Figure S5, S6).  SEM-EDS of a core block 242 
before and after reaction is shown in Figure 8.  Along with the minerals identified in QEMSCAN of 243 
the sub-plug, other minerals present included Fe-Mg or Fe-Ti altered micas, phosphates containing 244 
rare earth elements, and coal.  Zircon crystals were present in a band through the core, and chlorite 245 
was Fe-rich also containing Mg and Mn, S signatures were present in illite.  After reaction only 246 
alteration to chlorite surfaces and loss of Fe and Ca signatures from chlorite and trace calcite/ankerite 247 
on illite were observed, with preciptiation of Fe-Cr-Ni-oxides on chlorite.  Rock mass decreased only 248 
slightly from 13.68 to 13.62 g after reaction. 249 

Whole rock digest data for total metal content in the core is given in supplementary material Table 250 
S5.  Concentrations of U and As in the 724.1 m and other cores from WW1 were generally below 3 251 
mg/kg.  Concentrations of Pb were 9 – 11 mg/kg, Cr 6 – 40 mg/kg (with the highest in 724.1 m), and 252 
Ni 3 – 15 mg/kg (with again the highest concentration in 724.1 m).  Rb and Li were 38 – 64 mg/kg 253 
(with the lowest in 724.1 m), and 9 – 21 mg/kg (with the highest in 724.1 m) respectively.   254 

 255 
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Figure 5. West Wandoan 1 Hutton Sandstone sub-plug from 724.1 m (A) Tomogram pre-reaction; (B) 256 
tomogram post-reaction (note the top section was used for QEMSCAN analysis); (C) mineral 257 
segmentation image pre-reaction. 258 

 259 

 260 

Figure 6. West Wandoan 1 Hutton Sandstone sub-plug slice SEM BSE images from 724.1 m pre-261 
reaction (A) Pore filling kaolinite and pore rimming chlorite, image width 500 microns with 30 nm 262 
voxel; (B) SEM BSE image of the full sub-plug slice; (C) detrital altered/weathered grain, image width 263 
250 micron, 30 nm voxel; (D) muscovite/biotite partly altered to chlorite, image width 250 micron, 30 264 
nm voxel. 265 
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 267 

Figure 7. West Wandoan 1 Hutton Sandstone sub-plug slice images from 724.1 m (A) Pre-reaction 268 
tomogram image, and inset pore detail (200 micron image width); (B) Post-reaction tomogram image 269 
and inset detail of a pore with fines movement/clay bridging (200 micron image width); (C) Pre-270 
reaction QEMSCAN image, color legend, and pre and post reaction mineral quantification. 271 

 272 
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 273 

Figure 8. West Wandoan 1 Hutton Sandstone SEM-EDS images from 724.1 m core block pre- and post-274 
reaction (A) Pre reaction quartz, Fe-Mg-silicate, zircon kaolinite; (B) Fe-Mg-chlorite pre-reaction; (C) 275 
same area in A post reaction with little obvious change; (D) post-reaction chlorite surface alteration; 276 
(E) post-reaction precipitated Fe-Cr-Ni-oxide on clay; (F) EDS spectrum of Fe-Cr-Ni-oxide, note there 277 
was a technical issue with the O peak being very low. 278 

 279 

3.3. Water chemistry during reaction of WW1 724.1 m 280 

The measured ex situ pH decreased from 7.5 to 5.2 after the rock – water soak period, and then to 4.8 281 
after CO2-SO2 addition to reactors.  The pH then increased slightly to 5.41 by the end of the reaction 282 
(Figure 9).  The measured electrical conductivity decreased slightly from 2.79 to 2.48 ms/cm and 283 
increased to 3.57 ms/cm by the end of the experiment (Supplementary material Figure S7).  The pH 284 
varied from 3.54 to 3.93 during the blank experiment without rock, and conductivity from 2.09 to 2.59 285 
ms/cm indicating some pH buffering by minerals in the experiment containing the rock core.  After 286 
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CO2 - SO2 injection, several dissolved elements increased including Ca, Mn, Mg, Fe, Cr, As, Pb, Rb, 287 
Ti, Tl, Al, Zn, K, Si, S (Figure 9, Figure 10, Supplementary material Figure S7, S8).  Fe-Mg-288 
(Mn)chlorite corrosion was observed directly in SEM images, and contributed to dissolved Fe, Mg, 289 
Mn, Si, and Al.  Ni, Zn, Ti and Li can also substitute into the chlorite structure and may have been 290 
partly sourced from chlorite dissolution.  Dissolution of trace amounts of calcite or ankerite/siderite 291 
would contribute to the Ca, Mg, Mn, and Fe.  Tl has been shown elsewhere to substitute into and be 292 
sourced from carbonate mineral dissolution in CO2-water-rock reactions of calcite or dolomite [3].  293 
The gradual increases in K and Rb indicate minor corrosion of feldspars or illite continuing over the 294 
reaction timescale.  Several elements including Fe, As, Zn, Al, Ca, had a decreasing trend after ~ 1000 295 
h, with dissolved concentrations of Cr, Pb, Al, Ba, decreasing significantly before ~ 500 h.  These 296 
were likely either adsorbed or precipitated onto rock surfaces e.g. in the precipitated oxide minerals 297 
observed or as surface coatings.  Barite preciptiation was not directly observed however its low 298 
solubility, the decreasing dissolved Ba, and the presence of dissolved S indicates its likely 299 
precipitaion.  Barite precipitation has been directly observed in other CO2-SO2-water rock reactions 300 
of calcite cemented sandstone where higher concentrations of SO2 (0.16%) were used [25, 37].  The 301 
rock surfaces had a brown colouration after reaction supporting precipitation of Fe-containing 302 
minerals as surface coatings that may not have been visible in SEM images (Supplementary material 303 
Figure S9).  Dissolved Ni was variable and appeared to increase at the end of reaction with the blank 304 
experiment indicating some potential contribution from the reactor.  Dissolved Cr concentration at 305 
the end of the blank experiment was higher than the experiment with the rock present also indicating 306 
some contribution from the reactor.  The reason for the lower Cr concentration at the end of the 307 
experiment with rock present may be owing to the higher pH (therefore less reactor corrosion), or 308 
likely the precipitation of Cr containing minerals seen on the rock surface.  The dissolved 309 
concentrations of Pb, U and As were relatively low at less than 8, 1 and 1 µg/kg respectively during 310 
reaction.   311 

 312 
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 313 

Figure 9. Water chemistry during reaction of West Wandoan 1 Hutton Sandstone 724.1 m, and the 314 
blank reaction without rock.  The point at time 0 h is after the N2-low salinity water-rock soak, (A) 315 
pH; (B) Concentration of Mn; (C) Concentration of Fe; (D) Concentration of Cr; (E) Concentration of 316 
Pb; (F) Concentration of As.  Note E and F are shown in µg/kg. 317 

 318 
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 319 

Figure 10. Water chemistry during reaction of West Wandoan 1 Hutton Sandstone 724.1 m, and the 320 
blank reaction without rock.  The point at time 0 h is after the N2-low salinity water-rock soak (A) 321 
Concentration of Rb; (B) Concentration of Li; (C) Concentration of Ti; (D) Concentration of Al; (E) 322 
Concentration of Zn; (F) Concentration of Tl. Note E is shown in mg/kg. 323 

 324 

Total S was 4.6 mg/kg after the N2-low salinity water-rock soak indicating some trace pyrite or 325 
sphalerite may have reacted or adsorbed S released, this may have also contributed to the decrease 326 
in pH.  Sphalerite is acid reactive, and reaction would also have contributed to the increase in 327 
dissolved Zn and metals such as Pb and As.  While it was not directly observed in 724.1 m core here, 328 
trace amounts of sphalerite have been observed sporadically in other Hutton Sandstone sections e.g. 329 
800.7 m.  Total S increased to 14.4 after CO2-SO2 injection and reached 18.5 mg/kg at the end of 330 
reaction.  Alkalinity was in the bicarbonate form at 358 mg/kg, and Cl was 845 mg/kg on experiment 331 
termination.  This is lower that might be expected from the initial salinity and indicates either minor 332 
salt precipitation, or adsorption onto clays and surfaces.  Dissolved total carbon, total organic 333 
carbon, inorganic carbon and sulphate measured during reaction are shown in Supplementary 334 
material Figure S7.   335 

3.4. Geochemical model  336 

 337 

The kinetic geochemical model prediction of reaction of Hutton Sandstone with a mineral 338 
composition of the 724.1 m core is shown over 10 years in Figure 11.  The alteration of 339 
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chlorite to siderite, kaolinite and chalcedony is mainly predicted.  Dissolution of albite, K-340 
feldspar, siderite, ankerite, calcite and precipitation of pyrite and ankerite is also predicted.  341 
Pyrite was predicted to precipitate in Hutton Sandstone WW1 724.1 m, sourcing S from the 342 
co-injected SO2.  In the current reaction of Hutton Sandstone WW1 724.1 m the predicted 343 
altering mineral volumes are relatively small, with only 25 cm3 of (original 1279 cm3 344 
Supplementary material Table S4) chlorite dissolved, and 13 cm3 of siderite precipitated 345 
with 12 cm3 of kaolinite, and with no net change in volume (or porosity).  A pH of 5.2 was 346 
predicted after 10 years, with the concentration of dissolved Fe only 4.18 mg/kg as Fe was 347 
mainly sequestered with CO2 as siderite.  Net mineral trapping was predicted as 1.55 348 
kg/m3 CO2 as siderite after 10 y (based on the method of Watson and Gibson-Poole ) [38].   349 

Additional modelling scenarios for Hutton Sandstone WW1 724.1 m allowing precipitation 350 
of smectite are shown in Supplementary material (Figure S10), where precipitation of 351 
smectite occurs mainly replacing kaolinite precipitation.   352 

 353 

Figure 11. Geochemical model of reaction of West Wandoan 1 Hutton Sandstone 724.1 m over 10 354 
years (A) Change in minerals; (B) predicted pH. 355 
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 356 
 357 

4. Discussion 358 

Overall the drill cores characterized from the Hutton Sandstone were variable in mineral 359 
content, metal content, porosity, pore throat sizes, and permeability.  Air permeability 360 
measurements of the Chinchilla 4 Hutton Sandstone core showed a high permeability section of ~ 50 361 
m which is in agreement with the findings of [17, 18], that suggested groundwater flow may be 362 
restricted to a ~ 50 m section of the Hutton Sandstone near the Mimosa syncline.  Here a chlorite rich 363 
Hutton Sandstone, WW1 724.1 m was reacted with CO2 and SO2 in a low salinity water.  Porosity 364 
measured by micro CT did not change measurably on reaction, although fines movement was 365 
observed.  No increase to porosity would be favorable to avoid further leakage or migration of CO2.  366 
In contrast, an increase to porosity of 1.1 % on pure CO2 reaction of calcite cemented Chinchilla 4 367 
Hutton Sandstone 799 m at 60°C was reported elsewhere [8].  In that case, however, dissolution of 2 368 
vol% calcite cementing framework grains had caused the increased porosity.  Two previous studies 369 
have reported the reaction of a calcite cemented Hutton Sandstone core from WW1 800.83 m with 370 
1500 mg/kg NaCl and CO2 or CO2 containing 0.16 % SO2 and 2% O2 at 60 °C [22, 25].  They also 371 
reported calcite cement dissolution, and a porosity increase from 5.2 to 11.3 % after CO2 reaction; or 372 
from 3.8 to 7.5 % after CO2-SO2-O2 reaction.  These studies indicate that the lithology of the section 373 
of the overlying aquifer receiving a potential leak may influence its extent of propagation, with 374 
carbonate cemented lithologies a higher potential risk than chlorite rich sandstone.    375 

Precipitation of gypsum or anhydrite had been observed or predicted in CO2 reactivity studies 376 
with SO2 +/- O2 reaction of rock containing calcite cements as a source of calcium [39, 40, 27, 41, 42].  377 
The sandstone reacted here however had a small amount of calcium containing minerals, so a lower 378 
dissolved Ca concentration, therefore gypsum/anhydrite did not reach saturation and was not 379 
predicted to precipitate.  In addition the experiment performed here was at 60 °C, below the stability 380 
for anhydrite.  A feldspar rich sandstone from the Chinchilla 4 well 868 m was also recently reacted 381 
for 16 days with water and CO2 containing 0.16 % SO2 and 2% O2, with reported corrosion of siderite 382 
and chlorite, precipitation of Fe-oxides with Cr and Ni signatures, and an Al-sulphate mineral jarosite 383 
[29].  While Fe-oxides were observed to precipitate in the current reaction reported here, no sulphate 384 
mineral precipitation was observed, in contrast FeS/pyrite was observed and predicted to form owing 385 
to the lack of co-injected O2.  Precipitation of pyrite was observed elsewhere in a natural analogue 386 
system of CO2 and S co-sequestration in the Madison Limestone of the Moxa Arch, Wyoming, at 387 
current reservoir temperatures of 90 – 110 °C [34, 43].  There a high natural CO2-rich reservoir with 388 
dissolved aqueous sulphur complexes contained pyrite, native sulphur, and anhydrite cementing 389 
pore space in the drill core.  These were shown by the authors to be an example endpoint for CO2 390 
and S co-sequestration.  Anhydrite precipitation could be expected to dominate over gypsum 391 
precipitation at those higher temperatures (above 60 °C) in the presence of dissolved Ca from the 392 
dolomite, and dissolved S from H2S.  The prediction in the work presented here of pyrite 393 
precipitation with SO2 co-injection is in agreement with that work, although the temperature of the 394 
current study is much lower.   395 

   396 
During the experimental reaction of the chlorite rich Hutton Sandstone WW1 724.1 m reported 397 

here for the reaction with CO2 and SO2, dissolved Fe was somewhat correlated with Mg (R2 = 0.71), 398 
Fe was also correlated with Mn (R2 = 0.82) as the majority of these were sourced from the chlorite 399 
dissolution.  The correlations also reflect subsequent precipitation of metals including Fe and Mn, 400 
likely into Fe-oxyhydroxides.  Fe was also somewhat correlated with Ba (R2 = 0.73), and dissolved 401 
Ca with Fe (R2 = 0.69).  This indicates that the dissolution of trace amounts of ankerite also 402 
contributed to dissolved cations and was likely the source of Ba.  The correlations of Fe with Ca and 403 
Ba also reflect later decreases in concentrations through precipitation indicating their incorporation 404 
into similar precipitating minerals.  Dissolved Rb was somewhat correlated with Li (R2 = 0.69) 405 
indicating a similar source mineral, likely plagioclase.  The increase and subsequent decrease of 406 
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dissolved Zn was also correlated with As (R2 = 0.72) likely from trace amounts of sulphides dissolving 407 
and re-precipitating.  Published experimental reactions of core overlying CO2 storage sites have 408 
mainly included calcite cemented sandstone, dolomite or limestones [2, 3, 4, 8].  In those cases the 409 
majority of dissolved cations or metals were released from calcite (or dolomite) dissolution and 410 
reflected metals substituted into the calcite structure including Ba, Sr, Mn, Mg.  The current study 411 
has shown that Fe, Mg and Mn are also released from reactive clays such as chlorite in overlying 412 
sandstone aquifers.  The Fe, Mg and Mn are then available for mineral trapping over longer time 413 
periods. After 10 years, mineral trapping of CO2 was predicted to be 1.55 kg/m3 in the form of siderite 414 
in models for our current study at 60 °C.  Predictions of CO2 mineral trapping have been reported 415 
over longer time scales elsewhere.  After 1000 y of CO2 reaction, the quartz rich Precipice Sandstone 416 
had a predicted mineral trapping from the reaction of trace amounts of chlorite to form siderite 417 
trapping only 1.24 – 1.30 kg/m3 CO2  [44]. No mineral trapping was predicted before 30 y reaction in 418 
that case.  Up to 2.57 kg/m3 CO2 was predicted to be mineral trapped as siderite or ankerite after 30 419 
y CO2 reaction of chlorite and plagioclase rich mudstones and sandstones of the Evergreen Formation 420 
caprock [44].  Watson and Gibson-Poole determined that 34.3 and 231.7 kg/m3 of net CO2 was 421 
trapped as siderite, ankerite and calcite in the quartz-rich Waare Sandstone reservoir and the 422 
chlorite/berthierine-rich Flaxman Formation respectively [38].  These much higher mineral trapping 423 
amounts were estimated from observations of natural mineral trapping in a CO2-rich well vs a low 424 
CO2 well (natural analogue system) reacted over unconstrained geological time scales (thought to be 425 
since ~ 5 Ka – 1 Ma), with the CO2 sourced from magmatic activity, and at higher present day 426 
temperature ranges ~ 75 – 116 °C.  The main process mineral trapping CO2 was alteration of Fe-rich 427 
chlorite/bertherine clay to form siderite and ankerite.  Clay minerals were additionally observed to 428 
have precipitated in that natural system, mainly kaolinite from alteration of plagioclase, in agreement 429 
with the current study, and additionally smectite/illite from alteration of K-feldspar.  The 430 
predictions of mineral trapping of CO2 as siderite from reaction of Fe-rich chlorite clay in the Hutton 431 
Sandstone 724.1 m presented here are reasonable given the above and other studies of natural 432 
systems [33, 36, 45, 46, 47].  A reactive transport modelling study of an arkose (20 vol% plagioclase), 433 
saline reservoir predicted Ca-Na-plagioclase (oligoclase) and chlorite alteration to ankerite, 434 
dawsonite, and siderite on reaction with CO2 and 1 % SO2 at 75 °C.  Predicted mineral trapping was 435 
40 – 50 kg/m3 over 1000 – 10,000 y, with dawsonite predicted to be formed from the Na supplied by 436 
plagioclase dissolution.  SO2 was trapped as alunite, anhydrite and pyrite.  In general, although the 437 
studies above were at different temperatures, mineral trapping as siderite and ankerite has been 438 
observed in reservoirs with Fe-bearing reactive minerals present e.g. Fe-rich chlorite; with dolomite 439 
or calcite precipitated from Mg and Ca-rich source minerals such as Mg-chlorite or Ca-plagioclase.  440 
Siderite and ankerite are able to precipitate at lower pH than dolomite and calcite, therefore if Fe is 441 
present in reducing conditions these ferroan carbonates tend to precipitate first [33].  In sandstone 442 
reservoirs, the presence of chlorite and Ca-rich plagioclase are generally associated with higher 443 
mineral trapping capacities.  Precipitation of dawsonite has been predicted or observed in a few 444 
systems with, for example, high Na-plagioclase content and persistent high CO2 partial pressures.       445 

 446 

5. Conclusions 447 

This study has shown that low salinity aquifers overlying CO2 storage sites may be very variable 448 
in porosity, permeability and mineral content.  The response to a possible CO2 leakage is therefore 449 
dependent on the lithologies receiving the leak.  A chlorite rich sandstone showed no measurable 450 
increase in micro CT porosity when reacted with CO2 and low concentrations of SO2 over 451 
experimental timescales. This is favorable to avoid an increase in porosity and potential further 452 
leakage or migration.  Fines movement however was observed in experiments and has the potential 453 
to plug permeability.  The likelihood of this occurring in a reservoir could be tested in future with 454 
flow-through or core flood experiments at a range of flow rates to simulate different potential leakage 455 
scenarios.  Reaction of mainly Fe-rich chlorite and minor amounts of carbonates, plagioclase and 456 
sulphides were observed via changes in the experimental water chemistry.  Dissolved elements 457 



Geosciences 2018, 8, x FOR PEER REVIEW  21 of 25 

 

increased in concentration after CO2-SO2 injection, however several including Fe, Cr, Al, Zn, Ba, As, 458 
Pb subsequently decreased with Fe-oxide precipitation in the experiment.  Concentrations of Rb and 459 
Li increased steadily in the experiment and deserve further investigation as potential indicators for 460 
monitoring a leak.  Simulations indicated that siderite may mineral trap CO2 in Fe-chlorite rich rocks 461 
after 5 to 10 years, with pyrite trapping dissolved S.   462 
 463 

Future work is suggested to react different lithologies of core overlying potential CO2 sites (e.g. 464 
mudstones, sandstones, carbonate cemented core), such as the Hutton sandstone, and to directly 465 
compare reactions with pure CO2 or CO2 containing SO2, NOx or O2 to understand more broadly the 466 
potential impacts to porosity, permeability or water chemistry in the unlikely event that a leak were 467 
to occur.  The use of both batch reactors and flow-through experiments is also suggested to 468 
determine if minor gases in CO2 streams such as SO2, NOx or O2 are transported or depleted by 469 
reaction with formation water and minerals when moving through the core subsurface.   470 

Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S1: Stratigraphic 471 
column and map, Figure S2: QEMSCAN images of a section of sub-plugs, Table S1: QEMSCAN minerals (%), 472 
Table S2: XRD % semi quantitative mineral components, Figure S3: Photo of coal in Hutton Sandstone core, 473 
Figure S4: QEMSCAN selected areas of WW1 724.1 m, Figure S5: Pre-reaction tomogram and area, Figure S6: 474 
Post-reaction tomogram and movement of fines, Figure S7, and S8: Water chemistry during reaction of WW1 475 
724.1 m, Figure S9: Photo of the rock surface before and after reaction with brown coloration. Table S3: Volume 476 
percentages of X-ray distinct components, Table S4: Geochemical model input. Figure S10: Geochemical models 477 
over 5 years, Table S5: Rock core acid digest total metal content or lithium metaborate fusion major elements 478 
and loss on ignition data. 479 
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