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Abstract 

 

The perinatal period is defined as being between 20 weeks gestation and up to 28 days after birth. 

Despite advancements in antenatal care, diagnostic tools, interventions and treatments, adverse 

perinatal outcomes such as stillbirth, fetal growth restriction, preterm birth, hypoxic ischaemic 

encephalopathy, serious neonatal morbidity and neonatal death still occur. Placental dysfunction is 

one of the major contributors to these adverse outcomes regardless of gestation. While the majority 

of fetuses are able to cope with the increase in metabolic requirements in the last few weeks of 

pregnancy, those with impaired placental function are more susceptible to hypoxic events leading to 

increased mortality, serious short–term morbidity and long–term neurodevelopmental delays 

including neonatal encephalopathy and cerebral palsy. 

Doppler assessment of fetal blood flow and fetal growth are effective methods to evaluate fetal 

wellbeing. The umbilical artery pulsatility index can identify growth restriction from suboptimal 

placentation. The middle cerebral artery pulsatility index can identify the “brain sparing” effect 

caused by increased perfusion of the fetal brain. The ratio of these two measures (middle cerebral 

artery pulsatility index/umbilical artery pulsatility index) known as the cerebroplacental ratio has 

been suggested to be a better predictor than the individual components. 

This thesis will investigate the associations between maternal and perinatal factors and adverse 

perinatal outcomes. It will assess Doppler indices for the identification of fetal growth restricted – 

small for gestational age fetuses and those at risk of emergency caesarean for non–reassuring fetal 

status. The creation of accurate reference centiles using the generalised additive model for location, 

scale and shape approach, will allow for meaningful interpretation of those Doppler measurements. 

This information will be used to create predictive tools that will enable the clinician to identify 

pregnancies at risk of adverse perinatal outcomes and emergency caesarean for non–reassuring fetal 

status.  
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 Introduction 

  

1.1 Background 

The perinatal period is defined as being between 20 weeks gestation and up to 28 days after birth 

(1). Adverse perinatal outcome is a term used to describe poor fetal and neonatal outcomes that 

occur within this period (1). Improvements in antenatal care and screening techniques have 

enabled the identification, early intervention and treatment of fetuses at high–risk of these 

negative outcomes. Despite these improvements, there remains an ongoing risk of perinatal 

morbidity particularly preterm birth and low birth weight (LBW) (2). More worryingly, there are 

also seemingly low–risk pregnancies that develop complications leading to the fetus or neonate 

suffering significant morbidity because of antepartum, intrapartum or postpartum events (3-6).  

There are a range of adverse outcomes that can occur during the perinatal period including 

stillbirth, fetal growth restriction, preterm birth, hypoxic ischaemic encephalopathy, serious 

neonatal morbidity and neonatal death (2). Some of these events have long term consequences 

with hypoxic ischaemic encephalopathy being a major risk factor for cerebral palsy. In the 

majority of pregnancies, the increased demands on vascular perfusion during the last few weeks 

of pregnancy are tolerated by fetuses with adequate placental function and perfusion of the brain, 

heart and other vital organs. If placental function is impaired, hypoxic events are more likely to 

occur and can lead to increased mortality, serious short–term morbidity and long–term 

neurodevelopmental delays including neonatal encephalopathy and cerebral palsy (7, 8). Despite 

there being a significant amount of knowledge surrounding maternal and perinatal factors 

associated with adverse outcomes, the complexity of the relationship between health, disease, 

environment and human behaviour makes accurate risk prediction complicated (2).  
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1.2 Fetal Growth Restriction 

It is recognised that there are two groups of small fetuses; those that are small for gestational age 

(SGA) and a subset that are truly growth restricted (3, 4, 9). SGA is often defined as fetuses or 

infants with an estimated fetal weight (EFW) or birth weight (BW) less than the 10th centile 

(using either population or customised centiles). Regardless of SGA or growth restriction, being 

small is associated with increased morbidity (4, 6, 9, 10). Fetal growth restriction (FGR) 

however, is associated with greater risk compared to infants that are merely SGA without 

evidence of FGR as a large proportion of SGA fetuses are constitutionally small and healthy, 

with a normally functioning placenta and normal in utero growth rate (9, 10). Conversely, there 

are a proportion of fetuses that have impaired growth because of sub optimal placenta function 

(10-16). 

Furthermore, current thinking is that FGR fetuses that have growth restriction may or may not be 

SGA but have maternal, fetal or placental risk factors that inhibit their potential genetic growth 

(3, 4, 9, 10, 16, 17). It affects an estimated 5 – 10% of births and is reportedly the second highest 

cause of perinatal mortality, contributing to 30% of stillbirths (6, 18, 19). It also results in even 

higher rates of perinatal morbidity and post–natal neurodevelopmental impairment, than seen in 

those SGA fetuses with normal placental function (4, 5, 9, 10, 16, 17, 20).  

FGR can be categorised into two distinct phenotypes with differing onset, Doppler abnormalities 

and associated morbidities (3, 6, 21).  However, at its core, both early and late onset FGR are 

pathophysiological responses to deteriorating placentation depending on gestation (3-6, 17, 22). 

Altered fetal Doppler indices are reflective of in utero adaptation with haemodynamic 

redistribution of cardiac output to vital organs such as the fetal brain, heart and adrenal glands, to 

counteract the effects of poor placental function (3-5, 10, 21).  

For the past 20 years, the standard for identifying FGR has been by Doppler studies in the 

umbilical artery (3, 4, 20). It has long been accepted that abnormal umbilical artery Doppler 

indices are associated with adverse consequences in growth restricted fetuses and that prenatal 

identification of this cohort improves perinatal outcomes (3, 4). Whilst pathological umbilical 

Doppler indices (absent or reversed end diastolic flow) are reflective of severe placental 

dysfunction many growth restricted fetuses have umbilical artery Doppler indices within the 

normal range and are thus missed prenatally (3, 4). This has led to an evolution in research 

priorities to investigate other parameters to measure the different changes in placental function 

and the consequent fetal response (3, 4). 
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The distinction between early and late onset FGR is reflected in the severity of placental disease. 

These changes are specific to gestation, with a threshold of 32 weeks categorising early or late 

onset FGR (3, 4, 6, 22, 23).  

Although this thesis is primarily concerned with term and near–term fetuses, for thoroughness, a 

brief exploration of some of the pathophysiology and the effects on feto–placental Doppler 

indices and placental biomarkers involved in early onset FGR will precede a more complete 

exploration of the current knowledge of late onset disease. 

 

1.2.1  Early onset FGR 

As stated above early onset FGR occurs before 32 weeks gestation and is a consequence of 

vascular abnormalities of placental tertiary villus vessels. These abnormalities are caused by 

ineffective trophoblastic cell invasion of the maternal spiral arteries resulting in inadequate 

vascular remodelling (5, 8, 16, 21, 24-29).  

Doppler studies of maternal uterine arteries enable assessment of placental perfusion which in 

turn reflect inadequate vascular remodelling and placental dysfunction in the form an early 

diastolic notch (Figure 1.1) (8, 18, 29). If the notch continues after 24 weeks gestation, it is 

evidence that there is persistent elevated blood flow resistance in the placenta (8, 17, 18, 29). 

Placental biomarkers such as placental growth factor, pregnancy associated protein A, 

angioproteins, placental protein 13 and vascular endothelial growth factor, control and correlate 

with the formation, remodelling and expansion of the placental vascular network (5, 18). 

Screening studies have shown that the use of these biomarkers early in the first trimester, in 

combination with uterine artery Doppler and maternal characteristics enhance the detection of 

specific conditions such as pre–eclampsia and FGR (9, 18, 29-32). 
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Figure 1-1  Uterine artery doppler with raised pulsatility index & early diastolic notch (red 

arrow) (29). 

 

1.2.2 Late onset FGR 

Whilst early onset FGR occurs in the first and second trimesters, late onset FGR occurs in the 

third trimester after 32 weeks gestation and is responsible for 70–80% of all cases of FGR (4, 6, 

23, 33). Although previously considered a benign and milder form of placental disease, evidence 

now indicates that late onset FGR contributes to over 50% of unexpected stillbirths and is 

associated with high levels of adverse perinatal outcomes (3-6, 33-35). 

Late onset FGR is suspected when a fetus fails to reach its full growth potential at term after 

either a slowing or plateauing of its growth trajectory or an increase in the ratio of the head 

circumference to the abdominal circumference in a fetus that was previously regarded as 

growing normally (6, 9, 36, 37). In contrast to early onset FGR, late onset FGR presents with 

less histological changes in the placenta, normal umbilical Doppler indices and a fetus that does 

not demonstrate the sequential Doppler changes observed in the early onset phenotype (3, 5, 6, 

10, 21, 33, 35). 

Similar to early onset disease, late onset FGR is due to placental malperfusion, but with different 

etiology (33). In a 2014 Spanish study, Parra–Saavedra et al investigated the placental signs of 

under–perfusion in 104 singleton term pregnancies with an EFW less than the 10th centile (34). 

They found that maternal vascular maldevelopment in the form of distal villous hypoplasia was 

responsible for approximately one quarter of placental under–perfusion and was a result of 

defective trophoblastic cell invasion and subsequent abnormal vascular remodelling from 

placental formation early in pregnancy (34). Furthermore, they found that the occurrence of 
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vascular obstructions late in pregnancy was responsible for approximately half of the lesions that 

indicate placental under–perfusion (34). 

In a 2014 review conducted by Mifsud et al on placental pathology in early onset and late onset 

FGR, they found evidence of an increased number of uteroplacental lesions in late onset FGR 

fetuses, but a lower incidence than those found in the early onset phenotype and of lesser 

severity (21). They also found there were some associations with non–vascular pathologies, 

namely villitis of unknown etiology albeit with varying frequencies (21, 31, 38, 39). In contrast, 

a 2008 paper by Redline assessing 66 placentas, found that of placental lesions associated with 

FGR, villitis of unknown etiology was the most common finding in 26% placentas of term 

fetuses with normotensive FGR (31). 

Regardless of the implications of villitis of unknown etiology, the consequences to the fetus of 

placental insufficiency in near term or term fetuses is vastly different to early onset FGR. 

Despite not having to cope with the problems associated with prematurity often resulting from 

early onset FGR, the fetus at term is vulnerable to the aforementioned haemodynamic changes 

(4, 6). As it approaches term, the fetal brain has an increasingly higher need for oxygen, making 

it more susceptible hypoxia, especially during the birthing process (4, 6, 8, 40). In common with 

early onset FGR, late onset cases also demonstrate a similar “brain sparing” autoregulatory 

redistribution of blood flow in an effort to protect the vital organs such as the fetal brain (6, 8, 

10, 22, 37).  

 

1.3 Doppler Indices 

1.3.1 Umbilical Artery Pulsatility Index 

The umbilical artery Doppler pulsatility index (UA PI) can be used to screen for FGR resulting 

from suboptimal placentation (7, 8, 17, 18, 25, 41). It is reflective of the increased resistance in 

the umbilical artery caused by chronic vasoconstriction of the tertiary stem villi resulting from 

inadequate vascular remodelling (6, 8, 21, 24-27, 29, 42). This abnormal umbilical artery flow is 

associated with such adverse perinatal outcomes as preterm birth, non–reassuring fetal status, 

LBW, perinatal mortality, acidosis, hypoglycaemia, respiratory distress and admission to 

neonatal intensive care unit (NICU) (42-45). However, the predictive ability of the UA PI does 

not extend to all pregnancies. 
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In 1999, Farrell et al performed a systematic review and meta–analysis, which evaluated 2,700 

pregnancies from unselected, low obstetric risk, high obstetric risk and combination populations. 

They found only minimal predictability of the UA PI in relation to Apgar scores at 1 and 5 

minutes, SGA fetuses, heart abnormalities, acidosis and caesarean for non–reassuring fetal 

distress. Although the authors were concerned about publication bias from some of the included 

studies, they reached the conclusion that the UA PI has poor predictability of adverse perinatal 

outcomes (46). 

Further investigations show little benefit to routine UA PI assessment in low–risk pregnancies. 

In 2015, Alfirevic et al updated their Cochrane systematic review, assessing data from 14,185 

pregnancies in 5 studies (all from the 1990’s) and concluded that there was not sufficient 

evidence that routine umbilical Doppler examination in low–risk or unselected pregnancies 

would benefit the fetus or the mother (47). 

In contrast, however, the same team performed another Cochrane systematic review in 2013, 

investigating high–risk pregnancies. From analysis of 18 studies and 10,156 pregnancies, the 

authors concluded that in high–risk pregnancies, there were significant reductions in perinatal 

mortality in fetuses that had UA PI assessment. Low Apgar scores, stillbirths, emergency 

caesarean section rates were lower in the cohorts with UA PI assessment, though these did not 

reach statistical significance. This review was under powered and the authors were concerned 

about publication bias. Despite these limitations, the authors concluded that umbilical artery 

Doppler studies should be incorporated into the monitoring of high–risk pregnancies (44). 

In 2014, Morales–Rosello et al in an analysis of 11,576 fetuses, scanned within 14 days of 

delivery, found that increases in UA PI were observed in fetuses that were appropriate for 

gestational age but had not reached their growth potential (14).  

The PORTO study in 2013 of 1,100 consecutive pregnancies conducted by Unterscheider et al, 

found that an EFW less than the 10th centile and abnormal umbilical artery Doppler indices 

(defined as absent or reversed end–diastolic flow or PI >95th centile) was a significantly better 

predictor of NICU admission and adverse perinatal outcome, than the EFW alone (48).  

Though it has been shown that the predictability of the UA PI is limited, it is still an invaluable 

tool for the assessment of placental function (5, 14, 42, 44, 48). As the increased arterial 

resistance is a consequence of early placental dysfunction, the elevated UA PI is usually 

indicative of FGR and thus is considered a risk assessment tool for these fetuses (5, 14, 41, 42). 
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1.3.2 Middle Cerebral Artery Pulsatility Index 

Fetuses at term or near term that have placental under–perfusion and suffer adverse perinatal 

outcomes, often have a normal UA PI (37). However, because of the “brain sparing” effect there 

is an increase of perfusion to the fetal brain manifesting itself in a reduced resistance measured 

by the Doppler pulsatility index of the cerebral vessels (6, 8, 10, 22, 37). 

In 2012, Morris et al performed a systematic review and meta–analysis investigating the utility 

of middle cerebral artery pulsatility index (MCA PI) to predict perinatal wellbeing. From a total 

of 35 studies between 1992 and 2011, 4,025 fetuses were eligible for the meta–analysis. The 

authors identified that the MCA PI was predictive of adverse perinatal outcome, low Apgar 

score (<7) at 5 minutes, low Apgar score (<7) at one minute, acidosis (cord pH <7.2), admission 

to NICU, BW less than the 10th centile and neonatal mortality (Table 1.1). Although these results 

showed that an abnormal MCA PI is predictive of adverse perinatal outcome, the associations 

remained weak (49).  

 

Table 1-1: Positive likelihood ratio of MCA PI to predict fetal wellbeing (49).  

Outcome No. Studies 

Positive Likelihood 

Ratio (95% C.I.) 

Apgar @ 5 Minutes <7 10 1.65 (1.07 – 2.52) 

Apgar @ 1 Minute <7 4 4.14 (1.52 – 4.57) 

Acidosis (Cord pH <7.2) 8 2.04 (1.17 – 3.56) 

NICU 7 4.00 (2.16 – 7.40) 

BW <10th Centile 12 4.95 (2.81 – 8.72) 

Mortality 8 1.36 (1.10 – 1.67) 

Adverse Perinatal Outcome 18 2.77 (1.93 – 3.96) 
NICU: Neonatal Intensive Care Unit; BW: Birth Weight; C.I.: Confidence Interval 

 

In 2015, Prior et al reviewed articles related to the identification of intrapartum fetal 

compromise (41). They found that in a 2011 paper by Cruz–Martinez et al, MCA PI was 

associated with caesarean section for non–reassuring fetal status and neonatal acidosis (41, 50). 

This paper investigated 232 singleton fetuses with an EFW less than the 10th centile and a 

normal UA PI less than the 95th centile who were selected for induction of labour (50). Although 

associations were found, confidence intervals for the logistic regressions were wide, reflecting 

an inadequate sample size (50). A 2006 study by Leung et al, identified that the MCA PI was 
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associated with an increased incidence of caesarean for non–reassuring fetal status following a 

successful external cephalic version (41, 51). There was successful external cephalic version 

performed on 174 women between 36 – 38 weeks gestation (51).  Leung et al found a 

significantly lower MCA PI in fetuses that required caesarean for non–reassuring fetal status 

1.30 (Inter–Quartile Range (IQR) 1.22 – 1.55) compared to those who had a spontaneous vaginal 

birth 1.60 (IQR 1.42 – 1.88) (51). 

Although a number of studies have identified associations between the MCA PI and adverse 

perinatal outcomes in a range of populations, its predictive value is remains weak (42, 49, 52-

54).  

 

1.3.3 Cerebroplacental Ratio 

Whilst the UA PI has the ability to identify early suboptimal placentation in SGA fetuses and the 

MCA PI is able to identify cerebral redistribution both have been found to be inadequate 

predictors of adverse perinatal outcomes (3, 4, 6, 10, 22, 45, 52). The cerebroplacental ratio 

(CPR) is the ratio of the MCA PI divided by the UA PI, and is suggested to be a better predictor 

than the individual components (10, 52, 55-59). 

Whilst the CPR is often reported as a continuous measure (in its raw form or standardised as 

either a multiple of the median or a Z–score) studies tend to use a cut–off of what is considered 

to be an abnormal CPR for clinical purposes. There have been however, contrasting opinions 

when defining the best cut–off values for the CPR. There are some proponents who use a CPR of 

less than the 10th centile, cut–off of less than 1, others have used 1.08, 1.05 and multiple of the 

median <0.6765, and whilst each have their merits, further investigation is needed (60-64). One 

reason for the uncertainty of the best threshold to use is because the CPR evolves throughout the 

pregnancy, with the point estimate of the mean (or median) as well as the variance depending on 

the gestational age that the assessment is performed (Figure 1.2) (59, 65). 
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Figure 1-2: Cerebroplacental reference centile curves (66). 

*CP ratio; Cerebroplacental Ratio 

*Thick lines: 5th, 50th & 95th percentiles with the 95% C.I. (thin lines) 

 

Regardless of the cut–off value, many studies investigating the predictability of the CPR, within 

different populations, have identified strong associations between abnormal CPR values and 

various adverse perinatal outcomes (10, 11, 14, 15, 41, 49, 50, 52-54, 56-61, 63, 67-71). 

 

1.3.3.1 CPR in SGA/FGR  

Bahado–Singh et al investigated 203 fetuses at risk of FGR in their 1999 study (57). The authors 

reported multiples of the median of the CPR and receiver operating characteristic (ROC) curves 

with area under the curve (AUC) (57). Multiples of the median were calculated for gestational 

age against a cross–sectional cohort of 82 normal singleton pregnancies (57). With Doppler 

indices taken less than three weeks prior to delivery, the authors found the CPR to be predictive 

of LBW and of a composite of adverse perinatal outcomes which included; 5 minute Apgar 

score <7, meconium staining, caesarean section for fetal distress, admission to NICU for more 

than 24 hours, hypoglycaemia or polycythaemia (Table 1.2) (57). 

 

  



16 

 

Table 1-2: Cerebroplacental ratio predicting birth weight and adverse perinatal outcomes 

(57). 

Outcome AUC P Value 

Birth Weight <10th Percentile 0.758 (0.682 – 0.833) <0.001 

Birth Weight <5th Percentile 0.751 (0.673 – 0.829) <0.001 

Birth Weight <10th Percentile + Composite 0.861 (0.796 – 0.927) <0.001 

Birth Weight <5th Percentile + Composite 0.865 (0.802 – 0.927) <0.001 

Adverse Perinatal Outcome Regardless of Birth 

Weight 0.736 (0.657 – 0.815) <0.001 
* Birth Weight Cut–offs derived from population reference centiles. 

 

The authors concluded that in a cohort suspected of FGR, not only is an abnormal CPR highly 

associated with LBW and adverse perinatal outcome, but also superior to the UA PI alone (57). 

In a 2005 retrospective study, Odibo et al identified 155 cases of FGR fetuses, defined as EFW 

below the 5th percentile for gestational age (65). This study was the first to utilise the CPR age 

specific reference centiles calculated on 306 normal singleton fetuses, developed by Baschat and 

Gembruch in 2003 (65, 72). Using logistic regression, ROC curves and AUC, they measured the 

CPRs’ ability to predict a composite of adverse perinatal outcomes defined as caesarean delivery 

for non–reassuring fetal status, cord pH <7.0, 5 minute Apgar score <7, respiratory distress, 

intraventricular haemorrhage >grade 2, periventricular leukomalacia and perinatal death (65). 

The authors used two definitions of abnormal CPR: <1.08; and <5th percentile defined by the 

Baschat and Gembruch reference centiles (Table 1.3) (65, 72).  

 

Table 1-3: Cerebroplacental ratio predicting composite adverse perinatal outcome in growth 

restricted fetuses (65). 

CPR Cut–off Number Sensitivity Specificity AUC 

CPR <1.08 & FGR <10% 183 72% 62% 0.67 

CPR <1.08 & FGR <5% 155 67% 66% 0.67 

CPR <5 Percentile & FGR <10% 183 65% 73% 0.69 

CPR <5 Percentile & FGR <5% 155 58% 71% 0.68 
*CPR: Cerebroplacental Ratio; FGR: Fetal Growth Restriction; AUC: Area Under the Curve 
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From this the authors concluded that both of the cut–offs of the CPR that were assessed were 

effective in predicting the composite outcome (65). They were also able to determine that whilst 

the CPR had an improved sensitivity predicting the composite outcome, the specificity was 

much lower than that of the UA PI alone (65). 

Cruz–Martinez et al investigated the association of abnormal CPR with caesarean delivery for 

non–reassuring fetal status and neonatal acidosis (umbilical artery pH <7.15 or base excess >12) 

(50). This 2011 prospective study matched 223 SGA fetuses (defined as having an EFW <10th 

centile) who were to be induced for labour with a normal cohort of singleton pregnancies (50). 

The normal cohort consisted of fetuses who were also induced for premature rupture of 

membranes, without signs of chorioamnionitis and whose BW was between the 10th and 90th 

percentile, according to customised BW standards derived from a 2008 Spanish population by 

Figueras et al (50, 73). Compared to the normal cohort, the authors found that both an abnormal 

CPR and MCA PI were associated with both caesarean delivery for non–reassuring fetal status 

and neonatal acidosis (Table 1.4) (50). 

 

Table 1-4: Odds ratio of abnormal cerebroplacental ratio & middle cerebral artery pulsatility 

index in relation to caesarean delivery for non–reassuring fetal status & neonatal acidosis 

(50). 

Doppler Indices 

Caesarean Delivery for 

Non–Reassuring Fetal 

Status Neonatal Acidosis 

 Odds Ratio (95% C.I.) Odds Ratio (95% C.I.) 

Abnormal CPR 10.3 (3.22 – 52.8) 5.0 (1.06 – 46.9) 

Normal CPR 5.6 (2.13 – 18.6) 2.0 (0.43 – 12.4) 

Abnormal MCA PI 18.0 (2.84 – 750) 9.0 (1.25 – 395) 

Normal MCA PI 5.1 (2.37 – 12.7) 2.0 (0.62 – 7.46) 
C.I.: Confidence Interval; CPR: Cerebroplacental Ratio; MCA PI: Middle Cerebral Artery Pulsatility Index 

The authors also found that the CPR had a better sensitivity than the MCA PI in predicting 

caesarean delivery for non–reassuring fetal status (45.9% c.f. 29.5%) but had worse specificity 

(78.5% c.f. 91.3%). In light of this they developed a clinical algorithm as a prediction tool that 

incorporated both the MCA PI and the CPR which allowed an increased sensitivity to 50% 

preserving a specificity of 76% (50).  

In a 2013 review, Hernandez–Andrade et al evaluated both human and animal models and found 

that the CPR has better correlation with hypoxia than its individual components. There were 

stronger associations with adverse outcome than the middle cerebral artery Doppler and even in 
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appropriately grown fetuses there were associations with long term neurobehavioral problems 

(10). 

A 2016 systematic review and meta–analysis by Nassr et al evaluated the CPRs’ role in FGR 

and its predictability in relation to adverse perinatal outcome (56). They identified seven studies 

between 1992 and 2014 and 1,428 fetuses were eligible for analysis. The meta–analysis showed 

that the CPR was associated with emergency caesarean for fetal distress, Apgar score less than 7 

at five minutes, and NICU admission (Table 1.5) (56). This systematic review has come under 

criticism by Morales–Rosello and Khalil due to its grouping both early and late onset FGR 

fetuses into the same analysis (70). However, as the authors point out, in the past, studies have 

often failed to stratify their results into early and late onset FGR and when they are 

distinguished, cut–offs are not universal (74).  
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Table 1-5: Results from individual studies & meta–analysis (56). 

Caesarean Delivery for Fetal Distress 

Study  Weighting Number Odds Ratio  

(95% C.I.) 

Year of  

Publication 

Gramellini et al 11.6% 90 56.00 (11.00 – 285.09) 1992 

Bahado– Singh et al 14.7% 123 4.46 (1.81 – 10.99) 1999 

Makhseed et al 14.4% 70 2.56 (0.97 – 6.72) 2000 

Dubravko et al 14.2% 87 3.56 (1.30 – 9.76) 2003 

Rozeta et al 16.3% 738 0.88 (0.66 – 1.19) 2010 

Monika Singh et al 13.5% 50 3.50 (1.07 – 11.48) 2013 

Regan et al 15.2% 270 10.00 (4.77 – 20.96) 2014 

Meta–Analysis  1,428 4.49 (1.63 – 12.42)  

 

5–minute Apgar Score <7 

Study  Weighting Number Odds Ratio  

(95% C.I.) 

Year of  

Publication 

Bahado–Singh et al 11.2% 123 3.26 (1.01 – 10.50) 1999 

Makhseed et al 9.4% 70 2.68 (0.74 – 9.73) 2000 

Dubravko et al 6.2% 87 20.00 (3.96 – 101.08) 2003 

Rozeta et al 64.0% 738 3.64 (2.65 – 5.01) 2010 

Monika Singh et al 9.1% 50 5.23 (1.41 – 19.43) 2013 

Meta–Analysis  1,068 4.01 (2.65 – 6.08)  

 

Neonatal Intensive Care Admission 

Study  Weighting Number Odds Ratio  

(95% C.I.) 

Year of  

Publication 

Gramellini et al 15.4% 90 28.00 (7.39 – 106.11) 1992 

Bahado– Singh et al 16.4% 123 40.50 (13.20 – 124.26) 1999 

Makhseed et al 16.7% 70 6.30 (2.23 – 17.85) 2000 

Rozeta et al 19.0% 738 2.00 (1.48 – 2.70) 2010 

Monika Singh et al 15.0% 50 4.88 (1.17 – 20.26) 2013 

Regan et al 17.5% 270 14.78 (6.40 – 34.11) 2014 

Meta–Analysis  1,341 14.78 (6.40 – 34.11)  
C.I.: Confidence Interval 
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Kalafat et al developed a predictive model for operative delivery for intrapartum fetal 

compromise in a cohort of SGA fetuses (75). They included singleton pregnancies that were 

identified as having an EFW below the 10th centile at a gestational age greater than 36 weeks. In 

a model that included parity, gestational age, the CPR multiple of the median, induction of 

labour without augmentation, epidural use, the use of oxytocin for the augmentation of labour 

and the use of oxytocin used for the augmentation of labour without labour induction they were 

able to identify the majority of fetuses that have operative delivery for fetal compromise with an 

AUC of 0.76 (95% CI 0.72 – 0.80), a sensitivity of 70.5%, specificity of 70.0% a positive 

likelihood ratio of 3.95 (sic)1  and a negative likelihood ratio of 0.42. Interestingly the authors 

investigated using the CPR as a continuous variable and found a linear association with the risk 

of operative delivery for fetal compromise (75).  Most studies up to this point have categorised 

the CPR and utilised cut–offs for patients when assessing the associations with adverse perinatal 

outcomes despite caution against this approach by Altman and Royston (76). 

In another paper by the same group, Kalafat et al developed a predictive model for the risk of 

NICU admission in a SGA cohort (77). Again, they included singleton pregnancies with an EFW 

less than the 10th centile at 37 weeks gestation or later. Using only the CPR multiple of the 

median, the EFW centile and the gestational age at delivery, they had an AUC of 0.71 (95% CI 

0.63 – 0.79). Using a false positive cut-off of 10%, the model had a sensitivity of 30.9% (95% 

CI 16.6 – 45.2), positive predictive value of 16.1% (95% CI 9.2 – 26.3), a negative predictive 

value 95.0% (95% CI 93.2 – 96.1), a positive likelihood ratio 3.09 and a negative likelihood 

ratio of 0.72 (77). 

A 2018 systematic review by Conde-Agudelo et al assessed the CPR’s ability to predict adverse 

perinatal outcomes and neurodevelopmental outcomes in FGR (78). Their eligibility criteria 

included fetuses that were considered growth restricted diagnosed using sonography parameters. 

For their outcomes they looked at studies that used any form of adverse perinatal composite 

outcome, perinatal death, caesarean section for fetal distress, low 5-minute Apgar score (<7), 

acidosis, admission to NICU, neonatal brain lesion, morbidity other than a brain lesion, 

mechanical ventilation and SGA at birth. Their results indicate that the best utility for CPR is in 

predicting perinatal death in FGR fetuses with a pooled sensitivity of 93% (95% CI 78 – 98), 

pooled specificity of 76% (95% CI 74 – 78), positive likelihood ratio 3.9 (95% CI 3.4 – 4.5) and 

negative likelihood ratio 0.09 (95% CI 0.0 – 0.3). Other than perinatal death, as a standalone test, 

the CPR performed poorly with low predictability in FGR (Table 1-6) (78).  

 
1 This should be a positive likelihood ratio of 2.35 (ie: +LR = 0.705/1 – 0.70) 
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Table 1-6: Accuracy of the cerebroplacental ratio in predicting adverse perinatal outcomes 

(78). 

Outcome  

Number 

of 

Studies Women Sensitivity Specificity 

Positive 

Likelihood 

Ratio 

Negative 

Likelihood 

Ratio 

Perinatal 

Death 6 1,495 93 (78 – 98) 76 (74 – 78) 3.9 (3.4 – 4.5) 0.09 (0.0 – 0.3) 

Adverse 

Outcome 

Composite 11 2,658 57 (53 – 61) 77 (75 – 79) 2.5 (2.3 – 2.8) 0.6 (0.5 – 0.6) 

Caesarean 

Section for 

Fetal 

Distress 7 1,339 59 (54 – 64) 74 (72 – 77) 2.3 (2.0 – 2.6) 0.6 (0.5 – 0.6) 

Apgar@5 

<7 6 1,148 54 (42 – 66) 72 (69 – 74) 1.9 (1.5 – 2.4) 0.6 (0.5 – 0.8) 

NICU 9 2,206 45 (41 – 49) 79 (77 – 81) 2.2 (1.9 – 2.5) 0.7 (0.6 – 0.8) 

Acidosis 5 1,283 48 (38 – 58) 70 (68 – 73) 1.6 (1.3 – 2.0) 0.7 (0.6 – 0.9) 

Brain 

Lesion 5 352 56 (43 – 67) 48 (46 – 54) 1.1 (0.8 – 1.4) 0.9 (0.7 – 1.2) 

Morbidity 

other than 

Brain 

Lesion 4 547 78 (67 – 86) 33 (29 – 37) 1.2 (1.0 – 1.3) 0.7 (0.4 – 1.1) 

Mechanical 

Ventilation 1 176 90 (77 – 96) 39 (31 – 47) 1.5 (1.2 – 1.7) 0.3 (0.1 – 0.7) 

SGA 2 554 43 (39 – 47) 94 (84 – 98) 7.4 (2.5 – 22.4) 0.6 (0.5 – 0.7) 

NICU: Neonatal intensive care unit; SGA: Small for gestational age 

 

1.3.3.2 Appropriate for gestational age fetuses 

In a 2013 prospective study, Prior et al investigated 400 singleton, normally grown low–risk 

fetuses (15). The aim was to identify whether a low CPR was associated with an increased risk 

of compromise during labour. The UA PI, MCA PI and the CPR were all found to be associated 

with both instrumental vaginal delivery for fetal compromise and caesarean delivery for fetal 

compromise. ROC analysis was performed and the UA PI had an AUC=0.63, MCA PI 

AUC=0.64 and CPR AUC=0.69. Fetuses with a CPR <10th percentile had increased odds 

(OR=6.1; 95% C.I. 3.03 – 12.75) of being delivered via caesarean delivery for fetal compromise. 

Even after removing fetuses born with a BW <10th percentile, (indicating possible undiagnosed 

FGR), the association remained (15). 

In 2014, Morales–Rosello et al investigated the changes in fetal Doppler indices as a marker of 

failure to reach growth potential at term (14). This retrospective study included 11,576 singleton, 
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term pregnancies collected over a 10–year period. It demonstrated that high UA PI, low MCA PI 

and low CPR were all associated with LBW but within the normal range. The authors suggest 

that the changes in the Doppler indices were reflective of fetal hypoxemia in appropriately 

grown for gestational age (AGA) fetuses. This is an important finding as it has been previously 

believed that placental insufficiency (and the subsequent adverse perinatal outcomes resulting 

from this), had been only associated with SGA fetuses. But these changes in the Doppler indices 

that Morales–Rosello et al detected in this cohort of AGA fetuses, appeared to be similar to that 

seen in a SGA cohort (14). 

In a 2015 Akolekar et al performed a screening study of 6,178 AGA and SGA singletons 

between 35 – 37 weeks gestation. They found that despite there being a higher incidence of 

adverse outcomes in the SGA cohort, half of the stillbirths and the majority of cases of fetal 

distress, acidosis, admission to NICU and low Apgar score, occurred in the cohort that were 

AGA and that the CPR had poor sensitivity (11). 

A further investigation by Prior et al in 2014, sought to develop a composite risk score for 

predicting fetal compromise in labour comprising of the UA PI, MCA PI, the CPR and the 

umbilical vein (58). The authors used a point system to identify the severity of the individual 

Doppler indices. Over a 24–month period a cohort of 601 singleton pregnancies that had not 

been diagnosed as having FGR were recruited. Fetuses with the highest composite risk score had 

an incidence of emergency caesarean for fetal compromise of 53.5% compared to only 3.4% in 

the fetuses with lowest risk score of 0 – 2. They reported a marked improvement in positive 

predictive values from 36% observed using the CPR alone, increasing to over 50% when using 

combining Doppler indices as part of the composite risk score (58). 

Miranda et al combined maternal characteristics, fetoplacental ultrasound and biochemical 

markers in the third trimester to investigate adverse perinatal outcomes (79). Between January 

2012 and December 2014, 1,590 fetuses were recruited. Adverse perinatal outcome was defined 

as having suffered from one of the following outcomes; stillbirth, emergency operative delivery 

(caesarean or instrumental vaginal delivery) for non–reassuring fetal status, 5–minute Apgar 

score <7 or acidosis (cord pH <7.15 or base excess ≥12). Overall this study found that their 

combined screening model provided poor predictability for adverse perinatal outcomes, though 

there was some improvement when assessing SGA fetuses. Whilst individual components of the 

model indicated associations, the authors report that the sensitivity and positive predictive values 

were low (79). 

  



23 

 

In 2015, Khalil et al investigated the association between the CPR and intrapartum fetal 

compromise and admission to the NICU in term fetuses (53). Their study divided the cohort into 

four groups using a BW cut–off of the 10th centile (adjusted for gender and gestational age) and 

a CPR cut–off of 0.6765 multiple of the medians against previously published centiles (14, 53). 

They concluded that the CPR when measured at term is associated with admission to the NICU 

and emergency operative delivery for fetal compromise, even after adjusting for possible 

confounding. These associations were found to be higher in fetuses whose weight was AGA than 

in SGA fetuses with a normal CPR, indicating a stronger relationship between fetal compromise 

and a low CPR than fetal compromise and BW. The authors suggest that this is supportive of the 

theory that placental insufficiency leads to fetuses failing to reach their full growth potential 

regardless if their weights are AGA (53). Also, that irrespective of fetal weight, having a low 

CPR is independently associated with both admission to the NICU and fetal compromise (53). 

In a recent article by Khalil et al, they addressed the role of uteroplacental and fetal Doppler in 

identifying FGR at term (55). They point out the difference in assessing biometric measurements 

based on fetal growth and fetal size. A single ultrasound is only a point estimate and its only 

value is in assessment of fetal size. As the majority of SGA fetuses are constitutionally small, 

there is a need to involve longitudinal measurements of at least two scans. This allows 

assessment of growth velocity and fetal nutrition which places the measurements in context not 

only of population references but also in relation to individual’s constitution (55). 

Using a point estimate of the CPR as a standalone test is unsatisfactory as it has a low sensitivity 

of approximately 6 – 15% (11). And as pointed out by Khalil et al, population reference centiles 

of Doppler indices are needed to understand placental function in relation to what is considered 

normal (55). Thus, one aim of this project is to combine the CPR with other Doppler indices as 

well as known risk factors for adverse perinatal outcomes to devise a more accurate prediction 

tool.  

Morales–Rosello investigated the CPR’s ability to detect fetal compromise in AGA fetuses (80). 

They investigated 569 low–risk fetuses and found that the fetuses who experienced fetal 

compromise had low CPR measures weeks before birth. They suggested that the evaluation of 

the CPR alone could identify one third of fetuses that suffer from fetal compromise when they 

were considered low–risk and AGA (80). 
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1.4 Reference Centiles for Doppler Indices 

1.4.1 Centile Creation for Doppler Indices 

Many studies have developed reference ranges or centiles for the UA PI, MCA PI and for the 

CPR, with just as many different methodologies (12, 13, 57, 66, 72, 81-86). Reference ranges in 

relation to fetal growth or fetal size pose statistical problems due to the variation in distribution 

parameters between each gestational week (66).  

In 1990, Arduini and Rizzo developed reference limits for the UA PI, the descending aorta, 

internal carotid artery, MCA PI and renal artery (82). From a cross sectional design, they 

confirmed 1,556 healthy low–risk pregnancies for the reference creation. The authors report 

using quadratic regression analysis for umbilical artery, middle cerebral artery and internal 

carotid artery indices, and linear regression for the descending aorta and  renal artery for the 

construction of the references (82). 

Hercher et al (1992) created normal ranges for the UA PI, MCA PI and the CPR, to compare 

AGA and SGA fetal Doppler indices (13). They identified 127 singleton, AGA and with no 

malformations, to derive their reference ranges from. They found a linear relationship between 

the UA PI and gestational age and a quadratic relationship between both the MCA PI and CPR, 

and gestational age. Regressions based on the linear or quadratic relationship were then used to 

calculate the reference ranges (13).  

A 1995 study by Harrington et al developed cross–sectional reference ranges to assist in their 

investigation of the association between Doppler indices and the development of pre–

eclampsia/proteinuric pregnancy–induced hypertension (12). The authors identified 167 

uncomplicated, appropriately grown; term fetuses and these were used as the basis for the 

reference centiles. The modelling of the centiles was performed using a polynomial smoothing 

function. They addressed the changes in skewness across gestational age by including a term in 

the polynomial, az where a is the gestational age at the scan date and z is the standard normal 

deviate or Z–score. Model fitting was done using the least squares method, with centiles 

modelled and subsequent Z–scores derived from those centiles. Goodness of fit was performed 

on the models by plotting Z–scores against normal centiles and using tests of normality of the Z–

scores. All observations taken from the 167 uncomplicated pregnancies were used in the centile 

creation, meaning there were multiple observations for some fetuses, but this accounted for less 

than 5% of the raw estimates (12).  
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Kurmanavicius et al designed a study in 1997 specifically aimed to establish reference ranges for 

various Doppler indices (84). Measurements were obtained for 1,675 “normal” pregnancies, 

though exclusions based on SGA, prematurity or events that affected the fetus several weeks 

after the birth were not done retrospectively. Centile creation was done through the use of both 

linear and polynomial regression at each gestational age. Where residuals were skewed, 

transformations were used to create normal distributions. Log transformations were applied to 

the data for the measurements of the umbilical artery, non–placental uterine artery, placental 

uterine artery and mean resistance index of both uterine arteries, whilst the placenta–cerebral 

artery ratio was transformed by taking the inverse. These transformations were performed as a 

result of the assessment of the residuals showing a skewed distribution (84).  

Bahlman identified 962 low–risk pregnancies in a 2002 cross–sectional study and developed 

reference ranges for the MCA PI, the resistance index as well as the systolic, mean and end 

diastolic velocities (83). The methodology used for the creation of the ranges was suggested by 

Wellek et al using non–linear regression functions and fitting polynomial curves (quadratic) (83, 

87). 

Two further cross–sectional studies were performed in 2003 and 2004. Baschat and Gembruch 

aimed to create normative values for the CPR from 306 patients whilst Palacio et al derived 

theirs from 140 patients (72, 86). Baschat and Gembruch found a linear relationship between the 

UA PI and gestational age and a polynomial quadratic regression model best fitted for the MCA 

PI and CPR. Whilst Palacio et al found that a linear polynomial equation best fit for all 

parameters (72, 86). 

A 2005 longitudinal study by Acharya et al collected data on 130 low–risk pregnancies. Each 

woman had between 3 – 5 ultrasound scans with approximately 4–week intervals between scans, 

to collect umbilical artery Doppler indices (81). Skewness in the residuals of the data for the 

Doppler measurements of the UA PI and systolic–diastolic ratio was accounted for using 

logarithmic transformations and power transformations in the form of a square root was used for 

the resistance index. To account for the correlation within clusters, multilevel modelling was 

used, and fractional polynomials fitted for the relationship between gestational age and the 

Doppler indices (81). 

Parra–Cordero et al used the fetal artery and venous Doppler measures to create a number of 

reference ranges (88). They collected data for measures between 23 and 40 weeks gestation and 

had 172 for the UA PI and 160 measures for the MCA PI. Box–Cox transformation were used, 

and a weighted model fitted using orthogonal polynomials up to the 4th power. Goodness–of–fit 
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was assessed using plots of residuals for normality and homoscadacity (not described further nor 

illustrated) (88).  

Ebbing et al derived reference ranges for the MCA PI and the UA PI and blood velocities, as 

well as the CPR (66). Using a longitudinal study design, 161 singleton, low–risk pregnancies 

were scanned between 3 to 5 times with between 3 to 5 weeks interval between scans. This led 

to a total of 566 observations recorded between 19–41 weeks gestation. Similar to the Acharya 

study, multilevel modelling was used to account for within subject correlation. Box–Cox power 

transformations were used to transform the continuous Doppler indices to normal distributions. 

Again, fractional polynomial regression models were used to fit centile curves (66). 

Furthermore, due to the longitudinal study design the authors calculated conditional reference 

values, where each reference interval is calculated in respect to the previous measurement based 

on the mean, variance and covariance between the two measurements (66, 89).  

Morales–Rosello et al created ranges of the vertebral and MCA PI and peak systolic velocity, 

and the CPR (90). Using 2,323 measures they excluded fetuses with malformations and multiple 

pregnancies. There appears to be no other exclusion criteria. Little methodology is described 

except for tests of normality and the use of percentile regression (90). 

A 2016 study by Seffah and Swarray–Deen produced ranges of the pulsatility index, the resistive 

index, the peak systolic velocity and Systolic/Diastolic ratio for the middle cerebral artery, using 

a prospective cross–sectional study which captured 458 measures between 20 weeks and 40 

weeks gestation (91). Other than correlation and regression analyses to evaluate the correlation 

between the Doppler measures and gestational age, no other statistical methods are described 

(91).  

In the study by Harrington et al we start to see the evolution of the centile creation in terms of 

Doppler indices. They recognised the need to adjust for the changing standard deviations at each 

gestational age, and also the appropriateness of publishing the results of the assessment of the 

model fit for the data (12). Kurmanavicius’ 1997 study took centile development step further 

(84). Not only did they adjust for the change in variance at each gestational age, data 

transformations were used to adjust for the deviations from the normal distribution that were 

displayed in the assessment of the residuals as functions of gestational age (84). The longitudinal 

study by Acharya et al shows not only the additional statistical considerations that apply to this 

form of study design but also show a further evolution in centile creation (81). The multilevel 

modelling accounted for the high correlation that exists within subject measurements and also 

the use of fractional polynomials is a much more flexible parameterisation of continuous 
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variables of the Doppler indices. Ebbing et al took the calculation of reference centiles even 

further by using the Box–Cox power transformation that addresses issues with the third 

parameter of distribution – skewness (92). Also, whilst the multilevel modelling adjusts for the 

correlation within subjects, using the conditional reference intervals based on Royston’s 1995 

paper, further addresses the issue of bias and the possibility of unusual patterns arising from 

repeated measurements (89).  

In 2018, Oros et al published a systematic review for reference ranges for the UA PI, the MCA 

PI and the CPR (93). Their search criteria included observational studies aimed at creating 

reference ranges of the UA PI, MCA PI and the CPR. They identified 2,902 studies of which 38 

studies met their inclusion criteria, though their search period ended almost 2 years prior to 

publication. Their results determined that the studies of Medina Castro et al2 (94), Parra- 

Cordero et al (88), and Arduini et al (82) were the highest scoring studies for ranges of the UA 

PI. Medina Castro et al2 (95), Seffah et al (91) and Bahlman et al (83) were the highest scoring 

for the MCA PI. For the CPR they found Morales–Roselle et al, Ebbing et al (66) and Baschat 

(72) to be the highest scoring (93). Surprisingly there was no mention or reference to the 

methodology employed by the WHO for the Intergrowth–21st project which conducted 

comprehensive research into appropriate methodology for anthropometry. Furthermore, the 

studies that were identified having the highest score often had poorly described methodologies 

and in the case of Baschat inadequate sample size with more than half the gestational weeks 

having less than 15 subjects with the highest number being 25 at 20 weeks gestation (72).  

Ciobanu et al recently published an article whose aim was to create reference ranges for the UA 

PI, the MCA PI and the CPR (96). They included all singleton pregnancies with no exclusion 

criteria and offered scans at 11+0 to 13+6 weeks and at 20+0 to 22+6 weeks. Another scan was 

then offered at 31+0 to 33+6 weeks between 2011 to 2014 but then change to between 35+0 to 

36+6 for the study years 2014 to 2018. A final scan was offered between 41+0 to 41+6 weeks. 

Median and standard deviation models were fitted to all Doppler parameters. The authors state 

that the median was obtained by the use of regression analysis and polynomial forms obtained 

from plots of gestational age against daily medians. The standard deviation was derived from log 

transformations and then quadratic regression models fitted. Goodness of fit was assessed 

through q–q plots (96).  

This haphazard approach to centile creation goes against what methodologists such as Altman, 

Royston and Cole have suggested for accurate centile creation (97-104). The authors chose to 

 
2 Studies published in Spanish and not reviewed in this thesis 



28 

 

measure the indices in gestational groups which not only goes against the most appropriate 

choice of using the smallest possible time period (ie: gestational age in days) but 

methodologically is a backwards step (104, 105). Blocking or only using grouped measures in 

centile creation leads to over–smoothing and less flexible models (105). It ignores the underlying 

changing distribution across time periods (101). In a time where additive models allow complex 

data transformations that correct all four parameters of distribution as well as multiple choices of 

polynomial and other smoothing parameters, these authors have chosen a poor study design and 

methodological approach.   

1.4.2 Study Design for Reference Centile Creation 

In the late 1980’s and 1990’s there were a series of papers written that identified issues in the 

study design and statistical analysis of data in relation to reference ranges and growth curves for 

fetal size (89, 97, 98, 102-109). Although there have been advancements in the development of 

statistical models to refine the accuracy of growth centiles, the principles outlined in those series 

of papers are still very much relevant and cited in current journal articles on Doppler and general 

fetal growth centiles (66, 81, 85, 110). 

Cole describes a technique of deriving centile charts by providing a set of smoothed centiles that 

allows consideration of the changing skewness across time points (100). Referred to as the 

lambda–mu–sigma or LMS method, it involves splitting the outcome variable into a number of 

groups that is equivalent to the number of time points. Transformation of the data using varying 

Box–Cox transformations, that are able to use a different power estimation for each time point, 

results in estimates of generalised means, coefficients of variation and skewness (100). These 

can then be plotted against the independent variable that is the time points, creating smoothed 

curves for the mean, standard deviations and power (which provides information regarding the 

change in skewness). These in turn can be used to generate the smoothed centile curves that 

cover each time point (100). Whilst the benefit of Cole’s LMS method is that it is able to 

summarise the distribution for each time point of the covariate, it does not adjust for kurtosis in 

the modelling (100, 111).  

In the discussion of Cole’s paper, Green identifies the complexity of fitting and smoothing as 

different stages and separate steps for each of the LMS curves (100, 111). Furthermore, issues 

surrounding grouping of the covariate, lead Cole and Green to utilise the penalized likelihood 

method to smooth the centiles (111). This process involves making the smoothing of the LMS 

curves part of the maximum likelihood and involving roughness penalties (111). 
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Royston, in 1991 wrote a “cookbook” for “constructing time–specific reference ranges” (102). 

He identifies that the mean and standard deviation varies when dealing with time–specific 

variables and must be included in any calculation of reference ranges. In this paper, Royston 

describes six steps in creating the ranges (102). Within these steps he outlines the importance of 

starting with a regression model and using a backwards regression method to identify the best fit 

of the regression model using low order polynomials. He advises to check the distribution of 

both the raw and residual data across three equal categories of the time dependant variable, 

transforming the data to adhere to the assumption of normality is essential for his method, and 

plotting the residuals to check the fit of the data. He suggests using either linear, quadratic or 

cubic polynomial curves and dealing with non–normal data with logarithmic or Box–Cox power 

transformations. Assessing the goodness–of–fit should be done using normal plots, Shapiro–

Francia W tests and histograms of the residuals (102). 

Following Royston’s “cookbook”, in 1993 Altman published an approach that deals with the 

varying standard deviation between individual time points (106). Royston’s method deals with 

standard deviation changes when they are linear but it fails to cope with non–linear variation 

which is often observed between time points in measurements of fetal size. Altman primarily 

deals with this non–linear trend by assessing the distribution of the outcome variable (y) at each 

individual time point or gestational age (x). Under the assumption for the parametric method of 

creating a reference range, at each x, y has a normal distribution and subsequently, the residuals 

at each x should also have a normal distribution (106). However, Altman suggests that as the 

standard deviation varies between each gestational age, testing for normality of the residuals 

should be performed on the standardised residuals. Standardisation is performed by: 

𝑦𝑖 − 𝑦𝑝𝑟𝑒𝑑(𝑥𝑖)

𝑠𝑝𝑟𝑒𝑑 (𝑥𝑖)
 

Where 𝑦𝑝𝑟𝑒𝑑 and 𝑠𝑝𝑟𝑒𝑑 are the estimated age–specific, mean and standard deviation of y, and 𝑦𝑖 

and 𝑥𝑖 are the subsequent values of y and x for the ith subject (106). By calculating the reference 

centiles on each gestational age and using standardised residuals to check for normality of the 

residuals (i.e. checking the goodness–of–fit of the model), this approach is a simple way to 

model parametric reference centiles with variation of the standard deviation (106). 

Altman co–wrote a study and an opinion piece with Chitty in 1993 and 1994, outlining the 

methodology of fetal size charts and “design and analysis of studies to derive charts of fetal size” 

(97, 98). The opinion piece identified several design flaws that were constantly appearing in 

studies that presented standards of fetal size (97). The most common design flaws identified 
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were; inappropriate sample selection, unclear methodology surrounding the number of 

measurements per fetus, unreasonable inclusion/exclusion criteria, small sample sizes, unclear 

dating of pregnancies and being unclear if the measurements were single measurements or 

averages of several (97). It aimed to implement the suggestions from the opinion piece in a real 

world situation (98). This methodology paper, for cross–sectional data, outlined that the study 

design should be prospective and the sample should be unselected (98). Selection criteria should 

include only normal fetuses, excluding congenital abnormalities and maternal conditions such as 

diabetes or renal disease (97, 98). They also suggest including fetuses that die and to only make 

use of information available at the time of the examination (97, 98). The statistical methodology 

follows that of the previous 1993 Altman study; modelling the mean by fitting a polynomial 

regression model, calculating the residuals against gestational age, modelling the variability by 

using a polynomial regression to model the standard deviation as a function of gestational age, 

calculating the standard deviation scores and using them to assess goodness–of–fit, and finally 

obtaining the centiles (98, 106). 

Cole’s LMS method of centile creation failed to account for kurtosis in his modelling of centiles 

(100). Royston and Altman’s approaches were parametric with the assumption of normal 

distribution, and while data transformation is an option, it also fails to correct for kurtotic data 

(102, 106). Cole and Green considered kurtosis a less important contributor to normality than 

skewness and that it would require fitting a fourth curve at a substantial cost for little benefit 

(100, 111). This may be the case in relation to a measurement of central tendency but not so 

when considering measurements of variability – an essential consideration in the creation of 

growth centiles (112). 

Ignoring the effect of kurtosis on the distribution of the data and subsequent effects on the 

creation of centiles can lead to erroneous modelling and a distortion of the centiles (92). One of 

the issues previously faced when modelling kurtosis was the use the generalised linear model or 

generalised additive models where the dispersion parameters of variance, skewness and kurtosis 

are all modelled through their dependence on the mean and not in terms of the explanatory 

variable (113). 

The World Health Organisation (WHO) devised the Intergrowth–21st project with the aim to 

develop international standards measuring fetal growth that is determined by ultrasound 

assessment and fundal height, preterm postnatal growth, newborn size and body composition, 

maternal weight gain, and 2nd year infant development (114). The authors make the distinction 

that reference ranges, or centiles, only describe the growth of a particular population during a 
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specific time and place. While growth standards are derived from a healthy population that are 

selected so that any constraints of environment, nutrition and health are minimalised and such 

that the standards report the growth that the fetus should experience. The study was able to 

develop the standards from more than 4,500 observations that were nested in 59,137 low–risk 

pregnancies. The populations where the pregnancies were identified had to be free–living with 

the number of constraints on growth kept to a minimum and also have favourable maternal and 

perinatal outcomes. The study was able to employ specialised staff that took ultrasound 

measures every 5 weeks, using standardised techniques on similar ultrasound machines. This 

amount of quality control as well as the avoidance of potential observer bias by blinding the 

measurements, enabled the study to ensure a uniform approach resulting in consistency of 

measurements (114).  The robust methodology employed by the WHO to selected population 

that aims to reduce measurement bias, is an approach that is unrealistic to the vast majority of 

researchers due to geographical and financial restraints. The authors criticise population specific 

reference intervals as being “fallacious” due to variations in fetal growth across regions being 

dictated by their geographical location and that these artificial boundaries nullify within 

population heterogeneity (114). However, both methodologies are valid but use different 

approaches to devise different reference charts (115).  

Professor Douglas Altman’s involvement in the Intergrowth–21st project motivated him to revisit 

the methodology and study design of growth references and standards (115). Along with Ohuma, 

the paper discusses many of the recommendations outlined in Altman’s previous papers on this 

subject (97, 98) but in more depth. The authors address the use of cross–sectional data for charts 

on fetal size and longitudinal data for charts on fetal growth (trajectories) and the choice of data 

depends on the use for which the charts are intended. They also emphasise the importance of 

appropriate populations and samples, and the subsequent ability to generalise to the general 

population for which the charts are intended (115). This point is expanded to discuss the 

descriptive verses prescriptive approaches to reference charts and the utility of both approaches. 

The descriptive approach refers to the construction of reference charts at a particular place and 

time from a given population. They often come from unselected populations with minimal 

exclusion criteria and while more common than the prescriptive approach the charts are 

restricted in their generalisability. Conversely, the prescriptive approach is the one used by the 

Intergrowth–21st project and its aim is derive size or growth standards from a highly selected 

optimal population (115). While the descriptive approach has greater generalisability and 

representativeness within the constructed (and similar) populations, the prescriptive approach 
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comes from more diverse populations which allows comparisons to be made across different 

populations, e.g. internationally (115).  

Discussed within this paper also was the use of routinely collected data. Concerns were raised in 

regards to the accuracy, standardised collection and documentation as well as the completeness 

of routinely collected data. However, a study by Villar et al (116) showed excellent data quality 

of antenatal, maternal and neonatal anthropometry data collected in a large obstetric teaching 

hospital. They tested the agreement between data collected by hospital staff compared to data 

collected by a physician and social worker that were specifically trained and found the 

agreement between anthropometric measures to be excellent (115, 116).  

There are four factors that Ohuma and Altman considered for appropriate statistical 

methodology for modelling anthropometry data. They recommend appropriate assessment of 

normality across gestational ages, accounting for the variability across gestational age by 

modelling both the mean and standard deviation, provide smooth curves across the centiles by 

gestational age and graphical goodness–of–fit assessment of the predicted model compared to 

the raw data (115). 

Professor Tim Cole’s 2012 paper discussed the progression of anthropometry charts for clinical 

use. In it he describes the evolution from Count Philibert de Montbeillard’s measure of his son’s 

height, to his own development of the LMS method and the more recent adaption and 

progression to the generalised additive model for location, scale and shape (GAMLSS) 

developed by Rigby and Stasinopoulos (101, 113). He describes the new methods and the study 

by Borghi et al, who, for the WHO Multicentre Growth Reference Study Group, compared 30 

different methodologies for the creation of anthropometry charts and found that the GAMLSS 

method to be the most appropriate (99, 101). 

The GAMLSS method is a semi–parametric univariable regression technique that requires a 

normal distribution of the response variable but has the flexibility to use non–parametric 

smoothing functions for the explanatory variable (92, 113, 117). It has the ability to cope with 

highly skewed and kurtotic data by replacing the exponential family distribution with a more 

general distribution family for the response variable (117). Using the Box–Cox power 

exponential distribution with this method, allows modelling of not only positive or negatively 

skewed data but also accounts for both leptokurtic and platykurtic data (117). This results in 

better fitting models and subsequently more accurate centile creation. Smoothing between the 

values of the explanatory variable can be performed using a number of techniques including, 

(but not restricted to); penalised basis splines, loess, fractional polynomials and cubic splines 
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(117). Assessment of different models can be done through assessment of the global deviances, 

generalised Akaike Information Criterion or the Schwartz Bayesian Criterion (117). However, 

the GAMLSS package offers a comprehensive array of model diagnostic tools, both graphical 

and quantitative which should be used as the final decision of the goodness–of–fit. 

 

1.5 Thesis Aims and Objectives 

1.5.1 Project Aim 

Using the Mater Mothers’ Hospitals perinatal data set, identify maternal and perinatal factors 

associated with adverse perinatal outcomes at term and to develop a model for identification of 

at–risk pregnancies. 

The primary aim will be addressed through a number of objectives. The objectives need to 

investigate the appropriateness of using routinely collected data for research purposes. While 

epidemiologists often use surveillance data for research purposes, in general, routinely collected 

data has been avoided due to concerns regarding the integrity. This thesis, therefore, will assess 

the data integrity and generalisability of the Mater Mothers’ Hospitals data through a 

comparison to Australian national data accessed from the Australian Institute of health and 

Welfare as well as a trend analysis from 2010 – 2016. 

The thesis also aims to use ultrasound–based variables to enhance the accuracy of the prediction 

models and has dedicated three chapters to investigate the utility of the ultrasound measures of 

the EFW and the CPR. Initially it investigates whether the diagnostic predictability is enhanced 

when using both the CPR and EFW. Another chapter investigates whether the utility of the CPR 

as a predictive variable is enhanced if we measure the change in CPR over time. The final 

chapter investigating the ultrasound–based variables is dedicated to creating a new set of 

reference ranges for the UA PI, MCA PI and CPR. This was necessary as the existing reference 

ranges all suffered from poor methodology and in the case of the CPR, the ranges that have been 

described as using the most robust methodology we considered too high as 20% of our mothers 

had a CPR that was less than their 10th centile (66, 93).  

Finally, this thesis develops two separate predictive models to identify pregnancies at risk of 

emergency caesarean section for non–reassuring fetal status and a severe neonatal composite 

outcome. 
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1.5.1.1 Primary Objective 

Develop two statistical models using the Mater Mothers’ Hospitals perinatal data set, that 

enables clinicians to identify pregnancies that are at risk of emergency caesarean for non–

reassuring fetal status and a serious composite neonatal outcome at term.  

 

1.5.1.2 Secondary Objectives 

1. Investigate the use of routinely collected data for the purpose of research.  

2. Assess data integrity and generalisability of the Mater Mothers’ Hospitals data. 

3. Describe birth trends and adverse perinatal outcomes over a 6–year period (2010 – 2016) 

at the Mater Mothers’ Hospitals, Brisbane.  

4. Investigate the associations of the EFW and CPR and pregnancies that are at risk of 

emergency caesarean for non–reassuring fetal status and a serious composite neonatal 

outcome at term.  

5. Investigate the relationship between the magnitude of change in CPR in the third 

trimester of pregnancy and the risk of adverse perinatal outcome. 

6. Develop reference centiles for the ultrasound measurements of the UA PI, the MCA PI 

and the CPR using the GAMLSS approach. 

7. Develop a model for the prediction of emergency caesarean section for non–reassuring 

fetal status at term utilising maternal and ultrasound–based variables. 

8. Develop a model for the prediction of a severe neonatal composite outcome comprising 

of any of the following outcomes: severe acidosis (pH <7.0 or Lactate ≥6mmol/L or Base 

Excess ≤12), Apgar score at 5 minutes ≤3, admission to NICU or perinatal death, at term 

utilising maternal and ultrasound–based variables.  
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 Use of Routinely Collected Data: Birth Trends Between 2010 

– 2016  

 

2.1 Introduction 

2.1.1 The Use of Routinely Collected Data for the Purpose of Research 

Increasingly, hospitals are recognising the value of routinely collecting data that can be used for 

numerous reasons including health economic analysis, disease surveillance and biomedical 

research (118, 119). This has led to substantial increases in resources dedicated to the set–up and 

maintenance of clinical databases as well as the education for staff that collect this data. 

Pragmatic studies that analyse routinely collected data (RCD) can be an informative and cost–

effective way to understand disease progression and the efficacy of treatments in real–world 

settings. However, studies using RCD can be subject to inherent bias and thus analysis of the 

data and interpretation of the results must be done with caution (118, 120). 

Using RCD is a more pragmatic approach to research that allows assessment of data obtained 

from a real–world setting that does not interfere with usual care and therefore more accurately 

reflects clinical practice (121, 122). Research using RCD can be performed on appropriately 

targeted populations, with large samples over a long time period but at a low cost (123). 

Historically concerns regarding data integrity meant that studies using RCD tended to be 

avoided by the majority of clinical epidemiologists (123). While vast improvements have been 

made to promote accuracy in data collection it is necessary to understand the challenges 

associated with using RCD and evaluate the data’s weakness to interpret the validity of the 

results. 

The RCD cohort’s data are collected in the clinical setting under routine conditions, therefore the 

studies can sacrifice some internal validity but often result in greater generalisability (124, 125). 

Several factors can influence the validity and generalisability of studies using RCD (119, 122).  

A major threat to a study’s validity and generalisability is the influence of confounding (122). 

Confounding can seriously affect the results of a study as fictitious associations between the 

outcome of interest and exposures may be observed (126). In an RCT, confounders are generally 

avoided by using randomisation in a highly selected cohort and controlled study environment 

(125, 127). The randomisation should ensure that any variables, both measured and not 

measured, that exhibit confounding effects on the outcome are distributed evenly between the 



36 

 

groups (127). In a pragmatic trial using RCD, known confounders can generally be adjusted for 

using statistical techniques such as multivariable regression or propensity score matching (118). 

The studies however, are still susceptible to bias through unknown (or unmeasured) confounders 

which can affect the internal validity of the results (122).  

A cohort in an RCT is usually highly selected after being subjected to rigorous inclusion and 

exclusion criteria. The aim is to maximise the probability that an observed effect can be 

measured when a treatment is applied, but the study population and environment rarely has the 

complexity and diversity seen in real–world clinical situations (122, 124). Conversely, a cohort 

in a pragmatic study is targeted, with the aim to represent the population that the treatment 

would be applied to in a real–world situation (122). Whilst the later has been shown to often 

either overestimate or underestimate the effect, it is reflective of what the clinician would 

observe in routine clinical practice (122). 

A benefit to pragmatic studies using RCD is the absence of the “Hawthorne effect”. This occurs 

when a study subject is aware that they are participating in a trial. This knowledge may affect 

their behaviour, influencing the measurements and the subsequent relationship to the outcome 

(128-130). This effect can be extended to the trial care providers. Patient care of participants 

within trials usually exceeds that of usual care and the change in routine behaviour of both care 

giver and receiver can bias observations and measurements (130).  

While routine data collection does not influence usual care or clinical practice, it is governed by 

the needs of clinical practice. As the primary purpose of the data collection is to support patient 

care it may lack the necessary detail required for comprehensive or detailed analysis (121). 

There may also be bias through measurement error due to more variability and missing data 

within RCD as it is collected by numerous people over a large time period and is often 

incorporated into the daily tasks of the care givers (118, 121).  

 

The subsequent parts of this chapter will address the following objectives: 

1. Assess data integrity and generalisability of the Mater Mothers’ Hospitals data. 

2. Describe birth trends and adverse perinatal outcomes over a 6–year period (2010 – 2016) 

at the Mater Mothers’ Hospitals, Brisbane.  
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2.2 Data Sources, Integrity and Generalisability 

2.2.1 Data Sources 

2.2.1.1 National Australian Institute of Health and Welfare Data 

National data was accessed from aggregations of yearly reports of the perinatal data 

visualisations from the National Perinatal Data Collection, published by the Australian Institute 

of Health and Welfare (AIHW) for the years 2010 – 2016 (131). The purpose of these data is to 

report an overview of the mothers and babies that birthed for the corresponding year within 

Australia. It includes maternal demographics, data from the antenatal period, during labour and 

birth and for the outcomes of the baby. It is collected for each state and territory within Australia 

and reported as totals as well as different disaggregation’s according to various maternal factors 

and clinical or policy relevance (131, 132). Each year the data visualisations are published into a 

report on the key statistics from the AIHW’s National Perinatal Data Collection which is a 

delayed released due to the time required to analyse the data and develop the report (132). All 

categories used for comparisons between AIHW data and Mater Mothers’ Hospitals (MMH) 

data that are presented in this chapter were based off the data aggregations and categorisations of 

variables that were presented in the AIHW reports. 

 

2.2.1.1 Mothers and Babies Research Database 

The primary data set used throughout this thesis is a refined data set extracted and manipulated 

from the Mothers and Babies Research Database (MBRD) – a comprehensive Database 

developed by the Mater Research Institute-University of Queensland (MRI-UQ). The MBRD 

captures data from the mothers and babies that birthed at MMH in South Brisbane. It contains 

data from 1st January 1997 until 30th April 2017 which equates to 173,129 births and is an 

integrated database sourced from several separate entities. It captures routine collected data in 

relation to obstetric, neonatal and perinatal outcomes as well as some in relation to growth and 

development and diagnosis– related group (DRG) codes. 
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2.2.2 Databases that make up MBRD 

2.2.2.1 Obstetric Data 

The Obstetric Clinical Reporting System (CRS) was the database that was originally the basis 

for the MBRD. It captured routine obstetric data from 1st January 1997 until 30th April 2007. The 

Matrix obstetric database superseded CRS from 1st May 2007 until present. These two databases 

are the source of the vast majority of information held in the MBRD. Data is entered into Matrix 

by the midwives caring for each patient. Data integrity is checked by a Matrix data team who 

perform aggregated, by–yearly checks as well as individual random patient checks against 

patient notes. 

2.2.2.2 Neonatal Data 

Neonatal data for babies admitted to the Neonatal Critical Care Unit was originally captured in 

the neonatal intensive care units (NICUS) database which included data on all admissions (that 

were greater than 24 hours) to special care nursery (SCN) and intensive care nursery (ICN). The 

NICUS database was used from 1st January 1997 until 31st December 2009. A database known 

as BadgerNet was implemented to replace the NICUS database but due to multiple technical 

issues the system was abandoned. In response to the failure of BadgerNet, data regarding 

neonatal time in ICN and SCU was sourced from the Australian and New Zealand Neonatal 

Network (ANZNN). However, this only lasted from 1st January 2011 until 31st December 2012. 

As a result, information regarding treatments in ICN or SCN is limited to the period from 1st 

January 1997 until 31st December 2012.  

Information in relation to perinatal mortality has been sourced from the Perinatal Mortality 

Database. The Perinatal Mortality Database is a purpose–built database collecting data regarding 

the date, type and classification of death as well as limited information in relation to whether an 

autopsy was performed.  

2.2.3 Importing and Management of Data in the MBRD 

Data were extracted from all sources as comma separated Microsoft excel files and then 

imported into the STATA statistical package for data merging or appending, cleaning and 

manipulation. A series of syntax files (“Do” files) created in STATA are run in a sequential 

order. These files are named and numbered to ensure that the process is systematic and can be 

easily replicated. Merging or appending files is done using the Maternal Unique Record Number 

(UR), Fetal UR, Fetal Date of Birth and Birth Order. This ensures that each record is unique. 
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Duplicated Maternal UR or Fetal UR are checked manually and adjusted accordingly. Once the 

MBRD is updated a series of STATA “Do” files are run that are designed to cross check 

variables and check for discrepancies. Further checks of the data’s integrity are performed 

through checking all data fields of a random sample of entries and checked against the original 

data sources.  

 

2.3 Data Integrity and Generalisability 

2.3.1 MMH Study Dataset 

Similar to many other data sets of routinely collected data over a substantial time period, there 

are inconsistencies and periods of missing data within MBRD. Whilst the obstetric and perinatal 

death data have been consistently collected in the MBRD since 1997, there are major 

inconsistencies in regard to neonatal data and maternal DRGs.  

The data used for this thesis consists primarily of obstetric and perinatal mortality data, with 

only cause of death attributed to congenital abnormality sourced from ANZNN for 2011– 2012.  

The MMH study dataset was collected over a 7 year and 4–month period extracted from the 

MBRD between the 1st January 2010 to 30th April 2017. Initial data integrity was assessed using 

a by year analysis and where data was missing, those years were excluded from any analysis 

including those variables. Where a number of years were missing, or data was of questionable 

integrity, with sudden drops in numbers that were not due to a change in treatment or policy, 

further investigation was undertaken in an attempt to understand the discrepancies. After 

accessing the source data and having discussions with the data custodians, midwives and nurses 

that had entered data into the databases, as well as the Data Management and Analysis team 

members from Mater Research, if the discrepancies could not be resolved those variables were 

excluded from the dataset. Due to the data being collected over an extended period of time as 

well as changes to the clinical database providing the data required, aggregations and 

manipulations were done to collapse several categorical variables into dichotomous outcomes. 

Efforts were made to correct missing or data entry errors through searches of patient records 

through both Verdi In–Patient Database and Matrix Obstetric Database. Verdi In–Patient 

Database is a database that captures in–patient information for all admissions to the Mater Adult 

Hospital and MMH. Where large amounts of data were missing and mainly only outcomes were 

recorded, missing entries were changed to indicate that the event did not happen. Again, this was 
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done after accessing the source data, having discussions with the data custodians, midwives and 

nurses that had entered data into the databases and Data Management and Analysis team 

members from Mater Research. Only then was it decided that it was reasonable to assume that 

when entries were incomplete it was because the event had not occurred. 

2.3.2 Variable Descriptions 

All births between 1st January 2010 and 31st December 2016 were included. 

When required, all variables for this analysis were aggregated and/or categorised to reflect the 

collection and reporting methods that are presented in the data visualisations of the National 

Perinatal Data Collection (131).  

Definitions of the variables investigated were as follows; insurance status were the proportion of 

mothers that were treated as a privately insured patient or a patient treated in the public health 

system with no private insurance. Maternal age was categorised into 5 yearly intervals <20 

years, 20 – 24 years, 25 – 29 years, 30 – 34 years, 35 – 39 years and ≥40 years of age. Maternal 

body mass index (BMI) was categorised to reflect those categories reported in the National 

Perinatal Data Collection (131). The BMI categories are; underweight (BMI <18.5), normal 

(BMI 18.5 – 24.9), overweight (BMI 25.0 – 29.9), obese 1 (BMI 30.0 – 39.9), obese 2 (BMI 

40.0 – 49.9) and obese 3 (BMI ≥50). Australian born was a dichotomous variable indicating 

whether the mother was born in Australia and Indigenous ethnicity was also a dichotomous 

variable that indicates if the mother identifies as Aboriginal and/or Torres Strait Islander 

ethnicity. Smoking reports the proportion of women who self–reported as smoking during 

pregnancy. Nulliparous is a dichotomous variable that reports whether this was the first 

pregnancy for each woman. Pre–existing diabetes include women that had diabetes mellitus 

before getting pregnant. Hypertension also includes women who had hypertension before getting 

pregnant. Labour is a three–level categorical variable that indicates whether the mother had a 

spontaneous labour, an induced labour or had no labour and went straight too caesarean section. 

Method of birth is also a three–level categorical variable of spontaneous vaginal delivery (SVD), 

instrumental delivery (forceps and/or vacuum deliveries) or caesarean section (either elective or 

emergency). Of the perinatal outcomes, the gender recorded was male, female and indeterminate 

gender. Gestational age at birth is a five–level categorical variable reported as; 20+0 – 27+6 

weeks, 28+0 – 31+6 weeks, 32+0 – 36+6 weeks, 37+0 – 41+6 weeks and ≥42+0 weeks. Birth 

weight is also a five–level categorical variable of; <1,500 grams, 1,500 – 2,499 grams, 2,500 – 

3,499 grams, 3,500 – 4,499 grams and >4,500 grams. Apgar score at 5 minutes is a categorical 
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variable with three levels (0 – 3, 4 – 6, 7 – 10). It is derived from an assessment out of 10 of the 

baby’s health status at 5 minutes after birth, based on the heart rate, respiratory effort, muscle 

tone, reflex irritability and colour (133). The levels of the category reflect the severity of the 

baby’s health with the category of 0 – 3 being severely ill and 7 – 10 reflecting the baby being in 

good to excellent condition. Neonatal intensive care unit (NICU) or special care nursery (SCN) 

admission is a dichotomous variable indicating if the babies was admitted to either level of 

higher–level care. Still born is a dichotomous variable of babies that are born without any signs 

of life after 24 weeks gestation. Neonatal death is also a dichotomous variable of babies that 

have died within the first 28 days of being born. Perinatal death is an aggregation of still born 

and neonatal death. 

 

2.3.3 Statistical Analysis  

2.3.3.1 Comparison of MMH to AIHW Data 

Data were reported as percentage and number. Due to the large numbers and the purpose of this 

table being for descriptive purposes only, no hypothesis tested using formal statistical testing 

was performed. The large numbers mean that trivially small effects would be found to be 

significantly different if decided using P values (132), therefore significance was interpreted on 

differences that were deemed to be clinically meaningful. 

2.3.3.2 Trend Analysis 

Variables are all categorical and as such are reported as percentage (n/N). Tests for trends in 

both the MMH and AIHW data were assessed using Patrick Royston’s User written Stata 

command – ptrend (134).  This command enables the calculation of a chi–square statistic for the 

regressions or trend of the proportion variables of interest on the year of delivery (134). Due to 

the large sample size, interpretation will be done with caution with clinical relevance taken into 

consideration. 
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2.4 Results 

2.4.1 Comparison of AIHW and MMH Data   

2.4.1.1 Maternal Demographics  

The comparison of the maternal demographics of the AIHW cohort and the MMH cohort are as 

follows (Table 2.1): 

• Insurance Status – There was a greater proportion of public patients in the AIHW data 

(72.6%) compared to MMH (56.0%). 

• Maternal Age –  

o There was a higher proportion of women aged less than 20 years and 20 – 24 

years in the AIHW cohort (3.2% & 13.2%) compared to MMH (1.6% and 8.5%).  

o The proportion of women aged 25 – 29 was also higher in the AIHW cohort 

(27.5%) compared to the MMH cohort (23.3%).  

o Women aged 30 – 34 years were the highest representative age group for both the 

MMH cohort (37.6%) and the AIHW cohort (33.5%).  

o MMH had 23.1% of women aged 35 – 39, while 18.3% of mothers were the same 

age in the AIHW cohort.   

o The oldest age group of 40+ years had the highest proportion of women in the 

MMH cohort (5.9%), with 4.3% of women aged 40+ in the AIHW cohort. 

• BMI Categories –  

o There were substantially more underweight women in the MMH cohort with 

7.0% of women found to be underweight compared to 3.6% in the AIHW cohort.  

o Of women in the MMH cohort, 59.7% had a normal BMI, while 45.8% of the 

National AIHW cohort were within the normal BMI range.  

o There was a higher proportion of overweight women found in the AIHW cohort 

(23.9%) compared to the MMH cohort (19.6%).  

o The AIHW cohort had higher percentages in all three obese categories (15.8%, 

2.5% & 0.3%) compared to the MMH (10.9%, 1.7% & 0.2%).  

• Australian Born – A higher proportion of women in the AIHW cohort were born in 

Australia (68.3%) compared to the MMH cohort (62.0%).  

• Indigenous Ethnicity – There was a higher proportion of Indigenous women recorded in 

the AIHW cohort (4.1%) with comparably less recorded in the MMH cohort (1.9%). 
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• Smoking Status – 14.2% of women within the MMH cohort reported smoking during 

pregnancy, while 11.5% were reported in the AIHW cohort.  

• Nulliparity – There were more nulliparous women in the MMH cohort with 46.6% 

women never given birth compared to the AIHW cohort of 43.0%. 

• Pre–existing Diabetes – there was little difference in the proportion of women who had 

pre–existing diabetes between the MMH (0.7%) and AIHW cohorts (0.8%). 

• Hypertension – there no difference in the proportion of women who had hypertension 

between the MMH (0.8%) and AIHW cohorts (0.8%). 

• Induction of Labour –  

o There was little difference in the number of women having an induction of labour 

between the MMH cohort and the AIHW cohort (28.4% & 27.5% respectively).  

o There was however, a higher percentage of women that had no labour and went 

straight to caesarean section within the MMH cohort (25.2%) compared to the 

AIHW cohort (20.3%). 

• Method of Birth –  

o The most prolific method of birth was spontaneous vaginal births for both cohorts 

with 54.4% in the AIHW cohort and 49.7% at the MMH.  

o The was no difference in the proportion of instrumental deliveries between the 

AIHW and MMH (12.3% vs 12.7% respectively).  

o The second most common method of birth was via caesarean section with 33.3% 

of women having a caesarean in the AIHW cohort and 37.6% within the MMH 

cohort.  
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Table 2-1: Maternal demographics of women who birthed at Mater Mothers’ Hospitals 

compared to national data from the Australian Institute of Health and Welfare (131). 

Maternal Demographics 

AIHW 

(2010 – 2016) 

Mater Mothers’ Hospitals 

(2010 – 2016) 

Insurance Status     

     Public  72.6% 1,561,142/2,151,656 56.0% 39,134/69,851 

     Private 27.4% 590,514/2,151,656 44.0% 30,717/69,851 

Maternal Age Category     

<20 3.2% 69,070/2,160,229 1.6% 1,148/69,851 

20 – 24 13.2% 284,728/2,160,229 8.5% 5,956/69,851 

25 – 29 27.5% 593,721/2,160,229 23.3% 16,252/69,851 

30 – 34 33.5% 723,374/2,160,229 37.6% 26,244/69,851 

35 – 39 18.3% 395,620/2,160,229 23.1% 16,155/69,851 

40+ 4.3% 93,286/2,160,229 5.9% 4,096/69,851 

BMI Category      

Underweight (<18.5) 3.6% 48,384/1,334,187 7.0% 4,889/69,851 

Normal (18.5 – 24.9) 45.8% 611,396/1,334,187 59.7% 41,713/69,851 

Overweight (25.0 – 29.9) 23.9% 319,324/1,334,187 19.6% 13,704/69,851 

Obese 1 (30.0 – 39.9) 15.8% 210,488/1,334,187 10.9% 7,629/69,851 

Obese 2 (40.0 – 49.9) 2.5% 33,173/1,334,187 1.7% 1,191/69,851 

Obese 3 (≥50) 0.3% 3,547/1,334,187 0.2% 142/69,851 

Australian Born 68.3% 1,474,460/2,160,229 62.0% 43,274/69,851 

Indigenous Ethnicity 4.1% 88,456/2,160,229 1.9% 1,337/69,851 

Smoking 11.5% 249,387/2,160,229 14.2% 9,897/69,851 

Nulliparous 43.0% 913,992/2,127,503 46.7% 32,637/69,851 

Pre–existing Diabetes 0.8% 12,913/1,551,302 0.7% 494/69,851 

Pre–existing Hypertension 0.8% 12,799/1,551,302 0.9% 612/69,851 

Labour     

   Spontaneous 52.1% 1,125,433/2,160,229 46.4% 32,421/69,851 

   Induced 27.5% 595,135/2,160,229 28.4% 19,856/69,851 

   No Labour – CS 

Performed 20.3% 439,109/2,160,229 25.2% 17,570/69,851 

Method of Birth      

   SVD    54.4% 1,174,720/2,160,229 49.7% 34,725/69,851 

   Instrumental 12.3% 265,349/2,160,229 12.7% 8,835/69,851 

   Caesarean Section 33.3% 719,866/2,160,229 37.6% 26,290/69,851 
BMI: Body Mass Index; AIHW: Australian Institute of Health and Welfare; CS: Caesarean Section; SVD: Spontaneous Vaginal 

Delivery. 

For the AIHW cohort, BMI Categories exclude 2010 data, Birth Weight Categories excludes 2010 data & New South Wales data 

was not available in 2014 so was also excluded. 
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2.4.1.2 Perinatal Outcomes  

The comparison of the perinatal outcomes of the AIHW cohort and the MMH cohort are as 

follows (Table 2.2): 

• Gender – There was no difference in the distribution of genders between the two cohorts. 

• Gestational Age Categories –  

o There was a higher proportion of babies born between 20 – 27 weeks gestation in 

the MMH cohort, 1.3% compared to 0.9% in the AIHW cohort. 

o For the gestational age between 28 – 31 weeks there was a higher proportion in 

the MMH cohort compared to the AIHW cohort.   

o There was a higher proportion of babies born between 32 – 36 weeks gestation in 

the MMH cohort, 8.6% compared to 6.8% in the AIHW cohort. 

o For both cohorts the vast majority of babies were born at term between 37 – 41 

weeks gestation – 90.9% AIHW cohort and 87.9% at MMH.  

o There was a slightly higher proportion of late term births in the AIHW cohort 

(0.6% v 0.4%). 

• Birth Weight Categories –  

o MMH had higher proportion of underweight babies with 2.8% of those born 

<1,500 grams compared to 1.5% AIHW. 

o MMH had 6.8% born between 1,500 – 2,499 grams compared to 5.4% for the 

AIHW cohort. 

o The majority of babies had a BW between 2,500 grams and 3,499 grams with 

little difference between the two cohorts (52.0% AIHW v 51.8% MMH).  

o The second highest proportion of babies were born within the 3,500 – 4,499 gram 

weight range, with 39.5% in the AIHW cohort and 37.3% in the MMH cohort.  

o There was no difference in the proportion of babies born >4,500 grams 1.5% 

within the AIHW cohort and 1.3% at MMH. 

• Apgar Score at 5 Minutes categories –  

o There was little difference in the very low Apgar scores of 0 – 3 between MMH 

(0.5%) and the AIHW cohort (0.5%). 

o Little difference was also found in the low Apgar score of between 4 – 6 with 

1.4% in the AIHW cohort and 1.5% in the MMH cohort. 

• NICU/SCN Admission – There was no difference in proportion of babies admitted to the 

NICU/SCU at MMH (15.7%) and the AIHW cohort (15.7%). 



46 

 

• Stillbirth, Neonatal and Perinatal Death –  

o There was no difference in the recorded proportions of stillbirths between MMH 

(0.7%) and AIHW (0.7%). 

o There was a higher proportion of neonatal deaths at MMH (0.6%) compared to 

AIHW (0.3%) 

o There was a higher proportion of perinatal deaths reported within the MMH 

cohort (1.3%) compared to the AIHW cohort (1.0%). 

Table 2-2: Perinatal outcomes of babies born at Mater Mothers’ Hospitals compared to 

data from the Australian Institute of Health and Welfare (131). 

Perinatal 

Outcomes 

AIHW 

(2010 – 2016) 

Mater Mothers Hospital 

(2010 – 2016) 

Gender     

     Male  51.4% 1,109,728/2,160,229 51.3% 35,817/69,851 

     Female 48.6% 1,049,461/2,160,229 48.7% 34,019/69,851 

Indeterminate 0.05% 1,040/2,160,229 0.02% 15/69,851 

Gestational Age 

Categories     

20 – 27 weeks 0.9% 18,762/2,160,229 1.3% 937/69,851 

28 – 31 weeks 0.8% 16,805/2,160,229 1.9% 1,293/69,851 

32 – 36 weeks 6.8% 147,852/2,160,229 8.6% 5,978/69,851 

37 – 41 weeks 90.9% 1,963,529/2,160,229 87.9% 61,371/69,851 

≥42 weeks 0.6% 12,447/2,160,229 0.4% 261/69,851 

Birth Weight 

Categories     

<1,500 grams 1.5% 32,227/2,160,229 2.8% 1,965/69,851 

1,500 – 2,499 5.4% 116,410/2,160,229 6.8% 4,726/69,851 

2,500 – 3,499 52.0% 1,123,615/2,160,229 51.8% 36,199/69,851 

3,500 – 4,499 39.5% 853,269/2,160,229 37.3% 26,020/69,851 

≥4,500 1.5% 33,248/2,160,229 1.3% 934/69,851 

Apgar Score at 5 

Minutes     

0 – 3 0.3% 7,210/2,144,781 0.5% 313/69,851 

4 – 6 1.4% 30,842/2,144,781 1.5% 1,057/69,851 

7 – 10 98.0% 2,102,722/2,144,781 96.8% 67,647/69,851 

NICU/SCN 

Admission 15.7% 298,366/1,903,056 15.7% 10,944/69,851 

Stillborn  0.7% 15,344/2,160,229 0.7% 495/69,851 

Neonatal Death 0.3% 5,481/2,160,229 0.6% 382/69,851 

Perinatal Death 1.0% 20,825/2,160,229 1.3% 877/69,851 
*NICU: Neonatal Intensive Care Unit; SCU: Special Care Unit 
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2.4.2 Trend Analysis  

The trend analysis for the AIHW cohort and the MMH cohort between 2010 and 2016 are as 

follows (Table 2.3): 

• Maternal Age –  

o There was a trend of decreasing proportions of young mothers <20 years of age 

for both the AIHW and MMH cohorts. 

o For the maternal age of 20 – 24 there was also a trend of reducing proportions of 

births within this age category for both the AIHW and MMH cohorts. 

o The trends of decreased proportions were also in the age category of 25 – 29, 

though it was more pronounced in the MMH cohort, and the trend in the AIHW 

cohort is unlikely to be clinically significant.  

o In the 30 – 34 age category there was an increasing trend for births in both AIHW 

and MMH cohorts. 

o There was a decreasing trend in the proportion of births for women aged between 

35 – 39 years in both the AIHW and MMH cohorts, though the trend in the 

AIHW cohort is unlikely to be clinically significant. 

o For the cohort of women aged 40+ years there was an increasing trend in the 

proportion of births for both the AIHW and MMH cohorts, though again the trend 

in the AIHW cohort is unlikely to be clinically significant. 

• Maternal BMI –  

o There was a slight increase in the in the proportion of underweight women in the 

AIHW cohort, though this is unlikely to be clinically significant. While there was 

no change found in the MMH cohort.  

o There was an increase in the proportion of women who were classified as being in 

the normal BMI category for both the AIHW and MMH cohorts, though the trend 

in the MMH cohort is unlikely to be clinically significant. 

o There was an increase in the proportion of women classified as being overweight 

in the AIHW cohort while the MMH cohort had no difference.  

o The obese 1, obese 2 and obese 3 categories all had increases in the proportions 

of women for the AIHW cohort, though this is unlikely to be clinically 

significant. There was no difference in the MMH cohort for all obesity categories.  
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• Australian Born – The proportion of Australian born women giving birth had a 

decreasing trend for both cohorts.  

• Indigenous Ethnicity – there was a trend of increasing proportion of Indigenous women 

giving birth in both the AIHW and MMH cohorts. 

• Smoking Status – There was decreasing trend in women who reported smoking during 

pregnancy, however this was much more pronounced in the MMH cohort. 

• Nulliparity – There was an increasing trend in the proportion of nulliparous women in the 

AIHW cohort, though this trend is unlikely to be clinically significant. There was no 

difference detected in the MMH cohort.  

• Pre–existing Diabetes – There was an increasing trend in the proportion of women with 

pre–existing diabetes in the AIHW cohort. The MMH cohort had a decreasing trend in 

the proportion of pre–existing diabetes, though this is unlikely to be clinically significant.  

• Pre–existing Hypertension – There was no difference in the proportion of hypertensive 

women in the MMH cohort or AIHW cohort. 

• Induction of Labour –  

o There were decreasing trends in both the AIHW and MMH cohorts for women 

who had spontaneous births. 

o Increases in the proportion of labours that were induced were seen in the MMH 

and AIHW cohorts. 

o There was an increase in the proportion of women that had no labour and went 

straight to caesarean section for the AIHW cohort, while the MMH cohort had a 

decrease in the proportion of women that went straight to caesarean section. 

• Method of Birth –  

o There was a slight decrease in the proportion of spontaneous vaginal delivery in 

the AIHW cohort but a slight increase in the MMH cohort.  

o There was an increase in the proportion of instrumental deliveries for both 

cohorts, though these are unlikely to be clinically significant.  

o There was an increase in the proportion of caesarean section deliveries in the 

AIHW cohort, while the MMH cohort had a decreasing trend. 
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• Gestational Age at Birth –  

o The proportion of extremely preterm births (20 – 27 weeks gestation) remained 

consistent in both cohorts. 

o For the gestational age of 28 – 31 weeks, both the AIHW and MMH cohorts had 

a decreasing trend, though this is unlikely to be significant in the AIHW cohort.  

o For the gestational age of 32 – 36 weeks the AIHW cohort had an increasing 

trend, though again this is unlikely to be clinically significant, while the MMH 

cohort had no difference. 

o There was no difference in the proportion of term babies (37 – 41 weeks 

gestation) born in the AIHW cohort and an increase in the proportion of term 

babies born in the MMH cohort, though this is unlikely to be clinically 

significant. 

o There was no difference in the proportion of post term (+41 weeks gestation) 

babies born in the MMH cohort and a decreasing trend of in the AIHW cohort, 

though this is unlikely to be clinically significant. 

• Birth Weight –  

o There was a decreasing trend in babies born <1,500 grams in both the AIHW and 

MMH cohorts, though this is unlikely to be clinically significant in the AIHW 

cohort. 

o For babies born between 1,500 – 2,499 grams there was an increasing trend for 

the AIHW cohort, but again this is unlikely to be clinically significant, while 

there was no difference in the proportions for the MMH cohort. 

o There was an increase in the proportion of babies born with a BW between 2,500 

– 3,499 for both the AIHW and MMH cohorts. 

o There was a decreasing trend of babies born with BWs between 3,500 – 4,499 in 

both the AIHW and MMH cohorts. 

o There was a decrease in the proportion of babies born with a BW of ≥4,500 for 

both the AIHW and MMH cohorts. 
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• Apgar Score at 5 Minutes –  

o There was no difference in the proportion of babies born with very low Apgar 

scores at 5 minutes (Apgar@ 5 minutes 0 – 3) in both the AIHW and MMH 

cohorts.  

o There was an increase in the proportion of babies born with a low Apgar score at 

5 minutes (Apgar@ 5 minutes 4 – 6) for both the AIHW and MMH cohorts. 

o There was a decrease in the trend of babies born with Apgar scores between 7 – 

10 at 5 minutes for both cohorts, though this is unlikely to be clinically 

significant. 

• NICU/SCN Admission – There was an increasing trend for NICU/SCN admissions in the 

AIHW cohort but no difference in the MMH cohort.  

• Stillbirths – There was no difference in the percentage of stillbirths in the MMH cohort 

and an increasing trend in the AIHW cohort, though this is unlikely to be clinically 

significant. 

• Neonatal Deaths – There was a decreasing trend in the proportion of neonatal deaths for 

both the MMH and AIHW cohorts. 

• Perinatal Death – There was a decreasing trend in the proportion of overall perinatal 

deaths in both the MMH and AIHW cohorts, though these are unlikely to be clinically 

significant. 
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Table 2-3: Trend analysis for Mater Mothers’ Hospitals and Australian Institute of Health and Welfare from 2010 – 2016 (131). 

Year of 

Delivery  2010 2011 2012 2013 2014 2015 2016 

P 

Value 

Maternal Age 

Category          

<20 
AIHW 

3.8% 

(11,455/300,215) 

3.7% 

(11,106/302,025) 

3.6% 

(11,135/312,251) 

3.3% 

(10,263/309,489) 

3.0% 

(9,394/312,548) 

2.7% 

(8,268/308,887) 

2.4% 

(7,449/314,814) <0.001 

Mater 

2.6% 

(252/9,563) 

2.4% 

(223/9,496) 

1.7% 

(169/10,189) 

1.3% 

(132/10,095) 

1.3% 

(132/9,943) 

1.3% 

(135/10,427) 

1.0% 

(105/10,138) <0.001 

20 – 24 
AIHW 

14.1% 

(42,283/300,215) 

13.8% 

(41,536/302,025) 

13.5% 

(42,264/312,251) 

13.4% 

(41,621/309,489) 

12.9% 

(40,330/312,548) 

12.6% 

(38,893/308,887) 

12.0% 

(37,801/314,814) <0.001 

Mater 

10.3% 

(988/9,563) 

9.4% 

(891/9,496) 

8.4% 

(854/10,189) 

7.9% 

(799/10,095) 

7.9% 

(781/9,943) 

7.8% 

(815/10,427) 

8.2% 

(828/10,138) <0.001 

25 – 29 
AIHW 

27.5% 

(82,577/300,215) 

27.9% 

(84,276/302,025) 

27.8% 

(86,705/312,251) 

27.5% 

(85,051/309,489) 

27.6% 

(86,401/312,548) 

27.2% 

(83,959/308,887) 

26.9% 

(84,752/314,814) <0.001 

Mater 

25.1% 

(2,400/9,563) 

24.7% 

(2,348/9,496) 

23.8% 

(2,424/10,189) 

23.1% 

(2,335/10,095) 

22.5% 

(2,237/9,943) 

22.3% 

(2,329/10,427) 

21.5% 

(2,179/10,138) <0.001 

30 – 34 
AIHW 

31.4% 

(94,340/300,215) 

31.8% 

(96,192/302,025) 

32.5% 

(101,618/312,251) 

33.4% 

(103,242/309,489) 

34.2% 

(106,991/312,548) 

35.1% 

(108,400/308,887) 

35.8% 

(112,591/314,814) <0.001 

Mater 

35.2% 

(3,363/9,563) 

35.9% 

(3,410/9,496) 

36.5% 

(3,716/10,189) 

38.3% 

(3,869/10,095) 

38.6% 

(3,842/9,943) 

39.0% 

(4,070/10,427) 

39.2% 

(3,974/10,138) <0.001 

35 – 39 
AIHW 

19.0% 

(57,095/300,215) 

18.4% 

(55,680/302,025) 

18.2% 

(56,807/312,251) 

17.9% 

(55,512/309,489) 

17.9% 

(55,927/312,548) 

18.2% 

(56,080/308,887) 

18.6% 

(58,519/314,814) <0.001 

Mater 

22.0% 

(2,103/9,563) 

22.5% 

(2,137/9,496) 

23.3% 

(2,376/10,189) 

23.2% 

(2,339/10,095) 

23.2% 

(2,303/9,943) 

23.5% 

(2,449/10,427) 

24.2% 

(2,448/10,138) <0.001 

40+ 
AIHW 

4.1% 

(12,369/300,215) 

4.3% 

(13,118/302,025) 

4.4% 

(13,655/312,251) 

4.4% 

(13,738/309,489) 

4.3% 

(13,482/312,548) 

4.3% 

(13,265/308,887) 

4.3% 

(13,659/314,814) 0.01 

Mater 

4.8% 

(457/9,563) 

5.1% 

(487/9,496) 

6.4% 

(650/10,189) 

6.2% 

(621/10,095) 

6.5% 

(648/9,943) 

6.0% 

(629/10,427) 

6.0% 

(604/10,138) <0.001 

BMI Category 
         

Underweight 

(<18.5) 

AIHW Not Recorded 

3.1% 

(5,945/192,066) 

3.4% 

(7,084/205,449) 

3.5% 

(7,156/205,224) 

3.8% 

(8,054/211,921) 

3.8% 

(7,933/209,280) 

3.9% 

(12,212/310,247) <0.001 

Mater 

7.2% 

(673/9,345) 

6.9% 

(651/9,430) 

7.1% 

(715/10,107) 

7.2% 

(722/10,007) 

7.4% 

(737/9,911) 

6.9% 

(717/10,379) 

6.7% 

(674/10,089) 0.37 

Normal  

(18.5 – 24.9) 

AIHW Not Recorded 

37.9% 

(72,782/192,066) 

44.6% 

(91,627/205,449) 

45.8% 

(93,945/205,224) 

47.1% 

(99,715/211,921) 

48.4% 

(101,305/209,280) 

49.0% 

(152/022/310,247) <0.001 

Mater 

59.3% 

(5,539/9,345) 

59.4% 

(5,602/9,430) 

60.1% 

(6,072/10,107) 

60.9% 

(6,097/10,007) 

60.8% 

(6,025/9,911) 

60.4% 

(6,270/10,379) 

60.5% 

(6,108/10,089) 0.01 

Overweight 

(25.0 – 29.9) 

AIHW Not Recorded 

21.1% 

(40,591/192,066) 

24.0% 

(49,390/205,449) 

24.2% 

(49,649/205,224) 

24.2% 

(51,332/211,921) 

25.0% 

(52,343/209,280) 

24.5% 

(76,019/310,247) <0.001 

Mater 

20.2% 

(1,884/9,345) 

20.5% 

(1,933/9,430) 

19.9% 

(2,015/10,107) 

19.7% 

(1,975/10,007) 

19.0% 

(1,886/9,911) 

19.4% 

(2,016/10,379) 

19.8% 

(1,995/10,089) 0.05 
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Obese 1  

(30.0 – 39.9) 

AIHW Not Recorded 

14.0% 

(26,933/192,066) 

16.1% 

(33,018/205,449) 

16.0% 

(32,774/205,224) 

16.1% 

(34,041/211,921) 

16.3% 

(34,129/209,280) 

16.0% 

(49,593/310,247) <0.001 

Mater 

11.3% 

(1,054/9,345) 

11.3% 

(1,069/9,430) 

11.0% 

(1,109/10,107) 

10.5% 

(1,046/10,007) 

10.8% 

(1,067/9,911) 

11.3% 

(1,174/10,379) 

11.0% 

(1,110/10,089) 0.55 

Obese 2  

(40.0 – 49.9) 

AIHW Not Recorded 

2.2% 

(4,267/192,066) 

2.5% 

(5,079/205,449) 

2.5% 

(5,067/205,224) 

2.5% 

(5,305/211,921) 

2.6% 

(5,511/209,280) 

2.6% 

(7,944/310,247) <0.001 

Mater 

1.8% 

(171/9,345) 

1.7% 

(160/9,430) 

1.7% 

(175/10,107) 

1.5% 

(149/10,007) 

1.8% 

(177/9,911) 

1.7% 

(181/10,379) 

1.8% 

(178/10,089) 0.97 

Obese 3 

(≥50) 

AIHW Not Recorded 

0.2% 

(456/192,066) 

0.2% 

(512/205,449) 

0.3% 

(530/205,224) 

0.3% 

(605/211,921) 

0.3% 

(626/209,280) 

0.3% 

(818/310,247) 0.004 

Mater 

0.3% 

(24/9,345) 

0.2% 

(15/9,430) 

0.2% 

(21/10,107) 

0.2% 

(18/10,007) 

0.2% 

(19/9,911) 

0.2% 

(21/10,379) 

0.2% 

(24/10,089) 0.93 

Australian Born 
AIHW 

71.4% 

(214,457/300,215) 

70.5% 

(212,860/302,025) 

68.9% 

(215,009/312,251) 

68.5% 

(211,905/309,489) 

66.9% 

(209,188/312,548) 

66.6% 

(205,817/308,887) 

65.2% 

(205,224/314,814) <0.001 

Mater 

66.6% 

(6364/9,563) 

67.3% 

(6,387/9,496) 

61.7% 

(6,286/10,185) 

62.2% 

(6,274/10,089) 

59.3% 

(5,893/9,939) 

59.4% 

(6,187/10,414) 

58.1% 

(5,883/10,124) <0.001 

Indigenous 

Ethnicity 

AIHW 

3.9% 

(11,633/300,215) 

3.9% 

(11,897/302,025) 

4.0% 

(12,454/312,251) 

4.1% 

(12,541/30,489) 

4.2% 

(12,978/312,548) 

4.3% 

(13,204/308,887) 

4.4% 

(13,749/314,814) <0.001 

Mater 

1.9% 

(179/9,563) 

1.8% 

(174/9,496) 

1.7% 

(173/10,189) 

1.7% 

(174/10,095) 

1.9% 

(185/9,943) 

2.0% 

(211/10,427) 

2.4% 

(241/10,138) 0.004 

Smoking 
AIHW 

13.5% 

(40,455/300,215) 

13.0% 

(39,300/302,025) 

12.2% 

(38,220/312,251) 

11.5% 

(35,446/309,489) 

10.8% 

(33,767/312,548) 

10.3% 

(31,674/308,887) 

9.7% 

(30,525/314,814) <0.001 

Mater 

23.0% 

(2,200/9,563) 

22.5% 

(2,132/9,496) 

18.3% 

(1,864/10,189) 

10.6% 

(1,071/10,095) 

9.9% 

(986/9,943) 

8.3% 

(864/10,427) 

7.7% 

(780/10,138) <0.001 

Nulliparous 
AIHW 

42.5% 

(125,568/295,456) 

43.0% 

(127,815/297,343) 

42.5% 

(130,566/307,569) 

43.6% 

(132,797/304,776) 

43.5% 

(133,867/307,844) 

42.9% 

(130,537/304,268) 

42.8% 

(132,842/310,247) <0.001 

Mater 

46.8% 

(4,468/9,558) 

47.1% 

(4,468/9,496) 

46.6% 

(4,750/10,187) 

47.3% 

(4,766/10,085) 

47.0% 

(4,676/9,942) 

46.5% 

(4,849/10,420) 

46.0% 

(4,660/10,129) 0.28 

Pre–existing 

Diabetes 

AIHW 

0.7% 

(1,469/216,177) 

0.7% 

(1,530/224,404) 

0.7% 

(1,610/230,400) 

1.0% 

(1,890/193,727) 

1.0% 

(2,296/229,923) 

1.1% 

(2,428/226,134) 

0.7% 

(1,690/230,537) <0.001 

Mater 

0.7% 

(66/9,563) 

0.8% 

(79/9,496) 

0.8% 

(83/10,189) 

0.8% 

(82/10,095) 

0.8% 

(79/9,943) 

0.5% 

(47/10,427) 

0.6% 

(58/10,138) 0.01 

Pre–existing 

Hypertension 

AIHW 

0.8% 

(1,819/300,215) 

0.9% 

(1,966/224,404) 

0.8% 

(1,923/230,400) 

0.8% 

(1,460/193,727) 

0.8% 

(1,898/229,923) 

0.8% 

(1,840/226,134) 

0.8% 

(1,893/230,537) 0.06 

Mater 

0.8% 

(80/9,563) 

1.1% 

(100/9,496) 

0.9% 

(93/10,189) 

0.9% 

(90/10,095) 

0.8% 

(81/9,943) 

0.9% 

(90/10,427) 

0.8% 

(78/10,138) 0.17 

Labour 
         

Spontaneous 
AIHW 

55.6% 

(166,910/300,215) 

54.4% 

(164,417/302,025) 

53.8% 

(168,050/312,251) 

52.3% 

(161,840/309,489) 

50.9% 

(159,039/312,548) 

49.8% 

(153,705/308,887) 

48.1% 

(151,472/314,814) <0.001 

Mater 

50.4% 

(4,822/9,563) 

47.4% 

(4,502/9,495) 

47.9% 

(4,884/10,189) 

46.2% 

(4,662/10,093) 

46.2% 

(4,595/9,943) 

44.3% 

(4,616/10,427) 

42.8% 

(4,340/10,137) <0.001 

Induced 
AIHW 

25.1% 

(75,460/300,215) 

25.9% 

(78,314/302,025) 

26.3% 

(81,982/312,251) 

27.5% 

(85,079/309,489) 

28.3% 

(88,425/312,548) 

29.2% 

(90,297/308,887) 

30.4% 

(95,578/314,814) <0.001 
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Mater 

24.3% 

(2,320/9,563) 

25.8% 

(2,447/9,495) 

26.2% 

(2,669/10,189) 

28.0% 

(2,829/10,093) 

29.0% 

(2,885/9,943) 

32.4% 

(3,382/10,427) 

32.8% 

(3,324/10,137) <0.001 

   No Labour 

– CS 

Performed 

AIHW 

19.3% 

(57,798/300,215) 

19.6% 

(59,212/302,025) 

19.9% 

(62,131/312,251) 

20.2% 

(62,501/309,489) 

20.8% 

(65,033/312,548) 

21.0% 

(64,857/308,887) 

21.5% 

(67,577/314,814) <0.001 

Mater 

25.3% 

(2,421/9,563) 

26.8% 

(2,546/9,495) 

25.9% 

(2,636/10,189) 

25.8% 

(2,602/10,093) 

24.8% 

(2,463/9,943) 

23.3% 

(2,429/10,427) 

24.4% 

(2,473/10,137) <0.001 

Method of Birth 
         

SVD 
AIHW 

55.8% 

(167,517/300,215) 

55.1% 

(166,429/302,025) 

54.8% 

(171,021/312,251) 

54.3% 

(168,157/309,489) 

54.0% 

(168,680/312,548) 

53.8% 

(166,073/308,887) 

53.0% 

(166,843/314,814) <0.001 

Mater 

48.8% 

(4,664/9,563) 

48.7% 

(4,624/9,496) 

49.7% 

(5,066/10,189) 

50.0% 

(5,046/10,095) 

50.1% 

(4,979/9,943) 

50.5% 

(5,263/10,427) 

50.1% 

(5,083/10,137) 0.003 

  Instrumental 
AIHW 

11.9% 

(35,833/300,215) 

12.0% 

(36,286/302,205) 

12.3% 

(38,425/312,251) 

12.3% 

(38,080/309,489) 

12.4% 

(38,692/312/548) 

12.4% 

(38,201/308,887) 

12.7% 

(39,832/314,814) <0.001 

Mater 

12.5% 

(1,197/9,563) 

11.6% 

(1,104/9,496) 

11.9% 

(1,214/10,189) 

12.3% 

(1,245/10,095) 

13.3% 

(1,325/9,943) 

13.5% 

(1,402/10,427) 

13.3% 

(1,348/10,137) <0.001 

Caesarean 

Section 

AIHW 

32.2% 

(96,794/300,215) 

32.9% 

(99,246/302,025) 

32.9% 

(102,782/312,251) 

33.3% 

(103,191/309,489) 

33.6% 

(105,154/312,548) 

33.9% 

(104,604/308,887) 

34.3% 

(108,095/314,814) <0.001 

Mater 

38.7% 

(3,702/9,563) 

39.7% 

(3,768/9,496) 

38.4% 

(3,909/10,189) 

37.7% 

(3,804/10,095) 

36.6% 

(3,639/9,943) 

36.1% 

(3,762/10,427) 

36.6% 

(3,706/10,137) <0.001 

Gestational Age 
         

20 – 27 

weeks 

AIHW 

0.8% 

(2,446/295,456) 

0.8% 

(2,497/297,343) 

0.8% 

(2,413/307,570) 

0.8% 

(2,499/304,777) 

0.8% 

(2,401/307,844) 

0.8% 

(2,418/304,268) 

0.8% 

(2,542/310,247) 0.17 

Mater 

1.4% 

(134/9,563) 

1.5% 

(141/9,495) 

1.3% 

(131/10,186) 

1.3% 

(131/10,093) 

1.4% 

(138/9,943) 

1.2% 

(124/10,426) 

1.4% 

(138/10,134) 0.32 

28 – 31 

weeks 

AIHW 

0.7% 

(2,057/295,456) 

0.7% 

(2,012/297,343) 

0.7% 

(2,110/307,570) 

0.7% 

(2,061/304,777) 

0.7% 

(2,110/307,844) 

0.7% 

(2,040/304,268) 

0.6% 

(1,987/310,247) 0.02 

Mater 

2.4% 

(227/9,563) 

2.1% 

(199/9,495) 

2.1% 

(218/10,186) 

1.9% 

(192/10,093) 

1.7% 

(167/9,943) 

1.4% 

(149/10,426) 

1.4% 

(141/10,134) <0.001 

32 – 36 

weeks 

AIHW 

5.9% 

(17,543/295,456) 

6.0% 

(17,878/297,343) 

6.2% 

(19,131/307,570) 

6.2% 

(18,931/304,777) 

6.3% 

(19,305/307,844) 

6.4% 

(19,370/304,268) 

6.2% 

(19,297/310,247) <0.001 

Mater 

8.5% 

(808/9,563) 

9.2% 

(871/9,495) 

9.0% 

(912/10,186) 

8.5% 

(858/10,093) 

8.4% 

(831/9,943) 

8.1% 

(848/10,426) 

8.4% 

(850/10,134) 0.05 

37 – 41 

weeks 

AIHW 

91.7% 

(270,986/295,456) 

91.7% 

(272,776/297,343) 

91.7% 

(281,970/307,507) 

91.8% 

(279,634/304,777) 

91.7% 

(282,313/307,844) 

91.8% 

(279,167/304,268) 

91.7% 

(284,395/310,247) 0.70 

Mater 

87.5% 

(8,371/9,563) 

86.9% 

(8,252/9,495) 

87.1% 

(8,872/10,186) 

87.9% 

(8,876/10,093) 

88.2% 

(8,766/9,943) 

88.9% 

(9,263/10,426) 

88.5% 

(8,971/10,134) <0.001 

≥42 weeks 
AIHW 

0.8% 

(2,358/295,456) 

0.7% 

(2,088/297,343) 

0.6% 

(1,891/307,570) 

0.5% 

(1,608/304,777) 

0.5% 

(1,501/307,844) 

0.4% 

(1,216/304,268) 

0.6% 

(1,782/310,247) <0.001 

Mater 

0.2% 

(23/9,563) 

0.3% 

(32/9,495) 

0.5% 

(53/10,186) 

0.4% 

(36/10,093) 

0.4% 

(41/9,943) 

0.4% 

(42/10,426) 

0.3% 

(34/10,134) 0.37 

Birth Weight 

Categories          
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<1,500 grams 
AIHW 

1.5% 

(4,566/300,215) 

1.5% 

(4,639/302,025) 

1.5% 

(4,584/312,251) 

1.5% 

(4,651/309,489) 

1.5% 

(4,670/312,548) 

1.4% 

(4,467/308,887) 

1.5% 

(4,650/314,814) 0.01 

Mater 

3.1% 

(300/9,562) 

3.2% 

(301/9,496) 

3.0% 

(308/10,188) 

2.8% 

(283/10,095) 

2.7% 

(272/9,943) 

2.4% 

(247/10,422) 

2.5% 

(254/10,138) <0.001 

1,500 – 2,499 
AIHW 

5.2% 

(15,697/300,215) 

5.3% 

(15,965/302,025) 

5.3% 

(16,450/312,251) 

5.4% 

(16,718/309,489) 

5.4% 

(16,915/312,548) 

5.5% 

(17,136/308,887) 

5.6% 

(17,529/314,814) <0.001 

Mater 

6.7% 

(637/9,562) 

7.3% 

(689/9,496) 

6.8% 

(693/10,188) 

6.6% 

(661/10,095) 

6.6% 

(652/9,943) 

6.7% 

(700/10,422) 

6.9% 

(694/10,138) 0.58 

2,500 – 3,499 
AIHW 

50.9% 

(152,767/300,215) 

50.9% 

(153,832/302,025) 

51.3% 

(160,246/312,251) 

52.0% 

(160,881/309,489) 

52.6% 

(164,330/312,548) 

52.9% 

(163,446/308,887) 

53.4% 

(168,113/314,814) <0.001 

Mater 

49.9% 

(4,770/9,562) 

49.1% 

(4,664/9,496) 

49.9% 

(5,084/10,188) 

52.2% 

(5,269/10,095) 

53.1% 

(5,278/9,943) 

53.8% 

(5,607/10,422) 

54.5% 

(5,527/10,138) <0.001 

3,500 – 4,499 
AIHW 

40.5% 

(121,618/300,215) 

40.5% 

(12,262/302,025) 

40.2% 

(125,507/312,251) 

39.5% 

(122,234/309,489) 

39.0% 

(121,850/312,548) 

38.7% 

(119,425/308,887) 

38.2% 

(120,373/314,814) <0.001 

Mater 

38.6% 

(3,693/9,562) 

39.0% 

(3,699/9,496) 

38.5% 

(3,919/10,188) 

37.3% 

(3,765/10,095) 

36.4% 

(3,622/9,943) 

36.0% 

(3,753/10,422) 

35.2% 

(3,569/10,138) <0.001 

≥4,500 
AIHW 

1.8% 

(5,288/300,215) 

1.7% 

(5,062/302,025) 

1.7% 

(5,263/312,251) 

1.6% 

(4,799/309,489) 

1.5% 

(4,592/312,548) 

1.4% 

(4,271/308,887) 

1.3% 

(3,973/314,814) <0.001 

Mater 

1.7% 

(162/9,562) 

1.5% 

(143/9,496) 

1.8% 

(184/10,188) 

1.2% 

(117/10,095) 

1.2% 

(119/9,943) 

1.1% 

(115/10,422) 

0.9% 

(94/10,138) <0.001 

Apgar Score at 5 

Minutes          

0 – 3 
AIHW 

0.3% 

(1,042/298,014) 

0.3% 

(979/299,793) 

0.3% 

(989/309,959) 

0.3% 

(1,048/307,277) 

0.3% 

(1,047/310,330) 

0.3% 

(969/306,725) 

0.4% 

(1,136/312,683) 0.46 

Mater 

0.6% 

(57/9,456) 

0.4% 

(38/9,390) 

0.4% 

(43/10,070) 

0.4% 

(42/9,976) 

0.5% 

(47/9,817) 

0.4% 

(41/10,298) 

0.5% 

(45/10,010) 0.25 

4 – 6 
AIHW 

1.3% 

(3,749/298,014) 

1.3% 

(3,965/299,793) 

1.4% 

(4,335/309,959) 

1.5% 

(4,622/307,277) 

1.5% 

(4,662/310,330) 

1.5% 

(4,627/306,725) 

1.6% 

(4,882/312,683) <0.001 

Mater 

1.4% 

(128/9,456) 

1.4% 

(127/9,390) 

1.1% 

(109/10,070) 

1.6% 

(159/9,976) 

1.8% 

(181/9,817) 

1.5% 

(157/10,298) 

2.0% 

(196/10,010) <0.001 

7 – 10 
AIHW 

98.2% 

(292,670/298,014) 

98.1% 

(294,212/299,793) 

98.1% 

(304,167/309,959) 

98.0% 

(301,255/307,277) 

98.0% 

(304,091/310,330) 

98.0% 

(300,534/306,725) 

97.8% 

(305,793/312,683) <0.001 

Mater 

98.0% 

(9,271/9,456) 

98.2% 

(9,225/9,390) 

98.5% 

(9,918/10,070) 

98.0% 

(9,775/9,976) 

97.7% 

(9,589/9,817) 

98.1% 

(10,100/10,298) 

97.6% 

(9,769/10,010) <0.001 

NICU/SCN 

Admission 

AIHW 

15.0% 

(44,694/298,014) 

15.3% 

(45,761/299,793) 

15.4% 

(47,766/309,959) 

16.0% 

(43,159/269,069) 

15.4% 

(42,422/275,374) 

15.9% 

(43,348/271,966) 

17.5% 

(31,216/178,881) <0.001 

Mater 

16.4% 

(1,568/9,563) 

15.5% 

(1,471/9,496) 

15.4% 

(1,571/10,189) 

15.0% 

(1,511/10,095) 

16.1% 

(1,604/9,943) 

15.2% 

(1,582/10,427) 

16.6% 

(1,687/10,138) 0.65 

Stillborn 
AIHW 

0.7% 

(2,201/300,215) 

0.7% 

(2,230/302,025) 

0.7% 

(2,255/312,251) 

0.7% 

(2,191/309,489) 

0.7% 

(2,200/312,548) 

0.7% 

(2,160/308,887) 

0.7% 

(2,107/314,814) <0.001 

Mater 

0.7% 

(67/9,563) 

0.8% 

(71/9,496) 

0.8% 

(82/10,189) 

0.7% 

(69/10,095) 

0.7% 

(67/9,943) 

0.7% 

(70/10,427) 

0.7% 

(69/10,138) 0.43 

Neonatal Death 
AIHW 

0.3% 

(876/300,215) 

0.3% 

(843/302,025) 

0.2% 

(738/312,251) 

0.3% 

(807/309,489) 

0.3% 

(786/312,548) 

0.2% 

(689/308,887) 

0.2% 

(742/314,814) <0.001 



55 

 

Mater 

0.8% 

(73/9,563) 

0.6% 

(55/9,496) 

0.4% 

(41/10,189) 

0.7% 

(70/10,095) 

0.6% 

(64/9,943) 

0.4% 

(37/10,427) 

0.4% 

(42/10,138) 0.001 

Perinatal Death 
AIHW 

1.0% 

(3,077/300,215) 

1.0% 

(3,073/302,025) 

1.0% 

(2,993/312,251) 

1.0% 

(2,998/309,489) 

1.0% 

(2,986/312,548) 

0.9% 

(2,849/308,887) 

0.9% 

(2,849/314,814) <0.001 

Mater 

1.5% 

(140/9,563) 

1.3% 

(126/9,496) 

1.2% 

(123/10,189) 

1.4% 

(139/10,095) 

1.3% 

(131/9,943) 

1.0% 

(107/10,427) 

1.1% 

(111/10,138) 0.01 

BMI: Body Mass Index; SVD: Spontaneous Vaginal Delivery; NICU: Neonatal Intensive Care Unit; SCN: Special Care Nursery 

Data Reported as % (N) 
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2.5 Discussion 

The MMH is a major tertiary hospital and one of the largest maternity hospitals in the southern 

hemisphere. It is likely to be representative of other metropolitan hospitals throughout Australia. 

There were few differences observed in the maternal demographics between the two cohorts and 

it is important to note that the proportion of smoking, nulliparity and importantly pre–existing 

diabetes and hypertension are very similar between the two cohorts. For the vast majority of 

perinatal outcomes there were no clinically significant differences. The exception to this though 

is the very preterm infants that were born before 32 weeks gestation. The MMH cohort had 

higher proportions of 20 – 27 weeks gestation births and twice the proportion of 28 – 31 weeks 

gestation than observed in the AIHW cohort. This is due to it being a major tertiary centre and 

therefore the most appropriate place for those infants to be born. These higher proportion of very 

preterm births is also likely the reason for the difference in neonatal deaths. Overall the perinatal 

outcomes are similar between the two cohorts and illustrates that the MMH study cohort is 

representative of this level of hospital and therefore generalisable to the other metropolitan 

hospitals in Australia.  

The trend analysis also showed that for the vast number of measures the trend directions and size 

were very similar for the two cohorts. When differences were detected they were likely to be due 

to the large sample size and not of any clinical significance.  

The purpose of this chapter was not only checking the generalisability of the study data from the 

MMH but also to check the data integrity, accuracy and to illustrate that the missing data was 

handled appropriately. The similarities of the proportions of the demographics and perinatal 

outcomes between the two cohorts demonstrated the appropriateness of the study cohort. The 

similarities and lack of abnormal trends or spikes in data from the trend analysis shows the 

appropriateness of the data aggregations and manipulations.  
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3.1 Abstract 

Objective: In high–risk pregnancies combining the cerebroplacental ratio (CPR) with the 

estimated fetal weight (EFW) improves the identification of vulnerable fetuses. The purpose of 

this study was to assess the CPR and EFW’s ability to predict adverse obstetric and perinatal 

outcomes in a low–risk pregnancy, when measured late in gestation. 

 

Methods: This was a retrospective study of women who birthed at Mater Mothers Hospitals, 

Brisbane, Australia between 2010 and 2015. We included all non–anomalous singleton 

pregnancies that had an ultrasound scan performed between 36+0 and 38+6 weeks gestation. 

Excluded was any major congenital abnormality, aneuploidy, multiple pregnancy, preterm birth, 

maternal hypertension, or diabetes. The primary outcome was a severe composite neonatal 

outcome (SCNO) defined as severe acidosis (umbilical cord artery pH <7.0, cord lactate 

≥6 mmol/L, cord base excess ≤–12 mmol/L) Apgar score ≤3 at 5 minutes, admission to the 

neonatal intensive care unit (NICU), and death. A low CPR was defined as <10th centile for 

gestation and small for gestational age (SGA) was defined as an EFW <10th centile and 

appropriate for gestational age (AGA) was defined as EFW ≥10th centile. 

 

Results: Of 2,425 pregnancies, 13.2% (321/2,425) had a fetus with a CPR <10th centile and 

13.7% (332/2,425) with an EFW <10th centile. Both a low CPR and SGA predicted the SCNO. 

Individually a low CPR and SGA had sensitivity for detection of SCNO of 23.3% and 24.7%, 

respectively which increased to 36.7% when combined. Both were associated with emergency 

caesarean for non–reassuring fetal status (NRFS), as well as early–term birth and admission to 

NICU. Stratifying the population into EFW <10th centile and EFW ≥10th centile, a low CPR 

maintained its association with the SCNO, early–term birth and emergency caesarean for NRFS 

in the cohort with an EFW <10th centile but SCNO lost its association with a low CPR in the 

EFW >10th cohort. Stratifying the population into CPR <10th centile and CPR >10th centile, a 

low EFW was associated with early–term birth, induction of labour, admission to NICU, and the 

SCNO. 
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Conclusions: In a low–risk cohort both the CPR and EFW individually and in combination 

predicts adverse obstetric and perinatal outcomes when measured late in pregnancy. However, 

the predictive value was enhanced when both were used in combination. 
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3.2 Introduction 

A low fetal cerebroplacental ratio (CPR) is associated with suboptimal fetal growth and poor 

placental function (135, 136) and reflects compensatory fetal circulatory changes as a 

consequence of an adverse intrauterine environment (137). There is now good evidence that the 

CPR is more strongly correlated with adverse perinatal outcomes than its individual components 

(138-143).  

Much of the evidence for the utility of the CPR as a screening test for adverse outcomes comes 

from retrospective studies (11) with cohorts that comprise both high and low risk populations 

with many different maternal co–morbidities such as diabetes mellitus and hypertension. These 

co–morbidities can increase the risk of aberrant fetal growth and/or adverse perinatal outcomes. 

More recently, a large North American study (144) clearly demonstrated that amongst a cohort 

of uncomplicated low–risk women at term, small for gestational age (SGA) newborns had a 

significantly higher likelihood of composite neonatal morbidity, stillbirth and neonatal mortality 

compared to appropriate for gestational age (AGA) babies. These investigators strongly 

recommended that further research is needed to determine if improved detection of SGA babies 

amongst uncomplicated pregnancies could reduce morbidity and mortality. Despite this laudable 

aim, identification of these at–risk fetuses remains problematic. Although there is a clear 

association with adverse outcomes, the detection rate that the CPR offers remains poor (11, 15, 

71, 145) and clinicians are increasingly incorporating it into routine care despite its relatively 

poor performance as a screening test, particularly in a low–risk population.  

Given its correlation with fetal growth, should the CPR alone rather than the estimated fetal 

weight (EFW), be used to identify vulnerable fetuses or should they be used in combination as 

suggested by some investigators (69, 79).  

Thus, the purpose of this study was to assess the CPR’s and/or the EFW’s ability to predict 

adverse obstetric and perinatal outcomes when measured late in pregnancy in a low–risk 

cohort of women.  
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3.3 Methods 

This was a retrospective cohort study of women giving birth at the Mater Mother’s Hospital in 

Brisbane, Australia between 2010 and 2015. With approximately 10,000 births per year, the 

Mater Mother’s Hospital is the largest tertiary maternity hospital in Australia. Maternal 

demographic data was collected from the institution’s maternal database and cross referenced 

with the maternal and fetal and neonatal databases. The study protocol was approved by the 

hospital’s Human Research Ethics Committee (Reference number HREC/14/MHS/37). 

The study cohort included women with a non–anomalous singleton fetus who had an ultrasound 

scan performed between 36+0 – 38+6 weeks gestation with data recorded for the middle cerebral 

artery pulsatility index (MCA PI), the umbilical artery pulsatility index (UA PI) and EFW. 

Calculation of the gestational age was based using the last menstrual period or earliest 

ultrasound examination or by correlation with both. Exclusion criteria included any major 

congenital abnormality, aneuploidy, multiple pregnancy, preterm birth (<37 weeks gestation), 

non– recorded UA PI, MCA PI or EFW, maternal hypertension and diabetes mellitus.  

The cerebroplacental ratio (CPR) was calculated by dividing the MCA PI by the UA PI. The 10th 

centile for the EFW was calculated for gestational age against reference centiles created by 

Hadlock et al (146). The 10th centile for the CPR was calculated by gestation against previously 

published reference centiles (145). 

The two primary outcomes were a severe composite neonatal outcome (SCNO) [defined as 

acidosis (umbilical cord artery pH <7.0, cord lactate ≥6 mmol/L, cord base excess ≤–12 

mmol/L) and/or Apgar score ≤3 at 5 minutes and/or admission to the neonatal intensive care unit 

(NICU) and/or death] and emergency caesarean section for non–reassuring fetal status (NRFS). 

A low CPR was defined as <10th centile for gestation and SGA was defined as an EFW <10th 

centile and AGA was defined as EFW >10th centile. 
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3.4 Statistical Analysis 

Distributions of the continuous variable were assessed. Parametric data was reported as mean ± 

standard deviation and differences assessed using a t–test. Non–parametric data were reported as 

median and interquartile range with differences assessed using a Wilcoxon Rank– Sum test. 

Differences in proportions were analysed using Chi square test and Z test for two proportions. To 

account for women having more than one birth within the study period, generalised estimating 

equations were used to generate unadjusted and adjusted Odds ratios. Data analysis was 

performed using Stata/SE 14.2 (StataCorp. 2015. Stata Statistical Software: Release 14. College 

Station, TX: StataCorp LP.). Statistical significance was defined as p <0.05. Preparation of this 

manuscript was in accordance with the STROBE guidelines for observational studies. 

 

3.5 Results 

Over the study period, we identified 2,425 women who met the inclusion criteria. Of these 

women, 13.2% (321/2,425) had a fetus with a CPR <10th centile and 13.7% (332/2,425) with an 

EFW <10th centile (Table 3.1). Of the SGA cohort, 29.5% (98/332) had a low CPR whilst AGA 

fetuses, 10.7% (223/2,093) had a low CPR. Conversely, of fetuses with a low CPR, 30.5% 

(98/321) were SGA and those with a CPR >10th centile, 11.1% (234/2,104) were SGA.  

Women with fetuses that had a low CPR had lower body mass index (BMI) and were more 

likely to be nulliparous (Table 3.1). Women with SGA fetuses were younger and had a lower 

BMI. They were also less likely to be Caucasian but more likely to be of Asian ethnicity. There 

were higher rates of nulliparity in both groups and maternal smoking in the SGA cohort (Table 

3.1). 
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Table 3-1: Maternal demographic and pregnancy factors associated with CPR <10th centile & EFW <10th centile. 

 CPR >10th Centile  CPR <10th Centile  P– Value EFW >10th Centile  EFW <10th Centile  P– Value 

Age#  30.4 (5.6) 29.8 (5.7) 0.06 30.5 (5.6) 29.5 (6.2) 0.004 

BMI*  22.3 (20.0 – 26.0) 21.8 (19.5 – 25.1) 0.01 22.6 (20.1 – 26.5) 20.8 (18.7 – 23.1) <0.001 

Ethnicity        

   Caucasian^  55.6% (1,169/2,104) 51.9% (166/320) 0.22 56.5% (1,183/2,093) 45.9% (152/331) <0.001 

   Indigenous^ 3.1% (66/2,104) 4.4% (14/320) 0.25 3.2% (67/2,093) 3.9% (13/331) 0.49 

   Asian^ 22.3% (469/2,104) 27.2% (87/320) 0.05 21.6% (452/2,093) 31.4% (104/331) <0.001 

   Other^ 19.0% (400/2,104) 16.6% (53/320) 0.29 18.7% (391/2,093) 18.7% (62/331) 0.98 

Nulliparous 48.0% (1,009/2,103) 65.4% (210/321) <0.001 48.1% (1,007/2,092) 63.9% (212/332) <0.001 

Smoking‡ 15.9% (334/2,104) 19.3% (62/321) 0.12 15.6% (327/2,093) 20.8% (69/332) 0.02 
BMI: body Mass Index; CPR: Cerebroplacental Ratio; EFW: Estimated Fetal Weight 
#Mean (SD) – (t-test) 
* Median Interquartile Range (Wilcoxon Rank Sum Test) 
^ Z Test for Two Proportions 
‡ Chi Square Test 
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Analysing the CPR, the SCNO was associated with a low CPR even after adjusting for parity, 

maternal body mass index and delivery via emergency caesarean for NRFS (except for modes of 

birth analyses) (aOR 1.78, 95% C.I. 1.30 – 2.43). Fetuses with a low CPR were more likely to be 

born at 37 and 38 weeks gestation and by emergency caesarean for NRFS. This cohort of women 

were also more likely to have babies with birth weights, <5th and <10th centiles and be admitted 

to NICU (Table 3.2). 

Analysing the EFW, the SCNO was associated with an EFW <10th centile (aOR 1.96, 95% C.I. 

1.43 – 2.67), after adjusting for parity, maternal body mass index and delivery via emergency 

caesarean for NRFS (except for modes of birth analyses). SGA fetuses were also more likely to 

be born at 37 and 38 weeks gestation, to be induced, admitted to NICU and delivered by 

emergency caesarean for NRFS (Table 3.2).  
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Table 3-2: Gestational distribution, intrapartum and neonatal outcomes for CPR <10th centile and EFW <10th centile. 

 CPR >10th Centile CPR <10th Centile 
Adjusted OR  
(95% C.I.) P Value EFW >10th Centile EFW <10th Centile 

Adjusted OR  
(95% C.I.) P Value 

Gestation         

     37 weeks* 11.8% (248/2,104) 24.3% (78/321) 2.41 (1.79 – 3.24) <0.001 11.0% (230/2,093) 28.9% (96/332) 3.44 (2.58 – 4.58) <0.001 

     38 weeks* 24.6% (517/2,104) 30.2% (97/321) 1.43 (1.10 – 1.87) 0.01 23.6% (494/2,093) 
 
36.1% (120/332) 2.03 (1.57 – 2.61) <0.001 

     39 weeks* 33.3% (700/2,104) 24.6% (79/321) 0.69 (0.52 – 0.90) 0.01 33.2% (695/2,093) 25.3% (84/332) 0.71 (0.54 – 0.93) 0.01 

     40 weeks* 20.3% (428/2,104) 15.9% (51/321) 0.73 (0.53 – 1.00) 0.05 21.6% (452/2,093) 8.1% (27/332) 0.30 (0.20 – 0.45) <0.001 

    >40 weeks* 10.0% (211/2,104) 5.0% (16/321) 0.39 (0.23 – 0.67) 0.001 10.6% (222/2,093) 1.5% (5/332) 0.11 (0.05 – 0.27) <0.001 

Method of Birth         

SVD# 56.5% (1,189/2,104) 48.6% (156/321) 0.81 (0.63 – 1.03) 0.08 55.7% (1,165/2,093) 54.2% (180/332) 1.01 (0.80 – 1.29) 0.92 

Instrumental# 12.6% (266/2,104) 13.7% (44/321) 0.84 (0.59 – 1.19) 0.32 12.7% (266/2,093) 13.3% (44/332) 0.77 (0.54 – 1.11) 0.16 

Elective CS# 16.8% (353/2,104) 15.0% (48/321) 1.00 (0.72 – 1.39) 0.99 16.7% (349/2,093) 15.7% (52/332) 1.04 (0.75 – 1.44) 0.83 

EM CS# 14.1% (296/2,104) 22.7% (73/321) 1.64 (1.21 – 2.21) 0.001 15.0% (313/2,093) 16.9% (56/332) 1.15 (0.84 – 1.60) 0.38 

EM CS NRFS# 5.2% (109/2,104) 14.6% (47/321) 2.86 (1.97 – 4.16) <0.001 5.7% (119/2,093) 11.1% (37/332) 2.04 (1.36 – 3.07) 0.001 

EM CS Other# 8.9% (187/2,104) 8.1% (26/321) 0.80 (0.51 – 1.25) 0.33 9.3% (194/2,093) 5.7% (19/332) 0.59 (0.36 – 0.98) 0.04 

Labour Induced* 39.5% (830/2,104) 46.4% (149/321) 1.14 (0.89 – 1.46) 0.30 37.8% (792/2,093) 56.3% (187/332) 2.17 (1.69 – 2.77) <0.001 

Birth Weight* 3253.1 ±527.7 2874.9 ±532.7   NA NA NA NA 

BWT <5th Centile* 11.5% (242/2,104) 33.6% (108/321) 3.13 (2.36 – 4.16) <0.001 NA NA NA NA 

BWT <10th Centile* 22.4% (471/2,104) 45.5% (146/321) 2.36 (1.83 – 3.06) <0.001 NA NA NA NA 

Acidosis* 5.6% (117/2,104) 10.6% (34/321) 1.50 (0.99 – 2.28) 0.06 5.8% (121/2,093) 9.0% (30/332) 1.29 (0.83 – 2.00) 0.25 

Apgar Score ≤3 at  
5 Minutes* 0.3% (7/2,095) 0% (0/321) 1 NA 0.3% (7/2,084) 0% (0/331) 1 NA 

Admission to 
NICU* 6.2% (131/2,104) 12.8% (41/321) 1.82 (1.23 – 2.68) 0.003 5.8% (121/2,093) 15.4% (51/332) 2.60 (1.80 – 3.77) <0.001 

Perinatal Death* 0.2% (4/2,104) 0.6% (2/321) 2.61 (0.44 – 15.67) 0.29 0.2% (5/2,093) 0.3% (1/332) 1.09 (0.12 – 10.17) 0.93 

SCNO* 10.9% (230/2,104) 22.8% (70/321) 1.78 (1.30 – 2.43) <0.001 10.8% (226/2,093) 22.3% (74/332) 1.96 (1.43 – 2.67) <0.001 

SVD: Spontaneous Vaginal Delivery; EM: Emergency; CS: Caesarean Section; BWT: Birth Weight; CPR: Cerebroplacental Ratio; EFW: Estimated Fetal Weight; SCNO: Serious Composite 
Neonatal Outcome; OR: Odds Ratio C.I.: Confidence Interval 
*Adjusted for Parity, Maternal Body Mass Index and Delivery via Emergency Caesarean for Non–Reassuring Fetal Status 
# Adjusted for Parity & Maternal Body Mass Index 
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The EFW <10th centile had a sensitivity of 24.7% (95% C.I. 19.9 – 29.9) and the CPR <10th 

centile had a sensitivity of 23.3% (95% C.I. 18.7 – 28.5) for the SCNO respectively. When the 

EFW <10th centile and the CPR <10th centile was used in combination the sensitivity increased 

to 36.7% (95% C.I. 31.2 – 42.4) (Table 3.3). For emergency caesarean for NRFS, the EFW <10th 

centile had a sensitivity of 23.7% (95% C.I. 17.3 – 31.2) and the CPR <10th centile had a 

sensitivity of 30.1% (23.1 – 38.0) respectively, whilst both combined, increased the sensitivity to 

40.4% (95% C.I. 32.6 – 48.5). Additional performance characteristics of various thresholds for 

EFW and CPR respectively are presented in Table 3.3. The highest positive likelihood ratio 

(PLR 5.11) for SCNO was achieved using EFW <3rd centile cut–off while the highest PLR for 

emergency caesarean for NRFS was seen with a CPR <5th centile albeit for both outcomes this 

came at a cost of reduced sensitivity. 
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Table 3-3: Diagnostic value of EFW <10th centile and CPR <10th centile for fetuses with composite outcome and emergency caesarean for non–

reassuring fetal status. 

 
Probability 
Cut–off 

Sensitivity  
(95% C.I.) 

Specificity  
(95% C.I.) 

AUC  
(95% C.I.) 

Positive 
Predictive 
Value 

Negative 
Predictive 
Value 

Positive 
Likelihood 
Ratio 

Negative 
Likelihood 
Ratio 

Serious Composite Neonatal Outcome 

CPR <10th 0.15 
23.3%  
(18.7 – 28.5) 

88.2%  
(86.7 – 89.5) 

0.56  
(0.53 – 0.58) 21.8% 89.1% 1.98 0.87 

CPR <5th 0.15 
16.0%  
(12.0 – 20.6) 

93.2%  
(92.0 – 94.2) 

0.55  
(0.52 – 0.57) 24.9% 88.7% 2.34 0.90 

EFW <10th 0.15 
24.7%  
(19.9 – 29.9) 

87.9%  
(86.4 – 89.2) 

0.56  
(0.54 – 0.59) 22.3% 89.2% 2.03 0.86 

EFW <3rd 0.15 
10.3%  
(7.1 – 14.3) 

98.0%  
(97.2 – 98.5) 

0.54  
(0.52 – 0.56) 41.9% 88.6% 5.11 0.92 

CPR <10th or 
EFW <10th 0.15 

36.7%  
(31.2 – 42.4) 

79.1%  
(77.2 – 80.8) 

0.58  
(0.55 – 0.61) 19.8% 89.8% 1.75 0.80 

Emergency Caesarean for Non–Reassuring Fetal Status 

CPR <10th 0.10 
30.1%  
(23.1 – 38.0) 

87.9%  
(86.5 – 89.2) 

0.59  
(0.55 – 0.63) 14.6% 94.8% 2.49 0.79 

CPR <5th 0.10 
19.2%  
(13.4 – 26.3) 

92.8%  
(91.7 – 93.8) 

0.56  
(0.53 – 0.59) 15.5% 94.4% 2.68 0.87 

EFW<10th 0.10 
23.7%  
(17.3 – 31.2) 

87.0%  
(85.5 – 88.4) 

0.55  
(0.52 – 0.59) 11.1% 94.3% 1.82 0.88 

EFW <3rd 0.10 
6.4%  
(3.1 – 11.5) 

97.2%  
(96.4 – 97.8) 

0.52  
(0.50 – 0.54) 13.5% 93.8% 2.27 0.96 

CPR <10th or 
EFW <10th 0.10 

40.4%  
(32.6 – 48.5) 

78.3%  
(76.6 – 80.0) 

0.59  
(0.55 – 0.63) 11.4% 95.0% 1.86 0.76 

CPR: Cerebroplacental Ratio; EFW: Estimated Fetal; AUC: Area Under the Curve; C.I.: Confidence Interval 
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Figures 3.1 and 3.2 illustrate the different individuals within the cohort that the CPR and the 

EFW identify for fetuses that had the SCNO and emergency caesarean for NRFS respectively. 

For SGA fetuses with a low CPR there was an increased risk of being born at 37 weeks gestation 

and emergency caesarean for NRFS. They were also more likely to have been admitted to NICU 

and have the SCNO (Table 3.4). Of the AGA cohort, a low CPR was also associated with birth 

at 37 weeks gestation and emergency caesarean for NRFS (Table 3.4). 

 

 

Figure 3-1: CPR <10th centile and EFW <10th centile for fetuses who had the composite 

neonatal outcome. 

 

 

 

Figure 3-2: CPR <10th centile and EFW <10th centile for fetuses who had an emergency 

caesarean for non–reassuring fetal status. 
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Table 3-4: Outcomes related to the cerebroplacental ratio stratified by estimated fetal weight. 

 EFW <10th Centile EFW >10th Centile 

 CPR >10th centile CPR <10th centile 
Adjusted OR  
(95% C.I.) P Value CPR >10th centile CPR <10th centile 

Adjusted OR  
(95% C.I.) P Value 

Gestation         

     37 weeks* 23.9% (56/234) 40.8% (40/98) 2.28 (1.33 – 3.92) 0.003 10.3% (192/1,870) 17.0% (38/223) 1.84 (1.25 – 2.71) 0.002 

     38 weeks* 33.8% (79/234) 41.8% (41/98) 1.26 (0.76 – 2.10) 0.38 23.4% (438/1,870) 25.1% (56/223) 1.21 (0.87 – 1.67) 0.26 

     39 weeks* 30.8% (72/234) 12.2% (12/98) 0.34 (0.17 – 0.66) 0.001 33.6% (628/1,870) 30.0% (67/223) 0.87 (0.64 – 1.18) 0.35 

     40 weeks* 9.4% (22/234) 5.1% (5/98) 0.56 (0.20 – 1.55) 0.26 21.7% (406/1,870) 20.6% (46/223) 0.90 (0.64 – 1.27) 0.56 

    >40 weeks* 2.1% (5/234) 0% (0/98) 1 NA 11.0% (206/1,870) 7.2% (16/223) 0.53 (0.31 – 0.91) 0.02 

Method of Birth         

SVD# 58.6% (137/234) 43.9% (43/98) 0.70 (0.43 – 1.16) 0.16 
56.3% 
(1,052/1,870) 50.7% (113/223) 0.86 (0.65 – 1.14) 0.29  

Instrumental# 13.3% (31/234) 13.3% (13/98) 0.77 (0.37 – 1.58) 0.47 12.6% (235/1,870) 13.9% (31/223) 0.90 (0.60 – 1.37) 0.64 

Elective CS# 16.7% (39/234) 13.3% (13/98) 0.76 (0.38 – 1.53) 0.44 16.8% (314/1,870) 15.7% (35/223) 1.02 (0.70 – 1.51) 0.89 

EM CS# 11.5% (27/234) 29.6% (29/98) 2.57 (1.39 – 4.74) 0.003 14.4% (269/1,870) 19.7% (44/223) 1.38 (0.96 – 1.98) 0.09 

EM CS NRFS# 6.8% (16/234) 21.4% (21/98) 3.16 (1.54 – 6.49) 0.002 5.0% (93/1,870) 11.7% (26/223) 2.42 (1.52 – 3.85) <0.001 

EM CS Other# 4.7% (11/234) 8.2% (8/98) 1.27 (0.46 – 3.50) 0.64 9.4% (176/1,870) 8.1% (18/223) 0.78 (0.46 – 1.31) 0.35 

Labour Induced* 51.7% (121/234) 67.4% (66/98) 1.57 (0.93 – 2.67) 0.09 37.9% (709/1,870) 37.2% (83/223) 0.89 (0.66 – 1.20) 0.43 

Acidosis* 6.8% (16/234) 14.3% (14/98) 1.80 (0.80 – 4.02) 0.16 5.4% (101/1,870) 9.0% (20/223) 1.38 (0.82 – 2.32) 0.22 

Apgar Score ≤3 at 
5 Minutes* 0% (0/233) 0% (0/98) 1 NA 0.4% (7/1,862) 0% (0/222) 1 NA 

Admission to 
NICU* 11.1% (26/234) 25.5% (25/98) 2.18 (1.13 – 4.21) 0.02 5.6% (105/1,870) 7.2% (16/223) 1.15 (0.66 – 2.01) 0.62 

Perinatal Death* 0.4% (1/234) 0% (0/98) 1 NA 0.2% (3/1,870) 0.9% (2/223) 4.23 (0.66 – 26.99) 0.13 

SCNO* 17.1% (40/234) 34.7% (34/98) 2.04 (1.14 – 3.63) 0.02 10.2% (190/1,870) 16.1% (36/223) 1.43 (0.96 – 2.13) 0.08 

SVD: Spontaneous Vaginal Delivery; CS; Caesarean Section; BWT: Birth Weight; NICU: Neonatal Intensive Care Unit; CPR: Cerebroplacental Ratio; EFW: Estimated Fetal Weight; OR: Odds 
Ratio; C.I.: Confidence Interval; SCNO: Serious Composite Neonatal Outcome 
*Adjusted for Parity, Maternal Body Mass Index and Delivery via Emergency Caesarean for Non–Reassuring Fetal Status 
# Adjusted for Parity & Maternal Body Mass Index 
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For the cohort that had a low CPR and an EFW <10th centile there was a higher risk of birth at 

37 and 38 weeks gestation, emergency caesarean for NRFS, IOL, admission to NICU and the 

SCNO (Table 3.5). Of the cohort with a CPR >10th centile but an EFW <10th centile there was a 

similarly increased risk of being born at 37 and 38 weeks gestation, IOL, admission to NICU and 

the SCNO.  
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Table 3-5: Outcomes related to estimated fetal weight stratified by the cerebroplacental ratio. 

 CPR <10th Centile CPR >10th Centile 

 EFW >10th Centile EFW <10th Centile 

Adjusted OR  

(95% C.I.) P Value EFW >10th Centile EFW <10th Centile 

Adjusted OR  

(95% C.I.) P Value 

Gestation         

     37 weeks* 17.0% (38/223) 40.8% (40/98) 3.98 (2.24 – 7.09) <0.001 10.3% (192/1,870) 23.9% (56/234) 2.84 (2.01 – 4.02) <0.001 

     38 weeks* 25.1% (56/223) 41.8% (41/98) 2.08 (1.23 – 3.49) 0.01 23.4% (438/1,870) 33.8% (79/234) 1.84 (1.37 – 2.48) <0.001 

     39 weeks* 30.0% (67/223) 12.2% (12/98) 0.36 (0.18 – 0.72) 0.003 33.6% (628/1,870) 30.8% (72/234) 0.88 (0.66 – 1.19) 0.41 

     40 weeks* 20.6% (46/223) 5.1% (5/98) 0.19 (0.07 – 0.51) 0.001 21.7% (406/1,870) 9.4% (22/234) 0.35 (0.22 – 0.55) <0.001 

    >40 weeks* 7.2% (16/223) 0% (0/98) 1 NA 11.0% (206/1,870) 2.1% (5/234) 0.16 (0.06 – 0. 39) <0.001 

Method of Birth         

SVD# 50.7% (113/223) 43.9% (43/98) 0.87 (0.53 – 1.43) 0.58 

56.3% 

(1,052/1,870) 58.6% (137/234) 1.13 (0.85 – 1.51) 0.38 

Instrumental# 13.9% (31/223) 13.3% (13/98) 0.68 (0.33 – 1.40) 0.29 12.6% (235/1,870) 13.3% (31/234) 0.84 (0.55 – 1.28) 0.41 

Elective CS# 15.7% (35/223) 13.3% (13/98) 0.98 (0.48 – 1.99) 0.95 16.8% (314/1,870) 16.7% (39/234) 1.06 (0.73 – 1.54) 0.77 

Emergency CS# 19.7% (44/223) 29.6% (29/98) 1.60 (0.90 – 2.82) 0.11 14.4% (269/1,870) 11.5% (27/234) 0.84 (0.54 – 1.29) 0.42 

Emerg CS 

NRFS# 11.7% (26/223) 21.4% (21/98) 1.93 (1.00 – 3.70) 0.049 5.0% (93/1,870) 6.8% (16/234) 1.48 (0.84 – 2.60) 0.18 

Emerg CS 

Other# 8.1% (18/223) 8.2% (8/98) 0.92 (0.36 – 2.36) 0.87 9.4% (176/1,870) 4.7% (11/234) 0.52 (0.28 – 0.98) 0.04 

Labour Induced* 37.2% (83/223) 67.4% (66/98) 3.31 (1.94 – 5.66) <0.001 37.9% (709/1,870) 51.7% (121/234) 1.92 (1.44 – 2.54) <0.001 

Acidosis* 9.0% (20/223) 14.3% (14/98) 1.44 (0.67 – 3.09) 0.36 5.4% (101/1,870) 6.8% (16/234) 1.11 (0.63 – 1.96) 0.72 

Apgar Score ≤3 at 5 

Minutes* 0% (0/222) 0% (0/98) 1 NA 0.4% (7/1,862) 0% (0/233) 1 NA 

Admission to 

NICU* 7.2% (16/223) 25.5% (25/98) 4.29 (2.10 – 8.77) <0.001 5.6% (105/1,870) 11.1% (26/234) 1.92 (1.19 – 3.08) 0.01 

Perinatal Death* 0.9% (2/223) 0% (0/98) 1 NA 0.2% (3/1,870) 0.4% (1/234) 3.09 (0.30 – 31.95) 0.34 

SCNO* 16.1% (36/223) 34.7% (34/98) 2.39 (1.34 – 4.25) 0.003 10.2% (190/1,870) 17.1% (40/234) 1.16 (1.08 – 2.37) 0.02 

SVD: Spontaneous Vaginal Delivery; CS; Caesarean Section; BWT: Birth Weight; NICU: Neonatal Intensive Care Unit; CPR: Cerebroplacental Ratio; EFW: Estimated Fetal Weight; OR: 

Odds Ratio; C.I.: Confidence Interval; SCNO: Serious Composite Neonatal Outcome 

*Adjusted for Parity, Maternal Body Mass Index and Delivery via Emergency Caesarean for Non–Reassuring Fetal Status 

# Adjusted for Parity & Maternal Body Mass Index 
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3.6 Discussion 

The results from this study indicate that there is no difference in the ability to predict the SCNO 

using either EFW <10th centile (23.3%) or CPR <10th centile (22.8%) (aOR 1.78, 95% C.I. 1.30 

– 2.43 vs. 1.96, 95% C.I. 1.43– 2.67, p=0.41) thresholds individually. However, when used in 

combination the sensitivity increased to 36.7% (95% C.I. 31.2 – 42.4) suggesting that the EFW 

identifies a cohort of fetuses at risk of SCNO that is separate from that identified by the CPR 

alone (Figure 1). Our results thus support the incorporation of both the CPR and the EFW into 

any risk stratification model.  

We also show that in SGA fetuses, a low CPR is associated with early term birth and emergency 

caesarean for NRFS. The association with these outcomes with a low CPR were also found in 

AGA fetuses although this was slightly weaker. In fetuses with a low CPR, being SGA was 

associated with early term birth, IOL, admission to NICU and SCNO. Again, these associations 

extended to the CPR >10th centile cohort with albeit weaker correlation. 

Our stratified analysis of both the CPR and EFW suggest that a low CPR is associated with 

emergency caesarean for NRFS regardless of the EFW even in a low risk cohort as in this study. 

The congruent association of emergency caesarean for NRFS with a low CPR regardless of fetal 

weight is likely to be indicative of the relationship between placental function, aberrations in 

fetal growth and intrapartum fetal compromise. Our findings concur with that shown by Khalil et 

al in a mixed risk cohort (147).   

Induction of labour was associated with a low EFW in both the low CPR (aOR 3.31, 95% C.I. 

1.94 – 5.66) and normal CPR cohorts (aOR 1.92, 95% C.I. 1.44 – 2.54). The difference in odds 

ratios between both these groups is likely to be secondary to the low EFW being the primary 

indication for IOL.  

The results from this study are in concordance to recent studies by Sirico et al and Mendez–

Figeroa et al (144, 148). Sirico et al found that there was an inverse correlation between the CPR 

and the development of pathological fetal heart rates in labour (148). They also demonstrated 

that a low CPR showed stronger associations with adverse outcomes in an SGA cohort (148). 

Mendez–Figeroa et al showed that when compared to an AGA cohort, SGA babies had a 

significantly greater risk of morbidity and mortality (144). In contrast our study shows that in a 

low risk cohort, being SGA was not associated with increased odds for emergency caesarean for 

NRFS in contrast to a low CPR which was strongly correlated regardless of EFW. Furthermore, 

even though we demonstrated that the association with adverse outcomes were stronger in the 
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SGA cohort, there was still a reasonably strong association between a low CPR and SCNO even 

in the AGA group suggesting that screening in this cohort may also be worthwhile.   

The strengths of this study lie in the large cohort of EFW and CPR measurements obtained from 

a single tertiary centre. We chose a composite of serious neonatal outcomes that are linked to 

poorer longer– term sequelae such as cerebral palsy (149) and still found a significant 

association with a low CPR even in a low risk population. The limitations are those that are 

inherent to retrospective studies. Although we excluded women with medical co–morbidities 

(diabetes mellitus and hypertension) these women were referred for a clinically indicated 

ultrasound assessment of the fetus and hence may not be truly low risk. Furthermore, as the 

EFW was available to clinicians as part of the ultrasound report it is likely that in a proportion of 

women it may have influenced the decision for or timing of birth. Nevertheless, despite these 

limitations, in our view our findings are interesting and highlight the importance of incorporating 

both the CPR and the EFW into risk assessment at term.   

It is probably fair to say that there is equipoise amongst clinicians as to the benefits of a late 

pregnancy scan. Currently, Cochrane reviews do not support the use of either routine late 

pregnancy ultrasound or umbilical artery Doppler assessment in low–risk populations (150, 

151). However, these reviews are limited by small sample size, use of surrogate outcomes, and 

most importantly, ultrasound scans that were often performed too remote from term, thereby 

potentially missing late onset growth restriction. A recent prospective observational cohort study 

showed that late pregnancy ultrasound in low risk women tripled the detection rate for SGA 

babies at term (152). However, this study was limited by the lack of middle cerebral artery 

(MCA) Dopplers (and thus the CPR measurement) once an SGA fetus was detected. It is 

possible that detection rates for SGA and other vulnerable babies may have been further 

improved if the CPR had been included. This omission is important because in term fetuses, 

umbilical artery (UA) Dopplers are usually normal and thus would not identify an at–risk fetus 

(153).  
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4.1 Abstract 

Objectives: To evaluate whether the magnitude of change in the cerebroplacental ratio (CPR) 

after 30 weeks' gestation is a better predictor of adverse pregnancy outcome compared with a 

single CPR measurement at 35 – 37 weeks. A secondary aim was to evaluate whether the utility 

of CPR at 35 – 37 weeks was enhanced after adjusting for change in gestational age. 

Methods: This was a retrospective cohort study of women who had at least two ultrasound scans 

between 30 and 37 weeks gestation, with the final scan at 35 – 37 weeks. Exclusion criteria were 

major congenital abnormality, aneuploidy, multiple pregnancy and unknown middle cerebral 

artery pulsatility index or umbilical artery pulsatility index. A normal reference range for CPR 

was derived from a separate cohort of women with normal outcome and a Generalised Additive 

Model for Location, Scale and Shape was fitted to derive standardized centiles. These reference 

centiles were then used to calculate Z‐scores for the study cohort. Logistic regression models and 

receiver–operating characteristics (ROC) curves were used to evaluate the predictive utility of 

CPR Z–score at last CPR measurement and the change in CPR on mode of delivery, neonatal 

outcome and composite neonatal outcome. The area under the ROC curve (AUC) for each model 

was compared before and after adjustment for parity, hypertension, diabetes, body mass index 

and smoking status. 

Results: A total of 1,860 women met the inclusion criteria. There was no association between 

the magnitude of change in CPR and composite adverse pregnancy outcome (P = 0.92). Of the 

outcomes that made up the composite, an increase in CPR Z–score over time was associated with 

a lower risk for emergency caesarean delivery (P < 0.001) and emergency caesarean delivery for 

non–reassuring fetal status (P = 0.02). It was also associated with a lower risk of birth 

weight <10th centile (P = 0.01) and hypoglycaemia (P = 0.001). There was no significant 

difference between the AUCs of last CPR Z–score and last CPR Z–score adjusted for the change 

in gestational age in predicting pregnancies at risk for adverse outcome. 

Conclusions: Our results suggest that both the individual CPR Z–score and the magnitude and 

direction of change in CPR Z–score can identify pregnancies at risk of various adverse perinatal 

outcomes. However, the CPR Z–score at 35 – 37 weeks gestation appears to be a better 

predictor. 
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4.2 Introduction 

Deterioration in placental function during pregnancy results in compensatory hemodynamic 

changes in the fetus, with increased blood flow to the brain and other essential organs (8, 57). 

This redistribution of cardiac output is typically seen in small for gestational age fetuses, or 

indeed, any fetus that fails to reach its growth potential regardless of gestation (40, 154), and is 

associated with an increased risk of adverse perinatal and long–term neurodevelopmental 

outcomes (155-157). 

The ratio of the middle cerebral artery pulsatility index (MCA PI) to the umbilical artery PI (UA 

PI) is referred to as the cerebroplacental ratio (CPR) and is reflective of the severity of cerebral 

redistribution. However, CPR changes during gestation and is proportionate to relative fetal 

growth (66). We and others have shown previously that the CPR at 35 – 37 weeks gestation is 

associated with intrapartum fetal compromise, poor acid–base status at birth and an increased 

risk of admission to the neonatal critical care unit (NCCU) at term (11, 15, 53, 58, 60, 67, 68). 

However, despite this, its sensitivity as a predictor of adverse outcome is unimpressive, at 6 – 

15% (11). 

The primary aim of this study was to see if the magnitude of change in CPR after 30 weeks 

gestation was a better predictor of adverse pregnancy outcome compared with a single 

CPR measurement later in pregnancy. A secondary aim was to evaluate whether the 

accuracy of CPR at 35 – 37 weeks to detect adverse pregnancy outcomes was enhanced 

after adjusting for the gestational age change in CPR. 
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4.3 Methods 

This was a retrospective cohort study in women attending the Mater Mother's Hospital in 

Brisbane, Australia, between 2013 and 2015. The Mater Mother's Hospital is a major tertiary 

centre in the state of Queensland and the largest maternity hospital in Australia, with 

approximately 10,000 births per annum. Previous prospectively collected maternal demographic 

data from the institution's maternal database were cross–referenced against the institution's 

ultrasound and neonatal databases. The study protocol was approved by the hospital's human 

research ethics committee (Reference number HREC/14/MHS/37). 

The study cohort included pregnant women with a non‐anomalous singleton fetus who had at 

least two ultrasound scans between 30 + 0 and 37 + 6 weeks gestation, with the final scan at 35 – 

37 weeks, with data recorded for both MCA PI and UA PI for the calculation of CPR. 

Gestational age was calculated using the last menstrual period or earliest ultrasound 

examination, or by correlation with both. Exclusion criteria included any major congenital 

abnormality, aneuploidy, multiple pregnancy and unknown UA PI or MCA PI. Demographic 

data collected included maternal age, insurance status, body mass index (BMI), ethnicity, 

smoking history, presence of hypertension and diabetes mellitus, and parity. Ultrasound data 

recorded included gestational age at ultrasound, UA PI and either the left or right MCA PI. 

For recording ultrasound data, we used an automated tracing method that incorporated at least 

three waveforms and was repeated three times in order to obtain the mean PI. The angle of 

insonation was maintained at <30°. The MCA was imaged using colour Doppler and its 

waveform recorded from the proximal third of the vessel, distal to its origin from the circle of 

Willis. Depending on the quality of the waveform, either the left or right MCA PI was measured. 

The UA Doppler waveforms were recorded from a free loop of the umbilical cord, and CPR was 

calculated by dividing MCA PI by UA PI. 

A normal reference range for CPR was created using ultrasound data between 22 and 42 weeks 

gestation derived from a separate cohort of women with a normal pregnancy outcome. Specific 

obstetric and perinatal exclusion criteria for this cohort included any mode of delivery other than 

spontaneous vaginal delivery, preterm birth (<37 weeks), multiple pregnancy, presence of 

hypertension or diabetes mellitus, major congenital abnormality, aneuploidy, indeterminate fetal 

gender, perinatal death, admission to the NCCU, hypoglycaemia (defined as clinically 

significant hypoglycaemia in the first 24 h after delivery), acidosis at birth (defined as cord blood 

pH <7.1 and lactate >6 mmol/L), respiratory distress (defined as the need for prolonged 
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ventilatory assistance), resuscitation (defined as the need for respiratory and/or cardiopulmonary 

resuscitation) and 5–min Apgar score <7. A Generalized Additive Model for Location, Scale and 

Shape (GAMLSS) using Box–Cox transformation was fitted to the data to create standardized 

centiles by gender and gestational age at ultrasound (117). These were then used to calculate Z–

scores for the study cohort: ((measured CPR − mean reference CPR)/SD of reference CPR) 

(Figure 4.1). 

 

 

Figure 4-1: Cerebroplacental ratios of study cohort plotted over reference standardised 

centiles. 

BCT: Box–Cox t distribution; CPR: Cerebroplacental Ratio 

Scan 1 (Red) and Scan 2 (Blue) 

 

The change in CPR Z–score per week was obtained by subtracting the CPR Z–score obtained 

from the second ultrasound scan from that of the first and dividing it by the number of weeks 

between the first and second scans ((CPR Z–score Scan 2 − CPR Z–score Scan 1)/(gestational 

age at Scan 2 − gestational age at Scan 1)), thus accounting for any variation in the interval 

between the first and second scans. Using the change in CPR per week allowed analysis of the 

magnitude and direction of change in CPR. 

The primary outcome of this study was a composite measure of any adverse neonatal outcome, 

defined as perinatal death, emergency caesarean delivery for non–reassuring fetal status, NCCU 
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admission (including admission to the special care nursery, intensive care nursery and intensive 

care unit), severe respiratory distress, 5–min Apgar score <7, hypoglycaemia or acidosis at birth. 

Other outcomes assessed included mode of, and indication for delivery, gestational age at 

delivery and delivery before 37 weeks gestation, birth weight Z–score (calculated with reference 

to Australian birth weight percentiles for gestational age and gender) (4) and duration of labour. 

Mode of delivery was defined as spontaneous vaginal, instrumental (forceps and vacuum), 

elective caesarean section or emergency caesarean section. Emergency caesarean section was 

further stratified into those indicated for non–reassuring fetal status and those indicated for all 

other reasons. 

 

4.4 Statistical Analysis 

Distributions for continuous data were assessed. Correlations between continuous variables were 

assessed using Pearson's correlation coefficient for parametric data and Spearman's correlation 

coefficient for non–parametric data. For normally distributed data, differences between means 

were assessed using an independent sample t–test (and Wilcoxon rank–sum test for non–

parametric data). Differences in proportions were tested using the Z–test for two proportions. 

Logistic regression models and receiver operating characteristics (ROC) curves were used to 

evaluate the predictive utility of CPR Z–score, calculated from the last CPR measurement, and 

the change in CPR on mode of delivery, neonatal outcome and composite neonatal outcome. The 

areas under the ROC curves (AUCs) for each model were compared, before and after adjustment 

for parity, hypertension, diabetes, BMI and smoking status. 

Summary statistics are reported as mean ± SD or median (interquartile range), as appropriate. 

Data analysis was performed using Stata/SE 13.1 (Statacorp, College Station, TX, USA) and R 

Version 3.1.1 (R Core Team (2014); R Foundation for Statistical Computing, Vienna, 

Austria; http://www.R– project.org/). Statistical significance was defined as P < 0.05. 

  

http://www.r-project.org/
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4.5 Results 

During the study period, 1,693 women met the inclusion criteria for the reference cohort and 

1,860 for the study group. Characteristics of the reference and study groups are shown in 

Table 4.1. In the study cohort, mean CPR Z–score for the first ultrasound scan (at mean 

5.5 ± 1.9 weeks prior to delivery and mean 32.6 ± 1.2 weeks gestation) was –0.11 ± 1.09, while 

mean CPR Z–score for the second ultrasound scan (at mean 2.1 ± 1.3 weeks prior to delivery and 

mean 36.0 ± 0.7 weeks gestation) was –0.16 ± 1.13. The mean change in CPR Z–score per week 

was –0.02 ± 0.46; the mean interval between scans was 3.4 ± 1.3 weeks. 

Table 4-1: Maternal demographics of study and reference cohorts. 

 

Study Cohort 

N=1,860 

Reference 

Cohort N=1,693 P Value 

Age*¶ 31.3 (5.8) 30.3 (5.8) <0.001 

BMI (kg/m2) †‡ 23.9 (20.8 – 28.9) 22.7 (20.0 – 26.6) <0.001 

Nulliparous 774 (41.6%)  630 (37.2%) 0.01 

Ethnicity    

          Caucasian 994 (53.4%) 907 (53.6%) 0.94 

Indigenous 61 (3.3%) 61 (3.6%) 0.60 

Asian 302 (16.2%) 287 (17.0%) 0.57 

Indian 159 (8.6%) 89 (5.3%) <0.001 

Other 344 (18.5%) 348 (20.6%) 0.12 

Hypertension 214 (11.5%) 101 (6.0%) <0.001 

Diabetes 666 (35.8%) 234 (13.9%) <0.001 

Smoking  272 (14.6%) 276 (16.3%) 0.16 
BMI: Body Mass Index 

Demographic characteristics are reported as number (percentage) unless otherwise indicated. 

Comparisons made using Z–test for two proportions unless otherwise indicated. 

* Mean (Standard Deviation) 

† Median (Interquartile Range) 

¶ t–test 

‡ Wilcoxon Rank Sum Test 
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There was no difference in the change in CPR Z–score according to maternal age, BMI, parity, 

ethnicity, diabetes or smoking status. CPR Z–score decreased during the third trimester in 

women diagnosed with hypertension, compared with no significant change in those without 

hypertension (Table 4.2). CPR Z–score at the second ultrasound scan correlated positively with 

maternal BMI, was higher in women with diabetes (−0.07 ± 1.16 vs −0.21 ± 1.11) and lower in 

nulliparous women (−0.27 ± 1.11 vs −0.08 ± 1.14) and smokers (−0.30 ± 1.12 vs −0.14 ± 1.12). 

There was, however, no difference in last CPR Z–score according to maternal age, ethnicity or 

hypertension (Table 4.2). 

 

Table 4-2: Maternal demographics by change in CPR Z–score/week and last CPR Z–score. 

  

Change in  

CPR Z–score/Week 

Last CPR Z–score  

(35 – 37 Weeks) 

 N=1,860 

Change in 

CPR Z–

score/Week 

P 

Value 

Last CPR 

 Z–score  P Value 

Age* 31.3 (5.8)   0.013¶ 0.59 0.027¶ 0.24 

BMI (kg/m2) † 

23.9  

(20.8 – 28.9)   0.029‡ 0.22 0.070‡ 0.003 

Nulliparous 774 (41.6%)  – 0.05 (0.45)  0.07 – 0.27 (1.11) <0.001 

Ethnicity      

          Caucasian 994 (53.4%) – 0.01 (0.49)  0.25 – 0.13 (1.09) 0.16 

Indigenous 61 (3.3%) – 0.08 (0.42) 0.34 – 0.35 (1.20) 0.18 

Asian 302 (16.2%) 0.003 (0.40) 0.29 – 0.07 (1.05) 0.13 

Indian 159 (8.6%) – 0.07 (0.43) 0.16 – 0.29 (1.18) 0.13 

Other 344 (18.5%) – 0.04 (0.43) 0.31 – 0.24 (1.25) 0.13 

Hypertension 214 (11.5%) – 0.09 (0.48) 0.03 – 0.25 (1.14) 0.24 

Diabetes 666 (35.8%) – 0.02 (0.43) 0.76 – 0.07 (1.16) 0.01 

Smoking  272 (14.6%) – 0.07 (0.50) 0.07 – 0.30 (1.12) 0.03 
CPR: Cerebroplacental ratio, BMI: Body Mass Index 

Demographic characteristics are reported as number (percentage) unless otherwise indicated. 

Change in CPR Z–score/Week and Last CPR Z–score is reported as Mean (Standard Deviation) unless otherwise indicated. 

Comparisons are made using t–test unless otherwise indicated. 

¶ Pearson’s Correlation Coefficient 

‡ Spearman’s Rho Rank Correlation Coefficient 

* Mean (Standard Deviation) 

† Median (Interquartile Range) 
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Univariable logistic regression confirmed that there was no association between the change in 

CPR per week and composite adverse pregnancy outcome. Of the outcomes that made up the 

composite, an increase in CPR Z–score over time was associated with a lower risk of emergency 

caesarean delivery and was protective in the subset requiring emergency caesarean delivery for 

non‐reassuring fetal status (Table 4.3). 

An increase in CPR Z‐score over time was also associated with a lower risk of preterm delivery 

before 37 weeks, birth weight <10th centile and hypoglycaemia (Table 4.3). A higher CPR Z–

score at 35 – 37 weeks was similarly associated with a lower risk of composite adverse 

pregnancy outcome. Of the outcomes that made up the composite, a higher CPR Z–score at 35 – 

37 weeks was associated with a lower risk of emergency caesarean delivery, including the 

subgroup delivered for non–reassuring fetal status. A higher CPR Z–score at the second 

ultrasound scan was also associated with a lower risk of preterm delivery before 37 weeks, birth 

weight <10th centile, 5–min Apgar score <7, admission to the NCCU or perinatal death. A higher 

final CPR Z–score was a risk factor for birth weight > 90th centile (Table 4.3). 

The composite adverse pregnancy outcome, 5–min Apgar score <7, admission to the NCCU and 

perinatal death were all associated with a low mean CPR Z‐score (≤ –0.4) at the 35 – 37 week 

scan, yet there was only a minimal change in CPR Z–score from the initial scan, indicating a 

consistently low CPR with limited room for any further decrease. In particular, perinatal death 

had a consistently low mean CPR Z–score, decreasing by only 0.05 per week to a mean CPR Z–

score of –0.84 ± 1.28 (Figure 4.2 and Table 4.3). 
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Table 4-3: Neonatal outcomes by change in CPR Z–score/week and last CPR Z–score. 

 Change in CPR Z–score/Week Last CPR Z–score (35 – 37 Weeks) 

 

Change in CPR  

Z–score/Week OR (95% C.I.) P Value 

CPR Z–score  

Scan 2 OR (95% C.I.) P Value 

Male – 0.01 (0.45) 

NA 0.48 

– 0.13 (1.10) 

NA 0.30 Female – 0.03 (0.46) – 0.19 (1.16) 

Length of Labour (min) 

n=1,269 0.001‡ NA 0.97 0.029‡ NA 0.30 

Mode of Delivery       

SVD – 0.01 (0.44) 1.08 (0.89 – 1.33) 0.40 – 0.12 (1.07) 1.07 (0.98 – 1.16) 0.12 

Instrumental 0.01 (0.43) 1.20 (0.88 – 1.65) 0.25 – 0.15 (1.15) 1.01 (0.89 – 1.15) 0.85 

Elective CS 0.01 (0.47) 1.23 (0.96 – 1.58) 0.10 – 0.04 (1.08) 1.13 (1.02 – 1.24) 0.02 

Emergency CS – 0.10 (0.50) 0.63 (0.49 – 0.81) <0.001 – 0.40 (1.26) 0.79 (0.72 – 0.88) <0.001 

NRFS – 0.12 (0.50) 0.61 (0.41 – 0.91) 0.02  – 0.80 (1.44) 0.62 (0.53 – 0.72) <0.001 

Other – 0.01 (0.45) 0.68 (0.51 – 0.91) 0.01 – 0.23 (1.14) 0.94 (0.84 – 1.06) 0.33 

Preterm (<37 Weeks) – 0.20 (0.76) 0.40 (0.30 – 0.55) <0.001 – 0.81 (1.41) 0.58 (0.51 – 0.66) <0.001 

BWT <10th centile – 0.07 (0.49) 0.73 (0.57 – 0.94) 0.01 – 0.65 (1.19) 0.61 (0.56 – 0.69) <0.001 

BWT >90th centile 0.03 (0.49) 1.35 (0.99 – 1.85) 0.06 0.33 (1.13) 1.62 (1.41 – 1.86) <0.001 

Apgar <7 at 5 min – 0.05 (0.48) 0.89 (0.45 – 1.77) 0.74 – 0.52 (1.35) 0.76 (0.59 – 0.99) 0.04 

NCCU 0.01 (0.58) 1.20 (0.91 – 1.59) 0.19 – 0.43 (1.33) 0.79 (0.70 – 0.88) <0.001 

Respiratory Distress 0.03 (0.61) 1.30 (0.94 – 1.78) 0.11 – 0.26 (1.31) 0.92 (0.81 – 1.04) 0.16 

Perinatal Death – 0.05 (0.58) 0.90 (0.35 – 2.33) 0.82 – 0.84 (1.28) 0.62 (0.45 – 0.87) 0.01 

Hypoglycaemia – 0.45 (0.94) 0.24 (0.10 – 0.57) 0.001 – 0.56 (1.45) 0.75 (0.46 – 1.21) 0.23 

Acidosis 0.01 (0.54) 1.17 (0.77 – 1.77) 0.46 – 0.20 (1.38) 0.96 (0.82 – 1.13) 0.67 

Composite Adverse 

Neonatal Outcome – 0.02 (0.56) 0.99 (0.79 – 1.24) 0.92 – 0.40 (1.28) 0.77 (0.70 – 0.84) <0.001 

CPR: Cerebroplacental ratio, SVD: Spontaneous vaginal delivery, CS: Caesarean section, NRFS: Emergency caesarean indicated for non–reassuring fetal status, BWT: Birth weight, NCCU: 

Neonatal critical care unit, Composite adverse neonatal outcome: Defined as perinatal death, birth by emergency caesarean for non–reassuring fetal status, NCCU admission, severe respiratory 

distress, Apgar score <7 at 5 minutes, hypoglycaemia, or acidosis at birth. 

Change in CPR Z–score/Week and Last CPR Z–score is reported as Mean (Standard Deviation) unless otherwise indicated. 

Univariable Logistic Regression: Odds ratios are reported unless otherwise indicated. 

‡ Spearman’s Rho Rank Correlation Coefficient



84 

 

 

Figure 4-2: Change in CPR between scan 1 and scan 2 of hypoglycaemic compared to non–

hypoglycaemic fetuses and fetuses that died compared to fetuses that survived. 

CPR: Cerebroplacental Ratio 

 

 

The AUCs derived from univariable logistic regression indicated that CPR Z–score at 35 –

37 weeks was a better predictor than was the change in CPR Z–score for the majority of adverse 

neonatal outcomes, although the AUC was <0.7 for all outcomes. 

After adjusting for the change in CPR Z–scores, there was no improvement in the predictive 

value of CPR when measured at 35 – 37 weeks gestation (AUC <0.69 for all outcomes). 

Comparison of ROC curves derived from multivariable logistic regression, adjusted for any 

potential confounding effects of parity, maternal hypertension, diabetes, BMI and smoking 

status, indicated no significant improvement in any of the models (Table 4.4). 
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Table 4-4: Adjusted area under the curve for neonatal outcomes. 

 

Last CPR Z–score 

(35 – 37 Weeks) 

Change in CPR  

Z–score/Week 

Last CPR Z–score 

& Change in 

CPR/Week 

Last CPR 

AUC c.f. Last 

& Change in 

CPR/Week 

AUC 

 AUC (95% C.I.) AUC (95% C.I.) AUC (95% C.I.) P value 

SVD 

0.627  

(0.602 – 0.652) 

0.626  

(0.601 – 0.652) 

0.627  

(0.602 – 0.652) 0.68 

Instrumental 

0.740  

(0.705 – 0.775) 

0.743  

(0.708 – 0.777) 

0.743  

(0.708 – 0.777) 0.56 

Elective CS 

0.642  

(0.612 – 0.672) 

0.640  

(0.609 – 0.670) 

0.642  

(0.611 – 0.672) 0.88 

Emergency CS 

0.659  

(0.627 – 0.691) 

0.657  

(0.625 – 0.689) 

0.662  

(0.630 – 0.694) 0.28 

    NRFS 

0.736  

(0.686 – 0.785) 

0.700  

(0.652 – 0.748) 

0.734  

(0.684 – 0.784) 0.65 

    Other 

0.624  

(0.585 – 0.662) 

0.629  

(0.590 – 0.667) 

0.629  

(0.591 – 0.668) 0.45 

Preterm  

(<37 Weeks) 

0.687  

(0.645 – 0.728) 

0.634  

(0.585 – 0.682) 

0.683  

(0.640 – 0.726) 0.43 

BWT <10th 

centile 

0.765  

(0.731 – 0.800) 

0.716  

(0.678 – 0.753) 

0.770  

(0.735 – 0.804) 0.37 

Apgar <7 at  

5 min 

0.658  

(0.567 – 0.748) 

0.604  

(0.501 – 0.706)  

0.663  

(0.570 – 0.756) 0.75 

NCCU 

0.614  

(0.577 – 0.651) 

0.596  

(0.559 – 0.634) 

0.639  

(0.602 – 0.676) 0.05 

Respiratory 

Distress 

0.576  

(0.533 – 0.618) 

0.586  

(0.543– 0.628) 

0.603  

(0.560 – 0.646) 0.12 

Perinatal Death 

0.753  

(0.640 – 0.866) 

0.710  

(0.606 – 0.814) 

0.762  

(0.638 – 0.885) 0.65 

Hypoglycaemia 

0.716  

(0.546 – 0.886)  

0.770  

(0.583 – 0.957)  

0.765  

(0.580 – 0.949) 0.48 

Acidosis 

0.681  

(0.630 – 0.732) 

0.680  

(0.628 – 0.731) 

0.679  

(0.627 – 0.731) 0.72 

Composite 

0.619  

(0.590 – 0.649) 

0.593  

(0.564 – 0.622) 

0.630  

(0.600 – 0.660) 0.11 
*Adjusted for parity, hypertension, diabetes, body mass index and smoking status 

BWT: Birth weight; SVD: Spontaneous vaginal delivery; CS: Caesarean Section; NRFS: Emergency Caesarean Indicated 

for Non–Reassuring Fetal Status; NCCU: Neonatal Critical Care Unit; CPR: Cerebroplacental ratio; AUC: area under Curve 

 

Composite Adverse Neonatal Outcome: defined as perinatal death, birth by emergency caesarean for non–reassuring fetal 

status, NCCU admission, severe respiratory distress, Apgar score <7 at 5 minutes, hypoglycaemia, or acidosis at birth. 
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4.6 Discussion 

The results of our study suggest that the CPR Z–score measured at 35 – 37 weeks gestation is 

associated with a better predictive value for adverse pregnancy outcome than is the magnitude of 

change in CPR Z–score over time. We found that the greatest reduction in CPR Z–score over 

time was associated with an increased risk of having an emergency caesarean section, 

particularly for non‐reassuring fetal status. It was also associated with preterm delivery before 

37 weeks, birth weight <10th centile and neonatal hypoglycaemia. Although these adverse 

outcomes are also associated with a low CPR at 35 – 37 weeks, what is interesting is that the 

risks of these complications were higher when the CPR Z–score reduction was greatest. In 

particular, the greatest decrease in CPR Z–score over time was seen in the cohort of pregnancies 

that had significant neonatal hypoglycaemia. Our findings also suggest that preterm delivery 

before 37 weeks is associated with a mean decline of 0.2 SD per week. 

The reduction in CPR Z–score over time was also greater in neonates with a birth 

weight <10th centile than in those with a birth weight ≥10th centile, although the magnitude of the 

reduction in mean CPR Z–score was not as large as that observed for preterm or hypoglycaemic 

fetuses. However, this cohort of fetuses, as well as those with composite adverse neonatal 

outcome, already had a very low mean CPR Z–score at the first scan, suggesting significantly 

poorer placental function and thus limited capacity for further decrease in CPR Z–score 

(Figure 4.2). 

As with previous studies(4, 11, 15, 40, 57, 60, 67, 157, 158), our results indicate that a low CPR 

measured late in the third trimester is associated with adverse perinatal outcome. However, by 

measuring the change in CPR Z–score over time, it may be possible to identify fetuses whose 

hemodynamic status is in more rapid decline, increasing their risk of adverse perinatal outcome, 

in particular hypoglycaemia, preterm birth and emergency caesarean section for non–reassuring 

fetal status. 

Allam and Maarouf (159) found, in a group of 201 women in Egypt, that a low CPR at 31 – 

42 weeks gestation was more common in women with hypertension, and in their meta–analysis 

Bramham et al. (160) found that women with chronic hypertension had a significant risk of 

developing superimposed pre–eclampsia and worse perinatal outcome, such as low birth weight, 

preterm birth, caesarean section, perinatal death and admission to the neonatal intensive care 

unit. In contrast, we found no difference in CPR Z–score at the second scan in hypertensive 
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compared with normotensive women. However, we did find a significant difference in the 

change in CPR Z–score over time between these two groups. 

Although a number of previous studies have assessed the relationship between a single low CPR 

measured at various gestational timepoints and adverse outcome (4, 11, 15, 40, 57, 60, 67, 157, 

158), there have been no studies assessing the impact of the magnitude of change in the CPR and 

its association with adverse pregnancy outcome. This study attempts to address this paucity of 

data. However, comparison of CPR Z–scores at different timepoints poses statistical problems as 

well as problems of interpretation. The variability in gestational age at which the CPR was 

measured presents a problem, as a raw change in CPR value can be misleading. Furthermore, the 

interval between the scans was variable and the gestational age at which each scan was 

performed influenced the size of the difference in the CPR. Differences in mean CPR between 

gestational weeks makes a valid comparison of scans between two or more timepoints difficult. 

To address these limitations, using the GAMLSS model and Box–Cox transformation to obtain 

standardized centiles, we were able to create gestational‐age reference ranges of CPR Z–scores 

(Figure 4.1) using a truly representative cohort of uncomplicated vaginal deliveries, without any 

adverse perinatal outcome. By dividing the change in CPR by the change in gestational age 

between scans, we were able to undertake a comparison of the change in CPR Z–score over time, 

adjusting for discrepancies in time between scans. 

The limitations of this study include those inherent to its retrospective nature. The study cohort 

was clearly not an unselected population, with ultrasound scans performed for various clinical 

indications, including previous obstetric history, maternal medical conditions, such as diabetes 

or hypertension, and uncertainty regarding fetal size. However, our reference cohort all had 

normal pregnancies and normal perinatal outcomes, and thus provided a realistic sample with 

which to compare those who had adverse outcomes. 

Our results suggest that both the individual CPR Z–score and the magnitude and direction of 

change in CPR Z–score can identify pregnancies at risk of various adverse perinatal outcomes; 

however, the CPR Z–score at 35 – 37 weeks gestation appears to be a better indicator of 

outcome. 
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5.1 Abstract 

Objectives: The primary aim of this study was to create reference ranges for the fetal Middle 

Cerebral artery Pulsatility Index (MCA PI), Umbilical Artery Pulsatility Index (UA PI) and the 

Cerebroplacental Ratio (CPR) in a clearly defined low–risk cohort using the Generalised 

Additive Model for Location, Shape and Scale (GAMLSS) method. 

 

Methods: Prospectively collected cross–sectional biometry and Doppler data from low–risk 

women attending the Mater Mother’s Hospital, Maternal and Fetal Medicine Department in 

Brisbane, Australia between January 2010 and April 2017 were used to derive gestation specific 

centiles for the MCA PI, UA PI and CPR. All ultrasound scans were performed between 18+0 

and 41+6 weeks gestation with recorded data for the MCA PI and/or UA PI. The GAMLSS 

method was used for the calculation of gestational age–adjusted centiles. Distributions and 

additive terms were assessed, and the final model was chosen on the basis of the Global 

Deviance, Akaike information criterion (AIC) and Schwartz Bayesian criterion (SBC), along 

with the results of the model and residual diagnostics as well as visual assessment of the centiles 

themselves. 

 

Results: Over the study period 6,013 women met the inclusion criteria. The MCA PI was 

recorded in 4,473 fetuses, the UA PI in 6,008 fetuses and the CPR was able to be calculated in 

4,464 cases. The centiles for the MCA PI used a fractional polynomial additive term and Box–

Cox t (BCT) distribution. Centiles for the UA PI used a cubic spline additive term with BCT 

distribution and the CPR used a fractional polynomial additive term and a BCT distribution. 

 

Conclusion: We have created gestational centile reference ranges for the MCA PI, UA PI and 

CPR from a large low–risk cohort that supports their applicability and generalisability.  
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5.2 Introduction 

The fetal Cerebroplacental Ratio (CPR) is the ratio of the Middle Cerebral Artery Pulsatility 

Index (MCA PI) to the Umbilical Artery Pulsatility Index (UA PI) that shows promise as a tool 

for the identification of fetuses at risk of a variety of intrapartum and neonatal complications 

particularly in late pregnancy (8, 15, 53, 57, 58, 60, 67). More recently a low CPR has also been 

shown to be predictive of perinatal loss at term (161). 

Given the increasing use of the CPR in clinical management, it is vital that any CPR value is 

interpreted with respect to standardised reference centiles that have been created using 

appropriately rigorous statistical methodology and are broadly applicable to different 

populations. Although there have been several publications detailing reference centiles for the 

MCA PI (72, 83), UA PI (72, 82) and CPR (57, 72), these are potentially limited by 

methodological constraints such as small sample size, suboptimal modelling and lack of 

reporting of model diagnostics or subsequent goodness–of–fit evaluation (83). The statistical 

techniques, characteristics of the study population used for creating the centiles as well as 

inclusion and exclusion criteria used to define a “normal cohort” will also undoubtedly influence 

the generalisability of the centiles developed.  

The methodology for the creation of size and growth reference centiles has expanded greatly 

since the first simple height and growth curves were published in the eighteenth century to the 

more recent development of the Lambda, Mu and Sigma methods introduced by Cole (100, 162). 

The World Health Organization in 2006 published detailed description of the statistical 

techniques used to develop child growth curves and after a review of 30 different methods, the 

authors recommended that the Generalised Additive Model for Location, Scale and Shape 

(GAMLSS) was the most appropriate for this purpose (99, 101).  

The GAMLSS model, first developed by Rigby and Stasinopoulos offers a highly robust and 

flexible approach to modelling data that are highly skewed and kurtotic (113, 117, 163). It is 

currently the only method that is able to model all forms of kurtosis – lepto, platy and 

mesokurtosis and is able to model all four parameters of distribution (mean, standard deviation, 

skewness and kurtosis) for the response variable as smooth nonparametric functions within each 

group of the explanatory variable (92, 106, 113, 117, 163). 

As ultrasound and Doppler data are rarely normally distributed, the GAMLSS approach, because 

of its parametric and nonparametric functionality, offers a suitable method to model the four 

parameters of distribution.  
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Our aim was thus to develop reference centiles for the MCA PI, UA PI and CPR using the 

GAMLSS technique in a large sample of low–risk women. 

 

5.3 Methods 

Prospectively collected, cross–sectional biometry and Doppler data from women attending the 

Mater Mother’s Hospital, Maternal and Fetal Medicine Department in Brisbane, Australia 

between January 2010 and April 2017 were used to derive gestation specific centiles for MCA 

PI, UA PI and CPR. The Mater Mother’s Hospital is a major tertiary centre in the state of 

Queensland and the largest maternity hospital in Australia with approximately 10,000 births per 

year. Maternal demographic data from the institution’s obstetric database was cross– referenced 

against the ultrasound and neonatal databases to construct the study cohort. The study protocol 

was approved by the hospital’s Human Research Ethics Committee (reference number 

HREC/14/MHS/37). 

For measurement of the MCA PI and UA PI, an automated tracing method was used, which 

incorporated at least three waveforms and repeated three times to obtain the mean Pulsatility 

Index. The angle of insonation for both vessels was usually <10° and not greater than 30° for all 

measurements. The MCA was imaged using colour Doppler and its waveform recorded from the 

proximal third of the vessel, distal to its origin from the circle of Willis. The UA Doppler 

waveform was recorded from a free loop of cord and the CPR was calculated by dividing the 

MCA PI by the UA PI. Gestational age was calculated using the crown–rump length measured in 

the first trimester. 

Inclusion criteria were women aged between 18 – 40 years with a single non–anomalous fetus 

who delivered at term. Women who had undergone assisted reproduction techniques (ART), 

Body Mass Index (BMI) ≥35 kg/m2, had diabetes mellitus, chronic or pregnancy induced 

hypertension, preeclampsia, respiratory, thyroid or heart disease or had known fetal growth 

restriction (FGR) were excluded from the study cohort, as the aim was to create appropriate 

centiles in a clearly defined low–risk population. All ultrasound scans were performed between 

18+0 and 41+6 weeks gestation with recorded data for the MCA PI and/or UA PI. 
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5.4 Statistical Analysis  

The GAMLSS method (117, 163) was used for the calculation of gestational age– adjusted 

centiles. Penalised Basis Spline, Cubic Spline, Polynomial and Fractional Polynomial smoothing 

were assessed on the basis of the Global Deviance, Akaike information criterion (AIC) and 

Schwartz Bayesian criterion (SBC). Normal, Gamma, Inverse Gamma, Gumbel, Reverse 

Gumbel, Logistic, Cole and Green Box–Cox, Power Exponential, t Family, Box–Cox t (BCT) 

and Box–Cox Power Exponential distributions were all assessed using the AIC and SBC to 

select the best fit model. Model diagnostics were also performed to assess the fit of the model 

using worm plots, Q–Q plots (163, 164), and a detrended transformed Owen’s plot (163, 165). 

The final model was chosen on the basis of the AIC and SBC along with the results of the model 

and residual diagnostics as well as visual assessment of the centiles themselves. 

Summary statistics are reported as percentage (number), mean (SD) or median (interquartile 

range, IQR) as appropriate. Data analysis was performed using StataCorp. 2015. Stata statistical 

software: Release 14. College Station, TX: Stata Corp LP. The GAMLSS algorithm was 

implemented using R software (R Foundation for Statistical Computing, Vienna, Austria. URL 

https://www.r– project.org/) and the GAMLSS package by Rigby RA and Stasinopoulos DM 

(113).  

 

5.5 Results 

Over the study period, 23,152 women were identified as having had an ultrasound scan between 

18+0 and 41+6 weeks gestation with recorded data for the MCA PI and/or UA PI. Of these 

17,139 women were excluded as they did not fulfil the inclusion criteria leaving 6,013 women in 

the final cohort. Characteristics of the study population are presented in Table 5.1. The MCA PI 

was recorded in 4,473 fetuses; the UA PI was recorded in 6,008 fetuses and the CPR was able to 

be calculated in 4,464 cases. Characteristics of the study cohort are outlined in Table 5.1.  

  

https://www.r-project.org/
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Table 5-1: Characteristics of the study population (n=4,630). 

Characteristics  

Maternal Age* 30.5 (4.9) 

Nulliparous 46.4% (2,788/6,013) 

BMI‡ 22.3 (20.1 – 25.4) 

Ethnicity  

    Caucasian 50.2% (3,019/6,013) 

    Indigenous 1.4% (84/6,013) 

    Asian 29.0% (1,746/6,013) 

    Other 19.4% (1,164/6,013) 

IOL 32.1% (1,927/6,013) 

Birthweight* 3,419 (444) 

Gender  

     Male 50.9% (3,062 /6013) 

    Female 49.1% (2,951 /6,013) 

Gestation at Birth 39 (38 – 40) 

Method of Birth  

Spontaneous Vaginal Birth 54.7% (3,288/6,013) 

Instrumental  14.3% (862/6,013) 

Elective Caesarean 15.2% (913/6,013) 

Emergency Caesarean 15.8% (950/6,013) 

      Emergency CS NRFS 4.2% (252/6,013) 

NICU admission 4.8% (288/6,013) 

Acidosis 6.2% (375/6,013) 

Apgar <7 at 5 minutes 1.5% (89/6,013) 

Died (stillbirth and neonatal death) 0.1% (8/6,013) 
* Mean (Standard Deviation) 

‡ Median (Interquartile Range) 

IOL: Induction of Labour, BMI: Body Mass Index, CS NRFS: Emergency Caesarean Non–Reassuring Fetal Status, NICU: 

Neonatal Intensive Care Unit, Acidosis (Arterial Cord pH <7.0 or Lactate >6.0mmol/L or Base Excess <12mmol/L) 
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5.5.1 Middle Cerebral Artery Pulsatility Index 

After assessment of the smoothing and transformation parameters, the best fit model for the 

MCA PI was a fractional polynomial additive term and BCT distribution for the calculation of 

the centiles. Centile threshold values according to gestational age for the MCA PI are reported in 

Table 5.2 with the centiles presented in Figure 5.1.  

 

Figure 5-1: Middle cerebral artery pulsatility index centile curves using BCT. 
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Table 5-2: Middle cerebral artery pulsatility index centiles. 

Gestational 

(Week) 0.4th  2nd 5th 10th 25th 50th 75th 90th 95th 98th 99.6th Number 

18 0.76 0.90 1.01 1.12 1.32 1.57 1.85 2.15 2.34 2.57 2.93 64 

19 0.84 0.98 1.09 1.19 1.38 1.61 1.88 2.15 2.32 2.53 2.86 193 

20 0.91 1.05 1.15 1.25 1.43 1.66 1.91 2.16 2.32 2.51 2.82 106 

21 0.97 1.11 1.21 1.31 1.48 1.70 1.94 2.18 2.33 2.52 2.80 41 

22 1.02 1.16 1.26 1.36 1.53 1.74 1.98 2.21 2.35 2.53 2.80 65 

23 1.07 1.21 1.31 1.40 1.57 1.78 2.01 2.24 2.38 2.55 2.82 110 

24 1.11 1.24 1.34 1.44 1.61 1.82 2.04 2.27 2.41 2.58 2.84 265 

25 1.14 1.28 1.38 1.47 1.64 1.85 2.07 2.29 2.44 2.60 2.86 74 

26 1.16 1.30 1.40 1.50 1.67 1.87 2.10 2.32 2.46 2.63 2.89 74 

27 1.18 1.32 1.42 1.52 1.69 1.90 2.12 2.34 2.48 2.65 2.91 105 

28 1.19 1.33 1.43 1.53 1.70 1.91 2.14 2.36 2.50 2.67 2.93 279 

29 1.19 1.33 1.44 1.54 1.71 1.92 2.15 2.37 2.52 2.69 2.95 146 

30 1.19 1.33 1.44 1.53 1.71 1.92 2.15 2.38 2.52 2.69 2.96 141 

31 1.18 1.32 1.42 1.52 1.70 1.91 2.14 2.37 2.52 2.69 2.96 132 

32 1.16 1.30 1.40 1.50 1.68 1.89 2.13 2.36 2.51 2.68 2.95 315 

33 1.13 1.27 1.37 1.47 1.65 1.86 2.10 2.33 2.48 2.66 2.93 223 

34 1.09 1.23 1.34 1.43 1.61 1.83 2.06 2.30 2.44 2.62 2.90 419 

35 1.05 1.18 1.29 1.38 1.56 1.77 2.01 2.24 2.39 2.57 2.85 297 

36 0.99 1.13 1.23 1.32 1.50 1.71 1.94 2.18 2.33 2.50 2.78 523 

37 0.93 1.06 1.16 1.25 1.42 1.63 1.86 2.09 2.24 2.41 2.69 435 

38 0.86 0.99 1.08 1.17 1.33 1.54 1.76 1.99 2.13 2.30 2.58 260 

39 0.78 0.90 0.99 1.08 1.23 1.43 1.64 1.86 2.00 2.17 2.44 107 

40 0.69 0.80 0.89 0.97 1.12 1.30 1.51 1.71 1.85 2.01 2.26 80 

41 0.60 0.70 0.78 0.85 0.99 1.16 1.35 1.54 1.67 1.82 2.06 19 
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Model diagnostics show the plots of residuals are normally distributed around zero, as well as 

the density and Q–Q plot (Figure 5.2). 

 

 

Figure 5-2: Residual plots of the middle cerebral artery pulsatility index centile curves. 
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Summary of the quantile residuals show the mean is 0.002, the variance is 1.0002, coefficient of 

skewness is – 0.01 and the coefficient of kurtosis is 2.94. The worm plot indicates that the fitted 

mean is appropriate as there is very slight deviation from the origin (Figure 5.3).  

 

Figure 5-3: Worm plot of the middle cerebral artery pulsatility index centile curves. 
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There is appropriate fitting of the variance and no apparent skewness indicating the fitted 

distribution is appropriate. The detrended transformed Owen’s plot shows that the horizontal line 

is within the confidence interval of the plot indicating that the normalised residuals have come 

from a normal distribution and therefore the model is a reasonable fit for the data (Figure 5.4). 

 

Figure 5-4: De–trended Owen’s plot of the middle cerebral artery pulsatility index centile 

curves. 
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5.5.2 Umbilical Artery Pulsatility Index 

For the UA PI the best fit was a cubic spline additive term with BCT distribution. Gestational 

age centile thresholds are detailed in Table 3 with the centiles graphed in Figure 5.5.  

 

Figure 5-5: Umbilical artery pulsatility index centile curves using BCT. 
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Table 5-3: Umbilical artery pulsatility index centiles. 

Gestation 

(Week) 0.4th  2nd 5th 10th 25th 50th 75th 90th 95th 98th 99.6th Number 

18 0.46 0.57 0.64 0.72 0.84 0.98 1.14 1.28 1.37 1.48 1.64 82 

19 0.49 0.60 0.67 0.74 0.86 1.00 1.14 1.28 1.37 1.47 1.63 256 

20 0.52 0.62 0.70 0.76 0.88 1.01 1.15 1.28 1.37 1.46 1.61 140 

21 0.55 0.65 0.72 0.79 0.90 1.03 1.16 1.28 1.36 1.46 1.60 50 

22 0.59 0.68 0.75 0.81 0.92 1.04 1.16 1.28 1.36 1.44 1.58 88 

23 0.61 0.71 0.77 0.83 0.93 1.04 1.16 1.27 1.34 1.43 1.55 179 

24 0.63 0.72 0.78 0.84 0.93 1.04 1.16 1.26 1.33 1.41 1.52 389 

25 0.64 0.73 0.79 0.84 0.93 1.04 1.15 1.25 1.31 1.38 1.50 123 

26 0.64 0.73 0.78 0.84 0.93 1.03 1.13 1.23 1.29 1.36 1.47 112 

27 0.64 0.72 0.77 0.83 0.91 1.01 1.11 1.21 1.27 1.34 1.44 143 

28 0.62 0.70 0.76 0.81 0.89 0.99 1.09 1.19 1.25 1.31 1.42 367 

29 0.61 0.69 0.74 0.79 0.88 0.97 1.07 1.16 1.22 1.29 1.39 182 

30 0.59 0.67 0.72 0.77 0.85 0.95 1.05 1.14 1.20 1.27 1.37 181 

31 0.57 0.65 0.70 0.75 0.83 0.93 1.03 1.12 1.18 1.24 1.35 188 

32 0.55 0.63 0.68 0.73 0.81 0.91 1.00 1.10 1.15 1.22 1.32 449 

33 0.54 0.61 0.66 0.71 0.79 0.89 0.98 1.07 1.13 1.20 1.30 288 

34 0.52 0.59 0.65 0.69 0.77 0.87 0.96 1.05 1.11 1.18 1.28 546 

35 0.50 0.58 0.63 0.67 0.76 0.85 0.94 1.03 1.09 1.16 1.26 377 

36 0.48 0.56 0.61 0.66 0.74 0.83 0.93 1.02 1.07 1.14 1.24 676 

37 0.47 0.54 0.59 0.64 0.72 0.81 0.91 1.00 1.06 1.12 1.22 618 

38 0.45 0.52 0.57 0.62 0.70 0.80 0.89 0.98 1.04 1.11 1.21 316 

39 0.43 0.50 0.56 0.60 0.69 0.78 0.88 0.97 1.03 1.10 1.20 125 

40 0.41 0.49 0.54 0.59 0.67 0.76 0.86 0.96 1.01 1.08 1.19 102 

41 0.40 0.47 0.52 0.57 0.65 0.75 0.85 0.94 1.00 1.07 1.17 31 
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Model diagnostics show the plots of most of the residuals are normally distributed around zero. 

The density and Q–Q plot however, indicate that the data is slightly skewed to the right (Figure 

5.6).  

 

 

Figure 5-6: Residual plots of the umbilical artery pulsatility index centile curves. 
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The summary of the quantile residuals shows the mean is – 0.002, the variance is 1.0001, 

coefficient of skewness is – 0.01 and the coefficient of kurtosis is 3.001. The worm plot deviates 

and slightly passes below the origin with a very slight negative slope – a possible indication that 

the fitted mean and variance is too large. However, the deviation is unlikely to be of 

consequence due to the very small magnitude. There is no apparent skewness and excessive 

kurtosis is also absent indicating appropriate fitting of the distribution of the tails (Figure 5.7).  

 

Figure 5-7: Worm plot of the umbilical artery pulsatility index centile curves. 
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The detrended transformed Owen’s plot demonstrates that although the normalised residuals 

may have a long right sided tail it still indicates that the model is a reasonable fit for the data 

(Figure 5.8). 

 

Figure 5-8: De–trended Owen’s plot of the umbilical artery pulsatility index centile curves. 
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5.5.3 Cerebroplacental Ratio 

The centiles for the CPR used a fractional polynomial additive term and a BCT distribution. 

Gestational age centile thresholds are outlined in Table 5.4 with the centiles presented in Figure 

5.9.  

 

Figure 5-9: Cerebroplacental ratio centile curves using BCT. 
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Table 5-4: Cerebroplacental ratio centiles. 

Gestation 

(Week) 0.4th  2nd 5th 10th 25th 50th 75th 90th 95th 98th 99.6th Number 

18 0.43 0.58 0.70 0.82 1.07 1.43 1.90 2.45 2.85 3.38 4.36 59 

19 0.54 0.69 0.81 0.93 1.17 1.49 1.89 2.35 2.67 3.10 3.85 180 

20 0.65 0.80 0.91 1.03 1.25 1.55 1.91 2.31 2.59 2.94 3.56 102 

21 0.74 0.89 1.00 1.12 1.33 1.61 1.95 2.31 2.55 2.87 3.40 40 

22 0.82 0.97 1.08 1.20 1.40 1.67 1.99 2.32 2.55 2.84 3.32 62 

23 0.89 1.04 1.15 1.27 1.47 1.73 2.03 2.35 2.57 2.84 3.29 114 

24 0.95 1.10 1.22 1.33 1.53 1.79 2.08 2.39 2.60 2.86 3.29 265 

25 1.00 1.16 1.27 1.38 1.59 1.84 2.13 2.44 2.64 2.89 3.31 75 

26 1.05 1.21 1.32 1.43 1.64 1.89 2.18 2.49 2.69 2.94 3.35 75 

27 1.09 1.25 1.36 1.48 1.68 1.94 2.23 2.54 2.74 2.99 3.40 106 

28 1.11 1.28 1.40 1.51 1.72 1.98 2.28 2.59 2.79 3.04 3.46 283 

29 1.14 1.30 1.42 1.54 1.75 2.02 2.32 2.63 2.84 3.09 3.52 146 

30 1.15 1.32 1.44 1.56 1.78 2.05 2.36 2.67 2.89 3.15 3.58 141 

31 1.15 1.33 1.45 1.57 1.80 2.07 2.39 2.71 2.93 3.20 3.64 132 

32 1.15 1.33 1.46 1.58 1.80 2.09 2.41 2.74 2.97 3.24 3.70 314 

33 1.14 1.32 1.45 1.57 1.80 2.09 2.42 2.77 3.00 3.28 3.75 223 

34 1.12 1.30 1.43 1.56 1.79 2.09 2.43 2.78 3.02 3.31 3.80 422 

35 1.09 1.27 1.41 1.54 1.77 2.07 2.42 2.78 3.02 3.33 3.83 299 

36 1.06 1.24 1.37 1.50 1.74 2.05 2.40 2.77 3.02 3.33 3.85 523 

37 1.01 1.19 1.33 1.46 1.70 2.01 2.36 2.74 3.00 3.32 3.86 437 

38 0.96 1.14 1.27 1.40 1.64 1.95 2.32 2.70 2.96 3.29 3.84 260 

39 0.90 1.08 1.21 1.34 1.58 1.88 2.25 2.64 2.90 3.24 3.80 107 

40 0.84 1.01 1.14 1.26 1.49 1.80 2.16 2.55 2.82 3.16 3.73 80 

41 0.77 0.93 1.05 1.17 1.40 1.70 2.06 2.44 2.71 3.05 3.63 19 
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Model diagnostics show the plots of residuals are normally distributed around zero, as well as 

the density and Q–Q plot (Figure 5.10). 

  

 

Figure 5-10: Residual plots of the cerebroplacental ratio centile curves. 
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Summary of the Quantile residuals show the mean is 0.001, the variance is 1.0002, coefficient of 

skewness is – 0.008 and the coefficient of kurtosis is 3.01 indicating normal distribution of the 

residuals and adequate model fit. The worm plot indicates that the fitted mean is appropriate for 

the model as there is no deviation from the origin and the fitted distribution is appropriate with 

no apparent skewness or excessive kurtosis (Figure 5.11).  

 

Figure 5-11: Worm plot of the cerebroplacental ratio centile curves. 
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The detrended transformed Owen’s plot demonstrates that the normalised residuals have come 

from a normal distribution and that therefore the model is a reasonable fit for the data (Figure 

5.12). 

 

Figure 5-12: De–trended Owen’s plot of the cerebroplacental ratio centile curves. 
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5.6 Discussion 

Principal Findings 

In this paper we report reference centiles for the MCA PI, UA PI and CPR from a large low– 

risk cohort using the GAMLSS technique incorporating cubic splines and fractional polynomials 

for smoothing and BCT for data distribution. The GAMLSS technique enables us to model the 

parameters of location, scale, skewness and leptokurtosis resulting in a more accurate model fit 

for the data then previously available (92, 117). The GAMLSS technique is a preferable 

statistical method particularly because data related to Doppler indices often do not follow a 

Gaussian distribution and hence for accurate centile creation require concordance between the 

distribution of data and the modelling technique utilising appropriately rigorous distributional 

assumptions (99). 

It is critical that the creation of centiles takes into account the different parameters of data 

distribution (97, 98, 102, 104, 106). When the distribution is skewed and kurtotic, centiles and 

subsequent corresponding Z–scores do not have a valid interpretation (166). Although kurtosis is 

often thought of as less important than skewness when assessing normality of data (111), it has 

components of both tailedness and peakedness of a distribution (167). It is a measure of how the 

density of the study observations is different from the density of a normal distribution (112). 

Both the flatter platykurtotic and peakier leptokurtotic data densities cross the normal 

distribution curves twice on each side of the mean (167). The importance of correcting these 

deviations from normality becomes important when generalising the reference intervals 

(centiles) to the general population (112). The GAMLSS method used in this paper meets all 

these requirements. 

Our centiles are derived from a large low–risk population of 6,013 women with clear inclusion 

criteria. The UA PI and MCA PI centiles were created using 6,008 and 4,473 data points, 

respectively, while the CPR centiles incorporated 4,464 data points. In our view, the 

characteristics of study population and the large numbers used to formulate the centiles together 

with robust and comprehensive statistical modelling clearly define these centiles as appropriate 

references. Indeed, previously publications (57, 72) report centiles derived from very small 

populations. Other publications (57, 72, 82, 83) also either fail to take into account or do not 

adequately report the methods used to correct for all parameters of distribution and provide little 

evidence of the appropriateness of their methodology or graphical representation of their model 

assessment (57, 72, 82, 83). One of the most commonly cited references (66) of CPR centiles 
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uses longitudinal measurements (66). However, Altman and Chitty have identified a number of 

deficiencies when using longitudinal data for the creation of reference charts, namely, repeated 

measures correlation and loss of variability (97, 98). Whilst Ebbing et al. addressed the 

methodological issues of repeated measures correlation and loss of variability by calculating 

conditional reference intervals using multilevel modelling (66, 97, 98), longitudinal studies are 

highly susceptible to selection and differential dropout bias. 

The CPR is increasingly being used, particularly in late pregnancy, as an adjunct to standard 

fetal biometry and Dopplers for the identification of suboptimal fetal growth and fetuses at risk 

of adverse intrapartum and perinatal outcomes. Unlike women with known risk factors 

(hypertension, diabetes mellitus, previous fetal growth restriction, etc.), routine ultrasound to 

assess fetal wellbeing is generally not performed in low–risk women unless there are concerns 

about fetal size on clinical examination. From a healthcare burden perspective, the vast majority 

of SGA infants are born to women with uncomplicated, low–risk pregnancies (168). The 

difficulty, however, is defining what constitutes a “low–risk” cohort as there are many maternal 

medical, demographic and psychosocial factors that are associated with an increased risk of 

adverse outcomes. Clearly if this population were to be defined by the absence of all possible 

risk factors this would result in an artificially low number of women that would be considered 

“normal” or “low–risk”. Such an approach would be divorced from clinical reality. 

Notwithstanding the difficulty in defining this cohort, some investigators have suggested that 

excluding women with diabetes mellitus and hypertension is reasonable given their relatively 

high prevalence in pregnancy (169). 

 

Implications for Practice 

Our centiles for the MCA PI, the UA PI and CPR are all slightly lower than those calculated by 

Ebbing et al. (66). While we would expect some differences due to methodology used, the 

differences could also be due to a number of other factors, principally the fact that they were 

generated from a low–risk cohort of women with many of the conventionally accepted risk 

factors (extremes of maternal age, severe obesity, diabetes mellitus, hypertension and other 

medical disorders, smoking, etc.) excluded. In our view, the centiles we present in this 

manuscript are also likely to have greater generalisability as they were derived from a more 

ethnically diverse cohort compared to Ebbing et al.’s study (66) which was comprised almost 

entirely of Nordic women. 



111 

 

 

Conclusion 

In conclusion, we have created gestational centile reference ranges for the MCA PI, UA PI and 

CPR using statistically robust techniques and a biologically and clinically plausible low–risk 

cohort. Currently the CPR is being used to guide management particularly in late pregnancy 

without good evidence of its efficacy. It is, therefore, important that obstetricians use appropriate 

reference thresholds with confidence.  
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6.1 Abstract 

Objectives: The aim of this study was to develop a predictive model for emergency caesarean 

for fetal distress at term using a combination of maternal and late pregnancy ultrasound 

parameters measured at >36 weeks gestation.  

 

Methods: This was a cohort study using prospectively collected data from singleton, non–

anomalous births at the Mater Mother’s Hospital, Brisbane, Australia between January 2010 and 

April 2017. Ultrasound recordings were performed between 36 – 38 weeks gestation for the 

estimated fetal weight, umbilical artery and middle cerebral artery pulsatility indices and 

cerebroplacental ratio. Standardisation of the ultrasound measures were performed using Z–

scores accounting for gestational age at ultrasound against published reference centiles. Mixed 

effects generalised linear models were used to generate univariable and multivariable models. 

Variables for the predictive model were selected using a backward elimination technique based 

on the Akaike information criterion. Diagnostic accuracy of the final model was performed 

through calculations of receiver operating characteristic curves, positive and negative likelihood 

ratios and positive and negative predictive values. Validation of the model was performed using 

the K–fold cross validation technique. 

 

Results: Over the study period 5,439 women met the inclusion criteria of which 4.2% underwent 

emergency caesarean for fetal distress. There were a significantly higher proportion of induced 

and nulliparous women in the emergency caesarean cohort (p<0.001). Infants in this group had 

lower Z–scores for estimated fetal weight, cerebroplacental ratio and middle cerebral artery 

pulsatility index and higher scores for the umbilical artery pulsatility index (p<0.001). Ethnicity, 

nulliparity, induction of labour, estimated fetal weight Z–score and cerebroplacental ratio Z–

score, were all included in the final model. The model showed moderate to high accuracy with 

an area under the characteristic curve of 0.77 (95% CI 0.74 – 0.80). 

 

Conclusions: The results of our study show that a prediction model that combines the 

continuous standardised measures of the cerebroplacental ratio, estimated fetal weight and 

several maternal factors is able to identify emergency cesarean for fetal distress with improved 

accuracy. 
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6.2 Introduction 

Whilst some cases of intrapartum fetal hypoxia at term arise because of acute catastrophic events 

such as cord prolapse, placental abruption or uterine rupture, the majority do not, and hypoxia in 

these cases develops as a gradual process due to the inability of the fetus to tolerate the stress of 

parturition – i.e. reduced feto-placental reserve before labour commences (155, 170, 171). Why 

some term babies are more prone to intra-partum compromise is not entirely clear although 

growth restriction is implicated in many cases (172). Indeed, up to 63% of babies who become 

distressed and suffer oxygen deprivation in labour have no apparent prior risk factors (173). If 

not delivered rapidly enough, these babies are at risk of hypoxic brain injury and subsequent 

disability with hypoxic ischaemic encephalopathy being the strongest and most consistent risk 

factor for cerebral palsy in term infants (170). In Australia, hypoxic peripartum death (stillbirth 

or neonatal death of mature infants after the onset of labour in an otherwise healthy pregnancy) 

is one of the top three causes of mortality in singletons >37 weeks (174).   

The fetal cerebroplacental ratio (CPR) is the ratio of the Middle Cerebral Artery Pulsatility Index 

(MCA PI) to the Umbilical Artery Pulsatility Index (UA PI). Increased cerebral blood flow is a 

fetal adaptive response to hypoxia and this is reflected by a reduction in MCA PI and thereby a 

reduction in the CPR. A low CPR appears to be an independent predictor of intrapartum fetal 

compromise, acidosis at birth and neonatal unit admission in term babies that are not small for 

gestational age (SGA) (15, 147, 171). Nevertheless, based on the best available evidence, there 

is currently no reliable test for intrapartum fetal compromise (“fetal distress”).  

The aim of this study thus was to develop a predictive model for emergency caesarean for 

fetal distress (ECFD) using a combination of maternal and late pregnancy ultrasound 

parameters measured >36 weeks gestation.  
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6.3 Methods 

Maternal demographic, obstetric, ultrasound and perinatal data from women that birthed at term 

(≥37 weeks gestation) at the Mater Mother’s Hospital in Australia between January 2010 and 

April 2017 were used to develop a predictive model for ECFD. Institutional ethical approval was 

obtained (HREC/14/MHS/37). 

Only ultrasound data from singleton, non–anomalous fetuses obtained between 36 – 38 weeks 

gestation were included. The CPR was calculated as a ratio of the Middle Cerebral Artery 

Pulsatility Index (MCA PI) to the Umbilical Artery Pulsatility Index (UA PI) as previously 

reported (72). The estimated fetal weight (EFW) was calculated using Hadlock’s formula (146).  

To ensure accurate dating of the pregnancy, only cases where the gestational age was confirmed 

using a first trimester ultrasound examination were used in the analysis. The following variables 

were considered to be potentially clinically relevant to the primary outcome and therefore 

included in the initial analysis: maternal age, body mass index (BMI), ethnicity, parity, smoking 

status, alcohol consumption, use of illicit drugs, diabetes mellitus (gestational, type 1 or type 2), 

hypertension (gestational, chronic or pre–eclampsia), assisted reproductive techniques (ART) 

and Socio–Economic Indexes for Areas (SEIFA) score. The SEIFA score is an Australian 

measure of an individual’s socioeconomic status where the average score is 1,000 and a lower 

score is indicative of greater social disadvantage (175). Intrapartum data included induction of 

labor (IOL), fetal gender and gestational age at birth. Intrapartum fetal compromise was 

diagnosed contemporaneously by the treating obstetric team based on an abnormal fetal heart 

pattern, fetal scalp pH or lactate. The primary outcome was ECFD. 

 

6.4 Statistical Analysis  

Categorical variables were reported as number and percentage and differences assessed using chi 

square test. Continuous variables were reported as mean and standard deviation with differences 

assessed using a t–test due to the large sample size and in accordance with the central limit 

theorem (176). Because of the change in the central tendency (mean/median) and dispersion 

(variance/interquartile range) over gestational age for the CPR, UA PI, MCA PI and EFW, 

standardisation was performed using Z–scores against previously published reference centiles 

(177, 178). 
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To account for the correlation of observations from women who birthed more than once during 

the study period, mixed effects generalised linear models were used to generate univariable and 

multivariable models. For the multivariable model building, all variables with a P value <0.2 

were included in the initial model. This was done in consideration of both the sample size and 

number of events to satisfy the 10 events per variable rule to avoid overfitting the model (179-

181). 

Variables in the model were selected using a backward elimination technique as described by 

Sauerbrei et al (181). Using this technique variables are removed one by one based on the 

highest P value and subsequent model improvement assessed through a decrease in the Akaike 

information criterion (AIC), a widely used measure of model fit that also penalizes for model 

complexity (181, 182). All variables that were removed throughout the backward elimination 

process were reinserted into the final model and assessed if there was any improvement in the 

model using the AIC.  

Initial evaluation of diagnostic accuracy of the final model was performed through calculations 

of receiver operating characteristic (ROC) curves. Further diagnostic evaluation of the model 

was performed with calculations of the sensitivity, specificity, percentage of cases correctly 

classified, positive and negative likelihood ratios (PLR and NLR) and positive and negative 

predictive values (PPV and NPV).  

Validation of the model was performed using the K–fold cross validation technique using 50 

folds (183, 184). Evaluations of the predictions from the cross–validation model and the original 

predictive model was performed through the use of confusion matrices that compared predicted 

outcomes against true outcomes along with examination of diagnostic accuracies, using the 

optimum threshold (i.e. the highest sensitivity and specificity) according to the ROC of the 

original predictive model. All statistical analysis was performed using Stata statistical software, 

StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.  

 

6.5 Results 

Over the study period we identified 5,439 women that met the inclusion criteria. Of these, 4.2% 

(230/5,439) underwent an ECFD. Characteristics of the study cohort and descriptive statistics are 

outlined in Table 6.1. ECFD was less likely to occur to Caucasian women (41.7% vs. 51.1%, 

p=0.01) and more likely to women from “Other” ethnicities (22.2% vs. 16.2%, p=0.02). A 

higher proportion of women in the ECFD group underwent IOL (73.5% vs. 43.1%, p<0.001) and 
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were nulliparous (78.3% vs. 44.3%, p<0.001). Fetuses in the ECFD group had a lower mean 

EFW (2,841g vs. 2,974g, p<0.001), CPR (1.77 vs. 2.00, p<0.001), MCA PI (1.50 vs 1.61, 

p<0.001) and a higher UA PI (0.88 vs. 0.83, p<0.001). After standardisation, the ECFD fetuses 

had lower Z–scores for EFW (0.09 vs. 0.45, p<0.001), CPR (-0.63 vs. -0.13, p<0.001), and MCA 

PI (-0.50 vs. -0.13, p<0.001), whilst the UA PI Z–score was higher (0.39 vs. 0.08, p<0.001).  

 

Table 6-1: Descriptive Statistics 

 Total Cohort Emergency Caesarean Fetal Distress  

 Total (5,439) No (n=5,209) Yes (n=230) P Value 

Age 31.0 (5.5) 31.0 (5.5) 30.6 (5.5) 0.31 

BMI 25.0 (6.5) 25.0 (6.6) 24.8 (5.6) 0.69 

Ethnicity     

Caucasian 50.7% (2,756/5,439) 51.1% (2,660/5,209) 41.7% (96/230) 0.01 

Indigenous 3.3% (180/5,439) 3.3% (170/5,209) 4.4% (10/230) 0.37 

Asian 29.6% (1,608/5,439) 29.5% (1,535/5,209) 31.7% (73/230) 0.46 

Other 16.5% (895/5,439) 16.2% (844/5,209) 22.2% (51/230) 0.02 

SEIFA Score 1,017 (74) 1,017 (73) 1,014 (78) 0.53 

Diabetes Mellitus 23.9% (1,298/5,439) 24.0% (1,248/5,209) 21.7% (50/230) 0.44 

Hypertension 8.3% (449/5,439) 8.3% (431/5,209) 7.8% (18/230) 0.81 

ART  4.9% (264/5,439) 4.8% (249/5,209) 6.5% (15/230) 0.23 

Smoking 13.5% (733/5,439) 13.5% (702/5,209) 13.5% (31/230) 1.00 

Alcohol 

Consumption 4.8% (259/5,439) 4.7% (247/5,209) 5.2% (12/230) 0.74 

Illicit Drug Use 10.6% (578/5,439) 10.6% (553/5,209) 10.9% (25/230) 0.90 

Nulliparous 45.8% (2,489/5,439) 44.3% (2,309/5,209) 78.3% (180/230) <0.001 

IOL 44.4% (2,415/5,439) 43.1% (2,246/5,209) 73.5% (169/230) <0.001 

Gestational Age at 

Birth 38.7 (1.1) 38.7 (1.1) 38.8 (1.3) 0.41 

Gender (female) 50.4% (2,740/5,439) 50.4% (2,626/5,209) 49.6% (114/230) 0.80 

EFW 2,969 (458) 2,974 (456) 2,841 (484) <0.001 

CPR 1.99 (0.51) 2.00 (0.50) 1.77 (0.50) <0.001 

UA PI 0.83 (0.15) 0.83 (0.15) 0.88 (0.18) <0.001 

MCA PI 1.61 (0.33) 1.61 (0.32) 1.50 (0.31) <0.001 

EFW Z-score 0.43 (1.10) 0.45 (1.10) 0.09 (1.23) <0.001 

CPR Z-score -0.15 (1.02) -0.13 (1.01) -0.63 (1.11) <0.001 

UA PI Z-score -0.09 (1.04) 0.08 (1.02) 0.39 (1.20) <0.001 

MCA PI Z-score -0.15 (0.98) -0.13 (0.98) -0.50 (0.98) <0.001 

Data are reported as % (n) for categorical data (Chi Square test) and mean (Standard deviation) (t-test) for continuous data. 

BMI: Body Mass Index; SEIFA: Socio-Economic Indexes for Areas; SVD: Spontaneous Vaginal Delivery; CS: Caesarean 

Section; EFW: Estimated Fetal Weight; CPR: Cerebroplacental Ratio; UA PI: Umbilical Artery Pulsatility Index; MCA PI: 

Middle Cerebral Artery Pulsatility Index 
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The univariable generalised linear mixed models showed significant associations between ECFD 

and “Other” ethnicity (OR 1.67, 95% CI 1.18 – 2.37, p=0.004), IOL (OR 3.65, 95% CI 2.71 – 

4.92, p<0.001), and nulliparity (OR 4.52, 95% CI 3.29 – 6.21, p<0.001). The standardised scores 

of the ultrasound variables showed that the EFW (OR 0.73, 95% CI 0.65 – 0.83, p<0.001), CPR 

(OR 0.63, 95% CI 0.55 – 0.71, p<0.001), UA PI (OR 1.33, 95% CI 1.17 – 1.51, p<0.001) and 

MCA PI (OR 0.68, 95% CI 0.59 – 0.78, p<0.001) Z–scores all being significantly associated 

with ECFD (Table 6.2).  

Table 6-2: Univariable analysis. 

 Total Cohort Emergency Cesarean Fetal Distress   

 Total (5,439) No (n=5,209) Yes (n=230) 

Odds Ratio  

(95% C.I.) P Value 

Age 31.0 (5.5) 31.0 (5.5) 30.6 (5.5) 0.99 (0.96 – 1.01) 0.31 

BMI 25.0 (6.5) 25.0 (6.6) 24.8 (5.6) 1.00 (0.98 – 1.02) 0.69 

Ethnicity      

Caucasian 50.7% (2,756/5,439) 

51.1% 

(2,660/5,209) 41.7% (96/230) 1  

Indigenous 3.3% (180/5,439) 3.3% (170/5,209) 4.4% (10/230) 1.63 (0.83 – 3.18) 0.15 

Asian 29.6% (1,608/5,439) 

29.5% 

(1,535/5,209) 31.7% (73/230) 1.32 (0.97 – 1.80) 0.08 

Other 16.5% (895/5,439) 16.2% (844/5,209) 22.2% (51/230) 1.67 (1.18 – 2.37) 0.004 

SEIFA Score 1,017 (74) 1,017 (73) 1,014 (78) 0.999 (0.998 – 1.00) 0.53 

Diabetes Mellitus 23.9% (1,298/5,439) 

24.0% 

(1,248/5,209) 21.7% (50/230) 0.88 (0.64 – 1.21) 0.44 

Hypertension 8.3% (449/5,439) 8.3% (431/5,209) 7.8% (18/230) 0.94 (0.58 – 1.54) 0.81 

ART  4.9% (264/5,439) 4.8% (249/5,209) 6.5% (15/230) 1.39 (0.81 – 2.38) 0.23 

Smoking 13.5% (733/5,439) 13.5% (702/5,209) 13.5% (31/230) 1.00 (0.68 – 1.47) 1.00 

Alcohol 

Consumption 4.8% (259/5,439) 4.7% (247/5,209) 5.2% (12/230) 1.11 (0.61 – 2.00) 0.74 

Illicit Drug Use 10.6% (578/5,439) 10.6% (553/5,209) 10.9% (25/230) 1.03 (0.67 – 1.57) 0.90 

Nulliparous 45.8% (2,489/5,439) 

44.3% 

(2,309/5,209) 78.3% (180/230) 4.52 (3.29 – 6.21) <0.001 

IOL 44.4% (2,415/5,439) 

43.1% 

(2,246/5,209) 73.5% (169/230) 3.65 (2.71 – 4.92) <0.001 

Gestational Age at 

Birth 38.7 (1.1) 38.7 (1.1) 38.8 (1.3) 1.05 (0.94 – 1.18) 0.41 

Gender (female) 50.4% (2,740/5,439) 

50.4% 

(2,626/5,209) 49.6% (114/230) 0.97 (0.74 – 1.26) 0.80 

EFW 2,969 (458) 2,974 (456) 2,841 (484) 

0.999  

(0.999 – 0.9996) <0.001 

CPR 1.99 (0.51) 2.00 (0.50) 1.77 (0.50) 0.37 (0.27 – 0.49) <0.001 

UA PI 0.83 (0.15) 0.83 (0.15) 0.88 (0.18) 7.29 (3.13 – 16.96) <0.001 

MCA PI 1.61 (0.33) 1.61 (0.32) 1.50 (0.31) 0.30 (0.19 – 0.46) <0.001 

EFW Z-score 0.43 (1.10) 0.45 (1.10) 0.09 (1.23) 0.73 (0.65 – 0.83) <0.001 

CPR Z-score -0.15 (1.02) -0.13 (1.01) -0.63 (1.11) 0.63 (0.55 – 0.71) <0.001 

UA PI Z-score -0.09 (1.04) 0.08 (1.02) 0.39 (1.20) 1.33 (1.17 – 1.51) <0.001 

MCA PI Z-score -0.15 (0.98) -0.13 (0.98) -0.50 (0.98) 0.68 (0.59 – 0.78) <0.001 

Gestational Age at 

Ultrasound 36.6 (0.72) 36.6 (0.72) 36.6 (0.71) 1.02 (0.85 – 1.23) 0.83 

Time from 

Ultrasound to Birth 15.3 (8.6) 15.3 (8.5) 15.6 (9.2) 1.00 (0.99 – 1.02) 0.61 

Data are reported as % (n) for categorical data and mean (Standard deviation) for continuous data. 

BMI: Body Mass Index; ART: Artificial Reproductive Technologies; SEIFA: Socio-Economic Indexes for Areas; IOL: 

Induction of Labour; EFW: Estimated Fetal Weight; CPR: Cerebroplacental Ratio; UA PI: Umbilical Artery Pulsatility Index; 

MCA PI: Middle Cerebral Artery Pulsatility Index 
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Model selection was performed with the initial model consisting of all variables that had a P 

value <0.20 in the univariable analysis as previously described, with the exception of UA PI Z–

score and MCA PI Z–score which were omitted due to their association with the CPR Z–score. 

Backwards elimination of variables was performed using the AIC until the final parameters were 

established. The generalised linear mixed model that was determined to be the best fit consisted 

of ethnicity [Caucasian – reference, Indigenous (aOR 1.47, 95% CI 0.73 – 2.96, p=0.28), Asian 

(aOR 1.10, 95% CI 0.79 – 1.51, p=0.58), Other (aOR 1.93, 95% CI 1.35 – 2.77, p<0.001)], 

nulliparity (aOR 3.78, 95% CI 2.73 – 5.24, p<0.001), IOL (aOR 3.16, 95% CI 2.33 – 4.27, 

p<0.001), EFW Z–score  (aOR 0.86, 95% CI 0.76 – 0.98, p=0.03) and CPR Z–score  (aOR 0.72, 

95% CI 0.63 – 0.82, p<0.001) (Table 6.3).  

 

Table 6-3: Final predictive model. 

Emergency Caesarean Fetal Distress 

 Odds Ratio (95% C.I.) P Value 

Ethnicity   

Caucasian 1  

Indigenous 1.47 (0.73 – 2.96) 0.28 

Asian 1.10 (0.79 – 1.51) 0.58 

Other 1.93 (1.35 – 2.77) <0.001 

Nulliparous 3.78 (2.73 – 5.24) <0.001 

IOL 3.16 (2.33 – 4.27) <0.001 

Estimated Fetal 

Weight Z–score 0.86 (0.76 – 0.98) 0.03 

CPR Z–score 0.72 (0.63 – 0.82) <0.001 
C.I.: Confidence Interval; IOL: Induction of Labour; CPR: Cerebroplacental Ratio 
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The predictive accuracy of the final model showed an AUC 0.77 (95% CI 0.74 – 0.80) (Figure 

6.1). The final model had a sensitivity of 70.9% (95% CI 64.5 – 76.7), specificity of 70.6% (95% 

CI 69.3 – 71.8), PLR 2.5 (95% CI 2.2 – 2.7), NLR 0.41 (95% CI 0.34 – 0.50), PPV 9.6% (95% 

CI 8.2 – 11.1) and NPV 98.3% (95% CI 97.8 – 98.6) (Table 6.4). Using a false positive rate of 

10% the sensitivity was 45.2% (95% CI 38.7 – 51.9), the PLR increased to 4.53 (95% CI 3.84 – 

5.34), NLR 0.61 (95% CI 0.54 – 0.69), PPV 16.7% (95% CI 13.8 – 19.8) and NPV 97.4% (95% 

CI 96.9 – 97.8). 

 

 

Figure 6-1: Receiver–operating characteristics for prediction of emergency caesarean for fetal 

distress. 
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Table 6-4: Diagnostic evaluation. 

 

AUC  

(95% C.I.) Sensitivity Specificity 

Correctly 

Classified PLR NLR PPV NPV 

Final Model 

0.77  

(0.74 – 0.80) 

70.9%  

(64.5 – 76.7) 

70.6% 

(69.3 – 71.8) 70.6% 

2.5  

(2.2 – 2.7) 

0.41  

(0.34 – 0.50) 

9.6% 

(8.2 – 11.1) 

98.3% 

(97.8 – 98.6) 

Cohort  

CPR <10th  

0.77 

(0.71 – 0.82) 

70.6% 

(58.3 – 81.0) 

70.6% 

(67.1 – 73.9) 70.6% 

2.4  

(2.0 – 2.9) 

0.42 

(0.29 – 0.60) 

18.5% 

(14.1 – 23.8) 

96.2% 

(94.2 – 97.7) 

Cohort  

EFW <10th 

0.80 

(0.73 – 0.87) 

76.0% 

(61.8 – 86.9) 

75.6% 

(71.5 – 79.4) 75.7% 

3.1  

(2.5 – 3.9) 

0.32 

(0.19 – 0.52) 

24.4% 

(17.9 – 31.9) 

96.8% 

(94.5 – 98.3) 

Cohort with 

CPR <10th & 

EFW <10th 

0.79 

(0.70 – 0.87) 

74.1% 

(53.7 – 88.9) 

70.5% 

(61.9 – 78.2) 71.2% 

2.5  

(1.8 – 3.6) 

0.37 

(0.19 – 0.70) 

34.5% 

(22.5 – 48.1) 

92.9% 

(85.8 – 97.1) 

Cohort with 

CPR <10th or 

EFW <10th 

0.76 

(0.70 – 0.81) 

70.3% 

(59.8 – 79.5) 

69.3% 

(66.5 – 72.1) 70.3% 

2.3  

(2.0 – 2.7) 

0.43 

(0.31 – 0.59) 

16.3% 

(12.8 – 20.3) 

96.5% 

(94.9 – 97.7) 
AUC: Area Under the Curve; FPR: False Positive Rate; PLR: Positive Likelihood Ratio; NLR: Negative Likelihood Ratio; PPV: Positive Predictive Value;  

NPV: Negative Predictive Value; ECFD: Emergency Caesarean for Fetal Destress; CPR: Cerebroplacental Ratio; EFW: Estimated Fetal Weight 
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Testing the model on higher risk cohorts, the final model indicated improved accuracy. In a 

cohort that had a CPR <10th centile the PPV increased to 18.5% (95% CI 14.1 – 23.8). In a 

cohort with an EFW <10th centile there were improvements in the AUC 0.80 (95% CI 0.73 – 

0.87), sensitivity 76.0% (95% CI 61.8 – 86.9), specificity 75.6% (95% CI 71.5 – 79.4), correctly 

classified 75.7%, PLR 3.1 (95% CI 2.5 – 3.9), NLR 0.32 (95% CI 0.19 – 0.52), PPV 24.4% 

(95% CI 17.9 – 31.9) and NPV 96.8% (95% CI 94.5 – 98.3). Comparisons of the diagnostic 

value of the model in each cohort can be found in Table 6.4. 

There was little difference between the final model [AUC 0.77 (95% CI 0.74 – 0.80)] and the 

cross–validation model [AUC 0.76 (95% CI 0.73 – 0.79)] indicating accurate and robust model 

performance. Both the Delong’s test and the Hanley and McNeil test suggested there is a 

significant difference between the AUC of the two models (p<0.001), however due to the near 

identical confidence intervals of the AUC and diagnostic accuracies as well as the identical 

graphical representation of both AUCs, the tests were deemed to be overpowered and a common 

sense, clinically relevant interpretation was applied. Comparisons of predicted and true outcome 

of ECFD for the final model and the cross–validation model are presented in Table 6.5 and 

Figure 6.2, with comparison of diagnostic accuracy of the final model and the cross–validation 

model shown in Table 6.6. 

 



123 

 

 

Figure 6-2: Comparison of predictive model and cross–validated model. 

 

Table 6-5: Predictive model and cross–validation model confusion matrix using the optimal 

threshold of sensitivity and specificity. 

Predicted 

Outcome True Outcome  

Final Model ECFD No ECFD Total 

ECFD 163 1,534 1,697 

No ECFD 67 3,675 3,742 

Total 230 5,209 5,439 

Cross-Validation 

Model ECFD No ECFD Total 

ECFD 160 1,543 1,703 

No ECFD 70 3,666 3,736 

Total 230 5,209 5,439 
ECFD: Emergency Caesarean for Fetal Distress 
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Table 6-6: Predictive model and cross–validation model diagnostic evaluation using the 

optimal threshold of sensitivity and specificity. 

 Final Model 

Cross-Validation 

Model 

Sensitivity 

70.9% (64.5 – 

76.7) 69.6% (63.2 – 75.4) 

Specificity 

71.1% (69.8 – 

72.3) 70.4% (69.1 – 71.6) 

PPV 9.6% (8.2 – 11.1) 9.4% (8.1 – 10.9) 

NPV 

98.3% (97.8 – 

98.6) 98.1% (97.6 – 98.5) 

PLR 2.5 (2.2 – 2.7) 2.4 (2.1 – 2.6) 

NLR 0.41 (0.34 – 0.50) 0.43 (0.36 – 0.53) 

Correctly 

Classified 70.6% 70.3% 

AUC 0.77 (0.74 – 0.80) 0.76 (0.73 – 0.79) 
AUC: Area Under the Receiver Operating Characteristic Curve; PLR: Positive Likelihood Ratio; NLR: Negative Likelihood 

Ratio; PPV: Positive Predictive Value; NPV: Negative Predictive Value 

 

6.6 Discussion 

Principal findings  

 

The results of our study from a general obstetric population show that a model that combines the 

CPR, EFW and several maternal factors is able to identify with improved accuracy, term fetuses 

that develop intrapartum fetal compromise and require emergency caesarean for delivery. 

Furthermore, our cross–validation analysis for internal fidelity of the model demonstrates that it 

is highly calibrated (Figure 6.2), with a strong ability to discriminate fetuses at risk. Our model 

appears to have better performance characteristics than other models developed for the same 

purpose (75, 80, 185). Indeed, a recently published model for intrapartum fetal compromise 

showed an AUROC Curve of AUC 0.76 (95% CI 0.72 – 0.80) (75) with the authors explaining 

that this relatively high figure reflected the high–risk nature of their study population (small for 

gestational age (SGA) fetuses). Our model however, showed similar diagnostic accuracy in a 

general cohort and when applied to a similar high–risk cohort, there were improvements in all 

diagnostic accuracies (75). Another similar study from Holland (185) showed that a model 

incorporating only antenatal variables achieved an AUROC Curve of 0.70 (95% CI 0.66 – 0.73) 

whilst addition of intrapartum characteristics increased this figure to 0.73 (95% CI 0.70 – 0.76). 

The study by Schuit et al however did not include ultrasound variables. We have previously 
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shown that the CPR and EFW are able to identify separate cohorts of fetuses at risk of 

intrapartum compromise and using them in combination enhances their predictive capability 

(186). In this study we extend our previous findings to develop a model that accurately identifies 

fetuses at risk.  

 

Strengths and limitations of the study 

 

The strengths of this study include the large cohort of accurately dated term pregnancies, the 

short interval between ultrasound and birth and strict criteria used to define intrapartum fetal 

compromise. The tertiary centre focus of the study with universal intrapartum fetal heart rate 

monitoring, use of evidence–based guidelines and consistent intrapartum care for all women are 

further strengths. Additionally, all obstetric caregivers were blinded to the CPR so this would not 

have influenced any decisions regarding obstetric or intrapartum management. Furthermore, we 

did not include birthweight as a variable as our aim was to develop a model that used only 

prenatal and ultrasound variables rather than intrapartum factors. This would allow the model to 

be used in a clinically meaningful and potentially timely manner. Furthermore, we used all 

ultrasound measures as continuous variables rather than predetermined cut–offs. Whilst using 

thresholds to define an at–risk cohort may be convenient, it is unsound statistically as 

information is lost, limiting the power hence the accuracy of any predictive model. The use of 

thresholds and by extension the dichotomisation of outcomes underestimates the impact these 

variables may have when close to the chosen cut–off (76). Figure 6.3 illustrates the linear 

relationship between ECFD and the ultrasound measures of the EFW and CPR after adjusting for 

the confounding effects of the other variables within our model.  
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Figure 6-3: Adjusted probabilities of emergency caesarean for fetal distress for estimated fetal 

weight and cerebroplacental ratio Z–score. 

 

Although there was no external validation performed, the similarities of the confusion matrices 

and the diagnostic evaluations between the predictive model and the cross–validation model 

demonstrates the appropriateness of the final model with no overfitting of the variables. The 

limitations of this study relate to the use of routinely collected data. The indications for IOL 

varied over the study period and could have influenced intrapartum outcomes. Although the CPR 

was not reported, the EFW and UA PI were, and this could have played a part in the clinical 

decision–making process and subsequent obstetric management. Furthermore, we acknowledge 

that the diagnosis of “fetal distress” is not a precise one, lacks a “gold standard” and 

management is influenced by a number of human factors.  
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Conclusions and implications for clinical practice 

 

Our model offers a prediction tool that could help identify term fetuses at risk of ECFD with 

improved accuracy, and thus facilitate informed decision making for women and clinical 

management for obstetric caregivers. For example, when clinicians are considering IOL, this 

model allows them the opportunity to evaluate the probability of ECFD occurring as an outcome 

depending if IOL is undertaken. Our combined model offers far greater predictive accuracy than 

the CPR, EFW, UA PI or, MCA PI as standalone measures or even the use of a combination of 

these variables. Furthermore, we have achieved this accuracy without dichotomising the cohort 

into high–risk sub–groups on the basis of either a low CPR or EFW threshold. Whilst SGA 

infants or those with a low CPR are at risk of operative birth for fetal compromise, both these 

thresholds actually have relatively poor performance as a screening test for adverse outcomes 

(78). Indeed, whilst there is an increased risk of SGA infant having ECFD, the probability 

decreases in a linear fashion as the EFW increases. It is also common to use cut–offs for the 

CPR, but similar to another study by Kalafat et al we have been able to illustrate that the CPR 

has a linear association with ECFD and dichotomising would, at best discount useful information 

and at worst, may be misleading (75). Therefore, using the ultrasound measures as continuous 

variables within our model offers a more accurate and meaningful approach to prognosis within 

term fetuses. We were able to show that for those fetuses that are considered to be within the 

high–risk groups of low CPR and or low EFW our model performance improves, without the use 

of stratification. Furthermore, our model performs better than previous models constructed in 

specific high risk cohorts and by incorporating the use of EFW and CPR Z–scores as continuous 

measures we were able to show that the model performs well in a general cohort and improves in 

accuracy in the higher risk cohorts (75). There is also now evidence that the use of placental 

biomarkers such as placental growth factor may be useful for identifying vulnerable fetuses and 

future work needs to elucidate what role such biomarkers may have in similar models (187). 

However, whilst our prediction model identifies important risk factors and the influence of their 

confounding effects for the outcome of ECFD and offers the possibility of identifying at–risk 

fetuses we acknowledge that a post–test management algorithm is yet to be determined. There 

are indeed many factors to consider, generalisability of the model including risk thresholds that 

may influence the need for intrapartum fetal monitoring, timing, place and mode of birth. 

Additionally, the acceptability to women in late pregnancy and its cost effectiveness are 

important issues to consider. Finally, and perhaps most critically, is the potential for harm, 

particularly the possibility of increased IOL rates and elective caesarean section at early term 
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gestations. Nevertheless, notwithstanding these concerns, our work demonstrates the possibility 

of accurate late pregnancy risk stratification for ECFD. 
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7.1 Abstract 

Objective 

The aim of this study was to develop a predictive model utilising maternal, intrapartum and 

ultrasound variables for a composite of severe adverse neonatal outcomes (SANO) in term 

infants. 

Design 

Prospectively collected observational study. Mixed effects generalised linear models were used 

for modelling. Internal validation was performed using the K–fold cross validation technique. 

Setting 

This was a study of women that birthed at the Mater Mothers’ Hospitals in Brisbane, Australia 

between January 2010 and April 2017.  

Patients 

We included all term, non–anomalous singleton pregnancies that had an ultrasound performed 

between 36–38 weeks gestation and had recordings for the umbilical artery pulsatility index, 

middle cerebral artery pulsatility index and the estimated fetal weight.  

Main Outcome Measures 

The components of the SANO were: severe acidosis arterial, admission to the neonatal intensive 

care unit, Apgar score of ≤3 at 5 minutes or perinatal death.  

Results 

There were 5,439 women identified during the study period that met the inclusion criteria, with 

11.7% of this cohort having SANO. The final generalised linear mixed model consisted of the 

following variables: maternal ethnicity, socioeconomic score, nulliparity, induction of labour, 

method of birth and Z–scores for EFW and CPR. The final model had an area under the receiver 

operating characteristic curve of 0.71.  

Conclusions 

The results of this study demonstrate it is possible to predict infants that are at risk of SANO at 

term with moderate accuracy using a combination of maternal, intrapartum and ultrasound 

variables. Cross–validation analysis suggests a high calibration of the model. 
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7.2 Introduction 

Globally, hypoxia remains a major contributor to stillbirth, hypoxic ischemic encephalopathy 

and cerebral palsy. For parents and families, the psychosocial and financial impact of these 

complications are profound and long-lasting. The majority of these catastrophic events occur 

despite a lack of obvious risk factors (173). This problem is significant and pressing, with the 

Royal College of Obstetricians & Gynaecologists, Gates Foundation, The Lancet and the World 

Health Organisation (WHO) urging focused research in this area. Indeed, a recent major 2017 

UK report (“Each Baby Counts”) of stillbirths, neonatal deaths and perinatal brain injury 

occurring has set an ambitious 50% reduction target by 2020 (188). 

One prerequisite of any strategy to reduce adverse outcomes is the need to identify an at–risk 

population of fetuses. However, there is often lack of clarity of the population being screened 

and the perinatal outcomes chosen. Furthermore, clinically plausible and accurate interpretation 

of the relationship between risk variables and health outcomes is vital to ensure the robustness of 

any predictive model (179). The development of risk algorithms and predictive models utilising 

both ultrasound and demographic variables to enable risk stratification and individualised care is 

an increasing focus of research to reduce stillbirth and other adverse outcomes in high income 

contry settings (189). The accuracy of these models depends on careful consideration of not only 

the association between risk factors and outcomes, but importantly also how these factors 

interact with and on occasion, confound each other. 

The cerebroplacental ratio (CPR) is the ratio of the middle cerebral artery pulsatility index 

(MCA PI) divided by the umbilical artery pulsatility index (UA PI) and is now shown to be a 

possible marker of sub–optimal fetal growth regardless of gestation (14, 40, 72). A low CPR is 

associated with a variety of adverse perinatal outcomes including stillbirth, intrapartum fetal 

compromise, and acidosis at birth, a low Apgar score and neonatal unit admission regardless of 

gestational age or weight (15, 78, 171, 190). The CPR is now increasingly being incorporated 

into clinical practice despite its relatively poor performance as a screening test for adverse 

perinatal outcomes (11, 15, 71, 145). Previously we have shown that both the CPR and estimated 

fetal weight (EFW) identified distinct at–risk cohorts and that a model incorporating both these 

factors improved the predictive capability for adverse perinatal outcomes (186). Others, (77, 80) 

have used a larger number of variables including the CPR, fetal gender, parity, maternal age, 

EFW and gestational age at birth to develop models for prediction of adverse pregnancy 

outcomes.  
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The aim of this study was to develop a predictive model utilising a range of maternal, pregnancy, 

intrapartum and ultrasound variables for a composite of severe adverse neonatal outcomes 

(SANO) for term infants. 

 

7.3 Methods 

This study utilised information from clinical records of women that birthed at the Mater 

Mothers’ Hospitals in Brisbane, Australia between January 2010 and April 2017. The predictive 

model was developed using routine prospectively collected demographic, ultrasound, 

intrapartum and perinatal data.  

We included all term (>37 weeks gestation), non-anomalous singleton pregnancies that had an 

ultrasound performed between 36–38 weeks gestation and had recordings for the UA PI, MCA 

PI and the EFW. Gestational age was determined using a first trimester ultrasound examination. 

Fetal biometry and estimated fetal weight was measured and calculated using Hadlock’s formula 

(146).  

The following maternal demographic, pregnancy and birth variables were extracted for the 

analysis: maternal age, body mass index (BMI), ethnicity, parity, smoking status, alcohol 

consumption, use of illicit drugs, diabetes mellitus (gestational, type 1 or type 2), hypertension 

(gestational, chronic or pre-eclampsia), assisted reproductive techniques (ART), induction of 

labour (IOL), fetal gender, mode of birth, gestational age at birth and socio–economic index for 

areas (SEIFA) score. The SEIFA score is an Australian measure of an individual’s 

socioeconomic status where the average score is 1,000 and a lower score represents relative 

socioeconomic deprivation (175). 

The components of the SANO were: severe acidosis (cord artery pH<7.0, lactate >6mmol/L 

and/or base excess ≤-12mmol/L), admission to the neonatal intensive care unit (NICU), Apgar 

score of ≤3 at 5 minutes and/or perinatal death. Perinatal death was defined as stillbirth that 

occurred after > 37 weeks gestation or neonatal death within 28 days of birth. 

This study had full institutional ethical approval (Reference number HREC/14/MHS/37). 
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7.4 Statistical Analysis  

Due to the change in the mean and standard deviation over gestation for the measures of the 

CPR, UA PI, MCA PI and EFW, Z–scores were first calculated for each gestational age when 

the ultrasound scan was performed, using previously published reference centiles (177, 178). 

Data measured on a continuous scale are reported as mean (standard deviation). Proportions are 

reported as a percentage and number of observations. Mixed effects generalised linear models 

with a binomial distribution were used to account for the correlation of observations from 

women having more than one birth within the study period. Univariable analysis was performed 

and all variables with a P value <0.20 were included in the initial model. This was done in 

consideration of the prevailing consensus opinion that at least 10 events per variable are required 

to avoid overfitting the model (179-181). 

Model building was performed using the backwards stepwise approach as previously described 

by Sauerbrei et al (181). Variables were removed based on the highest P value and subsequent 

model improvement assessed through a decrease in the Akaike information criterion (AIC), a 

widely used criterion to assess model goodness of fit and parsimony (182). All variables 

removed were individually re–inserted into the model and reassessed for any model 

improvement.  

Receiver operating characteristic (ROC) curves, sensitivity, percentage of cases correctly 

classified, positive and negative likelihood ratios (PLR and NLR) and positive and negative 

predictive values (PPV and NPV) were used to evaluate the diagnostic accuracy of the final 

model.  

Internal validation of the model was performed using the K–fold cross validation technique 

using 50 folds (183, 184). The number of SANO outcomes were compared to the number of 

SANO predicted by the model through the use of cross tabulation of actual and predicted 

outcomes (a.k.a confusion matrix) for the cross–validation model versus the original predictive 

model, and comparison of diagnostic accuracies using the original predictive model’s optimum 

threshold from the ROC curves.  

Statistical analysis was performed using Stata statistical software, StataCorp. 2015. Stata 

Statistical Software: Release 14. College Station, TX: StataCorp LP.  
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7.5 Results 

There were 5,439 women during the study period that met the inclusion criteria, with 11.7% 

(639/5,439) of this cohort having the SANO. Infants with the composite SANO were more likely 

to be born to women who were younger (30.3 vs. 31.0, p=0.001), nulliparous (63.9% vs. 43.4%, 

p<0.001), had lower SEIFA score (1,011 vs. 1,018, p=0.03) and were less likely to be female 

(46.5% vs. 50.9%, p=0.04). These women were more likely to be induced (54.5% vs. 43.1%, 

p<0.001) and have an operative delivery, [instrumental delivery (30.7% vs. 10.8%) and 

emergency caesarean (25.7% vs. 15.1%), p<0.001]. For the ultrasound variables, fetuses in the 

SANO cohort had lower mean EFW (2,911g vs. 2,976g, p<0.001), lower mean CPR (1.93 vs. 

2.00, p<0.001) and higher mean UA PI (0.86 vs. 0.83, p<0.001). There was however, no 

difference in the mean MCA PI (1.59 vs 1.61, p=0.19). After standardisation, Z–scores for the 

EFW (0.32 vs. 0.45, p=0.01), CPR (-0.31 vs -0.13, p<0.001) and MCA PI (-0.23 vs. -0.14, 

p=0.03) were all lower in the SANO cohort whilst the UA PI was higher (0.25 vs. 0.07, 

p<0.001). There was no difference in the time from ultrasound to delivery between the two 

groups. 
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Table 7-1: Descriptive Statistics 

 Total Cohort (5,439) Severe Adverse Neonatal Outcome  

  No (n=4,800) Yes (n=639) P Value 

Age 31.0 (5.5) 31.0 (5.5) 30.3 (5.5) 0.001 

BMI 25.0 (6.5) 25.0 (6.5) 25.1 (6.6) 0.60 

Ethnicity     

Caucasian 50.7% (2,756/5,439) 50.3% (2,413/4,800) 53.7% (343/639) 0.11 

Indigenous 3.3% (180/5,439) 3.3% (156/4,800) 3.8% (24/639) 0.51 

Asian 29.6% (1,608/5,439) 29.8% (1,428/4,800) 28.2% (180/639) 0.41 

Other 16.5% (895/5,439) 16.7% (803/4,800) 14.4% (92/639) 0.14 

SEIFA Score 1,017 (74) 1,018 (73) 1,011 (76) 0.03 

Diabetes Mellitus 23.9% (1,298/5,439) 23.9% (1,149/4,800) 23.3% (149/639) 0.73 

Hypertension 8.3% (449/5,439) 8.3% (400/4,800) 7.7% (49/639) 0.57 

ART  4.9% (264/5,439) 4.9% (235/4,800) 4.5% (29/639) 0.69 

Smokes 13.5% (733/5,439) 13.5% (648/4,800) 13.3% (85/639) 0.89 

Alcohol 4.8% (259/5,439) 4.7% (227/4,800) 5.0% (32/639) 0.76 

Illicit Drug Use 10.6% (578/5,439) 10.4% (497/4,800) 12.7% (81/639) 0.07 

Nulliparous 45.8% (2,489/5,439) 43.4% (2,081/4,800) 63.9% (408/639) <0.001 

IOL 44.4% (2,415/5,439) 43.1% (2,067/4,800) 54.5% (348/639) <0.001 

Gestation 38.7 (1.1) 38.7 (1.1) 38.7 (1.3) 0.38 

Gender (female) 50.4% (2,740/5,439) 50.9% (2,443/4,800) 46.5% (297/639) 0.04 

Method of Birth     

SVD 53.2% (2,895/5,439) 56.0% (2,687/4,800) 32.6% (2089/639) <0.001 

Instrumental 13.2% (716/5,439) 10.8% (520/4,800) 30.7% (196/639) <0.001 

Emergency CS 16.4% (890/5,439) 15.1% (726/4,800) 25.7% (164/639) <0.001 

Elective CS 17.3% (938/5,439) 18.1% (867/4,800) 11.1% (71/639) <0.001 

US Gestation  36.6 (0.72) 36.6 (0.7) 36.5 (0.7) 0.01 

Time from 

Ultrasound to 

Birth (Days) 15.3 (8.6) 15.3 (8.4) 15.4 (9.5) 0.70 

EFW 2,969 (458) 2,976 (452) 2,911 (503) <0.001 

CPR 1.99 (0.51) 2.00 (0.50) 1.93 (0.55) <0.001 

UA PI 0.83 (0.15) 0.83 (0.15) 0.86 (0.16) <0.001 

MCA PI 1.61 (0.33) 1.61 (0.32) 1.59 (0.34) 0.19 

EFW Z–score 0.43 (1.10) 0.45 (1.08) 0.32 (1.24) 0.01 

CPR Z–score -0.15 (1.02) -0.13 (1.0) -0.31 (1.12) <0.001 

UA PI Z–score 0.09 (1.03) 0.07 (1.02) 0.25 (1.13) <0.001 

MCA PI Z–score -0.15 (0.98) -0.14 (0.97) -0.23 (1.03) 0.03 

Data are reported as % (n) for categorical data (Chi Square test) and mean (Standard deviation) (t-test) for continuous data. 

BMI: Body Mass Index; SEIFA: Socio-Economic Indexes for Areas; ART: Artificial Reproductive Technologies; IOL: 

Induction of Labour; SVD: Spontaneous Vaginal Delivery; CS: Caesarean Section; US: Ultrasound; EFW: Estimated Fetal 

Weight; CPR: Cerebroplacental Ratio; UA PI: Umbilical Artery Pulsatility Index; MCA PI: Middle Cerebral Artery Pulsatility 

Index 
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After univariable analysis, associations between the SANO and maternal age (OR 0.97, 95% CI 

0.96 – 0.99, p=0.003), SEIFA score (OR 0.999, 95% CI 0.997 – 0.999, p=0.04), nulliparity (OR 

2.50, 95% CI 1.89 – 3.13, p<0.001), IOL (OR 1.67, 95% CI 1.33 – 2.11, p<0.001) and female 

gender (OR 0.83, 95% CI 0.69 – 0.99, p=0.04) were identified. The composite outcome was also 

associated with instrumental birth (OR 5.97, 95% CI 3.52 – 10.13, p<0.001) and emergency 

caesarean (OR 3.28, 95% CI 2.26 – 4.76, p<0.001) as well as Z–scores for EFW (OR 0.89, 95% 

CI 0.82 – 0.97, p=0.01), CPR (OR 0.83, 95% CI 0.75 – 0.91, p<0.001), UA PI (OR 1.20, 95% CI 

1.09 – 1.32, P<0.001) and MCA PI Z–score (OR 0.90, 95% CI 0.82 – 0.99, p=0.04) (Table 7.2). 
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Table 7-2: Univariable analysis. 

 

Total Cohort 

(5,439) Severe Adverse Neonatal Outcome   

  No (n=4,800) Yes (n=639) 

Odds Ratio  

(95% C.I.) P Value 

Age 31.0 (5.5) 31.0 (5.5) 30.3 (5.5) 0.97 (0.96 – 0.99) 0.003 

BMI 25.0 (6.5) 25.0 (6.5) 25.1 (6.6) 1.00 (0.99 – 1.02) 0.60 

Ethnicity      

Caucasian 

50.7% 

(2,756/5,439) 

50.3% 

(2,413/4,800) 53.7% (343/639) 1  

Indigenous 3.3% (180/5,439) 3.3% (156/4,800) 3.8% (24/639) 1.08 (0.66 – 1.77) 0.76 

Asian 

29.6% 

(1,608/5,439) 

29.8% 

(1,428/4,800) 28.2% (180/639) 0.88 (0.71 – 1.08) 0.22 

Other 16.5% (895/5,439) 16.7% (803/4,800) 14.4% (92/639) 0.79 (0.60 – 1.04) 0.09 

SEIFA Score 1,017 (74) 1,018 (73) 1,011 (76) 

0.999  

(0.997 – 0.9999) 0.04 

Diabetes Mellitus 

23.9% 

(1,298/5,439) 

23.9% 

(1,149/4,800) 23.3% (149/639) 0.96 (0.77 – 1.20) 0.73 

Hypertension 8.3% (449/5,439) 8.3% (400/4,800) 7.7% (49/639) 0.91 (0.65 – 1.28) 0.58 

ART  4.9% (264/5,439) 4.9% (235/4,800) 4.5% (29/639) 0.90 (0.58 – 1.41) 0.66 

Smokes 13.5% (733/5,439) 13.5% (648/4,800) 13.3% (85/639) 0.98 (0.75 – 1.29) 0.89 

Alcohol 4.8% (259/5,439) 4.7% (227/4,800) 5.0% (32/639) 1.07 (0.70 – 1.63) 0.76 

Illicit Drug Use 10.6% (578/5,439) 10.4% (497/4,800) 12.7% (81/639) 1.30 (0.97 – 1.74) 0.08 

Nulliparous 

45.8% 

(2,489/5,439) 

43.4% 

(2,081/4,800) 63.9% (408/639) 2.50 (1.89 – 3.13) <0.001 

IOL 

44.4% 

(2,415/5,439) 

43.1% 

(2,067/4,800) 54.5% (348/639) 1.67 (1.33 – 2.11) <0.001 

Gestation 38.7 (1.1) 38.7 (1.1) 38.7 (1.3) 0.97 (0.89 – 1.05) 0.41 

Gender (female) 

50.4% 

(2,740/5,439) 

50.9% 

(2,443/4,800) 46.5% (297/639) 0.83 (0.69 – 0.99) 0.04 

Method of Birth      

SVD 

53.2% 

(2,895/5,439) 

56.0% 

(2,687/4,800) 32.6% (2089/639) 1  

Instrumental 13.2% (716/5,439) 10.8% (520/4,800) 30.7% (196/639) 5.97 (3.52 – 10.13) <0.001 

Emergency CS 16.4% (890/5,439) 15.1% (726/4,800) 25.7% (164/639) 3.28 (2.26 – 4.76) <0.001 

Elective CS 17.3% (938/5,439) 18.1% (867/4,800) 11.1% (71/639) 1.07 (0.79 – 1.45) 0.68 

US Gestation  36.6 (0.72) 36.6 (0.7) 36.5 (0.7) 0.85 (0.74 – 0.97) 0.02 

Time from 

Ultrasound to 

Birth (Days) 15.3 (8.6) 15.3 (8.4) 15.4 (9.5) 1.00 (0.99 – 1.01) 0.69 

EFW 2,969 (458) 2,976 (452) 2,911 (503) 

0.9997  

(0.999 – 0.9999) 0.002 

CPR 1.99 (0.51) 2.00 (0.50) 1.93 (0.55) 0.73 (0.61 – 0.89) 0.001 

UA PI 0.83 (0.15) 0.83 (0.15) 0.86 (0.16) 3.89 (1.98 – 7.65) <0.001 

MCA PI 1.61 (0.33) 1.61 (0.32) 1.59 (0.34) 0.83 (0.63 – 1.10) 0.20 

EFW Z–score 0.43 (1.10) 0.45 (1.08) 0.32 (1.24) 0.89 (0.82 – 0.97) 0.01 

CPR Z–score -0.15 (1.02) -0.13 (1.0) -0.31 (1.12) 0.83 (0.75 – 0.91) <0.001 

UA PI Z–score 0.09 (1.03) 0.07 (1.02) 0.25 (1.13) 1.20 (1.09 – 1.32) <0.001 

MCA PI Z–score -0.15 (0.98) -0.14 (0.97) -0.23 (1.03) 0.90 (0.82 – 0.99) 0.04 

Data are reported as % (n) for categorical data and mean (Standard deviation) for continuous data. 

BMI: Body Mass Index; SEIFA: Socio-Economic Indexes for Areas; ART: Artificial Reproductive Technologies; IOL: 

Induction of Labour; SVD: Spontaneous Vaginal Delivery; CS: Caesarean Section; US: Ultrasound; EFW: Estimated Fetal 

Weight; CPR: Cerebroplacental Ratio; UA PI: Umbilical Artery Pulsatility Index; MCA PI: Middle Cerebral Artery Pulsatility 

Index 
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The initial multivariable model consisted of maternal age, ethnicity, SEIFA score, illicit drug 

use, nulliparity, IOL, gender, method of birth, EFW Z–score and CPR Z–score. The UA PI and 

MCA PI Z–scores were not included due to the association with the CPR Z–score. Model 

selection was performed as previously described. The final generalised linear mixed model 

consisted of maternal ethnicity [Caucasian – reference, Indigenous (aOR 1.03, 95% CI 0.60 – 

1.79, p=0.91), Asian (aOR 0.66, 95% CI 0.51 – 0.86, p=0.002), Other (aOR 0.73, 95% CI 0.54 – 

1.00, p=0.049)], SEIFA score (aOR 0.998, 95% CI 0.996 – 0.999, p=0.003), nulliparity (aOR 

1.50, 95% CI 1.18 – 1.90, p=0.001), IOL (aOR 1.34, 95% CI 1.07 – 1.69, p=0.01), method of 

birth [Spontaneous Vaginal Delivery (SVD) – reference, instrumental (aOR 5.69, 95% CI 3.41 – 

9.49, p<0.001), emergency caesarean (aOR 3.15, 95% CI 2.17 – 4.57, p<0.001), elective 

caesarean (aOR 1.33, 95% CI 0.94 – 1.88, p=0.11)] and Z–scores for EFW (aOR 0.88, 95% CI 

0.79 – 0.97, p=0.01) and CPR (aOR 0.88, 95% CI 0.79 – 0.98, p=0.02) (Table 7.3).  

 

Table 7-3: Final model - severe adverse neonatal outcome. 

 Odds Ratio (95% C.I.) P Value 

Ethnicity   

Caucasian 1  

Indigenous 1.03 (0.60 – 1.79) 0.91 

Asian 0.66 (0.51 – 0.86) 0.002 

Other 0.73 (0.54 – 1.00) 0.049 

SEIFA Score 0.998 (0.996 – 0.999) 0.003 

Nulliparous 1.50 (1.18 – 1.90) 0.001 

IOL 1.34 (1.07 – 1.69) 0.01 

Method of Birth   

SVD 1  

Instrumental 5.69 (3.41 – 9.49) <0.001 

Emergency CS 3.15 (2.17 – 4.57) <0.001 

Elective CS 1.33 (0.94 – 1.88) 0.11 

EFW Z–score 0.88 (0.79 – 0.97) 0.01 

CPR Z–score 0.88 (0.79 – 0.98) 0.02 
C.I.: Confidence Interval; IOL: Induction of Labour; SVD: Spontaneous Vaginal Delivery; CS: Caesarean Section; EFW: 

Estimated Fetal Weight; CPR: Cerebroplacental Ratio 
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The final model had an area under the receiver operating characteristic (AUROC) curve of 0.71 

(95% CI 0.69 – 0.73) (Figure 7.1).  

 

 

Figure 7-1: Receiver–operating characteristics for prediction of severe adverse neonatal 

outcome. 

 

Using a fixed false positive cut–off of 10%, the model demonstrated a sensitivity of 28.2% (95% 

CI 24.7 – 31.8), a PLR of 2.8 (95% CI 2.4 – 3.3) and NLR of 0.80 (95% CI 0.76 – 0.84). The 

PPV was 27.3% (95% CI 23.9 – 30.8), NPV of 90.4% (95% CI 89.5 – 91.2).  

We also assessed the performance of the model in high–risk cohorts (EFW <10th centile and 

CPR <10th centile). Overall, there was negligible improvement in performance in any of the 

AUROC curves, but there was substantial improvement in the PPV for a cohort with an EFW 

<10th centile as well as those with both an EFW <10th centile and CPR <10th centile. There was 

also improvement in the PLR observed in the EFW <10th centile cohort (Table 7.4).  
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Table 7-4: Diagnostic evaluation. 

 

AUC  

(95% C.I.) 

Sensitivity 

(95% C.I.) 

Specificity 

(95% C.I.) 

Correctly 

Classified 

PLR 

(95% C.I.) 

NLR 

(95% C.I.) 

PPV 

(95% C.I.) 

NPV 

(95% C.I.) 

Final Model 

0.71  

(0.69 – 0.73) 

66.0% 

(62.2 – 69.7) 

66.4% 

(65.1 – 67.8) 66.2% 

1.97 

(1.84 – 2.11) 

0.51 

(0.46 – 0.57) 

20.7% 

(19.0 – 22.6) 

93.6% 

(92.8 – 94.4) 

Cohort  

CPR<10th  

0.70 

(0.65 – 0.75) 

65.9% 

(56.9 – 74.1) 

65.9% 

(62.1 – 69.5) 65.4%  

1.93 

(1.64 – 2.27) 

0.52 

(0.40 – 0.66) 

26.9% 

(22.0 – 32.2) 

91.0% 

(88.1 – 93.4) 

Cohort  

EFW<10th  

0.73 

(0.67 – 0.78) 

67.6% 

(57.9 – 76.3) 

68.5% 

(63.9 – 72.9) 68.5% 

2.15 

(1.77 – 2.60) 

0.47 

(0.36 – 0.63) 

35.3% 

(28.8 – 42.2) 

89.3% 

(85.4 – 92.4) 

Cohort with 

CPR<10th & 

EFW<10th  

0.74 

(0.65 – 0.83) 

64.4% 

(48.8 – 78.1) 

65.5% 

(56.0 – 74.2) 65.4% 

1.87 

(1.34 – 2.61) 

0.54 

(0.36 – 0.82) 

42.6% 

(30.7 – 55.2) 

82.2% 

(72.7 – 89.5) 

Cohort with 

CPR<10th or 

EFW<10th  

0.69 

(0.65 – 0.73) 

63.5% 

(56.2 – 70.4) 

63.8% 

(60.7 – 66.8) 63.4% 

1.75 

(1.53 – 2.01) 

0.57 

(0.47 – 0.70) 

25.4% 

(21.5 – 29.5) 

90.0% 

(87.5 – 92.1) 
AUC: Area Under the Curve; FPR: False Positive Rate; PLR: Positive Likelihood Ratio; NLR: Negative Likelihood Ratio; PPV: Positive Predictive Value;  

NPV: Negative Predictive Value; CPR: Cerebroplacental Ratio; EFW: Estimated Fetal Weight 
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Cross–validation of the model showed accurate and robust performance of the model with little 

difference between the final model (AUROC curve 0.71, 95% CI 0.69 – 0.73) compared to the 

cross–validation model (AUROC curve 0.70, 95% CI 0.68 – 0.72) (Figure 7.2). Confusion 

matrices of the comparisons of predicted and true outcome of the SANO for the final and cross–

validation model can be found in Table 7.5, with diagnostic accuracies presented in Table 7.6. 

The Delong’s test and the Hanley and McNeil test both suggested a significant difference 

between the models AUC (p<0.001), however this was in contradiction to the confidence 

intervals of the AUC and the diagnostic accuracies, negligible differences in the confusion 

matrices and the graphical comparison of the models, suggesting the study is overpowered for 

these formal tests. Again, clinical relevance and common sense was used for interpretation for 

the comparison of the predictive and cross–validation models. 

 

 

Figure 7-2: Comparison of predictive model and cross–validated model. 
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Table 7-5: Predictive model and cross–validation model confusion matrix using the optimal 

threshold of sensitivity and specificity. 

Predicted Model 

True 

Outcome Predictive Outcome 

 SANO No SANO Total 

SANO 422 217 639 

No SANO 1,611 3,188 4,799 

Total 2,033 3,405 5,438 

Cross Validation Model 

True 

Outcome Predicted Outcome 

 SANO No SANO Total 

SANO 414 225 639 

No SANO 1,603 3,196 4,799 

Total 2,017 3,421 5,438 
SANO: Severe Adverse Neonatal Outcome 

 

 

Table 7-6: Predictive model and cross–validation model diagnostic evaluation using the 

optimal threshold of sensitivity and specificity. 

 Predictive Model 

Cross–Validated 

Model 

Sensitivity 66.0% (62.2 – 69.7) 64.8% (60.9 – 68.5) 

Specificity 66.4% (65.1 – 67.8) 66.6% (65.2 – 67.9) 

PPV 20.8% (19.0 – 22.6) 20.5% (18.8 – 22.4) 

NPV 93.6% (92.8 – 94.4) 93.4% (92.5 – 94.2) 

PLR 2.0 (1.8 – 2.1) 1.9 (1.8 – 2.1) 

NLR 0.51 (0.46 – 0.57) 0.53 (0.48 – 0.59) 

Correctly 

Classified 66.2% 66.4% 

AUROC Curve 0.71 (0.69 – 0.73) 0.70 (0.68 – 0.72) 
AUC: Area Under the Receiver Operating Characteristic Curve; PLR: Positive Likelihood Ratio; NLR: Negative Likelihood 

Ratio; PPV: Positive Predictive Value; NPV: Negative Predictive Value 

  



143 

 

7.6 Discussion  

The results of this study demonstrate it is possible to predict with moderate accuracy, infants that 

are at risk of SANO at term using a combination of maternal, intrapartum and ultrasound 

variables. Cross–validation analysis suggests a high calibration of the model (Table 7.5, Table 

7.6, Figure 7.2).  

There is increasing demand for a test to predict adverse late pregnancy outcome and the EFW 

and CPR are often being used to guide clinical management (15, 50, 80, 145, 171). We have 

previously shown that both these variables identify separate cohorts of infants at risk of SANO 

and emphasize the need to incorporate both in risk stratification models (186). In this paper we 

extend our previous findings and use a variety of maternal, intrapartum and ultrasound derived 

variables to develop a model for the prediction of a composite of adverse outcomes.  

More complex predictive models have recently been developed to identify fetuses at risk of 

neonatal care unit admission and operative delivery for intrapartum fetal compromise, albeit in 

SGA cohorts (75, 77). Evaluation of our model within high risk cohorts (SGA or low CPR) 

cohort saw an improvement in the PPV as well as the PLR but only a small increase in the 

AUROC. Our results demonstrate that the relationship between EFW as well as CPR and SANO 

is linear (illustrated in Figure 7.3) and suggests that using a threshold to categorise a higher risk 

cohort (e.g. EFW <10th centile) based on fetal weight will not only affect the accuracy of a 

model but also fail to identify fetuses that have an increased risk when their weights are close to 

but do not exceed the threshold (76).  
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Figure 7-3: Adjusted probabilities of severe adverse neonatal outcome for estimated fetal 

weight and cerebroplacental ratio. 

 

Indeed, there is good evidence that the incidence of adverse outcomes including perinatal death 

rises when birthweight is <20th centile for gestation (191-193). Using a predictive model that 

incorporates risk factors as continuous variables is more reflective of the true “real life” 

relationship with adverse outcomes. While creating predictive models in high risk cohorts using 

pre–determined cut–offs may provide superficially more impressive model diagnostics, they are 

arguably misleading and may provide false reassurance for individuals that fall outside, but are 

very close to the cut–off threshold (76).  

The strengths of this study lie in the large study cohort and development of a regression model 

which was not subjected to overfitting. We also chose components of the composite outcome to 

reflect poor condition at birth and the association with hypoxic birth injury which are important 

clinically relevant outcomes. These outcomes are also correlated with both short–term morbidity 

such as hypoxic ischaemic encephalopathy as well as longer term complications including 

cerebral palsy. We also used a reasonably contemporary cohort of women so that perinatal 

outcomes should not have been significantly influenced by evolution in obstetric or neonatal 

practices. Nevertheless, there are several limitations that must be acknowledged. Although the 
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CPR was not reported, the EFW and UA PI were, which sometimes may have influenced 

management decisions. Furthermore, as routine late third trimester scans are not normally 

performed at our institution, by definition our study cohort cannot be truly considered an 

unselected or low risk population. Although the AUROC curve for our model was good the PLR 

was modest suggesting only a small increase in the likelihood of the outcome. When combined 

with a low pre–test probability of adverse outcomes at term the veracity and clinical utility of 

any model needs to interpreted with caution (194).  

Clearly, any screening test has potential for harm from false positive or false negative results. 

During pregnancy, a positive screen result is often followed considerable maternal anxiety, 

increased obstetric intervention and early term birth. Indeed, there is evidence that children born 

at early term gestations not only have higher rates of neonatal complications (172, 195) but are 

also at risk for longer term adverse neurodevelopmental sequelae (196-198). The low rates of 

serious outcomes for term births constrains the development of any screening test for use in the 

general obstetric population and clinicians need to be cognizant of the limitations of these tests. 

It is possible however, that the addition of placental biomarkers may improve the performance of 

such models (20, 187). Despite the above–mentioned caveats, our model could be used to guide 

prenatal decision making and may help guide clinical practice.  
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 Discussion 

 

8.1 Overview of key findings and implications 

This thesis aimed to assess maternal and perinatal factors that are associated with adverse 

perinatal outcomes. It uses a pragmatic approach as it utilises routinely collected data, which 

accurately reflects real–world clinical situations. This thesis had the overarching aim of building 

appropriate robust statistical predictive models that are able to assist in identifying those fetuses 

most at risk. Each chapter builds on the background and knowledge that is related to adverse 

outcomes and explores the possibility of integrating ultrasound measures, in particular the EFW 

and the CPR, into predictive models. These parameters change in mean and variance over time 

and to account for these changes, a need arose to find suitable standardisation through the use 

and creation of accurate reference centiles. The reference centiles allowed the calculation of 

standardised Z–scores for use within the models. The predictive models maintained the 

continuous nature of the EFW and CPR variables and illustrated their linear association with the 

adverse outcomes. This is contrary to previous attempts at modelling adverse outcomes using 

dichotomised versions of these variables to create “high–risk” cohorts, but ignoring the 

erroneous implications of using such cut–offs.  

 

8.2 Use of Routinely Collected Data: Birth Trends Between 2010 – 2016  

This chapter explored the use of routinely collected data for research purposes. It also assessed 

the data integrity and generalisability of the MMH dataset. Today’s society is more data driven 

than any time in the past. As hospitals and health care facilities increase their collection of 

patient data it offers the researcher a chance to access an abundance of data that has been 

collected under normal clinical situations. Not only is it pragmatic but is also avoids bias from 

studying highly selected groups in highly controlled environments and has the added benefit of 

the absence of the “Hawthorne effect”. However, it is subject to other bias through measurement 

error, increased measurement variability and missing data. As routinely collecting data increases 

in hospitals and health care facilities, so will the resources that will be dedicated to the set–up, 

maintenance and education regarding collection of data which will help minimise those errors. 

Assessment of the MMH data found there few differences in the maternal demographics and 

perinatal outcomes of the MMH cohort compared to the AIHW cohort. It concluded that the 



147 

 

MMH is representative of other major tertiary facilities within Australia and therefore the results 

drawn from the data is generalisable to other metropolitan hospitals. The similarities between the 

two cohorts also indicated that the data aggregations and manipulations were appropriate. 

 

8.3 Is the fetal cerebroplacental ratio better that the estimated fetal weight in 

predicting adverse perinatal outcomes in a low risk cohort? 

The premise for this chapter was that both a low CPR and low EFW can be the result of 

suboptimal placental function and both measures have been shown to be associated with adverse 

perinatal outcomes. While assessment of the EFW is part of clinical care, increasingly clinicians 

are incorporating the CPR into their routine care. The purpose of this chapter therefore, was to 

assess both measures individually and then in combination to evaluate whether they identify the 

same cohorts of adverse outcomes and if detectability is enhanced when used in combination.  

This retrospective cohort study included all non–anomalous singleton fetuses that had ultrasound 

scans of the MCA PI and UA PI as well as the EFW measured between 36+0 and 38+6 weeks. 

After excluding major fetal congenital abnormalities, aneuploidy, multiple pregnancies, preterm 

births and any women who had diabetes or hypertension we were left with a low–risk term 

cohort. I was able to show that both the CPR and the EFW had associations with most of the 

same adverse outcomes and after adjusting for parity had similar odds ratios. The analysis of the 

sensitivity of the CPR <10th centile and EFW <10th centile, indicated that for both the outcomes 

of serious neonatal composite and the emergency caesarean for non-reassuring fetal status, there 

was substantial improvement when used in combination. Figures 3–1 and 3–2 clearly show that 

the use of both measures identify between 25% and 41% more fetuses that suffer adverse 

outcome than the use of the individual components. We found that a low CPR was associated 

with emergency caesarean for non–reassuring fetal status regardless of the EFW.  

In conclusion, due to the EFW and the CPR being able to identify different cohorts of fetuses 

suffering the adverse outcomes, the use of both measures in any risk stratification model is 

preferred. Furthermore, the findings of a low CPR’s association with emergency caesarean for 

non–reassuring fetal status regardless of EFW would suggest linear associations and negate the 

use of “high–risk” cohorts for risk stratification models based on cut-offs of the 10th centile of 

either measure.  
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8.4 The magnitude of change in the fetal cerebroplacental ratio in the third 

trimester and the risk of adverse pregnancy outcome. 

As the CPR is indicative of impaired placental function, I investigated whether the diagnostic 

utility of the CPR could be increased by measuring the magnitude of change that occurs between 

30+0 weeks and 37+6 weeks gestation compared to a single measure late in pregnancy (between 

35 – 37 weeks gestation). 

This was a retrospective cohort of non–anomalous singleton fetuses with ultrasound scans for 

the MCA PI and the UA PI. I excluded any major congenital abnormality, aneuploidy and 

multiple pregnancy.  

Due to the change in the mean and variance in CPR over the gestational period, there was a need 

to standardise each measure using Z–scores. I therefore created a separate cohort of normal 

pregnancies from which to calculate reference centiles. This cohort excluded any births other 

than spontaneous vaginal deliveries, preterm births, multiple pregnancies, major congenital 

abnormalities, aneuploidy, indeterminate fetal gender, perinatal death, admission to the NICU, 

hypoglycaemia, acidosis, respiratory distress, resuscitation low Apgar score at 5–min <7 and 

diabetes or hypertension. I then used a GAMLSS model to create the normal reference ranges 

from which the Z–scores for the study cohort could be calculated. There was also differing time 

periods between the scans for each fetus. To account for this, I standardised each delta Z–score 

(i.e. the Z–score of the second scan – the Z–score of the first scan) by dividing the delta Z–score 

by the number of gestational weeks between the scans to give the change per week. 

I was able to show that a decreasing CPR Z–score was associated with emergency caesarean, 

emergency caesarean for non–reassuring fetal status, preterm delivery, BW <10th centile and 

hypoglycaemia. However, the area under the curves indicated that the change in CPR Z–score 

gave no improvement in detectability than a single scan taken between 35 – 37 weeks gestation. 

Furthermore, adjusting for the change in CPR Z–score as added no benefit to the area under the 

curve of the single scan taken between 35 – 37 weeks gestation.  

In conclusion, while the change in CPR is associated with adverse perinatal outcomes, a single 

scan late in gestation is potentially a more useful indicator of adverse outcome.  
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8.5 Reference centiles for the middle cerebral artery and umbilical artery 

pulsatility index and cerebroplacental ratio from a low–risk population – a 

Generalised Additive Model for Location, shape and Scale (GAMLSS) 

approach. 

A number of papers have been written by Altman, Royston and Cole, outlining the appropriate 

methodologies needed to create anthropometric charts (89, 97, 98, 100-104, 106, 107, 111, 115). 

Despite this, centiles for the MCA PI and UA PI as well as the CPR have often suffered from 

methodological flaws such as small sample size, suboptimal modelling and lack of reporting of 

model diagnostics or subsequent goodness–of–fit evaluation. According to Oros’ systematic 

review on reference centiles for Doppler indices, Ebbings 2007 longitudinal reference ranges 

were methodologically the most robust that were published to date (93).  However, when I 

applied Ebbings 10th centile to the Mater obstetric cohort, I found that it was reflective of 20% of 

our population (i.e. the 20th centile), indicating that Ebbings centiles were too high to be applied 

to our population.  

I therefore set out to create reference centiles for the MCA PI, the UA PI and the CPR using the 

GAMLSS technique in a large sample of low–risk women. This method was chosen after a 

publication in 2006 by Borghi et al evaluated 30 different methodologies for the creation of 

growth curves and concluded that the GAMLSS method was the most appropriate for this 

purpose (99). 

I used cross–sectional data and included all women aged between 18 – 40 years with a single 

non–anomalous term fetus. To create a low–risk population I excluded all women who used 

artificial reproductive technologies, had a BMI ≥35 kg/m2, with diabetes mellitus, hypertension, 

respiratory, thyroid or heart disease or fetuses that had known FGR. All ultrasound scans were 

performed between 18+0 and 41+6 weeks gestation. 

Fractional polynomial additive terms and BCT distributions were used for the calculation of the 

centiles for the MCA PI and the CPR on 4,473 and 4,473 fetuses respectively. Centiles for the 

UA PI were calculated on 6,008 fetuses using a cubic spline additive term with BCT 

distribution. Model diagnoses indicated appropriate fitting of the four parameters of distribution 

for each of the models. Appropriate fitting of the distribution in the tails was evidence by an 

absence of excessive skewness and kurtosis and with the detrended Owen’s plot not exceeding 

the confidence intervals shows that the normalised residuals came from normal distributions for 

all models. Each model was found to be a reasonable fit for the data.  
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In conclusion I created accurate gestational centile reference ranges for the MCA PI, UA PI and 

CPR using statistically robust techniques and a biologically and clinically plausible low–risk 

cohort. 

 

8.6 Development of cross–validated model for the prediction of emergency 

caesarean for intrapartum fetal compromise at term.  

A previous study by Kalafat et al had attempted to create a predictive model for operative 

delivery for intrapartum fetal compromise in a SGA cohort, defined as an EFW <10th centile. 

Their erroneous methodology in dichotomising continuous variables is well established in 

statistics and clearly described in a 2006 publication by Altman and Royston (76). Kalafat et al 

even explore the linear associations that exist in the CPR and go on to explain the need for it to 

remain a continuous variable but insist on dichotomising the EFW (75). Our previous study 

showed that a low CPR was associated with emergency caesarean for non–reassuring fetal status 

regardless of the EFW (186). The aim of this study thus was to develop a predictive model for 

emergency caesarean for fetal distress at term using a combination of maternal and late 

pregnancy ultrasound parameters measured at >36 weeks gestation. 

This was a cohort study of all singleton, non-anomalous births between January 2010 and April 

2017, with ultrasound recordings of the MCA PI and UA PI, the CPR as well as the EFW.  

Standardisation of the Doppler indices was done using Z–scores against previously published 

references (177, 178). Mixed effects generalised linear models were used to generate univariable 

and multivariable models. Variables for the predictive model were selected using a backward 

elimination technique based on the Akaike information criterion. Validation of the model was 

performed using the K–fold cross validation technique. 

The final model included ethnicity, nulliparity, induction of labour and the CPR and EFW Z–

scores. The model returned an AUC of 0.77 (95% CI 0.74 – 0.80). Evaluation of the model in 

high–risk cohorts showed improvement in the positive likelihood ratio for fetuses with a low 

EFW and improvement in positive predictive value for fetuses with both a low CPR and low 

EFW. Overall there was little difference in the area under the curve for the higher–risk cohorts. 

Even after adjustment, a clear linear association was shown to exist for the variables of the EFW 

and the CPR and the outcome of emergency caesarean for non–reassuring fetal status. 
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In conclusion I created a model in a general population that combined the CPR, the EFW and 

several maternal factors that is able to identify with improved accuracy, term fetuses that 

develop intrapartum fetal compromise and require emergency caesarean for delivery. This 

improvement was obtained without using a high–risk cohort. Furthermore, I have provided 

evidence of the linear associations between emergency caesarean for non–reassuring fetal status 

and the Doppler indices of the EFW and the CPR. 

 

8.7 Cross–validated prediction model for severe adverse neonatal outcomes in a 

term, non–anomalous, singleton cohort.  

As a follow–up to the predictive model for emergency caesarean for non–reassuring fetal status I 

investigated a model for a severe adverse neonatal outcome. Considering conclusions observed 

from the paper investigating the EFW and CPR in low risk cohorts (186) and the linear trends 

detected in the previous predictive model, this model was also constructed from a general all–

inclusive cohort using the continuous variables of the CPR and EFW. Previous model had been 

constructed with the outcomes of operative delivery for intrapartum fetal compromise and 

admission to the NICU but both within SGA cohorts (75, 77). 

The same inclusion criteria and statistical methodology was used for model building as used in 

the previous chapter. 

The final model consisted of ethnicity, SEIFA score, nulliparity, induction of labour, method of 

birth and the EFW and CPR Z–scores. This model calculated an AUC of 0.71 (95% CI 0.69 – 

0.73). When applying this model to higher–risk cohorts, improvements were observed in the 

positive predictive value in the cohort of fetuses with an EFW <10th centile and fetuses with a 

low CPR and low EFW. There were no real improvements in AUC or positive likelihood ratios 

from the general cohort to the higher–risk cohorts. Again, after adjustment, there were clear 

linear associations between the composite outcome and the continuous variables of the CPR and 

the EFW.  

In conclusion this model was able to predict severe adverse neonatal outcome with moderate 

accuracy. More importantly I was able to replicate the linear association between the Doppler 

indices and the outcome that was observed in the previous model. These models reflect what is 

observed in real–life scenarios.  There is no distinct difference in the probability of outcome 

between the 10th and 11th centile of either the EFW or the CPR. Researchers often decide to use 
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predetermined cut–offs to build predictive models under the guise of being high–risk cohorts 

when this does not have true clinical representativeness.  While this approach may produce 

superficially more impressive model diagnostics, it is misleading and provides false reassurance 

for individuals that fall outside, but are very close to the cut–off threshold (76).  

  

8.8 Future directions for research. 

While the use of the Doppler indices of the EFW and the CPR improve the predictability of the 

models developed for this thesis, their diagnostic characteristics are still relatively poor and not 

convincing enough that they could be employed in routine clinical practice. The reason for the 

poor diagnostic characteristics can be a result of the complexity of the disease as well as the 

accuracy of some of the predictor variables that we currently use. We often include ethnicity in 

models as there are known associations between some ethnicities and adverse outcomes. 

However, in today’s multicultural societies, the biological differences that once defined ethnic 

groups has become blurred and there is a now a need to investigate the epigenetic characteristics 

rather than rely on self–reported ethnicity. Furthermore, variables such as ethnicity can be 

surrogates for other social disparities such as socio–economic status and other geographical 

related disparities.  

There is also now evidence that placental biomarkers such as the placental growth factor may be 

useful for identifying vulnerable fetuses (187, 199). Work within our group has shown that in 

low risk term pregnancies, lower concentrations of maternal PLGF is associated with 

intrapartum fetal compromise as well as a composite outcome that comprised of abnormal cord 

gases and/or 5–minute Apgar <7 and/or admission to NICU (199). In a pilot study, the same 

team investigated the use of a combination of CPR and PLGF in predicting intrapartum fetal 

compromise and a composite neonatal outcome in low risk term pregnancies. They found that a 

model that combined both CPR and PLGF showed an improvement in diagnostic performance 

compared to the individual components for both intrapartum fetal compromise and for the 

composite neonatal outcome (187). Dunn and Kumar in another pilot study, showed that not 

only are PLGF levels are lower in pregnancies with intrapartum fetal compromise and composite 

neonatal outcomes but there is also a sharper decline in levels of PLGF in pregnancies 

complicated by intrapartum fetal compromise (200). In a systematic review by Sherrell et al, 

they concluded that low maternal PLGF levels have consistently been found to be associated 

with intrapartum fetal compromise as well as other adverse neonatal outcomes such as SGA, 
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NICU admission and stillbirth (201). With these findings future work needs to elucidate what 

role such biomarkers, in particular PLGF, may have in similar models. 

 

8.9 Conclusion 

The research presented in this thesis adds to our understanding of the impact maternal, 

intrapartum and ultrasound variables have on adverse perinatal outcomes. It highlights the need 

to use appropriate methodology for the creation of reference centiles and the use of variables that 

are measured on the continuous scale. I have been able to develop predictive models for 

emergency caesarean for non–reassuring fetal status and severe adverse neonatal outcome. 

While their area under the curves were relatively strong, they were lacking strength in the 

diagnostic accuracies of the positive likelihood ratios and positive predictive values. 

Opportunities for further work include evaluation the inclusion of placental biomarkers into risk 

stratification models for the identification of at–risk pregnancies.  
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