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ABSTRACT 

Low nutrient intake affects metabolism and growth in pregnant heifers and limits milk production in lactating 

cows on communal area smallholder dairy farms of the subtropics. Two studies were conducted during the 

current research. The first study evaluated effects of nutrient supply in standardized dairy diets on the growth 

and body reserves of pregnant Jersey heifers raised on communal area smallholder farms in a semi-arid zone 

of South Africa. Twenty-two farms with a total of 42 heifers, aged 22 to 28 months which were seven months 

pregnant at the beginning of the study were selected for the study. These represented the total number of farms 

with dairy cows in the area that were supported through a structured Dairy Development Program (DDP) of 

South Africa. Each farm had at least two pregnant Jersey heifers during the summer season of 2016. Each heifer 

was supplied 2.5 kg of a far-off (60-30 d prepartum) dry cow concentrate and increased to 3.3 kg of the same 

concentrate at close-up period (29-0 d prepartum). Feeding of concentrate was based on a standardized feeding 

program as recommended by DDP. During this study, no feeding treatment was imposed on the heifers. 

Eragrostis curvula hay was supplied by DDP. Daily intake of 7.2 and 5.4 kg; respectively for heifers at 60-30 

d prepartum and 29-0 d prepartum was determined based on residual hay. Heifer diet (HD1) and heifer diet 

HD2 were therefore simulated respectively for cows at 60-30 d preparpartum and 29-0 d prepartum, 

respectively. Diets were assessed for nutrient composition using chemical analyses and in vitro ruminal 

degradation. Post ruminal nutrient absorption and animal responses were predicted using the Large Ruminant 

Nutrition System (LRNS) version 1.0.33 (level 1). Actual measurements of body weight (BW), body condition 

score (BCS) were done and blood was collected and analysed for proteins monthly. Heifers’ responses were 

validated against the model predicted values and comparative analysis of animal performance during pregnancy 

was done against the National Research Council (NRC, 2001) reference values. Relative to the minimum 

requirement for ruminants, both HD1 and HD2 diets had relative feed value (RFV) below 144. About 35% of 

HD1 dietary crude protein (CP) was within the slowly degrade neutral detergent fibre (NDF) fraction which is 

the neutral detergent fibre insoluble crude protein (NDFICP) while 32% was not available as the acid detergent 

insoluble crude protein (ADICP). Equally, HD2 diet had effectively 5.2% of CP as available protein and the 

fraction of the slowly degraded NDF constituted only 52.3% of the effective available protein. Energy density 

of HD1 and HD2 were 25% and 16% higher than expected at far-off and close-up period, respectively. The 

intake of metabolzable protein (MP) were 32 and 25% higher than predicted for the far-off and close-up period, 

respectively. Supply of MP was 37 % and was higher than NRC predictions of daily requirement in Jersey cow. 

This allowed BW gain of 29 kg and BCS of 0.33 which was within 25th percentile for pregnant heifers. Mean 

concentration of blood urea at both far-off and close-up periods deviated by 25% from NRC values. Creatinine 

(CR) concentration was 145 μmol /L at far-off and 155 μmol /L at close-up period.  

The second study assessed the adequacy of two lactation diets fed to 42 primiparous Jersey cows, aged 24 to 

30 months during early (1-30 d postpartum) and peak (31-60 d postpartum) periods on the lactation performance 

of the cows. Cows received 4.5 and 5 kg of dairy concentrate at 1-30 d postpartum and peak milk (31-60 d 

postpartum) respectively. Eragrostis curvula hay was supplied ad libitum and dry matter intake (DMI) was 

estimated at 7.2 kg of hay/cow/day from residual hay. No feeding treatment was imposed except for the 

standardised diets typical to the production environment. Two simulated lactation diets (LD1 and LD2) were 

prepared based on dry matter intake (DMI) of grass hay and lactation concentrate.  Diets were assessed for 
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nutrient composition using wet chemistry and in vitro ruminal degradation. Nutrient supply of diets and 

absorption from the small intestines as well as cows’ responses were predicted using the Large Ruminant 

Nutrition System (LRNS) version 1.0.33 (level 1). Body weight and BCS were monitored, blood was collected 

and analysed for proteins monthly. A record of milk yield was taken daily, and milk was analysed for fat, 

protein, lactose and urea nitrogen weekly. Cows had DMI of 11.2 kg which was 12% higher than the expected 

at 1-30 d postpartum period and 11.6 kg which was 21% higher than the expected in 31-60 d postpartum cows. 

Diets had low available protein as % of dietary protein (LD1=46%; LD2=45%) and the slowly degraded NDF 

fraction (NDFICP) constituted 64% of the available protein. Intake of energy was 20% and 17% lower than the 

predicted value for the cows, respectively, at 1-30 d postpartum and 31-60 d postpartum period. Cows had 

negative energy balance of -6.5 and -5.6 Mcal respectively at 1-30 d postpartum and 31-60 d postpartum cows. 

Protein intake of lactating cows was low, which resulted in negative protein balance of 59% and 42% of cow’s 

daily requirement, respectively, at 1-30 d postpartum period and 31-60 d postpartum period. There was loss of 

BW and BCS, low milk yield, energy corrected milk (ECM: 9.50 kg/d) and feed efficiency (FE) of less than 1 

(LD1= 0.85; LD2 =0.89) in cows at both periods. Composition of fat, protein and lactose in milk were 

negatively affected by the low level of dietary protein. Somatic cell count (SCC) in milk was 121 ± 13 x 103/ml 

and cows did not show signs of illness. Mean milk urea nitrogen (MUN) concentration was 12 ± 2.7 mg/dl 

reflecting the low protein status of the lactating cows. Cows had high creatinine concentration of 116 and 102 

μmol /L at 1-30 d postpartum and 31-61 d postpartum period, respectively, which may indicate muscle 

breakdown due to heat stress relative to the hot production environment. Results showed that diets fed to dairy 

cows on communal area smallholder farms in Sekhukhune and Vhembe districts in Limpopo province had low 

feeding value and their low nutrient supply affected rumen fermentation, heifers’ ‘growth, body reserves and 

early lactation in Jersey dairy cows. In conclusion, diets supplied to dairy cows raised on smallholder farms are 

low in nutrients and do not support efficient growth in heifers and optimal milk production in early lactation. 

Development of a nutrition plan for improved dairy diets is required to maximise production and longevity in 

cows and enhance sustainability of dairy production on the smallholder farms in South Africa.   

Key words: Standardized diets, dietary nutrients, diet degradation, pregnant Jersey heifers, communal 

smallholder dairy farm, early lactation, primiparous cow  
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TSHOBOKANYO 

Go ja dijo tse di nang le dikotla tse di kwa tlase go ama metaboliseme le kgolo ya meroba e e dusang 

mme e ngotla tlhagiso ya mašwi ya dikgomo tse di tlhagisang mašwi mo dipolaseng tse dinnye tse di 

tlhakanetsweng mo mafelong a a mogote. Go dirilwe dithutopatlisiso di le pedi jaaka karolo ya 

patlisiso ya ga jaana. Thutopatlisiso ya ntlha e sekasekile ditlamorago tsa tlamelo ya dikotla mo 

dijong tsa teri tse di rulagantsweng mo kgolong le dirasefe tsa mmele tsa meroba ya Dijeresi e e 

dusang mo dipolaseng tse dinnye tse di tlhakanetsweng mo karolong e e batlileng e nna sekaka mo 

Aforika Borwa. Go tlhophilwe dipolase di le 22 tse di nang le meroba e le 42, e e bogolo jo bo 

magareng ga dikgwedi tse 22 le 28 mme e na le dikgwedi tse supa e ntse e dusa kwa tshimologong 

ya thutopatlisiso. Tsone di emetse palogotlhe ya dipolase tse di mo karolong eo tse di tshegediwang 

ke Lenaneo le le rulaganeng la Tlhabololo ya Teri (DDP). Polase nngwe le nngwe e ne e na le bonnye 

meroba ya Jeresi e le mebedi e e dusang ka paka ya selemo sa 2016. Moroba mongwe le mongwe o 

ne o fepiwa ka 2.5 kg ya dijo tse di omileng tsa dikgomo tsa fa go sa ntse go le kgakala (malatsi a le 

60-30 pele ga go tsala) mme tsa okediwa go nna 3.3 kg fa malatsi a atamela (malatsi a le 29-0 pele 

ga go tsala). Dijo tseno di ne di di rulagantswe go ya ka lenaneo le le rulagantsweng la kotlo le le 

atlenegisitsweng ke DDP. Mo nakong ya thutopatlisiso eno, ga go na kalafi epe ya kotlo e e neng e 

patelediwa meroba. DDP e ne e tlamela ka furu ya eragrostis curvula. Go ja ga letsatsi le letsatsi ga 

meroba ga 7.2 le 5.4 kg ka nako ya malatsi a le 60-30 pele ga go tsala le malatsai a le 29-0 pele ga go 

tsala go ne go ikaegile ka furu e e setseng. Ka jalo go ne ga tlhagisiwa gape kotlo ya meroba ya 1 

(HD1) le kotlo ya meroba ya 2 (HD2) mo dikgomong tse di mo malatsing a le 60-30 pele ga go tsala 

le malatsi a le 29-0 pele ga go tsala. Dikotlo tseno di ne tsa sekwasekwa go bona go nna gona ga 

dikotla mo go tsona go dirisiwa tshekatsheko ya dikhemikale mo mogodung. Go ne ga bonelwa pele 

monyelo ya dikotla morago ga go feta mo mpeng ya ntlha le tsibogo ya diphologolo go ya ka 

Thulaganyo ya Kotlo ya Diotli tse Dikgolo (LRNS) mofuta wa 1.0.33 (legato 1). Go dirilwe tekanyo 

ya boima jwa mmele (BW) le maduo a seemo sa mmele (BCS) mme go ne ga tsewa madi le go a 

sekaseka go bona diporoteini kgwedi le kgwedi. Tsibogo ya meroba e ne ya tlhomamisiwa ka dipalo 

tse di bonetsweng pele tsa sekao mme ga dirwa tshekatsheko e e tshwantshanyang ya tiragatso ya 

diphologolo ka nako ya go dusa go dirisiwa dipalo tsa Lekgotla la Bosetšhaba la Dipatlisiso (NRC, 

2001). Malebana le ditlhokegopotlana tsa diotli, HD1 le HD2 di ne di na le boleng jo bo 

tshwantshanyegang jwa kotlo (RFV) jo bo kwa tlase ga 144. Poroteini e e tala (CP) ya dijo e e ka 

nnang 35% ya HD1 e ne e le mo karolwaneng ya tekanyetso ya faeba e e bolang ka iketlo (NDF) e 

leng poroteini e e tala ya faeba e e lekanyediwang (NDFICP), fa 32% di ne di seyo jaaka poroteini e 

tala e e sa monyelegeng ya esete (ADICP). Fela jalo, HD2 e na le 5.2% tsa CP e e dirang jaaka 

poroteini e e teng mme karolo ya NDF e e bolang ka iketlo e ntse fela 52.3% tsa poroteini e e dirang 

e e gona. Bogolo jwa maikatlapelo a HD1 le HD2 bo ne bo le kwa godimo ka 25% le 16% go na le 

jaaka go ne go solofetswe mo dipakeng tse di kgakala le tse di atamelang. Go jewa ga poroteini e e 
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silegang (MP) go ne go le kwa godimo ka 32% le 25% go na le jaaka go ne go solofetswe mo dipakeng 

tse di kgakala le tse di atamelang. Tlamelo ya MP e ne e le 37%, e leng e e kgolwane go na le 

diponelopele tsa NRC tsa ditlhokego tsa letsatsi le letsatsi tsa dikgomo tsa Jeresi. Seno se letlile gore 

go nne le koketsego ya BW ya 29 kg le BCS ya 0.33 e leng se se neng se le mo diperesenteng tsa 

bo25 tsa meroba e e dusang. Go nna teng ga urea ya madi mo dipakeng tse dikgakala le tse di 

atamelang go ne go farologane ka 25% go tswa mo dipalong tsa NRC. Go nna teng ga kereitini (CR) 

e ne e le 145 μmol/L mo pakeng e e kgakala le 155 μmol/L mo pakeng e e atamelang.  

Thutopatlisiso ya bobedi e sekasekile ditlamorago tsa dijo tse pedi tsa tlhagiso ya mašwi mo 

tiragatsong ya tlhagiso ya mašwi ya dikgomo tsa Jeresi di le 42 tse e leng la ntlha di tsala tsa bogolo 

jwa dikgwedi tse di magareng ga 24 le 30 mo pakeng ya ntlha (malatsi a le 1-30 morago ga go tsala) 

le ya setlhoa (malatsi a le 31-60 morago ga go tsala). Dikgomo di amogetse 4,5 le 5 kg ya motswako 

wa teri mo dipakeng tsa mašwi tsa ntlha (malatsi a le 1-30 morago ga go tsala) le tsa setlhowa (malatsi 

a le 31-60 morago ga go tsala). Go ne go tlamelwa ka furu ya eragrostis curvula go ya ka tlhokego 

mme go ja dijo tse di omileng (DMI) go ne go lekanyediwa go 7.2 kg ya furu/ka kgomo/ka letsatsi 

go tswa mo furung e e neng e setse. Go ne go sa patelediwe kalafi epe ya phepo, kwa ntle fela ga dijo 

tse di rulagantsweng tse di tshwanetseng tikologo ya tlhagiso. Go ne ga baakanngwa dijo tsa tlhagiso 

ya mašwi tse di tlhagisitsweng gape (LD 1 le LD 2) di ikaegile ka go jewa ga tse di omileng (DMI) 

e leng furu ya tlhaga le metswako ya tlhagiso ya mašwi.  Go nna teng ga dikotla ga dijo tseno go ne 

ga lekanyediwa go dirisiwa khemisitiri e e bongola le go bola mo mpeng ga in vitro. Go ne ga bonelwa 

pele tlamelo ya dikotla ya dijo, monyelo go tswa mo maleng a mannye mme go ne ga bonelwa pele 

tsibogo ya dikgomo go dirisiwa Thulaganyo ya Kotlo ya Diotli tse Dikgolo (LRNS) mofuta wa 1.0.33 

(legato 1). Go ne ga elwa tlhoko boima jwa mmele le BCS, go ne ga tsewa madi mme a sekasekwa 

go bona diporoteini kgwedi le kgwedi. Go ne ga rekotiwa tlhagiso ya mašwi letsatsi le letsatsi mme 

mašwi a sekasekwa go bona mafura, poroteini, laketose le urea naeterojini beke le beke. Dikgomo di 

ne di na le DMI ya 11.2 kg, e e neng e le kwa godingwaga ka 12% go na le jaaka go ne go solofetswe 

mo pakeng ya malatsi a le 1-30 morago ga go tsala, le DMI ya 11.6 kg, e e neng e le kwa godingwana 

ka 12% go na le jaaka go ne go solofetswe mo dikgomong tse di nang le malatsi a le 31-60 di tsetse. 

Dijo di ne di na le poroteini e e gona e e kwa tlase jaaka peresente ya poroteini ya dijo (LD1=46% le 

LD2=45%) mme karolwana ya NDF e e bodileng ka bonya (NDFICP) e nnile 64% tsa poroteini e e 

gona. Go jewa ga maikatlapelo go ne go le kwa tlasenyana ka 20% le 17% go na le dipalo tse dineng 

di bonetswe pele mo dikgomong mo dipakeng tsa malatsi a le 1-30 morago ga go tsala le malatsi a le 

31-60 morago ga go tsala. Go rekotilwe balanse ya maikatlapelo a a tlhaelang a dikgomo ya -6.5 le -

5.6 Mcal mo malatsing a le 1-30 morago ga go tsala le 31-60 morago ga go tsala. Go jewa ga poroteini 

ke dikgomo tse di tlhagisang mašwi go ne go le kwa tlase, mme seo sa baka balanse e e tlhaelang ya 

poroteini ya 59% le 42% tsa ditlhokego tsa letsatsi le letsatsi tsa dikgomo mo pakeng ya malatsi a le 

1-30 morago ga go tsala le malatsi a le 31-60 morago ga go tsala. Go rekotilwe tatlhegelo ya BW le 
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BCS, tlhagiso e e kwa tlase ya mašwi, mašwi a a baakantsweng maikatlapelo (ECM: 9.50 kg/ka 

letsatsi) le bokgoni jwa furu (FE) jo bo kwa tlase ga 1 (LD1=0.85; LD2=0.89) mo dikgomong mo 

dipakeng tseo tsotlhe. Go nna teng ga mafura, poroteini le laketouse mo mašwing di amegile ka tsela 

e e sa siamang ka ntlha ya seelo se se kwa tlase sa poroteini e e kwa tlase. Tekanyetso ya disele tsa 

somatiki (SCC) mo mašwing e ne e le 121±13x10³/ml mme dikgomo ga di a bontsha matshwao ape 

a bolwetsi. Motswako wa urea naeterojini ya mašwi (MUN) e ne e le 12±2.7mg/dl, e leng se se 

bontshang seemo se se kwa tlase sa poroteini sa dikgomo tse di tlhagisang mašwi. Dikgomo tseno di 

ne di na le motswako wa kereitine wa 116 le 102 μmol/L mo dipakeng tsa malatsi a le 1-30 morago 

ga go tsala le malatsi a le 31-61 morago ga go tsala, mme seo se ka supa go fokotsega ga mesifa ka 

ntlha ya kgatelelo ya mogote e e bakwang ke tikologo e e mogote e go tlhagisiwang mo go yona. 

Dipholo di bontshitse gore dijo tsa dikgomo tsa teri mo dipolaseng tse dinnye tse di tlhakanetsweng 

mo dikgaolong tsa Sekhukhune le Vhembe kwa Porofenseng ya Limpopo di na le boleng jo bo kwa 

tlase jwa kotlo le gore dijo tse di nang le dikotla tse dinnye di amile titielo ya dijo, kgolo ya meroba, 

dirasefe tsa mmele le tlhagiso ya mašwi ka bonako mo dikgomong tsa teri tsa Jeresi. Kwa bokhutlong, 

dijo tsa dikgomo tsa teri tse di godisediwang mo dipolaseng tse dinnye di na le dikotla tse di kwa 

tlase mme ga di tshegetse kgolo e e mosola ya meroba le tlhagiso e e siameng ya mašwi mo nakong 

ya ntlha ya tlhagiso ya mašwi. Go tlhokega leano la dikotla go tokafatsa dijo tsa teri go tokafatsa 

tlhagiso le go tshela sebaka ga dikgomo le go tokafatsa go nnela leruri ga tlhagiso ya teri mo 

dipolaseng tse dinnye mo Aforika Borwa.   

Mafoko a botlhokwa: Dijo tse di rulagantsweng, dikotla tsa dijo, go bola ga dijo, meroba e e dusang 

ya Dijeresi, polase e nnye ya teri e e tlhakanetsweng, tlhagiso ya mašwi ka bonako, kgomo e e leng 

la ntlha e tsala  
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CHAPTER 1 

INTRODUCTION 

Milk production from smallholder dairy farms is mostly channelled through informal markets 

(Migose et al., 2018). Contribution of milk to food security is significant in South America, India, 

South Asia and East Africa, (McDermott et al., 2010; Dugdill et al., 2013; Balcão et al., 2017). 

Swai et al. (2005) reported milk yields of 1,800 kg/cow/year in Tanzania where indigenous East 

African Zebu and Ankole breeds are predominantly used for dairy production. In Sudan, Eastern 

Kenya, Brazil and India cow milk production ranged between 2,700 to 3,000 kg /cow/annum 

(Amani et al., 2007; Kimenchu et al. (2015). Although the levels of milk produced are low, the 

contributions to food and health security in these areas are notable. However, in other sub-Saharan 

countries such as South and South West Africa, communal area milk production systems are 

poorly developed.   

In South Africa, the smallholder sector contributes less than 1% of formally marketed milk and 

the informal milk sector is also under developed (South Africa Year book, 2012/2013).  Dairy 

smallholder farming is practised in the sub-tropical and mediterrranean regions (Tsitsikama, 

Eastern Cape), coastal areas of KwaZulu-Natal province and open savanna of the Free State 

province (Meissner et al., 2013). Semi-zero grazing is the main dairy production system in the 

aforementioned provinces and in the North West of South Africa (Mansana et al., 2014). Napier 

grass (Pennisetum purpureum), kikuyu grass (Pennisetum clandestinum), Lucerne (Medicago 

sativa), cactus and soghurm (Sorghum bicolor) are mostly utilized for nutritional support. Some 

smallholder dairy cows are raised on natural pasture (Damptey et al., 2014). However, cyclic 

losses in body mass continue to hamper smallholder dairy development as natural pasture and 

dryland pastures dimish in nutrients during the dry seasons. 

In South Africa, there are no guidelines on nutritional management of smallholder dairy cows and 

hence most feeding is ad-hoc and application guidelines are from other tropical envrionments 

(Milk SA, 2014). Hence, these application guidlines and utilization of poor grazing might affect 

growth of the smallholder dairy system. The grasses are mostly increaser species including 

Eragrostis curvula and Sporobolus fimbriatus, with fibre content above 70% and hence poorly 

degradable (Cabezas-Garcia, 2017). Metabolic disorders and infertility are mostly linked to poor 

fibre (Mapekula, 2009)   
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 Problem statement 

Growth in the livestock industry occurs under smallholder farming systems, which have the 

largest herds of cattle worldwide (Jayne et al., 2003; Mc Dermott et al., 2010). However, 

production environments of smallholder farming are not conducive as water and other resources 

to manage negative effects of climate change are limited. Regardless of the challenges, the 

smallholder sector is critical as it hosts the largest cattle population and hence greater opportunity 

to positively affect nutrition quality and livelihood security.  

Zero-grazing or semi-zero grazing is desirable as it minimises partitioning of nutrients towards 

maintenance, managing heat stress as animals are less exposed to effects of direct solar radiation, 

rain and wind. Besides, under this system, isolation of dairy cows from other animals for 

biosecurity minimises infections. In East Africa, where smallholder farming has been practised 

for over 40 years, the recommendations on daily consumption of dairy concentrate was as low as 

2 kg/lactating cow which represents 0.5% BW/day in Holsteins and 0.8% in small framed animals 

such as the Jersey. Agboola, (2015) recognises that some of the concentrates are of poor quality 

and mostly procured from unregulated sources. In Kenya, dairy cows consummed up to 52 kg of 

roughages daily on smallholder farms (Kimenchu et al., 2015). Furthermore, the management 

dynamics around cows foraging at different communal areas make the management assessment 

of the nutritional status more difficult. It is essential to define levels of nutrient supply of the 

forage-based diets for dairy cows during gestation and lactation on communal area smallholder 

farms. Therefore, this research aimed at evaluating the effects of forage-based diet on milk 

production and body reserves of dairy cows on smallholder farms in Sekhukhune and Vhembe 

districts of Limpopo, South Africa. 

 

 Objectives of the study  

 Main objective 

The study aim was to assess the effects of forage-based diet on milk production and body reserves 

of dairy cows raised on smallholder farms in Sekhukhune and Vhembe districts of Limpopo, 

South Africa. 

  Specific objectives 

1. To assess deviations of standardized diets on nutrient support for the growth of Jersey 

heifers during pregnancy. 
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2. To determine the effects of low supply of dietary nutrients on body reserves and early 

lactation in primiparous Jersey cows.  

  Hypotheses 

1.  Deviations of standardized diets affect nutrient support for the growth of Jersey heifers 

during pregnancy. 

2. Low supply of dietary nutrients affects body reserves and early lactation in primiparous 

Jersey cows. 

 

 

 

 

 



 

4 
 

CHAPTER 2 

LITERATURE REVIEW 

 Introduction 

In South Africa, rearing of cattle for milk production is a common practice on smallholder farms. 

Most of the cattle in this farming system are indigenous breeds with few exotic pure breeds and 

sometimes the cross between the exotic and indigenous breeds. The South African indigenous 

dairy breeds that are on the smallholder farms and communal areas include Boran, Saga, 

Afrikaner and Nguni. The cross between the exotic and indigenous breeds are Drankensberger 

and Bonsmara (Myburgh et al., 2012). According to Milk South Africa, the most common breeds 

on South Africa smallholder dairy herds include crossbreed, Jersey and Holstein, with average of 

5 cows per herd (Milk SA, 2017).  

Milk production of indigenous breeds is very low due to inadequate intake of quality feeds 

(Ngongoni et al., 2006; Tavirimirwa et al, 2013; Damptey et al., 2014). There are variations in 

the quality of forages fed to dairy cows on smallholder farms. The impact of season on availability 

of good quality forages has been reported (Khan et al. 2009). Feeds supplied to dairy cows during 

winter are less palatable with low DMI and are poorly digested. This low-quality feed commonly 

results in poor metabolism and nutrient absorption by animals.  

In South Africa, the contribution of smallholder dairy production improved household food 

security, income, and general living standard while its contribution to national GDP is 

insignificant (Altman et al. 2009). The popular dairy value chain initiated by the Department of 

Agriculture, Fisheries and Forestries and Department of Rural Development and Land Reform 

was an intervention launched to increase production, farmers’ income and the overall contribution 

to the countrys local and national economy (NDP, 2011). The intention to improve household 

income through dairy production means considering different approaches such as using improved 

animal breeds for milk production and improved feeds and feeding management for optimal 

production (Tavirimirwa et al., 2013). The total diets supplied to dairy cattle on smallholder farms 

are indequate quantity and quality (Ndlovu et al., 2007; Manzana et al., 2014). Hence, the protein 

and energy demand of the animals are not satisfied. This became a challenge to growing a viable 

and profitable dairy business.  

High prevalence of diseases and parasites infestation and low feed intake associated with poor 

forage quality are the major constraints to optimal production on communal smallholder farms 

(Tavirimirwa et al., 2013; Damptey et al., 2014). Zero-grazing or semi-zero grazing is commonly 
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practised in communal areas of smallholder dairy farms in South Africa (Manzana et al., 2014). 

This system is recommended as animals conserve more nutrients for maintenance and less 

exposed to harsh weather conditions such as direct sunlight, wind and rain.  

 Forage fraction of diets supplied to dairy cows on smallholder farms 

Increased fodder production and consequent reduction of seasonality in forage availability, as 

commonly practiced by smallholders on zero-grazing and stall-feeding system in Eastern Africa, 

would improve productivity. For maximum utilization of forage by the dry and lactating cows, it 

is important to supplement fed forage with limiting nutrients such as energy and crude protein 

required for optimal rumen function, improved animal health and lactation performance (Lee et 

al., 2002).  Similarly, Khan et al. (2009) indicated that a regular supply of adequate quantity and 

quality feed sources to dairy cows is key to achieve high production performance and enhanced 

animal health. 

 Forage structural and chemical composition 

Forage cell wall digestibility greatly determines the production performance and efficiency of 

animals (Jung, 2012; Allen & Segarra, 2001). Forages consist of high cell wall materials surround 

the plant cell, providing the physical support needed for plant rigidity. The structural composition 

of forage plants varied with the species resulting in high variations in its digestibility (Jung, 2012). 

The major components of cell wall are cellulose, hemicellulose and lignin. The components can 

be separated using neutral and acid detergent fibre analysis respectively (van Soest, 1963). 

Cellulose is the largest component of cell wall consisting mainly of direct glucose chains (Jung, 

2012). Hemicelluloses are described as polysaccharides in plant cell walls including xylan, 

xyloglucans, mannans and glucomannans (Scheller & Ulvskov, 2010). Lignification impairs 

digestibility of hemicellulose and pectin of forages, but rumen microbiota can completely digest 

the plant intervening walls through access to the connecting cells (Engels & Jung, 2005). Moore 

and Jung (2001) described lignin as a polymer formed from monolignols, which include guaiacyl, 

syringyl and p-hydroxyl phenyl-type lignin that are found in forages while hydroxycinnamic 

acids, ferulic and p-coumaric are found only in grasses (Jung, 2012). The chemical link of lignin 

to carbohydrates and proteins in the plant cell wall forms macromolecules (Moore & Jung, 2001).  

 Benefits of feeding forages to dairy cows 

Feeding forages to dairy cows is valuable for their importance in gut health, growth, reproduction 

and lactation (Stokes, 2012). The quality of forage is determined by intake and its nutritive value 

that in turn is determined by a combination of its chemical and physical characteristics (Allen & 
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Segarra, 2001). The physical structure of forages when offered to the animal influences the 

effective utilization and benefits to the animal. Long or chopped forage enhances better rumen 

functioning. This is due to the increased chew, secretion of saliva and the formation of a rumen 

mat for the smaller particles (Allen & Segarra, 2001). In contrast, pelleted hay increased voluntary 

intake and microbial protein production efficiency due to increased rate of digestion and passage 

rate of residual particles in the gut (Skerman & Riveros, 1990; Bernard et al., 2000). This results 

in increased daily weight gain and fat content in milk.   

According to Stokes (2012), an approximately 40% of dairy cow DMI from forage is 

recommended. There are important determinant factors in meeting the nutritional demands of 

animals fed forage-based diets. These include forage palatability, the level of dry matter intake, 

rate of passage of particulate matter, amount of nutrients and the ratio that are available to the 

animals. The nutritional demands of dairy cows differ and depend on the age, breed, BW and 

BCS, lactation level and reproduction cycle.  

2.5. Environmental impact of feeding low concentrate diets to dairy cows  

According to Walsh (2013) cows in sub-Saharan Africa consumed 10 times more feed (mostly 

grasses) to produce a kilogram of protein compared to cows raised in resource-rich farms 

regions. The low conversion of the fed diets to protein could be due to poor feed fermentation 

efficiency resulting in loss of undigested nutrients in the faeces and production of greenhouse 

gases (GHG) including carbon dioxide (CO2), nitrogen oxide and methane (CH4) (IPCC, 2007). 

The report indicated that poor feeding of cows contributed to the global warming challenge. These 

challenges include up to 32% of air and water pollution as well as loss of about 2-12% of the GE 

intake in ruminants in the form of CH4 (Patel et al., 2011). The high cost of feeds, health risk, and 

low production performance became a huge drawback to viability and sustainability of the 

smallholder dairy sector IPCC (2007).  

Supplementing ruminant diets with concentrates rich in starch favours propionate production and 

increased concentration in the rumen. Feeding forage-based diets results in slower digestion rate 

and high methane production per unit of feed digested (Patel et al., 2011). Ellis et al. (2007) 

reported a positive correlation of NDF with methane production (kg per day) but a negative 

correlation when expressed in percentage per DM for dairy cow. The positive correlation between 

cow/day consumption of NDF (kg) and the corresponding methane production was explained by 

possible slower rate of digesta passage, optimal rumen fermentation and the subsequent increased 

ratio of acetate: propionate which was observed. Boadas et al. (2012) showed that the incidence 

of negative correlation might be due to high proportion of fibre fractions, increased rate of passage 

and the ensuing increased DMI.  
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2.6.  Inefficiencies in carbohydrate digestion 

Methane, CO2 and nitrous oxide are produced from enteric fermentation on livestock and 

management of manure. Methane contributes about 14.5% of the total anthropogenic emissions, 

posing a huge threat to the environment from livestock production (IPCC, 2014). Nonetheless, 

the extent of methane emissions significantly differs between production systems and within units 

of production system. In recent years, the awareness of GHG emissions and increased 

environmental impact has prompted concerns and increased interest of several researchers in 

relevant topics on GHG.  

Studies on methane emissions from livestock production involve proposals and development of 

different management and dietary mitigating strategies for the reduction of methane emissions 

(Kim et al., 2013; Patra et al., 2017). The use of dietary mitigation strategies for dairy cows 

through diet modification includes addition of unsaturated fats and ionophores to diets and 

processed forages. Mitigation options result in a shift of rumen fermentation inhibiting activity of 

methanogens and certain protozoa to favour production of propionate, thereby improving 

efficiency of feed utilisation and reduced methane synthesis (Kim et al., 2014; Fox et al., 2004). 

Feeding dairy and beef cows with high concentrate diets resulted in decreased methane production 

due to the negative relationship between starch, concentrate and methane (Hatew et al., 2015)  

Ionophores like monensin are known to inhibit the growth of Gram-positive bacterial genera such 

as Clostridium and Ruminococcus (acetate and H2 producer), and Gram-negative bacteria 

(formate and H2 producer) resulting in decreased H2 and CH4 production (Tomkins et al., 2015; 

Kim et al., 2013). Higher dosage (250 versus 60 mg/day/cow) is required to effect a reduction in 

tropical cattle (Tomkins et al., 2015). The use of popular ionophore antibiotics has residual effects 

on animal products and resulted in the ban of the antibiotic for animal food production in many 

countries (Patel et al., 2011). Bacterocins such as bovicin HC5 and nisin produced by 

Streptococcus spp. and Lactobacillus lactis, respectively, decrease methane production by 

modulating rumen fermentation and consequently increase propionate production (Lee et al., 

2002; Sar et al., 2005). In vivo evaluation of the effectiveness of this option and the cost efficiency 

are recommended (Patra et al., 2017). 

The addition of essential oils from plant extracts such as found in garlic, clove bud (eugenol), hop 

pepper (capsaicin), cinnamon (cinnamaldehyde) and coconut oil to ruminant diets have been 

shown to reduce production of methane (Calsamiglia et al., 2007; Bodas et al., 2012; Brask et al., 

2013; Kim et al., 2014). Reduction in feed intake and decreased dry matter and fibre digestion 

limit the use of canola oil (Beauchemin & McGinn, 2006).  
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Chemical compounds such as sulphonate, halogenated aliphatic compounds inhibit the activity of 

archaea in the rumen reducing methane production by 6o% (Denman et al., 2007; Tomkins et al., 

2009; Abecia et al., 2012). The short-lived efficacy of these compounds, depletion of ozone and 

the identification of chloroform as a carcinogenic are some of the limitations to the practical 

application of this mitigation option (Patra et al., 2017). The use of seaweed (Asparagopsis 

taxiformis (Machado et al., 2014) and nitro-compounds such as 3-nitrooxypropanol (3NOP) and 

sulphate (Anderson et al., 2010; Hristov et al., 2015) and vaccination by injecting animal with 

anti-methanogen antibodies (Wright et al., 2004) also reduced methane production.  Although, 

the small quantity of antibodies available in the rumen and possible degradation of the antibodies 

by the ruminal proteolytic bacteria are limitations to this approach (Patra et al., 2017).  

The anti-microbial activities of certain plant secondary metabolites such as tannin, saponins, 

flavonoids and organic sulphur compound have been identified to be potentially inhibitory to 

rumen methanogens and methane emissions (Patra & Sexana, 2010; Oskoueian et al., 2013; Patra 

& Yu. 2013; Saminathan et al., 2016). The review of Patra and Yu (2012) indicated that the extent 

of the effectiveness of these compounds significantly differred and was found to depend on 

several factors including sources, type, molecular weight, dose and the type of diet to which the 

compounds were added. Differences found in their modes of action could elucidate variations in 

the reported effects of these compounds in the mitigation strategy to reduce production of 

methane. 

The IPCC warned against further warming with long-lasting changes to all components of climate 

system with possible harsh and permanent impacts on people and the ecosystems should GHG 

emissions continue (IPCC, 2014).  Therefore, it is important that the use of different mitigation 

options should aim at limiting climate change, sustainable reductions of GHG emissions and 

managing the risks climate change at all levels of livestock production. 

2.7. Effects of diet quality on nutrient intake, digestion and availability 

2.7.1. Feed dry matter intake 

High DMI has been observed in cows fed diets high in energy and highly digestible fibre 

(Emanuelson et al., 2006). Increased DMI relates to enhanced microbial degradation of the feed 

substrates and the subsequent quick digesta passage and increased intake. On the other hand, diets 

high in fibre (NDF) decrease digestibility and cause declined intake. It became imperative that 

diets for dairy cows be balanced with adequate effective NDF (eNDF) and potentially effective 

NDF (peNDF) content for maximum microbial activity in the rumen (Mertens, 1997). The peNDF 

is described as specific effectiveness of diet NDF fraction to stimulate chewing in relation to 

particle size and recommended peNDF of 22% of diet DM in dairy cow diets. 
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The level of feed intake is determined by stage of lactation (early, mid and late) with the highest 

intake observed during early lactation. Friggens et al. (1998) reported a decrease in DMI with 

increased lactation stage for cows fed high concentrate mixed diets. Demand at early lactation is 

usually high resulting in increased DMI to compensate for the negative energy balance (NEB) 

typical at this stage of lactation. Gradual make-up for energy balance could explain the observed 

decreased DMI as lactation progresses. Again, heat stress and the state of animal health are other 

factors that influence feed intake in dairy cows. West (2003) found increased air temperature, 

temperature to humidity index and excessive rectal temperature to be associated with decrease 

DMI, milk yield and reduction in efficiency of milk yield. However, the recommended ration re-

formulation optimized DMI, increased diet nutrient density and prevention of excessive nutrient 

loss which compensated for changes in nutritional needs during heat stress. 

2.7.2. Rumen microbiota population 

There are millions of microorganisms including bacteria, fungi, protozoa and archaea residing in 

the rumen that are responsible for fermentation and degradation of fibrous plant feeds consumed 

by ruminants (Flint et al., 2008). Cellulotic bacteria break down cellulose and hemi-cellulose and 

amylolytic bacteria break down starch and activation of their activity in the rumen is dependent 

on the feed type. Low pH has negative effects on the activity of cellulotic bacteria resulting in 

low degradation of fibre fraction and underutilization of forage.  

The low fibre (high concentrate) diets stimulate the production of quick-working ‘floating’ 

microbes (starch and sugar degrading microbes) resulting in improved passage rate of feeds in the 

digestive system and the ensuing increased feed intake. On the other hand, high fibre diets such 

as found in matured forages stimulate the growth of slow working, fibre-digesting microbes and 

subsequently slow digesta in the digestive system causing declined intake (Barbers et al., 2013). 

Bacteria involved in hydrolysis of feed substrates are extremely diverse in the rumen indicative 

of their vast metabolic flexibility. Polysaccharides such as cellulose are substrate of cellulolytic 

bacteria including Ruminococcus albus and Fibrobacter succinogenes (Atasoglu et al., 2001). 

According to Schwarz (2001) cellulolytic anaerobes degrade cellulose by means of binding to 

cellulose substrates with a multi-enzymatic complex called cellulosome.  

Methanogenesis is the production of methane facilitated by anaerobic microbes, also known as 

methanogens, mainly from the archaea family called methanogens for the generation of adenosine 

triphosphate (ATP). The major methanogenesis during fermentation (anaerobic digestion), is the 

reduction of carbon dioxide (CO2) by hydrogen (H) to form methane. Low fibre diets with high 

starch content are related to high proportions of propionate in the rumen total VFA production 

with reduced methane production per mole of substrates fermented (Wilkinson, 2012). The molar 
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proportion of the total VFA produced during ruminal fermentation affects the production of 

methane. Moss et al. (2000) showed that acetate and butyrate promote production of methane 

while the formation of propionate indicates its competition with methanogenesis as an alternative 

pathway for hydrogen use in the rumen. This points to the ability of starch-fermenting bacteria to 

compete against methanogens for hydrogen. 

Production of methane is an indication of less fibrolytic bacterial activity, low nutrient availability 

and microbial attachment in the rumen. The consequential low DM digestibility with about 12% 

loss in digestible energy in form of methane links with inadequate microbial activity (Wanapat et 

al., 2015). A negative relationship between the concentration of propionate and methane 

production has been reported. Moss et al. (2000) showed that availability of highly fermentable 

carbohydrate favoured increased proportion of propionate in total VFA production and 

consequential reduction in methane production. 

2.7.3. Volatile fatty acids production 

Volatile fatty acids are absorbed into the ruminal and intestinal walls to serve as major source of 

energy to ruminant body tissues and mammary glands during lactation (Getachew et al., 2004). 

Acetate was confirmed by Nafikov and Beitz (2007) as the major end-products of fermentation. 

It is indicated that diet composition such as ratio of starch to cellulose influences the proportion 

of individual end-product of fermentation. Other studies on ruminants showed significant 

increases in total VFA production with higher concentrate to roughage ratios but not with molar 

proportion of individual VFAs or ratio of acetate to propionate (Suharti et al., 2011; Kumar et al., 

2013; Dung et al., 2014). Conversely, McDonald et al. (2002) suggested high fermentable 

carbohydrates such as starch diets could have resulted in lower acetate production in favour of 

high propionate proportion. Hence, high production of VFA is an indication of effective microbial 

activity due to higher DMI, improved DM digestibility, increased rate and extent of degradability 

and the ensued positive energy balance available for optimal animal performance.  

2.7.4. Energy balance and gluconeogenesis 

Carbohydrates in diets are broken down to glucose.  Gluconeogenesis is a metabolic pathway that 

results in the synthesis of glucose from non-carbohydrate precursors such as propionate, valerate, 

lactate, amino acids and glycerol. These precursors provide between 70 to 90 % of the required 

glucose in ruminants, young calves and piglets (Nafikov & Beitz, 2007). This metabolic pathway 

is quantitatively crucial in lactating ruminants since sufficient daily glucose is needed for the 

corresponding milk production. The release of optimal amounts of glucose from the liver to the 

blood stream to meet animal’s demands at that point in time is crucial. This is to avoid energy 

mobilisation via breakdown of fat from adipose tissues (Lafontan et al., 2009). The breakdown 
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of adipose tissue fat is associated with circulating serum non-esterified fatty acids (NEFA) which 

are metabolised to energy following absorption in primiparous cows (Van Saun, 2000; Meikle et 

al., 2004). The higher incidences of periparturient disease with fatty acid infiltration of the liver 

to exceptionally high NEFA concentrations. In ruminants, glucose is always released into the 

blood stream from the liver. The rate at which gluconeogenesis and lipogenesis occur depends on 

the energy balance where there is increase with a positive energy balance (Nafikov & Beitz, 

2007).  

Conversely, feeding high fibre diets that are limiting in required energy and protein to dry and 

lactation cows will result in a negative energy balance (NEB) and negative impact on animal 

health, lactation and reproduction performance. In the conversion of pyruvate to propionate, 

increased flow of lactate to propionate through acrylate and succinate pathways has been 

associated with feeding animals with high starch diets (Nafikov & Beitz, 2007). The authors 

suggested that the observed improved VFA could be linked to the addition of propionate 

precursors. Li et al. (2015) showed an increased concentration of VFA and the molar propionate 

proportion in cattle diet supplemented with linseed oil and propionate precursors. This was due 

to the response of diverse rumen microbes to bio-hydrogenation during the metabolism of 

unsaturated fatty acids. 

Li et al. (2015) showed an increased concentration of VFA and the molar propionate proportion 

in diet of cattle supplemented with linseed oil and propionate precursors due to the response of 

diverse rumen microbes to bio-hydrogenation during the metabolism of unsaturated fatty acids.  

2.8. Protein nutrition of dairy cows 

The use of biochemical profile tests involving analysis of blood metabolites to assess the 

nutritional and health status of animals has gained popularity (Lohakare et al., 2006; Ndlovu et 

al., 2007; Damptey et al., 2014). These metabolites are reflections of energy status (glucose, 

cholesterol, NEFA and β-hydroxybutyrate (BHB)) protein status (total protein, albumin, globulin, 

urea-nitrogen and creatinine) and other nutrients such as calcium, phosphorus, magnesium and 

potassium. Changes in the circulating   concentration of these metabolites at a particular time is 

an indicator of the animal’s metabolic status (Agenas et al., 2006).  

Breed, physiological status, age, season, nutrition, metabolic efficiency of liver and kidney as 

well as extent of muscle tissue breakdown may influence the concentration of blood metabolites 

(Ndlovu et al., 2007; Damptey et al., 2014). The level of dietary protein and carbohydrate intake, 

effective rumen degradable protein intake, diet amino acids and energy compositions may play a 

major role in determining the level of different blood metabolites in dairy cows. Serum protein is 

the total amount of blood protein present at a particular point in time. Protein fractions in the 
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blood include total protein, albumin, globulin in the serum with each protein and metabolites 

playing a significant role in the animal’s well being.  

Kaneko et al. (1997) described albumin as a reservoir of major amino acids and its metabolism 

provides precursors required for growth and certain physiological needs of the animal. Agenas et 

al. (2006) showed that the concentration of total blood protein and albumin is a reflection of the 

animal’s protein status. However, it is indicated that the concentration of these protein fractions 

in turn depends on the level of metabolism of protein. Their low concentration indicates a negative 

balance of dietary protein. According to Mazzaferro et al. (2002) albumin is a protein produced 

in the liver that maintains the colloid osmotic pressure in the circulatory system thus keeping fluid 

in the vasculature and preventing fluid leakage to the tissue.  

Albumin has been identified as the plasma primary transport protein responsible for transporting 

long chain fatty acids during lipolysis (Ordway et al., 1991; Contreras et al., 2011) There is a 

significant correlation of blood concentration of albumin with better animal nutritional status and 

BCS (Damptey et al., 2014). There have been inconsistent reports on the influence of dietary 

treatments and animal age on total serum protein, albumin and globulin. Alberghina et al.  (2011) 

conducted a study using 20 cows of different ages and observed albumin as the highest protein 

concentration electrophoretogram of cows and constituted 39-58% of the total serum protein. The 

findings showed that the age of the animals did not influence the proportion of each protein 

fraction. In contrast, influence of animal age on the total serum protein and albumin has been 

reported in which total protein and albumin are lower for younger animal compared to the older 

ones (Otto et al., 2000; Lohakare et al., 2006; Maurya & Singh, 2015). The study of Lohakare et 

al. (2006) on the effect of feeding different protein levels to weaned crossbred calves showed no 

significant influence of dietary treatments on the corresponding total serum protein, albumen and 

globulin. Other studies showed increased total serum protein and albumin with higher protein 

intake (Ndlovu et al., 2007; Damptey et al., 2014). 

The circulating concentrations of globulin in the blood was described as a signal of the animal’s 

immune state and ability to combat diseases and infections (Kapele et al., 2008). The study by 

Damptey et al. (2014) showed a higher globulin concentration (52.9 g/L) above the normal range 

of 30-44.3 g/L in Sanga dairy cows and suggested possible susceptibility of the cows to infection. 

Whitaker et al. (1999) showed that high globulin concentration, low concentration of albumin 

increased BHB concentration were observed in the incidence of inflammatory disease indicating  

under-nutrition in cows. However, availability of grass improves the nutritional status of animals 

in summer 
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The blood urea nitrogen (BUN) concentration is linked with various factors including level of 

dietary protein in cow’s diets, level of intake of rumen degradable protein, balance of ruminal 

nitrogen, presence of recycled urea and urea from catabolized tissue (Tan & Murphy, 2004: 

Fenton & Knepper, 2007). Higher BUN concentration was observed in ruminants (Hammond, 

2006) and dairy calves (Lohakare et al., 2006) fed supplemental protein. The report of Bovolenta 

et al. (2013) showed that feeding of low dietary protein resulted in decreased BUN concentration. 

The results indicated that the presence of animal malnutrition, starvation or when metabolic 

activity in the liver is impaired, could result in low dietary protein. Conversely, Whitaker et al. 

(1999) observed low blood urea concentration with low dietary protein in dairy cow diets. This 

observation may have resulted from excessive rumen undegradable protein from forage causing 

nutrient imbalances (Kohn, 2007). Óðinsdóttir (2009) reported a significant effect of dietary 

composition on urea concentration in milk, where urea concentration increased as energy in 

prepartum diet decreased.  

Creatinine is a waste product of normal muscle tissue catabolism subsequently filtered via the 

kidney and finally excreted in urine and can be measured in the blood (Dampty et al., 2014). The 

use of creatinine metabolic profile tests in assessing the nutritional status of dairy cows has been 

demonstrated in several studies (Otto et al., 2000; Grunwaldt et al., 2005; Ndlovu et al., 2007; 

Dampty et al., 2014). The blood concentration of creatinine was observed to be associated with 

the animal’s live weight (tissue mass). Dampty et al. (2014) observed higher concentration of 

creatinine in cows with higher BW compared to those with lower BW.  

Evaluation of total protein and the albumin to globulin ratio in the blood of dairy cows is key to 

determining the role of serum protein in growth, reproduction and lactation performance. The 

effects of diet composition on the corresponding total protein yield of albumin and globulin 

fractions when dairy cows are fed different diets with different forage to concentrate ratio is 

crucial to improved diets. Further understanding of the relationship between diet composition and 

blood biochemical profile of dairy cows will be a guide to meeting their nutritional demands to 

improve health and lactation performance. 

2.9. Body condition and growth 

Effects of diet quality on BW of dairy cows and the subsequent influence on reproduction and 

production performance have been reported (Grummer, 1995; Heinrichs et al., 2011). At different 

stages of production, the BW of dairy cows is expected to meet the requirements for maintenance, 

growth and lactation. It is important that a common ground be found at which the animal’s BW 

is balanced for the purpose of maintenance, growth, lactation and reproduction for a successful 

and sustainable dairy production. The BW of a dairy cow indicates balanced diet with adequate 
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nutrient, dry matter intake, effective utilisation of feed due to efficient feed conversion, optimal 

microbial activity and the resultant energy balance. In addition, a response of dairy cows by 

gaining BW is an indication of positive energy balance in which animals store excess energy and 

protein after body maintenance and production (Varga & Ishler, 2010). Loss of BW indicates a 

NEB during which fats are constantly mobilised from body fat reserves (Sundrum et al., 2015). 

A BCS of 3.5 is ideal at dry-off (Gillund et al., 2001) allowing for assimilation of body reserves. 

At this stage, cows should not be overweight or there will be decreased intake with associated 

metabolic disorders including ketosis and milk fever prepartum and postpartum (Radostits et al., 

2007). Furthermore, BCS is a measure of fatness during positive energy balance or thinness for 

the period of negative balance marked with health problems and production loss. Body condition 

score of cows has been correlated to body fat and energy (NRC, 2001). Fatness or 

overconditioning in dairy cows usually occurs in late lactation when milk production is reduced 

without a corresponding decrease in dietary energy.  

According to Chiwome et al. (2017), excessive body fat should be avoided at calving while a 

BCS of 3.5 is maintained for adequate body fat and protein reserves. Implications of 

underconditioning or thinness include decreased lactation performance due to negative energy 

and protein balance, low fat content of the milk and delayed oestrous (Bovolenta et al., 2013). 

Influence of feeding high dietary energy postpartum to improve performance was greater in 

underconditioned (thin) cows than in overconditioned cows (Grummer, 1995). Loss of BCS in 

the first 60 days post parturition is common in cows and should be maintained at 0.5-1.5 loss 

postpartum (Heinrichs et al., 2011).  

The body reserves are useful under NEB where they act as a reservoir of energy and make it 

available at the animal’s demand. Adequate feeding of dietary protein and energy should support 

the building of body reserves that is generally crucial in maintaining or increasing milk quality 

and yield (Sundrum et al., 2015). Ferguson and Otto (1989) stated that overconditioning or 

underonditioning of cows disposed them to high risk of metabolic disorder and diseases, poor 

foetus health, low milk yield and reproductive efficiency. 

2.10. Milk production and composition  

The composition of milk is generally influenced by nutrition and breed. In early lactation, NEB 

is typical during which reserved body fat is mobilised to the required energy for body tissue and 

milk fat production (NRC, 2001). Cows with a BCS of 3.0 to 3.5 at calving produce more milk 

than those calving either at a lower or higher score (Heinrichs, 2011). The relationship may be 

due to increased availability of energy from body stores up to a BCS of 3.5 and negative effects 

of BCS on dry matter intake after that point. 
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There is a high and positive correlation (0.74) between genetics and milk composition in which 

Jersey cows are known for the highest heritability of milk fat of 0.71 % compared to other breeds 

with a range of 0.51 to 0.57 % (NRC, 1989). This may probably make it difficult for genetic 

selection of milk yield only to modify milk composition. According to Promkot and Wanapat 

(2005), milk urea nitrogen (MUN) increased with increased dietary CP. However, Flis and 

Wattiaux (2005) showed that a small percentage change (1%) in dietary CP did not result in a 

change in MUN content.  

Mastitis is an inflammation of the mammary glands caused by bacteria in dairy cows marked with 

high economic loss in the industry (Santos et al., 2003; Halasa et al., 2007). It causes reduction 

in milk yield and composition including fat and casein content and subsequent increased whey 

content and lower cheese yield (Cunha et al., 2008). The somatic cell count (SCC) is used in 

screening of intramammary infection (IMI) status for individual cow or at herd level (Schukken 

et al., 2003; Sharma et al., 2011; Reis et al., 2013). According to Bytyqi et al. (2010), high SCC 

in milk (>1 x 105 or 10 x 103 cells /ml) is an indication of disease condition in lactating cows. The 

SCC in milk from a healthy cow should be < 1 x 105 cells/ml.  Mastitis in cows caused reduction 

in quality and milk yield and milk products. Reduction in milk casein, fat and lactose, extended 

period of milk coagulation, formation of weaker milk curds and shorter shelf life of milk products 

have been linked with mastitis in cows (Sharma et al., 2011).  

On the other hand, in summer with very humid conditions marked with low availability of forage 

resulted in reduced dry matter intake and depressed milk fat content (Linn, 1988). A relationship 

between dietary fibre content, fibre particles and milk fat has been observed in dairy cows.  

Feeding cows with diets less than 25% NDF and 16% forage NDF depressed milk fat percentage 

(NRC, 2001). Furthermore, high concentrate: forage ratio feeding has been associated with low 

milk fat and acidosis when reduction in milk yield was observed (Benchaar et al., 2012). 

2.11.  Minerals and vitamins requirements of dairy cows  

Maintaining mineral and vitamin balance in dairy cow diets not only produces a positive impact 

on the foetus growth but also increases milk yield and quality. The deficiency of any of these 

required minerals and vitamins in the diet may result in dysfunction of regulatory systems and 

increased production losses (NRC, 2001). Macro-minerals such as calcium (Ca), potassium (K), 

phosphorus (P), magnesium (Mg), sulphur (S) and sodium chloride (NaCl) are required in 

moderate amounts in dairy cattle diets and play a vital role in the proper functioning of the animal 

organs and systems (NRC, 2001). The roles of macro-minerals in the well being and the 

production performance of the animals depend on their concentration in the blood. Their sufficient 

concentration is beneficial to the physiological needs of the animals. The deficiency or excessive 
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amounts of any of these minerals may pose a threat to the health and production capacity of the 

animals. Blood concentration of these macro-minerals does not imply the dietary status of the 

animal when the homeostatic system is functioning properly (van Saun, 2000). The blood 

concentration of minerals such as P, K, Mg and S respond to changes in dietary intake while the 

concentrations of Na and Cl may reflect renal and digestive dysfunction or in cases of extreme 

dietary deficiency.  

Calcium and P dairy diets are complementary and maintaining a good balance is key to optimising 

their utilisation and prevention of the negative effects of their deficiency or surplus. The goal of 

ensuring adequate P in the diet is to maximize health and production performance, minimize waste 

cost effective dairy management (Amaral-Philips, 2011). Excess release of P in the environment 

poses the greatest potential risk compared to other minerals resulting in the contamination and 

eutrophication of surface water (NRC, 2001).  Therefore, the use of absorption coefficients is 

recommended to avoid an excessive intake of P from diets and microbes. The highest proportion 

of P requirement for lactation and maintenance while growth and reproduction require only a 

small proportion except for foetal growth at a later stage of development. The recommended P 

concentration is 0.3-0.4% of diet DM intake for dairy cows (NRC, 2001). The prevention of 

excess P excretion is crucial to avoid high production costs and environmental hazards (Amaral-

Philips, 2011).                                                                                                                                                                                                                                                                                                              

An adequate supply of Ca in the dairy diet results in increased Ca blood concentration. This is 

essential for the proper functioning of skeletal muscles and nerves (Oetzel, 2012).  According to 

Goff (2008), compromising the normal functioning of muscles and nerves in dairy cows could 

result in reduced DMI linked with weak gastrointestinal motility, increased metabolic diseases 

and decreased milk yield. Evaluating blood Ca concentration in dairy cows has become a useful 

indicator for the positive balance required in a normal regulatory system (NRC, 2001). 

Hypocalcaemia is a clinical condition indicating blood Ca concentration below requirement in 

dairy cows. Chiwome et al., (2017) reported a low 1.87 mmol/L of blood Ca concentration 

compared to reference range of 2.0 -2.5 mmol/L in early lactating cows. This finding was related 

to rapid increase in calcium requirements for the production of colostrum and milk resulting in 

the observed milk fever condition.  

Potassium plays a key role in influencing dietary cation-anion differences (DCAD) of a ration 

together with sodium and chlorine. A low DCAD (indicative of lower dietary potassium and 

sodium but high chlorine) has been suggested for periparturient cows in the prevention of milk 

fever and higher DCAD post calving for the optimization of milk production (Razzaghi et al., 

2012). Potassium content of 1.0% of diet DM intake is suggested to be adequate. This is to prevent 

udder oedema resulting from feeding high concentrations of K through forages to close-up dry 
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cows. Udder oedema in periparturient cows resulting from impaired Ca and Mg metabolism has 

been linked to feeding cows with forages high in K (NRC, 2001). 

The importance of micro-minerals such as iodine (I), selenium (Se), zinc (Z) as well as fat-soluble 

vitamins cannot be underestimated in their contribution to the optimal functioning of the immune 

system. Animals with compromised immune system condition resulting in subclinical diseases 

has been associated with deficiency of certain trace minerals and vitamins (van Saun, 2000). Good 

storage capacity of the liver for trace minerals and vitamins is key to overcoming moderate dietary 

deficiencies and maintaining the biochemical functions. Selenium is a trace element identified for 

its important role in dairy cows’ health, reproduction and production performance and its 

deficiency can lead to infertility, placenta retention, mastitis and metritis. It may also lead to 

production losses (Sordillo, 2013). Vitamins A, D, E and K are commonly found in the 

pigmentation of plants, such as the carotene causing discolouration, wilting and drying of forages 

when these vitamins are deficient (NRC, 2001). The vitamin A deficiency in dairy cows is linked 

to fertility problems, placenta retention, abortions and incidences of infections. 

2.12. Nutritional management of dairy cows 

2.12.1. Pregnant heifer and cow 

Pregnant heifers and mature cows are placed on rest (dry) for a maximum of 60 days period before 

the next calving (Smith & Becker, 1995). During this period, they are prepared for optimal milk 

production in the next lactation. The nutritional demands of pregnant dairy cows can depend on 

the number of parities, gestation period, breed and their health status (Hall et al., 2005). During 

dry-off period, pregnant heifers/dry cows are separated from the rest of lactating cows to maintain 

their body condition by feeding them low energy diet with protein, minerals and vitamins to avoid 

overweight. Dry cows are not expected to be overconditioned during dry-off period or to lose 

BCS. Overconditioned dry cows are pre-dispose to metabolic disorders resulting in health 

problems such as displaced abomasum, udder oedema and ketosis after calving (Heinrichs et al., 

2011). The minimum forage dry matter intake of 1.8 - 2.0% of body weight of the cow per day 

should be offered to keep dry cows in a proper condition.  

An understanding and implementation of the nutritional demands of pregnant cows at different 

stages of gestation is crucial in attaining optimal production and reproduction performance as well 

as prevention of health problems. The NRC (2001) recommended 40% NDF of which 80 % 

should be of forage source, 10-13 % and 15% of CP for mature dry cows and pregnant heifers, 

respectively; 2-3% and 3-4% of starch and sugar content for mature dry cows and pregnant 

heifers, respectively.  
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2.12.2. Lactating cows 

Cows in first lactation are referred to as primiparous cows while multiparous cows are mature 

dairy cows that are in their second lactation or more.  Negative energy balance occurs in early 

lactation in cows, during which nutrient supply lags behind requirements causing fat mobilisation 

from adipose tissues (Grummer, 1995). Feeding a concentrate diet with sufficient supply of 

energy to close-up cows is critical for supporting early lactation. According to Ingvartsen (2006) 

and Óðinsdóttir (2009) this preparation promotes the growth of rumen papillae with subsequent 

increase in the absorptive capacity of the rumen epithelium. The enhanced functioning of rumen 

epithelium results in reduced incidence of lipolysis by increasing the production of glucogenic 

precursors and optimum nutrients supply to transition cows.  

2.13. Effects of nutrient deficits in transition dairy cows 

Inadequate feeding of energy in close-up cows was a contributing factor to increased lipolysis 

(Drackley et al., 2006; Tieken et al., 2015). Milk fever has been described as the most crucial and 

common metabolic disorder in the liver of transition cows and nutrition was suggested as one of 

the factors that determines the pathogenesis of this disorder (Radostits et al., 2007). Increased 

incidence of several metabolic disorders and diseases such as mastitis, dystocia and displaced 

abomasum in transition cows developed from clinical hypocalcaemia or milk fever has been 

reported (Mulligan et al., 2006; Chiwome et al., 2017). Adequate particle size in cow diet is 

important to enhance chewing activity and the subsequent production of saliva as a natural buffer 

required for keeping a healthy rumen environment of normal ruminal pH (Varga & Ishler, 2010). 

Doepel et al. (2002) and Sundrum et al. (2015) reported incidences of metabolic disorders such 

as ketosis, acidosis, metritis, displaced abomasum and udder oedema during rapid change to high-

energy ration postpartum. Hence, it is important to feed a low level of high-energy source to close-

up cows and gradually increase postpartum to enhance microbial adaptation. 

2.14. Modelling dairy cattle nutrition 

Application of a mathematical nutrition model for ruminants to evaluate the required and supplied 

nutrients to cattle enhances the identification of the variation relative to the animal’s performance, 

thereby minimising the high cost of harmful environmental impact due to excessive nutrient 

waste. These models include the Large Ruminant Nutrition System (LRNS); Agricultural 

Modelling and Training System (AMTS) and Co-operative Feed Dealer (CFD) Dairy version 5. 

Prediction of nutrient concetration and intake in composite diets for dairy cows in any functional 

state is crucial in assisting ration formulation based on requirements. This is to prevent nutrient 

waste and its environmental consequences thereby reducing production cost and maximizes 

profits. Nutrient requirements of a dair cow largely depend on her physiological state such as 
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increased nutrient demand as gestation advances and may experience poor health, production and 

reproductive performance in the face of nutrient defficits. Prediction of nutrient concetration and 

intake in composite diets for dairy cows in any functional state is crucial in assisting ration 

formulation based on requirements. This is to prevent nutrient waste and its environmental 

consequences thereby reducing production cost and maximizes profits.  

 

Summary 

Smallholder dairy production plays a vital role in providing income, improving livelihood and 

food security across various smallholder households in South Africa. Currently, communal 

smallholder dairy production in South Africa is not structured for dairy enterprise compared to 

other countries where smallholder farms contribute significantly to the global dairy market. The 

use of indigenous breeds in this sector coupled with their susceptibility to infections and limited 

potential for high milk production limits the prospect in dairy enterprise. Dairy production on 

smallholder farms has other limitations such as poor feed resources and sometimes harsh weather 

conditions. Nutrition plays an important role towards better growth and production performance 

and improved longevity in cows. However, standardised diets supplied to dairy cows on 

communal smallholder dairy farms are low in nutrients essential for optimal production 

performance. Dairy cows need adequate quality diets at gestation for foetal and mammary growth 

and during lactation for optimal milk synthesis. The quality of forage fraction such as fibre and 

lignin level, in dairy diets determines extent of diet degradation and nutrient availability for 

absorption in the lower gut of the animal. Evaluation of dairy diets in smallholder farms is 

essential to determining how the on-farm fed dairy diets deviated from the NRC (2001) 

recommendations for the optimal performance of pregnant and lactating cows. The application of 

wet chemistry and nutrition models are common tools in feed evaluation. Nutrition models are 

used for further evaluation of nutrient absorption in the small intestine of ruminants in response 

to nutrient availability. 
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CHAPTER 3 

EFFECTS OF DEVIATIONS OF STANDARDIZED DIETS ON NUTRIENT 

SUPPORT FOR THE GROWTH OF JERSEY HEIFERS DURING PREGNANCY 

ON COMMUNAL SMALLHOLDER DAIRY FARMS 

 

ABSTRACT 

Intake of net energy is often a limiting factor for growth and pregnancy and is directly affected 

by dietary proportion of forage carbohydrates and proteins. The study evaluated nutrient supply 

and growth of pregnant Jersey heifers on smallholder farms in a semi-arid zone of South Africa. 

Twenty-two farms, all with Jersey cattle and within a communal area districts, were selected for 

the study. Each farm had at least two pregnant Jersey heifers during the summer season of 2016. 

A total of 42 heifers, aged 22 to 28 months were on the selected farms. The heifers were 

considered for measurements from 60 days prepartum. Farmers supplied   2.5 ± 0.25 kg of a far-

off (60-30 d prepartum) dry cow concentrate (CP=16%; NDF=32%; ADF=16%). The amount 

was increased to 3.3 kg at 29-0 d prepartum. Eragrostis curvula hay (CP=12%; NDF-75%; 

ADF=47%) was supplied daily, Simulations of far-off and close-up diets were prepared (HD1 

and HD2) based on observed intake of concentrate and hay. The quality of simulated diets was 

assessed based on chemical analysis. The Large Ruminant Nutrition System (LRNS) version 

1.0.33 (level 1) was applied in the prediction of dietary nutrient supply, post ruminal nutrient 

absorption and animal responses. Actual measurements of body weight (BW), body condition 

score (BCS) were done monthly; blood was collected and analysed for proteins at the same time. 

The responses were validated against model predicted values and comparative analysis of animal 

performance during pregnancy. Heifers consumed all concentrate offered and intake of hay was 

7.2 and 5.4 kg/cow/day, respectively, at far-off and close-up period. Both HD1 and HD2 had RFV 

below 144, which is the minimum requirement for ruminants. Grass hay had a high level of 

unavailable carbohydrates (CC = 18 % DM). Energy density of HD1 and HD2 were 25% and 

16% higher than expected at far-off and close-up period. About 35% of HD1 CP was within the 

slowly degraded NDF fraction (NDFICP) while 32% was not available (ADICP). The NDFICP 

component was 52.3% of the effective available protein. Predicted intake of metabolizable protein 

(MP) were 32% and 25% higher than predicted for the far-off and close-up period respectively. 

Supply of MP (37%) was higher than NRC predictions of daily requirement in Jersey cow. This 

allowed BW gain of 29 kg and BCS of 0.33 which was within 25th percentile for pregnant heifers. 

Mean concentration of blood urea nitrogen (BUN) was 6 and 4.6 mmol/L at far-off and close-up 

period, respectively, and deviated by 25% from NRC values. Creatinine (CR) concentration was 

145 μmol /L at far-off and 155 μmol /L at close-up period. High concentration of CR than the 

reference value observed might have resulted from heat stress in helfers due to muscle breakdown. 
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Diets supplied to pregnant Jersey heifers by smallholder farmers had low nutritive value, hence, 

could not support adequate growth in heifers. 

Key words: Standardized diets, dietary nutrients, pregnant heifers, communal smallholder dairy 

farm 

3.1.  Introduction 

High quality forage rations sustain heifers during puberty, however, nutrient demand increases 

during the last trimester of pregnancy to support foetal, uterine and mammary gland development 

(Grummer et al., 2004). Improved rumen function and nutrient uptake is critical to the building 

of body reserves and minimising metabolic disorders such as ketosis (Holcomb et al., 2001; 

Doepel et al., 2002) and degeneration of rumen epithelium (Oõinsdóttiir, 2009).  Rabelo et al. 

(2003) reported high dry matter intake and blood glucose concentration in close-up heifers. High 

concentrate intake supports rumen microbial production by stimulating papillae growth, 

increasing epithelium absorptive capacity and increase production of glucogenic precursors 

(Ingvartsen, 2006; Oõinsdóttiir, 2009).  

 

Grummer et al. (2004) reported -0.8 and -5.8 Mcal/d of energy loss in late gestation primiparous 

and multiparous cows. This was related insufficient feeding of protein to loss of protein reserves 

and poor milk production. Most communal area herds average DMI of 8 kg/d (Manzana et al., 

2014) which is similar to grazing beef and unsupplemented dual purpose cows. Efficiency of milk 

production in these systems is therefore low and unsustainable. 

 

Dairy cattle graze on communal area pastures or are stall fed (cut and carry system). 

Recommendations by Franzel et al. (2004) of 2 kg dairy meal concentrate, which are widely 

adopted in East and Southern Africa, support low levels of milk production but result in metabolic 

retrogression of the dairy cow. There are no clear feeding guidelines for communal area 

environments; hence the perpertual challenge of unsustainable dairy production continues to 

negatively impact livelihoods in resource limited areas. Milk production and longevity in dairy 

cows on smallholder farms could be impoved with carefull implementation of good nutritional 

regimes that support pregnancy and lactation. Information on analysis and descripton of adequacy 

of standardized dairy diets in the environment of production are lacking.  Therefore, the objective 

of this study was to evaluate and assess deviations of standardized diets on nutrient support, and 

growth in pregnant Jersey heifers on communal area smallholder dairy farms. The study tested 

the hypothesis that deviations of standardised dairy diets affect nutrient support and growth of 

pregnant heifers raised on on communal smallholder farms 
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3.2.  Materials and methods 

Ethical approval for animal experimental protocol 

The ethics committees of the University of South Africa (2015/CAES/007) and Agricultural 

Research Council (APIEC16/023) approved ethical clearance for animal experimental protocol. 

Standard guidelines established by ARC for care and use of animals were applied accordingly 

during rumen fluid collection for in vitro ruminal fermentation procedure. 

3.2.1. Study area 

The field study was conducted at two communal areas, Vhembe (Latitude 22o 45’ 17’’ S, 

Longitude 30o 12’ 37’’ E; Altitude 1206 m) and Sekhukhune (Latitude 24o 50’41’’ S, Longitude 

29o 50’ 17’’ E; Altitude 1206 m) both in Limpopo province, South Africa. The average annual 

rainfall was 560 mm for the districts with a mean minimum and maximum temperature of 8 and 

31oC respectively in the two districts (ARC-ISCW, Irene, South Africa). 

3.2.2. Study design 

Ten households with at least two pregnant Jersey heifers respectively from Sekhukhune and 

Vhembe districts were selected for the study. The ten households selected in each district 

represented the total population of smallholder farmers with dairy cattle in each area. Forty-two 

heifers that were six to seven months pregnant were included in the study. The milk producers 

applied a standardized feeding program based on a prescribed diet by Dairy Development 

Program (DDP) of South Africa and with one sole supplier of dietary ingredients. The diets are 

defined in Table 3.1 as HD1 for far off (60-30 days to calving) and HD2 for close up heifers (-30 

days to calving). The NRC (2001) provided baseline data to determine the extent of deviation in 

nutrient support. 
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Table 3.1 - Ingredients of HD1 and HD2 diets 

1HD1 = Heifer diet at 60 - 30 d pre-partum; 2HD2 = Heifer diet at 31-0 d postpartum 

 

During stage one (far-off period) each Jersey heifer was fed HD1 diet which consisted of grass 

(Eragrostis curvula) hay and 2.5 kg concentrate (heifer pellets). At stage two (close-up period) 

each pregnant heifer was fed grass hay and 3.3 kg of concentrate (heifer pellets). Grass hay was 

fed ad-libitum at both periods and the cows had free access to clean drinking water. Feed intake 

was adjusted for 10% weekly refusal. All the pregnant heifers at both experimental sites (Vhembe 

and Sekhukhune districts) were on similar feeding management during far-off and close-up 

periods. Diets were analysed for chemical composition and in vitro ruminal fermentation to assess 

their nutritive value.    

3.2.3.  Chemical analyses 

Diet ingredients (concentrate and grass hay) and heifer diets (HD1 and HD2) were analysed for 

chemical composition. The estimated values were subsequently used to calculate the nutrient 

composition of both ingredients and diets and the results are presented in Table 3.3. Dry matter 

and moisture were determined according to AOAC, (1990) and AOAC (2000) respectively. The 

dried samples were incinerated in a muffle furnace set at 600oC for 5 hours to determine the 

organic matter (OM) content (AOAC official method 942.05). Organic matter content was 

calculated as the loss in weight of dried samples after incineration and ash as the residual content. 

Total nitrogen was analysed using a standard macro Kjeldahl method (AOAC official method 

984.13: 1990). Crude protein content (% DM) was subsequently calculated by multiplying the 

estimated percentage of total nitrogen by 6.25 (a factor to obtain protein content). Ether extract 

was determined by method 920.39 (AOAC, 1992). Acid detergent fibre (ADF) and neutral 

detergent fibre (NDF) were determined according to the method described by van Soest et al. 

(1991) using ANKOM F57 bags in ANKOM2000/220 Fibre Analyser (Ankom Technology®, 

Macedon, NY, USA). Heat stable α-amylase (ANKOM Alpha-amylase) and sodium sulphite 

were added to the NDF solution to reduce the nitrogenous contamination (Hintz et al., 1996; 

Mertens, 2002). For acid detergent lignin (ADL) residues were subsequently solubilised in 

sulphuric acid (72% by weight) for 1 h 15 minutes. Bags were washed after extraction and dried 

in a forced draught oven at 100oC for 8 hours. Neutral detergent fibre and ADF residues were 

further analysed for CP for the determination of the neutral detergent indigestible crude protein 

Diet ingredients (g/kg DM) Feeding regime 

 1HD1 2HD2 

Concentrate (Commercial heifer pellet)  270 330 

Weeping love grass hay (Eragrostis curvula)  730 670 
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(NDICP) and acid detergent indigestible crude protein (ADICP). All fibre estimates were 

corrected for DM and expressed in % DM including residual ash. Non-fibre carbohydrates were 

calculated as NFC = [100- (percentage (NDF + CP + Fat + Ash))]. Calcium content was 

determined according to AOAC (1999) method 968.08 and phosphorus by method 965.17. 

Cellulose and hemicellulose were estimated using equations of van Soest et al. (1991). The dTDN 

was estimated according to the NRC (1989) and conversion factors were used as described by 

Fox et al. (2004) to convert dTDN to the evaluated nutrients in the equations below. The equations 

were based on the requirement of dry and lacting cows at level 1 (maitenance level) 

▪ Cellulose = ADF - ADL 

▪ Hemicellulose = NDF-ADL 

▪ Neutral detergent fibre indigestible crude protein (NDFICP) = (grass = 2.3; concentrate 

= 5.4; HD1 = 4.2; HD2 = 4)  

▪ Indigestible acid detergent fibre insoluble crude protein (IADFICP) = 0.4 x ADFICP 

▪ Non-structural carbohydrates = 100 (NDF+CP+fats+ash) 

▪ Available carbohydrate (B2) = NDF-(2.5+ADL) 

▪ Indigestible carbohydrate (C) = 2.4 x ADL 

▪ Unavailable carbohydrate (CC) = ADL x 2.4 x NDF x 0.01 

▪ Neutral detergent fibre corrected for nitrogen (NDFN)= NDF – (NDFICP+IADFICP) 

▪ Total digestible nutrients on intake at maintenance level (TDN1x) = 0.98 x (100- NDFN – 

CP- fat – ash +IADFICP-0.0072 + 2.25 x (fat-1) +0.75 x (NDFN - lgnin) x (0.7) - 7 

▪ Digestible total digestible nutrients (dTDN) = 1.01 x NDFN – 1.77 x 1 – 0.99 

▪ Digestible energy (DE) = NDFN/100 x 4.409 

▪ Metabolizable energy (ME) (dry and lactating cows) = (DE x 1.1.01) – 0.45 

▪ Net energy maintenance (NEm) = 1.37 x ME – 0.138 x 5.0798 + 0.0105 x 11.4498 – 1.12 

▪ Net energy gain/growth (NEg) = 1.42 x ME – 0.174 x 5.0798 + 0.0122 x 11.4492 – 1.65 

▪ Digestible dry matter (DDM) = 88.9 – (0.779 x ADF) 

▪ Expected dry matter intake (%BW) (EDMI) = 120/NDF 

▪ Relative feed value (RFV) = DDM x EDMI/1.29 

▪ Acid detergent fibre indigestible crude protein (ADFICP) = NDFICP - 0.38 
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3.2.4. In vitro ruminal nutrient degradation of HD1 and HD2 diets  

Samples of the simulated HD1 and HD2 were diets milled (1mm), weighed (0.5 ± 0.05 g) into 

pre-weighed labelled ANKOM bags nd heat sealed (ANKOM Technology®, Macedon, NY, 

USA). Rumen inoculum was collected from two ruminally cannulated lactating Holstein cows 

(Age: 36 months; BW: 585 ± 40 kg). Donor cows for rumen fluid were fed Eragrostis curvula 

ad-libitum supplemented with lactating cow pellets. Freshly collected rumen fluid was blended 

and strained into a pre-heated flask using a pre-warmed four layers of cheese cloth to remove 

fibrous particles from getting into the rumen fluid. Anaerobic conditions and a constant 

temperature of 3 9oC were maintained throughout collection and preparation of rumen fluid.  

In the present study, the method described by Goering and van Soest, (1970) was adapted for the 

preparation of buffer solution with a modification. The modification was the addition of tryptose 

(Sigma-Aldrich: Aviation Park Sarenta, Pomona Rd, Kempton Park, South Africa), as a protein 

source to Goering and van Soest buffer. Goering and van Soest buffer consisted of two separate 

buffer A and (Appendix 1)  

In vitro ruminal dry matter degradation (IVDMD) of diets was determined according to the 

ANKOM Technology Method 3 using ANKOM Daisy11 incubator (ANKOM Technology®, 

Macedon, NY, USA). The incubator consists of a four (4 L) jars placed on a rotating rack which 

intermittently rotated during incubation to optimise substrate-microorganism contact. Each diet 

sample bags in triplicates plus one empty bag (total of 25 sample bags) were placed in each jar. 

Incubation medium constituted buffer solution and rumen fluid respectively in ratio of 4:1. 1600 

mL of prepared Goering and van Soest buffer solution was transferred into each of the jar 

containing sample bags and pre-heated to 39oC. Jars with sample bags and buffer were 

subsequently taken out of the incubator after warming and inoculated each with 400 mL of freshly 

prepared rumen inoculum. 

Incubation was done for 2, 4, 8, 12, 18, 24, 30 and 36 hours. At termination, bags were washed 

with running water and dried at 100oC for 8 hours. Disappearance of nutrients from sample bags 

after each incubation periods was regarded as degraded substrates. Dry matter degradability was 

determined by the difference between the initial sample weight and the weight after incubation 

divided by the initial sample weight. The IVDMD was expressed as % DM. 

 

For the determination of nitrogen degradation residues of in vitro DM degradability were pooled 

the N content of the residues was determined according to the described standard macro-Kjeldahl 

Method no 984.13 (AOAC, 1999) using UDK 159 Automatic Kjeldahl Analyser. Loss in the total 

N post-incubation was regarded as estimates of N degraded. It was calculated as difference in 

total nitrogen and nitrogen content in diet residues after incubation (expressed as % DM) 



 

26 
 

 

In vitro ruminal organic matter degradability (IVOMD) was determined by further incinerating 

individual diet fermentation residues (in filter bags) in pre-weighed and labelled crucibles in a 

muffle furnace at 550oC for 5 hours. Notably, filter bags are completely combustible without 

influencing the ash result according to the manufacturer (ANKOM Technology®, Macedon, NY, 

USA). Crucibles with ash residues were cooled and weighed. Estimates of OM degraded was 

calculated considering the initial dried sample weight before and after incineration and the value 

was expressed as percentage of diet DM.  

3.2.5. In vitro ruminal gas production and fermentation kinetics of HD1 and HD2 diets  

The HD1 and HD2 diets were evaluated for gas production and fermentation kinetics (rate of gas 

production, effective and potential gas production) using ANKOMRF gas production system 

(ANKOM Technology®, Macedon, NY, USA). The gas production system was fully automated 

with the use of mobile pressure sensors programmed to record gas pressure at pre-set intervals for 

the period (36 hours) of the experiment. About 1 g of milled HD1 and HD2 diet samples were 

placed in separate ANKOMRF bottles with buffered rumen fluid. The bottles were subsequently 

sealed with pressure censored modules and placed in an incubator and incubated. Gas pressure 

from the headspace was automatically measured at a pre-set interval (15 minutes) until 36 h after 

inoculation. The measured gas pressure was converted to moles of gas produced which in turn 

converted to gas volume produced in millilitres (mL) using Boyles (ideal) gas law and Avogadro’s 

law, respectively. The laws were presented as: 

Boyles (Ideal) gas law:  

n = p (V/RT) 

Avogadro’s law;  

y = n x 22.4 x1000 I .. 

Where; y = Volume of gas as produced (mL); n = gas produced in moles; P = pressure in Kpa; V 

= volume in the bottle headspace (L); T = temperature (Kelvin); R = the gas constant.  

Gas production kinetics were determined by fitting the generated data into the non-linear equation 

of Ørskov and McDonald (1 979); 

 

Where: y = cumulative gas volume at time t; a = gas production (mL) from the immediately 

soluble fraction; b = gas production (mL) from insoluble fraction; c = rate of gas production 

constant for the insoluble fraction; t = incubation time (h); e = exponential’ 

 

Potential gas production (GPP) was calculated as the sum of a and b fractions from the equation of 

Ørskov and McDonald (1979).  
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Effective gas production was calculated using the equation below; 

  ,  

Where GPE = effective gas production; a, b and c = constants from the non-linear model of Ørskov 

and McDonald (1979) for cumulative gas production; k = rate of gas production assumed at 3% 

per hour. (a = the initial gas production) 

3.2.6. Evaluation of required and supplied nutrients of HD1 and HD2 diets  

The two diets were estimated for required and supplied nutrients. Estimated nutrient 

concentrations of diets were inputted into the Large Ruminant Nutrition System (LRNS) version 

1.0.33 at level 1 solution in Cornell Net Carbohydrate and Protein system (CNCPS) Model (Fox 

et al., 2004). Animal type and condition differing in production group, managed under different 

conditions, environment and feeding system (were considered under the system. The feed libraries 

of the system were edited by replacing the existing feeds with the ingredients and composition of 

the HD1 and HD2 diets. 

Description, management/environment, production and ration inputs for individual animal were 

inputted into the model to generate the actual/observed and predicted/required nutrients at the two 

lactation stages. Information on the animals under different inputs for far-off and close-up 

pregnant heifers are presented in Table 3.2. The required metabolizable energy (ME), 

metabolizable protein (MP), calcium and phosphorus for foetus and mammary growth8 and 

maintenance were also predicted in the model.  
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Table 3.2 - Imputed parameters for pregnant heifers at far-off and close-up periods. 

*SBW= shrunk body weight 

 

3.2.7. Evaluation of the performance of pregnant Jersey heifers  

 Body weight and condition scoring 

All the linear measurements including body length, heart girth, wither girth, wither height on the 

experimental animals were taken every week using tailor measuring tape from 60 days prepartum 

to calving. The BW was calculated using heart girth according to the predicted equation of Francis 

et al. (2004). The equation showed a high correlation between body weight and heart girth (r2 

=0.96) and therefore can be used alone in developing a prediction equation reliable for body 

weight.   

The prediction equation for body weight for cattles;  

Body weight = 73.11 - 1.958GTH + 0.01899GTH2 + 0.0000216GTH3 (R2 = 0.97). 

Where GTH = heart girth.  

Inputted parameters Bred heifers 

Descriptions Far-off Close-up 

Animal type Replacement heifer Replacement heifer 

Age (month) 22 24 

Current body weight (kg) (SBW*) 349 365 

Mature weight (kg) 450 450 

Days pregnant 250 280 

Production   

Body weight 349 376 

Body condition score 2.15 2.46 

Management/environment    

Temperature (oC) 29 29 

Relative humidity (%) 75 77 

Minimum night temperature (oC) 11 11 

Ration (kg)   

Grass hay  6.7 6,7 

Commercial heifer pellets  2.5 3.3 

Total dry matter intake (TDMI) 9.20  8.7 
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The All the experimental animals were condition scored according to the method and scale of 

Klopcic et al. (2011). Condition score of 1 denotes very thin while 5 denotes very fat. 

  Blood sampling for the evaluation of protein metabolic profile  

The protein profile test conducted in the present study aimed at evaluating the nutritional status 

of pregnant heifers at far-off and close-up periods. Blood sampling was carried-out once a month 

until calving. Once a month blood sampling was preferable to forthnight collection to minimise 

handling stress to the cows during this late gestatation period. Blood was collected in anti-

coagulant free vacutainer tubes from the coccygeal vein before morning feeding. The tubes were 

immediately placed in an ice-bath to prevent possible metabolic reactions (Oõinsdóttiir, 2009). 

Blood samples were maintained motionless for 30 min for coagulation and further centrifuged 

(3000 rpm for 10 min) for serum separation. Serum samples were subsequently analysed for blood 

proteins including total protein (TP), albumin (AL), globulin (GL), creatinine (CR) and blood 

urea nitrogen (BUN). Serum protein concentration in heifers was analysed using biuret reagent 

according to the standard method of Doumas et al. (1981). The concentration of the TP in the 

serum was determined by the intensity of the colour formed and was directly proportional to the 

colour formed. The TP concentration was read in the analyser and was expressed as g/L.  

The concentration of albumin in serum was determined by using bromocresol green dye as 

described by Doumas et al. (1971). The intensity of the colour produced is directly proportional 

to albumin concentration in the serum sample. Globulin concentration was calculated as the 

difference between the total protein and albumin in the serum. Globulin and albumin 

concentrations were expressed as g/L. The concentration of urea (mmol/L) in the serum sample 

was quantified according to the enzymatic method of Sampson et al. (1980). Creatinine level 

(μmol/L) in the serum was analysed according to the method of Ambrose et al. (1983) using high 

performance liquid chromatography 

3.2.8. Statistical analyses 

Data were analysed separately for far-off and close-up pregnant heifers using a completely 

randomised design (CRD). The in vitro DM, N and OM degradation and fermentation parameters 

of heifer diets were analysed using analysis of variance (ANOVA) procedures in SAS software 

package (version 9.3: SAS Institute, Inc., Cary NC, USA). Variation within animals and between 

units of all tested parameters were assessed. Fischer’s test was used to separate means for different 

periods and time intervals in the in vitro fermentation. Tests were performed at 95% confidence 

limit (P ≤ 0.05) and the results were presented as mean ± standard deviation. Paired t-test was 

used to compare the observed and expected nutrient composition and intake of diets in a general 

linear model (GLM) of SAS.  
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3.3. Results 

3.3.1.  Nutrient supply of HD1 and HD2 diets for pregnant heifers 

Adding grass hay to the lactation concentrate (diets constituted grass hay and heifers concentrate)  

had a negative effect on RFV as grass hay had a high level of unavailable carbohydrates (CC = 

18 % DM) which affected diet quality. Both HD1 and HD2 had RFV below 144, which is the 

minimum requirement for ruminants. In HD1, 35% of dietary protein was within the slowly 

degraded NDF fraction (NDFICP) while 32% was not available (ADICP).  Equally, HD2 diet had 

effectively 5.2% of CP as available protein. The fraction of the slowly degraded NDF constituted 

only 52.3% of the effective available protein.  

At 60-30 d prepartum period, the low in vitro dry matter degradation of the HD1 (Fig 3.3.1) 

confirmed the low feed qualityof the diet. At 36 hours, DM and N degradation were 44% and 

51% respectively. The N components were degraded better than the carbohydrate fractions; about 

45% within 18 hours, however, increase in degradation was insignificant thereafter. Extending 

the incubation time beyond 18 hours did not improve degradation of fibrous components. Gas 

production and fermentation kinetics of HD1 diet are presented in Table 3.4. Potential gas 

production (GPp) and effective gas production (GPe) were 64 mL/g and 41 mL/g DM 

respectively. However, GPp and GPe were estimated at 72 and 56 mL/g respectively. The rate 

(c) was 5%/h within 18 hours and reduced to less than 2%/h thereafter. 
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Table 3.3 – Chemical and nutrient composition of concentrate, grass hay, HD1 and HD2 

diets  

*Concentrate- Commercial lactation diet; **Grass hay - Eragrotis curvula; HD1 - Diet  for 60-30 d prepartum 

heifers; HD2 - Diet  for 29-0 d prepartum heifers; ADFICP – Acid detergent fibre indigestible crude protein; 

NDFICP – Neutral detergent fibre indigestible crude protein; IADFICP - Indigestible acid detergent fibre insoluble 

crude protein; NDFn – Neutral detergent fibre corrected for nitrogen; TDN1x - Total digestible nutrients on intake at 

maintenance level; dTDN - Digestible total digestible nutrients; NEm - Net energy maintenance; NEg - Net energy 

gain. 

Parameters  *Concentrate **Grass 

hay 

HD1 

diet 

HD2 

diet 

Dry matter   88.7 93.1 92.3 91.6 

Organic matter  92.0 93.0 92.9 92.7 

Calcium 0.88 0.37 0.67 0.70 

Phosphorus  0.45 0.16 0.32 0.36 

Crude protein 16 12 129.7 134.0 

Fat 3.1 1.3 17.6 19.8 

Ash 8 7 7.12 7.33 

Structural proteins and carbohydrates  

Neutral detergent fibre  32 75 65.0 61.0 

Acid detergent fibre  16.2 46.9 40.1 37.5 

Acid detergent lignin 7.3 21.1 12.4 11.5 

Cellulose 8.9 25.8 27.7 26.0 

Hemicellulose 24.7 53.9 52.6 49.4 

Lignin 5.10 37.7 19.6 18.3 

ADFICP (% CP) 1.92 5.02 4.18 4 

NDFICP (% CP) 2.3 5.4 4.56 4.38 

IADICP (% DM) 0.77 2.0 1.67 1.6 

NDFn (% DM)] 28.8 67.5 58.7 54.9 

Non- structural carbohydrates 

Non-fibre carbohydrate (% DM) 40.9 4.7 13.2 16.4 

Available carbohydrate (B2) (% DM) 22.2 19.0 50.1 46.9 

Indigestible carbohydrate (C) (% DM) 17.5 50.6 29.7 27.6 

Unavailable carbohydrate (CC) (% DM) 5.6 38.0 19.3 16.8 

TDN1x (% DM) 61.0 31.5 46.9 49.8 

dTDN (% DM) 58.9 26.1 45.6 48.5 

Digestible energy (Mcal/kg) 2.3 1.0 2.0 2.1 

Metabolizable energy (Mcal/kg) for lactation 1.9 0.5 1.6 1.7 

Metabolizable energy (Mcal/kg) for growth 1.9 0.8 1.6 1.8 

NEm (Mcal/kg) 0.8 0.5 0.92 1.04 

NEg (Mcal/kg) 0.2 0.4 0.86 1.1 

Digestible dry matter (% DM) 76.3 52.4 57.7 59.7 

Expected dry matter intake (% BW) 3.8 1.6 2.6 2.7 

Relative feed value 216.6 61.4 125.8 156.0 
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Figure 3.3-1 In vitro dry matter degradability, in vitro nitrogen degradability and in vitro organic 

matter degradability (% DM) of HD1 diet 

  

 

Table 3.4 - In vitro gas production and fermentation kinetics of HD1 diet after 36 h of 

incubation 

 

                                                                                                                                                                                                                                                                                                                                                     

 

 

 

 

 

\\ 

 

a = gas production from immediate diet degraded fraction; 2b = gas produced from diet slowly 

degraded fraction; 3GPp= potential gas production; 4c = rate of gas production within 18 h; 5GPe 

= effective gas production 
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Parameters In vitro gas production and 

fermentation kinetics of HD1 diet 

Total gas production  58.2 

1a 2.92 

 2b  61.0 

3GPp 64 

 4c (% in 18 h) 5 

5GPe 41 
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Fig 3.3-1 shows in vitro degradation of HD2 diet, and fermentation kinetics are in Table 3.4. Dry 

matter and nitrogen degradation were 48 and 53% respectively with 90% of degradation occuring 

before 24 hours. Potential gas production and GPe recorded was 66 and 45.4mL/g DM 

respectively. The estimated GPp and GPe at 48 h was 76 and 60 mL/g respectively. The rate (c) 

within 18 hours was 6% /h, declining rapidly thereafter. 

 

 

Figure 3.3-2: - In vitro dry matter degradability, in vitro nitrogen degradability and in vitro 

organic matter degradability (% DM) of HD2 diet  
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Table 3.6 - In vitro gas production and fermentation kinetics of HD2 diet after 36 h of 

incubation 

 

 

 

 

 

 

 

 

 

 

1a = gas production from immediate diet degraded fraction; 2b = gas produced from diet slowly 

degraded fraction; 3GPp= potential gas production; 4c = rate of gas production within 18 h; 5GPe 

= effective gas production. 

 

3.3.2. Supplied and predicted nutrients in HD1 and HD2 diets for pregnant heifers 

Table 3.5 shows a comparison between observed nutrient concentration in HD1 diet and expected 

values. Observed concentration of CP in diet was not significantly different (p=0.054) from 

expected value. Significant difference (p<0.05) was found between observed concentrations of 

metabolizable protein (MP), rumen degradable protein (RDP), rumen undegradable protein 

(RUP), metabolizable energy (ME) and non-fibre carbohydrate (NFC) in diet than expected 

values. The observed values of these nutrients were lower (p<0.05) than expected (MP: 11.0 vs 

5.5%; RDP: 8.3 vs 4.1%; RUP: 3.19 vs 1.37%; ME: 3.19 vs 1.73%; NFC: 33 vs 18%). However, 

observed concentration of dietary fibre such as NDF (65%), total forage in diet (78%), forage 

NDF (84%) were higher (p<0.05) compared to expected values.  

Observed and expected daily nutrient intake of the HD1 diet are presented in Table 3.6. Observed 

mean daily CP (1196 g) was higher (P<0.05) than the expected value (929 g). Dry matter intake 

(9.2 kg/d) and DMI expressed as a percentage of BW (2.6) were higher (p<0.05) than expected 

values of 6.7 kg and 1.9 respectively. Mean daily intake of MP (503 g), RDP (377 g), RUP (126 

g) and ME (1.6 Mcal) observed in the diet were significantly lower (p<0.05) than expected values. 

On the other hand, observed NDF (6.0 kg/d) intake and forage intake as percentage of BW (2.2) 

were higher (p<0.05) than expected values.  

Parameters In vitro gas production and fermentation 

kinetics of HD2 diet 

  

Total gas production  62.6 

1a 3.7 

 2b  62.2 

a+b 65.9 

 4c (% in 18 h) 6.1 

5GPe 45.4 (61  
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Table 3.5 - Comparison of observed and expected nutrient concentration in HD1 diet 

 

 

 

 

 

 

 

 

 

 

 

 

1HD1= heifer diet for far-off (60-30 d prepartum) heifer 

 

 

Table 3.6 Comparison of observed and expected daily nutrient intake of HD1 diet 

 

 

 

 

 

 

 

 

 

 

 

 

1HD1= heifer diet for far-off pregnant heifers 

 

Observed and expected concentration of nutrients including MP, ME, RDP, RUP and NFC in 

HD2 diet for close-up heifers are presented in Table 3.7. Lower (p<0.05) nutrient concentration 

was observed in diet than expected values while no difference was found in CP content (observed 

Nutrient concentration (% diet DM) of 1HD1 diet 

Parameters  Observed Expected p-value 

Crude protein 13.0 13.8 0.054 

Metabolizable protein  5,47 11.0 0.003 

Rumen degradable protein  4.1 8.32 0.001 

Rumen undegradable protein 1.4 2.8 0.01 

Metabolizable energy (Mcal) 1.7 3.2 0.01 

Neutral detergent fibre (NDF) 65 60 0.017 

Forage NDF  78 57 0.002 

Forage neutral detergent fibre 84 61.2 0.02 

Non-fibre carbohydrate 18 33 0.001 

Nutrient intake of 1HD1 diet 

Parameters Observed Expected p-value 

Dry matter intake (kg /d) 9.2 6.7 0.04 

Dry matter intake (% body weight) 2.6 1.9 0.03 

Crude protein (g/d) 1196 929 0.001 

Metabolizable protein (g/d) 503 743 0.001 

Rumen degradable protein (g/d) 377 557 0.001 

Rumen undegradable protein (g/d) 126 186 0.001 

Metabolizable energy intake (Mcal/d) 16.0 21.4 0.01 

Neutral detergent fibre (kg/d) 6.0 4.0 0.04 

Forage (% of body weight) 2.20 1.60 0.02 
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=13.4% vs expected= 13.0%). On the other hand, observed concentration of NDF (61%), total 

fibre in ration (74%) and forage NDF (77.3%) were higher (p<0.05) than predicted values (NDF 

= 43; total fibre in ration = 52.5; forage NDF = 55.1).  

Table 3.8 indicates observed and expected mean daily nutrient intake of the HD2 diets. Mean 

daily CP intake observed in diet was 1340 g and significantly higher (p<0.05) than expected value 

of 923 g/heifer. Observed DMI (8.7 kg/d) and DMI (% BW: 2.3) were significantly higher 

(p<0.05) compared to expected values (DMI = 7.1 kg/d; DMI (% BW) =1.9). Mean daily intake 

of the MP (555 g), RDP (416 g), RUP (139 g) and ME (18.2 Mcal) was observed in the diet and 

were significantly lower (p<0.001) than expected values (MP = 738 g; RDP = 554 g; RUP = 185 

g; ME = 21.7 Mcal). The results showed higher significant (p<0.05) intake of NDF (6.10 kg/d) 

and forage as percentage of BW (2.0) were observed compared to expected values of NDF (3.10 

kg/d) and forage (% BW) of 1.4. 

 

Table 3.7 - Comparison of observed and predicted nutrient concentrations of HD2 diet 

 

1HD2= heifer diet for close-up (29-0 d prepartum) pregnant heifers 

  

Nutrient concentration (% diet DM) of HD2 diet 

 Parameters Observed Predicted P 

Crude protein   13.4 13.00 0.25 

Metabolizable protein  5.60 10.4 0.01 

Rumen degradable protein 4.16 7.80 0.001 

Rumen undegradable protein  1.39 2.60 0.01 

Metabolizable energy (Mcal) 1.82 3.06 0.001 

Neutral detergent fibre  61.0 43.0. 0.0002 

Total forage in diet  74.0 52.5 0.0002 

Forage neutral detaergent fibre  77.3 55.1 0.013 

Non-fibre carbohydrates  20.0 34.0 0.003 
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Table 3.8 - Comparison of observed and expected nutrient intake of HD2 diet. 

 

 

 

 

 

 

 

 

 

 

 

 

1HD2= heifer diet for close-up (29-0 d prepartum) pregnant heifers 

3.3.3. Energy and protein balance in pregnant heifers 

Energy and protein balance during the period 60-30 d prepartum are shown in Table 3.11. Mean 

energy supply at 21.1 ± 2.1 Mcal/heifer/day was higher (p<0.05) than requirement (16.0 ± 1.2 

Mcal). However, 25% of the cows achieved mean energy balance of 5.1 Mcal/d and most were 

within the range 0.8–2.1 Mcal/d. Energy supply was 32% relatively higher than requirement. 

However, based on calculation, the NRC (2001) recommend minimum requirement of 112% for 

pregnant cows. Mean daily protein supplied (743 ± 8 g/d) was higher (p=0.001) than requirement 

(503 ± 9 g/d resulting in a positive balance of 240g/d. Pregnant heifers had sufficient energy and 

protein to support fetal development but to varying levels.  

 

Table 3.9- Mean daily energy and protein balance in 60-30 d prepartum heifers. 

 

Parameters 

Energy and protein balance in 60-30 d prepartum heifers 

Required Supplied Balance supplied as 

% of 

required 

*% recommended 

Energy (Mcal/d) 16.0 ±1.1 21.0 ±2.1 5.3 132 112 (NRC 2001) 

Protein (g/d) 503 ± 9 743 ± 8 240 148 117 (NRC 2001) 

*minimum requirement  

Nutrient intake of 1HD2 diet 

Parameters Observed Predicted P 

Dry matter (kg/d 2DM) 8.7 7.10 0.012 

Dry matter intake (% body weight) 2.30 1.90 0.02 

Crude protein (g/d) 1340 923 0.0001 

Metabolizable protein (g/d) 555 738 0.001 

Rumen degradable protein (g/d)  416 554 0.001 

Rumen undegradable protein (g/d) 139 185 0.001 

Metabolizable energy (Mcal/d) 18.2 21.7 0.003 

Neutral detergent fibre (kg/d) 6.10 3.10 0.04 

Forage (% of body weight) 2.0 1.4 0.01 
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Table 3.10 shows mean daily balance of supplied and expected energy of close-up heifers. The 

results indicated a significant difference between supplied and required energy and protein. 

Energy supplied was 19% higher relative to requirement at close-up period. The results showed 

that heifers showed positive energy balance of 3.5 Mcal; the NRC recommends 128% supply at 

this stage. Mean protein supplied was high compared to requirement. Heifers had 8 units of 

protein above recommended levels (133 vs 118). 

 

Table 3.10 - Mean daily energy and protein balance 29-0 d prepartum heifers 

 

 *minimum requirement  

3.3.4. Performance of pregnant heifers 

Body weight and BCS during 60-30 d prepartum are presented in Table 3.11. Mean BW and BCS 

were 349 ± 36 kg and 2.15 ± 0.12 respectively. Mean change (gain) in BW was 26.4 kg/heifer. 

Mean changes in BCS was 0.26 in which body fat, protein and energy reserves contributed 3.5 

kg, 18 kg and 103 Mcal of energy respectively of the total gain. Figure 3.3-3 represents the protein 

metabolic profile of far-off pregnant heifers including concentration of serum total protein (TP), 

albumin (AL), globulin (GL) blood urea nitrogen (BUN) and creatinine (CR) and the reference 

values as adapted from Otto et al. (2000). The concentration of the TP obtained was 80 g/L and 

was within the reference range. The concentration of albumin (34 g/L) was below the reference 

value range for pregnant cows. On the other hand, mean concentration of globulin of 46 g/L was 

higher than the reference value. Albumin to globulin ratio (AL: GL) was 0.8- a value less than 

the reference value of 1.1 for pregnant cow. The concentration of BUN (6.3 mmol/L) and CR 

(150 μmol /L) obtained were higher than the reference value range. 

  

 

Parameters 

Energy and protein balance in 29-0 d prepartum heifers 

Required Supplied Balance Supplied (% of 

requirement) 

*% recommended 

Energy (Mcal/d) 18.2± 0.4 21.7± 0.1 3.5 119 128 (NRC, 2001) 

Protein (g/d) 555 ± 9 738 ± 4 183 133 118 (NRC, 2001) 



 

39 
 

 

Table 3.11 - Mean body weight and condition score of far-off pregnant heifers 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.11 shows BW and BCS pregnant heifers at close-up period. Heifers had mean BW and 

BCS of 376 ± 43 kg and 2.46 ± 0.45 respectively. The unit increase in BW was 29.6 kg and 0.33 

for BCS. About 160 Mcal was contributed by 4.6 kg fat, 28 kg protein to body gain. Figure 3.3-4 

represents the serum concentration of serum TP, AL, GL, BUN and CR in close-up heifers. Mean 

concentration of TP obtained was 77 g/L and the value was within the reference range. Heifers 

had mean concentration of the albumin of 36 g/L and was within the reference range for pregnant 

heifers. The globulin concentration was 40 g/L and higher than the reference value range. The 

ratio of AL: GL at 0.9 was lower than the reference. Concentration of BUN and creatinine was 

5.7 mmol/Land 136 μmol /L respectively; and were higher than reference value range. 

  

Parameter Far-off (60-30 d prepartum) 

pregnant heifers 

Mean body weight (kg)   349 ± 36 

Mean change in body weight (kg)  26.4 ± 11.34 

Mean body condition score 2.15 ± 0.12 

Mean change in body condition 0.26 

Body fat reserves gain (kg) 3.5 

Body protein reserves gain (kg) 18 

Body energy reserves gain (Mcal) 103 
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Table 3.12 - Mean body weight and condition score of close-up pregnant heifers 

 

 

 

 

 

 

 

 

 

 

 

Parameter* Close-up (29-0 d prepartum ) heifers 

Mean body weight (kg)   376 ± 43 

Mean change in body weight (kg)  29.6 

Mean body condition score 2.46 ± 0.45 

Mean change in body condition  +0.33 

Body fat reserves mobilized (kg) 4.6 

Body protein reserves mobilized (kg) 28 

Body energy reserves mobilized (Mcal) 130 

Figure 3.3-3 Serum concentration of blood proteins at far-off period. Reference value range (Otto et al., 

2000): TP = 77.9 - 87.7 g/L; AL = 40 - 44.5 g/L; GL = 36.9 - 43.8 g/L; AL: GL = 0.9 - 1.2; BUN = 4.3 

- 5.0 mmol/L; CR = 56 - 134.2 µmol/L. 
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Figure 3.3-4: Serum concentration of blood proteins at close-up period. Reference value range 

(Otto et al., 2000): TP = 77.9 - 87.7 g/L; AL = 40 - 44.5 g/L; GL = 36.9 - 43.8 g/L; AL: GL = 0.9 

- 1.2; BUN = 4.3 - 5.0 mmol/L; CR = 56 - 134.2 µmol/ 

3.4. Discussion  

3.4.1. Nutrient supply of HD1 and HD2 diets for pregnant heifers 

Low diet DMD was related to poor rumen degradation as grass hay content was high. The 

inclusion level of forage in diets was higher than the range of 20-50% DM suggested by Mertens, 

(2005) and NRC (2001) recommendations for pregnant cows. Tyasi et al. (2015) noted that ≥ 

65% dietary forage affected dietray energy density. Hay based diets tend to degrade more slowly 

(Aung et al., 2016; Patra, 2012) as nutrients are not accessible due to limited sloughing of 

epidermal layers and feed particles (Beauchemin, 2018). High proportions of slowly degradable 

carbohydrates (B2) and low non-structural carbohydrate fraction including starch and soluble 

sugars resulted in poor fermentation as noted by Njidda and Nasiru (2010); Suharti et al. (2011).  

There is a higher enregy cost in fermenting high fibre diets; most energy is lost as heat increment.    

Low NSC intake which is associated with high fibre intake affects non-structural bacterial growth. 

Efficiency of microbial protein production has been linked to diet carbohydrate and nitrogen 

degradation and rumen environment favourable for microbial growth (Pathak, 2008; Hamid et al., 

2007). The total digestible nutrient (TDN) of less than 50% was lower than the range 



 

42 
 

recommended for pregnant cows (NRC, 2001). Consequently, RFV was low. In this study, it was 

noted that intake of metabolisable energy increased for pregnancy (6.3%) and gain (13%) as 

gestation progresses, reflecting the partitioning of energy for gain (foetus, heifers’ body and 

mammary tissues).  

One the hand, high fibre content enabled longer mastication increasing particle breakdown, 

thereby creating access for microbial attachment and subsequent enzymatic degradation of 

substrate (Beauchemin, 2018; van Soest, 1991). Rumen pH was within the optimal range of 6 to 

6.7 that promotes the growth of various bacteria that degrade SC (Ruminococcus flavefasciens, 

Bacterioride saccinogene) and NSC (Bacteriodes ruminocola, Bacteriodes amylophilus, 

Streptococcus bovis (Russell & Wilson, 1996). Therefore, degradation of diets is expected to be 

enhanced, Indigestible and unavailable carbohydrate fractions were high and represented an 

energy loss, which could be methane (Moss et al., 2000; Cabezas-Garcia, 2017). Methane 

production can contribute up to 12% loss in gross energy of diet when diets are high in fibre 

(Partel et al., 2011). The role of non-structural carbohydrate bacteria in the production of N 

compounds needed for efficient growth of SC bacteria is crucial in ruminant nutrition. 

Nevertheless, the high inclusion level of grass hay fraction and its physico-chemical characteristic 

such as lignification may have limited fibre and overall diet digestibility. 

It is possible that the growth of bacteria that degrade soluble carbohydrates such as Streptococcus 

bovis was depressed, affecting microbial outflow (Tedeschi et al., 2001). Energy supply to 

proteolytic and structural (cellulolytic) bacteria is reduced resulting in unbalanced coupling of 

protein and energy degradation. Supplementation of dairy diets with readily degradable 

carbohydrate improves N utilization and synchronization of carbohydrate and protein degradation 

(Zhao et al., 2015). Effects of NEB can be reduced by providing high-energy boosters such as 

propylene glycol during late pregnancy (Ayoub et al., 2015). In this case however, glucose cannot 

be used for supplementation in diets to improve nutrient degradation as smallholder farmers are 

resource poor. 

The low ruminal supply of urea N for the synthesis of microbial protein reflected the low rumen 

degradation of dietary CP. Maccarana et al. (2016) reported increased ammonia N content with 

increased crude protein in diet. However, rumen N balance was in excess of 112%, which may 

not indicate high dietary CP but a reflection of low dietary energy and uncoupled protein to energy 

ratio hence, N utilization for bacterial protein synthesis was negatively affected. These pre-

duodenal losses of nitrogen may constitute up to 30% of ingested nitrogen as noted by Beever 

and Siddon (1986). The NRC, (2001) recommends 15% dietary CP for first-calf pregnant heifer. 

Diets had low degradation of N (IVND) indicating inefficiency in rumen fermentation of dietary 

CP.  
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In this study, effective CP of less than 5.3% of diets was below the minimum recommendation of 

7.5% (Jusoh et al., 2014). The microbial protein was not efficiently synthesized in the rumen of 

the pregnant heifers fed low quality (high fibre) diet as proteolytic bacteria such as Prevotella 

ruminicola and Clostridium proteoclaticum resident in the rumen were starved resulting in 

compromised bacteria growth. High dietary fibre induces increased population of ruminal 

cellulytic bacteria and methanogens resulting in decreased rumen papillae length (Steele et al., 

2015). Hence, reduced nutrient absorption into ruminal mucosa and less utilization of diets to 

support adequate growth and increased body reserves in heifers. Feeding pregnant cows with high 

concentrate diets especially at prepartum transition period is recommended for rumen microfloral 

and ruminal mucosa adaptation to high energy density diet post calving (Zebeli et al., 2015). 

However, changes from high fibre diet to high concentrate diet needs to be assessed as stimulation 

of incidence of acidosis in early lactation has been linked with such changes. In the current study, 

the diets were low in highly fermentable NSC. This is typical of the communal environment of 

production requiring a need for an upgrade in an anticipation of improving productivity.   

 

Excess and unbalanced supply of nutrients represents a major cost in production as excess N is 

converted to urea; about 0.2 Mcal/day was used in urea synthesis. Bauman et al. (1980) indicated 

that overconditioned cows have lower fertility and lower milk production. Although cows in this 

study gained weight, BCS was below the optimal of 2.5 to 3.5; most averaged 2.5. The fact that 

estimated energy protein supply was high, the environment, including heat, water stress and other 

physiological factors, affected degradation, absoprtion and utilization post-absorption.  

Supplied and required nutrients for pregnant heirfer 

Metabolizable protein (MP) describes the underlying concept in which the required protein 

content for ruminants at the gastro-intestinal level as well as its availability for animal use (Das 

et al., 2014). The total diet MP represents available protein and has been described as the 

aggregate of microbial supply (rumen degradable protein (RDP) and dietary supply (rumen 

undegradable protein (RUP)) and both are considered in accurate and precise prediction of 

available protein (Das et al., 2014) gestation stages were significantly Lower (p<0.05) daily 

concentration and intake of MP, metabolizable energy (ME), and non-fibre carbohydrate (NFC) 

with their corresponding intake observed in the current study than predicted values may be 

explained by the high grass hay to concentrate ratio in the heifer diets (73% in HD1 diet for far-

off heifers and 67% for close-up heifers) and the negative impact on degradation  

The ratio of RDP to RUP in diets were on the high side (>74%) for the observed and predicted 

values. This may be due to the extreme differences between dietary forage and concentrate as 

indicated in the diets composition These results were consistent with (Fox et al., 2003), who 
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showed in the Cornell Net Carbohydrate and Protein System (CNCPS) formulations that the 

contribution of MP from microbes (RDP) should be ≥ 50%. Predicting MP in these diets provides 

a detail explanation on available energy (ME) for rumen microbial growth (supplied from the 

end-product of fermentation and fat supplementation) and the net absorption of required amino 

acids from the small intestine. The low level of CP in the fed diets may explain the lower MP 

estimates in the observed situation. Besides, MP estimates of 11 % in diet and 743 g/d intake with 

CP protein of 13.8% (138g/kg DM) are predicted for far-off heifers while MP estimates of 10.4% 

in diet and 738 g/d with 12.9% (129 g/kg DM) CP in close-up heifers.  

According to Das et al., (2014), low level of MP in diet results in insufficient microbial protein 

synthesis and subsequent reduction in available energy (ME) for the animal benefits. Hence, 

supply of MP in terms of total supply of RDP and RUP sources should be balanced with adequate 

energy source for better utilization of N by ruminal microbes. This is also to prevent N waste and 

its negative environmental impact (Kebreab et al., 2002). The consumption of HD1 and HD2 by 

the pregnant heifers at far-off and close-up respectively may possibly result in excretion of N.  

Predicted ME at both gestation periods were higher than the observed values indicative of a 

negative ME balance. This could also indicate a low availability of energy from microbial origin 

and/or dietary source resulting in less synchronization with the available MP for efficient 

utilization by the animals (Das et al., 2014).  

3.4.2. Body weight and condition score 

Pregnant heifers had increased BW and BCS at far-off and close-up periods. The gain in BW and 

BCS reflected increased foetal and placetomal weight because of foetal development (Reynolds 

et al., 1990). First-calf heifers are expected to have BW of 3-3.5 of BCS on a 5 point scale and 

maintained until calving (Gillund et al., 2001; Óðinsdóttir, 2009; Heinrichs, 2011). Increased 

nutrient requirements in the last trimester of gestation for foetal and mammary growth, and 

increased uterus size, placenta and foetal fluid explained increased metabolizable and the 

corresponding net energy partitioned for gain recorded in this study.  

During far-off and close-up periods, diets supported foetal and mammary growth, maintenance 

and continued growth as first-calf heifers (NRC, 1989) hence, the increased BW and BCS 

observed in the heifers.  Based on NRC (2000), it was estimated in this study that pregnant heifers 

had average daily gain (ADG) of 183g/day at far-off period and 85g/day at close-up period. The 

higher ADG recorded at 60-30 d prepartum (250 days of gestation) was consistent with Reynolds 

et al. (1990) who reported an exponential increase in all the gravid uterine tissues between 100 

and 250 days of gestation.  
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Pregnant heifers had initial relative rate of ADG of 0.6% per day at 60-30 prepartum and 0.3% 

per day at 29-0 d prepartum period indicating a decreased relative rate of ADG as gestation 

advances. This result agreed with those reported by Ferrell et al. (1976) and Reynolds et al. 

(1990). The reserchers noted decreased percentage per day (relative rate) of foetal growth as 

gestation advances. Despite decreased per day of relative rate of ADG, absolute rate (kg/d) of 

ADG increased with increased gestation period due to increased foetal mass.  Therefore, increased 

weight of heifers from 60-30 d prepartum and 29-0 d prepartum was 26.4 and 29.6 kg, 

respectively. Increased (gain) in BCS has been associated with increased foetal weight as days in 

gestatation increase and the nutritional status improves due to improved energy balance (Reynolds 

et al., 1990; Damptey et al., 2014). 

3.4.3. Blood proteins 

Diets had low CP content that resulted in low TP concentration. The results showed more impact 

of low concentration of TP in close-up (29-0 d prepartum) heifers. This may be due to increased 

nutrient demands for heifers in close-up period. The low dietary crude protein may explain the 

low circulating albumin levels observed. The concentration of albumin in pregnant heifers was 

below the reference range of 40 – 44.5 g/L, the corresponding low BW and BCS. Kubkomawa et 

al. (2015) and Agenas et al. (2006) indicated the serum concentration of albumin reflects the 

animal’s protein status and its low level indicates inadequate feeding of CP. 

High globulin concentration in heifers could also reflect an infection in the heifers’ udder 

including mastitis. Besides, high globulin concentration in the blood may also indicate the level 

of immunity in animals or immune related diseases and consequential reaction to the presence of 

antigen; a foreign substance to the body as noted by Kapele et al. (2008). Heifers had decreased 

globulin concentration as gestation progressed. The comparative globulin concentration to normal 

value observed in the close-up (29-0 d prepartum) heifers is an indication of improved health 

status in this period. However, this does not equate to good nutritional status as heifers had low 

mean BCS of 2.45, which was below the 3-3.5 suggested by Gillund et al. (2001) and Heinrichs 

(2011). Pregnant heifers had lower albumin to globulin ratio indicating a low dietary CP. 

Amanlou et al. (2017) indicated that an increase in serum AL concentration and AL: GL ratio 

was due to feeding higher levels of dietary CP. 

Blood urea nitrogen concentration in heifers at both far-off and close-up periods were high. Low 

dietary energy is indicative of poor nutritional status and high BUN concentration in cows 

(Chomonyo et al., 2002). In this study, diets had low dietary CP hence, low CP intake, resulting 

in low gain in body reserves. The reason for increased BUN concentration despite low-level CP 

diets is not very clear. However, inadequate utilization of N in diets resulting from uncoupling of 
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protein and carbohydrate degradation due to low dietary NSC of diets could explain N loss in 

form of urea. Feeding heifers with diets high in NSC such as starch could inprove N utilization 

and consequentially reduce urea in the blood. Damptey et al. (2014) showed that decreased 

concentration of urea in cows is associated with an improved nutritional status. 

Concentration of creatinine in the blood has a direct link with muscle breakdown and the level of 

its excretion at any point in time is affected by muscle mass.  The high creatinine concentration 

indicated its high excretion because of muscle breakdown (Cozzi et al., 2011). Metabolic 

responses to extreme exercise or hot weather conditions related to dehydration considering the 

environment of production (semi-arid zone) may explain possible breakdown of tissue protein. 

Hence the high concentration of creatinine observed in the heifers. 

3.4.4. Conclusion 

Diets supplied to pregnant Jersey heifers at far-off and close-up gestation stages on the 

smallholder farms had low nutritive value. The low RFV reflected a linear relationship between 

diet nutrient composition and degradation. The chemical composition of diets influenced their 

degradation. Although the metabolic protein profile of the pregnant heifers did not show any sign 

of illness (globulin concentration within the reference value range) at close-up period, poor 

performance in terms of low BW and BCS was observed. High dietary NDF in diets supplied to 

pregnant heifers had a negative affect on rumen fermentation and degradation of nutrients.  

In this study, the LRNS program in CNCPS model was utilized to determine nutrient supply and 

requirements for growth and pregnancy of first-calf heifers raised on a zero grazing milk 

production system. The consistent higher DMI of the pregnant heifers observed compared to 

expected values might be due to increased nutrient required for pregnancy and continued growth 

as first-calf heifers. However, high DMI of the heifers did not result in high nutrient intake, as 

diets were low in structural carbohydrates such as starch. Feeding an energy dense diet to pregnant 

heifers could improve DMI, nutrient intake, body reserves and reduction of fat mobilization 

typical to the early lactation period.  

Poor management ractices such as irregularities in the qualitative and quantitative supply of diet 

recipes, feeding time and quantity of diet supplied relative to the climatic condition of the 

production environment may also explain discrepancies in actual fed and predicted nutrients for 

the pregnant heifers. Higher DMI as a percentage of BW of observed \was above the 

recommendations of NRC (2001) for pregnant cows. High rumen fill and rate of passage could 

be expected in the heifers which resulted in low nutrient degradation and subsequently reduced 

the available nutrients for the benefits of the animals. 
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Heifers could not used diets for optimum benefits due to low available energy from microbial 

origin and/or dietary source as available nutrients are less synchronized for efficient utilization 

by the animals. The observed nutrient values for pregnant heifers could not supply adequate 

nitrogen and energy requirements for efficient microbial protein synthesis and amino acids 

required for foetal growth and mammary development. The high forage intake and forage intake 

as a percentage of BW than expected, resulted in low ME (due to low energy density in diets) and 

low gain in body reserves. The results of this study demonstrated that the growth of the heifers 

was affected by the high composition of structural carbohydrate in diets supplied to heifers at late 

gestation. However, the marginal increased body weight and condition score of the heifers from 

far-off to close-up period do not justify increased benefit from the diets. Therefore the hypothesis 

that the nutrient supply of standardised dairy diets on smallholder farm affects growth of heifers 

+during pregnancy proved to be true. 
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CHAPTER 4 

EFFECTS OF LOW SUPPLY OF DIETARY NUTRIENTS ON BODY RESERVES AND 

EARLY LACTATION IN PRIMIPAROUS JERSEY COWS 

 

ABSTRACT 

Nutrient intake is the first limiting factor in milk production on communal area dairy farms of the 

subtropics. Effects of nutrient supply in standardized lactation diets on body reserves and early 

lactation was evaluated on primiparous Jersey cows raised on communal area smallholder farms. 

Forty-two primiparous cows, aged 24 to 30 months were used in the study. The study assessed 

the adequacy of two lactation diets fed to communal area primiparous Jersey cows during early 

(1-30 d postpartum) and peak (31-60 d postpartum) periods. Cows received 4.5 kg of dairy 

concentrate with 19.2% CP, 33% NDF and 15.5% ADF which was increased to 5 kg during peak 

lactation. Eragrostis curvula hay (3%, 77% and 48% of CP, NDF and ADF respectively) was 

supplied ad libitum and dry matter intake (DMI) estimated from residual hay. Two simulation 

diets were prepared based on DMI and assessed for composition and nutrient supply using both 

wet chemistry and model predictions. Body weight and BCS were monitored, blood was collected 

and analysed for proteins monthly. A record of milk yield was taken daily, and milk was analysed 

for fat, protein, lactose and urea nitrogen every week. Energy corrected milk was also calculated.  

Simulated diets were assessed for nutritive value using chemical analysis, in vitro nutrient 

degradation of diets.  Dietary nutrient supply and intestinal absorption were predicted using the 

Large Ruminant Nutrition System (LRNS) version 1.0.33 (level 1) and cows’ responses were 

validated against predicted values. Hay intake was 7.2 kg of hay/cow/day. Cows had DMI of 11.2 

kg which was 12% higher than expected at 1-30 d postpartum period and 11.6 kg which was 21% 

higher than expected. Diets had low available protein as % of dietary protein (LD1=46%; 

LD2=45%) and the slowly degraded NDF fraction (NDFICP) constituted 64% of the available 

protein. Intake of energy was 20% and 17% lower than predicted for Jersey cows at 1-30 d 

postpartum and 31-60 d postpartum period, respectively. Cows had negative energy balance of -

6.5 and -5.6 Mcal respectively at 1-30 d postpartum and 31-60 d postpartum cows. Protein intake 

of lactating cows was low, resulting in negative protein balance of 59% and 42% of daily 

requirement respectively, at 1-30 d postpartum period and 31-60 d postpartum period. There was 

loss of BW and BCS, low milk yield, energy corrected milk (ECM: 9.50 kg/d) and feed efficiency 

(FE) of less than 1 in cows at both periods. Composition of fat, protein and lactose in milk were 

affected by the low level of dietary protein. Somatic cell count (SCC) in milk was 121 ± 13 x 

103/ml and cows did not show signs of illness.  Mean MUN concentration was 12 ± 2.7 mg/dl 

reflecting the protein status and the ensuing performance of the lactating cows. Cows had high 
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creatinine concentration of 116 and 102 μmol /L at 1-30 d postpartum and 31-61 d postpartum 

period respectively, which may indicate muscle breakdown due to heat stress relative to the hot 

production environment. Diets could not supply adequate microbial N to the small intestine due 

to inefficiency in rumen fermentation of nutrients resulting in negative energy balance (NEB), 

loss in body reserves (BW and BCS) and poor lactation of cows at both lactation periods.  

Key words: Dietary nutrients, body reserves, early lactation, primiparous cow  

 

4.1. Introduction  

The process of lactation commences after calving and the lactating cow may or may not continue 

suckling the calf in addition to milking. Lactating cows are usually grouped into stages; early 

lactation (0-100 d postpartum), mid lactation (101-200 d postpartum) and late lactation (201-300 

d postpartum). The fresh lactation period can further be distinguished from early lactation as the 

first 4 weeks after calving (that is 1-30 d postpartum). Cows are recovering from calving during 

this transitional period and demand for increased intake of a nutrient-dense diet formulated for 

the maintenance of good BW and BCS, and lactation remains high (NRC, 2001). The amount and 

nutritive value of the diet fed to cows at each lactation stage influence their performance. This is 

due to variation in nutrient demands of dairy cows at different stages of lactation. Early lactation 

period is marked with progressive increase in milk production, onset of peak milk production with 

loss in BW (Grummer, 1995; Agenas et al., 2003) as energy supply lags behind demand. Hence, 

the state of NEB in cows at this stage of lactation (Hayirli et al., 2002). The effect of NEB depends 

on level of milk production, prepartum body reserves, diet composition and the resulting feed 

intake and energy demand for further growth such as in first-calf lactating cows (Grummer, 1995; 

Hayirili et al., 2002). The state of NEB in lactating cows results in high fat content and increased 

urea concentration in milk (Keady et al., 2000; Agenas et al., 2003; Oõinsdóttiir, 2009) and can 

be corrected with improved diet quality through increased energy balance (Busato et al., 2002). 

Ensuring adequate body reserves during late gestation and feeding of adequate energy diet that 

boosts dry matter intake in early lactation seems logical to reducing the level and the length of 

time of negative energy commonly identified with fresh period. 

Rumen degradable protein enhances rumen microbial growth and efficient microbial protein 

synthesis for maintenance, growth and lactation of the host animal (Das et al., 2014; Tedeschi et 

al., 2015). Improvement in fibre digestion results from the deamination of amino acids and 

availability of the branched-chain VFA that stimulate the growth of fibre digesting bacteria 

(cellulolytic) and the corresponding enzyme activity (Eugene et al., 2004). 
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Impacts of feeding low concentrate diets to lactating cows on milk yield and composition has 

been well researched. Feeding dietary CP of 12% depresses nutrient digestibility and ruminal 

microbial protein synthesis crucial to optimal lactation performance (Aschemann et al., 2012). 

Improvement of amino acid profile increased dietary fermentable carbohydrate content and 

decreased feeding of excess dietary protein increase milk yield and protein content (Das et al. 

2014). Inadequate dietary energy in dairy nutrition results in a NEB inducing mobilization of fatty 

acids from adipose tissue, amino acids from muscle tissues and a high level of circulating non-

esterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) in the animal’s body (Oõinsdóttiir, 

2009).  

Lactating cows raised in communal areas of South Africa fed on high forage-based diets with 

little or no concentrate supplementation results in low productivity in this sector. Diets are limited 

in supplying required nutrients for lactation and little information is known about the supply of 

dietary nutrients to dairy cows and the effect on the lactation performance. Therefore, the 

objective of this study was to evaluate the effect of dietary nutrient supply on changes in body 

reserves and early lactation in primiparous Jersey cows. The hypothesis tested was that low 

supply of dietary nutrients affects body reserves and early lactation in primiparous Jersey cows. 

4.2. Materials and methods 

The ethics committees of the University of South Africa (2015/CAES/007) and Agricultural 

Research Council (APIEC16/023) approved the ethical clearance for the animal experimental 

procedures. The animals were managed according to the standard guidelines established by ARC 

for care and use of animals during rumen fluid collection for the in vitro ruminal fermentation 

procedure. 

4.2.1. Study area 

The study on lactating Jersey cows was conducted in two communal areas (Vhembe and 

Sekhukhune) in Limpopo province. Forty-two lactating Jersey cows (age: 24-30 months) were 

used in the evaluation of early lactation performanc. The same geographical location of the 

production site for pregnant heifers (chapter 3, section 3.2.1) was used. 

4.2.2. Study design 

Forty-two pregnant lactating cows selected from 10 households were used in the study during 1-

60 days post-calving. A standard feeding regime for lactating cows in both Sekhukhune and 

Vhembe districts was applied by farmers. Diets were defined as LD1 and LD2 based on lactation 

periods, on grass hay and on concebtrate (commercial lactation diet) supplied to the cows (Table 

4.1) Nutrient composition of diets was determined based on predictions and recommendation of 

NRC (2001). 
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Table 4.1 - Ingredients of LD1 and LD2 diets for lactating cows 

 

 

 

 

 

1LD1 = Lactation diet for 1-30 d postpartum cows; 2LD1 = Lactation diet for 31-60 d postpartum 

cows 

4.2.3. Chemical analyses 

Concentrate, grass hay and diets (LD1 and LD2) were analyzed for chemical composition 

following the described procedures in Chapter 3 section 3.2.3 and the estimated values were used 

in calculating the nutrient composition. The chemical and nutriet composition are presented in 

Table 4.3. 

4.2.4. In vitro ruminal nutrient degradability of lactation diets 

Milled samples of formulated LD1 and LD2 for lactating cows were weighed (0.5 ± 0.05 g) into 

separate pre-weighed and labelled F57 ANKOM bags, re-weighed and heat sealed. Inoculum 

preparation and procedures for incubation, rinsing and drying for in vitro ruminal DM, N and OM 

degradation were as described in chapter 3 section 3.2.6.  

4.2.5. In vitro ruminal gas production and fermentation kinetics of lactation diets 

Lactation diets (LD1 and LD2) were evaluated for total gas production and fermentation kinetics 

in an ANKOMRF gas production system (ANKOM Technology®, Macedon, NY, USA). 

Fermentation kinetics evaluated include; the rate of gas production, potential and effective gas 

production.  The gas production and determination of fermentation kinetics of the LD1 and LD2 

was done using the same procedures in chapter 3 section 3.2.7. Data generated for total gas 

production was fitted into the exponential Model of Ørskov and McDonald (1 979) to determine 

fermentation kinetics of diets.  

4.2.6. Evaluation of required and supplied nutrients in diets for lactating cows 

The nutrient supplied and requirements of lactating cows at 1-30 d postpartum and 31-60 d 

postpartum periods were estimated using the Large Ruminant Nutrition System (LRNS) program 

(version 1.0.33) in Cornell Net Carbohydrate and Protein System (CNCPS) Model (Fox et al., 

2004). Data on nutrient composition of diets were imputted into the solution level 1 of the model. 

The feed libraries of the system were edited to accommodate ingredients and composition of the 

Diet ingredients (g/kg DM) Feeding regime 

 1LD1 2LD2 

Concentrate  (Commercial lactation diet) 400 430 

Weeping love grass hay (Eragrostis curvula)  600 570 
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newly simulated LD1 and LD2 diets. A cow has mature weight of 450 kg; mean BW = 360 kg; 

BCS = 2.4; early milk production = 9.3 kg/day; peak milk production = 10 kg; milk fat = 3.5% 

and milk protein = 3.2%. The expected (required) and observed (actual supply from diets) 

concentration (%/DM) and intake of metabolizable nutrients and the corresponding balances for 

lactation, maintenance and BW changes were also predicted. 

4.2.7. Evaluation of the performance of lactating Jersey cow 

  Body weighing and condition scoring 

The linear measurements of body length, heart girth, wither girth and wither height were measured 

as described in section 3.2.8.1. Animals were condition scored following the method of Klopcic 

et al. (2011) on 5 points scale where 1 signifies very thin and 5 for very fat cow. 

 Milk production record and sampling 

Cows were milked twice a day at 08:00 and 15:00 hour. Milk samples were pooled for morning 

and evening production once a month and analyzed for protein, fat, lactose, milk urea nitrogen 

(MUN) and somatic count (SCC). Milk samples were analysed for composition using FOSS 

CombiFoss™ FT+ electronic instrumentation (Foss Alle 1 DK-3400 Hilleroed, Denmark). The 

instrument consists of MILKoScan™ FT+ and Fossomatic™ FC analyzer.  Milk protein, fat and 

lactose were analysed using MILKoScan™ FT120. 

Milk composition was determined using the measuring principle of Fourier which transforms 

infra-red spectrophotometer measuring milk composition through infrared light. Fossomatic™ 

FC was used for the automatic counting of somatic cells in milk samples. The milk sample was 

first mixed with a fluorescent dye which dyed DNA molecules in somatic cells. The sample was 

afterwards passed under a counting unit where it is exposed to blue light. Cells emitted red light 

making them feasible for the instrument to count. Milk components are expressed in percentage 

of the milk sample. 

Feed efficiency (FE) was also determined by measuring the amount of milk produced (kg) per kg 

of dry matter consumed by cows. These parameters were calculated according to Heins et al., 

(2008) as follow; 

 

ECM (kg) = 0.327 x milk yield (kg) + 12.96 x fat (kg) + 7.2 x protein (kg) 

 

Where ECM= Energy corrected milk 

 

FE = ECM/DMI 
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Where FE = feed efficiency; ECM= energy corrected milk; DMI = dry matter intake 

 Evaluation of blood protein  

Sampling of blood from the lactating cows was done monthly (i.e twice from day 1 to 60 days 

postpartum). Blood samples were analyzed following the described procedures in Chapter 3, 

section 3.2.7.2) to determine concentration of total protein (TP), blood urea nitrogen (BUN), 

albumin (AL), globulin (GL) and creatinine (CR) in cows. 

4.2.8. Statistical analyses 

Data on the in vitro evaluation of lactation diets and cow performance 1-30 d postpartum and 31-

60 d postpartum periods were analyzed in a completely randomized design. Data on the ruminal 

fermentation, BW and BCS, milk yield and composition, and blood parameters were subjected to 

analysis of variance (ANOVA) procedures in statistical analytical systems (SAS) Software 

package (version 9.3: SAS Institute, Inc., Cary NC, USA) to assess variation within animals and 

between units of all tested parameters. Means were separated using Fischer’s test. Tests were 

performed at 95% confidence limit (declared significance at p ≤ 0.05). The results were presented 

as means and standard deviation (mean ± STD). Observed and predicted diet nutrient 

concentrations and intake were compared using the paired t-test

4.3. Results 

4.3.1. Nutrient supply of LD1 and LD2 diets for lactating cows 

Table 4.2 chemical and nutrient composition of concentrate, grass hay and total diets (LD1 and 

LD2). Diets had low RFV reflecting high level of unavailable carbohydrates (CC) of 18 % DM 

from the grass hay component in diet. Lactation diet (LD1) had low RFV of 125.8. However, the 

value improved in LD2 diet to 156 and was above the minimum recommended for ruminants of 

144. Dry matter and nitrogen degradability were 49.4% and 55.9, respectively (Figure 4.3-1). 

However, 76 and 91% of the observed DM and N degradability, respectively, degraded within 18 

h of incubation. Total gas production and fermentation kinetics of LD1 diet after 36 h of 

incubation were presented in Table 4.3. The gas production from the slowly fermented fraction 

(b) was 62.8 mL/g DM. Diet had GPp of 67 mL/g DM and GPe was 47 mL/g DM. At 48 h, the 

estimated GPp and GPe were 78 and 62 ml/g, respectively.  
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Table 4.2 – Chemical and nutrient composition of concentrate, grass hay, LD1 and LD2 

diets  

*Concentrate- Commercial lactation diet; **Grass hay - Eragrotis curvula; LD1 - Diet  for 1-30 d postpartum cows; 

LD2 - Diet  for 31-60 d postpartum; ADFICP – Acid detergent fibre indigestible crude protein; NDFICP – Neutral 

detergent fibre indigestible crude protein; IADFICP - Indigestible acid detergent fibre insoluble crude protein; NDFn 

– Neutral detergent fibre corrected for nitrogen; TDN1x - Total digestible nutrients on intake at maintenance level; 

dTDN - Digestible total digestible nutrients; NEm - Net energy maintenance; NEg - Net energy gain. 

 

Parameters  *Concentrate **Grass 

hay 

LD1 

diet 

LD2 

diet 

Dry matter   95.8 93.1 91.3 93.4 

Organic matter  92.0 92.8 92.7 92.5 

Calcium 8.21 0.37 0.71 0.72 

Phosphorus  5.5 0.16 0.38 0.30 

Crude protein 19.2 3 13.6 14.2 

Fat 2.6 1.2 2.01 2.6 

Ash 8 7.2 7.3 7.5 

Structural proteins and carbohydrates  

Neutral detergent fibre  33.0 77.0 57.6 54.7 

Acid detergent fibre  15.5 48.9 34 33.4 

Acid detergent lignin 7.00 21.3 9.6 7.3 

Cellulose 8.50 27.6 24.4 26.1 

Hemicellulose 26.0 55.7 48.01 47.4 

Lignin 5.10 37.7 19.6 18.3 

ADFICP (% CP) 1.06 5.02 3.44 3.21 

NDFICP (% CP) 1.44 5.4 3.82 3.59 

IADICP (% DM) 0.42 2.01 1.37 2.48 

NDFn (% DM)] 31.1 69.6 52.4 49.8 

Non- structural carbohydrates 

Non-fibre carbohydrate (% DM) 39.2 11.6 19.5 21 

Available carbohydrate (B2) (% DM) 23.5 20.5 45.5 44.9 

Indigestible carbohydrate (C) (% DM) 16.9 51.1 23.1 17.5 

Unavailable carbohydrate (CC) (% DM) 5.60 39.4 13.3 9.6 

TDN1x (% DM) 57.9 37.8 52.4 53.9 

dTDN (% DM) 55.7 37.8 51.2 52.6 

Digestible energy (Mcal/kg) 2.5 1.3 2.3 2.3 

Metabolizable energy (Mcal/kg) for lactation 2.0 0.8 1.8 1.9 

Metabolizable energy (Mcal/kg) for growth 2.0 1.0 1.8 1.9 

NEm (Mcal/kg) 2.2 0.6 1.0 1.1 

NEg (Mcal/kg) 0.5 0.3 1.0 1.1 

Digestible dry matter (% DM) 76.8 50.8 62.4 62.9 

Expected dry matter intake (% BW) 3.6 1.6 2.6 3.2 

Relative feed value 216.6 61.4 125.8 156.0 
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Figure 4.3-1 - In vitro dry matter degradability, in vitro nitrogen degradability 

and in vitro organic matter degradability (% DM) of LD1 diet 
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Table 4.3 -Total gas production and fermentation kinetics of LD1 diet at 36 h of incubation 

 

 

 

 

 

 

1a = Gas produced from the immediate soluble fraction; 2b = Gas produced from slowly degraded 

fraction; 3GPp = Potential gas production; 4c = Rate of gas production within 18 h; 5GPe = 

Effective gas production. 

 

The estimated values for the IVDMD, IVND and IVOMD of LD2 diet are depicted in Figure 4.3-

2. Dry matter, nitrogen and organic matter degradability of diet was 55.2, 65.4 and 60.7%, 

respectively. Diets had over 94% of observed degradability at 48 h. Total gas production and 

fermentation kinetics of diet are presented in Table 4.5. Total gas production was 65.1 mL/g DM 

following 36 h of incubation. Potential gas production and GPe recorded was 68.9 and 49.6 mL/g 

DM respectively. The estimated GPp and GPe at 48 h was 80 and 65 mL/g respectively. The rate 

(c) within 18 hours was 7% /hours and declined as incubation progresses. 

Parameters In vitro gas production and fermentation 

kinetics of LD1 diet 

Total gas production  63.7 

1a 4.04 

 2b  62.8 

3GPp 66.9 

 4c (% in 18 h) 6.6 

5GPe 47.3 
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Figure 4.3-2 - In vitro dry matter degradability, in vitro nitrogen degradability and in vitro 

organic matter degradability (% DM) of LD2 diet. 

 

Table 4.4 - Total gas production and fermentation kinetics of LD2 diet 

1a = initial gas production at first hour of incubation; 2b = gas produced from slowly degraded 

substrates; 3GPp= potential gas production; 4c = rate of gas production; 5GPe = effective gas 

production. 

 

4.3.1. Supplied and predicted nutrients in LD1 and LD2 diet 

Nutrient concentration (% in diet) observed and expected in LD1 diet are shown in Table 4.5. 

Observed concentration of metabolizable protein (MP = 5.7%), rumen degradable protein (RDP 

= 4.28%) and rumen undegradable protein (RUP = 1.43%), metabolizable energy (ME =1.9%) 

and non-fibre carbohydrate (NFC =19.5%) were consistently lower (p<0.01) in LD1 than 

expected MP = 10.9%, RDP = 8.2%, RUP = 2.7%, ME = 2.73% and NFC = 33%.  Conversely, 

30

40

50

60

70

80

2 4 8 12 18 24 36

N
u

tr
ie

n
t 
d

eg
ra

d
at

io
n

  
(%

 D
M

)

Incubation period (hour)

IVDMD

IVND

IVOMD

Parameters In vitro gas production and fermentation kinetics 

of LD2 diet 

 

Total gas production  65.1  

1a 4.36  

 2b  64.6  

3GPp 68.9  

 4c (%/hour) 7  

5GPe 49.6  
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concentration of neutral detergent fibre (NDF = 57.6%); total forage in ration (TFR = 68%) and; 

forage NDF (fNDF = 78%) observed were higher than expected NDF = 50.1%, TFR = 60.1% and 

fNDF = 68.9%). 

Table 4.6 indicates observed and expected daily nutrient intake (kg/cow) of LD1 diet for cows at 

1-30 d postpartum period. A higher (p<0.0001) intake of CP (1523 g/cow/day) than expected 

value (214 g/cow/day) was observed. A daily DMI of 11.2 kg/cow was observed in cows and 

higher than expected (9.9 kg/cow). A lower (p>0.05) DMI as a percentage of BW (2.6) was 

observed compared to the expected value of 2.7. A higher (p>0.05) forage intake expressed as a 

percentage of BW (1.8) in cows compared to expected value of 1.6. Mean daily intake of MP (638 

g), RDP (478.5 g), RUP (159.5 g) and ME (21.5 Mcal) per cow were lower (p<0.05) than 

expected (MP = 1084 g; RDP = 813 g; RUP = 271 g; ME = 27 Mcal). Intake of NDF (57.6 % in 

diet) was higher (p<0.05) than expected (50.1%). 

 

Table 4.5 - Comparison of observed and expected nutrient concentration in LD1 diet 

1LD1= Lactating diet for cows at 1-30 d postpartum period 

 

 

 

 

 

 

  

 

                                                                        Nutrient concentration of 1LD1 diet 

Parameters (%)  Observed Expected p-value 

Crude protein   13.6 13.1 0.33 

Metabolizable protein   5.7 10.9 0.004 

Rumen degradable protein   4.28 8.2 0.001 

Rumen undegradable protein  1.43 2.7 0.002 

Metabolizable energy (MCal)  1.9 2.73 0.01 

Neutral detergent fibre   57.6 50.1 0.001 

Total forage in ration   68 60.1 0.002 

Forage 4NDF   78 68.9 0.03 

Non-fibre carbohydrates   19.5 33 0.001 
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Table 4.6 - Comparison of the observed and expected daily nutrient intake of LD1 diet 

 

 

 

 

 

 

 

 

 

 

 

Table 4.7 represent estimates of observed and expected nutrient concentration in LD2 diet at 31-

60 d postpartum period. There are variations in the concentration of the evaluated nutrients in the 

observed and expected (as required) by lactating cows at this stage of lactation.  The concentration 

of CP (14.2%) in diet was observed and lower (p<0.013) than expected (15.5%). The 

concentration of MP (5.7%), RDP (4.31%), RUP (1.44%), ME (2.0 Mcal) and NFC (21%) 

observed in diet were lower (p<0.05) than expected values of MP (12.43%), RDP (9.32%), RUP 

(3.11%) and ME (3.0 Mcal) and NFC (38%). The results also showed a higher (p<0.05) fibre 

concentration in the observed values of NDF (54.7%), TFR (66%) and fNDF (79.2%) as 

compared to the predicted values of NDF (42.9%), TFR (52.3%), and fNDF (62.3%).  

Table 4.8 shows observed and expected daily nutrient intake of LD2 diet for the lactating cows at 

31-60 postpartum period. Observed intake of CP (1647 g/d), DMI (11.6 kg/d) and DMI as 

percentage of BW (3.2) were significantly higher (p<0.05) than expected values (CP = 1428 g/d; 

DMI = 9.2 kg/d; DMI as a percentage of BW (2.5). Equally, mean daily intake of MP (667 g), 

RDP (500 g), RUP (187 g) and ME (23.2 Mcal) as observed for cows at this lactation stage were 

significantly lower (p<0.05) than expected intake values (MP = 1144 g; RDP = 857 g; RUP = 

286 g; ME = 28.1 Mcal). A higher (p<0.05) intake of NDF (5.5 kg) and forage intake as a 

percentage of BW (1.7) in LD2 diet were observed compared to expected (NDF = 4.3 kg; forage 

as a percentage of BW = 1.4). 

 

Nutrient intake of 1-30 d postpartum cows 

Parameters Observed Expected p-value 

Dry matter intake (kg /d) 11.2 9.9 0.09 

Dry matter intake (% body weight) 2.6 2.7 0.08 

Crude protein (g/d) 1523 1214 0.04 

Metabolizable protein (g/d) 638 1084 0.0001 

Rumen degradable protein (g/d)  478.5 813 0.0001 

Rumen undegradable protein (g/d) 159.5 271 0.0001 

Metabolizable energy (Mcal/day) 21.5 27 0.04 

Neutral detergent fibre (kg/d) 5.76 5.01 0.02 

Forage (% of body weight) 1.8 1.6 0.06 
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Table 4.7 - Comparison of observed and expected nutrient concentration (%) in LD2 diet. 

 

Table 4.8 - Comparison of observed and expected daily nutrient intake of cows at 31-60 d 

postpartum period 

 

Parameters 

Nutrient intake of 1LD2 diet 

Observed Expected p-value 

Dry matter intake (kg2DM) 11,6 9.2 0.02 

Dry matter intake (% body weight) (kg) 3.2 2.5 0.01 

Crude protein (g)  1647 1428 0.0001 

Metabolizable protein (g) 667 1143 0.0001 

Rumen degradable protein (g) 500 857. 0.0001 

Rumen undegradable protein (g) 167 286 0.0001 

Metabolizable energy (MCal/day) 23.2 28.1 0.01 

Neutral detergent fibre (kg) 5.5 4.3 0.014 

Forage (% of body weight) 1.7 1.4 0.01 

LD2= lactation diet for 31-60 d postpartum cows; 2DM = dry matter  

4.3.2. Energy and protein balance of lactating cows 

The calculated daily energy supplied (available) and requirement for lactating cows at 1-30 d 

postpartum period are shown in Table 4.9. Differences were found between supplied and required 

protein and energy for the cows. A lower (p<0.04) daily energy intake of 20.5 Mcal/cow was 

observed compared to daily energy requirement of 27 Mcal/cow. This resulted in negative daily 

balance of -6.5 Mcal/cow of energy requirements. Similarly, the estimates of daily protein 

supplied (638g) to cows was significantly lower (p<0.001) than requirement (1084 g) resulting 

in high negative protein balance of -446g/d and a supply of only 59% of protein requirements. 

 

Parameters 

Nutrient concentration of 1LD2 diet 

Observed Expected p-value 

Crude protein   14.2 15.5 0.06 

Metabolizable protein  5.75 12.42 0.003 

Rumen degradable protein 4.31 9.32 0.002 

Rumen undegradable protein  1.44 3.11 0.0001 

Metabolizable energy (MCal) 2.0 3.05 0.0001 

Neutral detergent fibre  54.7 42.9 0.0001 

Total forage in ration  66 52.3 0.001 

Forage 2NDF (% of diet NDF) 79.2 62.3 0.03 

Non-fibre carbohydrates  21 38 0.001 
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However, NRC (2001) recommends 110 and 125% minimum requirement of ME and MP 

respectively for lactating cows. 

 

Table 4.9 - Mean daily energy and protein balance in 1-30 d postpartum cows 

 

Parameters 

Energy and protein balance in 1-30 postpartum cows 

Required Supplied Balance Supplied (% of 

requirement) 

*% recommended 

Energy (Mcal/d) 27.0 20.5 -6.7 80 133 (NRC, 2001) 

Protein (g/d) 1084 638 -446 59 125 (NRC, 2001) 

*Minimum requirement 

 

Daily required and supplied energy and protein for 31-60 d postpartum cows are depicted in Table 

4.10. Cows had lower (p<0.01) daily energy supplied of 23.2 Mcal/cow than requirement (28.1 

Mcal). Difference was found in supplied and required energy which resulted in 17.4 % negative 

balance (-5.6 Mcal) of daily requirements. Energy supply constituted 83% of the requirement and 

lower than NRC recommendation. Mean daily protein supplied (667 g/cow) at this lactation 

period was lower (p<0.001) than the required 1143g/cow. Cows fed LD2 diet had high negative 

balance of -476 g constituting 42% of daily protein requirement of lactating cows.   

 

Table 4.10 - Mean energy and protein balance in cows at 31-60 d postpartum period 

 

 

Parameters 

Energy and protein balance in 31-60 d postpartum cows 

Required Supplied Balance Supply (% of 

requirement) 

*% 

recommended 

Energy (Mcal/d) 28.1 23.2 -4.9 83 171 

Protein (g/d) 1143 667 -476 58 110 

 

4.3.3. Performance of lactating cows 

Table 4.11 indicates mean BW and BCS of lactating cows at 1-30 d postpartum period. Cows lost 

2.6 kg of BW and 0.23 unit of BCS. Fat and protein contributed 3.95 and 20 kg respectively to 

body condition loss. It was estimated that 1-30 d postpartum cows would mobilize 149 Mcal of 

energy reserves within this period to lose 0.23 unit of body condition.  

Figure 4.3-2 shows serum concentration of TP, AL, GL, CR and BUN in lactating cows at 1-30 

d   postpartum period. Mean concentration of TP was 72 g/L; below the reference range of 76.3-

93.7 g/L. Concentration of AL and GL was 34 g/L and 37.1 g/L, respectively, and were below the 
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reference value range. Cows had lower ratio of AL: GL (0.95) indicating a higher GL 

concentration than AL. However, the ratio was within the reference value range of 0.8 - 1.0. Blood 

urea nitrogen in cows was 4.4 mmol/L) and within reference value of 4.8 mmol/L. Cows had CR 

concentration of 115.5 µmol/Lwhich was higher than the mean reference value of 99.7 µmol/L. 

Mean milk yield and composition of lactating cows are presented in Table 4.12. Mean milk 

production for cows at 1-30 d postpartum period was 9.3 ± 2.1 kg/cow. The fat, protein and lactose 

content of milk produced was 3.5 ± 0.4, 3.2 ± 0.41 and 4.2 ± 0.3 % respectively. The fat, protein 

and lactose composition of the milk were lower than the reference values for Jersey cow. Somatic 

cell count (SCC) in milk and MUN concentration was 121 ± 13 x 103/ml and 12 ± 2.7 mg/dl 

respectively. Calculated energy corrected milk and feed efficiency in 1-30 d postpartum cows was 

9.5 and 0.85 respectively. 

 

Table 4.11 - Mean body weight and condition score of cows at 1-30 d postpartum period 

Parameter 1-30 d postpartum cows 

Body weight (kg)   356 ± 20 

1∆BW (kg)  -2.6 

 Body condition score 2.33 ± 0.64 

 2∆BCS  -0.23 

Body fat reserves mobilized (kg) 3.95 

Body protein reserves mobilized (kg) 20 

Body energy reserves mobilized (Mcal) 149 

1∆BW = Change in body weight; 2∆BCS= Change in body condition score. 
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Figure 4.3-3 - Serum concentration of proteins of 1-30 d postpartum Jersey cows. 

Reference value range (Otto et al., 2000): TP = 76.3 - 93.7 g/L; AL = 36.4 - 42.2 g/L; GL = 39.7 

- 48.9 g/L; AL: GL = 0.9 - 1.2; BUN = 4.2 - 5.4 mmol/L; CR = 83 - 116.2 µmol/L. 

 

Table 4.12 - Mean daily milk yield, milk composition and production efficiency of cows at 

1-30 d postpartum 

Parameters  LD1 diet for 1-30 d postpartum cows 

Dry matter intake (kg) 11.2 

Milk yield (kg) 9.30 

Fat (kg) 0.33 

Protein (kg) 0.28 

Energy corrected milk 9.50 

Production efficiency (*ECM/DMI)  0.85 

Milk composition  

Fat (%) 3.5 ± 0.4 

Protein (%) 3.2 ± 0.41 

Lactose (%) 4.2 ± 0.3 

Somatic cell count (x103 cells/mL) 121 ± 13 

Milk urea nitrogen (mg/dl) 12 ± 2.7 

*ECM/DMI = Energy corrected milk; DMI = Dry matter intake 
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Body weight and BCS of lactating cows at 31-60 d postpartum period are presented in Table 4.13. 

Mean BW and BCS was 349 ± 27 kg/cow and 2.31 ± 0.72 respectively. Cows had loss of 7.13 kg 

in BW and 0.073 in the unit of BCS. Depletion of body reserves constituted 1.57 and 79 kg of fat 

and protein respectively. An estimate of 440 Mcal of energy was mobilized from energy reserves 

for the period.  

Serum concentration of TP, AL, GL, BUN and CR of cows in 31-60 d postpartum are shown in 

Figure 4.3-3 Mean concentration of TP in 31-60 d postpartum period was 67 g/L. Concentration 

of albumin and globulin was 35g/L and 37g/L respectively. However, these values were below 

reference range for lactating cows. Albumin and globulin ratio of 0.9 was within the reference 

range of 0.8-1.0. Blood urea nitrogen concentration (4.6 mmol/L) was within the reference value 

range. Concentration of creatinine (102.4 μmol/L) was at the high end of reference range. 

Table 4.14 represents mean daily milk yield and composition and production efficiency of cows 

at 31-60 d postpartum period. Mean milk production was 10.2 ± 2.4 kg/cow. The composition of 

fat and protein in milk was 3.5 and 3.0% respectively. The composition of lactose in milk was 

4.4% and somatic cell count (SCC) in milk was 97 ± 11 x 103/L. Milk urea nitrogen content was 

10 ± 3 mg/dl during this period. The calculated energy corrected milk was 10.3 and production 

efficiency was less than 1 (0.89). 

 

Table 4.13 Body weight and condition score of cows 31-60 d postpartum 

Parameter 31-60 d postpartum cows 

 1BW (kg)   349 ± 27 

 2∆BW (kg) -7.13 

 3BCS 2.31 ± 0.72 

 4∆BCS -0.073 

Body fat reserves mobilized (kg) 1.57 

Body protein reserves mobilized (kg) 79 

Body energy reserves mobilized (Mcal) 440 

1∆BW = change in body weight; 2∆BW = change in body condition score body. 
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Figure 4.3-4 - Serum concentration proteins of cows at 31-60 d postpartum period.  

Reference value range (Otto et al., 2000):  TP = 76.3 - 93.7 g/L; AL = 36.4 - 42.2 g/L; GL = 39.7 

- 48.9 g/L; AL: GL = 0.9 - 1.2; BUN = 4.2 - 5.4 mmol/L; CR = 83 - 116.2 µmol/L 

 

Table 4.14 - Mean milk yield, milk composition and production efficiency of cows 31-60 d 

postpartum 

Parameters  LD1 diet 1-30 d postpartum period 

Dry matter intake (kg) 11.6 

Milk yield (kg) 10.2 

Fat (kg/d) 0.36 

Protein (kg/d) 0.31 

Energy corrected milk 10.3 

Production efficiency (*ECM/DMI ) 0.89 

Milk composition  

Fat (%) 3.5 ± 0.3 

Protein (%) 3.0 ± 0.27 

Lactose (%) 4.4 ± 0.4 

Somatic cell count (x103 cells/mL) 97 ± 11 

Milk urea nitrogen (mg/dl) 10 ± 3, 

*ECM/DMI = ECM = Energy corrected milk; DMI = Dry matter intak 
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4.4. Discussion 

4.4.1. Nutrient supply of LD1 and LD2 diets for lactating cows 

The low DMD of lactating diets could be attributed to poor digestion of the highly lignified hay 

that formed 55% of LD1 and LD2 diets. Dietary forage content was within the range specified by 

Fellner (2002) although, on the high end. Lignification of plant tissue increases with plant 

maturity to enhance rigidity; however, the lignified structural carbohydrate components become 

less accessible (Nagadi et al., 2000). The NRC recommends 25-28% dietary NDF for lactating 

cows and 19% dietary NDF for 31-60 d postpartum lactation concentrate. In this study, diets were 

about 30 units higher than the NRC (2001) recommended levels. This implies that the proportion 

of slowly degradable carbohydrate fraction (B2) was high and non-structural carbohydrate such 

as starch and soluble organic fractions were low.  

High SC and low NSC entails that proportions of propionate (C3 precursor for glucose 

production) would be lower relative to acetate (C2) and butyrate (C4) which are fat precursors. 

Glucose is the main precursor for lactose synthesis. The diets could not favour higher milk 

production since lactose content drives milk yield.  The slowly degraded fraction plays a critical 

role as it induces longer mastication, which enables fractionation of the structural carbohydrate 

matrix, exposing sites for microbial attachment (Beauchemin, 2018), formation of biofilms and 

finally degradation by fibrolytic enzymes. Mastication improves saliva flow and rumen buffering 

as noted by van Soest (1991).  

Optimum pH for rumen fermentation ranges between 5.7 and 7.2, as demonstrated in this study, 

promote the growth of both structural carbohydrates bacteria such as Ruminococcus albus, 

Ruminococcus flavefasciens, Bacterioride saccinogene and non-structural carbohydrate digesters 

such as Bacteriodes ruminocola, Bacteriodes amylophilus, Streptococcus bovis and 

Succinomonas amylolytica (Russell & Wilson, 1996). Higher degradability of dietary fibre was 

expected, however, the results were contrary. As noted above, complex lignification of the hay 

cell wall matrix and the physical characteristic of the forage fraction could have influenced rumen 

degradation. Leng (2014) reported that lignification reduces rates of tissue sloughing by 

planktonic bacteria at primary colonization of plant materials and hydrolytic bacteria and 

penetration by fungal zoospores lead to degradation of feed particle. Byskov et al. (2015) noted 

that rumination time varied with fibre source (hay vs silage).  

 The inaccessible and indigestible carbohydrate constituted 36.4% representing a high fraction in 

energy loss as methane (Cabezas-Garcia, 2017; Moss et al., 2000). Methanogens such as 

Methanobrevibacter ruminantium use hydrogen (H2) or formate with carbon dioxide (CO2) as 

the main substrates (McAllister et al., 1996). Non-structural carbohydrate bacteria produce N 
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compounds, which are essential for growth of SC bacteria. Aldrich et al. (1993) reported that 36% 

NSC improved bacterial N flow. Hoover et al. (1991) reported that 37% NSC supplied adequate 

energy for rumen microbial growth. The poor DMD could be linked to N starvation of SC bacteria 

due to insufficient dietary NSC (Chalupa et al., 1996; Russell et al., 1992). In this study, low DM 

degradability explains insufficient supply of energy from diets for microbial growth and the 

associated low flow of microbial N to the lower gut. Feeding primiparous cows with diets 

adequate in NSC is beneficial, as first-calf heifers require higher nutrient intake to attain mature 

growth and developing foetus (Coffey et al., 2006). Heifers usually calf when they are 85% 

mature (NRC, 1989). 

It is important to feed glucogenic-rich diet such as starch and sucrose during early lactation as it 

increases the supply of nutrients for fibre digesting bacteria and decreased concentration of 

plasma NEFA and BHB (Pickett et al., 2003; Reist et al., 2002). Increased concentration of 

plasma NEFA and BHB is associated with NEB and results in increased incidences of diseases 

associated with peripartum period, decreased milk yield and poor fertility (Esposito et al., 2014; 

McArt et al., 2013; Seifi et al., 2011). Diets were poorly degraded and could not supply adequate 

microbial N to the small intestine which resulted in NEB, loss in body reserves (BW and BCS) 

and the overall poor lactation of cows in 1-30 d and 31-60 d postpartum lactation periods.   

The low rumen degradation noted in this study entails poor outflow of rumen bacteria, and limited 

lower gut nutrient absorption. Metabolism in early lactation is hormeostatically regulated 

(Remppis et al., 2011). When bacteria that degrade soluble carbohydrates such as Streptococcus 

bovis are starved, energy supply to proteolytic and structural (cellulolytic) bacteria is reduced 

resulting in unbalanced and uncoupling of protein and energy degradation. Supplementation of 

lactating diets with readily degradable carbohydrate may enhance good utilization of nitrogen 

compounds including peptides, urea and amino acids and synchronization of carbohydrate and 

protein degradation (Zhao et al., 2015). The effects of NEB can be reduced by providing high-

energy boosters such as propylene glycol during late pregnancy (Ayoub et al., 2015;) and 

antioxidant rich supplements like selenium and vitamin E at calving to support the functioning of 

the immune system (NRC, 2001). Cows are also supplemented with glucose to reduce 

hypoglycaemia. The proposed supplements are not possible in resource limited communal area 

environments hence, cows in this study had no additional nutrient support.   

Rumen N balance was in excess (130%), which is an indicator of uncoupled protein: energy ratio; 

dietary energy was low and hence N utilization for bacterial protein synthesis was affected. 

Unused N is eventually lost as faecal or urinary N. Insufficient utilization of N could increase 

ammonia uptake from the rumen which may be converted to urea in the liver and secreted in milk 

(Useni, 2017). Microbial protein forms over 50% of the total non-ammonia N for lactating cows 
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(Clark et al., 1992; Fellner, 2002). The NRC, (2001) recommends 23% dietary CP and Owen, 

(2014) suggested 20% CP for lactating cows. In vitro nitrogen degradability was low reflecting 

inefficiency in rumen fermentation of CP in the diets. In LD1 diet, 28% of N was within the 

slowly degraded NDF fraction (NDFICP) while 25% was not available (ADICP0). Effectively, 

the diet had only 6.2% available protein and 37% of that component was within the slowly 

degraded NDF available fraction. The LD2 diet (31-60 d postpartum) had effectively 7.4% of CP 

as available protein. However, about 67% of the effectively available protein constitutes the 

fraction of soluble protein and the remaining 33% as the slowly degraded NDF. 

In the current study, the amount of soluble protein in the diets was lower than the level of 50% 

suggested by Chalupa et al. (1996) for adequate provision of ruminal ammonia. According to 

Jusoh et al. (2014), ruminants require a minimum of 7.5% CP for effective function. The 

estimated dietary CP (% of DM) for effective function of the lactation diets were below minimum 

(maintenance). Proteolytic bacteria including Butyrivibrio fibrisolvens, Prevotella ruminicola and 

Clostridium proteoclaticum in the rumen of the cows were starved and bacteria growth was 

therefore compromised.  

Dietary TDN was within the range stipulated for high milk producing cows (60-78%) ( NRC, 

2001). High dietary TDN improved intake and animal performance (Schrama et al., 2013). 

However, the effect of LD1 and LD2 diets would be lower as TDN was on the lower end of the 

suggested range. Non-structural carbohydrates determine TDN and decline as fibre components 

increase. The content of NSC was low and therefore energy concentration was low. During the 

transition phase, cows mobilized body reserved to support additional milk production. The NEm 

in 1st and 2nd lactation cows are higher due to growth requirements estimated at 20% and 10% 

higher respectively (NRC, 1989). 

Cows were zero grazed, hence had low energy cost for exercising and more milk was expected. 

However, high body size and weight as well as requirement for high milk production as lactation 

progressed explain increased energy requirements for lactation. At least, one third of dietary 

nutrients were within the indigestible fractions as reflected by the low RFV; this translates to an 

equivalent loss in performance. The RFV was within the range for forage, crop residues and 

highly lignified herbage including Seriphium plumosum, Sporobolus pyramidulis and other 

perennial decreaser grasses such as Themeda triandra. 

The LRNS program used in this study estimated supply and requirements and nutrient 

supplied for growth, pregnancy and lactation. Measuring animal performance responses to 

diets with different composition at different lactation stages was to quantify intestinal supply of 

MP and ME and requirements for maintenance, growth and production. Production of 
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microbial protein from the degradation of forage fraction in the rumen and the available 

amino acid fraction from dietary crude protein in the lower intestine were presented in the 

model.  

The significant difference (P<0.05) between the observed and expected dry matter intake 

(DMI) of cows in fresh (0-30 d postpartum) and early lactating (30-60 d postpartum) 

explained the need for the cows in these groups to meet the metabolic demands for 

building muscle tissue, maintenance, The higher dry matter intake observed did not result 

in positive performance response of cows as loss in body reserves (BW and BCS) was 

observed in lactating cows at this stage (fresh) of lactation. The quality of the fed diets 

indicative of low dietary CP and the corresponding high dietary fibre may explain the 

observed performance. The risk of severe negative energy balance observed at 0-30 d 

postpartum is a common condition with cows after calving (Wathes et al., 2007). 

However, the condition could be minimized with nutrition management that make 

provision for precision feeding essential to meeting energetic demands and reduce 

incidence of metabolic disorder in cows. It is expected that the cows used in this study as 

first-calf heifers are yet to attain the mature body weight. Therefore, prioritization of 

energy demands for growth (tissue building) usually placed demands on increased energy 

changes instead of milk synthesis (Litherland, 2009). 

 In the current study, the performance of lactating cows reflected the intake of digestible 

energy (DE), metabolizable energy (ME) and metabolizable protein (MP) and differences 

in diet digestibility significantly influenced nutrient supply. It became important that 

forage-concentrate interaction of diets fed to lactating cows provides a positive 

associative influence on performance response as concentrate provide limiting nutrients 

that are deficient in the forage fraction of diets. Similar reports from the study of Tahir, 

(2012) indicated positive associative effects of concentrate-forage resulted in higher ME 

intake compared to the expected such as found with diet supplementation of protein or 

digestible fibre. The lower (P<0.05) concentrations of MP and ME observed in LD1 and 

LD2 diets fed to cows at 0-30 d postpartum and 31-60 d postpartum, respectively, may reflect 

inadequate degradable carbohydrate and crude protein in the diets. This is consistent with 

the reports of Suharti et al. (2011) and Kumar et al. (2013) who found a relationship 

between ME in ruminants and the phycochemical characters of fed diet in which high 

NDF content resulted in high rumen fill, low degradation and the ensued low ME.  
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The total diet MP constitutes rumen degradable protein (RDP) from microbial origin and 

rumen undegradable protein (RUP) from dietary crude protein that bypass rumen 

degradation. It was recommended that the fraction of RDP be ≥ 50% of fed diet (Fox et 

al., 2003). The observed concentration of RDP fraction of 47.9 and 50% respectively in 

LD1 and LD2 diet seems low and may be explained by the physico-chemical 

characteristics of the grass hay fraction of diets. Insufficient supply of RDP in lactating diets 

as observed at both fresh and early lactation period appeared to have resulted in depressed 

ruminal microbial growth and possible reduction in microbial protein synthesis. This may 

result in reduced benefits of the lactation diets to the lactating cows hence, the observed 

loss in body reserves and low milk yield. In agreement with these results, Das et al. (2014) 

revealed that adequate supply of RDP in diets of lactating cows is crucial to efficient 

microbial fermentation and the resultant improved microbial protein yield required for 

optimal benefits to the host animals.   

4.4.2. Energy and protein balance in lactating cows 

Evaluation of energy and protein content of lactation diets at 1-30 d postpartum and 31-60 d 

postpartum period respectively is crucial to assessing the nutritive value of diets and possible 

benefits to the cows. Negative balance of nutrients in diets indicates their insufficient availability 

in meeting cows’ metabolic demands for maintenance, lactation and further growth as cows are 

in first lactation. Low dietary protein and energy in diets may explain low availability of these 

nutrient relative to requirements for optimal lactation. Overall negative energy and protein 

balance occurred as intake of energy and protein lagged behind requirements in cows. Cows had 

tissue depletion, hence the observed decreased BW and BCS of cows. Continuous and higher 

demand for nutrients at 31-60 d postpartum period as milk production increases explains higher 

negative protein balance commonly associated with early lactation. High-energy and protein 

requirements for milk production increase as lactation progresses to peak and production usually 

exceeds available metabolizable energy intake resulting in negative energy balance (Prendiville 

et al., 2011).  However, during summer, grasses and herbaceous legumes are of good quality, 

hence cows could derive better nutrition from grazing that would support them on hay and poor 

quality concentrate. The cows might regain body reserves post-peak. 

Furthermore, the high structural carbohydrate fraction of LD1 and LD2 diets indicating high 

dietary fibre content may have slowed down microbial activity. To this, availability of limiting 

nutrients including energy and amino acids are compromised, resulting in the observed NEB with 

the lactating cows during this study. The nutritional status of the cows at close-up period could 

also contribute to the poor performance of cows post-calving. The results indicate adverse 
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metabolic status such as low BW and BCS in close-up period, negatively influencing postpartum 

performance including depletion of body reserves and low milk yield. The negative protein 

balance recorded in both lactation periods reflected insufficient availability of MP from microbial 

protein and dietary CP of diets. This could be because of low N supply either from dietary CP and 

microbial protein source. It is also possible that diets are not efficiently utilized, resulting in loss 

of nutrients.  

Feeding low dietary CP to dairy cows has been found to result in nutrient waste and environmental 

challenges such as pollution (Kebreab et al., 2002). It appears there was no adequate supply of N 

from the lactation diets to support efficient microbial growth and the corresponding microbial 

protein synthesis. This could have adversely affected ruminal production of VFA, propionate to 

acetate ratio and energy requirements of the cows. Overall, most cows were hypoglycemic and 

the condition was more evident in cows at 31-60 d postpartum period. This was reflected in the 

amount of mobilized energy from body reserves at different periods of lactation. It would require 

high-energy boasters or inophores such as monensin to stimulate higher nutrient supply from the 

gut for the treatment of the prevalent hypoglycemia in dairy cows raised on smallholder farms.  

4.4.3. Protein metabolism 

Mean concentration of total protein (TP) in cows in both investigated lactating periods were below 

the reference value range for lactating cows. The effect was more pronounced for cows at 31-60 

d postpartum period. Lower concentration signals low dietary CP resulting in low circulating 

blood amino acids that are usually taken up by mammary cells for milk protein synthesis hence, 

the observed low circulating TP. The low concentration of AL observed in cows indicates 

insufficient available protein in diets required for optimum milk synthesis. Insufficient dietary CP 

contributed to low AL concentration hence, the low lactation performance observed in this study. 

Kubkomawa et al. (2015) noted concentration of AL in the serum reflects protein status of the 

cow and the concentration decreased in the event of inadequate feeding of dietary CP. Increased 

blood circulating AL in cattle is associated with good nutritional standing and BCS (Coppo, 2004; 

Damptey et al., 2014). Low AL concentration of cows reflected poor nutritional condition hence, 

the consequential poor BCS of less than 2.5 in lactating cows in this study. Increased 

concentration of serum AL, AL: GL ratio increased with feeding higher levels of dietary CP 

(Amanlou et al., 2017).  

Low concentration of GL in the cows indicated healthy status of cows and increased concentration 

of GL designated occurrence of disease condition (Whitaker et al., 1999; Ndlovu et al., 2007; 

Damptey et al., 2014). The within-range ratio of AL: GL in cows in the current study as lactation 

progresses may be explained by the healthy status of the animals. Although cows had higher 
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concentration of globulin than albumin during the investigated lactation periods, cows did not 

develop disease condition. The reason for this is not clear. However, it is possible that the low 

concentration of AL and high GL concentration indicates low dietary protein in diets for the 

lactating cows with no consequential incidence of disease condition. The parity level 

(primiparous) and moderate BW and BCS (not overconditioned) may lower the chances of the 

cows’ susceptibility to infections thereby promoting longevity of cows, low rate of culling, better 

financial returns and sustainable dairy production. 

Mobilization of body reserves such as protein to support milk production typical to early lactation 

may explain increased creatinine concentration in cows. This is consistent with Cozzi et al. (2011) 

who suggested that breakdown amino acids could have resulted from mobilized muscle protein 

from the body tissue. Furthermore, responses of cows to hot weather conditions and possible 

consequential body dehydration common to the production environment (semi-arid) investigated 

could explain the high circulating creatinine observed in the cows.  

Increased concentration of BUN with increased dietary CP explains the higher BUN observed in 

cows fed at LD2 diet phase with higher dietary CP. Production environment (semi-arid) 

characterised by high temperature and low humidity may play a role in predisposing cows to heat 

stress. Demand for increased milk protein declines during which excess amino acids are oxidised 

and degraded resulting in increasing urea production and concentration in the blood as noted by 

Liu et al. (2003b). 

4.4.4.  Performance of lactating Jersey cows 

Loss of BW and BCS around calving are common phenomena in lactating cows (Heinrichs et al., 

2011) as cows mobilize body reserves to support milk production (Busato et al., 2002). Energy 

from reserves yields 0.82 Mcal/cow/day towards milk production. Based on this efficiency, 

energy from body reserve mobilization was about 7.0 Mcal/cow/day. This is typical during 

transition. Protein breakdown contributed 83% of the energy and fat contributed 17%. This 

indicates higher depletion of body tissue compared to fat. High blood creatinine immediately 

postpartum confirms muscle breakdown during which cows mobilise protein from endogenous 

tissues such as visceral tissue and skeletal muscle to provide amino acids essential for milk 

synthesis in the occurrence of negative energy and protein balances (Damptey et al., 2014) 

Mean milk yield of 9.3 kg /cow/day entails that LD1 had supported maintenance and 3 

kg/cow/day with no energy available for growth. The difference (6.3 kg of milk) was contributed 

from body reserves. This is expected as intake lags behind production hence, depletion of body 

tissues. This level of reserve mobilization is acceptable, as it would take 90 days for a cow to lose 

one BCS. Holstein cattle mobilizes up to 23 Mcal/day to support 20 kg milk production in early 
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lactation (NRC, 2001) relative to 7 Mcal/day for 9.3 kg milk observed in Jersey cows in the 

current study. Similar findings of Litherland (2009) indicated fat and multiparous cows 

experience more NEB. The need for higher energy density in early lactation should be 

emphasized. Cows had further decrease in BW even when diets were changed 4 weeks 

postpartum. About 98% of excess nutrients are depleted as protein and 2% as fat. Additional 

energy demand from reserves increased by 5 Mcal/day which means the new diet (LD2) did not 

support additional kilograms of milk produced as the lactation period progressed. This resulted in 

further decrease in the BW and BCS observed at this stage of lactation.   

The low milk yield recorded in this study reflected the limitation of the fed diets. Feeding of less 

than16% dietary CP limits milk production as noted in this study. NRC (2001) recommended 

15% dietary CP for a first-calf heifer at close-up prepartum period to support foetus growth and 

optimal early lactation performance. Milk production in primiparous cows in early lactation 

increased with high dietary CP compared to low level dietary CP prepartum (Santos et al., 2001). 

The low milk protein percentage observed in this study was lower than values reported in other 

studies that ranged from 3.6 to 3.8% (Bailley et al., 2005; Palladino et al., 2010) for Jersey cow 

reflected the low dietary NSC such as starch. Voigt et al. (2003) noted feeding of glucogenic diets 

increased percentage of milk protein. Other reports showed no effect of feeding starch on milk 

protein (Garnsworthy et al., 2009). Deficit of these energy metabolites could negatively influence 

partitioning of nutrients (Mackle et al., 1999). Besides, different responses of milk protein with 

supply of energy may possibly be related to glucogenic nutrients such as amino acids in the rumen 

(Hills et al., 2015). Supply of essential and non-essential amino acids to mammary cells is 

required for milk protein synthesis (Liu et al., 2003b). It was observed that milk protein 

percentage decreased with increased milk yield. The ratio of forage to concentrate in diets was 

higher than the suggested 40:60 by Sutton et al. (1985) to maintain a normal milk fat percentage. 

The physical characteristics of grass hay may have resulted in high dietary NDF which are slowly 

degraded, hence the low-fat content.  

The higher content of lactose recorded for cows as lactation progresses indicates increased 

production of glucose and the ensuing lactose production. The amount of propionate produced as 

an end-product of fermentation serves as the main substrate for the production of glucose 

(gluconeogenesis) which in turn serves as a major source of energy for ruminants (Bodas et al., 

2012). Blood glucose is the major precursor of lactose (Kittivachra et al., 2007). This may explain 

the increased lactose content of milk produced in 31-60 d postpartum period and increased milk 

yield with possible increased in blood glucose. Low milk yield and lactose content of milk in 

cows reflected possible low energy availability and low blood glucose. It is obvious that the milk 
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yield at different lactation periods was induced by the level of lactose synthesis as lactose 

constituted the major volume of milk (Sutton et al., 2003) 

The low MUN concentration in cows indicates inadequate dietary CP, reduced activity of 

proteolytic bacteria such as Clostridium spp and less protein degradation (proteolysis) in diets.  

Jilek et al. (2006) and Abdouli et al. (2008) showed that the concentration of MUN decreased 

with increased lactation period. The reason for the inverse relation was not clear. Nevertheless, 

the low metabolic demands for lactation and the lower milk production of cows at 1-30 d 

postpartum period may partly explain the high concentration of MUN recorded compared to cows 

in subsequent lactation period. Cows in low lactation require less milk protein and hence CP was 

less efficiently utilized. In addition, the level of MUN could indicate imbalance in rumen 

ammonia utilization. Ruminal N was under-utilized resulting in the observed increased MUN. 

Diets high in NSC such as starch improve rumen ammonia usage as noted by Drackley et al. 

(2006). The level of urea nitrogen in milk produced by cows in this study relative to milk yield 

should support good fertility in cows as too high levels of MUN could be detrimental to 

reproductive performance in the cows. Milk urea nitrogen greater than 19 mg/dl (19% of milk 

produced) decreases fertility (Butler et al., 1995).  

Somatic cell count (SCC) of ≤100 x 103 cells/mL indicates normal healthy cow while high level 

(>400 x 103/mL) of SCC indicates incidence of infection such as mastitis (Bytyqi et al., 2010; 

Sharma et al., 2011). Cows had high SCC but decreased in latter lactation stage (31-60 d 

postpartum). This could be expected as preparation of inborn immune response for calving and 

improvement in the defence mechanism of the mammary gland may take precedence around 

calving. Cinar et al. (2015) reported a higher SCC of about 292 x 103 cells/mL 15 days post-

calving which progressively decreased to about 93 x 103 cells/mL in three month postpartum with 

increased milk yield.  In the present study, the SCC recorded later during lactation was within the 

reference value for healthy cows indicating cows are healthier as lactation progresses. Cows may 

have gradually recovered from possible infections or due to reduction in immune response of 

cows and the corresponding decreased presence of antigens, hence the low SCC observed as 

lactation progressed and milk yield increases. Measures to reduce SCC during lactation may 

reduce significant milk loss (Hand et al., 2012). 

The low calculated yield of ECM and production efficiency for cows indicate low efficiency of 

feed conversion to milk. This implies that less milk is produced relative to the amount of feed 

intake. Overall, the physico-chemical characteristics of diets notably influenced the profile (level 

and type) of absorbed nutrients from the rumen or gastrointestinal tract into the bloodstream of 

the cows. This explains the corresponding effect on energy metabolism (Williams and Stanco, 
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2000; Garnsworthy et al., 2008) and the ensuing influence on milk yield and composition (Van 

Knegsel et al., 2005; Useni, 2017). 

4.4.5. Conclusion  

The intake of a high forage fraction exceeded NRC (2001) recommendations and resulted in low 

degradation and poor performance of lactating cows. Although, cow diets were supplemented 

with concentrates, their performance was similar to that of beef on natural grazing. The observed 

performance responses of cows at different periods of lactation reflected the nutritive 

value of the fed diets in terms of the rumen degradability and availability of potential 

nutrients for the benefit of the animals. The lower nutrient concentration and intake of 

lactation diets than predicted values from the in this study could be due to differences in 

the environmental climate, weather, humidity and temperature of the production sites, 

diet composition, and animal breed, feeding and animal management style between actual 

and predicted situations. Supplementing diets for cows that are in poor body condition reduces 

efficiency of nutrient utilization. Increased concentrate supplement at 31-60 d post calving 

produced a marginal increase in milk yield as supply of nutrients was limited in supporting 

substantial milk production. Gradual increase of concentrate supplement in cows’diets could 

enhance efficient utilization of dietary nutrients and ideal BC for lactation. 
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CHAPTER 5 

GENERAL CONCLUSION AND RECOMMENDATIONS  

 

5.1 General conclusion 

Dairy production on smallholder farms could be a viable enterprise providing income and improve 

nutrition, health and income security for smallholder households. Nutrition of dairy cows on the 

smallholder farms was therefore investigated. On-farm observations and measurements were 

fitted into a nutrient modelling application, analysed and a nutrient narrative on the performance 

of transition cows (pregnant and early lactation dairy cows) on communal area farms in Limpopo 

province, South Africa was synthesised. The research focused on the nutrient supply and 

absorption of the most common diets fed pregnant heifers and during early lactation and their 

effects on milk production and growth.  The quality of the forage fraction (grass hay) of diets, 

diet degradation and nutrient absorption in the lower gut were contained in the nutrition model 

applied in nutrient prediction studies on dairy nutrition  These evaluations and overall effects of 

diet quality on the performance of the animals formed the basis of this research.  

Diets were lower in nutrient value and deviated significantly from the recommended levels. 

Feeding of high levels of structural carbohydrate to lactating cows had negative effects on the 

effective microbial fermentation and degradation. The findings explained the complexity of the 

composition of the forage fraction of diets and inefficiency of nutrient supply. These could be 

linked to supply of more mature and lignified grass hay fraction in diets especially in the dry 

season (winter) on smallholder farms in Limpopo province. 

A quality diet for dairy cow prepartum should contain sufficient degradable dietary carbohydrate 

and protein sources for efficient microbial protein synthesis and amino acids for the heifers’ 

benefit. However, the concept of the improved feeding program of pregnant cows, particularly 

the first-calf heifers, aimed at providing the required nutrients for foetal and heifers growth, 

building of good body reserves that will minimize mobilization of body fat and other metabolic 

diseases in the early lactation stage. The program is worth implementing in the production system. 

Results indicated diets fed in pregnancy had sufficient nutrients for maintenance but less nutrients 

for pregnancy and growth; heifers need nutrients to support both pregnancy and growth. The 

greatest impact was during early lactation due to reduced gut volume, low intake and added 

demand for galactopoeisis. Heifers and lactating cows may experience low secretion of insulin-

like growth factor (IGF-1); a hormone secreted by the liver as a response to the stimulation of 

GH. The growth hormone (GH) stimulates IGF for the proliferation and differenciation of bone 
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and muscle cells promoting growth respectively in bone and muscle hence the observed low 

growth in heifers. The secretion of somatotropin, a polypeptide GH from the anterior pituitary 

positively affected postnatal metabolism and growth in skeleton and tissues.  Glucose is usually 

released from the lower gut into the blood stream for absorption. Adequate glucose concentration 

in the blood is prerequisite to high milk yield in dairy cows. In this study, lactating cows raised 

on the smallholder farms were hypoclycemic due to low glucose concentration in the blood as 

evident in the NEB observed in early lactation. Blood stimulates secretion of glycogon and 

equinephrine hormones for the conversion of stored glycogen to glucose through the process of 

glycogenolysis. There was low production of glucose from diets to be utilised by cows for 

lactation. This resulted in the low availability of glucose and consistent loss of body reserves to 

support milk synthesis at lactation which was observed in early lactation. In addition, the low 

milk yield in the cows during early lactation could be linked to the low effect of GH in stimulating 

lactation in the cows hence, milk synthesis was hampered. 

Meeting the unique nutrient requirements of dairy cows for smooth transitioning from gestation 

to lactation period could prevent metabolic disorder and improved postpartum performance and 

longevity in cows. Supplementing pregnant heifers’ diets with glucose could supply additional 

energy around calving and improve performance. Although, the cost could be a concern, but the 

positive outcome could be worthwhile. It is known that administration of GH to lactating cow 

improves milk production without changing milk composition with higher positive effects on high 

producing cows. However, injection of GH to the lactating cows in the communal smallholder 

farms may not be feasible as production cost for resource and skilled personel limited sector may 

hamper such treatment. 

The intake of a high forage fraction exceeded NRC, (2001) recommendations and resulted in low 

degradation and poor performance of lactating cows. Although, cows’ diets were supplemented 

with concentrates, their performance was similar to that of beef on natural grazing. Supplementing 

diets for cows that are in poor body condition reduces efficiency of nutrient utilization. Increased 

concentrate supplement at 31-60 d post calving produced a marginal increase in milk yield as 

supply of nutrients was limited in supporting substantial milk production. Gradual increase of 

concentrate supplement in cows’diets could enhance efficient utilization of dietary nutrients and 

ideal BC for lactation. The tested hypotheses were therefore proven to be true as nutrient supply 

of standardized diets fed to dary cows on smallholder farms investigated in this study affect 

growth and lactation performance of dairy cows. However, accurate evaluation of feeding 

value of lactation diet at different lactation stages and nutrient requirements appeared to 

be core to achieving optimal growth, improved cows’ health, feed efficiency and lactation 

performance of Jersey cows on smallholder farms 
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5.2 Recommendations  

A quality diet for dairy cow prepartum and postpartum should contain sufficient degradable 

dietary carbohydrate and protein sources for efficient microbial protein synthesis and amino acids 

for the heifer’s benefit and optimal lactation. However, the concept of improved feeding program 

for dairy cows aimed at providing the required nutrients for foetal and heifers growth especially 

in first-calf heifers; building of good body reserves that will minimize mobilization of body fat 

and other metabolic diseases in the early lactation stage. Improved feeding program is worth 

implementing in the smallholder dairy production system for increased procuction and enhanced 

sustainable dairy enterprise, and valuable contribution of the sector to the food security.  This 

may include; 

• Planting of high energy cereal crops such as maize and sorghum as a source of non-

structural carbohydrate by smallholder farmers to supplement cow diets as diets were low 

in non-structural carbohydrate is recmmended. The results of this study showed that 

increasing NFC of diets for cows could improve growth and lactation, therefore, 

increasing the fraction of NFC including starch in lactation diets is suggested for 

enhanced diet feeding value, efficient nutrient utilization and increased benefits of diets 

to the cows. 

• Planting of resilient shrubs and browsers as feed supplements to dairy cows around 

production environments during dry season is suggested. This may prevent inadequate 

nutrient supply typical to this season and to reduce cost of commercial concentrtes  

• In the current study, it was noted that feeding of high structural carbohydrate to lactating 

cows had negative effect on effective microbial fermentation, degradation and adequate 

utilization of diet nutrient and restricted diet benefit to the cows. Therefore, there is a 

need to improve the quality of dietary forage by selecting non-lignified grass for 

improved degradation of diet nutrients and availability of energy and N required for 

growth and lactation in dairy cows. 

• Improvement of dietary CP by increasing the level of concentrate in dairy diets may 

improve MP and ME of diets and should be considered on the smallholder farms..Low 

forage to concentrate ratio in diet and increased energy dense could adequately supply 

and make available limiting nutrients through efficient microbial fermentation of diets in 

the rumen. As a result, improved diet degradation and absorption of nutrients into the 
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lower gut and the subsequentlybetter production performance responses of fed cows 

should be expected. Therefore, maintaining sufficient dietary forage that will stimulate 

efficient microbial fermentation, enhance microbial protein synthesis and increased 

availability of amino acids is key to optimizing growth and lactation in dairy cows.  

• Technically, training of smallholder farmers by appropriate development and support 

programs through an extention personnel on feeding management is suggested as 

management structure in this sector is very dynamic on feeding management is 

fragmented A well-managed transition period in dairy cows involves preparation of good 

BW and BCS of close-up pregnant heifers by meeting the cows’ unique nutrient demands 

is prerequisite and crucial to maximizing postpartum performance. 

• Future research is suggested to implement predicted requirements of nutrients in this 

study in dairy cow diet on smallholder farms and to further evaluate their production 

performance accordingly. 

• There is need to evaluate the performance of dairy cows on smallholder farms from early 

gestation until late lactation to assess effects of low nutrient supply beyond transition 

period. 

• Evaluation of nutritional status including energy and protein of dairy cow on smallholder 

farms over more than one lactation period and the long term effect on their production 

and reproduction performance. 
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APENDICES 
 

Appendix 1: Composition of the buffer solution used in the in vitro degradability and the gas 

production experiments. 

Reagent Quantity added 

Rumen buffer solution  

Distilled water I litre 

NH4CO3 4 g 

NaHCO3 35 g 

Dissolve 0.122 g resaruzin in 100ml (distilled water)   

  

Macro- mineral solution  

Distilled water 1 litre 

NAH2PO4 11.4 g (anhydrous) 

KH2PO4 12.4 g (anhydrous) 

MgSO4.7H2O 1.17 g 

  

Micro- mineral solution  

Distilled water 100 ml 

CaCl2.2 H2O 13.2 g 
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Appendix 2: Summary of LRN program for dry cows (1/42) 

 

One Page Summary (VH DA1, LRN program (DRY COWS-JULY)., 2017-07-24) 

Animal Inputs 
 

Animal Type:  Dry Cow  Age at First Calving:  24 months  Previous Temp:  24 °C 

Breed:  Jersey  Calving Interval:  13 months  Current Temp:  28 °C 

Age:  22 months  Milk Production:  0 kg/d  Activity:  Small Free-Stalls (< 200 Cows) 

Shrunk Body Weight:  350 kg  Milk Fat:  5,2 (%)   

Days Pregnant:  220 days  Milk True Protein:  3,9 (%)   

Condition Score:  2,00  Days In Milk:  0 months   

 

 

 

Diet Nutrient Balances        
 

 

 

MnCl2.4 H2O 10.0 g 

CoCl2.6 H2O 1.0 g 

FeCl2. 6H2O 8.0 g 

  

Reducing agent (Cysteine sulphide)  

Beaker A  

Distilled water 50 ml 

Cysteine hydrochloride 0.625 g 

1 N NaOH 4 ml 

  

Beaker B   

Distilled water 50 ml 

Na2S.9H2O 0.625 g 

  

Mixed A & B solution 100 ml 

  

Final buffer solution (per 4 litre)  

Distilled water 2 litre 

  

Rumen buffer solution 1 litre 

Macro-mineral solution 1 litre 

Resaruzin 0.1% (w/v) 0.25 ml 

Micro-mineral solution 0.25 ml 

Tryptose 5 g 

  

Final  buffer solution + reducing solution   

 Final buffer solution       4 litre 

Reducing solution (mixed A & B solution) 100 ml 

 

 

 ME MP Ca P K 

Requirements (Mcal/d) (g/d) (g/d) (g/d) (g/d) 

      

Maintenance 16,19 545 0 0 0 

Pregnancy 2,64 139 4 3 1 

Lactation 0,00 0 0 0 0 

Growth 2,66 53 2 1 0 

 nNet Required 21,49 737 12 14 39 

Total Required 21,49 737 12 14 39 

Total Supplied 15,98 502 18 26 160 

Balance -5,50 -235 7 12 122 
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Animal Performance 

 

 
 

 

 
 

Diet Summary    Diet Parameters   

 DM As-Fed     

Feed/Mix Name  (kg/d)  (kg/d)  MP From Bacteria:  376 (g/d)  Calcium:  0,20% DM 

    MP From Undeg. Feed:  127 (g/d)  Phosphorus:  0,28% DM 

Love grass hay 6,700 7,204  MP% - Bacterial:  74,82 (%)  Magnesium:  0,11% DM 

comm lactating diet 2,500 2,717    Potassium:  1,74% DM 

    Methionine (%MP):  2,75 (%)  Sodium:  0,01% DM 

    Lysine (%MP):  7,69 (%)  Chlorine:  0,02% DM 

      Sulfur:  0,04% DM 

    Ruminal N Balance:  107 (g/d)   

    Peptide Balance:  37 (g/d)  Cobalt :  0,22 ppm 

    Urea Cost:  0,49 (Mcal/d)  Copper :  14,84 ppm 

      Iodine :  14,57 ppm 

    Dry Matter:  93%  Iron :  69,33 ppm 

    Crude Protein:  12,9 (%DM)  Manganese :  123,36 ppm 

    TDN :  0 (%DM)  Selenium :  0,00 ppm 

    ME:  1,74 (Mcal/kg DM)  Zinc :  27,67 ppm 

    NEm:  0,90 (Mcal/kg DM)  Vitamin A :  6700 KIU/d 

    NEl:  1,12 (Mcal/kg DM)  Vitamin D :  16750 KIU/d 

    DIP:  85%  Vitamin E :  43550 IU/d 

    peNDF:  45 (%DM)   

    Total Forage in Ration:  78 (%DM)   

    Total NFC:  18%   

    Cost per Animal/d :  $ 0,00   

DMI - Actual:  9,2 (kg/d)   

DMI - Predicted:  6,7 (kg/d)   

ME Balance:  -5,50 (Mcal/d)   

MP Balance:  -234,5 (g/d)   

Daily Weight Change due to Reserves:  -0,7 (kg/d)   
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 Appendix 2: Summary of LRN program for lactating cows (1/42) 

 a 

One Page Summary (VH L1A, LRN program (LACTATING COWS)., 2017-07-19) 
Animal Inputs 

 
Animal Type:  Lactating Dairy Cow  Age at First Calving:  24 months  Previous Temp:  26 °C 

Breed:  Jersey  Calving Interval:  13 months  Current Temp:  31 °C 

Age:  25 months  Milk Production:  8 kg/d  Activity:  Small Free-Stalls (< 200 Cows) 

Shrunk Body Weight:  373 kg  Milk Fat:  4,0 (%)   

Days Pregnant:  0 days  Milk True Protein:  4,0 (%)   

Condition Score:  2,00  Days In Milk:  30 months   

 

 

 

Diet Nutrient Balances 

 

 ME MP Ca P K 

Requirements (Mcal/d) (g/d) (g/d) (g/d) (g/d) 

      

Maintenance 15,57 606 0 0 0 

Pregnancy 0,00 0 0 0 0 

Lactation 9,92 492 12 8 12 

Growth 0,99 28 1 0 0 

Net Required 26,48 1127 24 20 57 

Total Required 26,48 1127 24 20 57 

Total Supplied 21,31 638 19 32 168 

Balance -5,17 -489 -5 12 111 

  

 

 

Animal Performance 

 

DMI - Actual:  11,2 (kg/d)  Daily Weight Change due to Reserves:  -0,8 (kg/d) 

DMI - Predicted:  8,0 (kg/d)  Days to Lose 1 Condition Score :   67.50452 

Inputted Milk Production:  8,0 (kg/d)  Milk/Feed:  0,7 

ME Allowable Milk:  3,8 (kg/d)   

MP Allowable Milk:  0,1 (kg/d)   

   

   

 

 
 

 

Diet Summary    Diet Parameters   

 DM As-Fed     

Feed/Mix Name  (kg/d)  (kg/d)  MP From Bacteria:  493 (g/d)  Calcium:  0,17% DM 

    MP From Undeg. Feed:  146 (g/d)  Phosphorus:  0,29% DM 

Love grass hay 6,740 7,247  MP% - Bacterial:  77,19 (%)  Magnesium:  0,11% DM 

comm lactating diet 4,500 4,891    Potassium:  1,49% DM 

    Methionine (%MP):  3,02 (%)  Sodium:  0,01% DM 

    Lysine (%MP):  8,32 (%)  Chlorine:  0,02% DM 

      Sulfur:  0,06% DM 

    Ruminal N Balance:  131 (g/d)   

    Peptide Balance:  36 (g/d)  Cobalt :  0,18 ppm 

    Urea Cost:  0,62 (Mcal/d)  Copper :  12,39 ppm 

      Iodine :  11,99 ppm 

    Dry Matter:  93%  Iron :  62,38 ppm 

    Crude Protein:  13,4 (%DM)  Manganese :  102,70 ppm 

    TDN :  0 (%DM)  Selenium :  0,00 ppm 

    ME:  1,90 (Mcal/kg DM)  Zinc :  22,79 ppm 

    NEm:  1,22 (Mcal/kg DM)  Vitamin A :  6740 KIU/d 

    NEl:  1,22 (Mcal/kg DM)  Vitamin D :  16850 KIU/d 

    DIP:  86%  Vitamin E :  43810 IU/d 

    peNDF:  37 (%DM)   

    Total Forage in Ration:  68 (%DM)   

    Total NFC:  23%   

    Cost per Animal/d :  $ 0,00   
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