
 

            Nzou V – 46563946 – MSc in Computing  

 

 

 

 

DEVELOPMENT OF A FRAMEWORK TO UNDERSTAND THE FACTORS THAT INFLUENCE 

SOFTWARE PRODUCTIVITY IN AGILE TEAMS 

 
 
 

by 
 
 
 

VIOLA NZOU 
 

 
 

 
submitted in accordance with the requirements for 

the degree of 
 

 
 

MASTER OF SCIENCE 
 
 
 

In the subject 
 
 

COMPUTING 
 
 

at the 
 
 

 
University of South Africa 

 
 

 
Supervisor:  Professor E. Mnkandla 

 
 

Date (October 2017) submitted 



ii 

 

ABSTRACT 

 

Productivity improvement in the software industry is one of the major challenges facing many 

software development companies in this century. Most companies have adopted agile 

methodologies in order to profit from the benefits claimed for them. Agile methodologies are 

characterised by frequent software delivery, short feedback loops, quicker response to change, 

and problem identification earlier in the development process.  

 

The agile approach has been recognised as paving a way for companies to acquire higher 

software productivity, delivering good-quality and cost-effective software, enabling software 

development companies to respond to business challenges with their demands for high quality, 

high performance and high development speed in delivering the final product. For companies 

that adopt agile methodologies, understanding the factors that influence their teams’ software 

development productivity is a challenging task for management and practitioners today. 

 

In this research, an analysis is presented that identifies productivity factors that affect agile 

teams. It is a study of agile methods to identify common agile practices and/or values that have 

impact on productivity, and describes suitable metrics that could be used to measure agile team 

productivity. A qualitative research approach was used, and the case study was chosen as the 

research strategy. Two South African companies that are located in two different provinces and 

that adopted agile methodologies in their software development, were selected for the case 

studies. Qualitative content analysis was used in the research to permit subjective interpretation 

of factors that influence agile team productivity, and to analyse to what extent these factors 

affected productivity. 

 

This research has shown that an understanding of the factors that influence an agile team’s 

productivity gives significant insight into the way agile teams work, motivates team members to 

work together, and leads to uniform metrics in tracking each team’s progress. The study 

indicates that tracking an agile team’s work and providing adequate tools needed to execute 

their tasks results in improving agile team productivity. It should be recognised that using metrics 

to measure performance in agile teams is helpful in creating a team’s culture and trust. 



iii 

 

In this study, it was found that the factors identified in both literature and case studies affected 

productivity in the two companies under study, both positively and negatively. The study also 

found that applying the correct metrics in assessing, analysing and reviewing an agile team’s 

performance is important when monitoring productivity. Successful software delivery is only 

possible if individuals are committed to their work, are provided with the necessary tools and 

have access to a stable working environment. In addition, individual factors such as knowledge, 

skills, abilities, personalities and experience should be considered when forming agile teams. 

Consideration of these factors will result in grouping people that are able to work together and 

achieve a common goal, which is important in improving productivity. A conceptual framework 

for agile team productivity was proposed. The discussion of the findings is presented in more 

detail in this research. 

 

KEY TERMS: 

 

Productivity;  Agile;  Agile teams;  Agility;  Metrics;  Productivity factors;  Performance monitoring;  

Agile practices;  adaptability;  Agile methods;  Productivity measurement;  Scrum;  Extreme 

programming;  Agile processes. 

 

 

 
 

 

 

 

 

  



iv 

 

DECLARATION 
 

Name:                Viola Nzou 

 

Student number:       4656-394-6 

 

Degree:                     Master of Science in Computing (98961) (Full Dissertation) 

 

Title of the dissertation as appearing on the copies submitted for examination: 

 

Development of a framework to understand factors that influence productivity in agile teams 

 

I declare that the above dissertation is my own work and that all the sources that I have used 

or quoted have been indicated and acknowledged by means of complete references. 

 

     

________________________ ____________________   _16/10/2017__ 

        SIGNATURE        DATE  

 

 



v 

 

ACKNOWLEDGEMENTS 
 

Firstly, I would like to thank my supervisor, Professor Ernest Mnkandla, for his guidance and 

extraordinary support. His advice, comments, suggestions, reviews and encouragement were 

beyond measure, and the completion of this research would not have been possible without his 

support. I truly appreciate his help, guidance and encouragement. 

 

To the management and staff of Synthesis and Digiata Technology Services (Pty) Ltd: I would 

like to express my sincere appreciation for opening your doors to afford me an opportunity to do 

my field research. To all the participants who took part in the interviews, thank you so much for 

your comments, insight and responses. Without you all, this research would not have been 

completed. 

 

I would like to acknowledge the University of South Africa, School of Computing, academic staff 

and administrative staff. Thank you for all the workshops, seminars and training that you offered 

me during the course of my studies. A lot of new things were learnt which improved my research 

skills. I would also like to thank the University of South Africa student funding for their financial 

support. All of this dissertation was possible because of your assistance.   

 

Many thanks goes to my husband, Ernest Osaro, and my daughters, Christiana and Stacey, for 

the indescribable support and love that they have shown me during my research journey. Their 

love and encouragement made me persevere and work harder to reach greater heights every 

single day. 

 

My sincere gratitude goes to my mom, Rosemary, and my late dad, Saranavo Hadrian, for 

teaching me the importance of education from a very young age. Your support and love has kept 

me going to this day. Many thanks to my brothers and sisters who have always been there for 

me during my research journey. Your contribution, encouragement and constructive criticism 

has made me a firmer, harder-working person.    

 

Lastly, I would thank my family, friends, colleagues and everybody for supporting me throughout 

my research journey. My achievements were made possible with your inspiration and support.  



 

            Nzou V – 46563946 – MSc in Computing  

 

TABLE OF CONTENTS 
 

ABSTRACT ....................................................................................................................................................... ii 

DECLARATION ................................................................................................................................................ iv 

ACKNOWLEDGEMENTS .................................................................................................................................. v 

LIST OF FIGURES ............................................................................................................................................ v 

LIST OF TABLES ............................................................................................................................................. vi 

ACRONYMS ..................................................................................................................................................... vii 

Chapter 1: Introduction ................................................................................................................................ 1 

1.1 Research background .............................................................................................................................. 1 

1.2 Problem statement ................................................................................................................................... 5 

1.3 Research context ..................................................................................................................................... 7 

1.4 Research questions ................................................................................................................................. 7 

1.5 Research objectives ................................................................................................................................. 8 

1.5.1 Main objective .................................................................................................................................... 8 

1.5.2 Secondary objectives ......................................................................................................................... 8 

1.6 Research methodology ............................................................................................................................ 9 

1.6.1 Research design ................................................................................................................................ 9 

1.6.2 Research method ............................................................................................................................ 10 

1.6.3 Data collection methods .................................................................................................................. 10 

1.7 Ethical measures.................................................................................................................................... 10 

1.8 Chapter outline ....................................................................................................................................... 10 

Chapter 2: Literature review and analysis ................................................................................................ 12 

2.1 Introduction ............................................................................................................................................ 12 

2.2 Agile software development models ....................................................................................................... 13 

2.3 Differences between agile and traditional paradigms ............................................................................. 16 

2.4 Agile teams and the concept of agility .................................................................................................... 19 

2.4.1 The concept of agility ....................................................................................................................... 20 

2.5 Definitions of software productivity ......................................................................................................... 23 

2.5.1 Measurement of software productivity.............................................................................................. 27 

2.5.2 Historical software measurement techniques ................................................................................... 29 

2.5.3 Reasons for measuring software productivity ................................................................................... 30 

2.5.4 Software measurements and productivity factors ............................................................................. 31 

2.5.5 Overview of software productivity factors ......................................................................................... 35 



ii 

 

2.6 Productivity in agile teams ...................................................................................................................... 39 

2.7 Summary ............................................................................................................................................... 40 

Chapter 3: Research methodology and design ........................................................................................ 42 

3.1 Introduction ............................................................................................................................................ 42 

3.2 Research methodology .......................................................................................................................... 42 

3.2.1 The research context ....................................................................................................................... 43 

3.2.2 The potential research outcome ....................................................................................................... 44 

3.2.3 Theoretical framework or proposed conceptual framework .............................................................. 45 

3.2.4 The research approach .................................................................................................................... 47 

3.2.5 The research philosophy ................................................................................................................. 50 

3.2.6 Discussion and rationale for the choice of research strategy ........................................................... 55 

3.3 Data collection and analysis ................................................................................................................... 58 

3.3.1 Interviews ............................................................................................................................................ 58 

3.3.2 Group interviews (focus groups) .......................................................................................................... 60 

3.3.3 Data generation methods for this study in context ............................................................................... 61 

3.3.4 Analysing textual data ......................................................................................................................... 62 

3.3.5 Non-textual qualitative data analysis ................................................................................................... 62 

3.4 Research design .................................................................................................................................... 63 

3.4.1 A model of the research process ......................................................................................................... 63 

3.4.2 Overview of the research process ....................................................................................................... 65 

3.5 Summary ............................................................................................................................................... 72 

Chapter 4: Data collection .......................................................................................................................... 73 

4.1 Introduction ............................................................................................................................................ 73 

4.2 The Interviews ........................................................................................................................................ 74 

4.2.1 Selecting the interviewees ............................................................................................................... 75 

4.2.2 The interview procedure .................................................................................................................. 76 

4.2.3 Conducting interviews ...................................................................................................................... 77 

4.2.4 The interviews – Process ................................................................................................................. 78 

4.3 Data analysis ......................................................................................................................................... 78 

4.3.1 Data reduction ................................................................................................................................. 80 

4.3.2 Data display ..................................................................................................................................... 81 

4.3.3 Conclusion drawing and verification ................................................................................................. 82 

4.4 Foundation of data collection foundation – Factors that affect agile team productivity ............................ 82 

4.4.1 Collating agile productivity factors .................................................................................................... 83 

4.4.2 Validating agile productivity factors .................................................................................................. 85 

4.5 Data collection ....................................................................................................................................... 86 



iii 

 

4.5.1 Data collection – Interviews ............................................................................................................. 88 

4.5.2 Data collection – Importance of adopting agile methodologies ......................................................... 89 

4.5.3 Data collection – Factors that influence productivity in agile teams .................................................. 90 

4.5.4 Data collection –Definitions and metrics of software productivity ................................................... 107 

4.5.5 Data collection – Agile productivity metrics and performance monitoring ....................................... 109 

4.5.6 Data collection – Monitoring productivity in self-managed teams ................................................... 111 

4.6 Data analysis – Productivity factors ...................................................................................................... 113 

4.7 Summary ............................................................................................................................................. 115 

Chapter 5: Discussion of findings ........................................................................................................... 116 

5.1 Introduction .......................................................................................................................................... 116 

5.2 The results ........................................................................................................................................... 116 

5.2.1 Productivity factors ........................................................................................................................ 116 

5.2.2 Importance of productivity .............................................................................................................. 118 

5.2.3 Metrics ........................................................................................................................................... 119 

5.2.4 Productivity monitoring .................................................................................................................. 120 

5.3 Updated proposed conceptual framework for agile team productivity ................................................... 121 

5.4 Limitations of this research ................................................................................................................... 123 

5.4.1 Unavailability of participants .......................................................................................................... 123 

5.4.2 Lack of available data .................................................................................................................... 123 

5.4.3The research strategy ..................................................................................................................... 123 

5.4.4 Researcher’s access ..................................................................................................................... 124 

5.5 Possible future research ....................................................................................................................... 124 

5.6 Summary ............................................................................................................................................. 124 

Chapter 6: Research summary and conclusion ..................................................................................... 125 

6.1 Introduction .......................................................................................................................................... 125 

6.2 Research summary .............................................................................................................................. 125 

6.2.1 Overview of the chapters ............................................................................................................... 126 

6.3 Objectives achievements summary ...................................................................................................... 127 

6.4 Summary of contributions ..................................................................................................................... 129 

6.5 Recommendations for implementation ................................................................................................. 130 

6.6 Future research opportunities............................................................................................................... 130 

6.7 Conclusion ........................................................................................................................................... 131 

APPENDIX A  - INTERVIEW PROTOCOL ............................................................................................... 132 

APPENDIX B  - PARTICIPANT CONSENT FORM ................................................................................... 134 

APPENDIX C  - INTERVIEW QUESTIONS .............................................................................................. 135 

APPENDIX D  - PAST PAPERS PRESENTED ......................................................................................... 138 



iv 

 

APPENDIX E - ETHICS CLEARANCE CERTIFICATE ............................................................................ 139 

APPENDIX F  - LANGUAGE EDITOR CERTIFICATE .............................................................................. 140 

REFERENCES .............................................................................................................................................. 141 

 

  



v 

 

LIST OF FIGURES 

 

Figure 2.1 Approaches to new product developmnent ………………………………………………………………19 

Figure 2.2 Triple-P model ………..……………………………………………………………….…………………… 25 

Figure 2.3 Productivity factors ………………………………………………………………………………………… 36 

Figure 3.1 The proposed conceptual framework ………..…………………………………………..………….…… 46 

Figure 3.2 Research phases ……………………………………………………………………………….….………. 64 

Figure 4.1 Pre-data collection stages ………………………………………………………………………………… 74 

Figure 4.2 Team at an early morning daily stand-ups ……...………………………………………...…….………. 94 

Figure 4.3 Team sprint planning activities …………………………………………………………………………… 97 

Figure 4.4 Developers’ work setting (Company X) ………………………………………………………………….. 99 

Figure 4.5 Agile team having an informal discussion ……………………………………………………........….. 102 

Figure 4.6 Developers’ work setting (Company Y) ………………………………………………………………... 107 

Figure 4.7 Burndown chart with summary …………………………………………………………….………….… 110 

Figure 4.8 Activity setup rescue time …..………………………………………………….……….....……………. 112 

Figure 4.9 Rescue time weekly report ………………………………………………………….…….…………….. 113 

Figure 5.1 Updated proposed conceptual framework …..…………………….…………..………………………. 122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

LIST OF TABLES 

 

Table 1.1 Secondary objectives ……………………….………………………………………………………………8 

Table 2.1 Agility definitions and descriptions .……………………………………………………………………… 21 

Table 2.2 Software productivity factors ……………………………………………………………………………… 36 

Table 2.3 Summary of factors and their effect on software productivity………………………………………….. 37 

Table 3.1 Secondary objectives ………………… ……………………………………………….………..………… 44 

Table 3.2 Characteristics of quantitative and qualitative research …………………………………….….………. 49 

Table 3.3 Comparison of the three research philosophies .…………………………………….………….………. 51 

Table 3.4  Advantages and disadvantages of interviews ...………………………………………………………… 59 

Table 3.5  Advantages and disadvantages of interviews ……………………………….………………………….. 60 

Table 3.6 Research stages ……………………………………………………………………………………………. 65 

Table 3.7 Finalising interview questions ………… ………………………………………………………………….. 71 

Table 4.1 Collated agile productivity factors and descriptions ……………………………………..……….….….. 83 

Table 4.2 Summary of project and company profiles ………………………………………….……..…………….. 86 

Table 4.3 Extreme Programming and Scrum practices adopted by the companies .…….…….……………….. 87 

Table 4.4 Summary of the effect of productivity factors on the companies under study ………..……….……. 114 

  



vii 

 

ACRONYMS 

Acronym Meaning and Definition 

IT “Information Technology” 

Computing technology which involves developing, maintaining and using 

computers and software for information processing and distribution.  

IEEE “Institute of Electrical and Electronics Engineers” 

A non-profit organisation for educational and scientific research. 

std “Standard” 

A unit of measuring quantity. 

LOC “Lines of Code” 

A software metric for measuring computer program size by counting non-

commentary lines of program source code. 

FP “Function Points” 

A unit measure of software. 

PC “Personal Computer” 

A multi-purpose microcomputer designed to be used by one individual at 

a time. 

DDJ “Doctor Dobb’s Journal” 

A monthly journal published by United Business Media in the United 

States covering computer programmer topics. 

% “Percentage” 

A ratio or number expressed as a fraction of one hundred. 

XP “Extreme Programming” 

An agile discipline of program development that emphasises simplicity, 

business results, feedback, communication, respect and courage. 

DSDM “Dynamics Systems Development Method” 

An agile-approach project delivery framework. 

SDLC “System Development Life Cycle” 

The sequence of stages involved in the software development of an 

information system, from planning through to deployment. 

P-model Triple-P Model (Performance, Profitability and Productivity) 



viii 

 

A model that shows the relationship between performance, profitability, 

and productivity. 

SLOC “Source lines of code” 

A sizing metric for measuring the size of the source code. 

EVMS “Agile Earned Value Metrics” 

A project management technique that is used to monitor and measure 

agile team productivity. 

KW “Knowledge Worker” 

An individual with subject matter expertise, who is able to share his/her 

knowledge and is part of the program analysis process. 

KLOC “Thousands of lines of code” 

A traditional way of measuring source code. 

Inp  “Input items” 

The totality of the  resources used, for example; labour, tools, machines; 

etc. 

Out “Output items” 

The number of produced items. 

maf “Master file” 

A records file that is permanent, updated periodically and is the main 

source of data. 

inf “Interfaces” 

A shared boundary that allow users to exchange and share information. 

COCOMO “Cost Constructive Model” 

A software cost estimation model developed by Barry W. Boehm which 

uses a regression formula based on historical projects data. 

JIRA “JIRA” 

A tracking product developed by Atlassian, which provides issue and bug 

tacking, as well as project management functions. 

E-mails “Electronic Mails” 

A method of exchanging computer-stored messages over computer 

networks. 

TL1 & TL2 “Team Leader 1 or Team Leader 2” 



ix 

 

A person who is responsible for leading the team, obtaining resources for 

the team, facilitating the team’s work and ensuring that the team is 

protected from problems. 

P1 & P2 “Programmer 1 or Programmer 2” 

An individual who is responsible for coding or development of software. 

PO1 “Product Owner 1” 

(Also called an On-site customer.) A person who is responsible for a 

team’s prioritised work item list, for timely decision making and for 

providing the needed information in a timely manner. 

PM 1 “Project Manager 1” 

A person who is responsible for project management activities from 

project planning through to project execution. 

LP 1 & LP2 “Lead Programmer 1 or Lead Programmer 2” 

A person who is a senior programmer and has the leading role when 

coding in an agile team.  



 

            Nzou V – 46563946 – MSc in Computing  

 

Chapter 1: Introduction 

 

1.1 Research background 

 

Software productivity is an important subject in software development nowadays. Business 

requests for reduced marketing time, while trying to keep up with good software quality; in 

addition, software development organisations seek new techniques and strategies to increase 

productivity in their software development operations. (Trendowicz & Münch 2009:185). About 

thirty years ago, Boehm (1987:1) expressed the opinion that the rate of computer hardware 

productivity kept increasing rapidly, while software productivity stayed on the same level with 

minimal increase. Hardware productivity has increased drastically, while software projects 

productivity has come to a standstill, basing productivity on the code using the unchanged old 

rate of lines of code delivered per man-hour. 

 

Finding ways to manage productivity continues to create a challenge for software projects till this 

day. Systems have been designed and tested in the manufacturing sectors for measuring 

productivity, but the information technology industry lingers behind in designing metrics for 

estimating the software end product and predicting the work required to complete each software 

project (Dalcher 2006:93). According to Zimmermann (2017:1), “there is an ever-growing 

demand of software being built and a shortage of software developers to satisfy this demand”. 

To address this challenge, researchers and the industry need to look into understanding what 

productivity is in software development, and to find ways to improve the productivity of a team 

as well as of individual developers.   Software productivity management in the IT segment is 

significant as a fundamental variable for knowledge workers (Ramirez & Nembhard 2004:602-

628) and as a pivotal angle for making decisions in the worldwide business sector (Ross & 

Ernstberger 2006:30–32). Hence, software productivity is an important concept and much talked 

about in today’s projects and organisations.  

 

Productivity, in economic standard terms, is expressed as the ratio of the measure of products 

or services delivered, to the measure of labour or cost incorporated in producing the final product 

(Jones 1996:445-460). A presumption that precedes this is that software productivity is 



   

           Chapter 1: Introduction                                                                                                                                                                   2 

 

expressed as the ratio of the measure of software delivered to the labour and cost of producing 

it (Jones 1996:445–460). Usually, the productivity of mechanical procedures was measured as 

the ratio of output units yield divided by input units (National Bureau of Economic Research 

1961:112). This point of view was moved into the software development setting and is generally 

characterised as defining productivity (IEEE Std 1045, 1992) or efficiency (van der Pohl & 

Schach 1983:187-191).  

 

As noticed in an international survey conducted by the Fraunhofer Institute for Experimental 

Software Engineering in 2006, 80 % of software organisations adopt this industrial point of view 

of productivity in their software projects, namely, that input consists of the effort used to deliver 

outputs. Such organisations presume that software productivity measurement is the same as 

measuring any other types of productivity. Hitherto, software development procedures appear 

to have been more challenging than other industrial production (Abdel-Hamid 1996:43-52; 

Angkasaputra et al 2005:83-92; and Briand et al 1998: 65-117). This is basically due to the fact 

that software organisations normally develop new products instead of manufacturing the same 

product repeatedly. Additionally, the human factor is involved in software development, which 

normally has compelling instabilities from the onset. This prompts numerous difficulties in 

defining “software productivity”.  

 

Productivity involves not just the efficiency (amount of output divided by amount of input) of 

creating a product, but also the rate at which the output is produced, given a certain input 

(Capers 1996:94-103). Productivity in software development is the ratio of quality software 

delivered, to the labour and cost of producing the end product (Capers 1996:94-103). The tools 

used to evaluate or measure productivity in software development consider the usefulness 

conveyed to the client, program complexity, and the effort and time included. Mills (1983:57) 

defined software productivity as the ratio of functional values of produced software to the labour 

and expense involved in producing the end product. The definition given permits the 

measurement of productivity in light of the estimation of aftereffects to end user, which can be 

reasonable than constructing productivity results in light of lines of code (LOC) (Mills 1983:57-

63).   



   

           Chapter 1: Introduction                                                                                                                                                                   3 

 

Software productivity has lagged behind due to deficiencies in its measurement (Scacchi 1994; 

Drucker 1999 & Petersen 2011), for instance, by means of Function Points (FP) and Lines of 

Code (LOC), and to a limited extent due to the way that quicker, more effective PCs can give 

faster execution without actual software productivity gains. 

 

Agile software development stresses working in a team of small groups as an important 

contributing factor in producing high software quality, with information-sharing among 

programmers (Consas, et al 2007:54). Cockburn and Highsmith (2001:131-133), conducted a 

survey according to which agile methodologies were rated higher compared to others as far as 

morale is concerned. According to the 2007 IT Project Success Rates Survey Results presented 

by Ambler (2007) in Dr. Dobb’s Journal (DDJ) in October 2007, the survey results demonstrated 

that agile work was superior to traditional methods. The survey demonstrated that when 

individuals characterise accomplishment in their own particular terms, agile projects had a 72 % 

achievement rate, contrasted with the 63 % for the traditional approach and 43 % for offshoring. 

 

The DDJ 2008 Agile Adoption Survey demonstrated that the involvement of individuals with agile 

software development was exceptionally positive, and that embracing agile strategies seems, 

by all accounts, to be generally safe in practice. The July 2010 State of the IT Union survey 

investigated the issue of team size and agile approaches, showing an improvement over 

traditional approaches despite any team size. The 2008 IT Project Success Rates Survey 

investigated the issue of geographic dissemination and agile approaches, which did well or 

better despite the level of team circulation. In 2013, in an IT Project Success Survey conducted 

by Scott Amber & Associates, they figured out that agile, lean and iterative strategies were 

thought to be better by and large than traditional and ad-hoc strategies. 

 

Agile methods are seen as a solid contributor to high morale in software-producing teams, and 

there is a strong association of agile practices with the idea of a positive ‘group atmosphere’ that 

can add to superior performance (Pressman & Maxim 2015:692).  

 

According to Boehm (1987:43-58) and Trendowicz (2009:185-214), low costs and time-to-

market have turned into real drivers of software productivity improvement. In spite of the 



   

           Chapter 1: Introduction                                                                                                                                                                   4 

 

endeavours to expand software productivity, delivery in time and within the budgeted amount is 

still notably low; and there is not much indication of productivity improvement over time. In spite 

of the fact that studies on productivity have been done for the past three decades, it still 

continues to be a controversial subject (Trendowicz & Münch 2009:185-214), Scacchi 1995:37-

70, Eickelmann 2001:67-70 and Riddle & Fairley 2012:16). Firstly, there are several concepts 

included in the definition of productivity, for example, performance, effectiveness, and efficiency, 

creating incorrect assumptions, and word overload. Besides, traditionally, the measurement of 

software productivity was expressed as the ratio of output (for instance, actualised features, 

LOC, and FP) to input (for example time and effort).  What’s more, developing software is mental 

work involving the creation of knowledge or, in any case, the use of knowledge as a predominant 

piece of labour (Ramirez & Nembhard, 2004:602-628).  

 

A good deal of the literature dealing with software development methodologies contains 

references to socio-mental issues, for example, inner self, prosperity, control and team conflict 

(Bullock, Weinberg & Benesh 2001:37-43; DeMarco & Lister 1999; Weinberg 1971). Indeed, 

even in this regard there is an absence of essential research into the productivity of each team 

member in an agile team (or whatever other programming team) (Whitworth & Biddle 2007:62-

69). The agile and software engineering literature was observed to be predominantly written from 

the management and engineering points of view, concerning the practicalities of software 

development, software development processes management, and the obstacles of making 

everything work within the business setting (Whitworth & Biddle 2007:62-69). 

 

The purpose of this study is to develop a framework for understanding the factors influencing 

software productivity, in an up-to-date review of software development. A review of the concept 

of productivity, productivity processes and parameters through literature review shall be carried 

out. The importance of software productivity for organisations, factors influencing productivity of 

agile teams, and an investigation of attempts to identify threats to productivity of agile teams 

shall be investigated through case studies and literature studies. 

 

 



   

           Chapter 1: Introduction                                                                                                                                                                   5 

 

1.2 Problem statement 

 

According to Pressman and Maxim (2015:66), agile software engineering comprises a 

philosophy and guidelines used in software development. The agile philosophy inspires 

developers to produce software that will satisfy the customer and the software is delivered early 

in small portions; the whole process is characterised by profoundly energetic project teams, 

casual routines, marginal software end products, and simplicity in software development. 

According to Pressman and Maxim, the guidelines for agile development lay emphasis on 

delivery over analysis and design, and on active constant communication between programmers 

and customer. Agile software development brings a sensible different option to traditional 

software development for specific types and classes of software. Zimmermann (2017:1) asserts 

that there have been significant changes in software development over the past decades due to 

the introduction of agile methodologies. 

 

Agile methodologies, including Scrum (Schwaber & Beedle 2001) and Extreme Programming 

(Beck & Andries 2004), advanced as ways to deal with improving the software development 

process, possibly prompting improved productivity. These agile methods aim to improve the time 

to develop the software, and to tackle the unavoidable changes coming from market changes 

(Karströmand & Runevon 2006 and Pikkarainen et al 2008). The use of agile methodologies is 

therefore aimed at enhancing the productivity of software development. It appears that 

organisations consequently expect that, just by going agile, or any other related methodologies 

like Scrum, Kanban or comparative methodologies, more software will be built in less time. 

Hence, it is postulated that understanding the factors that influence productivity may assist in 

determining areas on which to focus a company’s financial resources and management efforts 

from a practical point of view, and probably where to centre research effort from the academic 

viewpoint (Rasch and Tosi 1992). 

 

Substantial research has been focused on finding factors that significantly affect software 

development productivity (Trendowicz & Münch 2009 and Wagner and Ruhe 2008). Productivity 

is not just only influenced by simple application of any methodology, but also by the 

organisation’s culture, the amount of requirements change, the expertise and experience of 



   

           Chapter 1: Introduction                                                                                                                                                                   6 

 

individuals in the teams, extraneous factors such as external parties or suppliers, or the 

complexity of the application background and architecture. Constantly assessing factors that 

influence productivity is critical, as these factors are bound to change at any time with the 

introduction of new software development practices (Petersen 2011). However, from our own 

understanding, there is little study in literature that has explored the main factors affecting the 

productivity of agile teams (Trendowicz 2009; Zimmermann 2017) 

 

In addition, empirical evidence points out the lack of studies on agile productivity measurement 

(Dybã and Dingsoyr 2008; Petersen 2011), as well as team productivity measurement (Priers-

Heje and Commisso 2010). To figure out whether productivity is improving, agile teams and 

projects should be measured and contrasted with traditional teams and projects. Throughout the 

research, the researcher should investigate how developers define productivity and metrics in 

agile teams. Thus, empirical evidence studies on productivity definitions and metrics may answer 

questions on how to improve agile team management, as well as how to monitor productivity in 

a highly adaptive scenario. 

 

The continued and increasing demand for software development and maintenance has made 

productivity an important issue (MyNatt 1990). According to Sidler (2002), the productivity 

concept in software development cannot be only a “theoretical abstract”. Sidler (2002) stated 

that productivity is an important concept in the software development process. Therefore, getting 

to understand productivity in software engineering is critical in system analysis when considering 

that better systems analysis improves productivity in software development and productivity in 

software development is a success measure of systems analysis.  

 

In summary, the overall problem addressed by this research is: 

Addressing issues that come out of software development methodology and processes that 

affect certain parameters (quantity and quality) in determining productivity. The research also 

focuses on gaps in measuring productivity, productivity metrics and indicators.   

 

 



   

           Chapter 1: Introduction                                                                                                                                                                   7 

 

1.3 Research context 

 

This research will use qualitative data from companies in South Africa (limited to Gauteng 

Province and Western Cape Province) that adopted agile methodologies and have been using 

these methodologies for more than three years. In South Africa, agile is a new software 

development tool and most of the companies are still in the pilot phase in implementing agile 

methods in their software development (itweb; iweek; Noruwana & Tanner 2012). The selection 

criteria incorporated the following: (i) organisations utilising agile methods Scrum (Schwaber and 

Beedle 2001),  and (XP) (Beck et al 2004), for not less than four years; (ii) organisations in 

diverse business portions, geographical locations, different in size, and having different 

organisational structures and cultures; (iii) agile software projects with four or more core 

programmers.  

 

The research motivation, therefore, is to better understand the factors that influence software 

productivity, i.e. ways in which software productivity can be defined and measured in agile 

teams.    

 

1.4 Research questions 

 

RQ1.  What are the factors influencing the productivity of agile teams and how do these factors 

affect team productivity from the team point of view? 

SubRQ1.1. Which agile practices have an effect on a team’s productivity? 

 

RQ2.  What is the importance of productivity on companies that adopt agile methods? 

SubRQ2.1. How would they define software productivity? 

 

RQ3.  What are suitable metrics for determining agile team productivity? 

SubRQ3.1. In scenarios where such metrics have negative effects, are there adjustments 

that could be made to promote productivity? 

 



   

           Chapter 1: Introduction                                                                                                                                                                   8 

 

RQ4.  How should productivity factors in agile teams be monitored, considering agility and 

adaptability? 

 SubRQ4.1. How do agile metrics relate to productivity metrics? 

 

1.5 Research objectives  

 

The managing of software development productivity and software quality are the key issues in 

software development companies, mostly because companies need to lower their development 

costs and reduce time spent marketing their products (Beck 2004); (Trendowicz 2009). To 

control productivity adequately, it is vital to recognise the most significant problems and create 

procedures to adapt them. Agile methods, including Scrum (Schwaber & Beedle 2001), and 

Extreme Programming (Beck 2004), advanced as a critical way to deal or improve software 

development processes, possibly prompting better productivity. They lessen the time to develop 

the software and tackle inescapable changes coming from market complexities (Karlström & 

Runeson 2006). 

 

1.5.1 Main objective 

The main objective of this research is to develop a framework that gives a better understanding 

of the factors that influence agile team productivity, the importance of productivity in agile teams 

and ways in which the agile metrics can support productivity metrics.   

 

1.5.2 Secondary objectives 

The following are the identified secondary objectives: 

 

 Table 1.1 Secondary objectives 

Secondary objective Methods of implementation 

1) To define software productivity and finding 

out its importance in companies adopting 

agile methods. 

 Document analysis through focused 

literature search.  

 Semi-structured interviews with identified 

companies using agile methods in South 

Africa. 



   

           Chapter 1: Introduction                                                                                                                                                                   9 

 

Secondary objective Methods of implementation 

2) To determine factors that influence agile 

team productivity, and their actual 

influence. 

 Reviews of related literature. 

 Observation of agile teams. 

 Reviews of publications. 

3) To determine which metrics are suitable 

for measuring an agile team’s productivity.  

 Reviews of related literature. 

 Reviews of publications. 

4) To find out ways of monitoring productivity 

factors in agile teams, considering agility 

and adaptability. 

 Reviews of related literature. 

 Reviews of publications. 

 

5) To explore agility properties to better 

understand how to define and evaluate 

software productivity in a highly flexible, 

adaptive and response environment. 

 Reviews of related literature. 

 Reviews of publications. 

 Semi-structured interviews. 

 

1.6 Research methodology 
 

Oates (2009:5) defined research as creating new knowledge by following appropriate 

procedures, to satisfy people who will use the research. Therefore, research involves a type of 

thinking that is done to come up with results. The research methodology involves strategies and 

data generation methods which highlights the research process chosen to conduct this study 

(Oates 2009:34). The motivation for the choice of the research strategy, and the data generation 

method, are presented in more detail in Chapter 3.    

 

1.6.1 Research design  
 

For this study, research design is a planned research approach built on the justification of the 

selected research method found in the section on research methodology. The research design 

answers the ‘how’ questions whilst the methodology answers ‘why’ and ‘what’ questions. The 

research design will be discussed in detail in Chapter 3, describing the processes of collecting 

and analysing data. 

 



   

           Chapter 1: Introduction                                                                                                                                                                   10 

 

1.6.2 Research method 
 

Empirical studies may apply different research methods. This research will be conducted using 

a qualitative research method, namely case studies, in order to obtain a good understanding of 

the problem that is being investigated. The selected research method is appropriate in answering 

the research questions focused on “what” and “how” (Yin 2008). 

 

The researcher intends to explore which productivity concepts are practised by agile teams in 

their software development projects. The researcher likewise plans to ascertain which factors 

have an effect on the productivity of agile teams, and to investigate whether such agile practices 

have an effect on productivity from the team’s point of view. The researcher will use case studies, 

to answer the research questions. 

 

1.6.3 Data collection methods 
 

A number of sub-methods will be utilised in conducting the research; they are further described 

in detail in Chapter 3.  

 

1.7 Ethical measures 
 

The researcher has to sign a confidentiality agreement with any organisation that participates in 

the case studies; this process is essential to establish a formal understanding between the 

researcher and the organisations involved, for data confidentiality to be maintained. All 

information or data collected will be strictly confidential and shall not in any way be disclosed to 

any third party but be used solely for research purpose. The researcher will abide by the 

University of South Africa ethics policy as outlined in the ethics clearance issued by the 

University to conduct field work.  

 

1.8 Chapter outline 
 

Chapter 1: Introduction and background 

 



   

           Chapter 1: Introduction                                                                                                                                                                   11 

 

Chapter 1 presents the introduction, problem statement, research questions, research 

objectives, research methodology and current theories. 

 

Chapter 2: Literature review 

 

Chapter 2 presents a comprehensive theoretical background of the principles of agile methods, 

the most frequently claimed benefits, the concept of agility, and some paradoxes in the definition 

of agile software productivity. 

 

Chapter 3: Research methodology 

 

Chapter 3 presents research methods and research design 

 

Chapter 4: Data collection methods and analysis 

 

Chapter 4 discusses data collection methods and analysis, merits and demerits of the methods 

adopted in the dissertation: case studies, interviews, etc. 

 

Chapter 5: Findings 

 

Chapter 5 provides a detailed discussion of the findings. The chapter describes the research 

findings for RQ1 and RQ2, discusses the researcher’s findings in comparison with the existing 

literature. It further describes the research findings for RQ3 and RQ4, the researcher’s results, 

discussion, and limitations. 

 

 

Chapter 6: Conclusion 

 

Chapter 6 concludes the research by presenting an overview of the dissertation and proposing 

future work.  



 

            Nzou V – 46563946 – MSc in Computing  

 

Chapter 2: Literature review and analysis 

 

The previous chapter outlined the background of the research study that is to develop a 

framework for understanding the factors that influence software productivity in agile teams. 

Chapter 2 follows with a literature review of agile development methodologies, the agility 

concept, factors that influence team productivity and empirical studies of productivity. The issues 

noted above lead to the investigating, defining and understanding of the research problem 

relevant to developing the sought framework. 

 

2.1 Introduction 

 

In the current economy, changes in market conditions are always high. End-user and customer 

need change, and competition in the software development industry becomes intense. Software 

experts should maintain their “agility” in software engineering in order for them to be able to 

adapt to maneuverable, adaptive, lean processes that accommodate today’s business needs 

(Pressman & Maxim 2015:708). 

 

The philosophy of agility in software engineering lays emphasis on four key issues which are: 

(1) how important “self-organising” teams are, since they have some level of control over the 

work they carry out; (2) how team members, practitioners and customers communicate and 

collaborate among themselves; (3) recognising that change is good and signifies a prospect and 

(4) focusing on continuous software delivery to the satisfaction of the consumer. Agile process 

methods aim at addressing these issues which are prevalent in the traditional software models 

such as Waterfall (a sequential, non-iterative traditional software design model) (Pressman & 

Maxim 2015:708). 

 

Despite attempts made in earlier years to improve the software development by concentrating 

on finding better ways of defining and documenting requirements, analysing the requirements, 

and delivering a working software on time and within budget, this was never achieved. While 

many approaches to software development were considered as iterative models, they were 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    13 

 

unable to address the needs of managing rapidly changing requirements effectively, nor of 

shortening the software delivery time (Avison & Fitzgerald 2006:134 -135).  

 

Many of the software development processes in the 1980s and 1990s were criticized as being 

slow, bureaucratic, and over-grouped. In response to these heavy-handed software 

development methods, a number of dissatisfied software developers proposed agile methods in 

the 1990s. This group of seventeen software developers gathered together and produced a 

“Manifesto for Agile Software Development” (Beck et al, 2001). It enabled the software 

development teams to focus on delivering the working software instead of focusing on software 

design and documentation (Sommerville, 2007:396). No specific life-cycle model was prescribed 

by the Agile Alliance, but it rather came up with a group of underlying principles which were 

common to “their individual approaches to software development” (Schach 2007:58).  

 

Agile processes differed from other software development models by laying less emphasis on 

analysis and design. Working software is considered quite essential, unlike detailed 

documentation, so implementation has to start earlier in the life-cycle of the software. 

Responsiveness to changes and collaboration with the customer is another major goal in agile 

development (Schach 2007:58). Agile processes are considered to be light methods, or lean 

methods (Pressman & Maxim 2015:67). In principle, agile methodologies were established to try 

and overcome observed and real weaknesses of traditional software development. 

 

This chapter will give a brief outline the history of agile software development, mainly focusing 

on the differences between traditional development methods and agile methods. It will also 

include the issue of agility and how it relates to productivity in agile teams. The history of 

productivity measures will also be noted, together with their relevance to agile software 

development.  

 

2.2 Agile software development models 

 

Even though the fundamental concepts that guide agile software development have been in 

existence for many years, it was only more than two decades ago that such concepts were 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    14 

 

considered as a “movement” (Pressman & Maxim 2015:67). The history of software 

development approaches such as the ‘agile’ one goes back to before the Agile Manifesto (Avison 

& Fitzgerald, 2007:134). Highsmith (2002:6) stated that the history extended back more than ten 

to fifteen years. The agile approach appeared in different variants but always from the same 

starting point: to try and overcome the perceived and actual inadequacies of the traditional 

approach to software development (Avison & Fitzgerald, 2007:134).  

 

According to Schach (2007:59), “agile processes have been successfully used on a number of 

small-scale projects, but, they have not yet been used widely enough to determine whether this 

approach will fulfil its early promise.” According to Sommerville (2007:398), agile methods are 

most suitable for development of software for small to medium-sized computer applications and 

business systems.  Agile methods generally depend on an iterative approach to specifying, 

developing and delivering software, and were developed initially to support business applications 

with rapidly changing system requirements during the development stage (Sommerville, 

2007:396). Agile methodologies are designed to release working software frequently to 

customers, enabling them to suggest new or any changes in requirements to be added in the 

later iterations, enabling high-quality software to be produced in a profitable way (Sommerville 

2007:11).  

 

There are quite a few agile methods, which were developed to date with the intention of 

producing cost-effective software as quickly as possible. The best-recognised agile method is 

probably XP (Extreme programming) (Beck 1999:72; Beck 2000:2). Other agile approaches 

such as Crystal (Cockburn 2001:4), Scrum (Schwaber & Beedle 2001:2), DSDM (Stapleton 

1997:3), Feature Driven Development (Palmer & Felsing 2002:135) and Adaptive Software 

Development (Highsmith, 2000:85) were also successful; this led to some getting integrated into 

traditional development methodologies, which resulted in the notion of agile modelling (Ambler 

& Jeffries 2002:87), and in instantiating agile frameworks such as Rational Unified Process 

(RUP) (Larman 2002:31).  

 

Despite the fact that all these agile methods base their software development on incremental 

value delivery, they recommend a variety of procedures to achieve this. Yet agile methods share 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    15 

 

a set of values and principles. Unlike conventional methods, agile methods depend on humans 

and their creativity to deal with unpredictable changes, rather than on rigidly plan-based 

processes (Cockburn 2002:72).  

 

The agile approach intends to attain high software productivity and high-quality software 

delivery, in a cost-effective manner, enabling it to respond to business challenges, which 

demands high quality, high performance and high development speed in delivering their goods 

and services (Pressman & Maxim 2015). Therefore, agile methods are considered to be highly 

value based. 

 

The following are the frequently claimed benefits of agile methods (Highsmith 2001, 2002 & 

2009; Demarco & Boehm 2002:90-92):  

 High degree of stakeholder engagement. 

 High level of transparency between the agile team and the customer. 

 Delivering new features quickly and with a high predictability level. 

 Predictable cost estimates and schedules. 

 Focus on providing the most business value. 

 Provide opportunities for changes to be introduced within a few weeks. 

 User focused acceptance.  

 Improved quality of software through conducting testing and reviews during each iteration. 

 

However, all development methods have their own limits, and agile methods have their own 

disadvantages (Sommerville 2007:398; Highsmith 2002:197 and Kettunen 2009:33). Despite 

their limitations, agile process models address each of the problems arising in software 

development environments, by providing sustainable software development, shorter times to 

market, and harnessing changing requirements and the changing environment (Pressman & 

Maxim 2015:68; Baskerville et al 2006:14).  

 

The aim of the above discussion is to answer the research question based on the importance of 

productivity for companies that adopt agile methods. Companies worldwide are adopting agile 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    16 

 

methods because they claim that agile methods allow them to manage changing requirements, 

accelerate time to market and improve productivity.  

 

2.3 Differences between agile and traditional paradigms  

 

A group of software development methods called agile software development are considered to 

have solutions which advance through teamwork and “self-organising” (Collier 2001:53), cross-

functional teams. Agile software development encourages continuous software delivery, 

adaptive planning, quick responses to change, continuous software improvement and the 

production of working software (Agile Alliance, April 2016). 

 

Most agile methods allocate tasks into small “sprints” with short-term planning, and no direct 

long-term plan is involved. Sprints are short time cycles called ‘timeboxing’ (Jalote et al 

2004:117-118) that generally take one week to a month to complete. The cross-functional team 

is involved in each iteration working in all functions, e.g. sprint planning, scope analysis, design, 

coding, unit and acceptance testing. A working product is demonstrated to end users when each 

iteration ends. This allows for risk to be minimised and enables the project to quickly adapt to 

changes (Sommerville 2007:412). Although each sprint release might not be enough to add 

functionality that can guarantee market release, the aim is to have at least a software release 

with minimal bugs at the end of each sprint. (Beck 1999:70-77) 

 

Traditional paradigms are plan-driven and have discrete development phases, starting with 

analysis and requirements documentation, followed by system design, then system development 

and testing. In fact, each stage must be finalised to make it possible to proceed to the following 

stage. (Sommerville 2007:804). Because of these “heavyweight” aspects, the paradigms of this 

approach were then termed heavyweight. Most software experts found the heavyweight process 

frustrating, time consuming and posing difficulties if there were any changes in requirements 

during the early stages of software development. In reaction to this, several software experts 

started independently developing practices and methods that could allow quick response to the 

change that most software development organisations were experiencing. The practices and 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    17 

 

methods developed are based on a technique introduced in 1975 and then called iterative 

development; now it is called agile methodology (Awad 2005:16).  

 

Agile methodologies have evolved from adaptive software development, whilst traditional 

(System Development Life Cycle) methods, for example, the waterfall, use a predictive approach 

to system development. In traditional methodologies, a team works with a well-defined plan with 

detailed tasks and activities that should occur in sequence, and each phase should be completed 

before moving on to the next phase.  Checklists and forms are used as guidelines in the entire 

life cycle of the product (Boehm & Turner 2004:195). Traditional methodologies solely rely on 

comprehensive planning and requirements analysis at the beginning of the product life cycle. To 

make any changes to the requirements, everything has to go through proper change 

management and prioritisation processes (Nogueira et al 2000:3). These prescriptive models do 

not seem to be appropriate for a software development industry that thrives on change. Hence, 

agile methods came as an alternative to traditional methods and suggested a “revolutionary 

change” (Pressman and Maxim 2015:67). 

 

An agile development has the ability to respond quickly to unpredictability by relying on people 

who build computer software rather than on prescriptive process models (Cockburn 2002:72). 

An agile software process is characterised by iterative development, rapid development and 

frequent delivery, and is initially designed to support applications in a business where there is 

rapid change in requirements during software development stages. There should be frequent 

delivery of software increments to keep up with change (Pressman & Maxim 2015:70). The 

development team works with the customer, enabling the evaluation of software under 

development on a regular basis, with the customer giving the required feedback to team 

members, and influencing the decision-making to accommodate the feedback.  

 

Agile methods encourage knowledge creation and transfer, by involving the customer intensively 

during software development and by frequent feedback from customers through direct oral 

communication, which allows efficient individual knowledge transfer. Team members like to face 

changing requirements, to reflect on how to become more effective, and to enhance their 

knowledge and skills through a “learning-by-doing” process (Garud & Kumarasamy 2005:22). 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    18 

 

Documentation is kept at minimum in agile development as it is perceived to be “non-creative” 

as well as “non-productive”, resulting in static documentation which does not reflect the actual 

work and may never be of use in the future after its creation (Agile Manifesto 2005). The 

difference between traditional (plan-driven) and agile (adaptive) is then that the agile approach 

recognises that achieving a planned milestone doesn’t automatically mean client success is 

achieved (Mellor 2005:18). With agile development, the customer is involved in the entire 

software development process, to ensure adherence to system requirements as well as 

customer satisfaction, and to gain a competitive advantage. Frequent “agile” iteration gives 

opportunities for quick feedback on product adherence to specifications (Karlström et al 

2005:43). Programmer commitment, motivation, team spirit, and morale are essential success 

elements (Siakas et al 2003:169; Abrahamsson 2002:10). Hence, agile methods are a current 

alternative to traditional software development methods (Oz 2008:434).  

 

Figure 2.1 illustrates the difference between the traditional model of new product development 

and a more flexible approach. 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    19 

 

 

 

The focus of agile approaches emphasises iteration, short life cycles, simplicity, emergence, 

people orientation, teamwork, risk acceptance and communication (Pressman & Maxim 2015). 

Hence many companies adopt agile methods rather than traditional methods. Companies not 

only adopt agile methods expecting productivity improvement, but also perceive productivity as 

one of the most important benefits of agile methods (Oz 2008).  This segment aims to answer 

the research question on the importance of productivity on companies that adopt agile methods 

as opposed to traditional methods.  

 

2.4 Agile teams and the agility concept 

 

Many software organisations advocate agile software development as a replacement for 

traditional software development, so that it can deal with problems encountered by software 

Concept development 

Implementation 

Concept development 

Implementation 

Concept 
frozen 

Project Start 

Traditional 

Approach 

Flexible 

Approach 

Lead Time 

Market Introduction 

      Figure 2.1: Approaches to new product development (Iansiti and MacCormack, 1997) 

 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    20 

 

project work. The agile philosophy lays emphasis on satisfying the customer and delivering 

software early, on project team members that are highly motivated, on no working procedures, 

less software engineering work products, and overall simplified development. (Pressman & 

Maxim 2015: 68 - 72).  

 

The small dedicated project team, known as an agile team, embraces many of the characteristics 

of an effective software team and avoids unnecessary processes that create problems. In 

addition, the agile philosophy emphasises competency of individuals, with team collaboration as 

all-important to achieve project objectives. 

 

Ivar Jacobson (2002:18 – 24) provides a useful discussion: 

“An agile team is a nimble team able to approximately respond to changes.” Changes are 

what software development is very much about. Changes in building the software, 

grouping of team members, new technology, and making changes to everything that has 

effect on a product. Support of changes has to be incorporated in everything in software 

development; it needs to be embraced because it is the core of software. 

 

An agile team can be defined as a “self-organising” team that has liberty to independently  plan 

and make decisions on  technical issues... …A self-organising team need not to maintain the 

same team structure, rather, it uses principles of “Constantine’s open, synchronous and  

paradigms” (Pressman & Maxim 2015:68). Agile teams acknowledge that software is developed 

by different people who work together as a team, and the skills of these individuals, and their 

ability to work together are important for the project to succeed. The discussion of the agility 

concept will assist in answering the research question how productivity factors in agile teams 

should be monitored, considering agility and adaptability.  

 

2.4.1 The concept of agility  

 

The foundation of the agility concept was first introduced by the Japanese automobile 

manufacturers (Womack et al. 1990:2). Agility is now today’s buzzword used describe modern 

computer software models (Jacobson 2002:18). 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    21 

 

 

Even though in the literature there is not yet a well-established definition of software 

development agility, a common theme drawn from its various definitions and descriptions is that 

preponderance of change is the key driver of agility (Pressman and Maxim 2015:68).  

 

The following are various definitions of agility related to agile software development:- 

 

Table 2.1: Agility: definitions and descriptions 

Scholar Definitions/ Descriptions 

Maskell (1999:5) Defined agility as: the ability to prosper and succeed in an environment 

dominated by unpredictable and continuous change. Agility is more 

than just accommodating change, rather, acknowledging the 

opportunities incarnated within the unpredictable environment. 

Jacobson (2002:18) Describes agility as: today’s buzzword used to describe modern 

computer software models. Everybody has become agile. 

Cockburn (2002) Defines agility as: being competent and maneuverable; using simple 

but adequate rules of project management and applying well-defined 

communication rules. 

Conboy & Fitzgerald 

(2004) 

Agility is when an organisation is continuously ready to reactively or 

proactively, inherently or rapidly, embrace change through simplistic, 

economical, high quality components, and relate to the environment. 

Goldman et al 

(2005) 

Agility is vigorous, content-specific, actively embracing change, and 

progress-oriented. 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    22 

 

Scholar Definitions/ Descriptions 

IEEE (2007) Agility is the capability to accommodate unknown changes in 

requirements even in the late stages of software development (it can 

be until the start of the last iterative development cycle of the release). 

Highsmith (2010:5) Agility is the ability to react and respond to change quickly so as to 

profit in the demanding business environment. Agility is therefore the 

ability to balance between stability and flexibility. 

Pressman and 

Maxim (2015:67) 

Agility goes beyond only effectively responding to change. It embraces 

the philosophy espoused in the Manifesto for Agile Software 

Development. It supports team structures and attitudes, making 

communication to be more simple; it emphasises frequent software 

delivery, it adopts the customer as part of the development team; it 

recognises that planning in a turbulent business world has limitations 

and that project planning should be more flexible. 

 

Agile development methods go beyond “lean and iterative” techniques. These methods promote 

continuous innovation, product adaptability, improved return on investment, adaptability of 

people and processes, and concentrate on dependable products to sustain business growth 

(Highsmith 2010:19). Proponents of agility argue that agile methodologies are successful 

because they are relevant to the new ways of thinking and the general software development 

approach. Many researchers assert that agility is based upon several assumptions, principles, 

and skills which are worth doing research on (Boehm & Turner 2006:27; Highsmith 2010:6; Chan 

& Thong 2009:803; Cobb 2011:191). 

 

Considering all the above definitions of agility, it becomes clear that agility can equally be 

adapted by any software development process (Pressman & Maxim 2015:68). However, for the 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    23 

 

present research a nominal conceptual theory must be established that enables one to interpret 

agility in other software development dimensions, such as productivity. The aim is to explore 

agility properties to better understand how to define and evaluate software productivity in a highly 

flexible, adaptive and response environment. One also has to find out if there is any common 

dimension between software development agility and software development productivity. 

Abrahamsson et al (2009:281) acknowledge that an understanding of what constitutes agility, is 

still lacking, due to the shortcomings in agile systems development research. Regarding agility 

and adaptability, one needs to investigate the importance of productivity for companies adopting 

agile methodologies in South Africa. 

 

2.5 Definitions of software productivity 

 

Jones (1996:47) defined productivity as the ratio of goods and services produced to labour and 

expense used to produce them. It should then follow that software productivity is the amount of 

produced software divided by the labour and cost of producing the software. This theory appears 

to have a simple logic, but in reality turns out to be a matter of debate. Mills (1983:265) gave a 

broader definition which states that software is more than a computer program; it also 

encompasses related procedures and documentation that are associated with the program.  

 

Although software productivity has been researched comprehensively in software engineering, 

it is surrounded by controversy as to how software practitioners define it in a more 

understandable way.  In his abstract, Tangen (2002:18) stated that even though the productivity 

concept is a widely discussed topic, it is often poorly understood and vaguely defined. 

Zimmermann (2017:1) acknowledges that “a substantial amount of work has examined the 

meaning of software productivity over the past four decades”, but “much of the work introduces 

particular definitions of productivity, or is focused on specific tools and approaches for improving 

productivity”. The definition of productivity involves many concepts, including efficiency, 

performance and effectiveness, and this creates misunderstandings as to how productivity is to 

be measured in agile software processes (Trendowicz & Münch 2009:192). What productivity 

means also depends on perspective (Petersen 2011:19) and context (Tangen 2005:35). Lastly, 

there is no consensus on the ideal way to measure software productivity, in both agile and 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    24 

 

traditional software development teams. This is due to the fact that software development 

involves a human being as the creator of software, of which human being activities are not 

predictable, leading to difficulties in coming up with a reliable definition for software productivity  

(Trendowicz & Münch 2009:193). Given that software is increasingly the engine that drives 

enterprises, the differences in concepts prevent any precise way to measure and define software 

productivity.  

 

Amidst the confusion surrounding the subject of productivity, several other characteristic 

features were identified by Tangen (2005:39): profitability, productivity, efficiency, effectiveness 

and performance. The Triple-P model was proposed which aims to distinguish productivity from 

four other similar terms. The focal point of the Triple-P model is productivity (figure 2.2 below) 

defined as quantity of output (i.e. accurately produced output fulfilling the specifications) divided 

by quantity of input (i.e. all resources consumed during transformation process). Profitability is 

the business’s ability to generate earnings, compared to its expenses and other related costs 

incurred during a specific period of time. Performance is a broad term for excellent 

manufacturing, which comprises profitability and factors such as speed, flexibility, quality and 

delivery. In the Triple-P model, effectiveness is viewed as the capability of producing the desired 

outcome and efficiency is viewed as minimising waste by making a comparison of what is 

actually produced, with what can be achieved with the same consumption of resources. 

Efficiency is an important factor in determination of productivity. However, if high levels of 

effectiveness and efficiency are both combined during the transformation process, this results in 

high productivity (Tangen 2002:43). 

 

 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    25 

 

 

 

Ramirez & Nembhard (2004:603) assert that,  although the ‘Triple-P model’ distinguished 

productivity from other terms such as profitability, performance, effectiveness and efficiency, 

productivity management in information technology remains a key element due to knowledge 

activities and is a critical part for making decisions in the world economy (Ross & Ernstberger 

2006:31). Productivity metrics in information technology software development are generally 

based on a quantitative relationship between the delivered size of software and the effort spent 

to acquire them (Arnold & Pedross 1998:491; MacCormack et al. 2003:79). On the other hand, 

FP and SLOC are misleading measurements due to the fact that overall development might be 

unproductive despite the increase in programming productivity (Lee & Schmidt 1997:184). Even 

so, metrics that are based on code only represent coding activities productivity, whilst non-

coding activities, for instance, analysis, design and management are not included in this scope.  

 

Figure 2.2. ‘Triple P-model’ (adopted from Tangen, 2002:40) 

Profitability 

Output 

 

Input 

Performance 

Productivity 

Speed, quality, 

flexibility, delivery 

Price Recovery 

Effectiveness 

Efficiency 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    26 

 

In addition, while the agile software development life cycle introduces metrics, viz. Agile Earned 

Value Metrics (Agile EVMS Metrics) for measuring productivity (Crowder & Fries, 2014:58), there 

is need for some guidelines on how to use those metrics to measure organisational team 

productivity. Software productivity as any other agile development practices and concepts - for 

instance, customer involvement in the development process, incremental and iterative software 

development, software testing and quality assurance, pair programming, etc. - is surrounded 

with a lot of controversy of how it should be measured in agile projects, even if the metrics 

applied in such efforts prove agile to be productive (Mnkandla, 2010:29).  

 

However, developing software is brainwork which involves creating one’s knowledge, or using 

existing knowledge to get the work done (Ramirez and Nembhard 2004:602). Drucker (1994:96) 

described a Knowledge Worker (KW) as a creative employee who is able to apply analytical and 

theoretical knowledge, usually obtained through formal learning and work experience, who can 

create or produce new services and products.  Knowledge workers are employees who are 

working with intangible resources and they should have more knowledge about their job than 

anybody else in the organisation (Drucker 1999:41-42).   

 

The productivity of a Knowledge Worker is related to tasks, autonomy, innovation, quality, 

learning and teaching, and a knowledge worker is an asset (Drucker 1999:41-42). Knowledge 

worker productivity is not merely looking at the quantity of output produced, quality is also 

essential. Knowledge workers manage themselves and continuous innovation is part of their 

work. The research conducted by Ramirez and Nembhard (2004:602) shows that knowledge 

worker productivity also relates to product quality, customer satisfaction, creativity, profitability, 

keeping to timelines and team effectiveness and efficiency. Knowledge worker work patterns 

and productivity were investigated by Palmer (2014:2). He found that knowledge work is required 

in every workplace and all employees should seek to acquire this type of skills. To that end, 

educational institutions now focus on lifelong learning to enable learners to acquire the skills 

required to become productive knowledge workers in this decade (Palmer 2014:3). 

 

Thus, the definition of knowledge worker productivity goes further than the Triple-P model, 

because of the inclusion of people factors. Knowledge worker productivity includes many 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    27 

 

dimensions such as profitability, productivity and performance, and other dimensions such as 

responsibility, autonomy, creativity and learning have to be added. The new dimensions are 

therefore a sign of increase in software development productivity of individuals and teams.  

 

Within the context of software development, the definition of productivity is mostly associated 

with metrics. Many studies adopt the definition based on ratios, instead of productivity theory 

and its dimensions. The above discussion will help to answer the present research question, viz. 

which metrics are suitable for determining productivity in agile teams.  

 

2.5.1 Measurement of software productivity 

 

Measurement is generally aimed at control and certainty. Certainty implies comprehending the 

nature of the phenomenon in order to control, evaluate, or influence a phenomenon (Scacchi 

1994:283). The need for measuring software productivity indicates problems encountered by the 

scientific and systematic process inquiry. The need to measure software production implies a 

desire to look at fundamental problems, viz. the role of measurement in theory, hypothesis 

testing, and verification and evaluating performance. It further suggests getting to understand 

the association between instrumentation and measurement, that is, the artifacts used to gather 

or measure the data of the phenomenon under study (Hurley 1995:275). 

 

Productivity in much of research outside and inside the software engineering industry is 

generally expressed as a ratio of produced output units per input effort unit (Hurley 1995:276). 

Even though there are well established measures of productivity, they vary from organisation to 

organisation (Chemuturi 2009:13). There are universally accepted measures for effort spent: 

person-hours, person-days, person-months and person-years, but there are not yet any 

universally accepted measures for software output (Chemuturi 2009:13).  

 

A sample of studies of software productivity measurement shows that there is often substantial 

difference with regard to consistency and the use of accepted analytical methods. In the 

manufacturing industries, productivity is measured for each activity at a time, while the software 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    28 

 

industry has not yet come up with universally accepted measures of software productivity 

(Chemuturi 2009:14). 

 

The problem of measuring productivity often presents clues on how to improve the software 

development process (Petersen 2011:19; Zelkowitz 2003:197; Trendowicz & Münich 2009:243). 

The concept of software productivity goes beyond a theoretical abstract. Software productivity 

is crucial in software engineering, and a better understanding of productivity has become critical 

in systems analysis considering that good analysis in turn improves software productivity, while 

software productivity is a success measure of systems analysis (Dilawar 2011:48). Software 

productivity enables the definition of a baseline for the improvement in software development 

companies that can then evaluate implemented improvements. Measured software productivity 

acts as a benchmark in determining whether there is need for improvement to be competitive 

(Petersen 2011:22).  

 

In his systematic review (Petersen 2011:334-336), defined past and future productivity 

measurement as reactive and predictive. The reactive measurement is based on past data to 

determine productivity. The predictive measurement is concerned with quantifying future 

productivity. Both reactive and predictive measurements are important in determining whether 

corrective action is needed, and they help managers in evaluating improvement alternatives 

(Petersen 2011:340). 

 

As a famous saying from Lord Kelvin states, “When you can measure what you are speaking 

about … you know something about it, but when you cannot measure it … your knowledge is of 

a meagre and unsatisfactory kind …” Therefore, to acquire a clear understanding of which are 

the variables that affect software productivity, all stakeholders involved in measuring should be 

in a position to define software productivity, know who is responsible for measuring and 

collecting the productivity data, know the parameters that need to be measured, and devise 

ways to improve productivity  (Scacchi 1994:69).  

 

Productivity data in software development should be collected and measured by programmers, 

team or project managers, automated performance monitors, and observers or outside analysts 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    29 

 

(Scacchi 1994:69).  To better estimate software productivity, it should be measured throughout 

the entire life-cycle, not only at completion (Dilawar 2011:54). 

 

2.5.2 Historical software measurement techniques  

 

The oldest metric for measuring software projects productivity is “lines of code” (LOC). The 

metric was introduced in the 1960s and was utilised for productivity, economic and quality 

studies (Jones 2008:2). The economics of software applications was measured by using “dollars 

per LOC”. The measurement of quality was in terms of “defects per KLOC” where “K” (for “kilo”) 

represented a symbol for “1000 lines of code.” The LOC metric was seen as effective enough to 

measure the economy, productivity and quality in software applications. Then, the LOC metric 

analysis was considered useful for all three purposes. The LOC metric stayed the same, as the 

software industry advanced, but eventually became less useful and even harmful by the year 

1980 without anybody realising it. According to Jones (2008:2), “the first known problem with the 

LOC metric was in 1970 when many IBM publications groups exceeded their budgets for that 

year.”  The line of code use as a key measure in software process remains a controversial issue 

as debate around its applicability and validity continues. On the one hand, LOC proponents claim 

that it is an “artifact” of software projects which can be counted easily, that a number of existing 

estimation software models use KLOC or LOC as main input, and that plenty of data predicated 

and literature on them already exist (Pressman and Maxim 2015:710) 

 

In contrast, opponents disagree and argue  that lines of code as a measure depend on the 

programming language, and that when productivity is considered, LOC measures penalise well-

designed shorter programs; that they are not able to accommodate nonprocedural languages; 

and that their use in estimation requires a level of detail that may be hard to achieve.(Pressman 

and Maxim 2015:710). Because counting “lines of code” was seen to be unreliable, other metrics 

were considered (Schach 2007: 70). 

 

A similar, but independently developed, metric for the size of a product was developed by 

Albrecht (1979:14) based on function points (FP). Albrecht’s metric was calculated as the 

“number of input items, Inp, output items, Out, master files, Maf, and interfaces, Inf” (Schach 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    30 

 

2007:256– 257). Function points are a “measure of the product’s size and therefore they can be 

used for cost estimation and productivity estimation.” Jones (1987:2), stated that, although 

experiments that were conducted for measuring software productivity rates using function points 

indicated a better fit than using LOC:, errors in excess of 800 % counting LOC were observed, 

while only 200 % were observed in counting function points.  

 

The FP, like the LOC measure, remains controversial. The proponents of FP believe that it is 

programming-language independent, is suitable for applications using nonprocedural and 

conventional languages, and that its data are most likely to be available earlier in project 

development, making FP more attractive than LOC as an estimation method. The opponents of 

function points disagree and argue that it’s just a number with no physical meaning, computation 

is subjective rather than objective data, and that some dimensions can be difficult to collect after 

the fact (Pressman & Maxim 2015:711).  

 

2.5.3 Reasons for measuring software productivity 

 

Scacchi (1995:462) suggests that software productivity should be identified and measured in 

order to reduce cost of development, improve software quality and improve the software 

development rate.  

 

Scacchi also points out some of the merits of measuring software productivity, as follows:- 

 An increased amount of work successfully achieved by the current employee effort. 

 Completion of the same amount of work with fewer employees. 

 Development of products of superior market value and complexity using the same staff 

load. 

 Avoiding employment of additional staff when trying to increase workload. 

 Rationalising capital-to-employee investment levels. 

 Reducing bugs in delivered products, and decreasing the amount spent on servicing 

technical debt of fixing bugs. 

 Software production operations should be downsized or streamlined. 

 Product defects can be identified in early stages of development. 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    31 

 

 Resource utilisation patterns need to be identified in order to discover underutilised 

resources and production bottlenecks. 

 Give awards to responsive or high-output personnel 

 Identify underperforming personnel for additional training. 

 

It is impossible to try and accomplish all of the above aims using a single productivity 

measurement program. The diversity may lead to misunderstandings over how and why 

software productivity should be measured which might, in turn, result in a situation where the 

measured results are viewed as suspect, misleading, or inaccurate (Kitchenham et al. 2007:10). 

In this regard, productivity measurement programs should be designed carefully, to avoid 

misunderstandings (Scacchi 1995:462). 

 

According to Pressman and Maxim (2015:724), “measurement results in cultural change.” To 

begin a measurement program, the following three steps should be implemented: data 

collection, metrics analysis and metrics computation. By creating a metrics baseline, software 

managers and engineers can acquire better understanding of the work they perform, and of the 

end product they deliver (Pressman & Maxim 2015: 724).  

 

The above discussion will help in this research to determine which agile metrics relate to 

productivity metrics.  

 

2.5.4 Software measurements and productivity factors 

 

An analysis of the factors related to software development productivity (e.g., measured in effort 

per SLOC) was first conducted by Walston and Felix (1977:54). The studied factors decreased 

in significance over the years. For instance, “chief programmer team usage” is no longer in 

common use nowadays. However, some of the factors, such as previous programmer 

experience with a programming language, user participation, and overall program design 

constraints, are still valid (Wagner & Ruhe 2008:16). 

 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    32 

 

In 1979, Albrecht (1979:83) proposed “function points” as a measurement of software 

productivity. An analysis of factors like product size and programming language used was 

conducted. Brooks (1981:3-9) decided to use Walston and Felix’s (1977:54) factors as the base 

in his IBM study. Brooks (1981:9) discovered that the effects of structured programming and 

program complexity were important. 

 

An analysis was conducted by Jones (1986:39) which included “numerous productivity factors 

over numerous domains” and provided industry averages. Jones (1986:39-63) focused his 

measures intensively on lines of code and function points.  

 

DeMarco and Lister (1987:4) declare that technological problems are not so major compared to 

sociological problems. Turnover was considered to be among the most important factors that 

influence productivity, and the importance of an ideal workplace having all the necessities, for 

example, good lighting system, no noise and others (DeMarco & Lister 1987:17). The 

programming language used, programmer experience, software defects and remuneration 

according to DeMarco and Lister (1987), do not bear any significant effect on productivity 

according to their own view. DeMarco and Lister (1987: 22) went ahead and commented that 

quality, higher than required by the customer, is an opportunity to higher productivity. The 

concept of a “jelled team” was introduced, where a “jelled team” was defined as a team that has 

strong lines of communication and aligned goals (Pressman & Maxim 2015:692).  DeMarco and 

Lister (1987:24) were the first to provide all-inclusive work to date on the soft factors that 

influence software development productivity.  

 

Boehm et al. (2000:15-39) conducted a detailed research project on productivity and the factors 

that influence it, based on COCOMO II. Their identified technical factors are as follows: 

 Similarity of projects 

 Software reliability 

 Size of the database  

 Complexity of the product 

 Code reusability 

 Documentation in line with life-cycle requirements 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    33 

 

 Constraints, i.e. execution time and main storage 

 Software tools used 

 Platform instability 

 

The various soft factors were analysed by Boehm et al. (2000:40-41) who discovered that, when 

combined, soft factors are more important than the previously mentioned factors. The following 

were identified as soft factors: 

 Team collaboration 

 Capability of the analyst 

 Capability of the programmer 

 Employee turnover 

 Experience with different applications 

 Experience with using  language and tools in use 

 Multisite development 

 Required development schedule 

 

Maxwell and Forselius (2000:80) claimed that the factors that influence productivity depend on 

the business domain for which the software was developed. Kitchenham and Mendes (2004:15) 

established that software reuse has a significant effect on productivity, but the level of reuse is 

not that essential. Kitchenham and Mendes (2004:16) also suggested that productivity is almost 

the same in different countries. 

 

In a survey conducted by Berntsson-Svensson and Aurum (2006:3), of factors that influence 

product and project success, it was discovered that the definition of success differed among 

industries. Their conclusion, however, was that the recognised influencing factors were the same 

as in prior research studies:  detailed project scope, complete and precise requirements, 

accurate schedule estimates, involvement of the customer in development, and the hiring of 

additional personnel.  

 

Ramirez and Nembhard (2004:602) carried out an analysis of the basic category of “knowledge 

worker” productivity. Knowledge workers (KW) are software developers as opposed to manual 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    34 

 

workers. Ramirez and Nembhard (2004:627) point out that there seems to be mutual agreement 

that there are no practical and effective methods to date that can measure knowledge worker 

productivity. 

 

Trendowicz and Münich (2009:185) also conducted research on factors influencing software 

development productivity. A detailed summary of productivity factors which were recently 

acknowledged by software industry experts was presented by Trendowicz and Münich 

(2009:240-241). Their major result was that the success of software development projects still 

depended upon the individuals who work on it. Investing in employees is still considered 

important as it brings more rewards than investing in only methods and tools   (Blackburn et al, 

2000:213-214). 

 

Based on the above literature review, the software productivity factors effect on productivity 

differs from one researcher to another. Wagner and Ruhe (2008) mentioned previous 

programmer experience as having an effect on productivity whilst DeMarco and Lister (1987) 

beg to differ in their own opinion; they think that it bears little significance. Yet, Boehm et al 

(2000), share the same similar view with Wagner and Ruhe (2008), that capability and 

experience of the programmer is important when it comes to software productivity. DeMarco and 

Lister (1987) were the first researchers to present soft factors (e.g. ideal work place) as factors 

that influence software development productivity; Boehm et al (2000), also introduced similar 

soft factors that influence productivity. These researchers agreed that soft factors are more 

important than technical factors when it comes to productivity in software development.  

 

Business domain was also pointed out by Maxwell and Forselius (2000) as an important factor 

that has effect on productivity, which DeMarco and Lister (1987) found it as a necessity. 

Kitchenham and Mendes (2004) found out that software reuse had a significant effect on 

productivity whilst Boehm et al (2000) had a different view as code reusability bears little 

significance according to their research results. Brentsson-Svensson and Aurum (2006) 

recognised influencing factors such as hiring additional personnel as having a positive effect on 

productivity, which Trendowicz and Munich (2009) agreed with them as they found out that 

software projects success solely depended on individuals who develop it.  



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    35 

 

 

The above section gives a comprehensive discussion of the factors found in the literature which 

influence team productivity. The following section attempts to find out which factors influence 

agile team productivity and to what extend these factors effect team productivity from the agile 

team point of view.   

 

2.5.5 Overview of software productivity factors  

 

Understanding the factors that affect software productivity is one the most challenging tasks that 

face many software development organisations today. The literature has come up with 

numerous factors that affect productivity, and even with metrics to measure the work products 

delivered, but productivity levels are still the same. Figure 2.3 below sums up the factors that 

have profound influence on software productivity. The motivation and skills of people, according 

to Boehm (1981:13), are the most influential factors in performance, productivity and quality. 

Product complexity can also have substantial effect on team performance, productivity and 

quality. Technology and process also have an effect on productivity.  

 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    36 

 

  

Trendowicz and Münich (2009:185-241) reviewed commonly used factors obtained in the 

published literature that affect productivity. Factors presented first were the same across the 

whole development context. The most common factors were selected in the context of a certain 

model, development type and the domain. Table 2.2 shows a summary of the main factors noted 

from Trendowicz and Münich (2009) reviews. 

 

Table 2.2: Software productivity factors (Trendowicz and Münich 2009) 

Common software productivity factors 

 
Cross-context 

factors 

Influence factors Context factors 

 Capabilities and experience of the 
team 

 Complexity of the software  
 Constraints in a project  
 Usage of tool and quality/ 

effectiveness 

 Programming language 
 Domain 
 Development type 

 
 
 
 

Model-specific factors 

 Team capabilities and experience 
 Tool usage and quality/ 

effectiveness 

 Programming language 
 Domain 
 Development type 

Technology 

Product 

Personnel Project 

Process 

Agile 

Productivity 

Figure 2.3: Productivity factors. Adapted from Dyba & Dingsoyr (2008) 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    37 

 

Common software productivity factors 

 
 
 
 
 
 
 

Content-specific 
factors 

 Team size 
 Project constraints 
 Process maturity & stability 
 Methods usage 

 Life cycle model 
 Target Platform 

Development-specific factors 

 Team capabilities and experience 
 Tool usage and quality/ 

effectiveness 
 Reuse 
 Product complexity 
 Management quality and style 
 Team motivation and commitment 
 Required software quality 
 Tool usage 
 Method usage 

 Programming language 
used 

 Target platform 
 Domain 
 Development type 

Domain-specific factors 

 Team capabilities and experience 
 Team size 
 Reuse 
 Tools usage and quality 
 Methods usage 
 Project constraints 
 Software complexity 

 Programming language 
 Domain 
 Development type 
 Life cycle model 

 

 
Reuse-specific 

factors 

 Quality of reusable assets 
 Asset complexity 
 Team capabilities and experience 
 Product support (from Supplier) 
 Required software quality 

 Life cycle model 
 Programming language 
 Domain 

 
 

The research identified three most literature reviews (Trendowicz and Münich 2009, Boehm et 

al 2000 and Dyba & Dingsoyr 2008) with common factors that have an effect on productivity in 

software engineering. A summary of the software productivity factors and their effect on 

productivity from various researchers is presented below in Table 2.3. 

 

Table 2.3 Summary of factors and their effect on software productivity 

Productivity Factor Positive effect Negative effect Neutral 

Product factors – Development-specific factors 

Code reuse Trendowicz & 
Münich, 2009. 

  

Software 
characteristics 

Boehm et al, 2000.   



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    38 

 

Productivity Factor Positive effect Negative effect Neutral 

Requirements stability Maxwell and 
Forselius, 2000. 

  

Personnel factors – Domain-specific factors 

Team experience and 
capabilities 

Blackburn et al, 2000; 
Trendowicz & Münich, 
2009; and Maxwell & 
Forselius, 2000. 

  

Motivation Boehm, 1981 and 
Boehm, et al 2000 

  

Project Management Blackburn et al, 2000 
and Boehm et al, 2000 

  

Programming 
language 

  Maxwell et al, 1996 

Project factors – Cross-content factors 

Resource constraints  Maxwell et al, 1996  

Schedule  Blackburn et al, 
2000; Boehm et al, 
2000 and Maxwell et 
al, 1996. 

 

Team composition  Blackburn et al, 2000 
and Maxwell et al, 
1996. 

 

Process factors – Model specific factors 

Customer participation  Maxwell & Forselius, 
2000. 

 

Daily builds MacCormack et al , 
2003 

  

Documentation Boehm, 2000 and 
Jones 2000. 

  

Early prototyping Blackburn et al, 2006 
and MacCormack et 
al, 2001 & 2003. 

  

Modern programming 
language 

Boehm, 1981  Blackburn et al, 2000 

Technology Factors – Reuse-specific factors 

Programming 
language abstraction 

  Maxwell et al, 1996 
and Blackburn et al, 
1996. 

 

 

The above discussion will assist in finding out which factors have an effect on agile team 

productivity and to what extend do these factors affect the team productivity level. 

 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    39 

 

2.6 Productivity in agile teams 

 

A team consists of a group of individuals that share a common definition of success, a common 

goal and culture, and a “sense of eliteness” which makes them unique (DeMarco & Lister 

1999:123). According to Avison & Fitzgerald (2006:143), they stated that the team of people and 

how they work together is perhaps the most important factor in the agile approach. The most 

effective teams allow diversity by combining a variety of different skills. The agile school 

recognises that abilities and attitudes of individual programmers and developers are important 

and “good people provide good outputs and also apply intelligence and are able to act flexibly, 

which is an important aspect of agile approaches” (Avison & Fitzgerald 2006:144). 

 

The foundation of agile software development is about small teams that work together in a co-

located environment, developing crucial software (Abrahamsson 2005:1). Agile software 

development depends on self-organised teams which consist of highly skilled team members 

who are innovative and motivated, collaborate through team work, and are self-directed active 

learners. The agile philosophy emphasises the competency of the individual team member as 

well as the collaboration of the group as critical success factors for every team. For agile teams 

to be effective, they make use of the individual team members’ competency and of team 

collaboration in projects, which makes agile teams self-organising (Pressman & Maxim 

2015:692). 

 

A number of agile frameworks such as Scrum and Extreme Programming give an agile team 

substantial autonomy to make the project-management and technical decisions required, to 

perform the tasks to completion. Planning is minimised and the team can select their own 

approach, for example, methods, processes, tools, etc., constrained only by organisational 

standards and business requirements. During the project activities, a team self-organises to 

enable it to rely on the competency of each individual team member, in a way that is most 

valuable to each project at any given time. To achieve this, daily stand-ups meetings are 

conducted by agile teams to coordinate and synchronise the tasks to be completed on that 

particular day (Pressman & Maxim 2015:692). 

 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    40 

 

The goal of a team’s existence is to work together and perform tasks better than an individual 

alone. Accordingly, individual member productivity is not as valuable as team productivity. In 

other words, the evaluation of individual member productivity may not affect knowledge worker 

productivity (Bosch-Sitjstema et al. 2009: 533). Such assumptions provide a motivation to study 

team productivity, not individual members. Moreover, evaluating productivity at a team level 

prevents measurement dysfunctions, since team goals are the core target, not individual work 

(Melo et al 2011:59). 

 

In conclusion, knowledge worker productivity was presented as the best way to describe 

productivity in the context of software development, including agile teams. In this day and age, 

productivity goes beyond measuring the ratio between outputs and inputs. Other factors like 

human factors play a significant role in determining productivity.  

 

2.7 Summary 

 

This literature review chapter presented a discussion of the agile software development 

paradigm and of the main theoretical concepts regarding agile software development, in contrast 

with traditional software development. The agility concept was presented based on a literature 

review. Definitions of software productivity were also presented, and knowledge worker 

productivity was adopted as a formal definition of productivity of agile team. Some of the most 

important variables relating to productivity were presented: definitions, monitoring, 

measurements and factors. The variables identified (i.e. definitions, monitoring, etc.) were 

discussed in the agile-work context: productivity of teams in dynamic environments, internal 

processes, for example monitoring and popular metrics. 

 

However, there are research challenges to be noted in agile software productivity evaluation, 

and the following challenges are the foci of this research in the context of agile team productivity.  

 

The first research challenge is working with a non-established definition of “agility”. What is 

needed is to explore and evaluate current definitions and then verify how the companies under 

study fit into these definitions. 



 

           Chapter 2: Literature Review and Analysis                                                                                                                                    41 

 

 

The second challenge is to review the relationship between productivity and agility. There is a 

need to balance productivity and agility in short- and long-term perspectives in order to develop 

strategies to cope with productivity evaluation in agile teams. 

 

The third challenge is to become clear how important productivity is for agile teams. An 

investigation of the importance of productivity needs to be carried out for companies under study 

adopting agile methods in South Africa. 

 

The fourth challenge is the measurement of software productivity. Productivity measurement 

must be designed in such a way as to avoid creating mistrust, conflicts, or other circumstances 

that create mismeasurements within the software development projects under study. 

 

The fifth challenge is that there are many productivity factors presented in the literature that 

affect an agile team.  Having noted that, a researcher needs to focus her data collection and 

analysis on the important factors and not to get carried away during the research process. The 

following strategies will be developed to cope with this issue: (i) a conceptual framework will be 

created to guide the data collection and analysis; and (ii) two agile teams in different companies 

and geographical location will be studied to establish the emergence of more influential 

productivity factors.   

 

The next chapter will discuss the research methodology which is to focus on research 

approaches and strategies. The chapter will discuss advantages and challenges of approaches 

adopted for this dissertation e.g. case study, etc. 



 

            Nzou V – 46563946 – MSc in Computing  

 

Chapter 3: Research methodology and design 

 

3.1 Introduction  

 

In the previous chapter, a detailed literature analysis on agile team productivity factors was 

presented. Chapter three aims to discuss the research approach and methodology to be used 

in this research study. A detailed discussion of the nature of research and research methodology 

is provided in this chapter. The chapter also addresses the rationale for the choice of the 

research strategy and data generation methods chosen for this research. 

 

3.2 Research methodology 

 

Oates (2009:5) defined research as creating new knowledge, by use of appropriate processes, 

to satisfy the users of the research, and it usually involves analytical thinking that provides 

results. Research is an original investigation or a creative activity undertaken in order to generate 

new knowledge and understanding in a particular field of study (Myers 2009:6). According to 

DePoy and Gitlin (2015:2), research is a systematic way of thinking and acting which is not 

‘owned’ by a single profession or field and can be used and learned by anyone.  Research 

methodologies help researchers by giving them guidelines to minimise inclination and 

subjectivity in their investigations. Moreover, they provide a connection between the research 

questions and the data to be gathered so as to answer them (Leedy & Ormrod 2005:6).  

 

This section on research methodology discusses the theoretical framework for qualitative 

research. The research process used for conducting this research is discussed in detail. The 

reasons for choosing this particular research method and these data generation techniques are 

also discussed comprehensively. The research objectives, research questions, research 

problem, and outcomes will be discussed first. The data collection and analysis process 

proposed for the research follow. This study is based on qualitative research analysed by an 

interpretivist method, using the case study as the data collection method (Oates 2009:144). 

 



 

            Chapter 3: Research Methodology and Design                                                                                                                             43 

 

3.2.1 The research context 

 

According to Oates (2009:6), good academic research should have sufficient data sources, 

appropriate data processes and the findings properly presented with no hidden assumptions. 

Therefore, the philosophy underlying the researcher’s choice of research question and the way 

of answering the research question can even depend on individual views and how the individual 

might investigate the research question.  

 

The following research questions were formulated for this study (see section 1.4): 

 

RQ1.  What are the factors influencing the productivity of agile teams and how do these factors 

affect team productivity from the team point of view? 

SubRQ1.1. Which agile practices have an effect on a team’s productivity? 

 

RQ2.  What is the importance of productivity on companies that adopt agile methods? 

SubRQ2.1. How would they define software productivity? 

 

RQ3.  What are suitable metrics for determining agile team productivity? 

SubRQ3.1. In scenarios where such metrics have negative effects, are there adjustments 

that could be made to promote productivity? 

 

RQ4.  How should productivity factors in agile teams be monitored, considering agility and 

adaptability? 

 SubRQ4.1. How do agile metrics relate to productivity metrics? 

 

The research questions addressed above are exploratory (Oates 2009:143) and a case study is 

to be used to help investigate a real-life instance of software development by teams using agile 

methodologies.  There is not much in the literature about existing research in productivity of agile 

software teams, although there have been many studies conducted relating to the productivity 

of software teams.  



 

            Chapter 3: Research Methodology and Design                                                                                                                             44 

 

3.2.2 The potential research outcome 

 

In order to establish the research outcomes, an analysis of the research objectives was 

conducted. The research objectives in Chapter 1 were identified as follows: 

 

Main objective 

- To develop a framework that gives a better understanding of the factors that influence the 

productivity of agile teams, the importance of productivity in agile methods and ways in 

which the agile metrics can support productivity metrics.   

 

The secondary objectives were identified as follows: 

 

Table 3.1 Secondary objectives 

Secondary objective Methods of implementation 

1) To define software productivity and 

finding out its importance in 

companies adopting agile methods 

 Document analysis through focused literature 

search.  

 Semi-structured interviews with identified 

companies using agile methods in South Africa. 

2) To determine factors that influence 

agile team productivity and their 

actual influence. 

 Reviews of related literature 

 Observation of agile teams 

 Reviews of publications 

 Semi-structured interviews with identified 

companies using agile methods in South Africa. 

3) To determine which metrics are 

suitable for measuring productivity 

in agile teams 

 Reviews of publications 

 Reviews of related literature 

 Semi-structured interviews with identified 

companies using agile methods in South Africa. 

4) To find out ways of monitoring 

productivity factors in agile teams, 

considering agility and adaptability 

 Reviews of related literature 

 Reviews of publications 



 

            Chapter 3: Research Methodology and Design                                                                                                                             45 

 

Secondary objective Methods of implementation 

 Semi-structured interviews with identified 

companies using agile methods in South Africa. 

6) To explore agility properties to 

better understand how to define 

and evaluate software productivity 

in a highly flexible, adaptive and 

response environment. 

 Reviews of related literature. 

 Reviews of publications. 

 Semi-structured interviews with identified 

companies using agile methods in South Africa. 

 

The theoretical framework and the research model process below will assist in coming up with 

the prospective or potential research outcomes.  

 

3.2.3 Theoretical framework or proposed conceptual framework 

 

A conceptual framework was defined by Miles and Huberman (1994:18) as a written or visual 

product that explains in a narrative or graphical form the things to be studied, such as key 

concepts, factors, or variables, and the assumed relationships between them. A conceptual 

framework allows researchers to make reasoned, defensible choices about how we might 

explore topics or themes heretofore underexplored or to explore old questions in new contexts 

(Ravitch et al. 2012:13). It matches our research question with those choices, and in turn aligns 

our analytic tools & methods with our questions. This study investigates factors that influence 

productivity in agile teams and how productivity is currently being measured. 

 

Using the factors, characteristics and processes of software productivity in agile teams, the 

resulting proposed conceptual framework is depicted in figure 3.1 below. 



 

            Chapter 3: Research Methodology and Design                                                                                                                             46 

 

 

 

Inputs Team Processes Structure Outcomes 

Team design (e.g. 

team 

composition, task 

structure, team 

diversity 

Team 

Environment (e.g. 

work settings, 

orientation, and 

development 

stage) 

Individual factors 

(e.g. skills, 

abilities, turnover, 

personalities, and 

experience) 

Task construction 

(e.g. task design, 

stage of team 

development, 

duration, team 

independence, 

interdependence

) 

Internal and external 

 Team Dynamics 

 Effort 

 Cohesion 

 Communication 

 Collaboration 

 Conflict 

management 

 Coordination 

 Sharing of 

expertise 

 Work procedures 

 Morale 

 Team role 

 

Team productivity of 

outcomes 

 Customer 

satisfaction 

 Quantity of work 

 Innovation 

 Creativity 

 Timelines 

 Product quality 

 Profitability  

 Team efficiency 

and effectiveness 

 

Team 

management 

process  

 Rewards and 

recognition 

 Training 

 Performance 

management 

Organisational 

characteristics  

 Leadership style 

 Communication 

 Organisation 

structure Attitudinal and 

behavioural 

outcomes 

 Absenteeism 

 Meeting deadlines 

 Team work 

 

 

Business value Adaptability Innovation Risks 

Fig 3.1: The proposed conceptual framework 



 

            Chapter 3: Research Methodology and Design                                                                                                                             47 

 

The above conceptual framework to investigate the factors that influence productivity in agile 

teams and how productivity is currently measured, is useful to provide clarity and focus in this 

research study as it drives further discussions around the results (Miles & Huberman 1994). The 

conceptual all aspects discussed in the literature review, providing details on factors influencing 

software productivity of agile teams. 

 

Input factors: are critical success factors identified in literature as an important aspect of agile 

software development. Input factors comprises of team design, team environment, individual 

factors and task construction. The most relevant team member characteristics are knowledge, 

skills, motivation and personality, while team characteristics include size, diversity, staff turnover, 

and shared beliefs. Team capabilities and skills are the most significant personnel characteristics 

that influence software productivity (Maxwell & Forselius 2000) and usually play a moderator 

role in frameworks that aim to explain productivity variations (Blackburn et al 2000, Trendowicz 

& Münich 2009). Recruiting the right personnel with appropriate skills and empowering them are 

critical for agile development success (Highsmith 2004).  

 

Team design: entails how the team is structured which includes the number of team members 

per team (e.g. 4 to 7 members), how the each task is structured, and the level of seniority in 

each team (e.g. junior to senior programmers) as per a given project. 

Team environment: entails the team working space; which includes the work settings (open 

office, sitting arrangements, etc.), orientation (location e.g. client site) and their software 

development stage (e.g. initial phase or final phase).  

Individual factors: includes programmer skills and abilities to successfully complete assigned 

tasks within a team. It also encompasses the staff turnover (low or high), personalities of each 

individual team member and the level of developers’ experience within the team. 

Task construction: it involves task design, stage of team development, duration, team 

independence and team interdependence.  

 

Team processes factors: interactions among team members, management, customers and 

suppliers directly affect team performance. Examples of processes are team dynamics, effort, 

cohesion, communication, team collaboration, conflict management, coordination, sharing of 



 

            Chapter 3: Research Methodology and Design                                                                                                                             48 

 

expertise, work procedures and team morale. Since agile focus on people, teamwork, and their 

interactions through agile practices, the mentioned processes might have significant influence 

on team productivity and therefore were included in the conceptual framework. 

 

Structure: team management process and organisational characteristics are important factors 

to consider in agile team productivity. Reward and recognition, training and performance 

management play a critical role in productivity of agile teams.  

 

Outcomes: there are some expected outcomes, including customer satisfaction, product quality, 

agile team productivity and attitudinal and behavioural indicators. As noted from the literature 

review (Chapter 2, section 2.5.1), that productivity is difficult to measure, the researcher consider 

agile team productivity from the team perception of their overall team productivity. The attitudinal 

and behaviour outcomes were considered because of their importance in establishing agile self-

organisation and teamwork (Moe et al. 2008, 2010).  

 

3.2.4 The research approach 

 

Empirical studies may apply different research methods. Research is broadly categorised into 

two main classes, that is, fundamental (basic) and applied research (Rajasekar et al. 2013:7). 

The fundamental or applied research can either be quantitative or qualitative or even both. 

Quantitative research is commonly associated with measurement of quantity or amount, whilst 

qualitative research usually uses a phenomenon involving quality. Quantitative research is 

basically “used and analysed by positivist researchers” (Oates 2009:255), whilst qualitative 

research is primarily “used and analysed by interpretive and critical researchers” (Oates 

2009:266).  Quantitative research methods use a deductive approach to data analysis whereas 

qualitative research methodologies use an inductive approach. Deductive reasoning is a top-

down approach where reasoning works from more general to more specific hypotheses that can 

be tested. Inductive reasoning is a “bottom-up” approach where the researcher moves from 

specific observations to general conclusions and theories. The two approaches above indicate 

that the nature of this research study is inductive. Inductive and deductive reasoning methods 

have a completely different “feel” to them when carrying out research. Deductive reasoning is 



 

            Chapter 3: Research Methodology and Design                                                                                                                             49 

 

narrow and is concerned with confirming or testing hypotheses whilst inductive reasoning is 

more exploratory and open-ended (Trochim 2006:17).  

 

Table 3.2 summarises the main characteristics of quantitative and qualitative research methods. 

 

Table 3.2 Characteristics of quantitative and qualitative research (Rajasekar et al. 

2013:9) 

Quantitative Research Qualitative Research 

- It is numerical, applies statistics or 

mathematics, is non-descriptive and 

uses numbers. 

- It is non-numerical, applies reasoning, is 

descriptive and uses words. 

- Evidence is evaluated because it is an 

iterative process. 

- Its aim is to get feeling, meaning and 

describe a situation. 

- The presentation of the results often 

takes place in graphs or tables. 

- Data in qualitative research cannot be 

graphed. 

- Quantitative research is conclusive. - Qualitative research is exploratory. 

- Quantitative research investigates the 

where, what and when of decision 

making. 

- Qualitative research investigates the how 

and why of decision making. 

 

 

Table 3.2 above shows various characteristics of each research method. Quantitative research 

can be categorised into experimental and non-experimental research (such as surveys), and its 

basic building blocks are variables. The purpose of experimental research is to study cause-

and-effect relationships, while non-experimental research does not involve manipulation of 

independent variables nor random assignment of group participants. For this study, quantitative 

research was not considered since it uses postpositivist claims of knowledge development, uses 

research strategies such as surveys and experiments, and collects numeric data that produce 

statistical data as findings (Creswell 2003:18). The research under study involves humans as 

the centres of productivity. 

 



 

            Chapter 3: Research Methodology and Design                                                                                                                             50 

 

This research study is associated with a qualitative research methodology that is appropriate to 

answer the questions focused on “what” and “how” (Yin 2008:2), and aims to acquire a good 

understanding of the problem being investigated. This study has a perfect match with the 

characteristics of qualitative research  

 

It is intended to explore which productivity concepts agile teams use in their projects; this is 

predominantly qualitative in nature since it involves non-numeric data and uses words (Oates 

2009:266). It is also planned to ascertain which factors have an effect on productivity of agile 

teams, and to investigate whether these agile practices affect productivity from the teams’ point 

of view. Qualitative research can be used in academic natural sciences and social sciences, as 

it allows the researcher access to large amounts of “hard data”. Denzin & Lincoln (2005:2) 

described qualitative research as a “multi-method in focus, comprising an interpretive, 

naturalistic approach to its subject matter.” Qualitative research is usually more flexible, allowing 

more naturalness and allows more collaboration and interaction between the study participant(s) 

and the researcher (Denzin & Lincoln 2005:2). The productivity of an agile team was to be 

studied in a natural setting (an office where the software development is taking place) to allow 

the researcher to interpret or make sense of the phenomenon under study, and in turn allows 

the researcher to answer the research questions for this study with more meaningful information.  

 

3.2.5 The research philosophy 

 

The philosophy of research is a belief about how to gather, analyse and use data about a 

phenomenon. Holden and Lynch (2004:15) state that reviewing the philosophy is a critical aspect 

of the research process because it opens the researcher’s minds to new possibilities, which 

normally lead to the enrichment of research skills and increase the researcher’s confidence in 

the selected research strategy. The term ontology (researcher’s viewpoint of the nature of reality) 

as opposed to epistemology (researcher’s view about what counts as legitimate, valid and 

acceptable knowledge) constitutes the various philosophical paradigms of the research 

approach (Lee 2004:5). There are a variety of research strategies with distinct underlying 

philosophical paradigms that have been used in information systems, and researchers need to 

be aware of these paradigms (Oates 2009:282). There are three major divisions of research-



 

            Chapter 3: Research Methodology and Design                                                                                                                             51 

 

philosophical paradigms, namely positivism (sometimes called ‘the scientific method’), 

interpretivism, and critical research (Oates 2009:283).  

 

The positivist philosophical paradigm underlies the scientific method which mainly uses 

experiments, but in information systems, for instance, positivist researchers use surveys as 

opposed to experiments, as the latter are often not feasible (Oates 2009:286). Interpretivism 

research is associated with understanding the social context of an information system: the social 

processes by which it is developed and construed by people and through which it influences, 

and is influenced by, its social setting (Oates 2009:292). Critical research is associated with 

identifying conflicts, contradictions and power relations, and empowering people to eliminate 

them as sources of dominance and alienation (Oates 2009:296). 

 

In pursuance of identifying the most appropriate philosophical paradigm for this research, the 

three philosophical paradigms: positivism, interpretivism, and critical research, are compared 

and constructed below. 

Table 3.3 Comparison of the three research philosophies (Bristow & Saunders 2015:136) 

 Research Paradigms 

Positivism Critical Research Interpretivism 

Ontology 

(nature of being or 

reality) 

The nature of the 

world is real and 

exists independently 

of humans.  A social 

and physical world 

exists, to be 

captured, studied 

and measured. 

Layered/ Stratified 

ontology (the empirical, 

actual and real) 

Reality is external and 

independent.  

Objective structures are 

underlying structures 

that shape the 

observable events. 

Causal mechanisms. 

Dynamic, rich, 

socially constructed 

meaning through 

language and 

culture.  

Multiple subjective 

meanings, realities, 

interpretations. 

Flux of processes, 

practices, 

experiences. 

Epistemology Positivism uses 

scientific method: 

The critical researcher 

embraces 

Knowledge is 

gathered through 



 

            Chapter 3: Research Methodology and Design                                                                                                                             52 

 

 Research Paradigms 

Positivism Critical Research Interpretivism 

(what constitutes 

acceptable 

knowledge) 

Observations and 

measurements of 

facts, and produce 

hypotheses, 

theories.  

epistemological 

relativism.  

Knowledge is historically 

situated and transient. 

Facts are social 

constructions that do not 

exist independently but 

rather are agreed on by 

people. Critical 

researcher focuses on 

historical casual 

explanation as 

contribution. 

multiple subjective 

realities. It focuses 

on narratives, 

stories, 

interpretations and 

perceptions.  

Research is aimed at 

new understandings 

of people in natural 

social setting. 

Axiology 

(role of value) 

Value-free research. 

The researcher is 

neutral, objective 

and independent, an 

impartial researcher.  

Value-laden research. 

A critical researcher 

acknowledges bias by 

the world views, cultural 

experience and 

upbringing.  

The researcher tries to 

minimise errors and 

bias. The critical 

researcher is as 

objective as possible.  

Value-bound 

research. 

Researchers bring 

own subjective 

experience and are 

part of what is 

researched. 

Researcher’s 

interpretation is key 

contribution. 

Researchers are 

reflexive.  

Methodology 

(Typical methods) 

Deductive, large 

samples, highly 

structured, 

measurement, 

Retroductive, in-depth 

historically situated 

analysis of emerging 

agency and pre-existing 

Usually inductive 

Small samples, 

comprehensive 

investigations, 



 

            Chapter 3: Research Methodology and Design                                                                                                                             53 

 

 Research Paradigms 

Positivism Critical Research Interpretivism 

typically quantitative 

data analysis.  

structures. Critical 

researchers use a 

variety of methods and 

data types to fit the 

subject matter.  

qualitative data 

analysis.  

 

Table 3.3 above presents a detailed comparison of the three philosophical paradigms. It is clear, 

from the table, that the positivism paradigm is more relevant to studying natural world aspects, 

for example, pressure, atoms, etc., and less commonly suited for researching the social world, 

which is the world of people, organisation, etc. (Oates 2009:288). The aim of this study is to test 

theories that are generalizable, using reductionism and repetition. The positivist approach was 

not considered for this research study as it is not always suitable for studying the social world. 

This research is not carried out in an objective manner but rather in a subjective manner.  The 

goal of critical research is to concentrate on the conflicts, power relations and contradictions in 

the current world, and to help eliminate them as causes of dominance and alienation (Oates 

2009:297). According to Oates, critical research aims at identifying and challenging conditions 

of domination, and the limitations and injustices of the status quo and of assumptions taken for 

granted, which makes critical research unsuitable for this study. As this study aims to identify, 

explain and explore how factors in a particular social setting (an agile software development 

team) are related and interdependent, this study adopted an interpretivism approach. According 

to Checkland and Holwell (1998:22), the researcher then observes people’s perceptions of their 

world (as individuals or as a community) and tries to get an understanding of phenomena through 

the meanings and values assigned to them by people.  

 

The choice of the research philosophy for this study raises important methodological implications 

regarding the choice between various research strategies and data generation methods. This 

research study involves group and individual software development team members and their 

productivity; it therefore lies within the interpretivism paradigm as illustrated below: 

 



 

            Chapter 3: Research Methodology and Design                                                                                                                             54 

 

 Multiple subjective realities: how each software development team member considers 

how productivity might differ from one company to another. The shared view of 

individuals, of what constitutes productivity, may differ from one software developer to 

another. 

 Socially and dynamically constructed meaning: for this study, knowledge to be gathered 

through shared meanings and understanding of the group or individual participants.  

 Researcher’s reflexivity: the researcher’s own values, beliefs, assumptions and actions 

shaped the research process since the researcher not only gathered data from observing 

the phenomena, but also from renegotiation of understandings, meanings and practices.  

 This study involved studying humans in their natural settings. The researcher aimed to 

understand how software development teams work and produce results in their natural 

settings. What happens during software development was studied from the perspectives 

of the agile software development team.  

 Multiple interpretations: in this study, it is clear that more than one explanation or definition 

of what constitutes productivity will be reached, and the researcher will discuss which one 

encompasses all the variables.  

 

This research study is highly qualitative, that is, it is essentially interpretive research (Creswell 

2003:13). Interpretive research does not validate or invalidate any hypothesis, but instead is 

concerned with understanding the social context of an information system (Oates 2009:292). 

This research aims to identify, explore and explain interpretations that participants have with 

regard to factors that affect software productivity in companies that use agile methodologies. 

The data collection also provides an account of what happens in a social setting which permits 

of multiple interpretations that can be created by different participants through interactions in the 

research process. By examining and interacting with participants, the researcher may develop 

a deeper understanding of the factors that affect agile team productivity, and how to develop a 

framework that will assist agile teams in measuring their own software productivity.  

 

 

 



 

            Chapter 3: Research Methodology and Design                                                                                                                             55 

 

3.2.6 Discussion and rationale for the choice of research strategy   

 

There are numerous research strategies that relate to the three philosophical paradigms 

discussed above. As noted above, this study falls under the interpretivism approach, and there 

are a few research strategies identified for this research. Experiments and surveys are strongly 

associated with the positivist paradigm, therefore are not considered for this study. Critical 

research, at the other end, is concerned with changes in a social situation or individuals and 

mostly uses design and creation and action research as research strategies, and therefore is 

also not considered for this research study. The philosophical paradigm of interpretivism is the 

most suitable approach for this study, as it emphasises a subjective approach to studying social 

phenomena and uses research strategies such as ethnographies and case studies which are 

strongly associated with an interpretive paradigm.  

 

There are five major types of qualitative research strategies, as follows: 

 

(i) Ethnography, where a researcher gathers and records data, primarily observational 

data about the cultural group being studied in a natural setting over a long period of 

time (Creswell 2003:14). The outcomes of an ethnography are heavily “dependent on 

the researcher as the research instrument, and critics point out that the researcher is 

not detached and objective, and the findings are not likely to be repeated by someone 

else” (Oates 2009:174).  Although ethnography is strongly associated with the 

interpretive approach, for this study, ethnography was not chosen as a research 

strategy to be used as the research was not focused on studying peoples and cultures.  

 

(ii) Grounded Theory, where a researcher intends to do field research, analyse the data 

to establish the theory that emerges, so that the theory is grounded in the field data 

(Oates 2009:274). A grounded-theory process is an “inductive approach” as opposed 

to the “deductive approach”, where a researcher develops an abstract theory first and 

then goes into the field to evaluate it (Oates 2009:274). For this research study, 

grounded theory was not selected as a strategy to be used, because it is concerned 

with generating theories. This research study is concerned with generating data from 



 

            Chapter 3: Research Methodology and Design                                                                                                                             56 

 

a sample of identified companies that use agile methodologies in their software 

development, hence grounded theory is not applicable it. 

 

(iii) Phenomenological research, where a researcher identifies the core of human 

experiences regarding a phenomenon, according to the descriptions of participants in 

a study (Creswell 2003:15). Understanding people’s lived experiences makes 

phenomenology a philosophy as well as a method, and the procedure is associated 

with studying a small number of subjects through broad and prolonged engagement 

to develop meaning for relationships and patterns (Creswell 2003:15).  

Phenomenological research was not selected as a strategy to be used for this study 

because it is mainly suited for studying emotional, affective, and often intense human 

experiences (Merriam 2009:26). 

 

(iv) Narrative Research is a research inquiry  where the researcher gathers human and 

personal dimensions of experience over time, and records the relationships between 

cultural context and individual experiences (Clandinin & Connelly 2000:20).  The 

information gathered is then retold into a narrative chronology by the researcher. 

Views of life of participants as well as those of the researcher’s life are combined 

together at the end to form a collaborative narrative. Narrative research was not 

chosen as a research strategy for this study because it focuses on human lives and 

their stories. Narrative research lacks analysis and trustworthiness as it leans heavily 

on narration as a form of representation.  

 

(v) Case Studies, where a researcher investigates or explores a contemporary 

phenomenon within its real-life context (Yin 2003:13). Case studies are bounded by 

time and activity and the researcher can use a variety of data sources and methods 

to gather detailed data over a given period of time (Oates 2009:142). In a case study, 

a researcher obtains detailed information about a particular instance of the 

phenomenon under investigation (Oates 2009:142). Research conducted using case 

study is conducted in a natural setting.  The research setting is already in existence 

prior to the researcher conducting the investigation and continues to be in existence 



 

            Chapter 3: Research Methodology and Design                                                                                                                             57 

 

after the completion on the research. A case study approach was chosen as the best 

and most appropriate strategy for the present research because the research on agile 

team productivity would then be conducted in a natural setting (the offices where 

programmers, analysts, etc. do their work each and every day) and also because 

detailed information needed to be obtained in order to answer the research questions 

for this study. A discussion of the rationale for choosing a case study as a research 

strategy for this research is presented in the next section. 

 

3.2.6.1 Applicability of the case study method to this research 

 

A case study concentrates on a specific occurrence of an entity which is to be investigated: 

an association, a data framework, an examination gathering, a framework designer and so 

on (Oates 2009:141). The instance, or case, is studied thoroughly, by means of a variety of 

sources and methods, for example, observation, interviewing, questionnaires and document 

analysis. The aim is to acquire a thorough insight into the ‘life’ of that entity and all factors 

and their interrelationships.  

 

Gillham (2000:1) states that a case study is an investigation aimed at answering specific 

research questions that aim at diverse types of evidence from the case settings. Yin (2008:18) 

points out that a case study is an empirical inquiry used to investigate a contemporary 

phenomenon in its real-life setting, mostly if the boundaries between context and phenomenon 

are not well defined. According to McMillan and Schumacher (2001:401), a case study examines 

a case, or limited system, in depth over a certain time, utilising numerous sources of data 

available in the setting.  

 

A case study can follow an essential philosophical paradigm of critical research, interpretivism, 

or positivism (Oates 2009:144). The case study is suitable for both theory constructing and 

testing and therefore the interpretive approach will be used in this research. The case study 

methodology was chosen as the most suitable approach because it produces data close to the 

individual’s experiences (an agile team is made up of individuals) and it allows the researcher to 

answer research questions  on “what” and “how” (Yin 2008:2). A case study, according to Yin 



 

            Chapter 3: Research Methodology and Design                                                                                                                             58 

 

(2008:18), has the capacity to deal with technically distinct situations where there are a number 

of variables of interest, as against single data points. Any one result normally relies on several 

sources of evidence, and data need to converge in a “triangulating” fashion. Some results benefit 

from previously developed theoretical propositions, to guide data generation and analysis. In the 

present study, there are many variables involved in the measurement of software productivity as 

well as factors that influence the productivity of each software development team. The case 

study research method offers the approach to design logic, data collection and data analysis 

which makes it the most appropriate qualitative research strategy to be used for this study.  

 

3.3 Data collection and analysis 

 

This research is based on qualitative research which relies on observation, interviews, audio 

visual and documents for its most common data-gathering methods.(Creswell 2009:173). 

Interviews and focus group interviews were used for data collection, and a comprehensive 

discussion of interviews is presented below. Two techniques were chosen so as to enable the 

researcher to cross-check data from two different angles to help in providing a multi-dimensional 

view of the collected data.  

The following section discuss the chosen data collection methods, viz. interviews and group 

interviews (of focus groups). 

 

3.3.1 Interviews 

 

According to Yin (2003), interviews are discussions guided by a prepared procedure and are 

believed to be one of the most vital resources for data collection. Interviews can be 

categorised into three types: structured, where the interviewee has to answer standardised 

questions; semi-structured, where the interviewee has a list of themes, but is allowed to 

change during the course of the interview to follow up specific themes; and unstructured, 

where the researcher has less control of the interview. In the present case, the researcher 

will be using semi-structured interviews, to allow participants to bring up relevant issues that 

might not be covered in the researcher’s prepared questions. Unstructured interviews were 

not considered because of their lack of structure and order in the interviewees’ way of 



 

            Chapter 3: Research Methodology and Design                                                                                                                             59 

 

answering questions (Davis et al. 2006). The interview questions would focus on the 

participants’ experience of working with agile methods and on their particular roles in agile 

projects.  

 

Table 3.4 Advantages and disadvantages of interviews (Oates 2009:198-199) 

Advantages Disadvantages 

Topics are dealt with in depth and in detail. Interviewing, transcribing and analysis of 

unstructured data is time-consuming for the 

researcher. 

Relatively little equipment is needed, and 

the interviews are built on the researcher’s 

present social skills. 

Lack of reliability due to the effect and 

context of the researcher which makes it 

difficult to achieve consistency and 

objectivity. 

It gives the researcher an opportunity to 

cross-check the interviewee to see if he or 

she is the correct person to be answering 

the questions.  

Can be misleading since they focus on the 

participant’s answer rather than what might 

really be the case. 

Permits flexibility – as the interview 

progresses, it allows the researcher to 

adjust the line of inquiry. 

Interviewees can give a false impression 

since they are aware that they are speaking 

for the record. 

Talking to a non-critical listener makes 

interviewees enjoy the opportunity to speak 

about their ideas. 

They can be upsetting and stressful for both 

the researcher and the interviewee since 

they require tact and social skills. 

Some participants often prefer interviews as 

opposed to completing questionnaires, 

since they can meet the researcher and they 

find it easier to talk than to write down 

responses. 

They are not generally suitable for research 

that requires generalisations about a whole 

population.  

 

 



 

            Chapter 3: Research Methodology and Design                                                                                                                             60 

 

3.3.2 Group interviews (focus groups) 

 

The focus group interview is an effective approach to gathering qualitative data. A group of 

participants and the researcher sit together and discuss certain items depending on the 

needs of the case, allowing the group members to talk to each other and carry on 

discussions. From this, new issues might arise which had not been recognised by individual 

group members (Oates 2009:194-195). The researcher leads the discussions throughout the 

session, but yields to participants when necessary to engage more in the topic of discussion. 

This method is efficient since it helps to collect data from several perspectives 

simultaneously, although it will be challenging to find an occasion when all participants 

(especially industry practitioners) are available together. Since it is difficult to facilitate a 

group discussion and keep notes at the same time, audio recordings are used, and the 

discussion is transcribed.  

 

Table 3.5 Advantages and disadvantages of group interviews (Oates 2009:195) 

Advantages Disadvantages 

Consensus views can be generated. Some team members might dominate the 

interview and the quiet members may 

struggle to be heard. 

More responses can be generated, as one 

participant’s ideas and views can be 

challenged by other participants and 

stimulate other group participants to new 

ideas. 

Some participants might be reluctant to 

express their ideas and views in front of 

others. 

It allows the group to brainstorm themes. Opinions “expressed might be only those 

deemed to be ‘acceptable’ within the group.”  

 

This research study involves data collection from different participants using agile 

development methodologies in their software development. Qualitative data analysis is used. 

In this research, with contributions from two organisations, based in South Africa but located 

in different provinces. 



 

            Chapter 3: Research Methodology and Design                                                                                                                             61 

 

 

3.3.3 Data generation methods for this study in context 

 

According to Creswell (2009:4), qualitative research is an approach to understanding and 

exploring the opinions of individuals and groups affected by a human or social problem. 

Qualitative researchers normally use open-ended questions, which allows the participants 

to air their views (Crotty 1998:10). In qualitative research, the researcher seeks to 

understand the context and setting of the participants by going to that setting and personally 

gathering information. According to Kumar (2005:123), although there exist several data 

generation methods in qualitative research, interviews are the most commonly used 

instrument. For the exploration of the central topic in this research, a semi-structured 

interview design with open-ended questions was deemed the most appropriate.  

 

The open-ended type of interview was chosen because it gives respondents enough time 

and scope to express their different views and allows the researcher to follow up and react 

to unfolding events and emerging ideas. The results obtained through open-ended questions 

can be compared  among each other since each participant is required to express his/her 

views about the theme under study, which perhaps will not be possible in a survey, for 

instance. Open-ended questions also permit the respondents to freely voice their 

experiences, thereby minimising the influence of the researchers’ “attitude and previous 

findings” (Creswell 2005:18). 

 

Both focus group and individual interviews were viewed as the most appropriate data 

collection techniques for this study because productivity in software development involves 

individual workers and workers working in a group (team). Having face-to-face interviews 

with each programmer, system analyst, etc., and group interviews with the whole 

programming team will help the researcher to ascertain which factors highly affect the team 

productivity. This will assist the researcher in answering the research questions of chapter 

1.  

 



 

            Chapter 3: Research Methodology and Design                                                                                                                             62 

 

3.3.4 Analysing textual data 

 

Data analysis starts with the researcher reading through the collected data to get the general 

impression. The researcher then determines key themes in the collected data (Oates 

2009:268-269). In the present case, three themes were identified, as follows: 

1. Segments that do not relate to the research questions and therefore are not needed. 

2. Segments that give general overview information which might be needed in describing 

the research context (for example, company history). 

3. Segments that are directly significant to the research questions. 

 

The research will focus on the last segment, with the researcher categorising each segment 

or unit of data into themes. The categories will come from existing theories from the literature, 

or are developed by the researcher (Oates 2009). Computer-aided qualitative analysis 

software tools are used for tasks such as searching the text, data coding, data grouping, 

writing tools, etc. 

 

3.3.5 Non-textual qualitative data analysis 

 

According to Oates (2009:273), non-textual qualitative data comprise videos, sound clips and 

audio tapes multimedia documents and photographs. Raw data from interviews, that is, audio 

tapes, are indexed and transcribed. For analysing non-textual data, computer-aided 

qualitative analysis software tools are used for tasks such as transcript creation, coding, data 

organisation and hyperlink creation. 

 

Qualitative data analysis was chosen for the following reasons: 

- The ‘slice of data’ can be examined and analysed because of its richness and 

thoroughness, which includes words, images, different websites and expressions from 

the participants, all of which were relevant to this research with its focus on human 

productivity, unlike a study that can be expressed as numbers only.  



 

            Chapter 3: Research Methodology and Design                                                                                                                             63 

 

- The possibility exists of more than one explanation, rather than assuming that there can 

only be one ‘correct’ explanation (Oates 2009:277). Therefore, the possibility exists of 

different researchers reaching different valid conclusions from the same research results. 

 

3.4 Research design 

 

Research design refers to a ‘master plan’ used for planning, collecting and analysing data, 

which gives direction on how this study is to be carried out. Schumacher and McMillan 

(1993:31) describe research design as the structure and plan of investigation used to acquire 

evidence in order to answer research questions. Mouton (1996:175) states that the research 

design serves to structure, plan, and execute the research and thus to maximise the validity 

of the findings. In addition, Yin (2003:19) asserts that literally a research design is a plan of 

action for moving from ‘here’ to ‘there’, where ‘here’ is considered as the original set of 

questions to be answered and ‘there’ is some set of (conclusive) answers. 

 

3.4.1 A Model of the research process 

 

Figure 3.2 summarises the research phases, the methods used and the purposes. 

 



 

            Chapter 3: Research Methodology and Design                                                                                                                             64 

 

 

 

Firstly, Phase I is a combination of a literature review of software productivity and of 

considered studies. Traditional software productivity analysis, such as recommended by 

ISO/IEC 15393, can generate misleading analysis (Kitchenham et al. 2007:316). Productivity 

definitions are based on traditional software development approaches, raising questions on 

the validity of the metrics adopted by companies to evaluate agile projects. In parallel, the 

researcher will conduct a literature review based on primary and secondary studies of 

software productivity definitions, factors, and metrics, both for traditional and agile 

approaches. 

 

       Phase I             Phase II             Phase III 

Documents review 

of factors influencing 

productivity in agile 

teams 

Literature review of agile 

team productivity 

definitions and agile team 

productivity factors 

Study of software 

productivity 

definitions, factors 

and metrics 

Document reviews on agile 

productivity metrics and 

performance monitoring, 

measurement dysfunctions, 

and monitoring in self-

managed teams 

Face-to-face discussions and 

interviews with programmers 

and software practitioners on 

agile productivity 

expectations and benefits 

Case study exploring and 

assessing productivity 

monitoring and 
measurement in agile 

teams 

Qualitative data analysis 

of the findings 

Figure 3.2: Research phases 

 



 

            Chapter 3: Research Methodology and Design                                                                                                                             65 

 

Phase II: A case study will be used by the researcher to identify definitions of productivity 

and the factors that influence productivity in agile teams. Case studies are tobe developed 

to gather evidence on the importance of productivity in agile teams. Thereafter, the 

researcher will collect qualitative data on how companies are evaluating the productivity of 

agile teams’, and whether they are using metrics for that. The researcher’s findings should 

answer RQ1, RQ2, and RQ3. 

 

Finally, Phase III involves monitoring processes for agile team productivity measurements, 

and the evaluation of their effectiveness. Since organisations that use agile methodologies 

are still trying to find good ways to monitor their productivity, a case study will be used. The 

main goal is not to develop new metrics for measuring productivity of agile teams, but to 

iteratively adopt some proposed agile metrics and evaluate them in a real setting. The 

researcher’s finding should then answer RQ4. 

 

3.4.2 Summary of the research process 

 

Figure 3.2 shows a summary of the research process and the phases involved in this study. 

The use of a variety of data collection methods enables the researcher to look at productivity 

in agile teams in different ways. Details of each research process stage are discussed as 

follows: 

 

Table 3.6 Research stages 

Stage Description Reference 

1 Factors influencing productivity in agile teams. Chapter 2 

2.5 & Table 2.2 

2 Software productivity definitions, factors and metrics. Chapter 2 

2.5 & 2.5.5 

3 Agile team productivity definitions and agile team 

productivity factors. 

Chapter 2 

2.5 & Table 2.2 



 

            Chapter 3: Research Methodology and Design                                                                                                                             66 

 

Stage Description Reference 

4 Agile productivity metrics and performance monitoring, 

measurement dysfunctions, and monitoring in self-

managed teams.  

Chapter 2 

2.5.1; 2.5.2; 2.5.3 

& 2.5.4 

5 Preparing interview questions and finalising them.   

6 Conduction of face-to-face interviews with 

programmers, software practitioners and focus groups 

on agile team productivity expectations and benefits. 

(based on two selected companies under case study in 

South Africa) 

 

7 Qualitative data analysis of the findings.  

 

Stages 1 to 4 were conducted as preliminary work necessary in developing the research 

questions. Stages 5 to 7 address the research questions. The stages 1 to 7 are summarised 

below to give an overview of the context of the design. 

 

3.4.2.1 Factors influencing productivity in agile teams 

 

Stage 1 identified and analysed common factors that influence software productivity in agile 

teams. Table 2.2 shows an overview of the factors that were identified in the literature and 

which have a positive or negative effect on the productivity of agile teams. Cross-content 

factors, content-specific factors and reuse-specific factors were identified as the most 

common published factors in the literature that affect productivity in software development 

teams. 

 

 

3.4.2.2 Software productivity definitions, factors and metrics 

 

Stage 2 was to study common productivity-related definitions, factors and metrics used by 

agile teams. Chapter 2 (section 2.5) presented a detailed discussion of definitions of software 

productivity which relate to the ratio of produced software divided by the labour and cost of 



 

            Chapter 3: Research Methodology and Design                                                                                                                             67 

 

producing the software. This definition did not exhaust everything that is involved in 

productivity and therefore the ‘Triple-P model’ (figure 2.2) was proposed which aims to 

distinguish productivity from profitability, efficiency, effectiveness and performance. Although 

the ‘Triple-P model’ distinguished productivity from the above-mentioned factors, productivity 

management in information technology remained a key issue due to productivity metrics 

being generally based on ratios and knowledge worker productivity including people factors. 

The purpose of this phase or stage was to help answer the research questions based on 

productivity definitions, factors and metrics used in agile software development. 

 

The software productivity definitions, factors and metrics presented were used as the basis 

for data gathering. In reviewing each definition, factor and metric, the focus was directed on 

those definitions, factors and metrics that specifically relate to agile software development.  

 

3.4.2.3 Agile team productivity definitions and agile team productivity factors 

 

Stage 3 identified the productivity definitions and the agile-team productivity factors that 

formed the research questions. Most of the authors who studied ‘productivity’ were 

considered for this dissertation; Jones (1996); Mills (1983); Tangen (2002); Trendowicz & 

Munich (2009); Petersen (2011); Boehm (2000); Ramirez & Nembhard (2004) were identified 

as important. 

 

A number of productivity factors were identified by the researcher across all the software 

development teams, and only those factors that affect agile teams were chosen. 

Understanding the factors that affect software productivity in agile teams is one of the most 

difficult tasks that face many software development organisations adopting agile 

methodologies today. Chapter 2 provides a detailed discussion of these factors and their 

effect on agile team productivity.  

 

3.4.2.4 Agile team productivity metrics and performance monitoring 

 



 

            Chapter 3: Research Methodology and Design                                                                                                                             68 

 

In many studies outside and inside the software engineering world, productivity is expressed 

as the ratio of units of output produced to the units of input effort spent. Although there have 

been well-established metrics to measure productivity, it still varies from one organisation to 

another. Two organisations in South Africa, located in two different geographical areas, were 

chosen for the present research in order to establish which productivity metrics are being 

used by these organisations and which performance monitoring techniques are in place. The 

organisations considered for this study have been working with agile development projects 

for more than three years. The software development manager for each organisation was 

contacted before setting up interview dates with the entire software development teams. The 

background of the research and some preliminary interview questions were sent to the 

software development manager beforehand. The productivity metrics and performance 

monitoring techniques also shaped the foundation for formulating interview questions. 

 

Finally the interview questions were drafted for data collection purposes. They are found in 

Appendix C.  

 

3.4.2.5 Preparing interview questions and finalising them 

 

At stage 5, the researcher established steps to be followed in preparing and finalising the 

interview questions: 

1) Identify the productivity definitions, factors, metrics and performance monitoring 

techniques that are of interest to the researcher. 

2) Prepare a list of participants to be interviewed and make sure that all stakeholders 

involved in software development are involved in order to obtain a balanced opinion. All 

the participants involved should be identified beforehand.  

3) Ensure that all ethical research standards are adhered to, including obtaining an ethical 

clearance from the university. 

4) Finalise the interview questions and e-mail a list of topics to be discussed to the 

participants before the actual interview date.  

 

3.4.2.5.1 Selection of participants 



 

            Chapter 3: Research Methodology and Design                                                                                                                             69 

 

 

In selecting the participants, consideration was given to people who were part of software 

development from the feasibility stage up to the final software product to be delivered to 

the client. The participants thus identified were developers, testers, system analysts, 

project managers, software development managers and business representatives.  

 

The selection of the organisations for the case studies was based on a review of each 

organisation profile, company organogram and previous project profiles; to confirm their 

engagement in projects that have used agile methodologies in software development for 

at least three years. The researcher conducted an internet reference check (through 

visiting the company website and any link where the organisation was mentioned online) 

for organisations that use agile methodologies in South Africa in their software 

development. Among the nine provinces, two provinces had a higher number of 

organisations that were involved in software development using one or more of agile 

software development methodologies (for example, XP, Scrum, etc.). The researcher 

then selected an organisation in each of the identified two provinces and did a background 

check to confirm that the organisations chosen were relevant for this study by making 

telephone calls to the organisations and obtaining confirmation from the relevant software 

development managers. Communication between the researcher and the managers 

continued through electronic mail while organising participants and interview dates that 

suited the management and the development team schedule. Care was taken to identify 

and select the right participants who were currently involved in an agile software 

development project. A department organogram was requested by the researcher from 

each manager representing each organisation to allow the selection of appropriate 

participants that would be able to give the answers that are relevant to the research study. 

 

With the assistance of each of the selected managers, personal electronic mail invitations 

were sent out to prospective participants in both organisations. Participants were selected 

based on their job description and experience with agile methodologies. Caution was 

taken to ensure that the interview questions were unambiguous and clear, to make sure 

that the participants would be in a position to answer questions clearly. The participants 



 

            Chapter 3: Research Methodology and Design                                                                                                                             70 

 

who were chosen to participate in the focus group interview were the same participants 

who were first interviewed as individuals. The focus group interviews were scheduled to 

last for ninety minutes. 

 

 

3.4.2.5.2 Ethical considerations 

 

Ethical considerations are very critical in research. Ethics are standards or norms for 

conduct that differentiates between right and wrong (Munhall 1988:150). The researcher 

adhered to all ethical standards by first obtaining an ethical clearance from the university, 

although this research focused on productivity; the people under study were not harmed 

nor placed at risk, and were treated fairly and with dignity.  The right of participants was 

considered as one of the most important ethical principles. The participants were informed 

in writing that they had the right to participate or not; they could withdraw at any given 

time, they had the right to give informed consent, and they had the right to privacy and 

confidentiality. The names of all the participants in both organisations under study will be 

kept confidential.  

 

An interview protocol (see Appendix A) was established for use by the researcher in both 

organisations. The following interview protocol procedures were considered in the 

preparation of interviews: 

 

(1) The researcher developed a script that helped the participants to understand their 

rights, and it ensured that the researcher conducted her interviews in an ethical 

manner.  

(2) The researcher collected consent from all participants before the interviews began. 

(3) The researcher would inform the participants that she was using recording devices 

and taking brief notes. 

 

An informed consent statement (see Appendix B) was also considered and contains the 

following: 



 

            Chapter 3: Research Methodology and Design                                                                                                                             71 

 

(1) The purpose and procedure of the research, reasons for undertaking the research and 

the benefits expected from the research. 

(2) The identity of the researcher, supervisors and the university. 

(3) A guarantee that the participants’ anonymity would be protected and data obtained 

from them would be kept confidential. 

(4) A statement of the right to withdraw from participating at any point in time, and that 

participation was voluntary. 

(5) A statement indicating that there was no incentive or payment involved in participating 

in the research.  

 

All researchers need to consider and abide by research ethics. All ethical considerations 

regarding rights of participants and responsibilities of the researcher were addressed for 

this study. The University of South Africa’s main ethical consideration was followed, 

namely that researchers must apply for ethical clearance before conducting any field 

research, and have to obtain approval. An ethical clearance was issued to the researcher 

by the university. A non-disclosure agreement with the participating organisations was 

signed, to establish a formal understanding between the researcher and the organisations 

with the guarantee that data confidentiality would be maintained.  

 

3.4.2.5.3 Finalising interview questions 

 

Table 3.7 below gives an overview of productivity factors, mapping them to the interview 

questions. Appendix C has a list of the interview questions. A semi-structured interview 

with open-ended questions was used, to allow the order of questions to be changed 

depending on the flow of the responses the researcher would be getting from the 

participants.  

 

Table 3.7 Finalising interview questions 

 Common software productivity factors Interview questions 

1 Team size Q2. a; e;  

2 Capabilities and experience of the team Q2. b; e; g; h 



 

            Chapter 3: Research Methodology and Design                                                                                                                             72 

 

 Common software productivity factors Interview questions 

Q3. a; c; d 

Q4. e;  

3 Complexity of the software Q2. d; e 

4 Constraints in a project Q2. e; h 

5 Usage of tool and quality/effectiveness Q4. a; d; 6 

6 Methods used Q5. b; c; e 

7 Process maturity and stability Q2. b; c; f;  

8 Team motivation and commitment Q3. a; b; c; d; e 

9 Required software quality Q4. f 

Q5. c; d 

10 Tool usage Q5. b; e 

11 Quality of reusable code Q2. g 

12 Product complexity Q2. f 

13 Product support Q2. H; Q5. a 

 

3.5 Summary 

 

In this chapter, a detailed discussion of the research methodology in context was presented. A 

theoretical framework was proposed which guides the research process for this study. The 

research approach was discussed and qualitative research was chosen for this study. The 

research philosophy was described; the research lies within the interpretivism paradigm. The 

research strategy was also presented and discussed in detail. Case studies where chosen as 

the most appropriate research strategy to be used for this study. Data collection and analysis 

was also discussed in detail. Individual and focus group interviews were chosen for this study. 

The research design was discussed and the research process showing the research phases 

was also presented. The participants’ selection and ethical considerations was also discussed 

for this study.  

Chapter 4 shall present the actual data collection and data analysis.  



 

            Nzou V – 46563946 – MSc in Computing  

 

Chapter 4: Data collection 

 

4.1 Introduction  

 

Chapter 3 brought a comprehensive discussion of the nature of research and research 

methodology. That chapter also addressed the rationale for the choice of research strategy and 

data generation methods for this research. The present chapter presents a discussion of the 

data collection method and data analysis used for this research, and also of the procedures used 

in collecting data. 

 

A pre-data collection process was used as the starting point for data collection. The pre-data 

collection was a critical part in the data collection process, as it outlined the base for the 

formulation of interview questions. The second part of data collection was to present the 

gathered data. The data collected were presented showing factors that affect software 

productivity in agile teams in companies that adopted these methodologies in South Africa.  

 

An outline of the process used in obtaining these factors and values and/or agile practices is 

shown below in figure 4.1. 

 



 

          Chapter 4: Data Collection                                                                                                                                                            74 

 

 

 

4.2 The interviews 

 

Oates (2009:186), described an interview as a particular discussion between people, with a set 

of assumptions not applicable to a ‘normal’ conversations. A semi-structured interview which is 

theme-based was the main data collection method in this study.  

Study literature review 

of factors influencing 

productivity in agile 

teams 

Study agile 

methodologies to 

establish common agile 

practices and/or values 

adopted by companies  

Study software 

productivity definitions 

and metrics 

Collated, agile 

practices, values, 

factors that affect 

agile team 

productivity, 

productivity 

definitions, 

monitoring tools and 

metrics.  

Figure 4.1 Pre-data collection stages 



 

          Chapter 4: Data Collection                                                                                                                                                            75 

 

Main themes:- 

 The company profile: gives details about the divisions and agile projects on which the teams 

are working. 

 The company software development process: about adopted agile practices and processes, 

including the practices and processes being implemented in that organisation. 

 Team design: about team composition, task structure and team diversity. 

 Individual factors: gives an overview of individual skills, abilities and individual member 

turnover. 

 Team environment: about work settings, orientation and stage of team development. 

 Task construction: about task design, stage of team development, duration, team 

independence and interdependency. 

 The organisation’s perceptions on key issues: how the staff and customers reflect on 

productivity, software quality, business value creation, customer satisfaction, etc. 

 

4.2.1 Selecting the interviewees 

 

The participants who were selected were the persons with experience and knowledge in agile 

software development projects (Scrum or Extreme Programming (XP)). Agile teams use roles 

and not positions, which means any given individual takes on one or more roles at any given 

time, and roles can be switched over time. The participants’ knowledge was acquired through 

formal education, experience and roles in agile projects as follows:- 

 

(i) Team Lead: - This role can also be referred to as Scrum Master or team coach or project 

lead (lead programmer). The Team Lead was responsible for obtaining resources for the 

team, organising the team’s work and ensuring that the team is protected from problems. 

The role of the Team Lead encompasses the soft skills of project management. 

 

(ii) Team Member: - A team member can either be a developer or a programmer. A team 

member’s responsibility is to build, create, develop and deliver the system. This includes 

software modelling, programming, software testing, and release activities.  

 



 

          Chapter 4: Data Collection                                                                                                                                                            76 

 

(iii) Product Owner: - A Product Owner is also referred to as On-Site Customer in Extreme 

Programming (XP) and represents the stakeholders. The Product Owner is a person who 

is responsible for a team’s prioritised work item list, decision-making in a timely manner 

and providing needed information in a timely manner.  

 

(iv) Stakeholder: - A stakeholder is any person who is a direct or indirect user, senior 

manager, manager of users, operations staff, the project fund owner, support staff, 

auditor, portfolio/program manager, etc.  

 

Abbreviations such as TL1, TL2, ….., TLռ were used in the case study to indicate the roles of 

the Team Leader (for example), and this applies to all the roles under study in agile teams.  

 

4.2.2 The interview procedure 

 

The method used for conducting interviews was mainly face-to-face conversation. Electronic 

mails were used as a backup to address issues that needed clarification and were not fully 

presented during the interviews, or any others that were deemed important in relation to 

interviewees’ answers. Eight face-to-face individual interviews and two focus group interviews 

were conducted. Each face-to-face interview lasted for approximately one hour. Focus-group 

interviews were conducted after individual interviews to enable rich data that might have been 

missed in individual interviews to emerge. Focus group interviews allowed interviewees to 

express ideas that they had missed out during individual interviews. The focus group interview 

also served to triangulate data from different sources.  

 

To come up with an all-inclusive set of interview questions, the following steps were used as a 

guideline:- 

 The literature was studied thoroughly to ensure that the research study included the latest 

advances. 

 To validate the list of factors that influence agile team productivity, expert analysis was 

used. As these factors form the foundation for the research interview questions, care was 



 

          Chapter 4: Data Collection                                                                                                                                                            77 

 

taken to ensure that factors affecting software productivity in agile teams covered all 

aspects of this research. 

 Interviews were booked and confirmed via electronic mails, and travelling arrangements 

were made prior to interview dates. Four sets of interviews were conducted in Gauteng 

Province, covering all the aspects of factors that affect software development productivity 

in agile teams. The interviews were conducted in two separate days, but in the same 

location. Four sets of interviews were also conducted in Western Cape Province, all within 

one day.   

 

4.2.3 Conducting the interviews 

 

The purpose of the interview was explained by the researcher to each and every participant, and 

in some cases to the participants’ line manager. This information was conveyed to the participant 

at the start of every interview, and the reason for selecting that participant was explained. 

Participants were e-mailed a written-consent form before the interview date, and this was then 

signed by the participant in the presence of the researcher before commencement of the 

interview. The estimated duration time of the interview (which was approximately one hour), data 

confidentiality relating to data collected during in the interview, and the use of audio recording 

and note-taking were fully explained before the commencement of the interview. 

 

The companies selected for the interviews are competitors in the software development industry 

in South Africa; thus care was taken to guarantee that participants felt comfortable in answering 

the interview questions. The first phase of data gathering was conducted in Gauteng Province, 

and it was based on a list of interview questions formulated in advance. The data were collected 

using face-to-face interviews in Gauteng Province, and the responses and emerging data 

gathered in the first interview assisted the researcher to rephrase some of the interview 

questions in this early stage of investigation. The researcher reviewed the questions, and some 

were then asked in a different way and/or modified to be more meaningful to the participants. 

Verification of information was carried out where necessary. The second interviews were 

conducted in Gauteng Province in the same organisation but with different participants. The final 

set of interviews was conducted in Western Cape Province. A full day was set aside for these 



 

          Chapter 4: Data Collection                                                                                                                                                            78 

 

interviews in Western Cape Province since the researcher had to travel to conduct the 

interviews.  

 

4.2.4 The interviews – Process 

 

A theme-based interview was the main data collection method. All interviews were audio 

recorded and then later transcribed. The recorded interviews gave the researcher a good 

opportunity to review the participants’ responses, the tone of their voices and the content of what 

was said. Seeking clarification and asking follow-up questions was possible during the face-to-

face interviews, which resulted in the researcher obtaining rich data. E-mails were used as a 

backup to address issues that needed clarification and were not fully presented during the 

interviews, or any others arising from the answers.  

 

In order to familiarise herself with the collected data and remember the interviewees’ responses, 

the researcher listened to every digital recording immediately after each interview and made 

notes of each interview. The researcher also took notes of her observations before and during 

the interview time. For instance, the interview time set was at 10:00 am but the participant 

became only available at 10:30 am. The researcher took note of these observations, as time 

management has a direct effect on software productivity. The researcher then transcribed and 

noted down relevant points on the audio recordings. Every transcription was read and further 

notes were made. After completing the initial reading, another reading was done by the 

researcher while listening to the audio recording. This was done in order to take note of recurring 

words, concepts, ideas and themes in the data collection process.   

 

4.3 Data analysis 

 

Data collection and data analysis were conducted concurrently. According to Yin (2002:111), 

“there must be an analytical strategy that will lead to a conclusion.” Three strategies were 

presented by Yin (2002:111-115) for general use: 

 The researcher should rely on theoretical propositions of the research, and then he/she 

can analyse the evidence based on the propositions. 



 

          Chapter 4: Data Collection                                                                                                                                                            79 

 

 The researcher can create a case description that should be a basis for organising the 

case study. 

 The researcher can establish a framework based on the rival explanations. 

 

The general strategy used in this study is the case description one, where the descriptions were 

those that resulted from the literature review in the previous steps (see Chapter 2) and were 

reflected in the case study (see interview questionnaire Appendix C). Hence for this study, the 

analysis was conducted concurrently with the data collection phase. A sample of data was 

collected and analysed regarding factors that affect agile team software productivity, as depicted 

in table 4.4. Participants in this research had experience of working in agile projects for three 

years and above. Face-to-face interviews were used and helped the researcher to explain terms 

that the participants were not familiar with. For this research, data were coded and analysed by 

the researcher according to the significant factors affecting software productivity in agile teams. 

The samples of data collected and analysed are presented in Appendix D. The collected data 

were then purified based on the outcomes or results of that data analysis. 

 

As part of analysing the data gathered, statements and comments from participants were 

provided in Section 4.5 to help coding and categorising the collected data for a better 

understanding. The researcher ensured that no participant’s name or organisation’s identity was 

disclosed. The codes used to describe the participants were TL1, P1, PO1, PM1, etc. for both 

Gauteng Province and Western Cape Province participants. Some statements and/or 

information that might have revealed the identity of the participant were edited to maintain 

confidentiality.  

 

This research falls under the description of exploratory study. The issue of an appropriate level 

of analysis needed to be addressed, and the researcher decided to use qualitative content 

analysis as it adheres to the naturalistic paradigm and is a research method well suited for the 

subjective interpretation of text data content through a systematic classification process of 

coding and categorising patterns and themes (Hsien & Shannon, 2005:1278). Incorporation of 

content analysis in this study was done at the pre-test stage during the development of the 

interview guide and was used as a foundation for the coding scheme, and for evaluating the 



 

          Chapter 4: Data Collection                                                                                                                                                            80 

 

effectiveness of certain interview items. The data collection in this study formed the foundation 

of data analysis. Data analysis comprises three simultaneous flows of activity, namely, data 

reduction, data display, and conclusion-drawing (Miles & Huberman, 1994:2). These activities 

are discussed in detail below:- 

 

4.3.1 Data reduction 

 

Data reduction was used to reduce and condense data as the study progressed. Reduction of 

the data helped to compare, contrast, aggregate, sort and order data in order to allow for final 

conclusions. The data reduction process began with a focus on distilling what the participants 

reported about the practice, activity or phenomenon under study, for knowledge to be shared. 

Based on the research questions and problem statement, the data reduction process was used 

to obtain data that were applicable to this study. The data reduction and condensation was 

carried out within the boundaries of qualitative content analysis by using a coding process. 

Irrelevant data collected were thrown out since they did not have any relevance to the study and 

participants did not have exposure or experience that enabled them to answer such questions.  

 

4.3.1.1 Qualitative content analysis 

Hsein & Shannon (2005:1278), defined qualitative content analysis as a method of research 

that uses subjective interpretation text data content through the systematic classification 

process of coding and categorising patterns and themes. Content analysis is today’s most 

frequently employed analytical tool and has been fruitfully used in most research applications 

in library and information sciences (Allen & Reser, 1990:251). As content analysis is a 

naturalistic paradigm, the participants’ responses were interpreted in such a way as not to 

compromise their original versions. For this study, content analysis was chosen by the 

researcher because of its power to make faithful inferences. The research purpose was to 

identify factors that influence software productivity in agile teams. According to Schamber 

(2000:739), a coding unit is a term or group of terms that could be coded under a single 

criterion category. The researcher unitised responses to each interview before they were 

coded. A sequence of codes and categories were developed by the researcher for content 



 

          Chapter 4: Data Collection                                                                                                                                                            81 

 

analysis as patterns emerged. The content analysis findings were presented in tables and 

diagrams. 

 

4.3.1.2 Coding 

 

Coding was done initially in the study. It enabled the researcher to start scanning recorded 

data and developing categories of phenomena. Codes were used by the researcher as a way 

of starting to obtain the meaning of the data. According to Taylor & Gibbs (2010:234), coding 

the data makes it easier to examine the data, to make evaluations and detect any patterns 

that require to be investigated further. 

 

For this study, coding took place in several stages over time. Open coding was the initial 

coding process, where the researcher thoroughly read and noted every interview script. The 

texts were unitised, concepts were highlighted and labelled during the open coding process. 

Subsequent coding took place to constantly compare the current transcript with preceding 

ones, allowing new categories and their properties to emerge. During the coding process, 

further activities and themes emerged. A list of factors that affect software productivity in 

agile teams and coding were defined and listed in Table 4.1.  

 

4.3.2 Data display 

 

Data display is the next main flow of data analysis activity. It affords a compressed, organised 

assembly of data that allows conclusions to be drawn (Miles & Huberman 1994:235).  Data 

display allows for the extrapolation from data, enough to permit the researcher to start to identify 

any systematic interrelationships and patterns. At this stage, additional themes and categories 

are likely to emerge from the data, superseding those initially discovered during the first data 

reduction process. Therefore, data could be displayed using, for instance, flow charts that allow 

the mapping-out of any critical path or decision points.  

 

For this study, data were displayed through paragraphs of texts, tables, flow charts and 

diagrams.  



 

          Chapter 4: Data Collection                                                                                                                                                            82 

 

 

4.3.3 Conclusion-drawing and verification 

 

Conclusion-drawing begins by the researcher noting explanations, regularities, propositions, 

causal flows, possible configurations and patterns (similarities/differences). The researcher 

should review the meaning of the analysed data and evaluate any implications for questions that 

need to be answered.  According to Miles & Huberman (1994:235), the meaning emerging from 

the data should be verified for sturdiness, plausibility, and confirmability – that is, data validity. 

 

For this dissertation, the data were revisited many times as necessary so as to cross-check and 

verify the emergent conclusions.  

 

4.4 Data collection foundation – Factors that affect agile team productivity 

 

The following section discusses steps that were used in gathering information which forms the 

basis for compiling interview questions.  

 

According to Dey (1993:258), for the researcher to produce an ‘acceptable’ account of the study, 

some general criteria have to be met. The three standard criteria for any analytical work were 

identified as follows:- 

1. Reliable – the findings should be consistent. 

2. Valid – the findings should tell the correct information. 

3. Representative – the study should share the same findings.  

 

The essence of reliability through consistency was tested by repeating the same interview 

questions to different participants located in different geographical areas. To check the reliability 

of the case studies, interviews were conducted on separate days with different participants 

working in the same company. Internal replication was undertaken to test the reliability of the 

researcher’s analysis.  

 



 

          Chapter 4: Data Collection                                                                                                                                                            83 

 

A valid account is defined as one “which can be defended as sound because it is well-grounded 

conceptually and empirically” (Dey, 1993:258). Validity was achieved by carefully considering 

the quality of information sources, and cross-referencing the case studies. The interviewees’ 

responses from the initial interviews were cross-referenced with the responses from successive 

participants in order to confirm data consistency. Any new information that arose was noted for 

further internal validation. External validation was carried out through the review by experts in 

agile methodologies. 

 

4.4.1 Collating agile productivity factors  

 

Using factors obtained from the researcher’s literature review in Chapter 2, an expert analysis 

was conducted to find out which agile factors affect team productivity in the companies under 

study, and whether the factors effect team productivity in a positive or negative way. This 

preliminary analysis was an important process as it formed the foundation for identifying 

common factors that affect agile team productivity in both companies under study. A 

comprehensive list of these factors was compiled, as in Table 4.1 below:  

 

Table 4.1 Collated agile productivity factors and description 

Item Productivity factors Brief description 

1. Team morale Projects have to be built around motivated developers. 

2. Team collaboration Working together jointly as a team, sharing knowledge, 

experience and skills. 

3. Continuous integration Involves continuous building of the project as soon as 

there are any changes. 

4. Daily meetings A daily morning fifteen minutes stand-up, short meeting 

for the agile team to sync. 

5. Size of database The database should be completely flexible and 

evolvable. The database should evolve as an application 

develops. 

6. Product complexity The size of the software product. 



 

          Chapter 4: Data Collection                                                                                                                                                            84 

 

Item Productivity factors Brief description 

7. Code reusability Using existing code to build new software. 

8. Software tools used The tools used to enable the team member to execute 

their jobs. 

9. Platform instability Software written for a certain platform has very little use 

when transferred to other platforms. 

10. Capability of programmers Constant attention to good design and technical 

excellence improves agility. 

11. Employee turnover Number of employees leaving the team over a period of 

12 months. 

12. Experience with different 

applications 

Team members should learn new skills from one another 

because it is more valuable to the organisation and can 

be better equipped in supporting each other’s’ work.  

13. Experience with using 

language and tools in use 

The team experience with different programming 

languages and tools. 

14. Multisite development Software development teams in different geographical 

locations collaborate on common software projects. 

15. Required development 

schedule 

Working software should be delivered on a frequent basis, 

maintaining a shorter timescale. 

16. Real customer involvement Customers and developers working together throughout 

the project on a daily basis.  

17. Planning meetings Planning meetings that are held by the team at the 

beginning of each iteration, generally lasting from two to 

four hours. 

18. Root cause analysis Used to facilitate a shared understanding of problems and 

stopping those problems which may been bugging the 

team for a long time. 

19. Refactoring The activity of refining the design code without changing 

the external behaviour. 

20. Self-organising  Typically the team members do not require any 

supervision or direction. 



 

          Chapter 4: Data Collection                                                                                                                                                            85 

 

Item Productivity factors Brief description 

21. Team size The number of team members per group.  

22. Management quality and 

style 

Management are prepared to do things differently and try 

new things, quality assurance is seen as a shared 

responsibility.  

23. Project constraints The developers can get the job done, if a good 

environment and support is provided. 

24. Required software quality The key measure of progress is quality working software. 

25. Open communication  Face-to-face communication is the most effective and 

efficient way of transmitting information within the team.  

26. Transparency  Openness within the team members and the business 

people. 

27. Risk taking Risk is seen as inevitable but also as an opportunity by 

the team. 

28. Responding to change Changes in requirements should be accepted at any time 

 

The above factors which affect agile team productivity were maintained and used as a basis 

for research questions. 

 

4.4.2 Validating agile productivity factors 

 

To confirm the validity of the above factors, the input from three agile experts who were working 

for the companies under study was incorporated. The experts were selected based on the 

following:- 

 The first expert had been working for one of the organisations under study for more than 

six years starting from a junior position, was now in middle management and had worked 

on agile projects for the past six years. 

 The second expert holds a senior role in the agile team and has extensive experience 

working on agile projects. 

 The third expert was involved in both software development using agile methodologies 

and managing a team. 



 

          Chapter 4: Data Collection                                                                                                                                                            86 

 

The feedback obtained from the experts was analysed by the researcher as well as their 

rating in terms of each factor effect on productivity. The agile experts’ comments were then 

reviewed thoroughly. The feedback provided assisted in further clarifying the meaning of the 

collated factors as they form the foundation for interview questions.  

 

4.5 Data collection 

 

Using Kitchenham et al. (2008:101) - guidelines provided for conducting and reporting case 

studies research - Table 4.2 provides a summary of the profiles of the companies under study. 

Each company’s agile adoption level in their projects is shown in Table 4.3. The adoption level 

was assigned as full if the company is adopting that practice fully, partial if the company is using 

the practice sometimes and do not use if the company does not use the practice at all. 

 

Table 4.2 Summary of project and company profiles 

Characteristics Company X Company Y 

Company Activities/ business 

type 

Software development for 

financial institutions.  

Financial software solutions 

provider. 

Organisational structure Horizontal Vertical 

Total number of IT staff 45 (50 company staff 

complement) 

32 (142 company staff 

complement) 

Description of project Financial system, with 

calculation engine, fees 

engine, commission 

management, and single sign 

on. 

Payments and collections 

processing. 

Team build up 6 - Team members 

2  - Senior developers 

2 – Intermediate 

developers 

1 – Junior developer 

1 - Manager 

7  - Team members 

The biggest team composition 

was 7, comprising developers 

from senior to junior level and 

a Product Owner.  



 

          Chapter 4: Data Collection                                                                                                                                                            87 

 

Characteristics Company X Company Y 

Programming languages Java, C#, SQL C#, JavaScript, html, CSS, 

SQL, MONGODB 

Requirements stability Initially low but increases with 

time to medium. 

Low  

Non-functional requirements Client relationship 

management. 

Ownership of work and of the 

project, Reliability 

Availability, reliability and 

performance  

Reuse Components Components, in-house and 3rd 

party 

Percentage of staff turnover 5 % per annum 1,25 % per year 

 

 

Table 4.3 Extreme Programming and Scrum practices adopted by the companies 

Practices/ Values Company X Company Y 

 

F
u

ll
 

P
a

rt
ia

l 

D
o

 N
o

t 

U
s
e

 

F
u

ll
 

P
a

rt
ia

l 

D
o

 N
o

t 

U
s
e

 

Refactoring         

Code and tests         

Small releases         

Continuous integration         

Collective ownership         

Daily meeting         

Energized work         

Daily deployment         

Incremental design         

Onsite customer         

Pair programming         

Shared code         



 

          Chapter 4: Data Collection                                                                                                                                                            88 

 

Practices/ Values Company X Company Y 

 

F
u

ll
 

P
a

rt
ia

l 

D
o

 N
o

t 

U
s

e
 

F
u

ll
 

P
a

rt
ia

l 

D
o

 N
o

t 

U
s

e
 

Sit together         

Single code base         

40 hour week         

Test driven development         

Negotiated scope contract         

Ten minute build         

Planning game         

Root cause analysis         

Informative workspace         

Stories         

Slack         

Weekly cycle (every two weeks)         

Team continuity         

Whole team         

Retrospectives         

Knowledge worker         

 

4.5.1 Data Collection – Interviews 

 

The following section contains detailed information that was collected during the interviews. 

Interviews were conducted with eight team members within the two companies, including team 

lead, developers, product owners, and project managers, considering their experience and roles.  

 

The interview questions were grouped into five categories to allow the researcher to answer the 

research questions, as follows: 

1. Individual and/or group questions 

2. Team design questions 

3. Individual and team factors questions 



 

          Chapter 4: Data Collection                                                                                                                                                            89 

 

4. Time management questions 

5. Communication strategy questions 

As the base for data presentation, agile productivity factors and coding were used. 

 

As noted in the previous chapters, the purpose of this study is to develop a framework for 

understanding the factors that influence software productivity in agile teams. Thus there is the 

possibility that certain factors have a positive, negative or neutral influence on some of the 

identified productivity factors. 

 

This section looks at the data collected as an initial review and then the data are presented in 

an atomic way of factors that affect the productivity of agile teams. 

 

The symbols below were used to indicate the meaning of the outcomes: 

(+) shows that the factor has a positive influence on productivity 

(-) shows that the factor has a negative influence on productivity 

(+/-) shows that the factor has a neutral influence on productivity 

( ) shows that the factor was not mentioned or was not applicable during data collection in that 

company 

 

4.5.2 Data collection – Importance of adopting agile methodologies 

 

This section deals with the relevance of the collected data for companies in South Africa that are 

considering the adoption of agile methodologies.  

 

4.5.2.1 Company X   

 

Data collection revealed that by adopting agile methodologies i.e. Scrum, the companies 

have reaped a lot of benefits by focusing on the development of only the required items. They 

are able to prioritise their work, embrace change, have a closer working relationship with 

their clients, faster turnaround time, frequent deliveries, and the agile methodology is less 

stressful on their developers.  



 

          Chapter 4: Data Collection                                                                                                                                                            90 

 

The following comments were made during the interviews: 

 ‘the biggest benefit with agile methodologies is getting users involved and delivering 

something to users, even if it is small, and they can start fiddling around with it 

(participant P1).’ 

 ‘Instead of all aspects being equally important, the client is required to prioritise, 

avoiding the development of unnecessary items (participant TL1).’ 

The comments indicated that agile methodologies are beneficial in this company as only the 

required product is developed and the clients’ approval at each stage eliminates unnecessary 

items that might not be useful to them. 

 

 4.5.2.2 Company Y 

 

From the data collected in this company, the company uses disciplines in Extreme 

Programming and some part of Scrum. The company has benefited from adopting agile 

methodologies since now they are able to manage their technical debt down to a reasonable 

level. The benefits noticed were small cycles, small feedback loops, early release and lower 

development cost because they found out that they could notice problems earlier and fix 

them before they pan out to become more problematic. The following statement clearly 

shows that there are visible benefits obtained from adopting agile methodologies in this 

company: 

 ‘Well, I suppose the main thing is our technical debt is between fifteen to thirty percent 

on most of our projects, and our clients’ technical debt amounts between seventy to 

one hundred percent and sometimes more (participant LP1).’ 

After adopting agile methodologies, the company found that they were now able to run 

their technical debt on their projects lower than their competitors and clients, which of 

course was beneficial to the company.  

 

4.5.3 Data collection – Factors that influence productivity in agile teams 

 

Data collection in this section covers the factors that affect software productivity, and their effect 

on agile teams.  

 



 

          Chapter 4: Data Collection                                                                                                                                                            91 

 

4.5.3.1 Company X 

 

The data collection from this company revealed that factors that influence their team 

productivity were both negative and positive. The following section discusses the factors 

using the symbols presented in section 4.5.1 to represent the outcome of each factor. 

 

(+/-) Process – Agile Processes: The data-collection information indicated an inefficient 

process, where an agile methodology was obviously abused or used incorrectly, affected 

productivity in a negative way. Discussions revealed that where there was an inefficient 

process, a lot of time was wasted developing or fixing unnecessary bugs.  

The following comments were mentioned during the interviews: 

 ‘when your work hasn’t been scoped correctly, there is a lot of unknowns before you 

go into it, so you end up doing work, and you get to it, and see that there is far more 

than what you realise (participant TL1).’ 

 ‘Red tape is a problem, dependencies make the process slow down (participant P2).’ 

The information gathered with regard to ‘process’ was that if the agile process is followed 

correctly, processes are working well and interactions with clients are going well, 

productivity within the agile team can improve. The statement ‘following processes helps 

with productivity, doing your grooming sessions, have retrospectives, planning properly, 

has a very big role in being productive (participant P1).’ 

 

(-) Knowledge – Team member skills: The responses gathered from the interviews 

revealed that knowledge is always an issue when working on a project because the skills 

of team members and how quickly they actually catch up on new technology and 

languages is the key issue which affects productivity. Knowledge workers are part of agile 

teams, sharing the same goal and working together. Knowledge workers’ productivity is 

typically intangible. Participant TL2 points out that: ‘knowledge of your team members is 

critical when working on a project (participant TL2)’, clearly indicated that in agile teams, 

knowledge is perceived important in team productivity. If team members are 

knowledgeable, productivity increases but if they lack the knowledge, productivity level 

goes down. Lack of knowledge among team members had an effect on productivity in this 



 

          Chapter 4: Data Collection                                                                                                                                                            92 

 

company’s teams and most participants agreed that training was needed to enhance the 

skills of most developers.  

 

(+/-) Team morale - Team motivation and commitment: The data-collection information 

indicated that if the team gels well, processes are working well and interactions with the 

client are going well, productivity is higher due to quicker turnaround time and quicker 

feedback from clients. The statements ‘if the team gels well and there are good lines of 

communication, your productivity goes up (participant TL1)’, ‘doing grooming sessions, 

has a very big role in being productive (participant TL2).’ These statements clearly 

showed that if the team worked together, were committed to their work, and were highly 

motivated, the productivity level increased. However, if team morale went down, 

productivity also went down because software is developed by people and if the people 

are not motivated to do their jobs, they will spend their time doing non-productive things. 

The participants listed team morale as one of the top factors that influence productivity in 

their company. When there was no trust, there were bad lines of communication, wrong 

impressions from people and insufficient processes; all of these highly affected team 

morale, with negative effect on this company‘s team productivity.  

 

(+/-) Management style and quality – Management support: The participants revealed 

that there was support from management but the team itself was essentially responsible 

for deciding how things should be done. The responses from participants indicated that 

management support was being offered, but surely additional management support was 

required in certain areas. Participant TL1 and P2 were quoted saying: ‘when there is a 

problem, they are there to help out, smooth out the process (participant TL1)’, ‘in most 

scenarios we are motivated and encouraged to find our own solutions and be innovative 

(participant P2)’, indicating that management support was there but can clearly be 

improved by management getting involved and showing interest in the work done by the 

team. Hence management style and quality was seen as having both a positive and 

negative effect on team productivity. If management support increased, productivity 

increased and with minimum support from management, productivity level reduced. 

 



 

          Chapter 4: Data Collection                                                                                                                                                            93 

 

(+/-) Team size – Number of team members per project: The responses gathered from 

participants indicated that most agile teams in this company had from three to six 

programmers, ranging from senior to junior level. The data-collection information 

indicated that team size or having enough team members affects productivity in both 

positive and negative ways. If team members were adequate for the assigned project, the 

productivity level went up, but if there weren’t enough team members for that given 

project, the productivity level went down. The statement acknowledging the effect of team 

size was quoted from participant P2: ‘in the project that I am currently working on, I get 

pulled away out of the project to help another team get their project delivered (participant 

P2).’ The gathered information indicated that some teams did not have adequate 

resources (team members), so they use team members from another group which rather 

had a negative effect on productivity for both teams in question. However, some teams 

which did not have such problems and had enough team members, agreed that their 

productivity level improved as the team was maintained for the duration of the project. 

 

(-) Team collaboration – Teamwork:  Team collaboration was there in general but often 

other team members were not aware all the time what their colleagues were doing. 

Sometimes other team members would find out that the problem was solved but there 

were not even aware of it. Participant TL1 points out that: ‘because it’s a lean 

organisation, management makes decisions very quickly and team members don’t have 

enough time to know about it (participant TL1).’ The information collected clearly indicated 

that team members do not inform each other of what was happening and this had a 

negative effect on productivity since two developers might be trying to solve the same 

problem at the same time but sitting in different locations from each other.  

 

(+) Daily meetings – Daily stand-ups: Daily ten=minute stand-ups had a positive 

influence on this company’s team productivity. The daily stand-ups assisted the team 

members to deal with rising temper as during the meetings, there was one person who 

would lead the discussion and assured the team that they would deliver the project 

successfully. Figure 1.1 below shows developers having their daily stand-up meeting. 



 

          Chapter 4: Data Collection                                                                                                                                                            94 

 

 

Figure 4.2 Team at an early-morning daily stand-up. 

 

(+) Continuous integration – Response to change: The data gathered indicated that 

company X responded to changes very quickly. Participant P1 was quoted confirming 

that: ‘one of our strong points that we have is that we are able to adapt and are able to 

change (participant P1)’. Responding to change and continually building the project 

according to clients’ changes in requirements was seen as one of the factors that have a 

positive effect on team productivity. The following statement is quoted from participant 

TL2: ‘we just experienced that, if one of our system has a flaw or it was missing a big 

piece and we had to refactor it and it was done exactly in the next sprint (participant TL2)’. 

The data collection information indicated that turnaround on refactoring and implementing 

changes was very short.  

 

( ) Size of database – Size of features developed: This aspect was not discussed with 

participants from company X.  

 

(+/-) Complexity of the product – Product/ Project complexity: The data-collection 

information indicated that product complexity had both positive and negative effects on 

productivity. Participant TL2 pointed out that: ‘some things are less complex but take a lot 



 

          Chapter 4: Data Collection                                                                                                                                                            95 

 

of time, other things are small to do but there is complexity around actually trying to figure 

out how you are going to do it (participant TL2)’. If there were requirements that the 

development team were not aware of, it made it difficult for them to “size the stories”. If 

the stories had the same sizing, they immediately knew that they were able to do x amount 

of story points in one “sprint” (two weeks). If the size of the product was known, it clearly 

had a positive effect on productivity because the team was able to plan properly per each 

sprint - and vice versa.  

 

( ) Code reusability – Code reuse: This aspect was not discussed with participants from 

company X. 

 

( ) Software tools used – Programming tools: This aspect was mentioned in passing 

by company X participants. The data-collection information indicated that if programmers 

have the tools they need in place, they can be productive. 

 

(-) Employee turnover – Team member turnover: The data collected indicated that 

employee turnover affects productivity in a negative way. If more than one developer left 

in the middle of the project, it affected productivity because the new developers required 

training in order to catch up with the existing team. The company employee turnover rate 

for the past year was five percent which was higher considering the size of their teams. 

At least two developers were likely to leave the company in each team per annum.  

 

(+/-) Multisite development – Geographical location: Company X deployed all of its 

development team to client sites. Software development was not carried out at one site 

but at a number of client sites. Multisite development was seen as having both negative 

and positive effects on productivity. A positive influence was that the programmers were 

working close to the client and that they were doing work with the client fully involved. A 

negative aspect is that at times the project being worked on placed the programmers in 

different locations, as shown for example by the statement ‘in the previous project, the 

client was based in Cape Town and they were not engaging as they should because we 

were using their Johannesburg branch whilst the software was built for the Cape Town 



 

          Chapter 4: Data Collection                                                                                                                                                            96 

 

branch (participant TL1)’. The data-collection information therefore indicated that if there 

was not enough engagement and clear communication with team members working on 

the same project, but located in a different geographical area, productivity went down.  

 

( ) Required development schedule – Duration / Deadlines: The information collected 

indicated that the clients managed their schedule themselves and their schedule did not 

have any effect on the productivity of the team of Company X. Participant TL2 points out 

that ‘client is in control of the development direction (participant TL2)’, clearly indicated 

that the customer was responsible for managing the duration of the project.  

 

(+/-) Real customer involvement – Onsite customer: The collected data indicated that 

involving customers in software development had both positive and negative effects on 

productivity. In projects where clients were involved, there were faster turnaround times 

which had a positive effect on team productivity. To quote participant TL2: ‘we have 

weekly sessions with our clients showing them what functionality we have developed. We 

physically show them new screens, work through them with the screens, get their 

feedback on how they have experienced with the screen and it had been working brilliantly 

(participant TL2)’, clearly indicated that customer involvement had a positive effect on 

team productivity.  In cases where clients were not involved, productivity went down 

because the programmers developed software that, at the end of the day, could not meet 

client needs. Participant TL1 acknowledges that: ‘we get some clients where they don’t 

get involved too well (participant TL1)’. The data collection indicated that the client would 

partially get involved, disappeared and when they came back, they often realised that a 

lot of things had changed at a later stage of development, which created problems for the 

development team when they had to rework items that the client was not happy with. 

 

(+) Planning meetings – Weekly or bi-weekly meetings: The data-collection 

information indicated that planning has a positive effect on team productivity. Planning 

properly played a big role in the team for it to become productive. Participant TL2 was 

quoted confirming that: ‘we have actually noticed that if you don’t plan properly, your 

productivity goes down, because misunderstanding functionality can cause you to 



 

          Chapter 4: Data Collection                                                                                                                                                            97 

 

develop the wrong solution (participant TL2)’. The information gathered clearly indicated 

that planning if done properly, had a positive effect on productivity. Figure 4.2 below 

shows the team planning for the next sprint: 

Figure 4.3 Team sprint planning activities 

 

( ) Root cause analysis: This aspect was not discussed with participants of company X. 

 

(+) Refactoring: In this company, MVP (Minimum Viable Product) was used to keep the 

refactoring smaller. The data-collection information revealed that MVP enabled them to 

gather all the requirements for the product before they could start development process.  

Participant TL2 confirms that: ‘turnarounds on refactoring and implementing the changes 

are very short (participant TL2)’. The data collection clearly indicated that refactoring 

impacted team productivity in a positive way in this company. 

 

(+) Self-organising: The team was self-organising according to the data-collection 

information. The developers communicated directly with the clients and interacted with 

them during the development stage to understand their needs. Participant P2 was quoted 



 

          Chapter 4: Data Collection                                                                                                                                                            98 

 

saying: ‘the users haven’t communicated with the developer before but since we 

introduced agile to our clients, users can now interact with developers (participant P2)’. 

The team itself would go out there and gather the requirements by themselves from users, 

i.e. clients, and started coding.  

 

(-) Project constraints: Project constraints had a negative effect on team productivity, 

according to the data-collection information, because if there were constraints in the 

project, for instance, lack of client input during development stage, the project slowed 

down and at times such projects end up not being able to be delivered at all.  

 

(+/-) Work environment – Work setting: The work setting in this company was different 

for each team. Some teams were permanently stationed at a client site and some teams 

were working from the company’s premises. The data collected indicated that work 

environment could have a positive or negative influence on team productivity. The 

following statements were quoted from participant TL2: ‘at the client site where I am 

working, it’s quite noisy and they have been doing renovation lately. We always get moved 

from one place to the other, which affects our daily productivity (participant TL2)’. A noisy 

environment was considered having a negative effect on team productivity and a quiet 

environment the opposite. Figure 4.3 below shows the work setting for developers.  



 

          Chapter 4: Data Collection                                                                                                                                                            99 

 

 

Figure 4.4 Developers work setting (Company X) 

 

4.5.3.1 Company Y 

The data collection in this company revealed that factors that influence their team productivity 

were both negative and positive. The following section discusses the factors using the 

symbols presented in section 4.5.1 to represent the outcome of each factor. 

 

(+/-) Process – Agile processes: The data-collection information gathered indicated that 

processes used in the organisation affect productivity both positively and negatively. If the 

processes were followed properly, the team productivity went up but if they were not followed 

properly, the team productivity went down because programmers spent most of their time 

going through unnecessary stuff or fixing bugs. The company used an iterative process for 

all their projects. 

 

(+/-) Knowledge – Team member skills: The knowledge of team members affects 

productivity in both positive and negative ways in this company. The-data collection 



 

          Chapter 4: Data Collection                                                                                                                                                            100 

 

indicated that for team productivity to increase, developers’ knowledge of different 

applications was very important.  The following comment came from participant LP1: 

‘inexperienced training of developers effects negatively on productivity (participant LP1)’, 

clearly indicated that if there are inadequate skills among team members, productivity is 

reduced because developers spent their time trying to figure out the solution. However, 

with senior developers in every team, knowledge was transferred to junior developers 

through grooming sessions, which rather has a positive influence on their team 

productivity.  

 

(+/-) Team morale - Team motivation and commitment: The data-collection information 

indicated that team morale was very important in this company’s software development 

teams. Participant LP2 was quoted as saying: ‘team morale is one of the factors that have 

a big effect on our team productivity (participant LP2)’, ‘team morale is everything in 

software, organisations or IT departments that always have poor morale have a high level 

of technical debt (participant LP1)’. The interview responses indicated that developers 

needed to be empowered by being given the tools that they needed, and the programming 

processes that they needed to follow, thus ensuring that they can be productive. 

Therefore, when the team morale was higher, productivity was also higher, but if the team 

morale was low, technical debt increased which affected team productivity negatively. 

 

(+/-) Management style and quality – Management support: The data-collection 

information gathered indicated that there were strict lines of communication that needed 

to be followed between management and the development team. The comments quoted 

from participant LP1 were: ‘all communication in this company goes through the Product 

Owner (PO), who will then liaise with management or the team (participant LP1)’; 

‘management gives instructions with one voice (participant LP1)’; and ‘employees are 

allowed to be creative and innovative in a constrained type of way and not in sort of a free 

type of way (participant LP2)’. The responses obtained showed that although there was 

some kind of management support offered through the PO, team members did not have 

direct access to management to air their views. Management style in this organisation 

affected productivity of the team in both negative and positive ways.  



 

          Chapter 4: Data Collection                                                                                                                                                            101 

 

 

(+) Team size – Number of team members per project: The Company had on most of 

their projects two to seven team members per project, depending on the size of each 

project. The data-collection information gathered indicated that each team comprised five 

programmers, one Product Owner and one junior Product Owner. There were six 

permanent members per each team for the products that were being worked on. The 

team size was reduced depending on the level of development phase, sometimes if their 

products were in the maintenance phase, they could only assign one or two developers. 

The team size was viewed by participants as having a positive influence on team 

productivity as there were always enough team members assigned per each product, and 

well-defined responsibilities. Participant LP1 points out that: ‘there is a PO, so the person 

doesn’t code, that person liaises with all stakeholders, writes stories and acceptance 

testing, signs off and does everything regarding product ownership (participant LP1)’; ‘one 

lead programmer on a team and a number of programmers that range from junior to 

medium and senior (participant LP2)’. The data collected clearly indicated that in this 

company, team size has a positive influence on their team productivity because there 

were no incidents where team members were moved between projects to cover up for 

inadequate team members in other groups.  

 

(+) Team collaboration – Teamwork:  Team cohesiveness in this company had a 

positive effect on team productivity, according to the data collection gathered from 

participants. The team worked together to solve problems and take full responsibility of 

any major impact as a team. A visible project matrix was used in this company where any 

stakeholder, user, manager or consultant would come in at any point to look at the 

scramble of the stories and see which ones have high priority. Participant LP2 was quoted 

saying: ‘the team’s work is completely transparent to all stakeholders (participant LP2)’, 

indicated that teamwork was the centre of their team productivity. Most participants 

revealed that teamwork in agile teams required a lot of collaboration and communication.  

Figure 4.4 below shows developers communicating with each other during the 

development session. 



 

          Chapter 4: Data Collection                                                                                                                                                            102 

 

 

Figure 4.5 Agile team having an informal discussion 

 

(+) Daily meetings – Daily stand-ups:  The daily stand-ups, short five-minute meetings, 

had a positive effect on team productivity in this company. Developers would discuss the 

day’s activities and brief each other on the progress of their work. The data-collection 

information revealed that when the team met every morning, discussed the day’s activities 

and work on the most prioritised work, productivity of the team increased because the 

developers were fully aware of what was expected of them.   

 

(+) Continuous integration – Response to change: The data gathered indicated that 

continuous integration in this company made the feedback loop shorter. When feedback 

loops were shorter, productivity levels went up since the technical debt was reduced. In 

most instances, client feedback was obtained early and the programmers would 

immediately fix the bugs which reduced the company cost to fixing those bugs. The 

comments quoted from participant LP2 were: ‘We can change our current feature set, we 

can refactor our code to work with the current features. I think that’s the difference with 

us. I think anybody out there will be hard pressed to beat us at change management. 



 

          Chapter 4: Data Collection                                                                                                                                                            103 

 

That’s what we do. That’s kind of what we are known for (participant LP2)’. The comment 

clearly indicated that continuous integration had a positive effect on team productivity in 

this company.  

 

(+) Size of database – Size of features developed: The data-collection information 

indicated that the database size or structure had a positive effect on productivity. The 

statement ‘we can change our database structures at any point in time and deploy them 

(participant LP1)’, indicated that despite the size of the database, the company was able 

to maintain its high level of productivity.  

 

(-) Product complexity - Complexity of the product: Product complexity affected 

productivity in a negative way in this company. The data-collection information indicated 

that client confusion about specifications, i.e., using scenarios where there were too many 

unknowns, affected productivity in a negative way. The statement quoted from participant 

P1 was: ‘just the complexity makes technical debt increase in complex projects that need 

integration tools (participant P1’). The gathered data indicated that complexity of a 

product had a negative effect on this company’s team productivity. 

 

(+) Code reusability – Code reuse: The data collection information indicated that code 

reuse had a positive effect on team productivity in this company. Participant LP2 was 

quoted saying: ‘we can change our current feature set, we can refactor our code to work 

with the current features (participant LP2)’. The interview responses indicated that code 

reuse was one of the agile practices that enhanced team productivity in this company.  

 

(+/-) Software tools used – Programming tools: The tools needed by programmers to 

get their job done had both positive and negative effect on team productivity in this 

company. The interview responses revealed that when the team was given tools they 

needed to do a great job, keeping their lives organised, and taking all process smells out 

of the picture, productivity was higher. The following statement was quoted from 

participant LP1: ‘the motivational factors are the actual process, where you give the 



 

          Chapter 4: Data Collection                                                                                                                                                            104 

 

developers the tools they need to do a great job (participant LP1)’. Inadequate tools were 

indicated as having a negative effect on team productivity. 

 

(+/-) Employee turnover – Team member turnover: Team-member turnover in this 

company had both positive and negative effect on productivity. The interview responses 

clearly indicated that when the team member turnover was high, the productivity of the 

team was affected in a negative way because the company constantly had to recruit and 

train new team members, who in most scenarios took time to settle in. When team 

member turnover diminished - as the company witnessed in the past two years - 

productivity of the team went up because the team skills and abilities improved as the 

same team members continued to work on different projects. Participant LP2 

acknowledges that:  ‘our staff turnover rate is 1, 25 % per year, which means only one or 

two people leaving this organisation in a year for the past two years (participant LP2)’, 

indicating that when the team member turnover was low, productivity increased.  

 

(+) Multisite development – Geographical location: The data collection information 

indicated that multisite development had a positive effect on team productivity in this 

company. The  company’s’ software development team was distributed over five 

geographical areas, namely, Cape Town (South Africa), Johannesburg (South Africa), 

Serbia, Mauritius and India. Multisite development had a positive effect on team 

productivity in this company because the development teams were positioned closer to 

client sites. 

 

( ) Required development schedule: The responses from participants indicated that the 

clients managed their schedule themselves, and their schedule did not have any effect 

on the Company Y team productivity. The company was not using any timelines, 

durations or deadlines in developing its products. Participant LP1 was quoted saying: ‘the 

client decides how much time it will take to complete the product (participant LP1)’, clearly 

revealed that the clients were responsible for managing the duration of their projects.  

 



 

          Chapter 4: Data Collection                                                                                                                                                            105 

 

(-) Real customer involvement – On-site customer: The data-collection information 

indicated that there was no direct communication established between the customer and 

the developers. Participant LP2 was quoted insisting that:  ‘you have to have a role that 

facilitates the communication, that activity will never happen efficiently by itself 

(participant LP2)’, clearly indicated that there were absolutely no direct lines of 

communication between the customer and the developers, which had a negative effect 

on team productivity since the agile approach emphasises customer-and-developer 

communication and collaboration. Most participants in senior roles revealed that getting 

clients to communicate with developers directly had a negative effect on their team 

productivity because of the time spent by developers trying to explain the technicalities 

that the users might not understand.  

 

(+) Planning meetings – Weekly or bi-weekly: The participants’ responses indicated 

that planning had a positive effect on team productivity in this company. The company 

held two official meetings: short five-minute stand-ups every day, and iteration meetings. 

Iteration meetings only happened every one or two weeks, at the beginning of each 

iteration. The team also held impromptu meetings at any time. The following statement 

was quoted from participant P1: ‘all of that kind of collaboration, discussion is all valuable 

stuff (participant P1)’, indicated that when the team discussed the specifications and 

scope before an iteration, chances of them heading towards the wrong direction were 

eliminated.  

 

( ) Root cause analysis: This aspect was not discussed with participants from company 

Y. 

 

(+) Refactoring – Code refactoring: The responses to the interviews indicated that 

refactoring was used to manage efficiency and also to reduce technical debt in this 

company. Refactoring was therefore indicated as having a positive influence on team 

productivity in this organisation. Obtaining feedback quickly was viewed as enhancing 

efficiency.   

 



 

          Chapter 4: Data Collection                                                                                                                                                            106 

 

(-) Self-organising: The data-collection information indicated that the agile team was not 

self-organising. There was no direct communication between the developers and users 

(i.e. customer). Participant LP1 was quoted saying: ‘so it’s not a self-organising team, so 

communication cannot happen by itself, in fact, it’s a self-disorganising mechanism 

(participant LP1)’. Agile principles lay emphasis on agile teams being self-organising and 

in this organisation, self-organising was perceived as having a negative effect on team 

productivity.  

 

(-) Project constraints: Project constraints was indicated by participants as having a 

negative effect on team productivity, because if there were constraints in the project, for 

instance, client continuously changing their mind on what they needed the final product 

to be, there were a lot of delays which led to projects not completed at all.  

 

(+) Work environment – Work setting: In this company the working environment was 

considered as having a positive influence on their team productivity. The developers sit 

together in an open office next to each other and are able to share information. The data 

collection indicated that the developers were only working from their offices and not at 

client sites. Figure 4.5 shows the developers sitting arrangements.  



 

          Chapter 4: Data Collection                                                                                                                                                            107 

 

 

Figure 4.6 Developers work setting (Company Y) 

 

4.5.4 Data collection – Definitions and metrics of software productivity 

Data collection in this section covers definitions of software productivity and metrics from the 

agile team perspective. 

 

4.5.4.1 Company X 

 

The data collection information in this company indicated that there was no universal 

definition for productivity. The definitions of productivity from different participants in this 

company included functionality, delivering working software that is of good quality and 

useable.  

 

The following were some of the definitions of software productivity given by participants: 

 ‘Delivering functional software to your client, timeously, and something clients believe 

helps them in their process (participant TL1)’. 



 

          Chapter 4: Data Collection                                                                                                                                                            108 

 

 ‘It is output, the functionality that gets produced, and must be of good quality and 

useable (participant TL2)’ 

 

From the discussions, productivity was perceived by the participants as producing code that 

is of high quality and can be useable as opposed to producing a lot of code with no business 

value.  

 

There were no formal metrics used to measure team productivity in Company X. However, 

they did measure team productivity by using story points that were completed in a sprint. 

 

4.5.4.2 Company Y 

 

The data gathered indicated that the company was using a specific formula to measure their 

team productivity.  

 

The following were some of the software productivity definitions given by participants: 

‘Software productivity = 
8 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦−ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 𝑠𝑝𝑒𝑛𝑡 𝑜𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑖𝑛𝑔 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑑𝑒𝑏𝑡

8 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦
 

The following was an example given to illustrate how the formula works: 

‘For example, if four hours in a day is spent on fixing bugs due to developers not following 

processes or using code that was easier to implement instead of applying the overall solution, 

software productivity will be as follows: 

 

Software productivity =   
8

ℎ𝑜𝑢𝑟𝑠

𝑑𝑎𝑦
−4 ℎ𝑜𝑢𝑟𝑠/𝑑𝑎𝑦

8 ℎ𝑜𝑢𝑟𝑠/𝑑𝑎𝑦
8 hour day productivity = 0, 5 

In other words, if half of our time is wasted, then the productivity level is 0, 5, otherwise, if 

our technical debt takes the whole day, our productivity level is zero (participant LP1)’. 

 

Therefore, if developers in this company spent most of their time on extra development work 

that was caused by initially using code that was easy to implement instead of applying and 

following processes, the level of their technical debt increased to eight hours in a day, 



 

          Chapter 4: Data Collection                                                                                                                                                            109 

 

productivity level became zero, and the programmers were not productive at all because they 

spent the day fixing bugs. 

 

In company Y, metrics that they have were a subjective feel.  The company used estimate 

accuracy as metrics to measure their team productivity although the responses from 

participants indicated that it was difficult to measure some variables such as technical debt 

because people were involved in developing the software and it was difficult to accurately 

estimate how much time developers actually spent on fixing bugs rather than producing the 

real code. 

 

The following were comments quoted from participants: 

 ‘So we track for all of our teams that sum of the estimates for iterations vs how much 

the resource was in the iteration (participant LP1)’.  

 ‘Part of that ratio is the technical debt. Part of the ratio is just simple estimating 

inaccurately because there is no way people know how much it’s going to take in 

software because there is just too many known unknowns and unknown unknowns 

with a story (participant LP1)’.  

 ‘So, using that ratio, we got information to plan. We have a rough idea of how long it 

will take - a certain amount of time to be completed. But that ratio also is a rough 

indicator of technical debt. If that ratio starts to get really poor, this indicates your 

technical debt is going up. But it’s not an exact measure. There is no way to measure 

the amount of time you’re spending on servicing technical debt (participant LP1)’.  

The evidence gathered indicated that although the company was using these metrics to 

measure productivity, it was still difficult to measure it in agile teams since software is 

built by people and clients’ requirements change all the time. 

 

4.5.5 Data collection – Agile productivity metrics and performance monitoring 

 

Data collection in this section covers agile productivity metrics and performance monitoring in 

agile teams. 

 



 

          Chapter 4: Data Collection                                                                                                                                                            110 

 

4.5.5.1 Company X 

 

Company X does not use anything formal but does measure agile team productivity on a 

case-to-case basis. There were no performance monitoring mechanisms in place.  

The following comments were made by participants during the interview discussions: 

 ‘We don’t monitor, the only monitoring we do is, we use story points to determine how 

much work we need to do (participant TL2)’.  

The only performance monitoring tool that was in place was the use of a burndown chart 

which showed how many story points have been done over time. An example of a 

burndown chart is shown in figure 4.7 below: 

 

Figure 4.7 Burndown chart with summary 

 

4.5.5.2 Company Y 

 

Company Y data collection revealed that there were no separate metrics that could be used 

to measure their productivity. When measuring their agile team productivity, the use of 

regression testing, refactoring, continuous integration and deployment to make the feedback 

loop shorter was used as the source for measuring their productivity. 

 



 

          Chapter 4: Data Collection                                                                                                                                                            111 

 

The following comments were noted from the interview discussions: 

 ‘There is no direct way to measure productivity (participant PM1)’. 

 ‘We can measure how well people are doing in those things and are going to give you 

feedback sooner and therefore cost you less to fix them (participant PM2)’. 

 

For performance monitoring, company Y uses JIRA (software for tracking stories) to track 

their stories. The programmer gives an estimate of how long the piece of work will take to 

complete. The Product Owner loads this estimate in JIRA to track the story. The ratio of the 

estimated time to the actual time it took to complete the task was to be applied for future 

estimates.  

 

The following comment was obtained from the interview discussion: 

‘So we keep our team’s record of estimate accuracy and apply that ratio to all our future 

estimates, to be able to do iterations and release plans (participant PM1)’ 

 For performance monitoring in this organisation, past work with almost similar specifications 

or amount of story points was used to give a rough indication on how much time was 

expected for each development team to complete a project. 

 

4.5.6 Data collection – Monitoring productivity in self-managed teams 

 

Data collection in this section covers monitoring productivity in self-managed teams. 

 

4.5.6.1 Company X 

 

In company X, the data collection revealed that nothing formal from management had been 

put in place to monitor productivity of each team. The tools that were in place were build-up 

charts and the use of story points. 

 

Rescue time was the software that was mentioned in the discussions and was used to track 

time spent on applications running off each developer’s machine and give a report to show 



 

          Chapter 4: Data Collection                                                                                                                                                            112 

 

which applications were productive. Figure 4.7 and 4.8 show the reports of the activity that 

were productive in a week. 

 

Figure 4.8 Activity setup rescue time 

 



 

          Chapter 4: Data Collection                                                                                                                                                            113 

 

 

Figure 4.9 Rescue time weekly report 

 

4.5.6.2 Company Y 

 

The Company Y data collection revealed that there was no direct monitoring tool for self-

managed teams. There was no way they could quantify speed independently of complexity 

and complexity couldn’t be quantified based on the features. The following comment was 

noted from one participant: 

 ‘Time is a feature that looks very simple, like the undo button to the client is just a 

click, but is actually a complicated thing to do in the code (participant PM1’. 

The responses clearly indicated that it was difficult to directly monitor productivity in self-

managed teams.  

 

4.6 Data analysis – Productivity factors 

 

This study involved gathering data from participants working in two different companies that are 

located in two geographical areas. The data gathered during the interviews is analysed and 

presented in this section.  

 

 

 



 

          Chapter 4: Data Collection                                                                                                                                                            114 

 

The following are interpretations and notations used for data analysis 

(+) Positive influence 

     (-) Negative influence 

(+/-) Mixed influence 

( ) Not discussed/ Not applicable 

 

Table 4.4 summarises the effect of each factor on the team productivity in each company under 

study. The table shows that although the factors that affect each team productivity are more or 

less the same, each company’s perceptions of the effect was different. As software development 

companies in South Africa strive to reduce time to market, to produce software at lower cost and 

to be competitive, this study may be of use to companies that are in the process of adopting 

agile methodologies. 

 

Table 4.4.  A summary of the productivity factors effect to companies under study 

Productivity Factor Coding Company X Company Y 

Process Following procedures (+/-) (+/-) 

Knowledge Team member skills (-) (+/-) 

Team morale Team motivation and commitment (+/-) (+/-) 

Management style and quality Management support (+/-) (+/-) 

Team size Number of team members per project (+/-) (+) 

Team collaboration Team cohesiveness (-) (+) 

Daily meetings Daily 5 -10 minutes stand-ups (+) (+) 

Continuous integration Response to change (+) (+) 

Size of database Size of features developed ( ) (+) 

Product complexity Project/ product complexity (+/-) (-) 

Software tools used Programming tools ( ) (+/-) 

Employee turnover Team member turnover (-) (+/-) 

Multisite development Geographical location (+/-) (+) 

Code reusability Code reuse ( ) (+) 

Required software schedule Duration, Deadlines, Timelines ( ) ( ) 

Real customer involvement Onsite customer (+/-) (-) 

Planning meetings Weekly, bi-weekly meetings (+) (+) 



 

          Chapter 4: Data Collection                                                                                                                                                            115 

 

Productivity Factor Coding Company X Company Y 

Root cause analysis Formal and informal investigation ( ) ( ) 

Refactoring Code refactoring (+) (+) 

Self-organising Self-organisation (+) (-) 

Project constraints Resources, Schedule, System or 

Environment 

(-) (-) 

Work environment  Work setting or sitting arrangement (+/-) (+) 

Pair Programming Two programmers working together  (-) (-) 

Positive effect 5 10 

Negative effect 5 5 

Mixed effect 8 6 

Not discussed/ Not Applicable 5 2 

 

4.7 Summary 

 

This chapter presented the data-collection information from the two South African companies 

that adopted agile methodologies in their software development. Semi-structured interviews 

were used as the main data collection method in this study. The interview process was presented 

in detail, data analysis was discussed in detail and the foundation for data collection was also 

presented. A summary of the profiles of the companies under study was presented. The 

interview responses from participants were discussed in detail and data were analysed and 

coded. 

 

The next chapter discusses the findings and the limitations of this study.  



 

            Nzou V – 46563946 – MSc in Computing  

 

Chapter 5: Discussion of findings 

 

5.1 Introduction  

 

Chapter 4 presented a detailed discussion of the data-collection information from two South 

African companies that adopted agile methodologies in their software development. The data 

collection process, which consisted of semi-structured interviews and data analysis, was also 

discussed in detail. A detailed discussion of the participants’ responses was also presented.  

This chapter will discuss the findings in detail. 

 

5.2 The results 

 

The objective of this study was to develop a framework to understand the factors that affect agile 

team productivity. Below is the description of the results obtained from case studies analysis, 

literature study and other evidence which support the key findings. 

 

5.2.1 Productivity factors 

 

Numerous factors that influence agile team productivity were identified in the literature study 

(Boehm et al 2000:15-39; Maxwell & Forselius 2000:80; Kitchenham & Mendes 2004:16 and 

Berntsson-Svensson & Aurum 2006:3) and in the case studies. The identified factors that 

influence agile team productivity in the case studies were more or less the same as the ones 

identified from the literature study. 

 

For companies that adopted agile methodologies in their software creation, understanding the 

factors that influence their team’s productivity is very important. Information obtained from the 

case studies indicated that a number of identified factors affected team productivity in both 

positive and negative ways. The first research finding on agile productivity was that the success 

of any project is highly dependent upon human efforts. Team morale, commitment and teamwork 

were identified as the most influential factors in agile team productivity in the case studies. 

Personal motivation and skills are seen as the drivers of any successful agile project. This 



   

  Chapter 5: Discussion of Findings                                                                                                                                                        117 

 

findings in the case studies relate to Trendowicz and Münich (2009), who found out in their 

research that software project success depends on human. 

 

The other factors that affect team productivity are tools and processes. The tools that developers 

need to do their work and the processes that they need to follow influence productivity marginally 

in the companies under study. However, having the best tools and processes in place cannot 

alone be considered a substitute for motivated skilled employees and effective work 

coordination. Companies still need to invest in their employees to bring more benefits than only 

in tools and processes. Boehm et al (2000) also found out that software tools used are necessary 

but they are not very important as compared to experienced and motivated skilled employees. 

 

Product complexity and work environment are other factors that influence agile team 

productivity. Planning at a higher level, getting the customer involved at early stages and 

determining the work scope correctly was found helpful for increasing the productivity levels. 

This findings is related to Berntsson-Svensson and Aurum (2006), where they found out that 

detailed project scope, complete and precise requirements, accurate schedule estimates, and 

involvement of the customer in the development process is significant in order to achieve high 

productivity. Although product complexity and work environment may have had a neutral effect 

on productivity, the study revealed that the factors that really influence productivity rely mainly 

on the humans involved in developing the software. Maxwell and Forselius (2000), in their 

research, found out that business domain is important as it can be a motivational factor to 

employees. Therefore, management should provide a conducive working environment, tools that 

are needed by developers to get the job done, and ensure team morale is always high.  

 

5.2.1.1 Agile practices  

 

Agile practices provided for by the Agile Alliance, if followed correctly, are very useful in agile 

team productivity as they provide teams with procedures they can follow to deliver a 

successful project. Most agile practices - such as acceptance testing, backlogs, continuous 

integration, refactoring, retrospective, scrum events, user story mapping and information 

radiators - were being applied in the companies under study and they proved to be helpful in 



   

  Chapter 5: Discussion of Findings                                                                                                                                                        118 

 

improving their team productivity. Agile 101 provides important Agile Manifesto guidelines 

which are key practices that support teams in implementing and executing with agility (Agile 

Alliance, 2017).  One practice not being used was pair programming, because it was 

perceived as having a negative effect on team productivity. In the case studies, it was noted 

that differences in developers’ personalities made it difficult for two developers to work on 

the same code at the same time, despite pair programming’s advantage of continuous code 

review. Even though pair programming was perceived as having a negative effect on 

productivity, agile teams could probably use it for training purposes. 

 

5.2.2 Importance of productivity  

 

The adoption of agile methodologies by South African software development companies is due 

to the need to respond to change more quickly and to succeed in software development. 

According to the respondents in the case studies, agile methodologies have proved to be 

extremely important to companies that adopt them in South Africa because their productivity 

levels increased.  Agile methods enable teams to do work that is important for the client, no time 

is wasted building software that is not needed, and it has proven to encourage a lot of 

engagement between the customer and the development team. Adoption of agile methods gave 

the companies under study a competitive advantage since they are now able to do work at lower 

cost than their competitors in the software industry. Therefore, by adopting agile methodologies, 

companies in South Africa reaped a lot of benefits which even increased their team productivity 

since the agile approach helped these companies to deliver a better and more relevant end 

product.  

 

5.2.2.1 Definition of software productivity 

 

Software productivity is simple to define in theory but difficult to define in a real working 

environment. There was no clear definition of software productivity provided in the case 

studies, nor in the literature study. The definition of productivity remains a mystery in agile 

software development, and no exhaustive definitions have been established yet 

(Zimmermann 2017:1 and Tangen 2002:18).    Productivity in agile teams still remains a 



   

  Chapter 5: Discussion of Findings                                                                                                                                                        119 

 

contentious issue; there are just too many known unknowns and unknown unknowns in 

software development, which makes it difficult for management to measure productivity in 

agile teams accurately. The research findings indicated that productivity in agile teams goes 

beyond measuring the ratio between the outputs and inputs; human factors like morale, 

motivation and commitment play a significant role as a determining factor for measuring team 

productivity.  

 

 

 

5.2.3 Metrics 

 

The commonly used metric in agile teams is story points or completed user stories in a sprint; 

sometimes called velocity. Metrics in agile teams assist in gauging the team’s productivity, 

predictability, health, and work quality. The metrics that were used by the companies under study 

in South Africa are visibility metrics, efficiency metrics, predictability metrics, story point 

estimation or estimate accuracy, wherever they track, for all their teams, the sum of the estimates 

vs how much resource was in the iteration. Productivity in these case studies was determined 

by using story points completed in a sprint, as displayed on their velocity charts. According to 

Ambler (2016),   if management can easily measure productivity they can easily identify what is 

working for the team in given situations, or what is not working for the team, and adjust 

accordingly. He went on to point out that one way to do so is to look at acceleration, which is the 

change in velocity but also noted that it’s generally impossible to use velocity as a measure of 

productivity. Two different teams velocity cannot be compared because they are measuring in 

different units (Ambler 2016). 

 

Even though there were no formal metrics being applied in the companies under study, a number 

of agile metrics could be suitable for determining productivity in agile teams: 

 process health metrics for assessing day-to-day delivery, 

 release metrics which identify impediments to continuous delivery, 

 product development metrics which help align product features to user needs, 

 technical or code metrics which help determine quality and people, or 



   

  Chapter 5: Discussion of Findings                                                                                                                                                        120 

 

 team metrics which reveal issues influencing a team, and level of engagement, might be 

suitable metrics for determining productivity in agile teams.  

Organisations with agile teams can benefit from using metrics so as to allow them to assess 

effort, performance and productivity of their teams over time.  

 

5.2.3.1 Adjustments to promote productivity 

 

The researcher’s finding was that there were indirect adjustments that could be made to 

promote productivity in situations where agile metrics have a negative effect. Agile teams in 

the case studies could consider their sizing method because if productivity is affected in a 

negative way, it means that the stories are being sized wrongly or the developers are simply 

working on bugs (technical debt) and productivity is not showing. Developing trust across the 

agile team is equally an important adjustment to improve product quality, development speed 

through early release and productivity.  

 

5.2.4 Productivity monitoring 

 

Monitoring the productivity of an agile team involves tracking the team’s progress to ensure that 

the team is effective and efficient. In the case studies, there were no monitoring or formal metrics 

in place to measure how well these companies’ agile teams were doing. The monitoring that was 

done was on a case-by-case basis and informal. Story points were used by the companies under 

study to determine how much work their teams needed to do in each sprint.  

 

However, although the finding indicated that there were no team productivity monitoring tools 

put in place in these companies under study, for the productivity of their teams to improve, formal 

monitoring tools or metrics need to be incorporated so as to assist management to assess the 

teams’ progress on each project. Monitoring needs to be done not only when things go wrong 

but at all times, to improve productivity. 

 

 



   

  Chapter 5: Discussion of Findings                                                                                                                                                        121 

 

5.2.4.1 Agile metrics and productivity metrics 

 

Metrics are used to acquire better insight into the work performed by teams and give a better 

understanding of the current situation of changes over a certain period of time (Pressman & 

Maxim 2015:724). Without metrics, reviewing any development or effort is likely to be open 

to bias and gut-feeling-based interpretation. Agile metrics are used to measure phases of the 

software development process whilst mainly focusing on software delivery. Productivity 

metrics are used to measure output produced over a specified period. Agile metrics relate to 

productivity metrics in that both metrics measure performance and they provide measurable 

goals for developers. From the case studies, it was noted that both metrics helped in building 

an agile team’s culture. Agile metrics and productivity metrics should therefore be used as 

leading indicators for change management, affording an opportunity to review, assess, and 

analyse the cause in time.  

  

5.3 Updated proposed conceptual framework for agile team productivity 

Figure 5.1 shows the updated proposed conceptual framework for factors that influence 

productivity in agile teams.  



   

  Chapter 5: Discussion of Findings                                                                                                                                                        122 

 

 

Figure 5.1 Updated proposed conceptual framework 

 

 

 

Collaboration 

Te
am

 E
n

vi
ro

n
m

e
n

t 

Work setting 

Management support 

Orientation 

Development stage 

Sharing of expertise 

Conflict management Agile Team Productivity 

T
e

a
m

 D
e
s

ig
n

 Team composition 

Team morale 

Whole team contribution 

Team diversity 

Agile practices 
(Work procedures) 

Conflict management 

Cohesion 

Agile Team Productivity 

Inputs Outcomes Agile Processes 

In
d

iv
id

u
a

l 
F

a
c

to
rs

 

Knowledge 

Skills and abilities 

Personalities 

Experience & capabilities Team dynamics 

Sharing of expertise 

Agile Team Productivity Communication 

T
a

s
k

 C
o

n
s

tr
u

c
ti

o
n

 

Programming tools 

Task design 

Task duration 

Team interdependency 

Task structure 

Agile practices 
(Work procedures) 

Team role effort 

Inter-team coordination 

Agile Team Productivity 



   

  Chapter 5: Discussion of Findings                                                                                                                                                        123 

 

5.4 Limitations of this research 

 

Even though this research presented many contributions that could assist agile team productivity 

or companies that would like to adopt agile methodologies in their software development, a 

number of limitations were noted, too: 

 

5.4.1 Unavailability of participants 

 

During the data collection, the whole agile team working on the same project was not available 

to be interviewed at the same time during focus group interviews. In most cases only two 

developers with their team leader would be available, which meant the researcher was obtaining 

feedback from only a few participants rather than having the whole team in the discussion. Other 

participants who were scheduled to be interviewed were busy with their work or travelling 

elsewhere on the interview day, and the researcher was not able to conduct those interviews.  

 

5.4.2 Lack of available data 

 

In some cases, participants were not willing to answer certain questions which were important 

to this study. Although follow-up interview questions were sent to some participants by e-mail, 

for clarification purposes, participants were not willing to put things in writing and could only 

respond with some information and not all the facts. Also, access was denied to the researcher 

to most of the reports, for example the JIRA reports, for measuring team productivity, which 

could have assisted during data analysis.  

 

5.4.3The research strategy 

 

A case study research strategy was used in the data collection.  The case study research is also 

a limitation to this study as it doesn’t allow the researcher to make generalisations about the 

findings. 

 



   

  Chapter 5: Discussion of Findings                                                                                                                                                        124 

 

5.4.4 Researcher’s access 

 

The researcher’s access to people and information was limited to some extent. The companies 

under study were competitors in the agile software development industry and access to certain 

reports and information was limited due to the sensitivity of the data. This study was therefore 

limited to reliance on what participants had to say in the interviews, which had to be taken at 

face value, and further facts could not be obtained using these reports. 

 

5.5 Possible future research 

 

Although the findings in this study provide reliable information that software practitioners, 

management and other stakeholders could use to enhance productivity in their agile teams, 

there is still need for further empirical scrutiny on agile team productivity factors and monitoring 

approaches. Future research may consider mapping agile team productivity factors with agile 

team productivity monitoring approaches, to come up with metrics that could help improve 

productivity in agile teams.  

 

5.6 Summary 

 

Chapter five presented the research findings, the updated proposed conceptual framework for 

factors that influence agile team productivity, research limitations and possible future research. 

The research findings indicated that there is still much to learn about factors that affect agile 

team productivity and productivity monitoring approaches in agile teams. The finding that agile 

metrics relate to productivity metrics is somehow not conclusive. The researcher couldn’t get 

access to the software (JIRA) that the companies under study were using to observe the trends 

in productivity level over time. Further research needs to be conducted using a much bigger 

sample.  



 

            Nzou V – 46563946 – MSc in Computing  

 

Chapter 6: Research summary and conclusion 

 

6.1 Introduction  

 

Chapter 5 discussed the research findings for this study. An updated conceptual framework to 

understand factors that influence agile team productivity was proposed. Limitations of this 

research and possibilities for future research were also discussed. The aim of this chapter is to 

ascertain whether the initial research questions in this study have been answered and whether 

reliable solutions have been obtained using the qualitative research method. 

 

6.2 Research summary 

 

The effect of productivity factors in software engineering is often neglected by organisations 

engaged in software development. Productivity of software development teams is very important 

in organisations that adopt agile development methodologies in their projects. Companies 

require shorter time-to-market for their products whilst keeping their development cost low. 

Measuring productivity in agile teams has been noted as a better approach to assessing their 

performance and in order to ensure continuous software delivery. While there are issues 

surrounding productivity measurements, what is more relevant is whether the factors that affect 

agile team productivity are a drawback to successful delivery of agile projects. This research 

explored this issue by focusing on agile productivity factors, metrics and the benefits of adopting 

agile methods. 

 

Productivity factors are acknowledged to have an effect on team productivity, yet exactly how 

remained to be proved. Identifying these factors and their level of importance not only makes it 

possible to apply the correct metrics in measuring agile team productivity but also to ensure that 

quality software is delivered frequently. The evidence drawn from the case studies indicated that 

it is also important to assess the work of agile teams and to apply the correct metrics when 

measuring agile team productivity. This research explored the factors that affect agile team 

productivity by using COCOMO II (Boehm et al, 2000). Considering the importance of 

productivity and emerging research in agile team productivity, the study was seen as important. 



   

Chapter 6: Research Summary and Conclusion                                                                                                                                  126 

 

Productivity factors, definition of and metrics for productivity were the foundation for this study 

and the in-depth analysis of the level of effect of these factors on agile team productivity formed 

the basis for this research journey. 

 

6.2.1 Overview of the chapters 

 

Chapter one presented the introduction, problem statement, research questions, and research 

objectives. This chapter provided the foundation for understanding the problem statement. 

 

Chapter two presented a literature review on factors that affect agile team productivity, most 

frequently claimed benefits of adopting agile methods, the concept of agility, definitions of 

productivity, and productivity metrics.  

 

Chapter three discussed the research methodology, and the research method that applied to 

this study was selected. The research approach was discussed, an analysis of quantitative and 

qualitative research was presented. The research study followed a qualitative research 

methodology. Five qualitative research strategies were considered, grounded theory, 

ethnography, narrative research, phenomenological research, and case studies; case studies 

was the selected research strategy. 

 

Chapter four presented the data collection from case studies. A discussion of the data collection 

process and the participants’ responses was presented. The research involved data collection 

from two South African companies (one in Gauteng Province and the other in Western Cape 

Province) that had adopted agile methods in their software development for more than three 

years. 

 

Chapter five discussed the findings. The key findings were discussed, limitations of the research 

were noted and possible future research was proposed. 

 

Chapter six presents the research summary and conclusion. This chapter highlighted 

contribution to knowledge, and provided a summary of the achievements of this study.  



   

Chapter 6: Research Summary and Conclusion                                                                                                                                  127 

 

Chapter four and five provided a detailed discussion of the outcome of the original research 

questions. 

 

The research questions were identified as follows (see section 1.4): 

 

RQ1.  What are the factors influencing productivity of agile teams and how do these 

factors effect on team productivity from the team point of view? 

SubRQ1.1.  Which agile practices affect a team’s productivity? 

 

RQ2.   What is the importance of productivity on companies that adopt agile methods? 

SubRQ2.1.  How would they define software productivity? 

 

RQ3.   What are suitable metrics for determining agile team productivity? 

SubRQ3.1.  In scenarios where such metrics have negative effects, are there adjustments that 

could be made to promote productivity? 

 

RQ4.  How should productivity factors in agile teams be monitored, considering agility 

and adaptability? 

SubRQ4.1.  How do agile metrics relate to productivity metrics? 

 

6.3 Summary of objectives achieved 

 

This section provides a discussion of the approach incorporated in this study focusing on the 

problem statement, research questions, objectives and research outcomes. A discussion which 

shows that the four research questions listed above were accurately investigated is presented 

below. 

 

Question number one resulted in the identification of common factors that affect agile team 

productivity from both case studies and literature study. The research indicated that, even 

though numerous factors have an effect on team productivity, understanding which factors have 

the greatest effect on each team’s productivity is important in applying corrective action to 



   

Chapter 6: Research Summary and Conclusion                                                                                                                                  128 

 

increase productivity. The research showed that incorporating agile practices that suit each 

organisation’s team structure, and working on factors that affect team productivity, could help 

organisations identify the root cause of the problem, which might result in lower development 

costs, time saving and frequent software delivery. 

 

The research outcome for question number two indicated that adoption of agile methodologies 

in South African software development companies under study was important. Agile 

methodologies enable teams to focus on important items during the development process and 

to avoid unproductive activities. Even though in the case studies productivity was not defined 

clearly, the teams demonstrated that they do have an understanding of what being productive 

means. 

 

The overall outcome of question number three was that story points were the commonly used 

metric in these case studies; they assist in measuring the agile team productivity. Using story 

points allowed the companies under study to track the progress of their teams by looking at the 

estimated time to complete a sprint, versus the actual time; this was used for future estimates 

as well. Although metrics were not being applied fully in these companies, incorporating them 

into day-to-day work could improve their productivity levels. 

 

The final research outcome resulted in the development of a conceptual framework for agile 

team productivity. 

 

Productivity factors in agile teams could be monitored by looking at the following: 

 Team design: The team should have an adequate number of developers (ranging from 

three to seven, depending on the project size) and be encouraged to gel. 

 Team environment: The work setting should be user-friendly for developers to work in. 

 Individual factors: The developers’ skills, knowledge, experience and personalities should 

be considered when forming the team. 

 Task construction: The task duration should be estimated using reasonable or previous 

completion estimates, and the necessary tools should be available for developers.  

 



   

Chapter 6: Research Summary and Conclusion                                                                                                                                  129 

 

Using the proposed agile team productivity conceptual framework, it was found that the 

framework could help the companies under study (or any other company that adopts agile 

methods) to improve the productivity of their team. The proposed conceptual framework could 

be used as a starting point to understand the factors that affect each agile team productivity and 

devise ways in which the productivity in these teams could be suitably monitored.  

 

6.4 Summary of contributions 

 

This research has contributed to the management of software development teams in companies 

that adopted agile methods to improve productivity. The benefits of adopting agile methods and 

the factors that influence productivity were analysed.  

 

Understanding the factors that affect productivity in agile teams brings about significant insight 

into the way that they work, motivating teams to work together and applying the same metrics 

across the board when tracking each team’s progress.  

 

The evidence from this study has shown that creating a stable working environment, providing 

the necessary tools and tracking an agile team’s work every day results in improving team 

productivity. The research has also proven that following agile practices has a positive influence 

on productivity.  

 

It should be recognised that using metrics to measure productivity in agile teams is helpful, 

metrics assist in creating a team’s culture and allow the team to gel.  

 

Successful software delivery is only possible if people are committed to their work, are provided 

with the necessary tools and have access to a stable working environment. Individual factors 

like knowledge, skills, abilities, personalities and experience should be considered when forming 

agile teams. Consideration of these factors will result in groupings of people who are able to 

work together to achieve a common goal, which is an important component in improving 

productivity.  

 



   

Chapter 6: Research Summary and Conclusion                                                                                                                                  130 

 

In this study, the following facts have been established: 

 Understanding the factors that affect the productivity of any agile team is important to 

ensure frequent software delivery. 

 Using metrics to track the productivity of an agile team can be helpful. 

 Only agile practices that are perceived to have a positive effect on productivity should be 

used. 

 Monitoring productivity in agile team is important to ensure that teams are effective and 

efficient. 

 

6.5 Recommendations for implementation  

 

Agile teams need both management support and customer engagement for successful project 

delivery. Besides, other important factors include: 

 Agile team commitment, in listening and responding to problems quickly. 

 Increasing team morale by giving developers challenging work. 

 Recruiting team members with compatible personalities to work in the same team. 

 Providing the relevant tools needed to execute projects.  

 Providing a stable working environment. 

 Incorporating formal metrics to ensure fairness in monitoring and measuring the 

productivity of each team. 

 

 

6.6 Future research opportunities 

 

Although this research report already strongly emphasises agile team productivity factors and 

metrics, there is still a need for further research on this topic. Based on the evidence and findings 

obtained from this research, more companies that adopted agile methodologies could be 

studied. 

 

 



   

Chapter 6: Research Summary and Conclusion                                                                                                                                  131 

 

6.7 Conclusion 

 

Software productivity still remains a challenge in the software industry to this day. Companies 

need to keep up with frequently delivering software in order to increase their productivity rate. 

The adoption of agile methodologies in software development by most companies is intended to 

help them lower development costs and deliver software within a shorter space of time.  

 

In the literature, the importance of measuring productivity in any workplace has been recognised, 

but the actual measurement of productivity in agile teams is still under development, and there 

is a need for uniform metrics to ensure that the productivity of each team becomes visible. 

Factors that affect the productivity of an agile team are acknowledged as the most influential 

drawbacks to any successful software project delivery. This investigation has provided a list of 

negative and positive factors that affect agile team productivity; the metrics that might be suitable 

to measure productivity in agile teams; benefits that companies may reap from measuring and 

monitoring productivity in self-managed teams; and a proposed conceptual framework to 

manage issues surrounding agile team productivity. In this regard, further examination is needed 

with a bigger sample to establish whether monitoring and measuring agile team performance 

may result in increased productivity.   



 

            Nzou V – 46563946 – MSc in Computing  

 

APPENDIX A  - INTERVIEW PROTOCOL 

 

INFORMATION SHEET 
 

Introduction 
Viola Nzou (student number: 46563946) is a Master of Science in Computing student from the 
University of South Africa (UNISA) and is conducting a study to evaluate factors that affect 
productivity of software development in agile teams, in order to come up with ways  to improve 
the quality and time spent to deliver software in organisations.  The researcher is interested in 
learning about the delivery of software to customers and how efforts to improve software 
productivity are working in practice from the viewpoint of software practitioners, customers, 
developers, and other stakeholders.  

 
What are the reasons for carrying out this research? 
The researcher would like to know more about how software development productivity is being 
handled in your organisation.  To do this, we are asking selected software practitioners, 
customers, developers, and other stakeholders’ questions about their viewpoint on software 
delivery and effects on productivity.  This information will assist us to understand how and why 
software productivity in agile teams is not improving in the organisation.  

 
What happens if I participate in this research? 
The researcher would like to ask you some questions about your viewpoint on software 
development productivity, its effects on agile teams and how it is measured.  The researcher will 
be taking notes of the interview, and a recording using a digital voice recorder will be made.  
After the researcher has interviewed you, you will not be asked to do anything further.  All 
information and data gathered will be treated with confidentiality by the researcher, and 
interviews records will be kept securely in locked cabinets.  Personal identification information, 
for example names, will not be used in any reports arising out of this research. 

 
What is the duration of research? 
The interview lasts about 60-90 minutes, but the total duration of the study will be about one 
year. 

 
Can I stop participating in the research? 
Yes, you can choose to discontinue participating at any given time. You just have to inform the 
researcher right away if you wish to discontinue the interview. 

 
Are there any risks can be expected from participating in the research? 
Taking part in any research study might involve a loss of privacy.  Information provided about 
the participant’s opinions and experiences shall be audio recorded, but no names will be used 
in any reports.  No quotes or other results arising from your participation will be included in any 
reports, even anonymously, without your consent. The information gathered from these 
interviews will be used by the researcher only for her Masters dissertation and will be submitted 
to the University and placed in a secure place. The researcher will do her best to ensure that the 
personal information collected for this study is kept private.   



   

Appendix A – Interview Protocol                                                                                                                                                           133 

 

 
 

What are the benefits of participating in this research? 
There are no direct benefits to you from taking part in this research. Nevertheless, the 
information gathered will help the researcher and your organisation’s management to 
understand how best to improve the productivity of software development teams. 

 
Do I have any other options if I don’t participate in this research? 
It’s your choice to choose not to participate in this research. If your decision is not to participate 
this research, there will be no penalty to you.   

  
What are the costs of participating in the research?  Are there any incentives for 
participating in this research? 
There are no costs for participating in this research. No payment will be made for participating 
in this research.  

 
What are my rights if I choose to participate in this case study? 
Participating in this research is your own choice. It’s your choice to either participate or not to 
participate in the research.  If your decision is to participate in this research, you are allowed to 
change your mind at any point.  Whatever your decision is, there won’t be any penalty imposed 
on you in any way. 

 
Who are the people I should contact for answers if I have any questions about the 
research? 
Feel free to talk to the researcher about any concerns or questions you may have about this 
case study.  Contact Viola Nzou on 0790878333 or her supervisor Prof E Mnkandla on telephone 
number 011 670 9059. If you have any comments, questions, or concerns about participating in 
this research, communicate with the researcher first.  If for any reason, you don’t wish to do this, 
or you still have concerns about doing so, you may contact the UNISA Ethical Committee at 
telephone number +27 12 429 3111. 

 
Giving consent to participate in the research 
You are welcome to retain this form if you like. Participation in this research is voluntary.  You 
have the right not to take part in this research, or to withdraw from the study at any time without 
penalty.  In case you don’t wish to take part in this research, kindly tell the researcher 
immediately.  If you do wish to take part in this research, please inform the researcher 
immediately. If you disagree to quotes and/or any other results arising from you taking part in 
this research being included, even anonymously, kindly inform the researcher immediately. 



 

            Nzou V – 46563946 – MSc in Computing  

 

APPENDIX B  - PARTICIPANT CONSENT FORM  

CONSENT FORM 

 
Study Title:            Development of a framework to understand factors that influence software 
productivity in agile teams 
 
Researcher:           Viola Nzou 46563946 (MSc Computing, University of South Africa) 
 

 The research study has been explained to me in a language that I understand.  All the questions 

about the research have been answered. I comprehend what will happen during the interview 

and what is expected of me.  

 I have been informed that I have a right to refuse to participate in the interview and that if I 

decide not to participate I don’t have to give a reason, and that it won’t prejudice the care that 

I can expect to receive now, or in the future. 

 I have been informed that all my responses during the interview will remain completely 

confidential: my name and any other information that bears any of my identification will not be 

used. 

 An explanation was given that sometimes the researcher might find it helpful to use my own 

words when reporting on the research findings. I understand that any use of my words shall be 

used completely anonymously (without my name). I have been informed that I can decide 

whether I authorise my words to be used in this way. 

                  Circle response: 

I agree to take part in the research:   Yes No 

I agree that my own words may be used anonymously in the report   Yes No 

Signature of participant: 

PRINT NAME 

 

SIGNATURE  DATE  

(YYYY/MM/DD) 

 

 

  

 

Signature of researcher taking consent: 

I have discussed the research with the participant named above, in a language he/she can 

understand. 

I trust he/she has understood my explanation and agrees to participate in the interview. 

PRINT NAME 

 

SIGNATURE DATE  

(YYYY/MM/DD) 

 

 

  

 

 



 

            Nzou V – 46563946 – MSc in Computing  

 

APPENDIX C  - INTERVIEW QUESTIONS 

 

Individual / Group questions 

Q1.  (a) Can you please give me a brief description of any current or previous software 

development project that you were involved in? What is or was the duration of the 

project? What methodology was used? Was the project delivered on time and did it 

meet the client’s requirements and specifications? 

 (b) What are the benefits of using agile methodologies? 

(c) How would you define software development productivity? 

(d) What are the factors that influence your team productivity?  

(e) Do these factors influence team productivity in a positive or negative way? Please 

elaborate further on your choice. 

(f) Can you please explain which agile practices have the most effect on your team’s 

productivity? 

(g) How important are agile methodologies in your organisation? Are there any direct 

benefits from adopting agile methods? 

  

 Team design questions 

 

 Q2. (a) Briefly describe your team composition, structure and diversity? 

(b) Do you think the management style in this organisation allows employees to be 

creative and innovative? 

(c) Does the leadership in this organisation motivate the team? 

(d) Looking at software development projects, are the problems encountered raised 

and/or forwarded to management in time? 

(e) When there are problems in developing the software, how are they managed? Who 

takes responsibility? Do all team members take responsibility for major effects? 

(f) Does your work setting affect your final product? 

(g) Do you know what the productivity rate in this company is? Please can you describe 

productivity along the lines of final product delivery? 



   

Appendix C – Interview Questions                                                                                                                                                       136 

 

(h) What is the engagement level between the team to the client during software 

development, since agile methods lay emphasis on developer, client communication 

and collaboration? 

 

 Individual and team factors questions 

 

Q3. (a) Agile software development is centred on responding to change. Is your team able 

to respond and handle change timeously? 

 (b) How do you manage risks? Any there any examples that you can give me. 

 (c) How do management measure team and individual productivity in this organisation? 

Are there any established metrics? 

 (c1) Are there adjustments to promote productivity in situations where these metrics 

have negative effects? Do you think agile metrics relate to productivity metrics? 

 (d) Which metrics do you think are suitable for determining productivity in agile teams? 

 (e) Do you see members of the team working as a group or as individuals? 

 (e) How do you manage “sudden change in requirements” during software 

development? 

 (f)How do you monitor productivity of a self-managed team? Are there any processes 

put in place to monitor productivity, considering agility and adaptability?  

 

Time management questions 

 

Q4.  (a) How do you usually manage your time? Do you use any tool? 

 (b) What time do you normally take breaks and for how long? 

 (c) How do you balance your work and your personal life activities? 

 (d) How do you rate your individual turnover? 

 (e) How do you rate your skills and abilities? 

 (f) How do you manage the duration of each project? How do you ensure that you 

deliver the final product on time? 

 

 



   

Appendix C – Interview Questions                                                                                                                                                       137 

 

 

Communication strategy questions 

 

Q5. (a) How best do you think team members, practitioners and customers communicate 

and collaborate among themselves? 

 (b) In terms of deadlines, how well do you think each team member manages to meet 

deadlines? 

 (c) Is there collaboration and transparency in this organisation? 

 (d) Are your clients involved in software development process voluntary or are they 

being forced to be involved? Do you conduct a survey to customers and ask them if the 

features are actually useful before releasing the software? 

 (e) How often do you have meetings as a group? Are these meetings beneficial to you 

and the team? 

 (f) How do you ensure that team members are efficient? 



 

            Nzou V – 46563946 – MSc in Computing  

 

APPENDIX D  - PAST PAPERS PUBLISHED AND PRESENTED 

 

1. A framework for enhancing productivity in agile teams: A South African study, submitted to the 

African Journal of Information Systems (AJSI), October 2017. 

 

2.  Understanding the factors influencing software productivity in agile teams. A case study of 

South African companies adopting agile methods. Presented at the University of South Africa, 

School of Computing, Post Graduate Symposium, Johannesburg, South Africa, September 22, 

2016.  

 

 

 

 

 



 

            Nzou V – 46563946 – MSc in Computing  

 

APPENDIX E - ETHICS CLEARANCE CERTIFICATE 

 



 

            Nzou V – 46563946 – MSc in Computing  

 

APPENDIX F  - LANGUAGE EDITOR CERTIFICATE 

 

To whom it may concern 

This is to certify that I, Klaus-Peter Klein, translator and language practitioner by profession, 

have edited a M.Sc. dissertation for Mrs. Viola Nzou. 

The title of the thesis, containing approximately 40615 words, was 

Development of a framework to understand the factors that influence 

software productivity in agile teams 

Klaus P. Klein 

805, 26th Avenue 

Rietfontein, Pretoria 

Cell 072-140 5300 / 072-493 6942 

E-mail:  klausklein@taalring.com  

mailto:klausklein@taalring.com


 

            Nzou V – 46563946 – MSc in Computing  

 

REFERENCES  

Abdel-Hamid, T. 1996. The slippery path to productivity improvement. Software, IEEE 13(4), p. 

43 – 52. 

 

Abrahamsson P. (2005). Project Manager’s Greetings - Agile Greetings, Agile Newsletter Issue: 

1, 2004, p. 1.  

 

Abrahamsson, P., 2002. The role of commitment in software process improvement. PhD thesis, 

University of Oulu, Department of Information Processing Science & InforTech, Finland. 

 

Abrahamsson, P., Conboy, K., & Wang, X., 2009. ‘Lots done, more to do’: The current state of 

agile system development research. European Journal of IS, 18, 281 – 284. 

 

Agile Alliance, available at https://www.agilealliance.org/agile-alliance-technical-conference-

2016 

 

Albrecht, A. J. 1979. "Measuring Application Development Productivity. In Proceedings of the 

IBM Applications Development Symposium. GUIDE/SHARE (Monterey, CA, Oct. 14-17). IBM, 

pp. 83-92. 

 

Allen, B., & Reser, D. 1990. Content analysis in library and information science research. Library 

and Information Science Research 12(3), 251 -266. 

 

Alliance, A, 2001. Agile manifesto. Online at http://www.agilemanifesto.org, 6(6.1) . 

 

Ambler, S.W., and Jeffries. 2002. Agile Modeling: Effective Practices for Extreme Programming 

and the Unified Process. New York. Wiley. 

 

Angkasaputra, N. & Pfahl, D. 2005. “Towards an agile development method of software process 

simulation,” in Proceedings of 6th International Workshop on Software Process Simulation 

Modelling, p83 – 92, ProSim 2005, St Louis, Missouri.  

 

Arnold, M., and Pedross, P. 1998. Software size measurement and productivity rating in a large-

scale software development department. Paper presented at the Proceedings of the 20th 

International Conference on Software Engineering, pp 490 -493. 

 

https://www.agilealliance.org/agile-alliance-technical-conference-2016
https://www.agilealliance.org/agile-alliance-technical-conference-2016
http://www.agilemanifesto.org/


   

References                                                                                                                                                          142 

 

Avison, D. & Fitzgerald, G., 2006. Information Systems Development, 4th Edition. McGraw-Hill 

Education. 

 

 Awad, M., A., 2005. A comparison between agile and traditional software development 

methodologies. University of Western Australia.  

 

Baskerville, R., and Dulipovici, A., 2006. The theoretical foundations of knowledge management. 

Knowledge Management Research & Practice 4(2), 83–105. 

 

Beck, K. 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley. ISBN 

978-0321278654. 

 

Beck, K. 2000. Planning Extreme Programming. With Martin Fowler. Addison-Wesley. ISBN 

978-0201710915. 

 

Beck, K. et al. (2001). Agile Manifesto available at http://agilemanifesto.org/ 

 

Beck, K., Andres, C., 2004. Extreme Programming Explained: Embrace Change (2nd Edition). 

Addison-Wesley Professional. 

 

Berntsson-Svensson, R. & Aurum, A. 2006. Successful software project and products: An 

empirical investigation. In Proceedings of the 2006 ACM/IEEE international symposium on 

Empirical Software Engineering, pp 144 – 153. 

 

Blackburn et al. 2000. Blackburn, J., Schudder, G., and Van Wassenhove, L. Concurrent 

software development. Communications of ACM, 43: 200 – 214, November 2000. ISSN 0001-

0782.  

 

Boehm and Turner, 2006. Some Future Trends and Implications for Systems and Software 

Engineering Processes. Systems Engineering, Vol. 9, No. 1, Wiley Periodicals, Inc. 

 

Boehm et al. 2000. Software Cost Estimation with COCOMO II, Prentice Hall, Englewood Cliffs, 

N.J. 

 

Boehm, B. 1981. Software Engineering Economics, Prentice Hall, Englewood Cliffs, New Jersey. 

 

http://agilemanifesto.org/


   

References                                                                                                                                                          143 

 

Boehm, B., & Turner, R., 2004. Balancing agility and discipline: Evaluating and integrating agile 

and plan-driven methods. Paper presented at the Software Engineering. 

Doi:10.1109/ICSE.2014.1317503. 

 

Boehm, B.W, 1987. “Improving software productivity,” IEEE Computer, September, 43 -57. 

 

Bosch-Sijtsema, P.M, Ruohomȁki, V., and Vartiainen, M., 2009. Knowledge work productivity in 

distributed teams. Journal of Knowledge Management 13(6), 533 – 546. Emerald Group 

Publishing. 

 

Briand, L., Daly, J., and Wuest, J. 1998. A unified framework for cohesion measurement in 

object-oriented systems. Empirical Software Engineering: An Internal Journal, 3, 65 – 117. 

 

Brooks, W.D. 1981. Software technology payoff: Some statistical evidence. Journal of Systems 

and Software, 2(1), 3 – 9. 

 

Bullock, J., Weinberg, G., & Benesh, M. 2001. Roundtable on project management: a SHAPE 

forum dialogue. Dorset House Publishing, New York. 

 

Chan, F., and Thong, J., 2009. Acceptance of agile methodologies: a critical review and 

conceptual framework. Decision Support Systems 46 (2009), pp 803 – 814. 

 

Checkland & Holwell. 1998. Information, systems, and Information systems: Making sense of 

the field. Chichester: Wiley.  

 

Chemuturi, M., 2009. Software Estimation Best Practices, Tools and Techniques: A complete 

Guide for Software Project Estimators. J. Ross Publishing. 

 

Clandinin, D. J. & Connely, F.M. 2000. Narrative inquiry: Experience and story in qualitative 

research. San Francisco: Jossey-Bass.  

 

Cobb, C., 2011. Making Sense of Agile Project Management: Balancing Control and Agility. 

Wiley Online Library. 

 

Cockburn, A. 2001. Agile Software Development: The Cooperative Game. 2nd Edition. Pearson 

Education Inc. ISBN 10:0-321-48275-1. 

 

Cockburn, A. 2001. Writing Effective Use-Cases, Addison-Wesley. 



   

References                                                                                                                                                          144 

 

  

Cockburn, A. and Highsmith, J. 2001. Agile Software Development: The People Factor. IEEE 

Computer, vol 34 (2001). 

 

Cockburn, A., 2002. Agile Software Development. Addison-Wesley. 

 

Collier, K., 2001. Agile Analytics: A value-driven approach to business intelligence and data 

warehousing. Addison-Wesley. 

 

Conboy, K. & Fitzgerald, B. 2004. Toward a conceptual framework of agile methods: a study of 

agility in different disciplines. In: Proceedings of the 2004 ACM Workshop on Interdisciplinary 

Software Engineering Research, Neport Beach, pp 37 – 44. 

 

Concas G, Damiani E, Scotto M and Succi G. 2007. Agile Processes in Software Engineering 

and Extreme Programming, LNCS 4536 pp 54 – 61. Springer-Verlay Berlin Heidelberg. 

 

Creswell, J.W. 2003. Research Design: Qualitative, Quantitative, and Mixed Methods 

Approaches (2nd ed). Sage Publications, Thousand Oaks, USA. 

 

Creswell, J.W. 2005. Educational Research Planning, Conducting and Evaluating Quantitative 

and Qualitative Research (2ed). Person Education, Upper Saddle River, USA. 

 

Creswell, J.W. 2008, Research design: qualitative, quantitative, and mixed methods 

approaches, 2nd edition. Sage Publications. 

 

Creswell, J.W. 2009. Research Design: Qualitative, Quantitative, and Mixed Methods 

Approaches (3rded). Sage Publications, Thousand Oaks, USA. 

 

Crotty, M. 1998. The foundations of social research. London: Sage. 

 

Dalcher. 2006. Software Process: Improvement and Practice. John Wiley & Sons, Ltd. Vol 11 

Issue 2, p. 93. 

 

Dale, C. J., and van der Zee, H. 1992. Software productivity metrics: who needs them? 

Information and Systems Technology, 34 No. 11, Nov 1992, 731 – 738. 

 

Davis, A.M., Dietse, O., Hickey, A., Justisto, N., & Moreno, A.M. 2006, “Effectiveness of 

requirements elicitation techniques: empirical results derived from a systematic review”, 



   

References                                                                                                                                                          145 

 

Proceedings of the 14th IEEE International Conference on Requirements Engineering (RE 2006), 

pp. 176 – 185. 

 

Davis, G.B., Ein-Dor, P., King, W.R., & Torkzaden, R. 2006. IT offshoring: History, prospects, 

challenges. Journal of the AIS, 7(11), 770 – 795. 

 

De Marco & Lister 1999. Peopleware: Productive Projects & Teams, Second Edition. New York. 

Dorset House.  

 

Deetz, S. ‘Critical theory and postmodernist approaches to organisational studies’, in S. Clegg. 

C.  

 

DeMarco, T. & Lister, T. 1987. Peopleware: Productive Projects and Teams. New York. Dorset 

House. 

 

DeMarco, T., & Boehm, B., 2002. The agile methods fray. Computer, 35(6), 90 – 92. 

 

Denzin, N. K., & Lincoln, Y. S. 2000. Handbook of qualitative research. Thousand Oaks, Calif, 

Sage Publications. 

 

Denzin, N. K.; & Lincoln, Y. S., eds. 2005. The Sage Handbook of Qualitative Research (3rd 

ed.). Thousand Oaks, CA: Sage. ISBN 0-7619-2757-3. 

 

Depoy, E. & Gitlin, L.N. 2015. Introduction to Research: Understanding and Applying Multiple 

Strategies, 5th Edition. Elsevier Inc. 

 

Dey, I. 1993.Qualitative data analysis. A user-friendly guide for social scientists. London and 

New York: Routledge. 

 

Dilawar, A. 2011. “An Improved, Efficient and Cost Effective Software Inspection Meeting 

Process. Department of Software Engineering.” University of Engineering & Technology, Taxila. 

Domegan, C & Fleming, D. 2007. Marketing Research in Ireland: Theory & Practice. Dublin: Gill 

& MacMillan, Limited. 

 

Drucker, P. F., 1999. Knowledge-Worker Productivity. The Biggest Challenge. California 

Management Review, 4(2) 79 – 95. 

 

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-7619-2757-3


   

References                                                                                                                                                          146 

 

Dybά, T., & Dingsoyr, T., 2008. Empirical studies of agile software development: A systematic 

review. Information and Software Technology, 50 (9-10): 833-859. ISSN 0950-5849. 

 

Eickelmann, N. 2001. Defining Meaningful IT Productivity with a Balanced Scorecard. Motorola 

Labs, Schaumburg, USA: p 67 – 70. 

 

Erl Thomas 2005. Service-Oriented Architecture: Concepts, Technology and Design. Prentice 

Hall, ISBN 0-13-185858-0. 

 

Garud, R., & Kumaraswamy, A., 2005. Vicious and virtuous circles in management knowledge: 

The case of Infosys Technologies. MIS Quarterly, 29(1), 9 – 33 

 

Gillham, B. 2000.The Research Interview. London and New York, Continuum. 

 

Gillham, B. 2000a. Developing a Questionnaire. London: Continuum. 

 

Guba, E J. 1981. Criteria for assessing the trustworthiness of naturalistic inquiries. Educational 

Communication and Technology: A Journal of Theory, Research and Development, 29(2), 75 – 

91. 

 

Handbook of Research of Software Engineering & Productivity Technologies: Implications of 

Globalisation (pp 28 – 37). 

 

Hardy and W. Nord (eds), Handbook of Organisation Studies. London: Sage. 

 

Highsmith, J., 2000. Retiring Lifecycle Dinosaurs, Software Testing and Quality Engineering 

July/August pp 22 – 28. 

 

Highsmith, J., 2001. “The great methodologies debate: Part 1.” Cutter IT Journal 14(12) 

 

Highsmith, J., 2002. What is agile software development? CrossTalk – The Journal of Defense 

Software Engineering, 1:4-9, October 2002. 

 

 

Highsmith, J., 2009. Agile project management. Creating innovative products. Upper Saddle 

River, NJ: Pearson Education. 

 

Highsmith, J., 2010. Agile Project Management: Creating Innovative Products. Addison-Wesley. 

 



   

References                                                                                                                                                          147 

 

Holden, M.T. & Lynch, P. 2004. Choosing the Appropriate Methodology: Understanding 

Research Philosophy (RIKON Group). The Marketing Review, 4 p 397 – 409. 

 

Hsieh, H, F., & Shannon, S. E. 2005. Three approaches to qualitative content analysis. 

Qualitative Health Research, 15(9), 1277 -1288. 

 

Iansiti, M. & MacCormack, A., 1997. Developing Products on Internet Time. Harvard Business 

Review, 75(5), 108 – 117. 

 

IBM Smart Cloud Orchestrator. http://www.ibm.com  

 

Jacobson, I. 2002. A Resounding “Yes” to Agile Processes – But Also to More, Cutter IT Journal, 

15, 1. Pp 18 -24. 

 

Jalote, P., Palit, A., Kurien, P., & Peethamber, V., 2004. “Timeboxing: A process model for 

iterative development.” Journal of Systems and Software, 70 (2004): 117 -127. 

 

Jensen, R, 2014. Improving Software Development Productivity: Effective Leadership and 

Quantitative Methods in Software Management. Prentice Hall. 

 

Jones, C. 1986. Programming Productivity. McGraw-Hill, New York. 

 

Jones, C. 1987. A short history of FP and feature points. Internal report. Software Productivity 

Research, Inc., Burlington, MA: SPR Publication. 

 

Jones, C. 1996. Applied Software Measurement: Assuring Productivity and Quality. 2 ed. 

McGraw-Hill. 

 

Jones, C. 2008. Applied Software Measurement, 3rd edition, McGraw Hill. 

 

 

Karen A. Frenkel 1985, Toward Automating the Software Development Cycle, Communications 

of the ACM, Vol. 28, No.6 (June 1985) pages 578 – 590. 

 

Karlström and Runeson 2006. Integrating agile software development into stage-managed 

product development. Empirical Software Engineering, 11: 203 – 255, June 2006. ISSN 1382-

3256. 

 

http://www.ibm.com/


   

References                                                                                                                                                          148 

 

Kauffman, Banker, and Kumar. 1991."An Empirical Test of Object-Based Output Measurement 

Metrics in a Computer Aided Software Engineering (CASE) Environment." Unpublished. 

 

Kettunen, P., 2009. Agile software development in large-scale new product development 

organisation: team level perspective. Doctoral dissertation, Helsinki University of Technology. 

 

Kitchenham B, Al-Khilidar H, Ali Babar M, Berry M, Cox K, Keung J, Kurniawati F, Staples M, 

Zhang H, Zhu L. 2008. Evaluating guidelines for reporting empirical software engineering 

studies. Empir Softw Eng (3 (1):97-121 doi: 1.1007/s 10664-007-90535. 

 

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. 2009, 

“Systematic literature reviews in software engineering – a systematic literature review”, 

Information and Software Technology 51, pp. 7 – 15. 

 

Kitchenham, B.A. & Charters, S. 2007. Guidelines for Performing Systematic. Literature Reviews 

in Software Engineering Technical Report EBSE-2007-01. 

 

Kitchenham, B.A., & Mendes, E. 2004). “Software Productivity Measurement Using Multiple Size 

Measures,” IEEE Transactions on Software Engineering, 30(12): 1023 -1035, December 2004.  

 

Kumar, R. 2005. Research Methodology: A step-by-step guide for beginners. (2nd edition), 

London: Sage Publications. 

 

Larman, C., 2002. Applying UML and Patterns: An Introduction to object-oriented analysis and 

design and the unified process. 2nd Edition. Prentice Hall Inc. 

 

Lee, A. 2004. Thinking about Social Theory and Philosophy for Information Systems. In Mingers 

& L. Willcocks (Eds), Social Theory and Philosophy for Information Systems. Chichester Wiley.  

 

Lee, S., and Schmidt, R.C., 1997. Improving application development productivity in Hong Kong. 

In B.J.M & M.B.M (Eds). Information technology and challenge for Hong Kong. Hong Kong: Hong 

Kong University Press. 

 

Leedy, P.D., & Ormond, J.E. 2005, Practical research: planning and design. Prentice Hall, Upper 

Saddle River, N.J., 8th edition.  

 



   

References                                                                                                                                                          149 

 

. MacCormack, A., Verganti, R., & Iansiti, M. 2001. Developing products on “internet time”: The 

anatomy of a flexible development process. Management Science, 47: 133 – 150, January 2001. 

ISSN 0025-1909. 

 

MacCormack, A., Kemerer, C. F., Cusumano, M., and Crandall, B., 2003. Trade-offs between 

Productivity and Quality in Selecting Software Development Practices. IEEE Software, 20(5), 78 

– 85. 

 

Maskell, B. Associates Inc.  1999. The Journey to Agility, www.maskell.com/4box.htm 

 

Maxwell, K., & Forselius, P. 2000. “Benchmarking Software Development Productivity,” IEEE 

Software, Vol 17, no 1, pp. 80 – 88. 

 

 

McMillan, J. H. & Schumacher, S. 1993. Research in education: A conceptual understanding. 

New York: HarperCollins. 

 

McMillan, J. H., & Schumacher, S. 2001. Research in education: a conceptual introduction. New 

York, Longman. 

 

Mellor, S., 2005. Adapting agile approaches to your project needs. IEEE Software, 22(3), 17 – 

34, May/June. 

 

Melo, C., Cruzes, O.S., Kon, F., and Conradi, R., 2011. Agile team perceptions on productivity 

factors. In Proceedings of the Agile 2011 (AGILE’11), pp 57 – 66, Salt Lake City, UT, USA, IEEE 

Computer Society. 

 

Merriam, S. B. 2009. Qualitative research: A guide to design and implementation. San Francisco, 

CA: Jossey-Bass. 

 

Miles, M, B., & Huberman, A, M. 1994. Qualitative data analysis: An expanded source book. 

Thousand Oaks, CA: SAGE Publications. 

 

Mills, H.D. 1983. Software Productivity. Little, Brown & Co. 

 

Mnkandla, E. 2010. “Agile Software Engineering” in Ramachandran, M, & de Carvalho, R. (Eds).  

 

Mouton, J. 1996. Understanding social research. Pretoria. Van Schaik Publishers. 

http://www.maskell.com/4box.htm


   

References                                                                                                                                                          150 

 

 

Munhall, P.L. 1988. Ethical considerations in qualitative research. Western Journal of Nursing 

Research; 10:150 – 162. 

 

Myers, M. D. 2009. Qualitative Research in Business & Management. Sage, London. 

 

Myers, M.D. 2013. Qualitative Research in Business & Management. Sage Publications, 

London. Second edition. 

 

MyNatt, B.T. 1990. Software engineering with student project guidance. Englewood Cliffs, NJ: 

Prentice Hall. 

 

Noruwana, N., and Tanner, M. 2012. Understanding the structure process followed by 

organisations prior to engaging in agile processes. A South Africa perspective. SACJ No. 48, 

June 2012. 

 

Nogueira, J., Jones, C., and Luqi, 2000. “Surfing the Edge of Chaos: Applications to Software 

Engineering,” Command and Control Research and Technology Symposium, Naval Post 

Graduate School, Monterey, CA, June 2000. 

 

Oates, B, 2005. Researching Information Systems and Computing. SAGE Publications Ltd. 

 

Oz, E., 2008. Management Information Systems, 6th Edition. Pennsylvania State University, 

Great Valley. 

 

Palmer, N. 2014. Empowering Knowledge Workers. Future Strategies Inc. ISBN 978-0-

984976478. “Where is ACM Today?” 

 

Palmer, S. R., & Felsing, J. M. 2002. A Practical Guide to Feature-Driven Development. Prentice-

Hall. 

 

Petersen, K. 2011. “Measuring and predicting software productivity: A systematic map and 

review. Information and Software Technology, 53(4):317-343. 

 

Philip, J. 1998. Project management. London: ABC Publications.  

 



   

References                                                                                                                                                          151 

 

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., & Still, J. (2008). The impact of agile 

practices on communication in software development. Empirical Software Engineering, 13, 303 

- 337. 

 

Poel, K. & Schach, S. 1983. A software metric for cost estimation & efficiency measurement in 

data processing system development. Journal of Systems & Software, 3, p187 -191. 

 

Pressman R.S & Maxim B.R, 2015. Software Engineering - a Practitioners’ Approach. Eighth 

Edition. McGraw-Hill Education. 

 

Pries-Heje, J., & Commisso, TH. 2010. Improving Team Performance. Proceedings / 

Information Systems Research In Scandinavia (IRIS). 

 

Rajasekar, S., Philominathanet, P., & Chinnathambi, V. 2013. Research methodology. Physics 

ed-ph, 14. 1-53. 

 

Ramirez, Y. & Nembhard, D. 2004. Measuring Knowledge Productivity: A Taxonomy. Journal of 

Intellectual Property, 5 (4), 602 – 628. 

 

Rasch and Tossi. 1992. “Factors Affecting Software Developers’ Performance: An Integrated 

Approach,” MIS Quarterly. Vol 16, Issue 2, pp. 395 – 413, September 1992. 

 

Rasch, R.H. 1991. An investigation of factors that impact behavioural outcomes of software 

engineers. In Proc 191 Conference on SIGCPR, p. 38-53. ACM Press. 

 

Ravitch, S.M & Riggan, M. 2012. Reason and rigour: how conceptual framework guide research. 

Sage. Los Angeles.  

 

Riddle and Fairley 2012. Software Development Tools. Springer Science & Business Media, 

2012. 

 

Robson, C. 2002, Real world research: a resource for social scientists and practitioners 

researchers, Oxford: Blackwell. 

 

Ross, A. & Ernstberger, K. 2006. Benchmarking the IT productivity paradox: Recent evidence 

from the manufacturing sector. Mathematical & Computing Modelling, 44(1-2), 30 – 42. 

 



   

References                                                                                                                                                          152 

 

Runeson, P., Höst, M. 2009. Guidelines for conducting and reporting case study research in 

software engineering.  

 

Saunders, MNK, Lewis, P, Thornhill, A and Bristow, A. 2015. ‘Understanding Research 

Philosophies and Approaches’ in MNK Saunders, P Lewis and A Thornhill, Research Methods 

for Business Students, 7th ed., Harlow: Pearson Education. Chapter 4. 

 

 

Scacchi, W., 1994. Understanding Software Productivity. In Hurley, W.D. (Eds), Software 

Engineering and Knowledge Engineering: Trends for the Next Decade (Vol. 3, pp293 – 321), 

Piitsburgh, PA. 

 

Scacchi, W. 1995. Understanding Software Productivity: Advances in Software Engineering and 

Knowledge Engineering, D. Hurley (ed), Vol 4 pp 37 -70. 

 

Schach, S.R. 2007. Object-Oriented Software Engineering. McGraw-Hill. New York. 

  

Schamber, L. 2000. Time-line interviews and inductive content analysis: Their effectiveness for 

exploring cognitive behaviours. Journal of American Society for Information Science, 51(8), 734 

– 744 

 

Schwaber, K., Beedle, M. 2001. Agile Software Development with Scrum, 1st Edition. Prentice 

Hall PTR, Upper Saddle River, NJ, USA. 

 

Scott Amber + Associates available at www.ambysoft.com/surveys (viewed 11 August 2016)  

SDN Orchestration Layer Implementation Considerations. 

 

Siakas, K., & Georgiadou, E., 2003. The role of commitment for successful software process 

improvement and software quality management. The 11thSoftware Quality Management 

Conference, SQM 2003 (pp. 101-113), April 23-25.  

 

Sommerville, I. 2007. Software Engineering, Eighth Edition. Addison-Wesley pp 396 – 398. 

 

Stapleton, J. 1997. DSDM: The method in practice. Addison-Wesley, Inc, 

 

Tangen, S. 2005. “Demystifying productivity and performance,” International Journal of 

Productivity and Performance Management 54(1), 34 – 46. 

http://www.ambysoft.com/surveys


   

References                                                                                                                                                          153 

 

 

Tangen, S., 2002. ‘A theoretical foundation for productivity measurement and improvement of 

automatic assembly systems,’ Licentiate Thesis, The Royal Institute of Technology, Stockholm. 

 

Taylor, C., & Gibbs, G, R. 2010. "What is Qualitative Data Analysis (QDA)?”, Online QDA Web 

Site, [onlineqda.hud.ac.uk/Intro_QDA/what_is_qda.php] 

 

Trendowicz and Münich, 2009, “Factors Influencing Software Development Productivity-State-

of-the-Art and Industrial Experiences,” Advances in Computer, pp. 185 – 214, Elsevier 2009. 

 

Trochim, W. M. K. 2006 Research methods knowledge base. Retrieved 15 August 2016. 

http://www.socialresearchmethods.net.  

 

Wagner, S., & Ruhe, M. 2008, “A structured review of productivity factors in software 

development,” Institut für Informatik-Technische Universität München, Technical Report 

TUM10832. 

 

Walsham, G. 1993, Interpreting Information Systems in Organizations, Wiley, Chichester. 

 

Walston, C.E. & Felix, C.P. 1997. A method of programming measurement and estimation. IBM 

Systems Journal, 16(1), 54 -73 

 

Weinberg 1971. The Psychology of Computer Programming. New York: Van Nostrand Reinhold. 

 

Whitworth, E., & Biddle, R. 2007. The Social Nature of Agile Teams, Agile, Washington, DC, p26 

– 36. 

 

Womack, J.P., Jones, D.J., & Roos, D., 1990. The Machine that Changed the World, Rawson 

Associates, New York, NY. 

 

Yin, R, K. 2002. Case study research: Design and methods. Thousand Oaks, CA: Sage 

Publications 

 

Yin, R.K. 2003. Case study research: design and methods, 3rd edition. Sage Publications  

 

http://www.socialresearchmethods.net/


   

References                                                                                                                                                          154 

 

Yin, R.K. 2008. Case study research: design and methods, Applied Social Research Methods 

Series Vol 5. Sage Publications, 4th edition. 

 

Zimmermann, T., 2017, July. Software productivity decoded: how data science helps to achieve 

more (keynote). In Proceedings of the 2017 International Conference on Software and System 

Process (pp. 1-2). ACM. 

 


