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Key Points: 

 Four new 231Pa/230Th records form a depth transect in the northwestern Atlantic in 

millennial scale resolution back to 30 ka 

 Combined records resolve millennial scale deep water variabilities like YD, B/A, 

HS1, LGM and HS2 

 Timing and magnitude of record variations are in line with the well-known Bermuda 

Rise record with exception of the LGM  
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Abstract 

Global climatic changes during the last Glacial and Deglacial have been related to variations 

of the Atlantic Meridional Overturning Circulation (AMOC). Here, we present new and 

refined 231Pa/230Th down-core profiles extending back to 30 ka BP from the northwestern 

Atlantic along the Atlantic Deep Western Boundary Current (DWBC), which is the main 

component of the southward deep backflow of the AMOC. Besides the well-known Bermuda 

Rise records, available high-resolution 231Pa/230Th data in the northwestern Atlantic are still 

sparse. Our new records along with reconstructions of deep water provenance from Nd 

isotopes constrain the timing and magnitude of past changes in AMOC from an additional 

northwestern Atlantic region forming a depth transect between 3000 and 4760 m water depth. 

Our extended and improved dataset confirms the weakening of the AMOC during deglacial 

cold spells such as Heinrich Event 1 and the Younger Dryas interrupted by a reinvigoration 

during the Bølling-Allerød interstadial as seen in the prominent 231Pa/230Th records from the 

Bermuda Rise. However, in contrast to the Bermuda Rise records we find a clearly reduced 

circulation strength during the Last Glacial Maximum in the deep Atlantic. 

1. Introduction 

Deep water formation in and around the North Atlantic represents an important feature of 

Earth’s climate system, since it redistribute water masses between the surface and the deep 

ocean as well as between the northern and southern hemisphere. Accordingly, reconstructions 

of the Atlantic Meridional Overturning Circulation (AMOC) by means of various proxies and 

methods have been carried out extensively in the last decades in order to determine its 

behavior under very different past climatic boundary conditions (e.g. McManus et al., 2004; 

Curry and Oppo, 2005; Lynch-Stieglitz, 2017). Today, the majority of the deep western 

Atlantic basin is occupied by North Atlantic Deep Water (NADW) which is transported 

southwards primarily by the Atlantic Deep Western Boundary Current (DWBC) (Fig. 1; 

Johnson, 2008; Rhein et al., 2015). North Atlantic Deep Water is underlain by Southern 

Sourced Water (SSW) which reaches into the deep North Atlantic up to 40°N (Johnson, 

2008). The modern distribution of these water masses is clearly reflected by nutrient 

concentrations such as phosphate (Garcia et al., 2014) or physical properties such as salinity 

and potential temperature (Broecker et al., 1985, Zweng et al., 2013; Locarini et al., 2013). 

The distribution of these water masses changed on millennial scales and has been 

reconstructed with nutrient-based proxies such as δ13C and Cd/Ca (e.g. Keigwin, 2004; Curry 
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and Oppo, 2005; Oppo et al., 2018). An alternative approach for the identification of different 

water masses is the radiogenic neodymium isotope proxy (denoted as εNd). Neodymium 

isotopes are extracted from the authigenic phases of bulk sediments, foraminifera or fish teeth 

on which ideally the water mass Nd isotopic signature have been imprinted (e.g. Gutjahr et 

al., 2008; Piotrowski et al., 2005; Blaser et al., 2016; Howe et al., 2016). Different 

reconstructions showed that during the Last Glacial Maximum (LGM) as well as during short 

northern hemispheric cold spells such as Heinrich Stadials 1 and 2 (HS1 and HS2) and the 

deglacial Younger Dryas (YD), the balance of these water masses shifted towards a 

predominance of SSW filling most of the deep western Atlantic reaching north as far as 50-

60°N (Curry and Oppo, 2005; Marchitto and Broecker, 2006; Roberts et al., 2010; Gutjahr 

and Lippold, 2011). However, recent studies suggested the presence of a deep northern 

sourced water mass in the northwestern Atlantic also during the LGM as derived from stable 

carbon isotopes ( Keigwin and Swift, 2017) and εNd data (Pöppelmeier et al., 2018; Howe et 

al., 2016).  

Alongside reconstructions of past water masses distribution the knowledge of the past 

overturning strength from sensitive locations and different water depths is of equal 

importance. Reconstructions of bottom water circulation at the Blake Bahama Outer Ridge 

(BBOR; Fig. 1) using sortable silt suggested a reduced circulation during the LGM below 

3000 m water depth, but with a strong shallow circulation cell above (Evans and Hall, 2008). 

These authors further suggest stronger circulation in the abyssal (>4000 m) northwestern 

Atlantic, which they interpret as intensified SSW inflow. Sortable silt is a valuable proxy for 

reconstructing local bottom currents (McCave et al., 1995; McCave et al., 2017) but provides 

less information about the large-scale AMOC. For such large-scale AMOC reconstructions, 

the kinematic circulation strength proxy 231Pa/230Thexcess is widely applied in the Atlantic 

(McManus et al., 2004; Lippold et al., 2012a; Yu et al., 1996; Ng et al., 2018). Both, 231Pa 

and 230Th, are daughter isotopes from the radioactive decay of the uranium isotopes 235U and 

234U, respectively. Uranium (and its isotopic composition) is homogeneously dissolved in the 

world ocean due to the long residence time in the order of 400 ka (Henderson and Anderson, 

2003). Accordingly, the production of both daughter isotopes is of a constant activity ratio 

(0.093; hereafter ‘production ratio’). In contrast to uranium, protactinium and thorium are 

highly particle reactive, leading to short oceanic residence times of 100-200 and 10-40 years, 

respectively (Henderson and Anderson, 2003). Due to the slightly longer residence time of 

protactinium (roughly the time it takes for NADW to reach the Southern Ocean; Yu et al., 
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1996), 231Pa and 230Th are fractionated in dependence of the circulation strength (i.e. changes 

in AMOC intensity). Hence, low sedimentary 231Pa/230Th values today in the deep Atlantic 

reflect strong NADW advection (meridional 231Pa export to the Southern Ocean), while 

higher values are consistent with a weaker AMOC state (Luo et al., 2010; McManus et al., 

2004).  

In the Southern Ocean, 231Pa is preferentially scavenged from the water column into 

sediments due to its high affinity to particles consisting of biogenic opal (Chase et al., 2003). 

From this observation, a critical view on the usage of 231Pa/230Th as a circulation proxy arose, 

since 231Pa/230Th might be strongly linked to particle fluxes and their compositions (Chase et 

al., 2003). For regions with high particle fluxes and characteristic particle compositions (e.g. 

the Southern Ocean) or weak ocean circulation (e.g. the Pacific) this effect seems to control 

sedimentary 231Pa/230Th ratios (Anderson et al., 1983; Chase et al., 2003; Hayes et al., 2013; 

Costa et al., 2017). In contrast, in the western Atlantic, with its relatively moderate particle 

fluxes and a pronounced AMOC, 231Pa is effectively exported from the North to South 

Atlantic by advection as derived from a 231Pa deficit of at least 26 % (Deng et al., 2018) (a 

former study by Yu et al. (1996) mentioned up to 50 %) supporting the applicability of 

231Pa/230Th as a circulation proxy in the Atlantic.  

Previous studies using the 231Pa/230Th proxy have concluded that a strong circulation of the 

North Atlantic prevailed during the Holocene (Hoffmann et al., 2018) and pronounced 

weakenings of AMOC strengths occurred during past cold phases (McManus et al., 2004; 

Bradtmiller et al., 2014; Gherardi et al., 2009; Ng et al., 2018; Lippold et al., 2016). 

Nevertheless, a clear picture of the vertical structure of the deglacial circulation and the 

evolution of AMOC is still lacking, in particular due to insufficient spatial and temporal 

proxy coverage.  

Here we present four new high-resolution 231Pa/230Th down-core profiles forming a depth 

transect at the BBOR (3000 to 4760 m; Fig. 1) spanning the last 30 ka. The BBOR is a well-

studied location (e.g. Keigwin, 2004; Evans and Hall, 2008) in the direct flow path of the 

DWBC that allows for the investigation of advection rates depending on the water depth. 

Additionally, we provide three updated and improved records from a prior study (Lippold et 
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al., 2016). With these new records from the deep BBOR we are able to reconstruct the 

evolution and changes in AMOC strength in greater detail.  

2. Materials and Methods 

2.1. Setting and age model 

We analyzed 231Pa/230Th from ODP Leg 172 Sites 1059, 1060, 1061 and 1062 back to 30 ka. 

Sites 1059, 1060 and 1061 are located on the crest of the Blake Outer Ridge, which is formed 

by drift sediments (Keigwin and Jones, 1994), while Site 1062 is located further south on the 

Bahama Outer Ridge (Fig. 1). The four sites form a depth transect from 3000 to 4760 m 

water depth. In addition, we improved the 231Pa/230Th records (partly re-analyzed and re-

calibrated, see Table S5) of KNR140 12JPC (hereafter 12JPC) on the BBOR and cores 

GeoB1515-1 and GeoB1523-1 from the Ceara Rise in the equatorial western Atlantic 

(Lippold et al., 2016). Age models for Sites 1059 to 1062 are provided by Pöppelmeier et al. 

(2019) and are based on the correlation of carbonate concentration for Site 1059 and 1062 

(Grützner et al., 2002) to neighboring cores KNR140 GGC39 (Keigwin and Schlegel, 2002) 

and KNR31 GPC9 (Keigwin and Jones, 1994), respectively. Additionally, the age model 

consists of 12 14C dates on Site 1060, two dates on Site 1062 and four recalibrated 14C dates 

on Site 1059 (Hagen and Keigwin, 2002, Pöppelmeier et al., 2019). We further present new 

age models for GeoB1515-1 and GeoB1523-1 from the Ceara Rise, which have been 

improved by recalibrated 14C dates and one new 14C date for GeoB1515-1. This new 14C date 

was measured at the LARA laboratory at the University of Bern, Switzerland (Gottschalk et 

al., 2018). We used the CALIB 7.1 online tool tied to the Marine13 curve (Reimer et al., 

2013) for calibration of all 14C dates with the standard 400-year reservoir age correction. 

2.2. Analytical procedure for Pa, Th and U isotope measurements 

Sediment samples were analyzed for the radioisotopes 230Th, 231Pa, 232Th, 234U, and 238U. 

Purification and separation of the elements followed the protocol described in Süfke et al. 

(2018). Before chemical treatment samples were spiked with 233Pa, 229Th and 236U. The short-

lived 233Pa isotope (t1/2= 27 d) was milked from a 237Np solution using the procedure 

described by Regelous et al. (2004). The 233Pa spike was calibrated against the reference 

material UREM-11 (Süfke et al., 2018) and an internal pitchblende standard (Fietzke et al., 

1999). Protactinium isotopes were measured using an Element 2 HR-ICP-MS in the Institute 

of Earth Sciences at Heidelberg University and a Neptune Plus MC-ICP-MS in the 
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Geozentrum Nordbayern at the Friedrich–Alexander University in Erlangen equipped with a 

retarding potential quadrupole filter. Uranium and thorium isotopes were measured with two 

Neptune Plus MC-ICP-MS at GEOMAR Helmholtz Centre for Ocean Research in Kiel and at 

the Geozentrum Nordbayern in Erlangen.  

A detrital correction (238U/232Th) of 0.55, in agreement to overall minima of bulk 238U/232Th, 

was applied to the measured activities of 231Pa and 230Th in accordance with the typical 

lithogenic activity ratio for 238U/232Th of 0.5 to 0.6 (Henderson and Anderson, 2003) in the 

western Atlantic. The lithogenic 238U/232Th, and hence the detrital correction on the 

calculation of 231Pa/230Th, may vary with time (Missiaen et al., 2018) in particular during 

times of high detrital and/or authigenic contributions. One control parameter for a potentially 

changing detrital factor is given by the 230Thxs0/
232Th ratios (Missiaen et al., 2018). 

Throughout the glacial to deglacial parts of the records, the 230Thxs0/
232Th activity ratios are 

relatively constant, pointing to a stable detrital phase , but shows strong increases with the 

onset of the Holocene (Fig. S1). However, the Holocene sections of our 231Pa/230Th records 

are insensitive to changes in the detrital correction (Fig. S2). Furthermore, X-Ray 

Fluorescence (XRF) data (cf. section 2.3. and 3.2.) support a uniform detrital sediment 

composition throughout the complete records (Fig. S4). Hence, we used a constant detrital 

correction of 0.55 that has also previously been used for Site 12JPC (Lippold et al., 2016). 

The ingrowth of 231Pa and 230Th from authigenic uranium was calculated and corrected as 

described by Henderson and Anderson (2003). Finally, 231Pa and 230Th excess concentrations 

were decay corrected to the time of deposition. All individual isotope concentrations are 

provided in the supplement (Tables S1-S6).  

2.3. Biogenic opal and major elements 

As well as the measurements of 231Pa/230Th, we analyzed the content of biogenic opal in the 

sediments. High fluxes of biogenic opal may increase 231Pa/230Th ratios independently of the 

circulation strength, due to the high affinity of 231Pa to it (e.g. Chase et al., 2002, 2003; 

Rutgers van der Loeff et al., 2016). Opal concentrations were analyzed by automated 

leaching following the procedure described by Müller and Schneider (1993). Furthermore, we 

measured the bulk sediment content of Al, Si, Ti, Fe and K of discrete samples (Table S7) 

with a fourth generation Avaatech XRF core scanner at the Institute of Earth Sciences at 
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Heidelberg University, using a 10 kV Rh anode X-ray tube without a filter, a 1000 mA 

current (500 mA for Site 1060), and a counting time of 30 seconds.  

2.4. Selection criteria for compilation of existing 231Pa/230Th profiles from the West Atlantic 

for comparison 

In order to provide a comprehensive 231Pa/230Th based picture of the deep AMOC evolution 

in the western Atlantic sector we compiled new and existing records from this basin. We only 

used sites from the western basin of the Atlantic since records from the eastern basin show 

noticeably different features and deglacial evolution due to different circulation regimes in 

both basins (Bradtmiller et al., 2007; Gherardi et al., 2009; Howe et al., 2017; Ng et al., 2018; 

Lippold et al., 2012b). For this compilation we excluded sites which are located on or near 

the Mid-Atlantic-Ridge (MAR) in order to avoid potential effects of hydrothermal activity on 

regional 231Pa/230Th (Hayes et al., 2015a; Pavia et al., 2018; Lund et al., 2019) which are not 

yet satisfyingly resolved (Bradtmiller et al., 2007, Lippold et al., 2016, Gherardi et al., 2009). 

We further excluded sites where records are not continuous from the LGM to the Holocene or 

from which the original authors consider specific time intervals as questionable (Gherardi et 

al., 2009; Lippold et al., 2011). Overall, we thus compiled two cores from the Bermuda Rise 

(McManus et al., 2004; Lippold et al., 2009), five from the BBOR (this study, Lippold et al., 

2016) and five from the central/equatorial western basin (Bradtmiller et al., 2007; Lippold et 

al., 2016; Ng et al., 2018) which fulfill our criteria (Fig. 1). In the further interpretation we 

combined the two cores GeoB1523-1 (Lippold et al., 2016) and EW9209-3JPC (Ng et al., 

2018) to a single record since both sites are situated at the same water depth and nearly the 

same location.  
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3. Results 

3.1. 231Pa/230Th 

All new records show a similar millennial scale variability closely following the prominent 

Bermuda Rise record (McManus et al., 2004; Lippold et al., 2009; Fig. 2). Youngest 

231Pa/230Th values are consistently low (between 0.053 and 0.060) indicative of strong 231Pa 

export that was established during the early Holocene (< 10 ka) (Figs. 2, 3). Pronounced 

variability during the deglaciation including the prominent climatic episodes YD, Bølling-

Allerød (B/A) and HS1 is present in all new records, except for the re-evaluated Site 12JPC, 

which shows less variability during the YD and B/A events.  

The 231Pa/230Th ratios from all deep cores follow a general temporal evolution from high 

glacial values towards low values during the early Holocene, only disrupted by a prominent 

short and rapid decrease during the B/A (almost reaching Holocene values) and again glacial-

like values during the short period of the YD. The decrease in 231Pa/230Th during the B/A of 

the shallowest Site 1059 (2984 m) is less pronounced and/or exhibits a different timing. 

During HS1 all records show generally high 231Pa/230Th values (but below the production 

ratio) ranging from 0.072 to 0.086 (average = 0.081 ± 3.6 %), in agreement with abyssal 

231Pa/230Th records of the northwestern Atlantic (McManus et al., 2004; Lippold et al., 2009; 

Ng et al., 2018).  

The new 231Pa/230Th values from the LGM are slightly lower (average = 0.073 ± 4.2 %) than 

those during HS1. This subtle difference is in contrast to the prominent Bermuda Rise record 

that features significantly lower LGM values (Fig. 2; McManus et al., 2004). At the BBOR, 

the lowest LGM values were recorded in the shallowest Site 1059, whereas LGM values from 

Sites 1060 and 1061 are nearly indistinguishable from values observed during HS1.  

While 231Pa/230Th ratios of Site 1059 exhibit no distinct peak during HS2, the deeper BBOR 

cores display generally higher variability during this period and values as high as during HS1, 
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including few values exceeding the production ratio of 0.093. In particular, Site 1060 shows a 

double peak feature similar to the record at ODP Site 1063 (Lippold et al., 2009).  

3.2. Opal and major elemental abundances 

Low preserved opal concentrations below 4 % were measured in all presented BBOR cores 

(Fig. 2). Further, a higher opal content should be detectable by increased Si/Al ratios 

(McManus et al. 2004) but are not present in the new XRF records from the BBOR (Fig. S4). 

In addition to the Si/Al ratio, we used other elemental ratios obtained by XRF for analyzing 

the provenance and major composition of the sedimentary phase. Ratios of Ti/Al, K/Al, K/Ti 

and Ti/Fe show little variation throughout the entire records (Fig. S4), pointing to an 

invariable detrital phase (Rothwell and Croudace, 2015), which in turn supports the selection 

of a constant detrital correction as outlined in section 2.2. 

4. Discussion 

4.1 Potential primary particle influences on 231Pa/230Th 

As seen from its high 231Pa/230Th, 231Pa exported southward via NADW ends in the sediments 

of the Southern Ocean (Rutgers van der Loeff et al., 2016) due to the opal-dominated particle 

flux in this region (Walter et al., 1997; Chase et al., 2003; Anderson et al., 2009). Therefore, 

the role of particle flux and particle composition on controlling sedimentary 231Pa/230Th 

besides ocean circulation is emphasized (Chase et al., 2002; Geibert and Usbeck, 2004). 

While biogenic opal has not been found to be a significant scavenging phase in the modern 

north Atlantic ocean (Hayes et al., 2015b) we also exclude opal as a major driver of 

231Pa/230Th at the BBOR for the past. Preserved opal concentrations are constantly low at all 

BBOR Sites during the last 30 ka (even in the presence of high 231Pa/230Th variability). 

Comparing 231Pa/230Th and opal concentrations from all sites used for this study (McManus et 

al., 2004; Bradtmiller et al., 2007; Lippold et al., 2009, 2016; Ng et al., 2018) no persuasive 

correlation is present and opal concentrations are always below 5% (Fig. S3). 

Besides opal, authigenic Fe and/or Mn hydroxides are potential strong scavengers of 231Pa 

and 230Th (Hayes et al., 2015b). Indeed, along the GA03 GEOTRACES North Atlantic 

Transect (Hayes et al., 2015a) Kd values of MnO2 and Fe(OH)3 have been estimated at 

magnitudes higher than for lithogenic particles or CaCO3 (Hayes et al., 2015b). This effect 

was observed emanating from hydrothermal plumes of the MAR (Hayes et al., 2015b). 
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However, due to the large distance between the MAR and the BBOR, scavenging by Mn/Fe 

phases originating from the MAR can be considered as negligible. Furthermore, increased 

scavenging of 231Pa and 230Th by MnO2 has been reported in bottom water particles off the 

Mauritanian margin (Hayes et al., 2015b). In contrast to the BBOR the Mauritanian margin is 

a region of high upwelling intensity. There, 231Pa can be scavenged by MnO2 coatings formed 

from redox cycling from the respiration of high contents of organic matter (Hayes et al., 

2015b), but such conditions have not been observed at the BBOR. Although the mobility of 

Fe and Mn may have been quite different between glacial and interglacial conditions due to 

lower oxygenation, effects of increased 231Pa and/or 230Th scavenging are rather expected 

under very sluggish circulation regimes such as the Pacific (Korff et al., 2016) 

Alongside particle composition the sheer amount of particles may also increase 231Pa/230Th, 

in particular at ocean margins (so-called boundary scavenging; Anderson et al., 1983; Hayes 

et al., 2015a). Increased 231Pa/230Th have been found from the high accumulating and organic 

rich sediments off the coast of West Africa (Christl et al., 2010; Lippold et al., 2012b; 

Scholten et al., 2008; Hayes et al., 2015a), however still overprinted by an AMOC signal in 

their temporal evolution (Lippold et al., 2012b). The effects of boundary scavenging and 

increased particle fluxes at the high productivity upwelling regions off West Africa are not 

comparable with the BBOR as discussed before.  

On the other hand, the effect of bottom scavenging due to the occurrences of nepheloid layers 

(Hayes et al., 2015a) may represent an additional sink for 231Pa and 230Th at the sea floor. A 

first simple representation of bottom scavenging in a 231Pa/230Th enabled model (Rempfer et 

al., 2017) did not yield a disturbed relationship between overturning strength and 231Pa/230Th 

on the larger spatial and temporal scales in the Atlantic. The implementation of bottom 

scavenging in the model, however, was global. Nepheloid layers were assumed to appear in 

all bottom grid cells with the thickest layers in the deepest water depths. Accordingly, the 

model is able of capturing a basin wide relation rather than a local influence. Temporally 

variable occurrences of local and regional nepheloid layers may be able to influence a 

231Pa/230Th profile to a certain extent possibly increasing sedimentary 231Pa/230Th ratios 

(Deng et al., 2014). Today, parts of the northwestern Atlantic have been found to be covered 

by nepheloid layers (Stahr and Sanford, 1999; Gardner et al., 2018). Effects of nepheloid 

layers on Nd isotopes have been reported from the BBOR e.g. by offsets found between core 

tops and seawater Nd isotopic compositions and by the manifestation of unradiogenic 
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anomalies in Nd isotopic signatures attenuating as a function of distance to the presence of 

strong benthic nepheloid layers (Pöppelmeier et al., 2019). 

As of yet, there is little handle on reconstructing the extent and intensity of past nepheloid 

layers and thus, how to assess the influence of past nepheloid layers on radionuclide 

scavenging. Based on analyzing changes in sediment focusing Gutjahr et al. (2008) suggested 

reduced focusing at BBOR intermediate depth sites indicating reduced shelf-derived sediment 

redistribution before the Holocene. Nepheloid layers are mostly produced by upper ocean 

dynamics of surface eddy kinetic energy propagating downwards stirring up bottom 

sediments (Gardner et al., 2018). During glacial periods the sea level was lower and the shelf 

contact area reduced. As a consequence energy from shallow tidal mixing on the shelves was 

nearly absent and the tidal energy increasingly dissipated in the deep ocean (Egbert et al., 

2004; Wilmes et al., 2019). Bringing this tidal energy into the deep Atlantic would increase 

the mixing and turbulence there. As a consequence nepheloid layers during the LGM could 

have been greater and denser in the northwestern Atlantic. The greater suspended particle 

concentration could have increased the bottom scavenging of 231Pa and 230Th during the LGM 

(c.f. Deng et al., 2014; Hayes et al., 2015a).    

Based on these observations and as anticipation of the discussion on differences in 

231Pa/230Th between the BBOR and the Bermuda Rise we can deduce that nepheloid layers 

may not have had first order control on the down-core evolution of the new 231Pa/230Th 

records during the Holocene. Bottom scavenging by nepheloid layers was presumably more 

intense before the Holocene. Significantly and constantly higher 231Pa/230Th values at the 

BBOR in the glacial and deglacial parts could then be explained by the occurrence of 

nepheloid layers. However, assuming that the distribution of nepheloid layers during the 

LGM was similar to todays, it would be expected that bottom scavenging at the Bermuda 

Rise was more intense than at the BBOR. During the LGM lower 231Pa/230Th values at the 

Bermuda Rise are observed compared to the BBOR rendering a primary control of bottom 

scavenging on the 231Pa/230Th as unlikely. Since our knowledge about the distribution and 

size of nepheloid layers during the LGM is limited and relies on assumptions only, we cannot 

clearly exclude the effect of nepheloid layers on 231Pa/230Th, but suggest that it was not 
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dominant based on above observations. Moreover, increased bottom scavenging by nepheloid 

layers during the LGM is also pending to be confirmed.  

4.2. Stable Holocene circulation 

Today, the northwestern Atlantic basin is dominated by the southward export of NADW as 

main part of the AMOC. In contrast to this, in the northeastern Atlantic NADW flows partly 

northward as it enters the basin as far south as the equator (Rhein et al., 2015). 

Concentrations of dissolved 230Th and 231Pa in the eastern part of the North Atlantic show a 

depth dependent increase as a result of weaker export (Hayes et al. 2015a). In contrast, the 

western basin exhibits a moderate increase in dissolved 231Pa concentrations with water depth 

due to the southward advection of 231Pa by the strong overturning circulation (Deng et al., 

2018). We therefore aim for considering 231Pa/230Th based AMOC reconstructions from 

regionally constrained data of the northwestern Atlantic (Ng et al., 2018; Lippold et al., 2011; 

Lippold et al., 2012b) instead of integrating 231Pa/230Th data from across the Atlantic (Yu et 

al., 1996; Lippold et al., 2016; Lippold et al., 2012a; Bradtmiller et al., 2014).  

The notion of an active and strong Holocene AMOC (Keigwin and Boyle, 2000; Oppo et al., 

2003) as indicated by low and relatively constant 231Pa/230Th at the Bermuda Rise is 

supported by low Holocene 231Pa/230Th values at the BBOR (average = 0.056 ± 3.2 %; Fig. 

3). The strong overturning circulation is in accordance with strong NADW production as 

indicated by εNd indicating the prevalence of NSW in the northwestern Atlantic 

(Pöppelmeier et al., 2019). The absolute values of around 0.056 are well in agreement with 

previous 231Pa/230Th data compilations (Bradtmiller et al., 2014; Lippold et al., 2012a) for 

deep sites. An early Holocene AMOC strength overshoot as suggested by combined 

231Pa/230Th and εNd records of lower time resolution (Lippold et al., 2016) cannot be 

confirmed from the new dataset. 

4.3. Weaker circulation during the Last Glacial Maximum 

All new down-core profiles display 231Pa/230Th values clearly higher during the LGM than 

during the Holocene (Figs. 4, 5), but on different absolute levels depending on the water 

depth. The shallowest Site 1059 (2984 m) features the overall lowest LGM values of all 

BBOR records. Following the finding that sedimentary 231Pa/230Th is largely a signal 

integrated from the 1000 m water column above the sea floor (Thomas et al., 2006, Luo et al., 

2010), it seems likely that Site 1059 at least partially recorded the influence from a shallow 
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Glacial North Atlantic Intermediate Water (GNAIW) overturning cell above the core 

location. The existence of such a shallow overturning cell has been suggested by several 

nutrient-proxy based studies (e.g. Boyle and Keigwin, 1987; Duplessey et al., 1988; Oppo 

and Lehmann, 1993; Keigwin et al., 2004; Curry and Oppo, 2005) as well as observations 

from sortable silt data from the BBOR (Evans and Hall, 2008). Highest LGM values are 

found at the depth interval from 3500 to 4000 m (Site 1060/1061; Fig. 4a) suggesting either 

the influence of bottom scavenging or weaker water transport at these depths. The 

interpretation of a weaker water transport seems more plausible since the effect of bottom 

scavenging at the BBOR is subordinate to the large scale Pa export from the North to the 

South Atlantic (c.f. section 4.1.). A slight decrease in 231Pa/230Th during the LGM is observed 

in the cores below 4000 m (12JPC and Site 1062), indicative of a more active circulation in 

the abyssal northwestern Atlantic (Figs. 2, 3). Such a circulation depth-structure has also been 

reported from BBOR sortable silt reconstructions (Evans and Hall, 2008). Stable carbon 

isotope data (δ13C) from a depth transect along the BBOR show lighter δ13C values with 

increasing water depth interpreted as propagating SSW during the LGM (Keigwin, 2004; 

Evans and Hall, 2008). However, in the light of recent findings of past water mass 

distributions in the western Atlantic basin from a δ13C and Nd isotope perspective an 

extensive advance of SSW into the North Atlantic may need to be seen more critically 

(Gebbie 2014; Howe et al., 2016; Oppo et al., 2018; Spooner et al., 2018).  

The study by Spooner et al. (2018) gives an estimation on the depth where the boundary 

between GNAIW and SSW was located at 30°S in the South Atlantic. Their data support a 

strong southward directed circulation at least in depths shallower than 2600 m. Furthermore, 

they found faster flow speeds below ~4000 m water depth interpreted as northward 

propagated SSW. Spooner et al. (2018) therefore suggested that the boundary between 

GNAIW and SSW at 30°S was situated somewhere between 2600 and ~4000 m water depth 

possibly in deeper than in shallow depths. This boundary is rather expected to descend 

towards 30°N instead of being stable on such a long distance due to the increasing dominance 

of NSW with shorter distance to the North Atlantic deep water formation areas (Gebbie 2014; 

Howe et al., 2016; Oppo et al., 2018). Accordingly, a strong inflow of SSW in the deep 

northwestern Atlantic basin during the LGM appears unlikely. A more recent study based on 

Nd isotopes argues that the northwestern Atlantic was filled mainly with NSW rather than 

SSW during the LGM (Howe et al., 2016), which is supported by proxy-model comparisons 

concluding that the volume seized by NSW was not much different in the LGM than in the 
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Holocene (Gebbie, 2014). The clearly more radiogenic Nd isotopic signatures before the 

Deglacial is not necessarily an unequivocal evidence for the presence of SSW as interpreted 

in earlier studies (Lippold et al., 2016; Gutjahr et al., 2008; Roberts et al., 2010), since the 

εNd end-members for both SSW and NSW potentially have changed towards more 

radiogenic values (Gutjahr et al., 2008; Skinner et al., 2013; Howe et al., 2016). From these 

findings it is difficult to maintain the notion of SSW predominantly bathing the BBOR and 

the Bermuda Rise during the LGM. Analyses from all these sites provide very similar Nd 

isotope signatures indicating that the complete depth transect at the BBOR was bathed in the 

same water mass during the LGM (Gutjahr et al., 2008; Pöppelmeier et al., 2019, Roberts et 

al., 2010; Gutjahr and Lippold, 2011). In contrast to the uniform picture in Nd isotope 

signatures, 231Pa/230Th ratios at the Bermuda Rise (~4500 m water depth; McManus et al., 

2004; Lippold et al., 2009) were significantly lower than at the BBOR during the LGM 

nearly reaching Holocene levels (Figs. 3, 4a; note the different color at ~4500 m between ~20 

and ~24 ka compared to the predominant color of the water column above and below in Fig. 

3). 

New glacial water mass reconstructions from the northwestern Atlantic do not only argue for 

a shallow GNAIW overturning cell but also for an abyssal northern water mass, that 

potentially was formed by brine rejection (Howe et al., 2016; Keigwin and Swift, 2017; 

Pöppelmeier et al., 2018). Such an abyssal southward directed water mass advection could 

explain the low 231Pa/230Th observed at the Bermuda Rise, which might be corroborated by 

slightly lower peak LGM 231Pa/230Th values at the deepest BBOR Site 1062 compared to 

Sites 1060/1061 (Fig. 4a). 

Accordingly, when considering the depth structure of 231Pa/230Th (Fig. 3), our new records 

are in line with the hypothesis of the northwestern Atlantic basin predominantly bathed by 

NSW rather than SSW during the LGM as inferred from Nd isotope records (Howe et al., 

2016; Pöppelmeier et al., 2019).  

4.4. Confirming deglacial AMOC variability 

The 231Pa/230Th record of Site 12JPC (4250 m) differs from the most proximal cores in the 

depth transect, namely Site 1061 (4036 m) and Site 1062 (4760 m) during the deglaciation 

(11 to 19 ka). While the latter records display deglacial millennial scale features, these are 

missing in the 12JPC record exhibiting a small plateau during the B/A only. Similarly, the Nd 
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isotope record of 12JPC also shows only a gradual glacial-interglacial shift (Pöppelmeier et 

al., 2019). Sedimentary depositional processes (e.g. winnowing or sediment redistribution; 

Gutjahr et al., 2008; Pöppelmeier et al., 2019) may have played a role in smoothing out the 

original oceanographic signal at this site. Sediment focusing during the YD is smaller at 

12JPC compared with Sites 1061 and 1062 (Fig. S5). On this basis, we exclude the deglacial 

part of 12JPC from the following discussion as was done by Pöppelmeier et al. (2019).  

Substantial freshwater input into the North Atlantic has been associated with a reduced 

(Bradtmiller et al., 2014) or almost collapsed (McManus et al., 2004) AMOC during HS1. 

Our results confirm a homogeneously reduced deep circulation regime during HS1 for all 

considered water depths, with average 231Pa/230Th of 0.081 (Figs. 2, 3; below 0.093), pointing 

to a widely weakened but still active overturning (Bradtmiller et al., 2014). Increases in 

231Pa/230Th from LGM to HS1 are less pronounced for the water depth interval from 3500 to 

4200 m (Sites 1060, 1061 and 12JPC; Figs. 3, 5) featuring the highest LGM values of the 

northwestern Atlantic depth transect and thus calling for a weaker change in circulation 

strength between LGM and HS1. In contrast, the deepest Site 1062 features a more 

pronounced increase in 231Pa/230Th from the LGM to HS1, potentially due to an abyssal 

component of northern sourced glacial water mass during the LGM (Howe et al., 2016; 

Keigwin and Swift, 2017; Pöppelmeier et al., 2018). Accordingly, increases in 231Pa/230Th 

from the LGM to HS1 below 4200 m indicate a weakening of glacial abyssal NSW water 

mass admixture. Thus, the new dataset further strengthens the notion of a sluggish AMOC 

during HS1 in the northwestern Atlantic for a wide range of water depths (Lund et al. 2015; 

Robinson et al., 2005; Bradtmiller et al., 2014; Fig. 3).  

Following HS1, the onset of the B/A warm period is marked by an abrupt decrease in 

231Pa/230Th in the BBOR cores reflecting the invigoration of the AMOC very similar to the 

Bermuda Rise record (McManus et al., 2004; Fig. 3). It has been proposed that the B/A was 

potentially marked not only by an AMOC reinvigoration but by an AMOC overshoot 

transiently producing more NADW than during the Holocene (e.g. Barker et al., 2010; Cheng 

et al., 2014). Such a B/A-overshoot is not apparent from the new records, even if taken into 

account that there is a certain response time of sedimentary 231Pa/230Th to AMOC changes as 

well as a potential smoothing of the signal by bioturbation. If such a B/A-overshoot was 

shorter than 200-500 years it may not have been fully recorded in its whole character in the 

sediment due to an interplay of sedimentation rate and processes like bioturbation smearing 
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sedimentary signals (Rempfer et al., 2017; Yu et al., 1996; Marchal et al., 2000). However, 

the high sedimentation rates at the BBOR (10-40 cm/ka) and in particular the duration of the 

B/A (~2ka) are expected to allow any 231Pa/230Th minima to be fully resolved. Thus, our new 

data from the BBOR (Fig. 2, 3) confirm the relatively abrupt onset of deep circulation but do 

not favor an extraordinarily strong long-lived AMOC strength overshoot during the B/A.  

For all cores, low 231Pa/230Th during the B/A are terminated by a sharp increase towards 

almost LGM-like values during the YD for the whole depth transect (Fig. 3). During this last 

cold spell preceding the Holocene, the water mass distribution and circulation regime in the 

northwestern Atlantic basin below 3000 m water depth was again similar to these during the 

LGM and HS1 (Pöppelmeier et al., 2019). During the YD 231Pa/230Th averages to around 

0.073 for all investigated water depths and thus indicates a weakened circulation but not as 

weak as the situation during HS1. After the YD all records evolved steadily towards low 

231Pa/230Th values reflecting a prolonged and continuous establishment of the deep Holocene 

AMOC.  
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4.5. Heinrich Stadial 2 

At the BBOR, the highest 231Pa/230Th values are observed during HS2 (Figs. 2, 3). In 

addition, this time period is characterized by a remarkably high variability in 231Pa/230Th. 

These features are less pronounced at the shallowest Site 1059 which records 231Pa/230Th 

values similar to the LGM. The deeper cores with characteristic peaks and relatively high 

inner-HS2 variability are reminiscent of the record from the Bermuda Rise (Site 1063; 

Lippold et al., 2009). At the Bermuda Rise, AMOC reductions along with high diatom counts 

have been made responsible for high HS2 231Pa/230Th (Lippold et al., 2009). However, even 

during peaks of high diatom abundances the absolute opal bulk concentrations of the 

sediments do not exceed 6 % (Böhm et al., 2015). Since Bermuda Rise and BBOR cores 

feature very high sedimentation rates a fairly good preservation of opal can be expected 

leading to the assumption that the buried opal is representative of the past opal flux. On a 

basin wide scale there is no significant correlation of opal concentration with 231Pa/230Th 

(Bradtmiller et al., 2014; Lippold et al., 2012a) for opal concentrations below 10 %. For all 

BBOR cores opal contents are very low (< 4 %; c.f. section 3.2.) and opal fluxes are thus 

unlikely to be a predominant factor controlling 231Pa/230Th for this region. Since the biogenic 

opal flux is an unlikely main factor controlling 231Pa/230Th during Heinrich Stadials the 

density distribution (Fig. 4b) from Sites 1060/1061 and the Bermuda Rise was on average not 

very different between HS2 and HS1 in terms of absolute 231Pa/230Th values. We suggest that 

both might have been similar in terms of circulation strength as well.  

4.6. Comparison to 231Pa/230Th records from the equatorial Atlantic 

For a more comprehensive investigation of glacial/interglacial changes of the West Atlantic 

DWBC we compare available 231Pa/230Th down-core profiles from the north and equatorial 

western Atlantic to our new dataset. This comprises four 231Pa/230Th records from the Ceara 

Rise (GeoB1515-1; GeoB1523-1; EW9209 1JPC; EW9209 3JPC; Lippold et al., 2016; Ng et 

al., 2018) and one from slightly north of the equator (RC 16-66; Bradtmiller et al., 2007) 

spanning water depths from 3100 to 4400 m (Fig. 1; Fig. S6; see section 2.4.). The 

231Pa/230Th records of GeoB1515-1 and GeoB1523-1 have been improved by additional 

231Pa/230Th data and age control points shifting the highest values of the records ~2 ka 

towards older ages (Lippold et al., 2016) in line with the timing of HS1 (Table S6). Most of 

these records exhibit clearly lower time resolution than the new BBOR records. For this 

reason, we only compare the time-slices of the Holocene, LGM and HS1 with our findings 
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(Fig. 5). The equatorial records show the common feature of low Holocene 231Pa/230Th and 

higher deglacial and glacial 231Pa/230Th levels and a more or less well resolved peak around 

HS1. These characteristics are in good agreement with the new higher resolution BBOR 

records calling for a large-scale oceanographic feature on this time-scale for this range of 

water depths. While the absolute 231Pa/230Th values of the shallower cores (GeoB1515-1; 

GeoB1523-1; EW9209 3JPC; 3100 to 3300 m) are in good agreement to the new BBOR 

records, 231Pa/230Th values from the deeper equatorial sites (EW9209 1JPC; RC 16-66; 4000 

to 4500 m) are considerably lower (Fig. 5). One would expect the 231Pa/230Th ratio to increase 

with a longer traveling time of NADW (greater distance to the deep water formation zone). 

While 230Th is quickly scavenged from the water column advected 231Pa can be supplied to 

sites further south from upstream (north) and the concentration is further increased by the 

continuous ingrowth from the decay of dissolved 235U. However, the relationship between 

water mass aging and increasing 231Pa/230Th is still unclear (Deng et al., 2018). Lower 

231Pa/230Th at greater depth further downstream of NADW (equatorial Atlantic) can rather be 

explained by the effect of building up a 231Pa deficit relative to 230Th within one individual 

overturning cell (Burckel et al., 2016; Luo et al., 2010). Alternatively, the lower equatorial 

231Pa/230Th values observed may also reflect the effect of bathymetry and the narrowing of 

the DWBC flow path in the region, leading to increased flow speeds at greater depths. Taken 

together, all sites from below ~3000 m water depth and within the area influenced by the 

DWBC, display very similar patterns in the 231Pa/230Th down-core profiles confirming the 

general notion of the relative AMOC strengths being most vigorous during the Holocene and 

clearly weaker during the LGM with the weakest overturning during HS1. 

5. Conclusions 

We present four new high-resolution 231Pa/230Th records from the deep northwestern Atlantic 

covering the time period from Heinrich Stadial 2 until today, and resolve AMOC variability 

during climatic key intervals like the HS2, LGM, HS1, B/A, YD, and the Holocene. These 

new time-series confirm the timing and magnitude of the millennial scale climate variability 

previously established by the Bermuda Rise 231Pa/230Th records (such as gradual AMOC 

increase from the YD into the Holocene, no B/A AMOC overshoot, similar levels of HS1 and 

HS2 values but with higher variability of the latter) but with one exception. Whereas a strong 

LGM circulation was suggested by the Bermuda Rise record, the depth transect presented 

here shows a more complex circulation pattern. The BBOR records from 3500 to 4700 m 

suggest significantly reduced circulation strength during most of the LGM. In the water depth 
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from 3500 to 4000 m LGM 231Pa/230Th values are nearly indistinguishable from Heinrich 

Stadial 1 when the AMOC was weakened across the entire Atlantic. The shallowest location 

of our depth transect, Site 1059 at 3000 m water depth, again features lower 231Pa/230Th 

values during the LGM on a level similar to the Bermuda Rise in accordance with a shallow 

GNAIW overturning cell above. Further, comparison to existing equatorial West Atlantic 

231Pa/230Th records yield a uniform basin-wide picture confirming a strong Holocene 

circulation regime, a weaker LGM overturning configuration and a mostly reduced 

circulation during Heinrich Stadial 1 and 2. 
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Figure 1: Overview map of the northwest Atlantic. Core locations presented/discussed in this 

study are indicated in red. The main study area is the northwestern Atlantic with the Blake-

Bahama-Outer-Ridge (BBOR) and the Bermuda Rise (BR). The blue arrow depicts the Deep 

Western Boundary Current (DWBC) path from the northern North Atlantic along the North 

American margin (Thornalley et al., 2013). The table gives core parameters and references. 
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Figure 2: 231Pa/230Th (diamonds) and biogenic opal (black dots) records from this study 

complemented by Nd isotope records (downward triangles) denoted as εNd (143Nd/144Nd 

normalized to the Chondritic Uniform Reservoir in parts per ten thousand) of the BBOR 

cores (Pöppelmeier et al., 2019). For all panels the gray background lines depict 231Pa/230Th 

and Nd isotope records from the Bermuda Rise for comparison (McManus et al., 2004; 

Lippold et al., 2009; Roberts et al., 2010; Gutjahr and Lippold, 2011). The blue vertical bars 

indicate the cold periods YD, HS1 and HS2, respectively. The yellow vertical bar marks the 

B/A warm period.   
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Figure 3: Hovmøller diagram of the BBOR and Bermuda Rise 231Pa/230Th reconstructions 

covering the last 30 ka (data from McManus et al., 2004, Lippold et al., 2009 and this study). 

White circles indicate data points. 
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Figure 4: Probability density distribution of 231Pa/230Th values measured at Bermuda Rise 

and Blake Ridge for different time slices. Data from Sites 1060 and 1061 and those from the 

Bermuda Rise (ODP 1063 and OCE326-GGC5; McManus et al., 2004; Lippold et al., 2009) 

were each merged to form two separate stacks. Density distributions were calculated 

assuming normal distributions of the uncertainties in the measured data and combining all 

available data inside the respective time intervals: Holocene (0 - 8 ka), LGM (19 - 23 ka), 

HS1 (15 - 18 ka), and HS2 (24 -27 ka). During the Holocene both sites displayed similar 
231Pa/230Th values (panel A), while the LGM was significantly different. Panel B indicates 

that values during HS1 and HS2 were analogue during both periods. 
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Figure 5: (A,B) Δ231Pa/230Th (differences of 231Pa/230Th between LGM and Holocene (blue) 

and between HS1 and LGM (brown)) from the northwestern Atlantic (A) and the equatorial 

Atlantic (B). Horizontal bars indicate errors. Please note, all data in panel A and B plot at 

positive Δ231Pa/230Th values indicative of AMOC strengths in the order: 

Holocene>LGM>HS1. Divergence of individual points of one core site (sites are indicated 

with the numbers in brackets) indicate the strength of AMOC during the LGM. (C) Depth 

transect for all sites presented in panel A and B from the equatorial Atlantic (solid line) and 

the northwestern Atlantic (dashed line; cf. Fig. 3). Depth transects are presented for time 

slices of the Holocene, LGM and HS1.   

 

 




