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EDSYS : Automatique 4200046
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Abstract

This thesis proposes the design of hybrid control laws for power electronics convert-

ers. These new type of control laws are based on some hybrid models which capture

the macroscopic dynamical behaviors of such electronic devices, essentially its hy-

brid nature. In the context of the regulation of DC-DC or AC-DC converters, applying

the hybrid dynamical theory, the proposed control laws are proved to ensure the sta-

bility of the closed loop as well as some LQ performances. For a half-bridge inverter

(DC-AC converter), a hybrid control law is proposed in order that the output voltage

tracks a desired sinusoidal reference. In the case of unknown load, an adaptive control

law is coupled to the hybrid control allowing the estimation of the load and therefore

leading to a more precise regulation or tracking. Notice that in order to achieve a per-

fect regulation or tracking, an in�nite frequency is often mandatory for the proposed

control laws, which is inappropriate in practice. To tackle this problem, a space- or

time-regularization are added to the hybrid closed-loop ensuring a dwell time be-

tween two consecutive jumps and reducing thus drastically the switching frequency.
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Résumé

Cette thèse propose la conception de lois de commandes hybrides pour les conver-

tisseurs électroniques de puissance. Ce nouveau type de lois de commande est basé

sur l’utilisation de modèles hybrides qui capturent les comportements dynamiques

macroscopiques de ces dispositifs électroniques, essentiellement leur nature hybride.

Dans le contexte de la régulation des convertisseurs DC-DC ou AC-DC, en appliquant

la théorie des systèmes hybrides, il est ainsi prouvé que les lois de commandes pro-

posées assurent la stabilité de la boucle fermée ainsi que certaines performances de

type LQ. Pour un onduleur en demi-pont (convertisseur DC-AC), une loi de com-

mande hybride est proposée a�n que la tension de sortie suive une référence sinu-

soïdale souhaitée. Dans le cas d’une charge inconnue, une loi de commande adapta-

tive est alors couplée à la commande hybride permettant l’estimation de la charge et

donc une régulation ou un suivi de trajectoire plus précis. Notons que pour obtenir

une régulation ou un suivi parfait, une fréquence in�nie est souvent obligatoire pour

les lois de contrôle proposées, ce qui est inappropriée en pratique. Pour résoudre ce

problème, une régularisation de l’espace d’état ou du temps est ajoutée à la boucle

fermée assurant un temps de maintien entre deux sauts consécutifs et réduisant ainsi

considérablement la fréquence de commutation.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

What does a mobile phone, an electrical household appliance or electric cars have in

common? Of course, you answer me, electricity! Yes, all these devices use electricity

as an energy source, an energy very useful but very dif�cult to store. Hence, it must

be properly used and transformed according to our needs. Indeed, an electric oven

or the display of our telephone does not require the same electrical power. Currently,

we estimate that 15% of the energy produced must be converted and this is the role of

electronic power converters. They allow to obtain from a DC or AC voltage source the

desired shapes for the targeted application. We are talking about AC-AC, AC-DC (rec-

ti�er), DC-DC, DC-AC (inverter) converters. For several decades and the development

of semiconductor technologies, designing such devices that are both accurate and ef-

�cient is a research challenge [1] [2] [3]. Roughly speaking, a power converter uses a

number of uncontrolled (diodes) or controlled (transistors, for example) switches to

manipulate signals issued (coming) from capacitors and inductors. The clever use of

the different switches and the choice of their switching frequency allow to manage the

energy transfer between the inductors and the capacitors in order to shape some out-

put signal to some prescribed references, this last performance is indeed associated

with this trajectory tracking, is the search for high energy ef�ciency (often over 90%),

that effectively requires semiconductor-type components for switching devices. In-

deed, these components are known to be lossless even if this last property related to

the switching frequency and should be then chosen ingeniously. In general, an higher

frequency increases the energy losses. However, reducing the switching frequencies

leads to other problems such as the introduction of high frequency components on

the output signal, limiting the accuracy of the devices [4][5][6].

A typical power converter is thus composed of switching devices, resistors, ca-

pacitors, inductors and transformers. Using classical assumptions (neglecting some

1



CHAPTER 1. INTRODUCTION

high frequency dynamics for instance) and circuit analysis , a non linear time vary-

ing dynamical model can be achieved, where the states are often the current �owing

through the inductors and the voltages applied to the capacitors. The controlled input

signals are booleans, representing if a switch is open and closed. From a theoretical

point of view, this kind of system belongs to the broad class of hybrid systems and are

known to be dif�cult to handle.

This is why many engineers and researchers have turned to models that are eas-

ier to handle. The �rst developed ideas are thus based on the development of an

averaged model capturing only the macroscopic behaviors of the power electronic

devices [1][6][7][8]. It calculates the evolution of average state space variables over a

switching period neglecting the higher harmonics. This usually involves to set the

switching frequency. For the point of view of the system, the control signal is thus av-

eraged and considered to be a continuous time variable. One obtain therefore some

time invariant non linear models for which classical control may be designed. This is

how we will �nd the classical tools of linear and nonlinear systems (robust and adap-

tive control [9], feedback linearization [10], backstepping method [11] to cite a few).

The problem of such a model is the dif�culty to control the quality of the approx-

imation made. Thus, this model cannot explain a certain number of phenomena that

may appear like ripples [12] or high frequency undesirable oscillations. Another prob-

lem is that it is often mandatory to �x the switching frequencies which may be a draw-

back for high quality power converters [3]. Then, in recent years, several studies have

been carried out to take into account the original hybrid model. Indeed, the develop-

ment of an increasingly comprehensive theory on the analysis and control of hybrid

systems has removed a number of mathematical deadlocks. This approach has thus

been at the heart of a number of studies that have allowed a more complex model to

be taken into account.

This thesis explores this same vein and proposes a number of contributions listed

below. In this thesis, we propose a control law based on the same idea then the ones

presented previously. Hence, this controls are based on Hybrid Dynamical System

(HDS) theory. As previously noted, in these strategies the real nature of the signals are

considered, providing stability properties and LQ performances of the hybrid system.

Contribution

The contribution we offer in this thesis aims to design hybrid control laws for several

converters. Indeed based on the Hybrid Dynamical System (HDS), �rstly, we propose

a hybrid control law for the boost converter, whose system can be modeled by a non-

linear system and then a hybrid adaptive control is developed for this system to deal

2



1.1. INTRODUCTION

with the unknown parameter. Secondly,a control law is proposed for the NPC recti�er

which is modeled by a nonlinear time-varying model, in the aim to regulate the out-

put voltage to the desired reference. The last proposed hybrid control is devoted to

the half-bridge converter, where the objective is track the desired sinusoidal signals.

Organization of this thesis

This thesis is organized as follows.

· Chapter 2 gives the background needed to understand the roles of the chosen

converters. In this part, a model of each converter is given in form of state-space

and some properties of system are considered.

· The background about the Hybrid Dynamical System (HDS) is resumed in Chap-

ter 3. The important de�nitions and theorems are recalled and the singular per-

turbed approach are described in the end of this chapter.

· In Chapter 4, hybrid control laws are proposed in order to regulate the output

voltage of the converter to the desired constant reference. Stability and opti-

mality properties are discussed and some simulations show the effectiveness of

the proposed methodologies. As these converters are submitted to the parame-

ters variations, a hybrid adaptive control is proposed to deals with the unknown

parameters.

· Chapter 5 deals with the tracking problem. In this chapter a hybrid control law

is proposed in order to make the states follow a desired sinusoidal signals. As in

Chapter 4, the stability properties are checked and simulations are provided to

illustrate the effectiveness of the proposed control.

· In Chapter 6, space- and time-regularization schemes are proposed to deal with

the practical implementation problem, meaning to reduce the switching fre-

quency. Using a hybrid systems approach, we have addressed the practical sta-

bilization of operating points for switched af�ne systems, ensuring a minimum

dwell time and an admissible chattering around the operating point. To this pur-

pose, the proposed solutions induce uniform dwell time and provide useful tun-

ing knobs to separately adjust the switching frequency during transients and at

the steady state. The potentials of the method are illustrated by simulating a

boost converter.

· Chapter 7 summarizes, discusses and puts into perspective the main results ob-

tained during my thesis work.
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2.1. Introduction

One of the main objective of power electronics is to achieve a conversion of electric

energy from its available form, to a required one by using electronic devices as power

converters. In order to get a high ef�ciency and reliability of this conversion, it is

necessary to design advanced control laws that govern the switches of the converters.

The common classi�cation of these converters are [13]:

· DC-DC converter, where ’DC’ (Direct Current) refers to constant voltage wave-

forms. It relates to a regulation problem in control purposes.

· AC-DC converter (called also recti�er), where ’AC’ (Alternating Current) refers to

a sinusoidal voltage waveforms. It relates to a regulation problem also.

· DC-AC converter (called also inverter). It is a matter of a tracking problem in

control purposes.

· AC-AC converter is as the DC-AC converter, relates to a tracking problem.
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CHAPTER 2. MODELING OF POWER CONVERTERS

Control circuits are key elements in the conversion operation and performance of

power converters. Through the design of advanced controls, we can get a high ef�-

ciency level. For example, DC-DC converters are used in many devices such as cell

phones, where the circuits require higher voltage than the one generated by a bat-

tery. Then DC-DC converters can be used to boost the voltage and yield the required

voltage [13].

In order to analyze and control the power converters, the �rst step is to get a math-

ematical model. To this purpose, we will start by describing these electronic convert-

ers, understanding how they work in order to design a mathematical model.

2.2. Modeling some power converters

In order to control power electronic converters, it is necessary to get a mathematical

model. To this end, the next section describes brie�y the structure and the principal

functionality of some basic power electronic converters. Furthermore, some models

in the form of state-space representation are proposed.

2.2.1. DC-DC Converters: Boost converter

DC-DC converters are power electronic circuits that are able to convert a DC voltage

input level to a different DC voltage output level, often providing a regulated output,

which is a regulation problem. As fundamental DC-DC converters, we can cite, buck

converter, boost converter and buck-boost converter. In this section, we focus only

on the boost converter.

Boost converters are largely used in many kind of applications such as uninter-

ruptible power supply (UPS) systems [14] [15], power factor correctors [16], photo-

voltaic arrays, fuel cells, battery energy storage systems [17] and thermoelectric energy

harvesting systems [18] to cite few of them. A boost converter generates a DC output

voltage, vC , larger than its DC input, Vin, by manipulating the state of the switch, de-

noted by u (see Figure 2.1). As depicted in Figure 2.2, the boost converter is fed by a

constant voltage source, denoted Vin, and composed by a load �lter,L,C0, a purely and

resistive load, R0, and a parasite resistance, RLS , that encompasses switching energy

dissipation and the power loss in the inductance.
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ConverterVin vC

t t
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t

u

u

1

0

Figure 2.1: Illustration of the boost converter objective.

RLS L

iL
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Diode

CapacitorTransistor

Voltage source

Figure 2.2: Boost converter circuit.

The system states are given by iL ∈ R, which is the inductor current and vC ∈ R,

which is the capacitor voltage. Likewise, the control input manages the functioning

mode of the switch u = {0, 1}, that corresponds to the case when the switch is ON

(u = 1) and when it is OFF (u = 0).

- NOTE:

Boost converter system exhibits two kind of dynamics, the continuous-time dynamic,

which is presented by the inductor current iL and the capacitor voltage vC and the

discrete-time dynamic, which presents the dynamic of the state of the switch u.

Depending on the functioning modes of the switch, the boost converter operates

on two distinct phases, as follows:

Switch ON (u = 1): When the transistor is turned ON (u = 1) (See Figure 2.3), the boost

converter circuit can be modeled by:
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RLS L

iL

C0
R0vc

+ +

- -

Vin

u

Figure 2.3: Boost converter circuit (ON).

In this con�guration, the inductor L charges up, the inductor current iL in-

creases and the inductance stores a quantity of energy as magnetic energy. At

the same time, the diode is reverse-biased and the capacitor discharges on the

load R0.

Applying the Kirchhoff’s law, the system can be modeled by the following state-

space model:

d

dt

 iL(t)

vC(t)

 =

A1︷ ︸︸ ︷−RLS
L

0

0 − 1
R0C0


 iL(t)

vC(t)

+

B1︷︸︸︷ 1
L

0

Vin. (2.1)

Switch OFF (u = 0): When the transistor is turned OFF (u = 0) (See Figure 2.4), the

energy stored in the inductance L adds up with the given input energy feed the

capacitor and the load. The diode becomes forward-biased to provide a path for

the inductor current. Thus, the inductor current iL ramps downward and this

current �ows through the diode to the capacitor, the capacitor voltage increases

and capacitor stores energy as electrical energy.

RLS L

iL

C0
R0

vc

+ +

- -

Vin

u

Figure 2.4: Boost converter circuit (OFF).

Applying the Kirchhoff’s law, the state-space model of system described by Fig-
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2.2. MODELING SOME POWER CONVERTERS

ure 2.4 is given by:

d

dt

 iL(t)

vC(t)

 =

A0︷ ︸︸ ︷−RLS
L

− 1
L

1
CO

− 1
R0C0


 iL(t)

vC(t)

+

B0︷︸︸︷ 1
L

0

Vin. (2.2)

Note that, the model (2.1) and (2.2) can be rewritten in the compact form (Σ) given

as:

(Σ) :



ẋ(t) =

Au︷ ︸︸ ︷−RLS
L

−1−u
L

1−u
C0

− 1
R0C0

x(t) +

Bu︷ ︸︸ ︷VinL
0

,

y(t) =

Cu︷ ︸︸ ︷[
0 1

]
x(t),

(2.3)

with x(t) = [iL(t) vC(t)]T is the state vector, y(t) is the controlled output and u = {0, 1}
is the control input.

To conclude, the boost converter can be modeled by a nonlinear time-invariant

model given in equation (2.3). Furthermore, the obtained model contains a continuous-

time dynamics, i,e; the dynamic of inductor current, iL(t), and the dynamic of capaci-

tor voltage, vC(t). The control input of this model is the switching state u, which means

that the dynamic of the control input are a discrete-time dynamics.

2.2.2. AC-DC Converters: Three-phase three-level NPC Converter

AC-DC converters are power electronic circuits that are able to generate a DC out-

put from an AC input, which means it is a tracking problem. This converter is also

considered as a multilevel power converter since they can generate different levels of

the output voltage, The interest of the multilevel converters relies on the fact that by

increasing the number of levels, the voltages generated by the converters have more

possible steps to produce staircase waveforms. The sinusoidal waveforms can thus

be approached and the total harmonic distortions can be reduced. In this work, we

are interested specially in the three-phase three-level Neutral Point Clamped (NPC)

converter.

The three-phase three-level NPC Converters have the advantage to improve the

waveform quality and reduce voltage stress on the power devices. These converters

are widely used in the �eld of high power industrial application such as photovoltaic

(PV) system [19], fans, pumps and in the ones of wind energy conversion system [20].
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CHAPTER 2. MODELING OF POWER CONVERTERS

The considered converter works as a recti�er [21], whose structure is depicted in Fig-

ure 2.5. This converter is connected to the grid through inductors of the same values,

L, and parasitic resistances, RLS . These parasitic resistances model not only the re-

sistive components of the inductance, but also the dissipated switching energy. The

phase voltages and the phase currents are denoted by vsa, vsb, vsc and ia, ib, ic, respec-

tively. The dc link contains two capacitors C1 and C2, which respective voltages are

denoted by vc1 and vc2 , and their two parasitic resistances Rp1 and Rp2 , which model

the parasitic imperfections of the capacitors C1 and C2. This dc link is also connected

to a pure resistive load R, and the voltage across this load is denoted by vdc. This volt-

age is the sum of the capacitor voltages (vdc = vc1 + vc2 ).

Sa
2

Sa
1

Sa
1

Sa
2

Sb
2

Sb
1

Sb
1

Sb
2

Sc
2

Sc
1

Sc
1

Sc
2

Rp1

o

C1

+

−
vc1

C2

+

−
vc2 Rp2

p

n

R

+

−

vdc

vsa
RLS L

ia
a

vsb
RLS L

ib
b

vsc
RLS L

ic
c

Figure 2.5: Three-phase three-level neutral point clamped (NPC) recti�er.

The circuit contains 6 complementary switches (Sil , S
i
l ), with i = {a, b, c} and l =

{1, 2}. The control inputs dij ∈ {0, 1}, with i = {a, b, c} and j = {p, o, n}, control the

switches and they are assumed to be discrete variables:

dij =


1, if phase i is connected to level j

0, else.

(2.4)

The phase i is connected to level j means that the switches between these two

points are turned ON. The table 2.1 depicts when the control inputs are equal to 1.
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Furthermore, they are equal to zero in other cases. X means ON or OFF, i,e; the posi-

tion of the switch does not affect the value of the corresponding control input.

States =1 Sa1 Sb1 Sc1 Sa2 Sb2 Sc2 Sa1 Sb1 Sc1 Sa2 Sb2 Sc2

dap ON X X ON X X OFF X X OFF X X

dao OFF X X ON X X ON X X OFF X X

dan OFF X X OFF X X ON X X ON X X

dbp X ON X X ON X X OFF X X OFF X

dbo X OFF X X ON X X ON X X OFF X

dbn X OFF X X OFF X X ON X X ON X

dcp X X ON X X ON X X OFF X X OFF

dco X X OFF X X ON X X ON X X OFF

dcn X X OFF X X OFF X X ON X X ON

Table 2.1: Relation between the control input and switches

At this stage, in order to control the whole system, we need 6 control inputs (dij ∈
{0, 1}) presented in table 2.1. Moreover, according to the circuit presented in Figure

2.5 and since the switches are complementary, these control variables present the

following constraint [22]:

dip + dio + din = 1, for i = {a, b, c}.

C ASSUMPTION 1:

Consider the following approximation of system depicted in Figure 2.5

· C1 = C2 = C ;

· Rp1 = Rp2 = Rp

C ASSUMPTION 2:

The phase voltages and currents are balanced, that is:

vsa(t) + vsb(t) + vsc(t) = 0,

ia(t) + ib(t) + ic(t) = 0.
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CHAPTER 2. MODELING OF POWER CONVERTERS

If Assumption 2 is veri�ed, then, the model of the NPC recti�er (Figure 2.5) in abc

coordinates can be expressed as:

L
dia(t)

dt
= vsa(t)−RLSia(t)+

2dan− 2dap− dbn+ dbp− dcn+ dcp
6

vdc(t) (2.5)

+
−2dan− 2dap+ dbn+ dbp+ dcn+ dcp

6
vd(t)

L
dib(t)

dt
= vsb(t)−RLSib(t)−

dan− dap− 2dbn+ 2dbp+ dcn− dcp
6

vdc(t) (2.6)

+
dan+ dap− 2dbn− 2dbp+ dcn+ dcp

6
vd(t)

L
dic(t)

dt
= vsc(t)−RLSic(t)−

dan− dap+ dbn− dbp− 2dcn+ 2dcp
6

vdc(t) (2.7)

+
dan+ dap+ dbn+ dbp− 2dcn− 2dcp

6
vdc(t)

C
dvdc(t)

dt
= (dap− dan)ia(t)+ (dbp− dbn)ib(t)+ (dcp− dcn)ic(t) (2.8)

−
(

2

R
+

1

Rp

)
vdc(t)

C
dvd(t)

dt
= (dap+ dan)ia(t)+ (dbp+ dbn)ib(t)+ (dcp+ dcn)ic(t)−

1

Rp

vd(t), (2.9)

where vd represents the dc-link capacitor voltage difference (vd(t) = vc1(t) − vc2(t)).

Notice that, vsa(t), vsb(t), vsc(t) are the grid voltage in the so-called abc coordinates. In

order to take into account the balanced phase voltages and currents, we propose this

change of variables [23]:


iα(t)

iβ(t)

iγ(t)

 = Tabc→αβγ


ia(t)

ib(t)

ic(t)

 . (2.10)


vsα(t)

vsβ(t)

vsγ(t)

 = Tabc→αβγ


vsa(t)

vsb(t)

vsc(t)

 . (2.11)


dlp

dlo

dln

 = Tabc→αβγ


dip

dio

din

 , (2.12)
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2.2. MODELING SOME POWER CONVERTERS

with l = {α, β, γ}, i = {a, b, c} and Tabc→αβγ is given as:

Tabc→αβγ =

√
2

3


1 −1

2
−1

2

0
√

3
2
−
√

3
2

1√
2

1√
2

1√
2

 . (2.13)

This transformation is named the Clarke Transformation [23]. Considering the

variables change given in equations (2.10)–(2.12) , then the model of the recti�er in

αβγ coordinates can be written as:

Ldiα(t)
dt

= vsα(t)−RLSiα(t)− (dαp− dαn)vdc(t)
2
− (dαp+ dαn)vd(t)

2

L
diβ(t)

dt
= vsβ(t)−RLSiβ(t)− (dβp− dβn)vdc(t)

2
− (dβp+ dβn)vd(t)

2

C dvdc(t)
dt

= (dαp− dαn)iα(t)+ (dβp− dβn)iβ(t)− ( 2
R

+ 1
Rp

)vdc(t)

C dvd(t)
dt

= (dαp+ dαn)iα(t)+ (dβp+ dβn)iβ(t)− 1
Rp
vd(t),

(2.14)

where the control inputs dαp, dαn, dβp and dβn are the transformed of the control inputs

dij ∈ {0, 1}, with i = {a, b, c} and j = {p, o, n}, given in (2.4). Notice that the control

inputs dγj and dio do not appear in this model.

The voltage variables, vsα(t) and vsβ(t), and the current variables, iα(t) and iβ(t),

are the transformations in αβγ of the phase voltages and phase currents, respectively.

Notice that, according to Assumption 2, as the phase voltages and phase currents are

assumed to be balanced, then the last transformation leads to:

vsγ(t) = 0

iγ(t) = 0.

A. Modeling of the voltage input vsα and vsβ

The grid voltages in αβγ coordinates are expressed as follows:
vsα(t) = Vsα sin(wt)

vsβ(t) = Vsβ cos(wt),

(2.15)

where Vsα, Vsβ and w are, respectively, the amplitude and the frequency of the grid

voltage. We assume in the following that Vsα = Vsβ = Vs.

- REMARK 1. Note that from (2.15), it is simple to deduce that

v2
sα(t) + v2

sβ(t) = V 2
s .
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CHAPTER 2. MODELING OF POWER CONVERTERS

We can therefore de�ne the following set

Φ = {(vsα(t), vsβ(t)) ∈ R2, v2
sα(t) + v2

sβ(t) = V 2
s }. (2.16)

As depicted in Fig. 2.6, the set (2.16) can be embedded into a polytope described

as:

Ω :=
4∑
j=1

νjΩj for 0 ≤ νj ≤ 1 and
4∑
j=1

νj(t) = 1,

where Ωj (j = 1, 2, 3, 4) represents the vertices of the polytope in the (vsα, vsβ)-plane:

Ω1 =

Vsα
Vsβ

 , Ω2 =

−Vsα
Vsβ

 , Ω3 =

 Vsα

−Vsβ

 , Ω4 =

−Vsα
−Vsβ

 .
The evolution of system (2.15) is depicted by a green circle in Figure 2.6, and it

evolution dynamical can be included into a polytope, surrounded by a red square,

de�ned by four vertices (1, 2, 3, 4).

Vsα

Vsβ

−Vsα

−Vsβ
vsβ

vsα

1

2

3

4

Φ
Ω

Figure 2.6: Representation of a set (2.16) and the proposed polytope.

B. The NPC dynamical model based on instantaneous powers

The control algorithm is easier to express using instantaneous powers instead of cur-

rent variables [24]. Furthermore, phase currents iα and iβ can be also expressed in

terms of instantaneous active and reactive powers [25]:

iα(t) =
1

V 2
s

(vsα(t)p(t)− vsβ(t)q(t)) (2.17)

iβ(t) =
1

V 2
s

(vsβ(t)p(t) + vsα(t)q(t)) (2.18)

where p and q represent the instantaneous active and reactive powers of the system,

respectively.
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Then, model (2.14) can be rewritten according to the new state variable x =

[p(t) q(t) vdc(t) vd(t)]
T :

(Σ) :



ẋ(t) =

Au(t)︷ ︸︸ ︷

−RLS
L

2πf − ξ1(t)
2L

− ξ3(t)
2L

−2πf −RLS
L

ξ2(t)
2L

ξ4(t)
2L

ξ1(t)
CV 2

s
− ξ2(t)
CV 2

s
−( 2

RC
+ 1

RpC
) 0

ξ3(t)
CV 2

s
− ξ4(t)
CV 2

s
0 − 1

RpC


x(t) +

Bu︷ ︸︸ ︷

V 2
s

L

0

0

0


,

y(t) =

Cu︷ ︸︸ ︷[
0 0 0 1

]
x(t),

(2.19)

where, f is the frequency of the phase voltages, and

ξ1(t) = u1vsα(t) + u2vsβ(t), ξ2(t) = u1vsβ(t)− u2vsα(t),

ξ3(t) = u3vsα(t) + u4vsβ(t), ξ4(t) = u3vsβ(t)− u4vsα(t).

These equations can be rewritten as follows:

ξ(t) =

Γ 0

0 Γ

u. (2.20)

with ξ(t) = [ξ1(t) ξ2(t) ξ3(t) ξ4(t)]T and Γ(t) =

vsα(t) vsβ(t)

vsβ(t) −vsα(t)

.

u = [u1 u2 u3 u4]T is a vector containing the control variables

u1 = dαp − dαn u2 = dβp − dβn
u3 = dαp + dαn u4 = dβp + dβn.

At this stage, let consider vector u = [u1 u2 u3 u4]T with u ∈ U , where U is a set of all

possible combinations for the control inputs. For the considered synchronous rec-

ti�er, there are 27 possible combinations of the switches [23], but as there are three

redundant zero switching states, it suf�ces to consider 25 combinations, meaning that

u ∈ {u(1), ..., u(25)} with u ∈ R4. Note that, the model (2.19) is a nonlinear time-variant

system.

To ease the stability analysis, a new formulation of this nonlinear time-varying sys-

tem is proposed, based on a polytopic presentation. First of all, notice that the matrix
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Γ de�ned in (2.20) can be written as a polytope:

Γ =
4∑
j=1

µj(t)Γj,

where µj(t) ∈ [0, 1] is a function satisfying
∑4

j=1 µj(t) = 1 and Γj are de�ned as

Γ1 =

Vsα Vsβ

Vsβ −Vsα

 , Γ2 =

−Vsα Vsβ

Vsβ Vsα



Γ3 =

 Vsα −Vsβ

−Vsβ −Vsα

 , Γ4 =

−Vsα −Vsβ
−Vsβ Vsα

 .
Then, equation (2.20) can be written as:

ξ =
4∑
j=1

µj(t)

Γj 0

0 Γj

u.
Matrix Au(t) de�ned in system (2.19), can also be written as follows:

Au(t) =
4∑
j=1

µj(t)Ãu(j), (2.21)

where

Ãu(j) =

[
M1 M2 M3 M4

]
Γj 0

0 Γj

u
⊗ 14 +M0 (2.22)

and

M0 =



−RLS
L

2πf 0 0

−2πf −RLS
L

0 0

0 0 −( 2
RC

+ 1
RpC

) 0

0 0 0 − 1
RpC



M1 =



0 0 − 1
2L

0

0 0 0 0

1
CV 2

s
0 0 0

0 0 0 0


, M2 =



0 0 0 0

0 0 1
2L

0

0 − 1
CV 2

s
0 0

0 0 0 0


,

16



2.2. MODELING SOME POWER CONVERTERS

M3 =



0 0 0 − 1
2L

0 0 0 0

0 0 0 0

1
CV 2

s
0 0 0


, M4 =



0 0 0 0

0 0 0 1
2L

0 0 0 0

0 − 1
CV 2

s
0 0


.

Consequently, the original nonlinear model (2.19) can be rewritten as a polytopic

system as follows:

ẋ(t) =
4∑
j=1

µj(t)Ãu(j)x(t) +B, (2.23)

with x = [p(t) q(t) vdc(t) vd(t)]
T is the state vector and u = [u1 u2 u3 u4]T is a vector

containing the control variables.

The three-phase three-level NPC recti�er can be modeled by a nonlinear time-

varying model given in (2.19). The model contains a continuous-time dynamics, i,e;

the dynamic of inductor currents and the dynamic of capacitor voltages. The control

input of this model is the switching state u, taking its value in the discrete set U , which

means that the dynamic of the control input are a discrete-time dynamics.

2.2.3. DC-AC Converters

This section deals with inverters that produce an AC output from a DC input. Inverters

are used in applications such as adjustable-speed AC motor drives, Uninterruptible

Power Supplies (UPS), and running AC appliances from an automobile battery. In this

work, we are interested specially in the half-bridge inverter and the boost inverter.

A. Half-bridge inverter

We consider a half-bridge inverter depicted in Figure 2.7. This inverter is fed by a dc

input, 2Vin, and generates an ac output. This inverter is composed by a load �lter,L,C0,

a purely resistive load, R0. The parasite resistance RLS models not only the switching

energy dissipated, but also the resistive component of the inductance.
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RLS L

iL

C0 R0vc

+

-

2Vin

U1

U2

C1

C2

Vin

Vin

+

+

-

+

-

Figure 2.7: Half-bridge inverter.

the variable iL(t) is the inductance current, vC(t) is the capacitor voltage and these

two states are considered as the continuous-time state variables. u := U1 − U2 is the

control input and it is assumed to be a discrete variable:
u = −1, if U1 = OFF and U2 = ON.

u = 1, if U1 = ON and U2 = OFF.

In this circuit, the number of the switches is reduced to 2 by dividing the dc source

voltage into two parts with the capacitors. Each capacitor will be the same and will

have voltage Vin across it. When U1 is ON, the output voltage is vC = −Vin, when U2 is

ON, the output voltage is vC = +Vin

The dynamic behavior of this system can then be described by the following model:

(Σ) :



ẋ(t) =

Au︷ ︸︸ ︷−RLS
L

− 1
L

1
C0

− 1
R0C0

x(t) +

Bu︷ ︸︸ ︷VinL
0

u,

y(t) =

Cu︷ ︸︸ ︷[
0 1

]
x(t),

(2.24)

with x(t) = [iL(t) vC(t)]T is the state vector, y(t) is the controlled output and u =

{−1, 1} is the control input.

The particularity of this model compared to the model of the Boost converter

(Equation .(2.3)) and the model of the recti�er (Equation .(2.19)), is that, the control

input takes place in the command matrix B and acts as a perturbation.
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2.3. Switched Af�ne System (SAS)

All these systems can be modeled by a switched af�ne system with parameters that

can change or vary periodically and can be rewritten under this formulation:

ẋ = Aux+Bu, x(0) = x0

y = Cux,

(2.25)

where the control input u : R≥0 → N := {1, 2, ..., N} is the switching signal, assigning

a speci�c desired mode among N possible ones at each time. Moreover, in dynamics

(2.25), x ∈ Rn is the state, y ∈ Rp is a performance output, and Ai, Bi and Ci have

suitable dimensions for all i ∈ N .

We aim to provide feedback strategies determining u such that practical stabil-

isation of an operating point xe ∈ Rn for switched af�ne systems is achieved, with

guaranteeing some LQ performances.

2.4. Conclusions

This chapter has described and modeled some converters for which we will design

some control laws in the next chapters. The obtained models are either a nonlinear

time-invariant systems or a nonlinear time-varying systems. A particularity of this

kind of system is that, the control input can take values in a discrete set. Further, as

the dynamics of the states are a continuous-time dynamics then, a natural way to

model these systems is to use the hybrid dynamical systems presented in the next

chapters.
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3.1. Introduction

Dynamical systems that are described by an interaction between continuous-time

and discrete-time dynamics are usually called hybrid systems.

Some notions about hybrid dynamical systems [26], are presented in this section,

in particular, the notion of hybrid time domain and the notion of solutions which are

essential in this framework. Furthermore, the stability properties need to be charac-

terized.

The aim of this chapter is to provide only the basic concepts of this framework and

the de�nitions needed in the rest of this dissertation.
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3.2. Hybrid systems: modeling framework and basic no-
tions

According to the formalism developed in [26], any hybrid system can be represented

by a quadruple H = (C, F,D, G). In particular, we consider hybrid system in the fol-

lowing form: 
ẋ ∈ F (x), x ∈ C

x+ ∈ G(x), x ∈ D
(3.1)

where x is the state of the hybrid system, ẋ represent the derivative and x+ indi-

cates te value of the state after an instantaneous change.

Equation (3.1) shows the combination of continuous and discrete behaviors of the

hybrid system. These evolutions are represented by four data and are detailed in the

sequel:

· C is the �ow set, otherwise, it indicates the set where the system evolves accord-

ing to a continuous evolution (�ow), meaning that, the continuous evolutions are

allowed. Such an evolution is speci�ed by the differential inclusion ẋ ∈ F (x);

· The set-valued mapping F is the �ow map;

· D is the jump set. In other words, it indicates the set where the system evolves

according to a discrete evolution, meaning that, the discrete evolutions are al-

lowed. Such an evolution is determined by te difference inclusion x+ ∈ G(x);

· The set-valued mapping G is the jump map.

In particular, a hybrid system with the data as above will be represented by the nota-

tionH = (C, F,D, G), or brie�y byH.

In the next, we present some de�nitions, which are important for the rest of this chap-

ter.

2 DEFINITION 3.2.1: (Domain of a set-valued mapping). For the set-valued map-

ping F : Rn ⇒ Rn (respectively domain ofG : Rn ⇒ Rn), the domain of F (respectively

G) is the set

dom F = {x ∈ Rn : F (x) 6= ∅} (respect, dom G = {x ∈ Rn : G(x) 6= ∅})

2 DEFINITION 3.2.2: (Compact set). A set A is a compact set if and only if A is

closed and bounded.
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In the following, we are focused on hybrid systems with state in Rn. In that case,

the data of the hybrid systemH can be de�ned as below.

2 DEFINITION 3.2.3: The data of the hybrid system H = (C, F,D, G) are de�ned

as follows:

· C ⊂ Rn

· F : Rn ⇒ Rn, with C ⊂ dom F

· D ⊂ Rn

· G : Rn ⇒ Rn, with D ⊂ dom G .

3.2.1. Hybrid time domains

The solutions are parametrized by different ways depending in the nature of the sys-

tem, meaning continuous-time or/and discrete-time systems. Thus,

· The continuous dynamics, the solutions are parametrized by a real scalar vari-

able t ∈ R≥0, that is, by the ordinary time.

· The discrete dynamics, the solutions are parametrized by an integer scalar vari-

able j ∈ N, that de�nes the number of jumps or of the elapsed discrete steps.

Only some certain subsets of R≥0×N can parametrize the solutions of hybrid sys-

tems. Such sets are called hybrid time domains, whose the de�nition is given:

2 DEFINITION 3.2.4: (Hybrid time domain). A subsets E ⊂ R≥0 × N is a compact

hybrid time domain if

E =
J−1⋃
j=0

{[tj, tj+1], j}

for some �nite sequences of time 0 = t0 ≤ t1 ≤ t2 ≤ ··· ≤ tJ . It is a hybrid time domain

if for all (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, 2, ..., J}) is a compact hybrid time domain.

For a given (t, j), (t′, j′) ∈ E, we have (t, j) ≤ (t′, j′) if t + j ≤ t′ + j′. Furthermore,

for a given hybrid time domain E, then the supremum of the t and j coordinates are

given, respectively, as:

suptE = sup{t ∈ R≥0 : ∃ j ∈ N such that (t, j) ∈ E},

supjE = sup{j ∈ N : ∃ t ∈ R≥0 such that (t, j) ∈ E}.

2 DEFINITION 3.2.5: (Hybrid arc). A function φ : E ⇒ Rn is a hybrid arc if:
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1. E is a hybrid time domain;

2. for each j ∈ N, the function t 7→ φ(t, j) is locally absolutely continuous on the

interval Ij = {t : (t, j) ∈ E}.

Figure 3.1 shows an example of a graph of a hybrid arc φwith the associated hybrid

time domain dom φ.

0

1

2

3

j

t1 t2 t3 t4

φ(0, 0)

φ(t, j)

dom φ

t

Figure 3.1: Hybrid arc φ.

2 DEFINITION 3.2.6: (Types of hybrid arc). A hybrid arc φ is called:

· Nontrivial, if dom φ has at least two points.

· Complete, if dom φ is unbounded.

· Zeno, if it is complete and suptdom φ <∞ .

Here, we have only mentioned those that are relevant within this thesis. For more

speci�cations, the reader is refereed to [26].

Now that we have de�ned and established the principals de�nitions, we are able

to de�ne the notion of solution to hybrid systems used throughout this work.

3.3. Solutions to a hybrid system

2 DEFINITION 3.3.1: (Solutions to a hybrid system). A hybrid arc φ is a solution to

hybrid systemH if:

24



3.4. BASIC ASSUMPTIONS ON THE HYBRID DATA

1. the initial condition φ(0, 0) ∈ C ∪ D, where C denotes the closure of C;

2. (S1) for all j ∈ N such that Ij = {t : (t, j) ∈ dom φ} as nonempty interior:

φ(t, j) ∈ C for all t ∈ int(Ij),

φ̇(t, j) ∈ F (φ(t, j)) for almost all t ∈ Ij,

3. (S2) for all (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ,

φ(t, j) ∈ D,

φ(t, j + 1) ∈ G(φ(t, j)),

2 DEFINITION 3.3.2: (Maximal solutions). The solution φ is maximal if there does

not exist another solution ψ toH such that:

· dom φ is strict subset of dom ψ

· φ(t, j) = ψ(t, j), ∀ (t, j) ∈ dom φ.

- REMARK 2. The complete solutions are maximal, but the converse statement is not

true.

3.4. Basic assumptions on the hybrid data

Before to give the required assumptions to ensure that a given hybrid system is well-

posed in the sense speci�ed in [26, Theorem 6.5]. Let start by given some basics de�-

nitions.

2 DEFINITION 3.4.1: (Outer semicontinuous [26, De�nition 5.9]) A set-valued map-

pingM : Rm ⇒ Rn is outer semicontinuous at x ∈ Rm if for every sequence of points xi
convergent to x and any convergent sequence of points yi ∈M(xi), one has y ∈M(x),

where lim
i→∞

yi = y. The mappingM is outer semicontinuous if it is outer semicontinu-

ous at each x ∈ Rm.

2 DEFINITION 3.4.2: (Local boundedness [26, De�nition 5.14]) A set-valued map-

pingM : Rm ⇒ Rn is locally bounded at x ∈ Rm if there exists a neighborhood Ux of x

such that M(Ux) ⊂ Rn is bounded. The mapping M os locally bounded if it is locally

bounded at each x ∈ Rm.
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C ASSUMPTION 3:

(Hybrid basic conditions).

· C and D are closed subsets of Rn;

· F : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to C, C ⊂
dom F , and F (x) is convex for every x ∈ C;

· G : Rn ⇒ Rn, is outer semicontinuous and locally bounded relative to D, and

D ⊂ dom G.

b THEOREM 1. (Basic conditions and well-posedness) [26, Theorem 6.30]. If a hybrid

systemH = (C, F,D, G) satis�es Assumption 3 then it is well-posed.

Well-posedness is an important notion that is required for the applicability of a

large number of results presented in [26]. We invite the reader to see the proof of

well-posedness in [26].

3.5. Hybrid system stability

In this section, we are interested to characterize the stability of a certain compact set

A. To this end, let start by providing some de�nitions concerning stability of hybrid

systems [26].

Firstly, some de�nitions used throughout this chapter are given.

2 DEFINITION 3.5.1: (Distance to a closed set). For a given vector x ∈ Rn and a

closed setA ⊂ Rn, the distance ofx toAdenoted |x|A is de�ned by |x|A := infy∈A |x−y|.

2 DEFINITION 3.5.2: (Class K∞). A function α : R≥0 → R≥0, is of class K∞ if α is

zero at zero, continuous, strictly increasing and unbounded.

2 DEFINITION 3.5.3: (Uniform global asymptotic stability [26, De�nition 3.6]) Con-

sider a hybrid systemH on Rn. A closed set A ⊂ Rn is

· Uniformly globally stable for system H, if there exists a class K∞ function α,

such that every solution φ toH satis�es |φ(t, j)|A ≤ α(|φ(0, 0)|A) for every (t, j) ∈
dom φ.

· Uniformly globally attractive for H, if every maximal solution to H is complete

and for every ε > 0 and µ > 0 there exists T > 0 such that, for any solution φ to

H with |φ(0, 0)|A ≤ µ, (t, j) ∈ dom φ and t+ j ≥ T implies |φ(t, j)|A ≤ ε .
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· Uniform globally asymptotically stable (UGAS) for H, if it is uniformly globally

stable and uniformly globally attractive.

In the next, we consider Lyapunov functionals, which are a fundamental tool for

stability analysis. We suppose that, all solutions are complete, (otherwise, the pre-

stability need to be proven in such case).

2 DEFINITION 3.5.4: (Lyapunov function candidate) A function V : dom V → R is

said to be a Lyapunov function candidate for the hybrid systemH = (C, F,D, G) if the

following conditions holds:

1. C ∪ D ∪G(D) ⊂ dom V ;

2. V is continuously differentiable on an open set containing C.

In the next we provide a [26, Theorem 3.18], which gives the conditions on a Lya-

punov function candidate that guarantees uniform global asymptotic stability:

b THEOREM 2. (Suf�cient Lyapunov conditions) LetH = (C, F,D, G) be a hybrid sys-

tem and let A ⊂ Rn be closed set. If V is a Lyapunov function candidate for H and

there exist α1, α2 ∈ K∞, and a continuous positive de�nite function ρ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ C ∪ D ∪G(D) (3.2a)

〈∇V (x), f〉 ≤ −ρ(|x|A) ∀x ∈ C, f ∈ F (x) (3.2b)

V (g)− V (x) ≤ −ρ(|x|A) ∀x ∈ D, g ∈ G(x) (3.2c)

then, A is Uniformly Globally Asymptotically Stable (UGAS) forH.

Let consider now the hybrid system parametrized by a small, positive parameter

ε, of the form 
ẋ ∈ Fε(x), x ∈ Cε

x+ ∈ Gε(x), x ∈ Dε
(3.3)

2 DEFINITION 3.5.5: (Semi-global practical asymptotic stability (SPAS) [27])

For the hybrid system (3.3), the compact set A ⊂ Rn is said to be semiglobally

practically asymptotically stable as ε→ 0+, if there exists β ∈ KL 1 and for each ∆ > 0

1 β ∈ KL if β : R≥0 × R≥0 → R≥0 is continuous, β(·, r) is nondecreasing for each r ≥ 0, β(s, ·) is

nonincreasing for each s, and lims→0+ β(s, r) = limr→∞ β(s, r) = 0.
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and δ > 0, there exists ε∗ > 0 such that, for each ε ∈ (0, ε∗), each solution x of (3.3) that

satis�es |x(0, 0)|A ≤ ∆ also satis�es

|x(t, j)|A ≤ β (|x(0, 0)|A, t+ j) + δ ∀(t, j) ∈ domx.

The convergence toward a small neighborhood ofA in the de�nition of semiglobal,

practical asymptotic stability is uniform over the set of initial conditions considered,

whereas this attribute is not explicit in the de�nition of global asymptotic stability.

However, under mild regularity assumptions on the data (C,F,D,G), global asymp-

totic stability implies the existence of such that β ∈ KL such that each solution x to

(3.1) satis�es

|x(t, j)|A ≤ β (|x(0, 0)|A, t+ j) ∀(t, j) ∈ domx.

When β has the form β(s, r) = c1s exp(−c2r) for some constants c1, c2 > 0, the

compact set A is globally exponentially stable. For more details, see [28, Theorem

6.5].

3.5.1. Singularly perturbed hybrid systems

Singular perturbations approaches are used to simplify a complex systems by sepa-

rating the dynamics of the whole system into two dynamics (slow and fast dynamics)

[29]. The slow dynamic represents the dynamic of the reduced model and it is dic-

tated by a separation of time scales. Usually the fast dynamic is neglected. The fast

dynamic is treated in the �rst step and represents the dynamic of boundary layer sys-

tem evolving in the faster time scales. Moreover, the boundary layer model represents

deviations from the predicted slow behavior.

Let’s suppose that x = (

(X1)︷ ︸︸ ︷
x1, x2, ...,

(X2)︷ ︸︸ ︷
..., xn) ∈ Rn, with X1 ∈ Rn1×n1 , X2 ∈ Rn2×n2 and

n1 + n2 = n . Then the hybrid system can be written as [27]:
diag(In1 , εIn2)ẋ ∈ F (x), x ∈ C1 × C2

x+ ∈ G(x), x ∈ D1 ×D2

(3.4)

where ε > 0 is a small positive scalar. Ini denotes the ni × ni identity matrix. X1

contains the slow variables, whereas X2 contains the fast ones.

The singular perturbations system can be composed in three steps:

1. The �rst step is to consider the boundary layer system, which contains the fast

variable evolution and neglects the dynamic of slow variable (Ẋ1 = 0). In this
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step, the considered model evolves in the faster time scales and represents de-

viations from the predicted slow behavior. In [29], an approximation of the evo-

lution of the fast variable is given as

X2(t) = X2e(t) +O(ε),

for t ∈ [t1, T ] where t1 > t0. This approximation establishes that during an ini-

tial interval [t0, t1], the original variable X2 approaches X2e , and during [t1, T ],

remains close to X2e .

2. In this second step, the quasi-steady-state equilibrium manifold is considered.

3. The reduced system, generally the one that we want to control. In this step, we

consider that the fast variables are in the steady state and we consider only the

slow variables. Furthermore, the stability of this system can be proved.

We are interested in the stability of the next compact set for the reduced model.

A1 = {X1 = X1e}

The following basic assumptions are considered.

A. Manifold:

The quasi-steady-state equilibrium manifold of classical singular perturbation theory

appears in the case of hybrid approach as a set-valued mapping H : Rn1 ⇒ Rn2 .

C ASSUMPTION 4 (Regularity of "Manifold"):

The set-valued mappingH : Rn1 ⇒ Rn2 is outer semicontinuous and locally bounded,

and for each X1 ∈ C1 then H(X1) is nonempty subset of C2.

B. Boundary layer system:

The family of boundary layer systems is given by:

ẋ ∈ diag(0, In2)F (x), x ∈ (C1 ∩ ρB)× C2. (3.5)

with ρ > 0 makes the �ow set compact.

The boundary layer system ignores jumps and the state X1 remains constant during

the �ows.

C ASSUMPTION 5 (Stability of boundary layer):

For each ρ > 0, the boundary layer system de�ned in (3.5), is such that the following

compact set

Mρ := {(X1, X2) : X1 ∈ C1 ∩ ρB, X2 ∈ H(X1)}
is globally asymptotically stable.
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C. Reduced system:

The reduced system is given by
Ẋ1 ∈ Fr(X1), x ∈ C1

X+
1 ∈ Gr(X1), x ∈ D1,

(3.6)

with

Fr(X1) := co{v1 ∈ Rn1 : (v1, v2) ∈ F (X1, X2), X2 ∈ H(X1), v2 ∈ Rn2} (3.7)

Gr(X1) := co{v1 ∈ Rn1 : (v1, v2) ∈ F (X1, X2), (X2, v2) ∈ C2 × C2} (3.8)

C ASSUMPTION 6 (Stability for the reduced system):

For the reduced system (3.6), the compact set A1 ∈ Rn1 is globally asymptotically sta-

ble.

b THEOREM 3. Under Assumption 3 and Assumptions 4-6 for the hybrid system (3.4),

the compact set A1 × C2 is semiglobally practically asymptotically stable as ε→ 0+.

The reader is referred to [27] to see the proof of Theorem 3.

3.6. Conclusions

In this chapter, we have presented the hybrid dynamical system used in this disserta-

tion. The principal de�nitions and properties used in this work are brie�y provided.
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4.1. Introduction

This chapter deals with the design of control laws for a DC-DC and AC-DC convert-

ers. Since, these systems exhibit continuous dynamics (current and voltage) and dis-

crete dynamics (switching signals), thus, a natural way for modeling them is to use

the hybrid dynamical system described in Chapter 3. The control problem of these
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classes of converters is characterized by the regulation of an operating point, which

can be achieved by a combination of the different functioning modes de�ned by the

switched signal. Therefore, we get a solution of the voltage and currents in the gen-

eralized sens of Fillipov.

First, we focus in Section 4.2, on the boost converter, which is a DC-DC converter.

This section proposes a hybrid dynamical model formulation with the corresponding

control law. Furthermore, an hybrid adaptive control law for the boost converter is

proposed to deal with the unknown constant resistive load and to ensure that the

voltage value is robust with respect to any reference. This adaptation is accomplished

using a state observer and assuming that all states are accessible. Then, the full system

stability can be established by using a singular perturbation analysis.

Secondly, in Section 4.3, we are interested in a Neutral Point Clamped (NPC) con-

verter working as a recti�er. A hybrid dynamical control is proposed in order to reg-

ulate the output DC voltage and stability properties are guaranteed. The dif�culty in

this case is that the model of the NPC is a non-linear time-varying model.

4.2. DC-DC Converters: Boost converter

In this section, we are interested in the regulation problem of the boost converter with

an unknown resistance load. The objective of the controller is to regulate the output

voltage to a desired operating point with a fast response, low overshoot and low noise

susceptibility. To this end, based on the work presented in [30], we propose to add to

the hybrid scheme an adaptive control scheme in order to ensure a voltage regulation

with the presence of unknown resistance load. This adaptation is accomplished using

a state observer and assuming that all the states are measurable. Then, the full system

stability can be studied by using a singular perturbation analysis.

As it is presented in Chapter 2, the boost converter can be modeled by a nonlinear

model given in (2.3). The obtained model exhibits two kind of dynamics

· a continuous-time dynamics, i,e; the dynamic of inductor current, iL(t), and the

dynamic of capacitor voltage, vC(t),

· a discrete-time dynamic, i,e; the dynamic of the control input u.

Hence, it is not easy to handle rigorously the problem with standard mathematical

tools since its dynamic is complex.

A �rst classical approach widely studied relies on the control design of averaged

models.

As proposed in the introduction of this chapter, a natural way to handle this kind

of system is to use the hybrid dynamical systems theory, more precisely the switching

af�ne systems. Recently, the control community has concentrated some efforts to the
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study of new hybrid control techniques [30], [31] such as the switched system, which

can be considered as a subclass of hybrid systems.

Applications to DC-DC converters can be found for example in [32] where the

problem is formulated in terms of control of switched systems whose modes are de-

scribed by af�ne differential equations.

It is possible to show that the obtained switching rules can be interpreted as sliding

mode control laws with sliding surfaces implicitly determined in terms of the state-

space variables (current, voltage) and of the selected equilibrium operation [33]. Even

if the implicit discontinuous nature of DC-DC converters is taken into account by an

appropriate switched model, the limitation is due to the practical implementation of

the control law whose properties are only ensured for an in�nite switching frequency,

while for practical reasons, the switching frequency must be constrained.

To deals with, this chapter states a control problem in the context of the control

of hybrid dynamic systems [26] which seems to be an adequate way for handling

the speci�cities of DC-DC converters while guaranteeing theoretically and practically,

that the implemented control laws will satisfy all the speci�cations in terms of stabil-

ity and performance. The interest of this approach is the possibility of identifying and

managing some design parameters affecting important practical indicators such as:

switching frequency, dissipated energy, overshoot... which are not easy to manage in

general by using other methods like sliding mode control for example.

Here, the considered paradigm is the one developed in chapter 2 which associates

to a continuous-time �ow whose model is of a differential equation type, a discrete-

time behavior capturing the switched characteristic imposed by the control law. Two

subsets included in an extended space, built from the state and the control spaces,

determine the regions where the continuous and discrete dynamics are active. The

main tool for proving stability of a compact attractor de�ned in this extended space,

proceeds by an appropriate extension of Lyapunov stability theory developed in the

context of hybrid dynamic systems in [26] and [34]. Due to the af�ne structure of

the modes, a quadratic Lyapunov function can be selected from a positive de�nite

symmetric matrix satisfying a set of Lyapunov inequalities. A hybrid control law with

its two associated �ow and jump is deduced from this matrix and an upper bound of

a LQ performance index for the controlled system can be computed. It is possible to

deduce an optimal guaranteed cost control law leading to the tight upper bound, by

solving a LMI optimization problem.

4.2.1. Problem formulation

The main considered assumptions are

C ASSUMPTION 7:
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Let consider

· the converter current is continuous and all the components are ideal,

· the current and voltage are measurable,

· the loadR0 is unknown constant or/and slowly variable in the interval [Rm
0 , R

M
0 ].

· x2 = 0 corresponds to the starting operation mode, and any starting strategy is

used to bring our system to x2 6= 0.

The used components are modeled and assumed to be ideal components, meaning

that, they do not dissipate power. Nevertheless, it is important to note that the real

components present always some imperfections and the real components never have

exactly their speci�ed values. In this work, we consider only that the inductanceLdis-

sipate energy and they have a signi�cant parasitic resistance denoted RLS . However,

we will not consider the imperfections of the others components.

Let start by rewritten this model by considering the unknown load R0. To do this,

let consider the following variable change

β :=
1

R0

∈ [βm, βM ]. (4.1)

Then, considering the variable change given in equation (4.1), the model of the

boost converter given in (2.3), can be rewritten as follows

(Σ) :



ẋ(t) =

Au(β)︷ ︸︸ ︷−RLS
L
−1−u

L

1−u
C0

− β
C0

x(t) +

a︷ ︸︸ ︷VinL
0

,

y(t) =

C︷ ︸︸ ︷1 0

0 1

x(t),

(4.2)

where the available input u is the switching signal, assigning its value in:

u := {0, 1}. (4.3)

Moreover, in dynamics (4.2), Vin ∈ R, is a constant voltage source, the vector x(t) =

[x1(t) x2(t)]T = [iL(t) vC(t)]T ∈ R2 is the state and y(t) ∈ Rp is the controlled output.

We focus here on the design problem of a feedback control law for the switching

signal u, in such a way to ensure suitable convergence properties of the plant state x to

a value xe, which is not necessarily an equilibrium for the continuous-time dynamics
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in (4.2), but can be obtained as an equilibrium for the switching system with arbitrary

switching and the estimation of the load β̂ to its real value, β.

Notice that, the all attainable equilibrium points for the boost converter are not

dif�cult to �nd from (4.2) and are given as [32]

Xe = {(x1e , x2e) :
Vin

RLS +R0

≤ x1e ≤
Vin
RLS

, x2
2e +RLSR0x

2
1e −R0Vinx1e = 0} (4.4)

All equilibrium points given in the set 4.4, can be represented in Figure 4.1. Figure

4.2 shows the evolution of x2e with respect to ue. Notice that one can obtain larger

value for x2e compared to the input value Vin set to 100V in this example.

0 10 20 30 40 50

0

50

100

150

200

250

Figure 4.1: Attainable equilibrium points in sens of Fillipov.
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Figure 4.2: Hybrid adaptive control scheme.

O PROBLEM 1:

The goal is to ensure the asymptotic stability of xe for (4.2) and adaptation of the load

for ensuring a reduced error in the voltage regulation.

xe
u

x

β̂

SY STEM(β)

OBSERV ER

CONTROL

ADAPTIVE
CONTROL

x̂

Figure 4.3: Hybrid adaptive control scheme.

à PROPOSITION 1:

To do this, let divide the problem in two parts:
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· The �rst one is dedicated to the design a hybrid control for the boost converter

2.3 with a known parameter (see for instance [30]).

· The second part proposes an extension of the �rst part, by adding an adaptive

control on the hybrid control scheme.

Let start with the �rst part of proposition 1, where, we detail the work done in

[30] and we propose a hybrid formalism for the design problem associated with the

determination of a switching signal u suitably stabilizing a point xe.

4.2.2. Hybrid control for a boost converter

Here, we are focused on the design problem of a feedback law for the switching signal

u, in such a way to ensure suitable convergence properties of the plant state x to a

value xe. A suf�cient condition characterizing this equilibrium is then represented by

the following standard assumption (see [32, 35]).

C ASSUMPTION 8:

There exists λe = [λe0 , λe1 ] satisfying
∑1

l=0 λel = 1, such that the following convex

combination holds:
1∑
l=0

λel(Alxe + a) = 0. (4.5)

- REMARK 3. It is emphasized that Assumption 8 is suf�cient for the existence of a

suitable switching signal ensuring forward invariance of the point xe (namely induc-

ing an equilibrium at xe) when understanding solutions in the generalized sense of

Krasovskii or Filippov. Indeed, under (4.5), this switching signal is a periodic sequence

of arbitrary small period T , spending a time equal to λeiT in mode i. Conversely, if As-

sumption 8 does not hold, such a signal does not exist because any arbitrary switching

signal can only generate an equivalent action on ẋ corresponding to a convex combi-

nation of the right hand sides obtained with each mode (namely, equation (4.5)).

In the next, we will assume the existence of the following set of matrices P and Q

satisfying the next property.

H PROPERTY 1:

Given matrices Ai, i ∈ [0, 1] in (2.3), there exists matrices P,Q ∈ S2 satisfying

ATi P + PAi + 2Q < 0, (4.6)

for all i ∈ [0, 1].

Note that Property 1 enforces the strong requirement that all matrices Ai be Hur-

witz. Selection of matrices P andQ satisfying Property 1 will be discussed in Section A
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where an optimization-based procedure will be suggested, also in light of the stability

and optimality theorems presented below.

Let detail here the control law proposed by [30], where a formulation of the design

problem as a hybrid dynamical system is proposed, following the formalism proposed

in Chapter 2, wherein continuous-time behavior captures the evolution of f(.) in (2.3),

and the discrete-time behavior captures the jump of the control signal u from one

mode to another. We represent the overall dynamics as:

H :



ẋ
u̇

 = f(x, u), (x, u) ∈ C

x+

u+

 ∈ G(x), (x, u) ∈ D,

(4.7)

with f is a single-valued mapping capturing the continuous evolution of the state and

G is a set-valued mapping capturing the switching logic:

f(x, u) :=

 Aux+ a

0



G(x) :=

 x

argmin
i∈{0,1}

(x− xe)TP (Aix+ a)


(4.8)

where the “�ow” and “jump” sets C and D encompass, respectively, the regions in the

(extended) space (x, u) where our switching strategy continues with the current mode

u (set C) or is required to switch to a new mode (setD). If switching is allowed (namely,

if (x, u) ∈ D) then u will switch according to G in (4.8). For the solution proposed in

[30],the �ow and jump sets are selected based on the desired equilibrium xe intro-

duced in Assumption 8 and on the parameters P and Q introduced in Property 1 as

follows:

C := {(x, u) : x̃TP (Aux+ a) ≤ −ηx̃TQx̃} (4.9)

D := {(x, u) : x̃TP (Aux+ a) ≥ −ηx̃TQx̃}, (4.10)

where x̃ = x − xe and scalar η ∈ (0, 1) is a design parameter that will be shown to be

useful for suitably achieving a trade-off between switching frequency and optimality

level as characterized later in Theorem 5 and commented in Remark 7.
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- REMARK 4. Note that hybrid system (4.7)–(4.10) provides a solution strategy for the

selection of the switching signal u. Indeed, sets (4.9) and (4.10) correspond to a speci-

�cation about “when” a jump is or is not allowed, and map G in (4.8) speci�es where

a solution “may” jump (that is, what values of u are allowed after the jump. It is em-

phasized that both these elements of our solution may be sources of non-uniqueness

of the solutions. Indeed, sets in (4.9) and (4.10) have overlapping boundaries so that

multiple solutions (�owing or jumping) may arise from the same initial condition.

Similarly, the "argmin" in the de�nition of G in (4.8) may be non-unique. Despite this

non-uniqueness feature, the stability and optimality results proven below refer to all

possible solutions and therefore it is not really important what solutions we select in

a possible implementation of this control law (or in a MATLAB simulation) because

stability and optimality properties hold for all of them.

The next lemma is a fundamental step to prove our main result in Theorem 4 be-

low.

[ LEMMA 1:

Consider matrices P,Q ∈ S2, satisfying Property 1, a point xe ∈ R2 satisfying Assump-

tion 8. Then, for each x ∈ R2,

min
i∈[0,1]

x̃TP (Aix+ a) ≤ −x̃TQx̃. (4.11)

Proof. First notice that the left hand side of (4.5) is linear in λn = [λ0, λ1], and λe allows

to the compact set Λ =
{
λn = [λ0, λ1],

∑1
l=0 λn = 1

}
. Then, the following minimum is

obtained at the extreme points:

min
i∈[0,1]

x̃TP (Aixe + a)

= min
λn∈Λ

x̃TP

{
1∑
l=0

λnlAlxe + a

}

≤ x̃TP

{
1∑
l=0

λelAlxe + a

}
= 0. (4.12)

Then, the proof easily follows from applying (4.6) and (4.12) as follows

min
i∈[0,1]

x̃TP (Aix+ a)

≤ min
i∈[0,1]

x̃TPAix̃+ min
i∈[0,1]

(x̃TPAixe + x̃TPa)

≤ −x̃TQx̃.

which concludes the proof.

- REMARK 5. We note here that, if x̃ 6= 0

−x̃TQx̃ < −ηx̃TQx̃.
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because η < 1.

In the following, we comment here on its relevance in terms of the nature of the

switching signals generated by the solution proposed in [30]. In particular, property

(1) combined with (4.9) shows that unless x̃ = x̃+ = 0 (which means that we are at the

equilibrium x = xe), the solution always jumps to the interior of the �ow set C. Indeed,

x̃ 6= 0 implies

−x̃TQx̃ < −ηx̃TQx̃,

because η < 1. This fact, together with stability (ensuring boundedness of solutions)

and the sector growth condition coming from the linearity of the �ow dynamics (2.3),

implies that there is a uniform lower bound on the dwell time between each pair of

consecutive resets before solutions approach x = xe. Clearly this lower bound shrinks

to zero as solutions approach x = xe because only arbitrarily fast switching can lead

to xe and equilibrium, in general.

In [30], following up to standard stability theory for hybrid systems given in Chap-

ter 3,they have established suitable stability properties of the point xe in terms of

uniform global attractivity of a bounded (and closed) set in the higher-dimensional

space spanned by (x, u). In particular, they have established properties of the follow-

ing compact attractor:

A := {(x, u) : x = xe, u ∈ {0, 1}}, (4.13)

encompassing the fact that we are interested in uniform stability and convergence

to a set where x = xe and u assumed some unspeci�ed value or pattern within the

desired limit set of solutions.

b THEOREM 4. Consider a point xe satisfying Assumption 8 and matrices P,Q ∈ S2,

satisfying Property 1. Then attractor (4.13) is uniformly globally asymptotically stable

(UGAS) for hybrid system (4.7)–(4.10). Moreover, UGAS is robust because the attractor

(4.13) is compact.

Proof. Let take the Lyapunov function candidate V (x̃) = 1
2
x̃TPx̃, where x̃ = x− xe. In

the �ow set, C, using its de�nition in (4.9), we get

〈∇V (x̃), f(x̃, u)〉 = x̃TP (Au(x̃+ xe) + a) ≤ −ηx̃TQx̃. (4.14)

In the jump set, D, we get for all g ∈ G(x), denoting x̃+ = g − xe

V (x̃+)− V (x̃) =
1

2

{
x̃TPx̃− x̃TPx̃

}
= 0. (4.15)

Uniform global asymptotic stability is then shown applying [34, Theorem 1]. In

particular, since the distance of x to the attractor (4.13) is de�ned by |x|A = |x̃|, we

have that [34, eq. (6)] holds from the structure of V and from (4.14) and (4.15). To show
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practical persistent �ow, we �rst need to build a restricted hybrid systemHδ,∆ by in-

tersecting C and D with set

Sδ,∆ = {x̃ :| x̃ |≥ δ and | x̃ |≤ ∆} (4.16)

(see [34] for details). Then, notice that after each jump, from the de�nition ofG in (4.8)

and from inequality (4.11) (in Lemma 1), we have:

x̃T (Au+x+ a) ≤ −x̃TQx̃ < −ηx̃TQx̃, (4.17)

where we used the fact that η < 1 and that 0 /∈ Sδ,∆. Therefore, if any solution toHδ,∆

performs a jump, it either jumps outside Sδ,∆ (and it terminates prematurely) or, from

(4.10), it jumps to the interior of the �ow set C ∩ Sδ,∆, Indeed, from (4.16) we have that

x̃ is bounded away from zero in Sδ,∆, so that, the right inequality in (4.17) is strict from

positive de�niteness ofQ. Then all non terminating solutions must �ow for some time

and since C ∩ Sδ,∆ is bounded, there is a uniform dwell-time ρ(δ,∆) in between each

pair of consecutive jumps. This dwell-time ρ(δ,∆) clearly implies [34, equ. (4)] with

the class K∞ function γ(j) = ρ(δ,∆)j and N = 1. Then, all the assumptions of [34,

Theorem 1] hold and UGAS of A is concluded.

Theorem (4) establishes UGAS of the attractor, which results in desirable uniform

stability and convergence properties. However, we are interested in further providing

a suitable performance guarantee for our solution, which follows the same paradigm

as that one in [32]. This performance guarantee may, for example, refers to desirable

levels of dissipated energy, current peak, response time among others. Let comment

in the next paragraph the choice of the matrices P and Q.

A. Optimality and parameters tuning

We �rst recall that solutions are parametrized by ordinary time t (measuring amount

of �ow) and discrete-time j (measuring the number of switches) so that the domain

of a solution ξ (see Chapter 3) corresponds to a �nite or in�nite union of intervals of

the following form:

dom ξ =
⋃

j∈domj ξ

Ij × {j}, (4.18)

with Ij = [tj, tj+1] being a bounded time interval having the so-called “jump times”

tk as extremes, or possibly being a last unbounded interval open to the right and of

the form Ij = [tj,+∞). In (4.18), we use the notation domj ξ := {j ∈ Z : (t, j) ∈
dom ξ, for some t ∈ R}, namely domj ξ includes all j ∈ Z such that Ij is non-empty.

Within this context, we represent an LQ performance metric focusing on �owing

characteristics of the plant state, using the following expression:

J(ξ) :=
∑

k∈domj ξ

∫ tk+1

tk

| ỹ(τ, k) |2 dτ, (4.19)
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where ξ = (x, u) : dom ξ → R2× [0, 1] is a solution to hybrid system (4.7)–(4.10), ỹ(t, j) =

Cu(t,j), x̃(t, j) for all (t, j) ∈ dom ξ. With the hybrid switching solution presented in [30],

we may then give the following guarantee on the performance cost (4.19).

b THEOREM 5. Consider hybrid system (4.7)–(4.10) satisfying Assumption 8 and Prop-

erty 1. If

CTC ≤ Q, (4.20)

then the following bound holds along any solution ξ = (x, u) of (4.7)–(4.10):

J(ξ) ≤ 1

2η
x̃(0, 0)TPx̃(0, 0) =

1

2η
| x̃(0, 0) |2P , (4.21)

where x̃(t, j) = x(t, j)− xe, for all (t, j) ∈ dom(ξ).

Proof. Consider any solution ξ = (x, u) toH. For each (t, j) ∈ dom ξ, denoting t = tj+1

to simplify notation, we have from (4.14)

V (x̃(t, j))− V (x̃(0, 0)) =

j∑
k=0

V (x̃(tk+1, k))− V (x̃(tk, k))

=

j∑
k=0

∫ tk+1

tk

〈∇V (x̃(τ, k)), f(x(τ, k), u(τ, k))〉dτ (4.22)

≤
j∑

k=0

∫ tk+1

tk

−η|x̃(τ, k)|2Qdτ ≤ −η
j∑

k=0

∫ tk+1

tk

|x̃(τ, k)|2CTCdτ,

where the last inequality comes from (4.20). Considering z̃(τ, k) = Cx̃(t, k), taking the

limit as t + j → +∞ and using the fact that UGAS established in Theorem 4 implies

limt+j→+∞ V (x̃(t, j)) = 0, we get from (4.22), ηJ(ξ) ≤ V (x̃(0, 0)) = 1
2
|x̃(0, 0)|2P , as to be

proven.

- REMARK 6. It should be emphasized that once matrices P and Q ∈ S2 have been

�xed compliantly with requirement (4.20), the guaranteed performance level for our

scheme (in terms of size of the upper bound for index J in (4.19) along solutions) is

proportional to the inverse of η ∈ (0, 1) (see (4.21)). To this end, large values of η (as close

as possible to 1) are expected to lead to improved LQ performance along solutions.

On the other hand, one may appreciate by looking at the �ow and jump sets in

(4.9)–(4.10), that smaller values of η correspond to strictly smaller jump sets (and larger

�ow sets), which reveals that solutions are expected to �ow longer before switches of

control input u are experienced. Therefore we anticipate that solutions with smaller

values of η exhibit a smaller switching frequency. In other words, one may play with

parameter η to suitably adjust the switching frequency along solutions. This operation

clearly affects the level of guaranteed optimality, according to (4.21).
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The problem addressed next is the computation of parameters P , Q, following

some kind of optimization with the goal of reducing as much as possible the right

hand side in bound (4.21). To this end, we make the following natural selection of

matrices Q:

Q = CTC + εI, (4.23)

where ε > 0 is a (typically small) positive constant, which may be selected equal to

zero if CTC > 0. Then it is clear that selection (4.23) ensures Q > 0, as required, in

addition to ensuring bound (4.20).

Once parametersQ are selected, under the assumption thatAi are Hurwitz matri-

ces for all i ∈ [0, 1], the following convex optimization problem:

min
P=PT>0

TraceP, (4.24)

Such that ATi P + PATi ≤ −2Q, ∀i ∈ [0, 1],

witch provides the common matrix P satisfying Property 1.

- REMARK 7. Note that, parameter η can adjust the switching frequency. Indeed, by

decreasing η, we reduce the switching frequency and on the contrary, by increasing η,

we raise the switching frequency. For practical reasons, the switching frequency must

be low enough. Nevertheless, according to [30], this tuned parameter can manage

some LQ performances.

Now that the hybrid control is proposed for the boost converter, the next section

deals with the second part of proposition 1, meaning, extend the previous work and

adding a adaptive control to deal with the unknown resistance R0.

4.2.3. Hybrid adaptive control for a boost converter

The idea of this sub-section is to adapt the control law proposed in the previous sub-

section to deal with the unknown resistance R0. Firstly, let begin with the proposed

adaptive law and then stability properties will be proven. Furthermore, assumption 8

and property 1 are adapted to take into account to the unknownR0 (β given in equation

4.1) and are given as;

C ASSUMPTION 9:

There exists λe = [λe0 , λe1 ] satisfying λe0 + λe1 = 1, such that the following convex

combination holds:

1∑
l=0

λel(Al(β)xe + a) = 0 ∀β ∈ [βm, βM ]. (4.25)

43



CHAPTER 4. HYBRID CONTROL FOR DC-DC AND AC-DC CONVERTERS

C ASSUMPTION 10:

Let consider that, the parameter β can be embedded into a polytope described as:

Ω :=
1∑

m=0

λβmβm, for all 0 ≤ λβm ≤ 1,
1∑

m=0

λβm = 1,

where the vertices of the polytope are given by βm ∈ {βm, βM}.

H PROPERTY 2:

Consider Assumption 10, then given matricesAi(β), i ∈ {0, 1} in (4.2) withβ ∈ [βm, βM ],

there exists matrices P,Q ∈ S2 satisfying

ATi (βm)P + PAi(βm) + 2Q < 0 (4.26)

for all i,m ∈ {0, 1}, where βm ∈ {βm, βM} are the vertices of the polytope given in

Assumption 10.

Note that Property 2 assumes that all matrices ATi (βm) are Hurwitz. Selection of

matrices P andQ satisfying Property 2 are discussed as for property 1 and resumed in

sub-section A.

A. Adaptation law

The adaptive law is composed by an observer to estimate the value of the state x2 (x̂2),

then gives an estimate β̂, for the load β, since the variable β appears in the dynamic of

the state x2. The hybrid dynamical scheme considers the continuous-time dynamics,

x1, x2, x̂2, β̂, and the discrete-time dynamic, u. Hence, the goal of the proposed hybrid

adaptive control is to regulate the state x2 around a reference value and �nd an esti-

mate of β (see Fig. 4.3). The proposed control is detailed, and the stability properties

are studied in the following.

The proposed adaptation law is composed of a state observer for the voltage x2,

and an adaptation law for parameter β, which are given as follows:

˙̂x2 =
1

C0

((1− u)x1 − β̂x2) + α(x2 − x̂2) (4.27)

˙̂
β = g(x2, x̂2), (4.28)

where g(x2, x̂2) is the adaptation law to be designed, x̂2 is the estimated state of x2, β̂

is the estimated value of β and α is a positive constant parameter, which is associated

with the convergence speed of the observer.
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A.1. Error equation

In order to achieve a mathematical expression for g(x2, x̂2), let de�ne the following

error variables, considering β̇ = 0,

x̆2 := x2 − x̂2, β̃ := β − β̂, ˙̃β = − ˙̂
β (4.29)

From (4.2) and (4.27), we derive the error equation of x2

˙̆x2 = − β̃

C0

x2 − αx̆2. (4.30)

Now, let introduce the candidate Lyapunov function

W (x̆2, β̃) =
1

2

(
x̆2

2 +
β̃2

γ

)
, (4.31)

where γ is constant and positive and the derivative of W (x̆2, β̃) along the trajectories

of (4.27) and (4.28) is given as:

Ẇ (x̆2, β̃) = −αx̆2
2 −

x2x̆2

C0

β̃ +
β̃ ˙̃β

γ
= −αx̆2

2 + β̃

(
−x2x̆2

C0

+
˙̃β

γ

)
.

The adaptation law is now de�ned by canceling the terms in parentheses, i.e.

˙̃β =
γx2x̆2

C0

, (4.32)

and from equation (4.29)

˙̂
β = −γx2x̆2

C0

. (4.33)

- REMARK 8. Note that γ de�nes the adaptation speed, and consequently, if γ is

larger, then the adaptation speed comes larger.

Stability properties of (4.30), (4.32) are then stated in the following lemma:

[ LEMMA 2:

Consider the system (4.2), and assume that its solutions are bounded. The extended

observer (4.30)–(4.32) has the following properties:

i) The estimated states x̂2, β̂ are bounded.

ii) limt→∞ x̂2(t) = x2(t).

iii) limt→∞ β̂(t) = β, if and only if x2(t) 6= 0,∀t ≥ 0.
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Proof. The observer and the adaptive law error equations are fully de�ned from (4.30)

and (4.32), and stability properties of these equations follow from the Lyapunov func-

tion W de�ned above. Note that with the choice (4.32)

Ẇ (x̆2, β̃) = −αx̆2
2

and from standard Lyapunov arguments, it follows that the error variable x̆2 and β̃

are bounded. In addition by LaSalle invariant principle and from Assumption (7), that

speci�es x2 6= 0, we easily conclude that limt→∞ x̆2(t) → 0, which implies from (4.32)

that limt→∞
˙̃β(t)→ 0. Likewise from (4.30), and concluding from limt→∞ x̆2(t)→ 0 that

limt→∞ ˙̆x2(t)→ 0, we get limt→∞ β̃(t)→ 0.

Based on assumption 7, an adaptive law is proposed, and the convergence of the

error states (x̌2, β̃) are provided using the standard Lyapunov arguments and LaSalle

invariant principle. Furthermore, a complete hybrid scheme, that encompasses the

adaptive law is presented below.

B. Hybrid model and proposed control law

In this section,. we design an hybrid dynamical system, following the paradigm pre-

sented in Chapter 2, wherein continuous-time behavior resembles the evolution of

x, given in (4.2) and the evolution of x̂2 and β̂ presented in (4.27) and (4.33), respec-

tively. Moreover, the discrete-time behavior captures the jump of the switch boost

converter signal, u, and the jump of a discrete signal, q ∈ {1, 2}, which detects if the

parameter β needs to be adapted. q = 1 allows the β adaptation and q = 2 interdicts

this possibility.
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We characterize the overall closed-loop dynamics

H :





ẋ

u̇

˙̂x2

˙̂
β

q̇


= f(x, u, x̂2, β̂), ξ ∈ C



x+

u+

x̂+
2

β̂+

q+


∈ G(x, x̂2, β̂, q), ξ ∈ D,

(4.34)

where ξ = [x u x̂2 β̂ q] and G is a (set-valued) map representing the switching logic:

f(x, u, x̂2, β̂) :=



Au(β)x+ a

0

1
C0

(ux1 − β̂x2) + α(x2 − x̂2)

−γx2(x2−x̂2)
C0

0


(4.35)

G(x, x̂2, β̂, q) :=



x

argmin
i∈K

x̃TP (Ai(β̂)x+ a)

x̂2

β̂

3− q


(4.36)

and where x̃ = [x̃1 x̃2] is de�ned from the desired values xe = [ie ve]
T = [xe1 xe2]T as
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follows 
x̃1 = x1 − xe1

x̃2 = (x2 − xe2) + (x2 − x̂2).

(4.37)

Inspired by [30], we select the �ow and jump sets as follows

C1 := {(x, x̂2, q) : {q = 1} and |x2 − x̂2| ≥ ε} (4.38)

D1 := {(x, x̂2, q) : {q = 1} and |x2 − x̂2| ≤ ε}, (4.39)

C2 :={ξ : {q = 2} and |x2 − x̂2| ≤ ε and x̃TP (Au(β̂)x+ a) ≤ −ηx̃TQux̃}, (4.40)

D2 :={ξ : {q = 2} and |x2 − x̂2| ≥ ε or x̃TP (Au(β̂)x+ a) ≥ −ηx̃TQux̃}, (4.41)

whereD := D1∪D2 and C := C1∩C2, η ∈ (0, 1) and ε > 0 is small enough. The so-called

“�ow” and “jump” sets C andD encompass, respectively, the regions in the (extended)

space (x, u, x̂2, β̂, q) where our switching strategy continues with the current mode u

(set C) or is required to switch to a new mode (set D). If switching is allowed (namely,

if (x, u) ∈ D) then u will switch according to G in (4.36). For the solution proposed

here, we select the �ow and jump sets based on the desired equilibrium xe introduced

in Assumption 9 and on the parameters P and Q. The selection of C and D can be

summarized as in Figure 4.4

C1

C2D1

D2

q = 1

q = 1

q = 2

q = 2

|x2 − x̂2| ≥ ε

|x2 − x̂2| ≥ ε

x̃TP (Au(β̂)x+ a) ≥ −ηx̃TQux̃

|x2 − x̂2| ≤ ε

|x2 − x̂2| ≤ ε or/andx̃T P (Au(β̂)x + a) ≥ −ηx̃T Qux̃

Need adaptation Forbid adaptation

Figure 4.4: Schematic representation of the �ow and jump sets.

We propose therefore Theorem 1, which ensures that the hybrid closed loop sys-

tem is well-posed.
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à PROPOSITION 2:

The hybrid dynamical system (4.34)–(4.41) satis�es the basic hybrid conditions pre-

sented in Assumption 3, then it is well-posed.

Now, we invokes the lemma [30, Lemma 1], which is a fundamental step to prove

the stability properties and it is presented in the above section.

[ LEMMA 3:

Consider matrices P,Q ∈ S2 satisfying Property 2, a point xe ∈ R2 satisfying Assump-

tion 9. Then for each x ∈ R2,

min
i∈[0,1]

x̃TP (Ai(β)x+ a) ≤ min
i∈[0,1]

−x̃TQx̃ (4.42)

- REMARK 9. We note here that, if x̃ 6= 0

−x̃TQx̃ < −ηx̃TQx̃.

because η < 1.

We comment here the behavior of any solution to hybrid system (4.34)–(4.41) (see

Figure 4.4). Note that if any solution is in C1 or D1, that means q = 1, the adaptation of

the parameter β is possible and, the contrary case is, if any solution is in C2 orD2, that

means q = 2. First, consider that any solution is in C1, then the observer error x̆2 given

in 4.29 is larger than any small and positive ε and the parameter β is adapting. When

the adaptation error of β is arbitrary small, that means x̆2 ≤ ε, then, the solution will

be in D1 and the solution jumps. After the jump, we have q = 2 and the solution is in

C2 until that one of theses cases happens:

· |x2 − x̂2| ≥ ε, then solution is in D2 and jumps to C1, �owing here until x̆2 ≤ ε.

· x̃TP (Au(β̂)x+ a) ≥ −ηx̃TQux̃ and |x2− x̂2| ≤ ε, then solution is inD2, it jumps to

D1 and following the result of Lemma 4 the solution jumps again to C2, �owing

here for a time (as proven bellow).

- REMARK 10. Note that when |x2 − x̂2| ≥ ε, any solution to H �ows in C1 with u

constant. Then the state x will �ow according (4.2) to

iL,c =
Vin

RLS + (1− u)2R0

(4.43)

vC,c = (1− u)R0iL,c. (4.44)

If u = 1, x2 converges to vC,c = 0, however from (4.2), we have x2(t) = x2(0)e
− 1
R0C0

t,

then x2 6≡ 0, ∀t ≥ 0.
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Following up to standard stability theory for hybrid systems [26], we will establish

suitable stability properties of the point xe in terms of uniform global attractivity of a

bounded (and closed) set in the higher-dimensional space spanned by (x, u, x̂2, β̂, q).

In particular, we will establish stability properties of the following compact attractor:

A := {ξ : x = xe, u ∈ {0, 1}, x̂2 = x2, β̂ = β, q ∈ {1, 2}}. (4.45)

b THEOREM 6. Consider Assumption 7,9, 10 and matrices P,Q ∈ S2 satisfying Prop-

erty 2 and γ > 0. Then attractor (4.45) is Semiglobally Practically asymptotically stable

(SPAS) for hybrid system (4.34)–(4.41).

Proof. The next section is dedicated to the proof of our main result. For this, we ap-

ply singular perturbation analysis presented in section 3.5.1, due to fast dynamics in

hybrid control given in [27] assuming that there are slow time-continuous variables,

ξ1 := (x, u, q), and fast time-continuous variables, ξ2 := (x̂2, β̂), then we apply singular

perturbation analysis to establish the stability properties. For this, we will rewrite the

complete system in singular perturbation form.

B.1. Singular perturbation form

In order to put the system above in the standard singular perturbation form, let

de�ne the parameters ν := 1
α

, ᾱ := 1
αC0

and γ̄ := γ
αC0

.

With these considerations, let rewrite the hybrid scheme 4.34– 4.36 as follows:

Hp :





ẋ

u̇

ν ˙̂x2

ν
˙̂
β

q̇


:=



Au(β)x+ a

0

ᾱ(ux1 − β̂x2) + (x2 − x̂2)

−γ̄x2(x2 − x̂2)

0


ξ ∈ C



x+

u+

x̂+
2

β̂+

q+


:=



x

argmin
i∈K

x̃TP (Ai(β̂)x+ a)

x̂2

β̂

3− q


ξ ∈ D.

(4.46)
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Note that the fast variables directly impact the stability of the slow variables. How-

ever, the jumps do not affect the fast variables, because they do not present any jump.

Indeed, when the resistance load need to be adapted (q=1), the control state remains

constant.

In order to perform a singular perturbation analysis details in 3.5.1, we need to

check the assumptions given in section 3.5.1.

B.1.1. Regularity of “manifold"

The “manifold", which corresponds to the quasi-steady-state equilibrium manifold

of classical singular perturbation theory [36], that means when ν → 0+ is

x2 − x̂2 = 0

β − β̂ = 0.

(4.47)

Note that β − β̂ = 0 comes from (4.30). As (4.47) is continuous, we can ensure that the

manifold is empty outside of C, leading to the following set-valued:

M(x2) :=




x2

β

x2 ∈ C

0 x2 /∈ C.

Notice thatM is outer semi-continuous, locally bounded and nonempty.

B.1.2. Stability for reduced system

The reduced system is the system (4.34)–(4.36) in the manifoldM, which is
ẋ

u̇

q̇

 :=


Au(β)x+ a

0

0

 ξr ∈ C(M)


x+

u+

q+

 :=


x

argmin
i∈K

x̃TP (Ai(β̂)x+ a)

3− q

 ξr ∈ D(M).

(4.48)
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where ξr = (x, u, q). Note there is no jump inM, therefore the reduced system ignores

x̂2 and β̂ when determining jumps. Moreover, remark that q nor presents any effect

in the reduced system dynamic and neither generates any extra jump.

B.1.3. Stability of the boundary layer

The boundary layer, for each r > 0, is given by

Hbl :=


ξ̇1 = 0

˙̂x2 = ᾱ(ux1 − β̂x2) + (x2 − x̂2)

˙̂
β = −γ̄x2(x2 − x̂2)

ζ ∈ C ∩ rB

being rB a closed ball of radius r. Note that the boundary layer system ignores the

jumps, and during, �ows ξ1 remains constant.

In order to evaluate the stability of the boundary layer, let consider the error equa-

tions ofHbl and re-scale time t to τ = (t− t0)/ν, getting

d

dτ
x̆2 = −ᾱx2blβ̃ − x̆2

d

dτ
β̃ = γ̄x2blx̆2.

which can be rewritten as:

d

dτ
z = Jz

with

J =

 −1 −ᾱx2bl

γ̄x2bl 0

 .

Without lost of generality and from Assumption 7, x2bl ∈ {R\{0}}. Therefore, we can

de�ne the next property:

H PROPERTY 3:

The real part of the eigenvalues of J , for x2bl ∈ {R\{0}} are all strictly negative, i.e.

λ1 = Re

{
−1 +

√
1− 4ᾱ2γx2

2
bl

2

}
< 0

λ2 = Re

{
−1−

√
1− 4ᾱ2γx2

2
bl

2

}
< 0
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Proof. From the analysis given in B.1 and Proposition 2, we prove SPAS of attractor

(4.45) by applying [27, Theorem 1].

- REMARK 11. In order to ensure a singular perturbation form, we need to ensure that

the observer time response must be larger than the time response of x, i.e, |λs| << α,

where λs is the minimum eigenvalue of the slow subsystem.

- REMARK 12. Note that the real part of the eigenvalues are strictly negative for all

γ > 0. However, we deduce that

· the response of the fast variables ξ2 is non-oscillating for all

0 < γ ≤ ᾱ2

4x2
2
bl

.

· likewise, we get oscillations in the transient response of the fast subsystem for

γ >
ᾱ2

4x2
2
bl

.

4.2.4. Applications

In this section, we validate our hybrid approach for the boost converter (2.3) in simu-

lation. These simulations are performed in MATLAB/Simulink by exploiting the HyEQ

Toolbox [37].

Consider Vin = 100V , R = 2Ω, L = 500µH , C0 = 470µF ,

R0 = 50Ω ∈ [25, 75]Ω⇒ β = 0.02 ∈ [0.0133, 004], (4.49)

which corresponds to 50% of variation with respect to the nominal value of R0 and a

sampling time Ts = 10−6s.

The switched system state space model (2.3) is de�ned by the following matrices:

A1 =

−R
L

0

0 − 1
R0C0

 , A2 =

−R
L

− 1
L

1
C0

− 1
R0C0

 ,

B1 = B2 =

 1
L

0

 .
For our simulations, the chosen equilibrium is

xe = [ie(β) 120]T . (4.50)
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Following the speci�cation given at the end of Section 4.3.2 and considering the

variation of β (4.49), the quadratic cost function is de�ned as

J = min
u

∑
k∈domj(ξ)

∫ tk+1

tk

ρ

R0

(vc(τ, k)− ve)2 +R(iL(τ, k)− ie(β))2dτ (4.51)

with ρ = 1000 to suitably penalize the voltage error.

Multiplying the cost by (ρR)−1, one clearly sees that this corresponds to selecting

C = [0 (RR0)−
1
2 ] and ε = ρ−1 in (4.23), which gives Q =

R 0

0 ρ/R0

.

With this value of Q, in order to satisfy Property 2, we choose

P =

23.14 1.08

1.08 37.04

 · 10−2.

Moreover, we take η = 0.1 which corresponds to a sub-optimal value that guar-

antees a trade-off between performance level and switching frequency, as shown in

[30].

Let start by a known resistance R0. Figure. 4.5 reports voltage and current evo-

lutions for different selections of η and for the choice λe = [0.22 0.78] that satis�es

Assumption 8. Just as before, Theorems 4 and 5 guarantee asymptotic stability and

optimality for the scheme. Once again, as η gets larger, the transient becomes closer

to the one obtained when the switched control proposed in [32]. In all cases, the tran-

sient duration is less than 30ms with a maximum current peak near 3.25A of magni-

tude. The switching frequency in a time slot of the transient is reported in Figure. 4.6

for different values of η, we see the expected trend (from Remark 7) of the switching

frequency, as a function of η.

A more informative picture can be grasped by Figure. 4.7 where, it is shown that

selecting small values of η allows us to suitably adjust the switching frequency while

giving up a little on the performance guarantee (even though Figure. 4.5 shows that

the performance is not much deteriorated when η is very small, thus showing some

level of conservativeness of our bound). Note that, the value of η for which we obtain

essentially the same behavior as the scheme in [32] is much larger than 0.5 and grows

up to somewhere around 0.95.

Let simulate with the unknown resistanceR0. Likewise, we select the convergence

speed of the observer state, α, according to Remark 11 and, having |λs| = 4000 for the

slow sub-system minimum eigenvalue. Then, we need to satisfy 4000 << α; for this

issue, we chose α = 40000.
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Figure 4.5: Voltage and current evolution of the boost converter.

The next step is to select the adaptation speed, γ, according to Remark 12. At the

�rst instance, we choose γ such that, there is no oscillation during the steady-state

(x2bl = xe2 = 120), i.e, 0 < γ ≤ ᾱ2

4x22bl
= 61 · 10−4. Then, we take γ = 5 · 10−4 in Figure. 4.8,

and γ = 50 ·10−4 in Figure. 4.9. Finally, we take ε = 10−3. Note that in these simulations,

the load changes twice, in the transient time at t = 0.001s and in the steady state at

t = 0.03s.

Figure 4.8-a) and 4.9-a) show the convergence of x2 to the equilibrium (4.3.3) for

any change of β, which is achieved with λe = [0.17 0.83]T satisfying Assumption 9.

Note that during the adaptation of β, that means, when |x̆2| ≥ ε, at t = 0.001s and

t = 0.03s the states �ow with u constant converging to iL,c, vC,c, given in (4.43)–(4.44).

When |x̆2| ≤ ε the states evolve switching the discrete variable u. This evolution can

be seen in the zoom of u in Fig. 4.8-d) and 4.9-d) for different adaptation speed, γ.

Note that if γ is larger the adaptation faster is, according Remark 8.

We can also see during the load changes that, the error x̆2 increases, but it con-

verges to zero, due to the fact that β̂ is adapted to its real value β, as is established in

Lemma 2. Then, we can conclude from Theorem 7 that our attractor (4.60) is SPAS.

Now, we show some simulations for the case when the adaptation presents some
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Figure 4.6: Zoom of u in the boost converter.
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conditions in the boost converter.
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Figure 4.8: Evolutions for γ = 5 · 10−4 of the voltage and current in a) and b) resp., x̆2

in c) and, zoom of u in d).
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Figure 4.9: Evolutions for γ = 50 · 10−4 of the voltage and current in a) and b) resp., x̆2

in c) and, zoom of u in d)
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Figure 4.10: Evolutions for γ = 0.1 of the voltage and current in a) and b) resp., and

zoom of x̆2 and u in c) and d) resp.

oscillations in the steady-state, i.e. γ > α2C2
0

4x22bl
= 61 · 10−4, according to Remark 12. We

select γ = 0.1 in Figure. 4.10 and γ = 1 in Figure. 4.11. Note that x̆2 converges to zero

after some oscillations in Figure. 4.10-c) and in Figure. 4.11-c), maintaining x2 robust

w.r.t. its equilibrium value. Wa can also see that the observer convergence is faster, as

γ larger is.

4.2.5. Conclusions

A hybrid adaptive control for unknown constant or/and slowly variable load is pre-

sented for a boost converter. The method focuses on a hybrid dynamical theory,

that considers the real nature of the signals, that means, the continuous-time and

the discrete-time signals. On this paradigm, an adaptive control is proposed which

guarantees the robustness of the voltage in a reference value. This adaptive control is

fed by a state observer designed by assuming that the state variables are measured.

SPAS of the full system is proven by using a standard singular perturbation analysis.

60



4.2. DC-DC CONVERTERS: BOOST CONVERTER

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

0

20

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

0

50

100

0.03 0.03005 0.0301 0.03015 0.0302 0.03025 0.0303

-5

0

5
10

-3

0.03 0.03005 0.0301 0.03015 0.0302 0.03025 0.0303

0

0.5

1

Figure 4.11: Evolutions for γ = 1 of the voltage and current in a) and b) resp., and zoom

of x̆2 and u in c) and d) resp.
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4.3. AC-DC Converters: Three-phase three-level NPC Con-
verter

The main control objective of this device is to generate a desired sinusoidal input cur-

rents, that provides a DC link voltage keeping it constant at the desired reference value,

while maintaining the neutral point voltage close to zero. In order to achieve these

control objectives, some control strategies have been developed in the literature. A

�rst classical approach widely studied relies on the control design of averaged models

[38][39]. The most employed averaged controller for the NPC recti�er is called Direct

Power Control (DPC) method. This approach generally uses several PI controllers, one

for the instantaneous powers, the second one to keep the neutral point voltage close

to zero and the third one to regulate the dc-link voltage to a desired value [23][40].

Recently, some control strategies have been proposed to control the switches with-

out considering an averaged model, which led to discontinuous control laws. Among

them, we can cite predictive control algorithms (for inverters in [41] and converters

in [42]), sliding mode controllers (for inverters in [43],[44] and converters in [45],[46])

and hybrid controllers (for inverters in [47] and converters in [30]). For the case of the

NPC, to the best of our knowledge, only a few papers have considered explicitly the

discrete nature of the switches. In [48],[49], a predictive control algorithm is used to

predict the capacitor voltages for the next sampling time. In [50], a sliding mode con-

trol design is considered and the sliding surfaces use directly the error between the

state variables and their references.

In this work, we propose to model the NPC as a hybrid model by considering, the

voltage and current signals as continuous dynamics, as well as, the switching control

signals as discrete dynamics. However, compared to the others topics studied in this

thesis, the main challenge is to consider the nonlinear time-varying nature of the sys-

tem. Following the Hybrid Dynamical System (HDS) theory [26], we propose a control

guaranteeing Uniform Global Asymptotic Stability (UGAS) of the operating point.

The NPC converter can be modeled by a nonlinear time varying model given in

(2.19) and is remembered in the following
ẋ(t) = Au(t)x(t) + a

y(t) = Cx(t),

(4.52)

The next assumption is necessary to guarantee the existence of a switching signal

that ensures forward invariance of the equilibrium point, xe, in the generalized sense

of Filippov, considering u ∈ {u(1), ..., u(25)} and equation (2.21), andAu(t), a andC given

in Equation (2.19).
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C ASSUMPTION 11:

There exist 25 functions of time λ1eq(t), λ2eq(t), ..., λ25eq(t) satisfying
∑25

l=1 λleq(t) = 1 for

all t > 0, such that the following convex combination holds for every t:
25∑
l=1

λleq(t)(Au(l)(t)xe + a) = 0, (4.53)

with

Au(l)(t) =

[
M1 M2 M3 M4

]
Γ 0

0 Γ

u(l)

⊗ 14 +M0

where u(l) ∈ U and xe is the desired value of the regulation, meaning that the equilib-

rium point is reached in sense of Filippov. The matrices M0, M1, M2, M3 and M4 are

given in equation (2.22).

In order to establish the stability properties of the equilibrium point xe, we intro-

duce the following property.

H PROPERTY 4:

For matrices Ãu(j) de�ned in (2.22), there exist common matrices P,Q ∈ S4 satisfying

Ãu(i)(j)
TP + PÃu(i)(j) + 2Q < 0, (4.54)

for all j ∈ {1, ..., 4} and u(i) ∈ U with i ∈ {1, ..., 25}. Therefore, matrices Ãu(i)(j) are

Hurwitz.

Proof. The statement can be easily proven choosing

P =



L 0 0 0

0 L 0 0

0 0 CV 2
s 0

0 0 0 CV 2
s


,

Q =



−RLS 0 0 0

0 −RLS 0 0

0 0 −( 1
R

+ 1
2Rp

)V 2
s 0

0 0 0 − g
2Rp


,

which are found from the system structure and energy-like arguments, meaning that

the energy of the system is dissipated only through the resistances.
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4.3.1. The control objectives

The objectives of the control problem are summarized as follows:

1. The instantaneous active power p and the instantaneous reactive power q should

track their references denoted p∗ and q∗, respectively,

p→ p∗

q → q∗.

2. The sum of the converter capacitors voltages vdc should be regulated towards its

reference denoted v∗dc,

vdc → v∗dc.

3. The difference of the converter capacitors voltages vd should be as small as pos-

sible,

vd → 0.

The desired equilibrium point can then be represented as xe = [xe1 xe2 xe3 xe4]T =

[p∗ q∗ v∗dc 0]T .

In order to achieve these objectives, while taking into account the characteristics

of the system, we propose a control algorithm described in the next section.

4.3.2. Hybrid model and proposed control law

Continuous-time and discrete-time dynamics are present in the considered system

and the HDS theory developed in [26] is a potential way to take both dynamics into

consideration. The continuous evolution (or �ows) represents the evolution of the in-

stantaneous active and reactive power states and the voltages vdc and vd. Likewise, the

discrete evolution (or jumps) represents switching control inputs u ∈ {u(1), ..., u(25)}.
Then, the closed loop system can be easily described as a hybrid system of the

formH = (C, f,D, G):

H :



ẋ
u̇

 = f(t, x, u), (x, u) ∈ C,

x+

u+

 ∈ G(t, x, u), (x, u) ∈ D,

(4.55)

64



4.3. AC-DC CONVERTERS: THREE-PHASE THREE-LEVEL NPC CONVERTER

f(t, x, u) :=

 Au(t)x+ a

0

 ,

G(t, x, u) :=

 x

argmin
i∈K

x̃TP (Au(i)(t)x+ a)


(4.56)

with i ∈ {1, 2, ..., 25} and x̃ = x− xe the error between x and the equilibrium xe.

The �ow and jump sets are given as:

C :={(x, u) : x̃TP (Au(t)x+ a) ≤ −ηx̃TQx̃}, (4.57)

D :={(x, u) : x̃TP (Au(t)x+ a) ≥ −ηx̃TQx̃}, (4.58)

where η ∈ (0, 1) is a design parameter.

The basic idea used in model (4.55)-(4.58) is as in Section 4.2.2 and is given as fol-

lows: assume there exists a common Lyapunov function, V (x̃) = x̃TPx̃, for all modes

of the system, then

· if the Lyapunov function is suf�ciently decreasing for a given control input, then

this value of control is maintained.

· If the derivative of the Lyapunov function is not suf�ciently negative, the control

input is changed in order to improve the decreasing of V (x̃).

à PROPOSITION 3:

The hybrid system (4.55)− (4.58) satis�es the basic hybrid conditions given in assump-

tion 3. Then, we can conclude that the hybrid system (4.55)− (4.58) is well-posed.

The next Lemma guarantees the control mechanism described before, ensuring

that the Lyapunov function is decreasing enough after each jump.

[ LEMMA 4:

Consider matrices P,Q ∈ S4 satisfying Property 4, a point xe ∈ R4 satisfying Assump-

tion 11, then, for each x ∈ R4,

min
i∈K

x̃TP (Au(i)(t)x+ a) ≤ −x̃TQx̃, (4.59)

with x̃ = x− xe.

- REMARK 13. We note here that, if x̃ 6= 0

−x̃TQx̃ < −ηx̃TQx̃.

because η < 1.
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Following the hybrid system theory, we will establish stability properties of the

given compact set

A := {(x, u) : x = xe, u ∈ U}. (4.60)

b THEOREM 7. Consider Assumption 11 and matrices P,Q ∈ S4 satisfying Property 4.

Then, the set (4.60) is UGAS for hybrid system (4.55)–(4.58) for each xe satisfying As-

sumption 11.

4.3.3. Applications

In this section, some simulations are performed on the proposed closed loop sys-

tem by using MATLAB/Simulink and by exploiting the HyEQ Toolbox [37] to verify the

properties of the closed loop (4.55)–(4.58).

The parameters of the NPC are given in Table 4.1. The simulations are made for differ-

ent values of sampling time Ts (where the switching frequency is fs = 1
Ts

). Moreover,

we choose η = 0.1 following up the trade-off between switching frequency and per-

formance mentioned in Remark 7.

Table 4.1: Simulation parameters

Parameter Convention Value/(Units)

Estimated series resistance RLS 0.4 (Ω )

load resistance R 30 (Ω)

Estimated parasitic resistance Rp 20 (KΩ )

Inductor L 15 (mH )

Output capacitor C 1500 (µF )

Total dc-link voltage reference V ∗dc 150 (V )

Amplitude of the grid voltages Vsα 62
√

2( V )

Grid frequency f 50 (Hz)

The chosen matrixQ can achieve some LQ performance level, for example, reduce
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the levels of dissipated energy, following [30, Theorem 2]:

Q =



1 0 0 0

0 1 0 0

0 0 0.5 0

0 0 0 0.1


.

Further, a common matrix P can be obtained such that Property 4 is satis�ed:

P =



7.91 0 0 0

0 7.91 0 0

0 0 2773.78 0

0 0 0 3040.37


· 10−2.

The desired equilibrium point is given as follows:

xe =

[
x1e 0 V ∗dc 0

]T
,

where x1e is obtained from the equilibrium of model (4.52)

x1e =

2V 2
s − V 2

s

√
4− 8RLS

V 2
s

(
2Rp+R

R∗Rp

)
V ∗

2

dc

4RLS

,

which is, xe = [782.4 0 150 0]T .

Figure 4.12 shows the evolution of states for different values of sampling time Ts =

{10−4, 10−5, 10−6}s. Note that, for these different values of Ts, the instantaneous ac-

tive and reactive power, p and q, and the voltages vdc and vd converge respectively

towards their desired references with a response time of to 0.02s. Furthermore, we

can notice that the instantaneous active and reactive powers signals admit a high-

frequency ripple phenomenon due to switching control. Note also that, when the

switching frequency is increased, then the ripple amplitude is reduced. Similar argu-

ments are found for the phase currents, as shown in Figure 4.13, showing the trade-off

between switching frequency and performance (if Ts increases, then the ripple signal

increases). Finally,these simulations illustrate Theorem 7 statement.

Furthermore, the evolution of the Lyapunov function is depicted in Fig. 4.14, we

can remark that when Ts is small then the steady state error of V is reduced. Likewise,

when Ts is large, the Lyapunov function increases because we forbid the switches

along period Ts.
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Consequently, we can conclude from the simulations that:

· the desired equilibrium point is reached in the generalized sense of Filippov as

expected in Assumption. 11. It means that the desired equilibrium is generally

obtained for a not constant control, meaning that the control switches between

several values at an in�nite switching frequency. As expected, a Zeno behavior

appears.

· In practical applications, as well as in simulation purposes, it is necessary to in-

clude a maximal switching frequency to avoid a Zeno behavior at the steady-

state. However, a signi�cant impact on the quality of the convergence towards

the desired equilibrium is expected as shown in Fig. 4.12 and Fig. 4.13.

· If the switching frequency is reduced, then the difference between the balance

and the state increases, and the ripple also increases. Hence, it appears that a

right trade off between the number of switches and error should be found. This

phenomenon has not only been studied in the context of hybrid framework (see

report [51]), but also in the problem of the discretization of the sliding mode

control [52].

4.3.4. Conclusions

We have considered a nonlinear time varying model of a three-phase three-level NPC

converter. Furthermore, to ease the design of an ef�cient control law, a polytopic

model is developed. Then a hybrid control scheme is proposed, ensuring that a de-

sired attractor is UGAS for this hybrid closed loop system. Finally, the main result is

validated in simulation.

4.4. Conclusions

This chapter is devoted to the regulation problem for two different cases. Firstly, an

Hybrid adaptive control is proposed for the boost converter. The idea of the control

is to manage the switches in order to perform stability properties and an adaptive

control is used to deal with the unknown resistive load. The stability of the system is

provided using the hybrid theory.

Secondly, a hybrid control law is proposed for a three-level three-phase NPC con-

verter. Basically, a polytopic representation of the entire system is proposed to deal

with the time varying of model of NPC. This control law makes the system switches

in�nitely (Zeno phenomena). From practical point of view, the Zeno behaviors are

not suitable. In order to deal with this problem, in Chapter 6, a practical stability is

ensured by imposing a dwell-time between consecutive switches.
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Figure 4.12: Evolution of the states for different values of sampling time Ts.
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Figure 4.13: Evolution of the phase currents for different values of sampling time Ts
and for η = 0.1.
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Figure 4.14: Evolution of the Lyapunov function.
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5.1. Introduction

This chapter deals with the design of control laws for DC-AC converters. Contrary to

the previous chapter, the control objective is to design a hybrid control, such that, the

output follows a time-varying reference. More precisely, we are interested in design-

ing a hybrid adaptive control law, in order to guarantee a minimum error between the

output and the reference. for the half-bridge inverter.

As presented in the previous chapter, since this kind of system exhibits continuous

dynamics (current and voltage) and discrete dynamics (switching signals), the goal is

to use the hybrid theory presented in Chapter 2, in order to improve performance, as
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well as, stability properties. Moreover, as for the boost converter, an adaptive law is

added to deal with the variation of the resistance load. The chosen DC-AC converter

in this chapter is a half-bridge inverter.

5.2. DC-AC Converters: Half-bridge inverter

In this work, we aim at using an accurate model of half-bridge inverters, considering

the real nature of the signals. To this end, we extend the results presented in [47],

where a hybrid control is designed for the half-bridge inverter considering a constant

and known load.

The novelty of this work lies in the design of a hybrid adaptive control for a half-

bridge inverter regarding an unknown or perturbed load. A similar problem is consid-

ered in [53], where the authors stabilize the output of a DC-DC converter to a desired

reference, considering therefore a regulation problem and an unknown load. How-

ever, here the problem is different, because we are dealing with a tracking problem.

To this end, we transform the problem in an output regulation problem [54][55] and

we propose an indirect adaptation mechanism in the hybrid dynamical scheme, in

order to adapt the load variations. More precisely, we consider an adaptive law fed by

a state observer by assuming that all states are measurable. Then, uniformly locally

asymptotically stability is ensured by applying the time-scale separation and by using

a singular perturbation analysis.

5.2.1. Problem formulation

Let start by rewriting the model of the half-bridge inverter given in equation (2.24),

considering the unknown value of resistance R0. To this end, let de�ne β := 1
R0
∈

[βm, βM ], which belongs to the following polytope

Ω := λβ,mβm + λβ,MβM , ∀ λβ,m, λβ,M ∈ [0, 1],

with λβ,m + λβ,M = 1.

And let consider this next assumption

C ASSUMPTION 12:

We assume that:

· Current and voltage are measurable.

· All the components are ideal (except the load R0).

· The loadR0 is an unknown constant and is assumed to be in the interval [Rm
0 , R

M
0 ].

· x2 = 0 corresponds to the starting operation mode, and any starting strategy is

used to bring our system to x2 6= 0.
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Using de�nition of β and Assumption 12, then the system (2.24) is rewritten as fol-

lows 

ẋ(t) =

A(β)︷ ︸︸ ︷−RLS
L

− 1
L

1
C0

− β
C0

x(t) +

Bu︷ ︸︸ ︷VinL
0

u,

y(t) =

C︷ ︸︸ ︷[
0 1

]
x(t),

(5.1)

with x(t) = [iL(t) vC(t)]T is the state vector, y(t) is the controlled output and u =

{−1, 1} is the control input. Note thatA(β) is Hurwitz for all β > 0. Moreover, as in the

previous work, we assume that the following property is veri�ed.

H PROPERTY 5:

Consider matrix A(β) in (5.1), with β ∈ [βm, βM ], and a chosen matrix Q ∈ S2. Then

there exists a matrix P ∈ S2 satisfying the two following Lyapunov inequalities:

AT (βm)P + PA(βm) +Q < 0,

AT (βM)P + PA(βM) +Q < 0.

This property imposes �nally a unique Lyapunov function for the polytopic model

(5.1). In the next subsection, we propose a desired tracking trajectory, which will be

described by a linear time-invariant model.

5.2.2. A reference model

The desired trajectory to be tracked by the voltage and the current are given as:

x2e(t) := VCd(t) = Vmax sin(wt),

x1e(t) := iLd(t) = C0wVmax cos(wt) + βVmax sin(wt),

(5.2)

where Vmax andω are respectively the desired amplitude and angular frequency of the

voltage applied to the load R0. Note that, only x2e(t) is imposed and x1e(t) is therefore

calculated using equation (5.1), meaning that (5.2) is an admissible trajectory for (5.1).

In order to impose a such behavior, let us de�ne the exogenous model, whose the

output yd(t) is the reference to be followed
ż(t) = Θz(t),

yd(t) = Π(β)z(t),

(5.3)
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where z ∈ R2 is the state of the exosystem and

yd(t) =

 iLd(t)
VCd(t)

 , Θ =

 0 w

−w 0

 and Π(β) =

−wC0 β

0 1

 .
- REMARK 14. In our case, as β is an unknown parameter, this reference cannot be

used directly for the control design. This is the reason why an estimate of β, named β̂,

is designed in Section 5.2.4, given via an observer and adaptive control. This estimate

should be used to produce the estimated output of the reference model.

ŷd(t) = Π(β̂)z(t), (5.4)

with ŷd(t) = x̂e(t) = [̂iLd(t) V̂Cd(t)]
T is the estimated value of the real output of the

reference model.

- REMARK 15. Note that from (5.3) and by considering that z(0) = [0Vmax]
T , it is simple

to demonstrate that

z2
1(t) + z2

2(t) = V 2
max.

Consequently, de�ne the following compact set

Φ = {(z1(t), z2(t)) ∈ R2, z2
1(t) + z2

2(t) = V 2
max}.

Now that, we have described the model and the reference, the problem of tracking

for the half-bridge inverter with unknown resistance is stated in the next section.

5.2.3. Problem statement

In this work, we are focused on the design of a switching signal u ∈ {−1, 1} and an

adaptive law ˙̂
β, which guarantee the two following properties:

1. A suitable trajectory tracking properties of the voltage x2(t) to a desired trajec-

tory x2e(t), ensuring asymptotic convergence properties of the error e(t), be-

tween the state x(t) and desired tracking trajectory yd(t) :

lim
t→∞

e(t) = 0.

where e(t) = x(t)− yd(t).

2. The convergence of the estimation of the load β̂ to the real value of β, such that

the error between yd(t) and ŷd(t) converge to zero. meaning that if

lim
t→∞

β̂ = β, then, lim
t→∞

ŷd(t) = yd(t).

In the �rst place, let us rewrite the original system in term of the error between

x(t) and yd(t).
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A. Error dynamics model

Let us de�ne the error state variable e(t) = [e1(t) e2(t)]T ∈ R2, between the state of the

model (5.1), x(t), and the real output of the reference model, yd(t). Then from equation

(5.3), the error equation can be written as:

e(t) = x(t)− Π(β)z(t). (5.5)

Furthermore, this error equation can be rewritten as follows:

e(t) = x(t)− Π(β̂)z(t) + Π(β̂)z(t)− Π(β)z(t), (5.6)

by de�ning this new variable

ê(t) = x(t)− Π(β̂)z(t), (5.7)

then, the equation (5.6) can then be given by

e(t) = ê(t) + Π(β̂)z(t)− Π(β)z(t),

= ê(t) +

0 β̂ − β

0 0

 z(t),
(5.8)

The goal is to prove the asymptotic stability of the error e(t). To this end, it will be

decomposed the problem into two parts:

1. The convergence of β̂ to β, which will be ensured by an observer and adaptive

control explained in Section 5.2.4.

2. The convergence of the estimated error ê(t) towards zero.

In order to �nd the estimated error dynamics, let us �rstly, consider a vector Γ,

such that, the following algebraic equation is veri�ed:

A(β)Π(β̂) +BΓ(β̂) = Π(β̂)Θ, (5.9)

A simple calculation shows that, Γ(β̂) does not depend on β and can be written as:

Γ(β̂) =

[
−wLβ̂

Vin
− wRLSC0

Vin

(
1
L
− C0w

2 + RLS β̂
L

)
L
Vin

]
.

At this stage, let us consider the estimated error given in (5.7), then the dynamic of

this variable is given as:

˙̂e(t) = ẋ(t)− Π(β̂)ż(t)− ˙̂
βΠ′(β̂)z(t) (5.10)
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where Π′ = dΠ

dβ̂
.

Then, by substitution of equation (5.9) in (5.10), we obtain

˙̂e = A(β)ê+Bd(
˙̂
β, β̂, z), (5.11)

where

d(
˙̂
β, β̂, z) :=

(
v(β̂, z)− L

Vin

˙̂
βz2

)
, (5.12)

with

v(β̂, z) := u− Γ(β̂)z, (5.13)

which is �nally a new control input to be designed. Nevertheless, we need the keep

in our mind that, the control applied to half-bridge inverter is de�ned by:

u := v + Γ(β̂)z.

- REMARK 16. Note that, if β̂ = β, than equation (5.4) and (5.9) are the well known

"regulator equations" [54][55].

Inspired by [53], we extend the work presented in [30], for model (5.1) with an un-

known parameter β. The idea is to design a hybrid adaptive controller that considers

the continuous-time dynamics, x1, x2, and the discrete-time dynamic, u, estimating

β in continuous-time, at the same time that x1(t) and x2(t) converge to a sinusoidal

references given by (5.3).

The next section is devoted to the design of an adaptation control law with the aim

of estimating the unknown constant β.

5.2.4. Adaptation law

For the purpose of designing an adaptation law, we consider a state observer for the

estimated error ˆ̂e2, and an adaptation law for parameter β, with the following structure

˙̂
ê2(t) =

1

C0

(ê1(t)− β̂ê2(t)) + α(ê2(t)− ˆ̂e2(t)) (5.14)

˙̂
β = g(ê2(t), ˆ̂e2(t)), (5.15)

where ˆ̂e2(t) is the estimated state of ê2(t), β̂ is the estimated value ofβ andα is a positive

constant parameter, which represents the convergence speed of the observer. g(.) is

the adaptation law and to achieve a mathematical expression of g(ê2(t), ˆ̂e2(t)), let us

de�ne the following error variables, considering β̇ = 0

ĕ2(t) := ê2(t)− ˆ̂e2(t), β̃ := β − β̂ ⇒ ˙̃β = − ˙̂
β (5.16)

Next, from (5.1) and (5.14), we derive the error equation of ĕ2(t)

˙̆e2(t) = − β̃

C0

ê2(t)− αĕ2(t). (5.17)
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The error model is then rewritten as:
˙̆e2(t) = − β̃

C0
ê2(t)− αĕ2(t),

˙̃β = − ˙̂
β

(5.18)

Now, let us introduce the next candidate Lyapunov function

W (ĕ2, β̃) =
1

2

(
ĕ2

2(t) +
β̃2

γ

)
, (5.19)

where γ is a positive scalar. Considering system (5.18),W (ĕ2, β̃) is positive de�nite and

radially unbounded. The derivative of W along the trajectories of (5.18) gives:

Ẇ (ĕ2, β̃) = −αĕ2
2(t)− ê2(t)ĕ2(t)

C0

β̃ +
β̃ ˙̃β

γ
= −αĕ2

2(t) + β̃

(
− ê2(t)ĕ2(t)

C0

+
˙̃β

γ

)
. (5.20)

The adaptation law is now de�ned by canceling the terms in parentheses, i.e.

˙̃β =
γê2(t)ĕ2

C0

. (5.21)

Consequently, by substitution of (5.21) in the second equality of (5.16), the adaptation

law is de�ned as
˙̂
β = −γê2(t)ĕ2(t)

C0

. (5.22)

- REMARK 17. Note that γ de�nes the adaptation speed, and consequently, if γ is

larger, then the adaptation speed comes larger.

Now that we have designed a adaptive control law, we will couple this law with a

hybrid control to form a hybrid adaptive control proposed in the next Section.

5.2.5. Hybrid model and proposed control law

Now, we model our system under a hybrid dynamic scheme, following the paradigm

given in [26]. Wherein

· the continuous-time behavior encompasses the evolution of ê(t), z(t), ˆ̂e2(t) and

β̂,

· the discrete-time behavior captures the jump of the switch half-bridge inverter

signal u ∈ {−1, 1}, (through v),

79



CHAPTER 5. HYBRID CONTROL FOR DC-AC CONVERTERS

We characterize the overall dynamics by the following hybrid model:

H :





˙̂e

ż

v̇

˙̂
ê2

˙̂
β


= f(ξ), ξ ∈ C,



ê+

z+

v+

ˆ̂e+
2

β̂+


∈ G(ξ), ξ ∈ D,

(5.23)

where ξ = [ê z v ˆ̂e2 β̂]. f(ξ) is the flow map and contains the continuous dynamics of

the system. and G(ξ) is a jump map capturing the switching logic:

f(ξ) :=



A(β)ê+Bd(ξ),

Θz

−Γ(β̂)Θz

1
C0

(ê1 − β̂ê2) + α(ê2 − ˆ̂e2)

−γê2(ê2 − ˆ̂e2)/C0


, (5.24)

G(ξ) :=



ê

z argmin
v=u−Γ(β)z

u∈{−1,1}

ẽTP
(
A(β̂)ê+Bd(ξ)

)− Γ(β̂)z

ˆ̂e2

β̂



, (5.25)
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where

d(ξ) =

u− Γ(β̂)z +
γLê2

(
ê2 − ˆ̂e2

)
VinC0

z2

 (5.26)

with α and γ are positive constant parameters, and ẽ = [ẽ1 ẽ2] is de�ned as follows
ẽ1 = ê1

ẽ2 = ê2 + (e2 − ˆ̂e2).

(5.27)

Inspired by [30] and as proposed by [53], we select the so-called �ow and jump

sets

C :=
{
ξ : ẽTP

(
A(β̂)ê+Bd(ξ)

)
≤ −ηẽTQẽ

}
, (5.28)

D :=
{
ξ : ẽTP

(
A(β̂)ê+Bd(ξ)

)
≥ −ηẽTQẽ

}
, (5.29)

with η ∈ (0, 1) as for the boost and NPC converters, is tunned parameter.

- REMARK 18. To achieve the control objectives, i.e. reach the desired equilibrium,

ê = 0, the proposed control generates arbitrary fast switching in the steady-state,

therefore the desired equilibrium is achieved in a Filippov sense. But from a prac-

tical point of view, the switching frequency must present a minimal dwell-time be-

tween consecutive switches. Moreover, as for the boost converter, a time- or space-

regularization can be added in the closed-loop in order to reduce the switching fre-

quency at the expense of the performances (See Chapter 6)

à PROPOSITION 4:

The hybrid system (5.23)−(5.29) satis�es the basic hybrid conditions given in Assump-

tion 3. Then, applying Theorem 1, we can conclude that the hybrid system (5.23)−(5.29)

is well-posed.

Now, let us de�ne the following compact attractor for the system (5.23)–(5.29):

A := {ξ : ê = 0, z ∈ Φ, u ∈ {−1, 1}, ˆ̂e2 = ê2, β̂ = β}. (5.30)

Indeed, we are interested in uniform stability and convergence to a set where ê = 0,

β̂ = β, and ˆ̂e2 = ê2, whatever the value of z ∈ Φ and u ∈ {−1, 1}. The Section 5.2.6 is

dedicated to prove the stability of the hybrid system (5.23)–(5.29).

Let now comment the choice of matrices P and Q. As in section A,these matrices

are selected following some optimization criteria given in (5.31) for a hybrid system

(5.23)–(5.29). Speci�cally, we use [30, Theorem 2], where some LQ performance level

is guaranteed, for example: response time, reduce the dissipated energy, current peak
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among others. To this end let take the following cost function to get any LQ perfor-

mance level.

J = min
u

∑
k∈domj(ξ)

∫ tk+1

tk

ρ

R0

(vc(τ, k)− vCd)2 +R(iL(τ, k)− iLd)2dτ (5.31)

with ρ is a positive scalar.

On the other hand, we �nd that the suboptimal-LQ performance level corresponds

to increase of switching in the transient time, which can increase the dissipated en-

ergy. Therefore, the choice of η decides a trade-off between any LQ performance level

and switching frequency as shown in Figure 4.7.

5.2.6. Stability of the hybrid system

This section is dedicated to prove stability of the hybrid system (5.23)–(5.29). Note that,

the observer and adaptation dynamics are given (5.14) and (5.22) respectively. Stability

properties of this adaptation are stated in the following lemma:

[ LEMMA 5:

Consider the system (5.1), and assume that its solutions are bounded. The extended

observer (5.14)–(4.33) has the following properties:

i) The estimated states ˆ̂e2(t), β̂ are bounded.

ii) limt→∞ ˆ̂e2(t) = ê2(t).

iii) limt→∞ β̂(t) = β,

Proof. The observer error and the adaptive law equations are fully de�ned from (5.14)

and (5.22), and stability properties of these equations follow from the Lyapunov func-

tion W de�ned above in (5.19). Note that with the choice (5.21), we obtain

Ẇ (ĕ2, β̃) = −αĕ2
2

and from standard Lyapunov arguments, it follows that the error variable ĕ2 and β̃

are bounded. In addition, by LaSalle invariant principle and from Assumption 12, we

easily conclude that ĕ2 → 0, which implies from (5.21) that ˙̃β → 0. Likewise from (5.17),

and concluding from ĕ2 → 0 that ˙̆e2 → 0, we get β̃ → 0.

Consider now the quadratic Lyapunov function V for all system (5.23)–(5.25) as

V (ê, ĕ2, β̃) = W (ĕ2, β̃) + êTP ê (5.32)

withW (ĕ2, β̃) is de�ned in (5.19). The derivative of this equation a long the trajectories

of the system (5.23)–(5.25) is given by

V̇ = −αĕ2
2 + 2êTP (A(β)ê+Bd(ξ)) (5.33)
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with the expression of d(ξ) is given in equation (5.26).

To prove that a such function is negative de�nite, is very complicated. This is why,

to prove that the hybrid system (5.23)–(5.29) is SPAS, we apply singular perturbation

analysis presented in section 3.5.1 and assuming that there are slow time-continuous

variables, ξr := (ê, z, v), and fast time-continuous variables, ξf := (ˆ̂e2, β̂), then we

apply singular perturbation analysis to establish the stability properties. For this, we

will rewrite the complete system in singular perturbation form.

A. Singular perturbed form

In order to put the system above in the standard singular perturbation form, let de�ne

ν := 1
α

, γ̄ := γ
C0

and then, we can rewrite the hybrid scheme (5.23)–(5.25) as follows:

Hp :





˙̂e

ż

v̇

ν
˙̂
ê2

ν
˙̂
β


=



A(β)ê+Bd(ξ)

Θz

−Γ(β̂)Θz

ν
C0

(
ê1 − β̂ê2

)
+
(
ê2 − ˆ̂e2

)
−νγ̄ê2

(
ê2 − ˆ̂e2

)


, ξ ∈ C,



ê+

z+

v+

ˆ̂e+
2

β̂+


∈



ê

z argmin
v=u−Γ(β̂)z

u∈{−1,1}

ẽTP
(
A(β̂)ê+Bd(ξ)

)− Γ(β̂)z

ˆ̂e2

β̂



, ξ ∈ D,

(5.34)

with ξ = [ê z v ˆ̂e2 β̂].

Note that the fast variables directly impact the behavior of the slow variables.

In order to ful�ll a singular perturbation analysis, we will check the assumptions

given in section 3.5.1.
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B. Regularity of “manifold" and the fast sub-system

The fast sub-system can be written as

Hp :



ν ˙̂
ê2(t)

ν
˙̂
β

 =

 ν
C0

(
ê1(t)− β̂ê2(t)

)
+
(
ê2(t)− ˆ̂e2(t)

)
−νγ̄ê2(t)

(
ê2(t)− ˆ̂e2(t)

)
 , ξf ∈ C,

ˆ̂e+
2 (t)

β̂+

 ∈

 ˆ̂e2(t)

β̂

 , ξf ∈ D,

(5.35)

where ξf = [ˆ̂e2(t) β̂]. The “manifold" corresponds to the quasi-steady-state equilib-

rium manifold of classical singular perturbation theory [36], that means when ν → 0+,

then

ê2 − ˆ̂e2 = 0

β − β̂ = 0.

(5.36)

Note that β− β̂ = 0 comes the fact that ˙̃β = − ˙̂
β in (5.16). As (5.36) is continuous, we

can take that the manifold is empty outside of C, letting take the following set-valued:

M(e2(t)) :=



 ê2(t)

β

 e2(t) ∈ C

0 e2(t) /∈ C.

where ê(t) = [ê1(t) ê2(t)]T . Note thatM is outer semi-continuous, locally bounded

and nonempty.

From Lemma 5, the fast sub-system is locally asymptotically stable. Now, we sub-

stitute this solution in (5.34), obtaining the reduced model or just the slow model,

presented in the next sub-section.
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C. Stability for reduced system

The reduced system is the system (5.23)–(5.25) in the manifoldM, which is

Hr :




˙̂e(t)

ż(t)

v̇

 =


A(β)ê(t) +Bv

Θz(t)

−Γ(β̂)Θz(t)

 , ξr ∈ C(M),


ê+(t)

z+(t)

v+

 ∈



ê(t)

z(t)argmin ẽT (t)P
v=u−Γ(β̂)z

u∈{−1,1} .

(A(β)ê(t) +Bv)

− Γ(β)z(t)


, ξr ∈ D(M),

(5.37)

where ξr = (ê(t), z(t), v). Note that, there is not jump in M, therefore the reduced

system ignores ê2 and β̂ when determining jumps.

According to equation (5.36), implying that:

ê2(t) = ˆ̂e2(t)

β = β̂,

(5.38)

and replacing them in the expression of d(
˙̂
β, β̂, z), we have

d(β, z(t)) := u− Γ(β)z(t) = v(β, z(t)) (5.39)

According to remark 16, and in order to satisfy the constraint on the value of u (i,e.

u ∈ {−1, 1}), the following assumption must be hold.

C ASSUMPTION 13:

There exist two functions of time λ1, λ−1 ∈ [0, 1] satisfying λ1 + λ−1 = 1, such that the

following equation holds:

1∑
i=−1
i6=0

λi(A(β)êe(t) +Bvi(β, z(t))) = 0.

with êe(t) = 0 is the desired equilibrium for the error. Hence by substitution êe(t) = 0

in the last equality, we obtain

λ1 − λ−1 − Γ(β)z(t) = 0. (5.40)
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- REMARK 19. It important to understand that in Assumption 13, the solution ê(t) = 0

is obtained in sense of Krasovskii solution. Indeed the signal u = λ1−λ−1, is a periodic

sequence of arbitrarily small period T , spending a time equal to λ1T in mode u = 1,

and λ−1T in mode u = −1.

Now, we invoke the lemma presented in [30], which is important to prove the sta-

bility properties.

[ LEMMA 6:

Consider matrices P,Q ∈ S2 satisfying Property 5. Then for each ê(t) ∈ R2,

min ẽT (t)P
i∈[−1,1]

(A(β)ê(t) +Bvi (β, z(t))) ≤ −ẽT (t)Qẽ(t).

- REMARK 20. We note here that for η ∈ (0, 1) then

−ẽT (t)Qẽ(t) < −ηẽT (t)Qẽ(t).

Note that the switching frequency is reduced if η → 0 and, it is increased if η → 1, as

has been proved in [30].

b THEOREM 8. Consider Assumption 12, 13, Lemma 6 and matrices P,Q ∈ S2 satisfy-

ing Property 5. Then attractor (5.30) is Semiglobally Practically Asymptotically Stable

(SPAS) for hybrid system (5.23)–(5.29).

D. Stability of the boundary layer

The boundary layer is given by

Hbl :=


ξ̇r = 0

ν
˙̂
ê2(t) = ν

C0

(
ê1(t)− β̂ê2

)
+
(
ê2(t)− ˆ̂e2(t)

)
ν

˙̂
β = −νγ̄ê2(t)

(
ê2(t)− ˆ̂e2(t)

) ξ ∈ C ∩ rB

with rB a closed ball of radius r. Note that the boundary layer system ignores the

jumps, and during �ows ξr remains constant.

In order to evaluate the stability of the boundary layer, let consider the error equa-

tions ofHbl and given also in (5.16), and let take as particular solution ê2bl ∈ R equal to

a constant value. Then, we need evaluate the fast sub-system (5.35) and re-scale time

t to τ = (t− t0)/ν, getting

d

dτ
ĕ2(t) = − ν

C0

β̃ê2bl − ĕ2(t)

d

dτ
β̃ =

ν

C0

γê2bl ĕ2(t).
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Then, the stability property can be established using the Lyapunov function given in

(5.19). Note that, in this case, the derivative ofW along the trajectories in the boundary

layer, is relative to τ , instead of ordinary time t.

d

dτ
κ(t) = Jκ(t)

with κ(t) = [ĕ(t) β̃]T

J =

 −1 − ν
C0
ê2bl

− ν
C0
γê2bl 0

 .

Therefore, we can de�ne the next property:

H PROPERTY 6:

By replacing ν := 1/α, then the real part of the eigenvalues of J , for ê2bl ∈ {R\{0}} are

all strictly negative, i.e.

λ1 = Re

{(
(−1 +

√
1− 4

γ

α2C2
0

ê2
2bl

)
/2

}
< 0

λ2 = Re

{(
−1−

√
1− 4

γ

α2C2
0

ê2
2bl

)
/2

}
< 0

Proof of Theorem 8: From 4 and the analysis given in proposition B, C and D, we prove

the Semiglobally Practically Asymptomatic stability SPAS of attractor (4.60). �

- REMARK 21. In order to ensure a singular perturbation form, we need to estab-

lish that the response time of the slow subsystem, tR(A(β)), are larger than the fast

subsystem time response. For that, we select γ = C0α and

α >> max

{
1

tR(A(β))

}
for β ∈ [βm, βM ].

- REMARK 22. We have proved the convergence of β̂ to β and the convergence of

the estimated error ê(t) towards zero. Then the convergence of the error e(t) to zero

is ensured. Meaning that the state x(t) converges asymptotically toward the desired

reference yd(t) given in (5.3).

Finally, our control scheme is illustrated by some simulations, given in the next

section.

5.2.7. Applications

In this section, we perform some simulations using MATLAB/Simulink by exploiting

the HyEQ Toolbox [37] to verify the properties of the closed loop (5.23)–(5.29). Let

consider, for these simulations, the parameters given in Table 5.1.
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Parameter Convention Value Units

DC input voltage Vin 96 V

Reference peak voltage Vmax 220
√

2 V

Nominal angular ω 100π rad/s

frequency

Nominal load resistance R0 240 Ω

Estimated series RLS 2 Ω

resistance

Inductor L 50 mH

Output capacitor C0 200 µF

Table 5.1: Simulation parameters

R0 = 240Ω ∈ [120, 360]Ω⇔ β = 0.0042 ∈ [0.0028, 0.0083], (5.41)

which corresponds to ±50% of variation with respect to the nominal value of R0.

The desired trajectories are de�ned as

xe =

iLd(t)
vCd(t)

 =

19.5 sin(100πt+ 86◦)

220
√

2 sin(100πt)

 .
Considering [30, theorem 2], let take the following cost function to get any LQ perfor-
mance level.

J=min
u

∑
k∈domj(ξ)

∫ tk+1

tk

ρ

R0
(vc(τ, k)−vCd)2+R(iL(τ, k)−iLd)2dτ (5.42)

with ρ = 1000, and for a chosen matrix

Q =

RLS 0

0 ρ
R0

 ,
for satisfying property 5, we take

P =

21.6862 0.1721

0.1721 0.0888

 .
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Finally, in order to avoid arbitrary fast switching, we introduce practically a sam-

pling time Ts = 10−6s in order to avoid a Zeno behavior. Moreover, from (5.1), (5.2) and

the convex combination u = λ1−λ−1 with λ1 +λ−1 = 1, we get to stabilize e(t) around

0 in Filippov sense, with λ1 = 0.5+0.036 sin(100πt)+0.32 cos(100πt), satisfying the con-

dition (5.40). Furthermore, we take η = 0.1 which corresponds to a sub-optimal value

that guarantees a trade-off between performance level and switching frequency, as

shown in [30].

We select the convergence speed of the observer state, α, according to Remark 11.

Thus, we need to satisfy max {30, 40} << α. For this issue, we choose α = 200 and

α = 400. Moreover, γ = C0α.

Finally, we force two load changes, in the transient time at t = 0.001s and in the

steady state at t = 0.01s, changing β of ±50%. From β = 2.8 · 10−3 (R0 = 360Ω) to

β = 8.3 · 10−3 (R0 = 120Ω) at t = 0.001s and from β = 8.3 · 10−3 (R0 = 120Ω) to

β = 2.8 · 10−3 (R0 = 360Ω) at t = 0.01s.

0 0.05 0.1 0.15 0.2 0.25 0.3

-400

-200

0

200

400

0 0.05 0.1 0.15 0.2 0.25 0.3
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-20

0

20
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Figure 5.1: Evolution of voltage and current for α = 200.
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Figure 5.2: Evolution of voltage and current for α = 400.

90



5.3. CONCLUSIONS

0 0.1 0.2 0.3

0

0.005

0.01

0.015

0 0.1 0.2 0.3

-4

-2

0

2

4
10

-3

0 0.1 0.2 0.3

0

0.005

0.01

0.015

0 0.1 0.2 0.3

-2

-1

0

1

2
10

-3

Figure 5.3: Evolution of the estimation of β and the error ě2 forα = 200 and forα = 400.

Figures 5.1 and 5.2 show the evolution of the voltage and current for α = 200 and

for α = 400, respectively. In both cases, the states converge to their corresponding

references. For α = 400, the convergence of the state is faster than for a=200. On

the other hand, Figure 5.3 shows the evolution of β̂ and ě2, under the load change of

β in the transient time (t=0.001s) and in the steady state (t=0.01s), respectively. The

simulations in Figure 5.3 a) and Figure 5.3 b) are performed for a value of α = 200

and Figure 5.3 c) and Figure 5.3 d) are done using α = 400. Note as α larger is, the

convergence of β̂ to β faster is. Similar performance is obtained with the error ě2.

Therefore, these �gures illustrate Theorem 8 statement.

5.3. Conclusions

We have proposed a hybrid adaptive control for a half-bridge inverter with unknown

resistive load, which guarantees the robustness of the convergence of the states to-

ward the desired trajectories. The interest of such approach is the use of a hybrid

control scheme that considers the continuous-time dynamics as well as the discrete-

time dynamics for the control, avoiding the use an averaged control signal. An indirect

adaptive control is proposed to estimate the unknown resistive load. Finally, SPAS of
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the full system is proven by using a standard singular perturbation analysis.
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The power converters addressed in this manuscript can be modeled as Switched

Af�ne Systems (SASs), as mentioned in Section 2.3. In this chapter, we will deal with

the problem of practical stabilisation of operating points for SASs, ensuring a mini-

mum dwell-time and an admissible chattering around the operating point.

In the previous chapters, we provide an appealing switching strategy guarantee-

ing asymptotic stability of the operating point, which is also an equilibrium for the

average dynamics (Assumption 8, Assumption 9 in chapter 4 and Assumption 13 in

chapter 5). However, that results can generate arbitrarily fast switching. Indeed, the

equilibriums, xe, considered for the DC-DC converter, AC-DC converter and DC-AC

converter, are not the equilibriums in the sense of Caratheodory but in the sense of

Krasovskii. It means that the equilibrium is obtained at a price of an in�nity frequency

switching for the control. As a consequence, asymptotic stabilisation of the operated

point is not possible if only a �nite switching rate is allowed. Hence, the fact that

xe is not a common equilibrium implies that arbitrarily fast switching is needed by
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any asymptotic stabilizer as the solutions approach xe. Other solutions, discussed in

the context of peculiar applications of switching systems such as power converters,

see [56, 57, 58], aim at ensuring a dwell-time associated with an admissible chatter-

ing around the operating point. Another interesting line of work is discussed in [57],

which focuses on the practical stabilisation of a family of power converters that can

be modeled as switching systems with all the af�ne dynamics in a Hamiltonian form,

see also [59]. Inspired by the physical insight coming from power converters, the au-

thors also de�ne the set of admissible operating points having a similar form in terms

of equilibrium of the average dynamics, as used in [32]. Then, asymptotic stability is

guaranteed without ensuring any dwell-time between consecutive switches.

Summarizing the above, control of switched systems can exhibit transient chatter-

ing (or lack of dwell time guarantees) possibly due to the presence of sliding modes in

the proposed controller and, then, are bounded to unavoidable steady-state chatter-

ing when approaching the operating point. While the �rst problem can be avoided by

a suitable control action, the second one requires resorting to practical (rather than

asymptotic) stability guarantees. Hence, here we are interested in the practical stabi-

lization of operating points for switching systems. Important features of the proposed

control strategy are the following ones:

1. stabilization of an (arbitrarily small) set around the operating point xe whose size

can be adjusted by design parameters;

2. a positive minimal dwell time between consecutive switches during the tran-

sient and steady-state response, which can be adjusted by the design parame-

ters, to warrant practical implementability,

3. trade-off knobs (design parameters) that can be suitably adjusted to favor dwell-

time properties versus performance guarantees (an LQ cost for the transient

phase and the size of the stabilized set for the steady-state phase).

Without loss of generality, we focus here in a SAS for a DC-DC converters, with

constant parameters (Chapter 2). Then, let rewrite the model of this class of SAS as:

ẋ = Aux+B, x(0) = x0

y = Cx,

(6.1)

where the control input u := {0, 1} is the switching signal, assigning a speci�c desired

mode among the possible ones at each time. Moreover, in dynamics (6.1), x ∈ Rn is

the state, y ∈ Rp is a performance output, and Ai and B have suitable dimensions

for all i ∈ {0, 1} given in Chapter 2, equation (2.3). The hybrid control of this sys-

tem was proposed in Section 4.3.2, considering arbitrary switching in steady-state.
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To deal with this practical implementation problem, we guarantee a positive dwell

time by modifying (regularizing) the chattering controllers using either space or time

regularization techniques, where the former enforces dwell time using space-based

hysteresis logics, and the latter uses instead an explicit timer inhibiting switches up to

some guaranteed dwell time.

By casting the practical stabilization problem using the recent hybrid framework of

Chapter 3, we show that time and space regularizations are two variations of a central

result, consisting in our Lemma 7 in Section 6.2, which provides an elegant and uni�ed

view of the two approaches. To the best of our knowledge, such a uni�ed view, and

the distinction between transient and steady-state chattering avoidance has not been

proposed before, but only scattered results.

6.1. Problem formulation

We aim to provide feedback strategies determining u such that practical stabilisation

of an operating point xe ∈ Rn for switched systems is achieved while satisfying re-

quirements 1), 2) and 3) of the introduction. To this end, as in chapter 4 and 5, we

make the following standard assumption (see [32, 60, 35, 61]).

C ASSUMPTION 14:

Given Λ :=
{
λ ∈ [0, 1]|∑1

i=0 λi = 1
}

, there exists λ ∈ Λ, such that

1∑
i=0

λi(Aixe +B) = 0, and
1∑
i=0

λiAi is Hurwitz. (6.2)

2 DEFINITION 6.1.1: The set of admissible operating points Ωe ⊂ Rn is given by

Ωe := {xe ∈ Rn | ∃λ ∈ Λ satisfying (6.2)}. (6.3)

Hence, xe ∈ Ωe if it is an equilibrium point for the averaged dynamics

ẋ ∈ F (x) :=

{
1∑
i=0

λi(Aix+B) | λ ∈ Λ

}
, (6.4)

and a stability condition is satis�ed on the corresponding convex dynamics. See also

[57, 32, 35, 60] and the discussion in Remark 3. While requirement xe ∈ Ωe may ap-

pear to be non-restrictive for stabilizability of xe from u, it is already known that this

condition is not necessary even for the case of SLSs withN = 2, a1 = a2 = 0 and xe = 0,

as commented in [62, Section 3.4.2]. The average dynamics can be perceived as the

result of arbitrarily fast switching and as the solution of the differential inclusion (6.4).

Such generalizations are well characterized in the context of hybrid inclusions of [26],

by way of solutions corresponding to the so-called hybrid arcs. Here, we adopt that
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framework and discuss properties of those hybrid arcs for hybrid formulations of SAS

(6.1).

More speci�cally, we address the following problem: Given the SAS (6.1), for each

xe ∈ Ωe design a feedback law for the switching signal u that globally asymptotically

stabilizes an arbitrarily small neighborhood of xe by suitably adjusting the design pa-

rameters (in other words, a parametric feedback that practically stabilizes xe), while

satisfying requirements 2) and 3) discussed in the introduction.

Consider (6.1), xe ∈ Ωe and λe ∈ Λ satisfying (6.2). We select two matrices P and Q

as follows

H PROPERTY 7:

There exist P and Q ∈ Sn satisfying

(
N∑
i=1

λe,iA
T
i

)
P + P

(
N∑
i=1

λe,iAi

)
+ 2Q ≤ 0. (6.5)

Clearly due to
∑N

i=1 λe,iAi being Hurwitz matrices P , Q satisfying Property 7 al-

ways exist. Note that Property 7, which can be already found in [61] and in the recent

work [63], imposes less restrictive assumptions than the one proposed in the previous

chapters, which corresponds to a special case.

6.2. Practical global results using space- or time- regular-
ization

The hybrid controls proposed in Chapter 4 and 5, can provide arbitrarily fast switch-

ing as the solution approaches xe. In particular, given an initial condition inA given in

equation (4.13), one see that the hybrid dynamics (4.7)–(4.10) has at least one solution

that keeps jumping onto A without �owing. In�nitely fast switching is not desirable

in terms of energy ef�ciency and reliability in many applications, such as power con-

verters, because every switch dissipates energy and reduces the switch lifespan. For

this reason, we propose a redesign of the hybrid law, aiming at reducing the number

of switches when x̃ = x − xe is close to zero, and avoiding in�nitely fast switching.

This goal is reasonable for the proposed law, because it is possible to show that away

fromA, during transients, our control law already enjoys a desirable property of pos-

itive dwell time between switches, as long as Assumption 14 and Property 7 hold. To

do so, we change system (4.7)–(4.10) with shorthand notation H := (f,G, C,D), for a

non-negative scalar ε, to the redesigned system:

96



6.2. PRACTICAL GLOBAL RESULTS USING SPACE- OR TIME- REGULARIZATION

Hε := (f,G, Cε,Dε) (6.6a)

Cε := C ∪ {(x, u) : V (x− xe) ≤ ε} (6.6b)

Dε := D ∩ {(x, u) : V (x− xe) ≥ ε}, (6.6c)

with V is the candidate Lyapunov function given as

V (x̃) :=
1

2
|x̃|2P :=

1

2
x̃TPx̃. (6.7)

A useful practical dwell-time property for H is then established next. Lemma 7 be-

low is a nontrivial consequence of the fact that Zeno solutions can only occur at the

equilibrium xe for the hybrid closed loop. The ensuing dwell-time results are the key

to prove the properties of the regularized dynamics of this section.

[ LEMMA 7:

There exists a positive scalar T ∗ such that for each 0 < T ≤ T ∗, there exists a scalar

ε > 0 such that all solutions toH jumping from setDε �ow for at least T ordinary time

units after the jump, before reaching again set Dε. Moreover, as T tends to zero, we

have that ε tends to zero as well.

Proof. To prove the lemma, it is enough to �x any positive scalar ε = ε∗ in (6.6) and

show that there exists T ∗ such that all solutions starting from Dε∗ �ow for at least

T ∗ ordinary time units after the jump before reaching set D. The rest of the lemma

follows trivially from the fact that smaller values of ε < ε∗ are associated with the

solutions starting inDε∗ (already characterized byT ∗) plus additional solutions starting

in the compact set Dε \ Dε∗ , that enjoy a dwell-time property because any jump from

this set maps to the interior of the �ow set (and then one can consider the minimum

�owing time over this compact set of initial conditions). Without loss of generality

we can impose that the dwell time T converge to zero as ε converges to zero, thereby

de�ning the function ε discussed in the lemma.

Let us then �x a scalar ε = ε∗ in (6.6) and �rst notice that any solution jumping from

Dε∗ at time (tj, j − 1) satis�es, before and after the jump:

|x̃(tj, j)|2Q := x̃TQx̃ ≥ qm|x̃|2 ≥
qm
pM

V (x̃) ≥ qmε
∗

pM
=: 2εQ, (6.8)

where the dependence on (t, j) has been omitted at the right-hand side, and where

we denoted by qm and qM the minimum and maximum eigenvalues ofQ, respectively,

and by pM the maximum eigenvalue of P . De�ne now the function χ(τ) := 2εQ −
|x̃(tj + τ, j)|2Q and notice that (6.8) implies χ(0) ≤ 0. Consider now the �ow dynamics

in equation (4.8) and introduce scalars a = Auxe +B, to get

˙̃x = Aux+B = Aux̃+ a, (6.9)
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so that we may characterize the variation of χ as:

χ̇ = −2x̃TQ(Aux̃+ a) ≤ κ1|x̃|2Q + κ2|x̃|Q, (6.10)

where κ1 := 2 qM
qm

max
u∈N̄
|Au| and κ2 := 2 qM√

qm
max
u∈N̄
|bu|. Using now |x̃|2Q ≤ |χ| + 2εQ, which

also gives |x̃|Q ≤
√
|χ| +

√
2εQ, because |χ| and εQ are both non-negative, we get the

bound:

χ̇(τ) ≤ κ1(|χ(τ)|+ 2εQ) + κ2(
√
|χ(τ)|+

√
2εQ) (6.11)

= κ1|χ(τ)|+ κ2

√
|χ(τ)|+ κ3, ∀τ ≤ tj+1 − tj,

where κ3 = 2κ1εQ +κ2

√
2εQ > 0. Denote by φ the solution to the differential equation

induced by (6.11) starting at zero. This solution is continuous by de�nition, and strictly

increasing because κi > 0 for all i = 1, 2, 3. Then there exists T1 such that φ(T1) = εQ

and from standard comparison theory, and recalling that χ(0) ≤ 0 (by (6.8)), we have

χ(τ) ≤ εQ for all τ ≤ T1, which implies

|x̃(tj + τ, j)|2Q = 2εQ − χ(τ) ≥ εQ, ∀τ ≤ T1. (6.12)

Consider now equation (4.17) and de�ne the function 1

ς(x̃) :=
x̃T (Aux̃+ a)

|x̃|2Q
+ 1,

which, from (4.17) clearly satis�es ς(x̃(tj, j)) ≤ 0 after the jump from Dε∗ . We prove

below the existence of T ∗ such that

ς(x̃(tj + τ, j)) ≤ 1− η, for all τ ≤ T ∗, (6.13)

which trivially proves x̃(tj + τ, j)T (Aux̃(tj + τ, j) + bu) ≤ −η|x̃(tj + τ, j)|2Q for all τ ≤ T ∗,

which in turn implies that the solution does not belong to D, thus completing the

proof of the lemma.

To prove (6.13), we proceed again with bounding the derivative of ς . Straightfor-

ward derivations provide, along �owing solutions according to (4.8):

ς̇ = −2x̃TP (Aux̃+ a)x̃TQ(Aux̃+ a)

|x̃|4Q

+
x̃T (PAu + ATuP )Aux̃+ x̃T (2ATuP + PAu)a+ aTPa

|x̃|2Q
≤ ς1 + ς2

1

|x̃|Q
+ ς3

1

|x̃|2Q
,

1To avoid overloading notation, the hybrid time is only speci�ed on the x̃ component, but the state

variable u should be evaluated at the same hybrid time in the derivations at the end of the proof of

Lemma 7.
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where ς1, ς2, ς3 are suf�ciently large positive scalars (and where we used |x̃| ≤ 1√
qm
|x̃|Q

in several places). Consider now any time τ ≤ T1, and use bound (6.12) to obtain ς̇ ≤
ς1 + ς2ε

−1/2
Q + ς3ε

−1
Q , which, together with ς(x̃(tj, j)) ≤ 0, and integrating ς̇ , immediately

gives (6.13) for T ∗ := min{T1, T2}, where T2 := 1−η
ς1+ς2ε

−1/2
Q +ς3ε

−1
Q

.

Lemma 7 ensures that a positive dwell time holds if solutions remain suf�ciently

far from A. Then we have two possibilities to modify our control law to ensure that

dwell time is enjoyed by solutions. One of them corresponds to replace the jump set

D by the restricted version inDε (we call it space regularization) and forcing solutions

to �ow in D \ Dε (this is called space regularization and is addressed in Section 6.2.1),

and the other one corresponds to force solutions not to jump unless some dwell time

has expired (this is called time regularization and is addressed in Section 6.2.2). Then,

it makes sense to introduce the following ε-in�ated version of attractor A:

Aε := {(x̃, u) : V (x̃) ≤ ε, u ∈ N̄}, (6.14)

which evidently reduces toA as ε tends to zero. Practical stabilization ofA comprises

�nding a parametric control law (whose parameter is ε) such that for each suf�ciently

small value of ε a subset of Aε is UGAS for the closed loop. This is done in the next

sections.

6.2.1. Space regularization

Based on Lemma 7, for any value of a positive scalar ε, let us consider the space-

regularized version of H = (f,G, C,D) given in (6.6). The regularized dynamics are

clearly motivated by the fact that jumps are forbidden when solutions are ε-close to

the attractor.

Mainly using Lemma 7 the following desirable results are enjoyed by hybrid system

Hε.

b THEOREM 9. Consider point xe and a vector λe satisfying Assumption 14 and ma-

trices P and Q ∈ Sn satisfying Property 7. The following hold:

1. for any positive scalar ε, set Aε in (6.14) is UGAS for dynamicsHε in (6.6);

2. setA is globally practically asymptotically stable for (6.6), with respect to param-

eter ε;

3. There exists T > 0 such that all solutions to Hε enjoy a T-dwell-time property,

namely given any solution ϕ toHε, all (t, j) ∈ domϕ satisfy t ≥ j
T
− 1.

Proof. First notice that sets Cε and Dε are both closed. Indeed, Cε is the union of two

closed sets and Dε is the intersection of two closed sets. Then, due to the properties
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of f and G, systemHε satis�es the hybrid basic condition presented in chapter 3 and

we may apply several useful results pertaining to well-posed hybrid systems.

Proof of item 3). This item follows in a straightforward way from Lemma 7. Indeed,

solutions to Hε can only jump from Dε. Any such solution ϕ �ows for at least T time

after each jump, before reaching again Dε, which clearly implies t+ 1 ≥ j
T

(where the

“1” takes care of the initial condition), as to be proven.

Proof of item 1). Consider the following Lyapunov function candidate:

Vε(x̃) = max{V (x̃)− ε, 0}, (6.15)

which is clearly positive de�ne with respect to Aε and radially unbounded. Since

outside set Aε the hybrid dynamics Hε coincides with the one of H, then equations

(4.14) and (4.15) hold for any (x̃, u) not in Aε, which implies that

〈∇Vε(x̃), f(x, u)〉 < 0 ∀x̃ ∈ Cε \ Aε (6.16)

Vε(x̃
+)− Vε(x̃) = 0, ∀x̃ ∈ Dε \ Aε (6.17)

Moreover, from the property established in item 3), all complete solutions toHε must

�ow for some time, and therefore from (6.16), we have that no solution can keep Vε

constant and non-zero. UGAS of Aε by applying the nonsmooth invariance principle

in [64], also using the well posedness result established at the beginning of the proof.

Proof of item 2). The proof follows in a straightforward way from the previous item,

after noticing that given any neighborhood I of A, there exists a small enough ε > 0

such that Aε ⊂ I .

6.2.2. Time regularization

Based on Lemma 7, for any value of T < T ∗, we may introduce the following additional

state variable τ to dynamics (4.7):

HεT :



ẋ
u̇

 = f(x, u),

τ̇ = r
(
τ
T

)
,

(x, u) ∈ CεT



x+

u+

 ∈ G(x, u),

τ+ = 0,

(x, u) ∈ DεT ,

(6.18a)
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where r(s) := min{1, 2− s}, for all s ≥ 0 and the jump and �ow sets are the following

time-regularized versions of C and D in (4.7)–(4.10):

CεT := C × [0, 2T ] ∪ {(x, u, τ) : τ ∈ [0, T ]}

DεT := D × [T, 2T ].

(6.18b)

The above regularization is clearly motivated by the fact that jumps are forbidden

when the timer τ is too small, namely not enough time has elapsed since the last jump.

Then all solutions are forced to �ow for at least T ordinary time after each jump. Note

also that function r at the right-hand side of equation (6.18a) allows a solution to �ow

forever while ensuring that timer τ remains in a compact set.

Before proceeding any further, we emphasize that forcing a solution to �ow re-

gardless of whether it belongs to D or not, may lead to an increase of function V . It is

useful to quantify how much increase V can experience from the set where V (x̃) ≤ εT

(let recall εT := ε, being ε introduced in Lemma 7). To this end, we exploit the af�ne

nature of the dynamics and observe that along solutions of (6.18) we have V̇ (x̃) ≤
|x̃||P || ˙̃x| = |x̃||P || ˙̃x| ≤ |x̃||P |(κ1|x̃|+ κ2) ≤ 2αV (x̃) + 2β

√
V (x̃), where α and β are large

enough positive scalars and where we used positive de�niteness of P and the sector

growth condition | ˙̃x| = |ẋ| ≤ |Au(x − xe)| + |Auxe + au| ≤ κ1|x̃| + κ2 (which clearly

holds for some κ1 > 0 and κ2 > 0). Proceeding as in [65, page 203], we obtain along

any solution φ satisfying (t, j) ∈ domφ and (t+ T, j) ∈ domφ,√
V (φ(t+ τ, j)) ≤ eατ

√
V (φ(t, j)) + β

∫ τ

0

eαsds

= eατ
√
V (φ(t, j)) +

β

α
(eατ − 1), ∀τ ∈ [0, T ].

Therefore, assuming that V (φ(t, j)) ≤ εT , we obtain for all τ ∈ [0, T ],

V (φ(t+ τ, j)) ≤ εT (T ) := 2e2αT εT +
2β2

α2
(eαT − 1)2. (6.19)

This bound motivates the introduction of the following set:

ET := {(x̃, u, τ) : V (x̃) ≤ εT (T ), u ∈ N̄ , τ ∈ [0, 2T ]}, (6.20)

which enjoys the nice property of shrinking to Aε × {0}, as T converges to zero.

Mainly using Lemma 7 the following desirable results are enjoyed by hybrid system

HεT in (6.18).

b THEOREM 10. Consider point xe and a vector λe satisfying Assumption 14 and ma-

trices P ∈ Rn×n and Q ∈ Rn×n satisfying Property 7. The following holds:

1. all solutions toHεT enjoy a dwell-time property corresponding to T ;
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2. for any positive scalar T < T ∗, there exists a compact setAε× [0, 2T ] ⊂ ET , which

is UGAS for dynamicsHεT in (6.18);

3. setA× {0} is globally practically asymptotically stable for (6.18), with respect to

parameter T (namely as long as T is suf�ciently small, the UGAS set Aε × [0, 2T ]

characterized in the previous item can be made arbitrarily close to A× {0}).

Proof. Similar to the proof of Theorem 9 we start by noticing that hybrid system (6.18)

enjoys the hybrid basic conditions of [26, As. 6.5], because sets CεT and DεT are both

closed and f and G enjoy desirable properties. Then we may apply several useful re-

sults pertaining well-posed hybrid systems (speci�cally, in the proof of item 2 below).

Proof of item 1. The dwell-time property of solutions follows in a straightforward

way from the fact that solutions are forced to not jump until the timer variable τ has

reached the value T . Since τ̇ = 1 for all τ ≤ T , then all solutions �ow for at least T

ordinary time after each jump (because τ+ = 0 across jumps).

Proof of item 2. Consider the two hybrid systems Hε and HεT in (6.6) and (6.18),

respectively. For any positive value of T < T ∗, we have shown in the proof of item 1

of Theorem 9 that it suf�ces to pick εT = ε (coming ε from Lemma 7) to obtain UGAS

of the attractor Aε in (6.14) and a dwell time of T for all solutions to Hε. Since the

(x, u) dynamics ofHε andHεT coincide, except for the dwell-time restriction onHεT ,

the above mentioned dwell-time property of solutions to Hε ensures that (possibly

after an initial �ow of at most T ordinary time) the (x, u) component of each solution

to HεT remaining outside Aε × [0, 2T ], coincides with a solution to Hε, therefore any

such solution toHεT must approachAε× [0, 2T ], which is a strict subset of ET in (6.20).

Two things may happen then. Either the solution approaches Aε × [0, 2T ] without

ever reaching it, so it eventually remains in ET , or it reachesAε× [0, 2T ] and may then

be forced to �ow by the dwell-time logic of HεT . However, in this last case we get

from bound (6.19) that such a solution cannot �ow outside ET . As a consequence, ET
is uniformly attractive and reaches in �nite time by all solutions, in addition to being

strongly forward invariant forHεT .

We now use the well-posedness property established at the beginning of the proof

to exploit a number of regularity results from [26, Ch. 6 & 7]. Denote by Ω(ET ) the ω-

limit set of ET (see [26, Def. 6.23]) and note that it cannot be empty, and must satisfy

Ω(ET ) ⊂ ET , because ET is bounded and strongly forward invariant. Then using again

strong forward invariance of ET we get boundedness of all solutions starting from ET
and we may apply [26, Prop. 6.26] to obtain that Ω(ET ) is compact, nonempty, uni-

formly attractive from ET , and strongly forward invariant. Since ET is also uniformly

attractive, we may then apply a global version 2 of [26, Prop. 7.5] applied to the compact

2A global version of [26, Prop. 7.5] is trivially obtained by establishing its hypotheses for any arbitrary

positive value of µ.
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attractor Ω(ET ), to conclude global asymptotic stability of Ω(ET ), which is equivalent

to UGAS from [26, Th 3.40 & Th 7.12].

Proof of item 3. Item 3 follows in a straightforward way by recalling from Lemma 7

that ε converges to zero as T goes to zero, and then that also ε(T ) in (6.19) enjoys the

same property. As a consequence, set ET in (6.20) shrinks toA×{0} as T goes to zero,

and since we established in item 2 that Aε × [0, 2T ] ⊂ ET for all T > 0, we can make

Aε × [0, 2T ] arbitrarily close to A× {0} by selecting T suf�ciently small.

6.3. Illustrative example

The two hybrid control schemes developed in Section 6.2.1 (space regularization) and

6.2.2 (time regularization) are tested on a boost converter model (2.3). The considered

nominal values are: Vin = 100V , R = 2Ω, L = 500µH , Co = 470µF and Ro = 50Ω.

The desired equilibrium point is chosen as xe = [3 120]T . Assumption 14 is therefore

satis�ed with λe = [0.22 0.78].
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Figure 6.1: Evolution of the states for different values of ε.
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Fig. 6.1 reports voltage and current evolutions for different selections of ε. Smaller

ε is, smaller the set Aε given by equation (6.14) is. Also we can show the convergence

of the states to the desired attractor Aε with respect to the design parameter ε.

Now, we consider a time-regularization, applying Theorem 10. Fig. 6.2 reports volt-

age and current evolutions for different selections of T . When T increases, the num-

ber of switches decreases according to Lemma 7. We can show the convergence of

the states to the desired attractor.
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Figure 6.2: Evolution of the states for different values of sampling time T .

In Figure 6.3 we report on the results of extensive simulation tests, and the arising

statistics about the switching frequency. To suitably illustrate the different roles of the

“transient” parameter η introduced in Section 4.3.2 and the “steady-state” parameters

ε and T introduced in Sections 6.2.1 and 6.2.2, respectively, we select a grid of possible

values of (η, ε) (for the space regularization case, shown in the two upper surfaces),

and a grid of possible values of (η, T ) (for the time regularization case, shown in the

two bottom surfaces). Two large sets of simulations have been carried out using space
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Figure 6.3: Top surfaces: evolution of the switching frequency with space regulariza-

tion in the transient (left) and at the steady state (right). Bottom surfaces: evolution of

the average switching frequency with time regularization in the transient (left) and at

the steady state (right).
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Figure 6.4: The chosen initial conditions.

regularization and time regularization, respectively, leading to Figure 6.3.

Let us �rst consider the upper surfaces of Figure 6.3 (space regularization). Each

point on these surfaces correspond to a pair (η, ε) and has been generated by �rst

running eight simulations from eight different initial conditions, with good coverage

of all the possible directions of the initial error (given in Figure 6.4). These initial con-

ditions all correspond to an initial value of V (x̃(0, 0)) = 200 (they are all on the same

level set of V ). Each simulation runs for 50 ms and the statistics reported in the left

of Figure 6.3 show the average switching frequency in the time domain preceding the

�rst time (t̄, j̄) ∈ dom x̃ when V (x̃(t̄, j̄)) ≤ ε (when the response is still in the transient

phase). The right surface shows instead the response in the remaining portion of each

simulation (where the response has reached the steady state).

For example:
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Figure 6.5: Evolution of Lyapunov function for two values of ε (ε=0.05 and ε=0.9).

- t∗ is the time dividing the transit-time and steady-state for ε = 0.9.

- t∗∗ is the time dividing the transit-time and steady-state for ε = 0.05.

Each of these statistics represents the number of switches normalized by the length

of the interval, averaged over the eight simulated solutions. We may appreciate the

fact that the steady-state parameter ε has no effect on the transient switching fre-

quency and has signi�cant effect on the steady-state switching frequency. The con-

verse holds for the transient parameter η, which is shown to have an effect on the

transient switching frequency.

Time regularization is instead used in the lower surfaces of Figure 6.3, correspond-

ing to a grid of selections of the two parameters (η, T ), where for each point on the

grid eight simulations from the same initial conditions as in the previous case, are

performed. For this second case, a rough indication of the expiration of the transient

phase has been performed by detecting the smallest time (t̄, j̄) when V (x̃(t̄, j̄)) ≤ 1

namely it is 200 times smaller than the initial condition), and transient statistics (pro-

viding the lower left surface of Figure 6.3) is the averaged switching frequency over

hybrid times up to t = t̄/2, whereas the steady-state statistics (providing the lower

right surface of Figure 6.3) are computed by focusing on hybrid times after 3
2
t̄ and un-

til the end of the simulation run. The resulting two lower plots of Figure 6.3 con�rm

the same trends as in the space regularization case, even though here the steady-state

tuning knob is given by scalar T .

Figure 6.6 shows the evolution of the Lyapunov function (6.7) with space regular-

ization (left) and time regularization (right) for the same initial condition and different

selections of the steady-state parameters ε and T . In the left plot, we may see that as

ε is decreased, the solution comes closer to the operating point xe but, as noticed in

Section 4.3.2, the price to pay for such proximity is a high average switching frequency

(indeed, xe is not an equilibrium for the two dynamics of the switching scheme). Con-
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Figure 6.6: Lyapunov function V (x̃) with space regularization (left) and with time reg-

ularization (right).

versely, for larger values of ε, the number of jumps decreases and, as expected, the er-

ror between x and xe increases. Similarly, for the right plot of Figure 6.6, smaller values

of T provide solutions that remain increasingly close to xe exhibiting a large switching

frequency, and vice-versa, the solutions exhibit a Zeno behavior when x → xe. In-

deed, the number of jumps increases when ε is small (respectively, when T is small).

When ε is large, (respectively, when T is large), the number of jumps decreases and

as expected, the error between x and xe increases, as we can see in Fig. 6.6. Hence, for

practical reasons, it appears reasonable that a straight trade off between the number

of jumps and error should be found.

6.4. Conclusions

In this chapter, we have dealt with practical stabilization of operating points for the

power converters addressed in this thesis (which can be modeled as switched af�ne

systems) by using a hybrid controller that performs a trade off between minimum

dwell time and the size of the asymptotically stable set. Practical asymptotic stabil-

ity is obtained by two design strategies, involving space- and time-regularization for

SASs with constant parameters. Each one of these strategies is associated to a con-

venient tuning knob that may be used to perform a trade-off between the dwell time

and the magnitude of the steady-state oscillations around the operating point. The

switching frequency during the transient phase of the response can also be adjusted

using another convenient knob, as seen in Chapter 4. This result can be easily applied
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to DC-AC and AC-DC converters. The proposed construction has been numerically

illustrated on a boost converter example.
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CHAPTER 7

CONCLUSIONS AND PERSPECTIVES

7.1. Conclusions

In this dissertation, a hybrid modeling of power converters is used to design ef�cient

control laws. Indeed, unlike many works in the literature, we propose to design some

control laws taking into account both of continuous-time dynamics of the voltages

and the currents and discrete-time nature of the switches. As a matter of fact, it ap-

pears that the hybrid dynamical framework given in [26] can be a suited manner of

designing the control laws. Based on this formulation, some control results have been

designed and listed:

1. The regulation of the output voltage of the boost converter and the one of the

NPC converter, while considering the real nature of the electronic signals. The

systems are controlled by managing the switched states. Thus, the stability and

optimality of the hybrid closed loop are provided by using the hybrid dynamical

system theory. Due to the character of the solution, which can be generalized in

the sense of Filippov, the desired point is obtained with an arbitrarily fast switch-

ing, which makes the practical implementation impossible.

2. Following the main ideas developed in Chapter 5, we have proposed a hybrid

control law for the half-bridge inverter, in the aim that the states track the de-

sired sinusoidal references. As noticed in the previous item, This control law

makes the system switch in�nitely (Zeno phenomena) when x→ xe.

3. To deal with the arbitrarily fast switching induced by the control, we guarantee

a positive dwell time by modifying (regularizing) the chattering controllers us-

ing either space- or time-regularization techniques, where the former enforces

dwell time using space-based hysteresis logics, and the latter uses instead an

explicit timer inhibiting switches up to some guaranteed dwell time. Each one

of these strategies is associated to a convenient tuning knob that may be used to
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perform a trade-off between the dwell time and the magnitude of the steady-

state oscillations around the operating point.

7.2. Perspectives

The development of this thesis has also generated several questions from different

point of view and can be listed as:

· From theoretical point of view

◦ For the NPC converter, to solve the problem of the time-varying system, a

polytopic representation are proposed in order to embed the time-varying

system into an uncertain model, which can be tackled easily by the pro-

posed methodology. But one knows that this approach may be conserva-

tive and one wonder if it is possible to �nd a hybrid control law by taking

the original model.

◦ In this thesis, all the dynamical matrices are Hurwitz, which is realistic since

it represents dynamics of the electronic circuit, which are at least asymp-

totic stable. A future work is to extend our approach to a larger class of

systems including unstable open loop systems.

◦ Extend this work on another complex converters, to cite some:

� The boost inverter is composed by two DC-DC boost converters con-

nected with a load which makes the closed loop nonlinear time-varying

hybrid model and make a such system tracks a sinusoidal reference is

a hard task.

� Three-phase �ve-level NPC Converters are complex system because of

the number of the state of the switches, which are important compared

to recti�er and these will make the control design complex since �nd

a common Lyapunov function for all theses combinations can be hard

or even impossible.

· From practical point of view,

◦ Altogether, the results presented in this manuscript remain theoretical re-

sults. As future works, the experimental implementation of the proposed

hybrid controls could be done, following for instance the work of [66].
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