
En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :

Dynamique des fluides

Présentée et soutenue par :
M. OMER ATASI

le vendredi 28 septembre 2018

Titre :

Unité de recherche :

Ecole doctorale :

Dynamics of bubbles in microchannels: theoretical, numerical and
experimental analysis

Mécanique, Energétique, Génie civil, Procédés (MEGeP)

Institut de Mécanique des Fluides de Toulouse (I.M.F.T.)
Directeur(s) de Thèse :

M. DOMINIQUE LEGENDRE
M. BENOIT HAUT

Rapporteurs :
Mme EMMANUELLE RIO, UNIVERSITE PARIS 11
M. STÉPHANE VINCENT, UNIVERSITE PARIS 12

Membre(s) du jury :
M. FRANK DUBOIS, UNIVERSITE LIBRE DE BRUXELLES, Président

M. BENJAMIN LALANNE, INP TOULOUSE, Membre
M. BENOIT HAUT, UNIVERSITE LIBRE DE BRUXELLES, Membre

M. DOMINIQUE LEGENDRE, INP TOULOUSE, Membre

  



ACKNOWLEDGEMENTS

Je remercie Frank Dubois d’avoir accepté de présider mon jury de thèse, Anne De Wit et Benjamin Lalanne d’avoir
accepté de faire parti de ce jury et tout particulièrement Emmanuelle Rio et Stéphane Vincent pour avoir accepté
d’être les rapporteurs de ma thèse.

Je tiens a remercier Benoît Haut et Benoit Scheid, mes promoteurs de thèse, en particulier. Outre le finance-
ment de thèse FNRS que j’ai pu obtenir avec leur soutien, je leur suis reconnaissant de m’avoir soutenu pendant
les périodes qui ont suivi les ruptures d’anévrisme que j’ai subies en 2013 et 2014. Concernant celà, je remercie
également François Reniers, Laetitia Brone, et Anita Mathieu de l’Université libre de Bruxelles pour le soutien
qu’ils m’ont apporté, tant financier que moral. De plus, je remercie tout particulièrement Benoît Haut d’avoir
prolongé mon financement de thèse suite a l’année pendant laquelle je n’ai pas pu travailler.

Concernant mon apprentissage scientifique, je tiens à remercier mes promoteurs de thèse Benoît Haut, Benoit
Scheid et Dominique Legendre, pour l’encadrement qu’ils m’ont fourni. En particulier, cette thèse a été l’occasion
de m’initier à de nouveaux domaines et nouvelles techniques scientifiques, ce qui n’a été possible qu’avec leur
patience et leur don à transmettre leurs connaissances. En particulier, je remercie Benoît Haut pour ses connais-
sances et la rigueur qu’il m’a transmises durant cette thèse. Je remercie Dominique Legendre de m’avoir introduit
dans le monde de la “Computational Fluid Dynamics", domaine où j’ai pu apprendre et m’épanouir. Je remercie
tout particulièrement mon co-promoteur de thèse Benoit Scheid qui m’a offert l’unique occasion de séjourner pen-
dant 8 mois à la Princeton University afin de travailler dans l’équipe du Professeur Howard A. Stone. Je remercie
aussi le Prof. Howard Stone. J’ai pu apprécier sa dévotion à la science et au bien être de ses collaborateurs et
sa disponibilité malgré son planning très chargé. Cette expérience m’a beaucoup apprise d’un point de vue sci-
entifique et je lui en suis reconnaissant, ainsi qu’aux membres de son équipe, Sepideh Khodaparast, Estella Yu,
Hyoungsoo Kim, Mirco Magnini et tous les autres.

Au sein de l’équipe du Laboratoire Transferts Interfaces et Procédés je tiens à remercier tout d’abord Sam
Dehaeck, Adrien Dewandre et Alexei Rednikov pour leur contribution dans les aspects techniques de mon travail
tant dans le domaine expérimental que théorique, et aussi Youen Vitry et Hervé Baudine de m’avoir assisté lors de
problème technique au niveau des expériences conduites au laboratoire. Je remercie les membres et ex-membres
du TIPs avec qui j’ai partagé de bons moments.

Parmi les membres de l’Institut de Mécanique des Fluides de Toulouse, je suis reconnaissant à Anaig Pedrono
avec qui nous avons développé une partie de JADIM. Elle a toujours été disponible, même pour de longues séances
de débuggage. Je remercie également Mijail Febres Soria, avec qui nous avons eu de nombreuses discussions
scientifiques, et les membres du service Interface : Mithlesh, Paul, Sébastien, Elena, Esli et Romain.

Un remerciement particulier à mon père, Samer Atassi, ingénieur et double docteur en automatique, qui a
auparavant encadré de nombreux travaux de recherche et avec qui j’ai pu avoir des discussions scientifiques sur
des sujets précis concernant des parties de ma thèse. Je remercie ma mère, Yasmine Atassi, pour sa bonne humeur
et les soutiens qu’elle m’a apporté, et mon grand père Abdhul Karim Atassi, sans qui tout cela n’aurait pas été
possible. Enfin, je remercie tout mes amis et proches qui ont contribué à rendre cette période de ma carrière
inoubliable.

1



ABSTRACT

Keywords: microfluidics, bubbly flow, Taylor flow, surfactants, lubrication film

This thesis aims at contributing to the characterization of the dynamics of bubbles in microfluidics through model-
ing and experiments. Two flow regimes encountered in microfluidics are studied, namely, the bubbly flow regime
and the Taylor flow regime (or slug flow).

In particular, the first part of this thesis focuses on the dynamics of a bubbly flow inside a horizontal, cylindrical
microchannel in the presence of surfactants using numerical simulations. A numerical method allowing to simulate
the transport of surfactants along a moving and deforming interface and the Marangoni stresses created by an in-
homogeneous distribution of these surfactants on this interface is implemented in the Level set module of the
research code. The simulations performed with this code regarding the dynamics of a bubbly flow give insights
into the complexity of the coupling of the different phenomena controlling the dynamics of the studied system.
Fo example it shows that the confinement imposed by the microchannel walls results in a significantly different
distribution of surfactants on the bubble surface, when compared to a bubble rising in a liquid of infinite extent.
Indeed, surfactants accumulate on specific locations on the bubble surface, and create local Marangoni stresses,
that drastically influence the dynamics of the bubble. In some cases, the presence of surfactants can even cause
the bubble to burst, a mechanism that is rationalized through a normal stress balance at the back of the bubble.
The numerical method implemented in this thesis is also used for a practical problem, regarding the artisanal
production of Mezcal, an alcoholic beverage from Mexico.

The second part of the thesis deals with the dynamics of a Taylor flow regime, through experiments and
analytical modeling. An experimental technique that allows to measure the thickness of the lubrication film
forming between a pancake-like bubble and the microchannel wall is developed. The method requires only a
single instantaneous bright-field image of a pancake-like bubble translating inside a microchannel. In addition to
measuring the thickness of the lubrication film, the method also allows to measure the depth of a microchannel.
Using the proposed method together with the measurment of the bubble velocity allows to infer the surface tension
of the interface between the liquid and the gas. In the last chapter of this thesis, the effect of buoyancy on the
dynamics of a Taylor flow is quantified. Though often neglected in microfluidics, it is shown that buoyancy effects
can have a significant impact on the thickness of the lubrication film and consequently on the dynamics of the
Taylor flow. These effects are quantified using experiments and analytical modeling. This work was performed at
Princeton University with Professor Howard A. Stone during an eight month stay.
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CHAPTER 2

Introduction

Microfluidics is a constantly evolving branch of technology, widely used in medicine, biology and biotechnology
as an analytical tool, from cell culture to DNA extraction (Patel and Chandra (2016)). Apart from small scale
analytic devices, microfluidics is becoming an important technology in process industry. In those industry, mi-
crofluidics contributes in reducing the hazards associated to highly exothermic reactions through the large surface
area to volume ratio of the microfluidic devices. For example, three-phase hydrogenation reactions have been
performed successfully using microfluidics (Kobayashi et al. (2004)). The high surface area to volume ratio of
these devices also enhance the efficiency of unit operations such as gas-liquid absorbtion, heating or cooling and
pervaporation (Hassanvand and Hashemabadi (2012); Han et al. (2012); Ziemecka et al. (2015)). These unit oper-
ations are performed through microfluidic devices in industry to some extent. However, there is a need to analyze
and model the underlying physics for the optimal design and functionning of these microfluidic devices. This the-
sis aims at contributing to the understanding of the physics underlying the functioning of microfluidic gas-liquid
absorption devices.

This research project is funded by the FNRS and is conducted in the frame of a collaboration between three
laboratories:

1. Transfers, Interfaces and Processes (TIPs), Université libre de Bruxelles, 1050 Bruxelles, Belgium

2. Interfaces, Institut National Polytechnique de Toulouse (INPT), 31400 Toulouse, France

3. Complex Fluids group, Princeton University (PU), 08540 Princeton, New Jersey

2.1 Bubbly flow and Taylor flow in microchannels

In microfluidics, gas-liquid absorption is performed in bubble-microabsorbers. These devices consist in a mi-
crochannel of circular or rectangular cross section of hydraulic diameter, dh, of the order of 0.1 − 2 mm. Gas
bubbles dissolve inside a liquid while they translate along the microchannel axis. This translation is generated by
an imposed pressure difference between the inlet and the outlet of the microchannel, or by injecting the gas and
the liquid at constant flow rates, Qg and Ql, respectively. Two flow regimes are encountered in those devices:

1. The “bubbly flow" regime for which the bubble equivalent diameter, d = (6V /π)
1
3 , where V is the bubble

volume, is smaller than the microchannel hydraulic diameter (i.e., d < dh).

2. The “Slug flow" or “Taylor flow" regime, where d > dh. In this regime, a lubrication film is deposited on
the microchannel wall as the bubble translate along the microchannel axis. The dynamics and the gas-liquid
mass transfer capabilities of these flows rely, among other parameters, on this lubrication film.

A schematic of these flow regimes is presented in Fig. (2.1). The transition between the bubbly flow and the
Taylor flow regimes was shown to depend on Ql and Qg . Several flow maps based on Ql and Qg were established
(see for example Thulasidas et al. (1997); Triplett et al. (1999)), where the transition between those two regimes
was determined. However, these flow maps depend upon the pair of fluids that is used. It was shown that the
bubbly flow appears at high liquid and low gas flow rates. The Taylor flow, on the other hand, is obtained on a
large range of low and intermediate gas and liquid phase flow rates.



Figure 2.1: (a): Schematic of a bubbly flow inside a microchannel. (b): Schematic of a Taylor flow inside a
microchannel.

In bubble microabsorbers, both the bubbly flow regimes and the Taylor flow are used to dissolve the gas
inside the liquid. For example, Cubaud et al. (2012) studied the complete dissolution of small carbon dioxyde
bubbles inside pure methanol in microchannels. Shim et al. (2014) studied the dissolution of air bubbles inside
aqueous solution in microchannels. Other work were also perform to study the dissolution of small bubbles inside
microchannels (Mikaelian; Mikaelian et al. (2015)). In these studies, it was shown that, for d/dh > 0.15 the liquid
recirculates in between bubbles, promoting mixing, thus enhancing the transfer of the gas towards the liquid. The
Taylor flow regime has also received considerable attention. In addition to recirculation of the liquid in between
air bubbles, Taylor bubbles have the advantage to exhibit a large surface area. Thus, the research on gas-liquid
mass transfer using Taylor bubbles is an active area of research (van Baten and Krishna (2004); Irandoust et al.

(2009); Liu and Wang (2011); Abadie et al. (2013); Abiev et al. (2017)).

In this thesis, we aim to analyze and model the dynamics of bubbles flowing in the bubbly flow regime and in
the Taylor flow regime inside horizontal microchannels.

2.2 Some important non dimensional numbers in microfluidics

In microscale flows such as the ones encountered in bubble micoabsorbers, inertial and buoyancy effects are often
negligible while surface tension and viscous forces dominate the system. The relative importance of inertial to
viscous forces is assessed by the means of the Reynolds number:

Re =
ρUL
µ

(2.1)

where ρ and µ are the density and viscosity of the liquid respectively, and U and L are the characteristic velocity
and length of the studied system, respectively. The velocity scale, U , can be set equal to the translating bubble
velocity, U , or to the mean liquid velocity, Jl = Ql/A, where A is the cross sectional surface area of the mi-
crochannel, depending on the studied system. The relative importance of buoyancy to surface tension effects is
assessed by the means of the Bond number:

Bo =
ρg (L)

2

σ
(2.2)

where σ is the surface tension of the interface and g is the gravitational acceleration. The Bond number charac-
terizing these microscale flows is often small when compared to unity. Finally, the relative importance of viscous
forces to surface tension forces is assessed by the means of the capillary number:

Ca =
Uµ
σ

(2.3)
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2.3 Use of surfactants in microfluidics

Surfactants are molecules formed of a polar group that preferentially dissolves in hydrophylic liquids, and an
apolar group that is expelled from the polar phase towards a gas phase or a hydrophobic liquid phase. As a
consequence, surfactants tend to adsorb at interfaces between a polar and an apolar medium such as air/liquid
interfaces. As they adsorb on the air/liquid interface, they locally reduce the surface tension of the interface.
Therefore, they can create a spatial imbalance in the surface tension, leading to stresses tangent to the interface
called, Marangoni stresses. These stresses create a flow along the interface, from region of low surface tension
to regions of high surface tension (Baroud et al. (2010); Anna (2016)). These properties make surfactants widely
used in bubble/drop microfluidics to prevent bubble/drop coalescence (Mazutis and Griffiths (2012)) or maintain
desired wetting conditions at the walls of the microchannel (Liu et al. (2017)).

In addition to Marangoni stresses, surfactants can create additional viscous stresses on interfaces, called sur-
face viscosity stresses, which are due to non-covalent interactions between adsorbed molecules. These stresses
may affect the fluid flow at the interface vicinity in systems characterized with a large surface to volume ratio. For
small non charged surfactants molecules present in limited amounts, these stresses have a small influence when
compared to Marangoni stresses.

In this thesis, we aim at giving insight into the complexity of the coupling between the flow inside the mi-
crochannel and the dynamics of these surfactants. The surfactants that will be considered are those for which
surface viscosity can be neglected, i.e., small non charged molecules present in small amounts. For this purpose,
the numerical code JADIM, developed at Institut de Mécanique des Fluides de Toulouse (IMFT) is used and is
further developed to simulate two phase flows with surfactants.

2.4 Objectives of the thesis and structure of the manuscript

The advantage that microfluidics offers for gas-liquid absorption, both through the bubbly flow regime and the
Taylor flow regime, and the wide use of surfactants in microfluidics has motivated us to fix the following objec-
tives:

1. Understand and indentify the parameters controlling the thickness of the lubrication film in the Taylor flow
regime.

2. Characterize the coupling between the dynamics of surfactants and the flow inside microchannels.

This work is based on experiments, numerical simulations and analytical modelling. The experiments and
analytical modelling have been performed at TIPs and PU, while the numerical simulations have been carried out
with the JADIM code developed at IMFT. Several stays, of few months each, were performed at IMFT in order
to contribute to the development of JADIM and to perform the simulations. This work contains 2 parts, and is
organized around 8 chapters.

The first part focuses on the dynamics of a bubbly flow inside a microchannel containing surfactants. The first
part contains the Chapters 3,4,5,6 and 7.

Chapter 3 introduces the equations governing two phase flow with soluble surfactants. In this chapter, a par-
ticular attention is held on the transport equation of surfactants on a moving and deforming surface. In particular,
an Eulerian formulation of the transport equation of a scalar along a moving and deforming interface is presented.
Some key features of this equation are emphasized.
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Chapter 4 introduces the numerical methods used in this work and the development made, including the imple-
mentation of the Eulerian formulation of the transport equation of surfactants on an interface, the implementation
of a source term inside the bulk transport equation accounting for the adsorption flux of surfactants towards this
interface, and the calculation of the Marangoni stresses induced by the inhomogeneous distribution of surfactants
on the interface.

Chapter 5 presents validation tests regarding surfactant transport and Marangoni stresses. In this chapter, each
term appearing in the implemented equations are validated separately, by comparing the numerically obtained
solution to an exact analytical solution.

Chapter 6 presents results obtained with the code presented in the previous chapters, regarding the analysis of
the dynamics of deformable bubbles translating along a microchannel filled with a liquid that contains surfactants.
The chapters 5 and 6 are part of an article that has just been accepted for publication in Langmuir.

Chapter 7, makes the transition with the second part of the thesis. In this chapter, a work conducted in a
frame of a collaboration with Prof. Roberto Zenit from Universidad Nacional Autonoma de Mexico (UNAM) is
presented. In this work, an ancient technique used to assess the alcohol content of Mezcal, a traditional Mexican
alcoholic beverage, is studied, using JADIM. This technique relies on the extended lifetime of superficial bubbles
inside a cup filled with Mezcal, this extended lifetime being partly caused by organic molecules acting as surfac-
tants. An attempt is made to gain insight into the mechanisms controlling the extended lifetime of these bubbles
using JADIM. An article is being prepared on this subject in collaboration with the team of Prof. Roberto Zenit.

The second part focuses on the dynamics of a Taylor flow inside a microchannel. It contains the chapters 8,9
and 10.

Chapter 8 is a brief introduction to Taylor flows.

Chapter 9 presents a methodology developed during this thesis at ULB, allowing to measure the thickness
of the lubrication film forming around a pancake-like bubble using a single instantaneous bright-field image of
a bubble. The method is developed and applied in this chapter. The experimental apparatus is presented, the
technique is explained and used. An emphasis is brought on the few equipment it requires when compared to other
methods. A discussion about the extension of the method to drops is presented. An article has been published in
the journal Applied Physics Letter regarding this subject in october 2018.

Chapter 10 focuses on the effect of buoyancy on the Taylor flow regime. It is a work conducted in the frame
of collaboration with Prof. Howard Stone from PU. It was performed at PU during an eight-month stay. The
experimental apparatus and the image processing is explained. A theoretical prediction of the effect of buoyancy
on the film thickness and bubble orientation is presented, and the experimental measurements are compared to the
theoretical predictions. This work has been published in Physical Review Fluids in october 2017.

Finally, a conclusion presents the main results of this work and outlines some challenging perspectives such as
the simulation of Taylor flows and Pancake bubbles with surfactants or the extension of the experimental method
to measure the lubrication film thickness to different geometry and systems, and the study of the dynamics of
dewetting of the lubrication film. Regarding this subject, in the continuation of the work performed with Prof.
Howard Stone, a work has been published regarding the dewetting of Taylor bubbles in microchannels in Langmuir
in december 2017.

The literature review regarding the study of the bubbly flow regime is presented in Chapter 6. In Chapter
8, a literature review concerning the Taylor flow regime is available and in Chapter 9 a survey of film thickness
measurement techniques is available. In Chapter 10, the literature review concerning the effect of buoyancy on
bubbles in tubes and microchannels is presented.
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Part I

Dynamics of bubbly flows in
microchannels
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CHAPTER 3

Governing equations

3.1 Introduction

In this chapter the equations governing the motion of a bubble transported by a liquid in a microchannel are
presented. A specific attention is held on the equation governing the surfactant transport on the bubble interface.

3.2 Mass conservation

The mass conservation for each phase k (k = c or k = d, with c the continuous liquid phase and d the dispersed
gas phase) separated by the surface S is written as:

∂ρk
∂t

+∇ · (ρkvk) = 0 (3.1)

where ρk is the density of phase k , vk is the velocity of phase k and∇ is the nabla operator. The mass flux exiting
phase k, Jk, can be written in terms of the velocity of the phase k, evaluated at the interface, and the velocity of
the interface, vI :

Jk = ρk(vk − vI) · nk (3.2)

where nk is the normal to the interface, pointing outside phase k.

Kinematic condition without mass transfer at the interface: If no mass transfer is allowed at the interface,
Jk = 0. From equation 3.2, one can identify the following relationship between vk and vI , valid at the interface:

vk · nk = vI · nk (3.3)

This equation establishes the fact that the normal component of the velocity is continuous across the interface.
This hypothesis (no mass transfer at the interface) is an excellent approximation as long as there is no transfer of
the main components of one of the phase across the interface.

Kinematic condition with mass transfer at the interface: When mass transfer is allowed at the interface (i.e.,
when one of the main components of both phases crosses the interface) the sum of the mass flux getting out of all
phases should be equal to zero : ∑

k

Jk = 0 (3.4)



3.3 Momentum conservation

The momentum conservation for an incompressible Newtonian fluid is written for each phase k as:

∂vk
∂t

+∇ · (vk ⊗ vk) = − 1

ρk
∇pk +

1

ρk
∇ · T̄k + g (3.5)

where µk is the dynamic viscosity of phase k, T̄k is the viscous stress tensor of phase k, defined as: T̄k =

µk(∇vk + (∇vk)T ), ⊗ is the dyadic product, g is the gravitational acceleration and pk is the pressure inside
phase k. The momentum conservation at the interface between both phases is written as follows:∑

k

(Jkvk − M̄k · nk) = −σ(∇s · n)n+∇sσ (3.6)

where σ is the surface tension of the interface, n = nl is the normal to the interface, pointing towards the
gas phase, M̄k is the total stress tensor given by M̄k = (−pkĪ + T̄k), where Ī is the identity tensor, ∇s =((
Ī − (n⊗ n)

)
· ∇
)

is the surface gradient operator (Batchelor (1967)) and∇s ·n is the curvature of the bubble
interface.

Continuity of the shear stress: The shear stress is continous across the interface if there is no surface tension
gradients: ∑

k

(
T̄k · nk

)
· tk = ∇sσ · tk (3.7)

where tk is a unit vector tangent to the interface.

3.4 Surfactant mass conservation on the bubble surface

In this subsection the equations describing the conservation of surfactant mass on a moving and deforming inter-
face are presented. The main feature of these equations is the way to express the Lagrangian time derivative (or
total time derivative) of Γ , the surfactant mass per unit area, a quantity associated to the moving surface.

3.4.1 The general form

The conservation of Γ on the interface S is written as (Stone (1990)):

d

dt

∫
S(t)

ΓdS ≡
∫
S(t)

dΓ

dt
dS +

∫
S(t)

Γ
d

dt
dS =

∫
S(t)

Ds∇s2ΓdS +

∫
S(t)

SΓdS (3.8)

where S(t) refers to the surface, dS is the surface element, d/dt is the Lagrangian time derivative, Ds is the
diffusion coefficient of the surfactants along the interface and SΓ is the flux of surfactants from the liquid phase to
the interface, due to the adsorption/desorption of the surfactants, i.e., SΓ = (Dcn · ∇Cc) |I , where the subscript
I denotes the bubble-liquid interface and Cc is the concentration of surfactants in the liquid. This flux is given by
Langmuir’s kinetic law (Levich (1962); Muradoglu and Tryggvason (2008)):

SΓ = kaCI (Γ∞ − Γ )− kdΓ (3.9)
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where ka and kd are adsorption and desorption kinetic constants, respectively, and CI is the surfactant concen-
tration in the liquid in contact with the interface. The main difference in the equations available in the literature
describing the conservation of Γ on the surface S comes from the evaluation of the Lagrangian time derivative of
Γ , i.e., dΓ

dt . Two equivalent forms are presented in the following sections. The first one expresses the Lagrangian
time derivative in terms of a “normal time derivative", this terminology being explained below. The second one
expresses the Lagrangian time derivative in terms of an “Eulerian time derivative", this terminology being de-
scribed in the corresponding section. The strategy employed in this section is to start from Eq. (3.8) and derive
the two form discussed above.

3.4.2 The normal time derivative form

The equation proposed by Stone (1990) is presented in this subsection. The first step in the derivation is to express
the Lagrangian time derivative of Γ , i.e., dΓ

dt (see Eq. (3.8)), in terms of the “normal time derivative". The normal
time derivative is a partial time derivative of Γ with respect to time taken along the normal to the interface. For
this purpose, Fig. 3.1 depicts 3 fixed points in the laboratory frame, M, M’, M”. At time t, the velocity on M
is v|M . At time t, M is on the interface (as depicted on Fig. 3.1 by the black solid line) and at time t + ∆t the
points M’ and M” are on the interface. The position vector localizing the point M is: r|M . The velocity vector
evaluated on M , v|M , points towards M”. The component of v|M that is normal to the interface, i.e., (v · n)|M ,
points towards M’. The total derivative of Γ with respect to time is:

Figure 3.1: The interface at time t and t+ ∆t. The dots depict three fixed points in the laboratory frame: M , M ′

and M”, respectively. The velocity evaluated on M is v|M .

dΓ

dt
= lim

∆t→0

Γ (t+ ∆t)
∣∣∣
M ′′
− Γ (t)

∣∣∣
M

∆t
(3.10)

The total time derivative of Γ is also given by:

dΓ

dt
= lim

∆t→0

Γ (t+ ∆t)
∣∣∣
M ′′
− Γ (t+ ∆t)

∣∣∣
M ′

∆t
+ lim

∆t→0

Γ (t+ ∆t)
∣∣∣
M ′
− Γ (t)

∣∣∣
M

∆t
(3.11)

By definition, the normal time derivative is:

∂Γ

∂t

∣∣∣
n

= lim
∆t→0

Γ (t+ ∆t)
∣∣∣
M ′
− Γ (t)

∣∣∣
M

∆t
(3.12)
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The following notations are defined: ∆r|M ′′−M ′ = r|M ′′ − r|M ′ and ∆Γ |M ′′−M ′ = Γ |M ′′ − Γ |M ′ . With these
notations, an expression of Γ |M ′′ is given by:

Γ |M ′′ = Γ |M ′ +
∆Γ |M ′′−M ′
∆r|M ′′−M ′

∆r|M ′′−M ′ ≈ Γ |M ′ +∇sΓ ·∆r|M ′′−M ′ (3.13)

Injecting Eqs. (3.12) and (3.13) into Eq. (3.11) yields:

dΓ

dt
=
∂Γ

∂t

∣∣∣
n

+ lim
∆t→0

∇sΓ ·
∆r|M ′′−M ′

∆t
(3.14)

With the definition of ∆r|M ′′−M ′ given above, on can deduce from Fig. 3.1 that lim
∆t→0

∆r|M′′−M′

∆t = vs, where
vs = v − (v · n)n is the liquid velocity tangent to the surface S. Thus, the following relationship is obtained:

dΓ

dt
=
∂Γ

∂t

∣∣∣
n

+ vs · ∇sΓ (3.15)

In this way, we have expressed the Lagrangian time derivative of Γ (see Eq. (3.8)) in terms of a normal time
derivative.

The second step in the derivation is to express the variation of the surface element, d
dtdS (see Eq. (3.8)). Stone

(1990) showed that it can be expressed as:

Γ
d

dt
dS = Γ∇s · v (3.16)

As the procedure followed by Stone (1990), v is decomposed as v = vs + (v · n)n and Eq. (3.16) yields:

Γ
d

dt
dS = Γ∇s · vs + Γ (∇s · n)(v · n) (3.17)

Injecting Eqs. (3.15) and (3.17) into Eq. (3.8) allows to recover the local form presented by Stone (1990):

∂Γ

∂t

∣∣
n

+∇s · (Γvs) + Γ (∇s · n)(v · n) = Ds∇s2Γ + SΓ (3.18)

In this form, each term has an explicit physical interpretation. For example, the term ∇s · (Γvs) in Eq. (3.18)
expresses the convective transport of Γ by the velocity tangent to the surface. Ds∇s2Γ expresses the diffusion
of Γ along the surface, from regions of higher values of Γ to regions of lower values of this variable. Finally,
(Γ∇s · n)(v · n) is the product of the curvature of the surface (on a given point on the surface) with the normal
component of the velocity field adjacent to the suface. The normal component of the velocity of the fluid adjacent
to the surface changes the curvature of the interface (locally) and, for a given quantity of surfactants on the surface,
this change in curvature dilutes or concentrates the surfactants. In the next subsection, an alternative formulation
of Eq. (3.18) is derived which is convenient to solve using a fixed coordinate system.

3.4.3 The Eulerian form

The general form of the conservation equation is reminded (Eq. (3.8)):

d

dt

∫
S(t)

ΓdS ≡
∫
S(t)

dΓ

dt
dS +

∫
S(t)

Γ
d

dt
dS =

∫
S(t)

Ds∇s2ΓdS +

∫
S(t)

SΓdS
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The main feature of the form presented in this section is the way to evaluate the Lagrangian time derivative: dΓ
dt

(see Eq. (3.8)). In fact, it is a form that is convenient to use when working with a fixed coordinate system. In this
formulation, the Lagrangian time derivative of Γ is written in terms of an Eulerian partial time derivative. This
necessitates a concept developed by Pereira and Kalliadasis (2008). This concept relies on extending the quantity
Γ locally around the surface S and the time t to a field Γ̃ so that when Γ̃ is restricted to the surface S, it is equal
to Γ at all time, t. The expression of the Lagrangian time derivative as a function of an Eulerian time derivative,
proposed by Pereira and Kalliadasis (2008), is derived again here, using the same methodology as in the previous
paragraph. Fig. 3.2 depicts 3 fixed points in the laboratory frame M , M ′ and M”, respectively. At time t, the
interface passes through the fixed point M and at time t + ∆t it passes through the points M ′ and M ′′. The
position vector r localizes any points in a fixed coordinate system. The field Γ̃ is defined as an arbitrary extension
of Γ as follows:

1. At time t, Γ is extended from M , which is on the surface S, towards the point M’ to a field Γ̃ . This field, Γ̃ ,
has the property to be equal to Γ on the surface S and on the point M’. Those properties can be expressed
with the following equation: Γ̃ (t)

∣∣∣
M

= Γ (t)
∣∣∣
M

= Γ̃ (t)
∣∣∣
M ′

.

2. At time t + ∆t, the interface passes through the points M ′ and M ′′. Thus, Γ is defined on these points.
Consequently, at t = t + ∆t and on M" (on the surface, S), the field Γ̃ is equal to Γ which gives the
following equation: Γ̃ (t+ ∆t)

∣∣∣
M”

= Γ (t+ ∆t)
∣∣∣
M”

3. At time t+ ∆t, the interface passes through the points M ′ and M ′′. Thus, Γ is defined on these points. At
time t = t+ ∆t and on M’, Γ is extended from the surface S towards the point M, defining Γ̃ . This can be
expressed with the following equation: Γ̃ (t+ ∆t)

∣∣∣
M

= Γ (t+ ∆t)
∣∣∣
M ′

As it will be seen, the definition of the field Γ̃ is necessary in order to express the Lagragian time derivative of
Γ in terms of an Eulerian time derivative.

Figure 3.2: The interface at time t and t+ ∆t

In order to express the Lagrangian time derivative of Γ in terms of an Eulerian time derivative, we begin by
expressing the Eulerian partial time derivative of Γ̃ at r

∣∣
M

:

∂Γ̃

∂t

∣∣
M

= lim
∆t→0

Γ̃ (t+ ∆t)
∣∣
M
− Γ̃ (t)

∣∣
M

∆t
(3.19)

Using the definition of Γ̃ , the following equation is deduced from Eq. (3.19):

∂Γ̃

∂t

∣∣∣
M

= lim
∆t→0

Γ (t+ ∆t)
∣∣
M ′
− Γ (t)

∣∣
M

∆t
(3.20)

This equation can be rewritten as:

∂Γ̃

∂t

∣∣∣
M

= lim
∆t→0

Γ (t+ ∆t)
∣∣
M”
− Γ (t)

∣∣
M

∆t
+ lim

∆t→0

Γ (t+ ∆t)
∣∣
M ′
− Γ (t+ ∆t)

∣∣
M”

∆t
(3.21)
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It is noticed that lim
∆t→0

Γ(t+∆t)
∣∣
M”
−Γ(t)

∣∣
M

∆t = dΓ
dt , which is the Lagrangian time derivative of Γ . Therefore:

∂Γ̃

∂t

∣∣∣
M

=
dΓ

dt
+ lim

∆t→0

Γ (t+ dt)
∣∣
M ′
− Γ (t+ ∆t)

∣∣
M”

∆t
(3.22)

The right hand side of Eq. (3.22) is rewritten in terms of Γ̃ :

∂Γ̃

∂t

∣∣∣
M

=
dΓ

dt
+ lim

∆t→0

Γ̃ (t+ ∆t)
∣∣
M
− Γ̃ (t+ ∆t)

∣∣
M”

dt
(3.23)

As in the previous paragraph the following notation is defined: ∆r|M”−M = r|M” − r|M . A Serie Taylor
expansion of Γ̃ |M” is given by:

Γ̃ |M” ≈ Γ̃ |M +∇Γ̃ ·∆r|M”−M (3.24)

This allows to write Eq. (3.23) in the form:

∂Γ̃

∂t

∣∣∣
M

=
dΓ

dt
− lim

∆t→0

∇Γ̃ ·∆r|M”−M

∆t
(3.25)

It is noticed that, lim
∆t→0

∆r|M”−M
∆t = v|M . Therefore, the total derivative of Γ can be expressed in terms of Γ̃ :

dΓ

dt
=
∂Γ̃

∂t

∣∣∣
M

+ v|M · ∇Γ̃ (3.26)

where M represents a fixed point in the laboratory frame. This is valid for any arbitrary extension of Γ from the
interface S to the surrounding. As can be seen, the definition of a scalar field Γ̃ allows to express the Lagrangian
time derivative of Γ , which is defined only on the surface S, in terms of an Eulerian partial time derivative of Γ̃

which is defined in the whole domain.

As a second step, the variation of the surface element, i.e., Γ d
dtdS (see Eq. (3.8)) is expressed, as in the

previous section as:

Γ
d

dt
dS = Γ∇s · v (3.27)

It can be shown that:
∇s · v = ∇ · v − n · ∇v · n (3.28)

Injecting Eq. (3.26) and (3.28) into Eq. (3.8) leads to:

∂Γ̃

∂t

∣∣∣
M

+ v · ∇Γ̃ + Γ∇ · v − Γn · (∇v) · n = Ds∇s2Γ + SΓ (3.29)

Eq. (3.29) describes the transport of Γ on S, and expresses the Lagrangian time derivative of Γ in terms of the
Eulerian partial time derivative of Γ̃ , which is an arbitrary extension of Γ . In other words, in order to calculate the
Lagrangian time derivative of a quantity Γ associated to a moving and deforming surface, dΓ/dt, an intermediate
scalar is defined, Γ̃ . This field has the property to be defined on the surface and on its surrounding and to be equal
to Γ on the surface. In this way, it is possible to calculate dΓ/dt in terms on an Eulerian time derivative, ∂Γ̃

∂t

∣∣∣
M

,
where M is a fixed point in the laboratory frame of reference. Eq. (3.29) is not useful as it is. It is extended at the
vicinity of the surface S, i.e., it is rewritten in terms of Γ̃ :

∂Γ̃

∂t

∣∣∣
M

+∇ ·
(
vΓ̃
)
− Γ̃n · (∇v) · n = Ds∇s2Γ̃ + SΓ̃ (3.30)

It should be understood that, in this formulation, the transport of Γ is dealt by (i) expressing the Lagrangian time
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derivative of Γ in terms of an Eulerian partial derivative of Γ̃ and (ii) by extending Eq. (3.29) at the interface
vicinity to have an equation with one variable only. Eq. (3.30) is the one that is used in this thesis. We emphasize
on the fact that Eqs. (3.18 and 3.30) are two equivalent way to express the transport of a quantity along a moving
and deforming interface.

3.5 Surfactant transport in the liquid bulk

The transport equation for the surfactants inside the liquid, for an incompressible fluids, is:

∂Cc
∂t

∣∣∣
M

+ v · ∇Cc = Dc∇2Cc (3.31)

where Cc is the molar concentration of surfactants in the liquid andDc is the diffusion coefficient of the surfactant
inside the liquid. At the interface, the surfactant adsorbs on the surface which gives the following boundary
condition:

n · ∇Cc = SΓ (3.32)

3.6 Surface equation of state

It is assumed that the surface tension depends on the surfactant concentration on the interface according to an
equation of state derived from the Langmuir adsorption isotherm (Levich (1962)):

σ = σ0 (T ) +RTΓ∞ ln

(
1− Γ

Γ∞

)
(3.33)

where R is the ideal gas constant, T is the absolute temperature, σ0 is the surface tension of the clean interface at
the temperature T, and Γ∞ is the maximum packing concentration of surfactants on the interface.

3.7 Conclusion

In this chapter, the system of equations to solve for the description of the motion of a bubble inside a microchannel
in the presence of surfactants have been presented. A particular attention was held on the equation governing the
transport of the surfactant concentration, Γ , on the bubble interface. Two different forms of this equation was
presented, the difference between these two equations being the way to write the Lagrangian time derivative of Γ .
The expression presented by Pereira and Kalliadasis (2008) allowing to write the Lagrangian time derivative of Γ

in terms of an Eulerian partial time derivative has been derived. Finally, the equation governing the transport of
surfactants on the bubble surface has been rewritten in terms of this Eulerian partial time derivative.

In the next chapter, the numerical code used to solve this system is presented. In particular, the implementation
of the following equations and methodolgies is presented:

1. An Eulerian formulation of the surfactant transport equation on the bubble surface.

2. A numerical methodology to account for the adsorption of surfactants towards the bubble surface.

3. A numerical methodology to compute the Marangoni stresses induced by surfactant concentration gradients
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CHAPTER 4

The numerical code JADIM-LS

4.1 Numerical methods for multiphase flows

The simulation of two phase dispersed flows is an active area of research and a tool in industry to analyze and
design various processes. The methods for simulating dispersed two phase flows can be classified within “Front
tracking" methods and “Volume tracking" methods. In the former case, the interface separating two phases is
tracked explicitly through the use of markers associated to the interface (Unverdi and Tryggvason (1992); Popinet
and Zaleski (1999)). Those method allow to calculate the geometric properties of the interface (its normal and its
curvature) with a high accuracy, and the needs in terms of computational power is not too demanding. However,
the extension of these methods to three dimensional flow configuration is difficult.

In Volume tracking methods, the interface between two fluids is defined implicitly by the means of a scalar field
or the use of volumetric markers (Harlow and Welch (1965)). The transport of the interface is achieved through the
transport of this scalar (or of these markers) within a fixed computational mesh. Within volume tracking methods,
the well known Volume of Fluid (VOF) method has been used thoroughly to simulate various dispersed two phase
flow (Hirt and Nichols (1981)). More specifically, the VOF method has been used to characterize several features
of two phase dispersed flows in microchannels. For exemple, Khodaparast et al. (2015) performed experiments
and numerical simulations using the VOF method, to characterize the hydrodynamics of small bubbles inside
horizontal microchannels. They characterized the bubble velocity and shape as a function of Ca. Other works used
VOF simulations to analyze the flow field in a Taylor flow inside microchannels (Taha and Cui (2006)). The mass
transfer from Taylor bubbles towards the surrounding liquid and the flow boiling has also been investigated using
VOF simulations (van Baten and Krishna (2004); Hassanvand and Hashemabadi (2012); Magnini and Thome
(2016)). This method is well-known for its property allowing to conserve mass. However, it was pointed out that
this method suffers from the generation of non-physical spurious currents. It was shown that the generation of
these currents was due to errors in the calculation of the curvature of the interface, those errors being advected
along with the interface, and possibly amplified after advection of the interface (Abadie et al. (2015)). This
feature was tackled to some extent, for instance, by using a smoothing procedure when calculating the normal to
the interface (Dupont and Legendre (2010)).

However, the Level-set method (LS) was shown to achieve a better calculation of the geometrical properties of
the interface in some cases (Sussman et al. (1994, 1998)). This has a considerable importance for the simulation
of microscale two phase flows. In microscale flows, viscous forces and surface tension forces are dominant when
compared to inertial and buoyancy forces. Thus, the correct calculation of the surface tension forces are necessary
to identify and characterize the main features of these flows. For example Abadie et al. (2015) showed that, at
small Ca, i.e., when surface tension forces are dominant, the VOF method, coupled with the Continuum Surface
Force (CSF) model for calculating surface tension forces and with the Flux Corrected Transport (FCT) scheme for
advecting the interface, fails in predicting the correct flow pattern in a fully developed Taylor flow, as illustrated
in Fig. 4.1. In this figure, the streamlines of a fully developed Taylor flow taking place inside a cylindrical tube
at Ca = 0.005 calculated using a VOF method (top) and Level-set method (bottom) are depicted. In the VOF
method, an additional recirculation loop near the spherical cap of the bubble in the liquid is visible. It was shown
that this additional loop arises from the generation of spurious current, through the coupled effect of inexact



curvature calculation and interface advection. This loop is not present in the Level-set simulation. This in turn has

Figure 4.1: Streamlines in Taylor flow in a microchannel at Ca = 0.005, (top): VOF model, (bottom): Level-set
model (adapted from Abadie et al. (2015))

an important influence when calculating the slip velocity, i.e., W = (U − Jl)/U , where U and Jl are the bubble
velocity and the mean flow velocity, respectively. This is illustrated in Fig. 4.2. In this figure, the slip velocity

Figure 4.2: Slip velocity of the Taylor bubble as a function of Cab for VOF simulations (squares) and Level-
set simulations (circles) (taken from Abadie et al. (2015)). The dashed-dotted line gives values of
the theoretical prediction of Bretherton (1961) while the solid line gives value of the correlation of
Aussillous and Quéré (2000).

of the Taylor bubble was calculated as a function of CaB = µU/σ, for VOF simulations (squares) and Level-set
simulations (circles). The solid line is a correlation predicting W as a function of Ca proposed by Aussillous and
Quéré (2000), and the dashed line is the theoretical prediction of Bretherton (1961). As quantitatively observed
on Fig. 4.2, the Level-set method implemented in JADIM allows a more accurate description of the dynamics of
Taylor flow than the VOF-CSF-FCT at low values of Cab, i.e., in surface tension dominated situations.

The natural choice for simulating two phase flows with soluble surfactants would be a Front Tracking method
where a mesh associated to the interface is present. In this way, the location of the interface would be defined
explicitly and surfactants would be straightforwardly transported along this mesh, for example, with the use of Eq.
(3.18). However, it will be shown that the Level set method is also well suited for describing two phase flows with
soluble surfactants. In particular, in Chapter 5, we provide a comparison of the results obtained within this thesis
with the Level-set method and results of the literature that use a Front Tracking method in the case of a bubble
rising in a liquid of infinite extent that contains surfactants.
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In this chapter, a brief introduction to JADIM is presented, followed by the presentation of the Level-set
modulus of JADIM. The contribution of this thesis to JADIM is presented in the third section. In particular, the
numerical method allowing to solve the equations presented in Chap. (3) regarding the transport of surfactants
on a moving interface (Eq. (3.29)), the source term in the surfactant transport equation inside the liquid phase
(Eq. 3.32)), and the Marangoni stress (Eq. (3.6)) are presented. The spatial and time discretization schemes are
presented.

4.2 The JADIM code

The numerical code used to solve the equations presented in the previous section is the JADIM code, which has
been developed at IMFT. It has been developed to simulate dispersed two-phase flows including hydrodynam-
ics and transfer phenomena around spherical bubbles (Legendre (1996)) and deformable interfaces with a VOF
technique (Benkenida (1999)), and later with a Level-set method (Abadie et al. (2015)). These methods, and in
particular the VOF, and more recently the Level-set method, for computing moving interfaces on a fixed grid,
have been validated and used to simulate various multiphase flow systems (Benkenida (1999); Bonometti and
Magnaudet (2007); Haroun et al. (2010); Dupont and Legendre (2010); Legendre and Maglio (2013); Abadie
et al. (2012, 2015)). In the VOF and the Level-set methods, the interface is captured by an Eulerian description of
each phase on a fixed grid with variable density and viscosity.

4.2.1 One fluid formulation

Under the assumptions that (i) the fluids are Newtonian and incompressible, (ii) there is no mass transfer through
the interface, (iii) the flow is isothermal, the velocity field v and the pressure p satisfy the classical one-fluid
formulation of the Navier–Stokes equations (Scardovelli and Zaleski (1999)):

∂v

∂t
+ v · ∇v = −1

ρ
∇p+

1

ρ
∇·T̄ + Fσ,cδI + Fσ,mδI (4.1)

∇·v = 0 (4.2)

µ = µc (1− F ) + µdF (4.3)

ρ = ρc (1− F ) + ρdF (4.4)

where T̄ = µ
(
∇v + (∇v)

T
)

is the viscous stress tensor; ρ, µ, σ are the density, the dynamic viscosity and
the surface tension, respectively; n is a unit vector normal to the interface, arbitrarily chosen pointing towards
the liquid phase and δI is the Dirac distribution associated to the interface. In this formulation, the capillary
contribution, Fσ,c = −σρ (∇·n)n, and the Marangoni stress, Fσ,m = − 1

ρ∇sσ, appear as volumetric forces acting
at the interface vicinity. The local viscosity and density, µ and ρ, are calculated from the volume fraction of the
gas phase, F , by a linear interpolation as shown on Eqs. (4.3) and (4.4), where µc, µd, ρc and ρd are the viscosity
and density of the liquid (c) and gas (d) phases, respectively. An harmonic mean between the viscosity (or density)
of the liquid and of the gas is sometime used to calculate the viscosity associated to the computational cells that
contain the interface. However, in the presence of Marangoni stresses on the interface, it has been shown that
the harmonic mean of the viscosity of each phase does not give the correct jump in tangent viscous stress at the
interface, i.e,

∑
k

(
T̄k · nk

)
· tk = ∇sσ · tk (Hayashi and Tomiyama (2012)).

15



4.2.2 The projection method

The projection method is used to solve the Navier–Stokes equation, i.e., Eq. (4.1) together with the continuity
equation, i.e., Eq. (4.2). This method is presented here for an explicit time scheme. An intermediate velocity field,
ṽ, is first calculated at time t = (n+ 1) ∆t; with n the number of time step ∆t:

ṽn+1 − vn

∆t
= − (v · ∇v)

n − 1

ρ
∇pn +

(
1

ρ
∇·T̄

)n
+ (Fσ,cδI)

n
+ (Fσ,mδI)

n (4.5)

This intermediate velocity does not satisfy the continuity equation. To calculate the divergence free velocity field,
an auxiliary potential is introduced, Φ:

vn+1 − ṽn+1

∆t
= −1

ρ
∇Φn+1 (4.6)

The divergence of this equation is taken and∇ · vn+1 = 0 is injected to obtain the equation that gives Φn+1:

−∇ · 1

ρ
∇Φn+1 =

1

∆t
∇ · ṽn+1 (4.7)

Solving Eq. (4.7) gives the field Φn+1 from which the pressure is obtained:

pn+1 = pn + Φn+1 (4.8)

and the velocity field at time t = (n+ 1) ∆t is deduced from the updated pressure field:

vn+1 − vn

∆t
= − (v · ∇v)

n − 1

ρ
∇pn+1 +

(
1

ρ
∇·T̄

)n
+ (Fσ,cδI)

n
+ (Fσ,mδI)

n (4.9)

4.2.3 The Level-set method

The Level-set method was introduced in JADIM by Abadie (2013). In this method, the location of each phase with
respect to the interface is given by the signed distance function to the interface (or Level-set function), φ(x, t).
This distance function obeys to the following transport equation (Osher and Sethian (1988)):

∂φ

∂t
+ v · ∇φ = 0 (4.10)

In this work, φ is defined as being positive in the gas phase and negative in the liquid phase. A classical redistan-
ciation equation is applied to the Level-set function at each time step:

∂φ

∂τ
+ sign(φ)(|∇φ| − 1) = 0 (4.11)

where τ is a fictitious time. The sign function is (Xu and Zhao (2003)):

sign(φ(x, t)) =
φ√

φ2 + ∆x2
(4.12)

where ∆x is the grid size.
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The normal to the interface, n, and its curvature, κ, are computed with the Level-set function as follows:

n = − ∇φ
‖∇φ‖

(4.13)

κ = −∇·
(
∇φ
||∇φ||

)
(4.14)

where n is pointing towards the liquid phase. The tangent to the interface, t, is calculated such that t · n = 0.
Its specific calculation will be presented in the fifth chapter, in the case of an axisymetric geometry. The volume
fraction of the gas phase, F , in a given computational cell is computed from the Level-set function using a smooth
Heaviside function:

F = H(φ) =


0 if φ (x) < −ε
1

2

(
1 +

φ

ε
+

1

π
sin

(
πφ

ε

))
if − ε < φ(x) < ε

1 if φ(x) > ε

(4.15)

where ε =
√

2∆x is the half numerical thickness of the interface.

4.2.4 Spatial discretization

Navier stokes solver

Eqs. (4.1) and (4.2) are discretized on staggered grids using a finite volume method. The spatial derivative are
discretized using second order centered schemes (Magnaudet et al. (1995); Legendre and Magnaudet (1998)). The
staggered grids are depicted in Fig. 4.3. In this figure, the black cells are the cells centered on pressure points,
which are called “pressure cells", the green cells are the cells centered on u, and the red cells are the cells centered
on v, where u = ex · v and v = ey · v, where ex and ey are the unit vector associated to the Cartesian mesh (see
Fig. 4.3).

Figure 4.3: Staggered grids in JADIM for 2D. The position of the pressure, p, the volume fraction, F , and the x and
y components of the velocity, u and v, respectively, are indicated as circles in this figure. The pressure
cells are drawn in black, the velocity cells are drawn in green and red for the u and v components
respectively.

In JADIM, the interfacial stresses are calculated as volumetric forces acting at the vicinity of the interface,
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following the method of Brackbill et al. (1992). The capillary pressure jump, Fσ,c, is calculated, in the Level-set
framework as follows (Abadie et al. (2015)):

Fσ,c = − σ̄

ρVp
∇̄F

∫
δS

( ∇φ
‖∇φ‖

)
· ncelldS (4.16)

where σ̄ is the average value of the surface tension in the cell centered on the velocity points, ∇̄F is the average
value of ∇F in the cell centered on the velocity points, Vp is the volume of the pressure cell, δS = 2δSx + 2δSy

denotes the surface of the faces of a pressure cell and ncell is the unit normal to the faces of the pressure cell.

Transport of the Level-set function

The advective terms are discretized using a conservative form of the fifth order WENO scheme (Liu et al. (1994);
Couderc (2007)). It is based on the fact that the velocity field is divergence free: v ·∇φ = ∇· (φv). Integrating in
the control volume centered on the pressure cells yields:

∫
Vp
∇· (φv) dVp =

∫
δS

n · (φv) dS, with
∫
δS

n · (φv) dS

being approximated as: ∫
δS

n · (φv) dS ≈ Qx +Qy (4.17)

where Qx, Qy , are the fluxes over the cell faces having the normals ncellx and ncelly , respectively (see Fig.
4.3). The fluxes over the cell faces are computed using the conservative form of the fifth order WENO scheme
(WENO5c) which allows better mass conservation than the classical WENO5 scheme (Couderc (2007)). The
algorithm of this scheme is shown for the x spatial direction and at a given time t = n∆t, the extension to the
other direction being straightforward. The fluxes across the cell faces with the normal x is Qx = Qi+ 1

2
−Qi− 1

2
.

The fluxes Qi+ 1
2

and Qi− 1
2

, where i is an indice along the x direction for the center of the pressure cells, are
computed using an upwind formulation:

Qi+ 1
2

=

ui+ 1
2
φ+
i−1 if ui+ 1

2
> 0

ui+ 1
2
φ−i if ui+ 1

2
< 0

(4.18)

The values φ±i are computed by weighting the values φi around the cell face of interest on three stencils

φ±i = ω±0 φ
±
i

0 + ω±1 φ
±
i

1 + ω±2 φ
±
i

2 (4.19)

The + or − signs refer to the upwind direction that is chosen to build the stencils and the values ω±0 φ
±
i
0,1,2


φ±0

i+ 1
2

=
1

3
r±1 −

7

6
r±2 +

11

6
r±3

φ±1
i+ 1

2
= −1

6
r±2 +

5

6
r±3 +

1

3
r±4

φ±2
i+ 1

2
= +

1

3
r±3 +

5

6
r±4 −

1

6
r±5

(4.20)

where r± are given by{
r−1 = φi−2,j , r+

1 = φi+3,j ,r−2 = φi−1,j , r+
2 = φi+2,j ,r−3 = φi,j

r+
3 = φi+1,j ,r−4 = φi+1,j , r+

4 = φi,j ,r−5 = φi+2,j , r+
5 = φi−1,j

(4.21)
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where the weights ω±0 , ω±1 , ω±2 are given by

ω±0 =
α±0

α±0 + α±1 + α±2

ω±1 =
α±1

α±0 + α±1 + α±2

ω±2 =
α±2

α±0 + α±1 + α±2

(4.22)

so that the weighting is consistent, ω±0 + ω±1 + ω±2 = 1, and where α±0 , α±1 , α±2 given by

α±0 =
1

10

(
1

ε+ IS±0

)2

α±1 =
6

10

(
1

ε+ IS±1

)2

α±2 =
3

10

(
1

ε+ IS±2

)2

(4.23)

where ε is generally fixed to 10−6 to avoid the denominator to be null, and where the IS± represent the regularity
indicators: 

IS±0 =
13

12

(
q±1 − 2q±2 + q±3

)2
+

1

4

(
q±1 − 4q±2 + 3q±3

)2
IS±1 =

13

12

(
q±2 − 2q±3 + q±4

)2
+

1

4

(
q±2 − q

±
4

)2
IS±2 =

13

12

(
q±3 − 2q±4 + q±5

)2
+

1

4

(
3q±3 − 4q±4 + q±5

)2
(4.24)

Redistanciation of the Level-set function

The redistanciation equation, Eq. (4.11), is discretized using the classical fifth order WENO scheme (WENO5)
(Liu et al. (1994)). It is presented in appendix.

4.2.5 Temporal discretization

The time scheme used to compute the advective terms in Eqs. (4.1), (4.10), (4.11) is a third-order Runge–Kutta
scheme. The viscous stresses in Eq. (4.1) are computed using a semi-implicit Crank–Nicolson method (Magnaudet
et al. (1995); Legendre and Magnaudet (1998)).

4.3 Numerical methodology to account for surfactants

The Level-set modulus of JADIM deals with the transport of the interface in an Eulerian framework, i.e., in a fixed
mesh. Thus, it is the Eulerian formulation of the surfactant tranport equation on a surface, Eq. (3.29), that is used
to transport surfactants on the surface. Furthermore, as the computational mesh is fixed, it is a challenge to deal
with soluble surfactants. In fact, the boundary condition of the surfactant transport equation inside the bulk phase,
i.e., Eq. (3.32), needs to be evaluated in the liquid in contact with the surface. However, there is no grid points
attached to the surface in the Level-set method implemented in JADIM. Muradoglu and Tryggvason (2008) first
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proposed a method to consider soluble surfactants using a front tracking method. This method was extended for
volume tracking methods by Hayashi and Tomiyama (2012). The method they propose, though approximate, is
implemented, validated and used in this work for simulating soluble surfactants.

The Marangoni stress, induced by surfactant concentration gradients on the surface, is computed using the
classical Continuum Surface Force model developped by Brackbill et al. (1992).

In the following sections, the numerical methods used to deal with surfactants are presented, including the
spatial and temporal discretization schemes.

4.3.1 Transport of surfactants on the surface

As seen in Chapter 3, in an Eulerian description of a gas-liquid interface, and for incompressible fluids, the
transport equation of surfactants on the interface is given by:

∂Γ̃

∂t

∣∣∣
M

+ v · ∇Γ̃ − Γ̃n · (∇v) · n = Ds∇s2Γ̃ + SΓ̃ (4.25)

where Γ̃ is an arbitrary extension of Γ , the surfactant concentration field on the interface and where SΓ̃ =

kaCI

(
Γ∞ − Γ̃

)
− kdΓ̃ . The extension is performed perpendicularly to the interface by solving the following

Partial Differential Equation (PDE) after each physical time step of the numerical procedure, with the initial
condition Γ̃ ∗(x, τ = 0) = Γ̃ (x, t) (Xu and Zhao (2003)):

∂Γ̃ ∗

∂τ
+ sign(φ)

∇φ
||∇φ||

· ∇Γ̃ ∗ = 0 (4.26)

where τ is a fictitious time. As pointed out by Xu and Zhao (2003), it has been observed that 5 iterations are
sufficient when solving Eq. (4.26), for Γ̃ ∗ to reach its converged values with respect to τ . Indeed, we have
checked that the relative variation of the values of Γ̃ ∗ is less than 0.5% when the number of fictitious-time step
was increased from 4 to 8. Eqs. (4.25 and 4.26) are solved together to achieve the transport of Γ along the
gas-liquid interface.

Temporal schemes

A third order Runge-Kutta (RK3) scheme is used to discretize Eqs. (4.25) and (4.26) with respect to time. The
application of this scheme to Eq. (4.25) is presented. Using the following notation: L(Γ̃ ) = ∂Γ̃

∂t , this scheme can
be written as follows: 

Γ̃ 1 = Γ̃m + ∆tL(Γ̃m)

Γ̃ 2 =
3

4
Γ̃m +

1

4
(Γ̃ 1 + L(Γ̃ 1))

Γ̃m+1 =
1

3
Γ̃m +

2

3
(Γ̃ 2 + L(Γ̃ 2))

(4.27)

with 0 ≤ m ≤ 2, is the number of intermediate time step within a physical time step of the numerical procedure.
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Spatial discretization

Expansion term: The spatial discretization of the expansion term is performed using a centered scheme. In a
Cartesian mesh, it is computed as follows:

n · ∇v · n = n2
x

du

dx
+ n2

y

dv

dy
+ nxny

du

dy
+ nxny

dv

dx
(4.28)

where nx and ny are the x and y components of n, i.e., nx = n · ex and ny = n · ey . A staggered grid is used in
JADIM where the pressure (p), the Level-set function (φ), the surface concentration (Γ̃ ) are defined on the center
of the central grid (i, j), the x component of the velocity vector (u) is defined on the cell faces having their normal
along x, and the y component of the velocity (v) is defined on the cell faces having their normal along y. In this
configuration the derivatives are computed as:

du

dx
≈
ui+ 1

2 ,j
− ui− 1

2 ,j

∆x
(4.29)

dv

dy
≈
vi,j+ 1

2
− vi,j− 1

2

∆y
(4.30)

du

dy
≈
ui,j+ 1

2
− ui,j− 1

2

∆y
(4.31)

dv

dx
≈
vi+ 1

2 ,j
− vi− 1

2 ,j

∆x
(4.32)

where
ui,j+ 1

2
=

1

4

(
ui+ 1

2 ,j
+ ui+ 1

2 ,j+1 + ui− 1
2 ,j

+ ui− 1
2 ,j+1

)
(4.33)

and
ui,j− 1

2
=

1

4

(
ui+ 1

2 ,j
+ ui+ 1

2 ,j−1 + ui− 1
2 ,j

+ ui− 1
2 ,j−1

)
(4.34)

The location of ui,j+ 1
2

is depicted on Fig.(4.4).

Figure 4.4: Location of ui,j+ 1
2

.

Advection term: The spatial discretization of the advection term, v · ∇Γ̃ , is done in a conservative manner
using the fact that the velocity field is divergence free:

v · ∇Γ̃ = ∇ ·
(

Γ̃v
)

(4.35)
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Integrating in the control volume centered on the pressure cells yields:∫
V

∇ · (Γ̃v) dV =

∫
Scell

n · (vΓ̃ ) dScell ≈ QΓ
x +QΓ

y (4.36)

The mass fluxes over the cell faces, QΓ
x and QΓ

y are computed using the WENO5c scheme. This scheme was
presented in section 4.2.4 for fluxes of momentum.

Diffusion along the surface: The term accounting for the diffusion along the surface is rewritten in the form:

Ds∇s2Γ̃ = Ds

[
∇2Γ̃ − κ∇Γ̃ · n− n ·D2Γ̃ · n

]
(4.37)

where D2Γ̃ is the Hessian matrix of Γ̃ . It is defined as:

D2Γ̃ =
∂2Γ̃

∂xi∂xj
(4.38)

with i and j equal to 0 or 1 with x1 = x and x2 = y. Finally, κ = ∇ · ∇φ|∇φ| is the curvature of the surface. The
first term in Eq. (4.37) accounts for an isotropic diffusion, i.e., ∇2Γ̃ , from which the diffusion along the normal
to the interface, κ∇Γ̃ · n+ n ·D2Γ̃ · n is substracted (Xu and Zhao (2003)). The diffusion term is integrated in
the control volume centered on pressure cells as follows:∫

Vp

Ds∇s2Γ̃dVp =

∫
Vp

Ds∇ · ∇Γ̃dVp −
∫
Vp

Ds

[
κ∇Γ̃ · n+ n ·D2Γ̃ · n

]
dVp (4.39)

Note that the isotropic diffusion term , i.e.,∇2Γ̃ , is not transformed into a surface integral. This choice was made
in order to be consistent with the spatial discretization of the diffusion along the normal, i.e., κ∇Γ̃ ·n+n·D2Γ̃ ·n.
All the spatial derivatives are computed using a second order centered scheme. As an example, Fig. 4.5a and b
shows where the derivatives ∂2Γ̃

∂x2 and ∂2Γ̃
∂x∂y , appearing in the term n ·D2Γ̃ · n, are located.

Figure 4.5: Schematic explaining the computation of (a) ∂
2Γ̃
∂x2 and (b) ∂2Γ̃

∂x∂y .

Extension equation (Eq. (4.26)) The term sign(φ) ∇φ‖∇φ‖ · ∇Γ̃ , is discretized using an upwind formulation. The
term sign(φ) ∇φ||∇φ|| can be seen as the extension velocity of Γ̃ from the interface to the surrounding. The discrete

equivalent of the following derivatives: ∂Γ̃
∂x (x, t), ∂Γ̃

∂y (x, t), ∂φ∂x (x, t) and ∂φ
∂y (x, t), at a specific time n∆t, where

n is an integer are written as: (Γ̃n
i,j)x, (Γ̃n

i,j)y , (φni,j)x and (φni,j)y . The upwind approximations of the derivatives
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are then given by: 

(Γ̃n
i,j)x ≈ D−x Γ̃n

i,j if sign(φni,j)(φ
n
i,j)x > 0

(Γ̃n
i,j)x ≈ D+

x Γ̃n
i,j if sign(φni,j)(φ

n
i,j)x < 0

(Γ̃n
i,j)y ≈ D−y Γ̃n

i,j if sign(φni,j)(φ
n
i,j)y > 0

(Γ̃n
i,j)y ≈ D+

y Γ̃n
i,j if sign(φni,j)(φ

n
i,j)y < 0

(4.40)

whereD−x Γ̃n
i,j etD+

x Γ̃n
i,j are the upwind approximations of ∂Γ̃

∂x (x, t), that depend on the sign of sign(φni,j)(φ
n
i,j)x.

The upwind approximations of ∂Γ̃
∂x (x, t) and ∂Γ̃

∂y (x, t) are computed using the fifth order WENO scheme. This
scheme is presented in appendix.

For the computation of the approximation of the x and y components of∇φ, that is, (φn|i,j)x and (φn|i,j)y , a
classical second-order centered scheme is used.

4.3.2 Transport of surfactants inside the bulk phase

Following Muradoglu and Trigvason (2008) and Hayashi and Tomiyama (2012), Eq.(6.5) is solved under a no
flux boundary condition at the interface: (Dcn · ∇Cd) |I = 0. Consequently, the boundary condition of Eq.(6.5),
SΓ = (Dcn · ∇Cc) |I , is included in the bulk transport equation as an interfacial source term SΓ̃ δI :

∂Cc
∂t

+ v · ∇Cc = ∇ · (Dc∇Cc)− SΓ̃ δI (4.41)

The no flux condition is enforced by extrapolating Cc from the interface to the gas phase, solving the following
PDE at each physical time step, with the initial condition C∗c (x, τ = 0) = Cc(x, t):

∂Cc
∗

∂τ
+ sign(φ)

∇φ
||∇φ||

· ∇Cc∗ = 0 (4.42)

This technique allows simulating the transfer of surfactants from the bulk phase to a surface when no mesh is
associated to this surface. In particular, the extrapolation procedure of Cc from the interface towards the gas phase
allows to impose the no flux boundary condition on the interface, i.e., (Dcn · ∇Cd) |I = 0.

4.3.3 Marangoni stress

The term accounting for the Marangoni effect appears as an additional source term in the one fluid formulation of
the Navier–Stokes equation:

Fσ,m = ∇sσδI . (4.43)

The numerical method used to solve the interfacial force is the Continuum Surface Force model (CSF) proposed
by Brackbill et al. [1992]. This method consists in spreading the Marangoni stress along the numerical thickness
of the interface, ε. The surface gradient of the surface tension, ∇sσ, is calculated by first computing the gradient
of the surface tension, and second by removing its normal component to the interface

∇sσδI =

[
∇σ − ∇φ

‖∇φ‖

(
∇φ
‖∇φ‖

· ∇σ
)](

2ρ

ρc + ρd

)
δ(φ)I (4.44)
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where δ(φ)I is a smoothed Dirac function which allows to spread the effect of the Marangoni stress over the
numerical thickness of the interface. It is defined as:

δ(φ)I =
1

2ε

[
1 + cos

(
πφ

ε

)]
|φ| < ε

δ(φ)I = 0 otherwise
(4.45)

The Marangoni stress, Fσ,m, is computed at the center of the cells centered on the velocity nodes (see Fig.
4.3) as illustrated in Fig. 4.6. In this figure, pressure cells are drawn as black squares, cells centered on the
velocity nodes u and v are drawn as green and red squares, respectively. The Marangoni stress acts along the
whole numerical thickness of the interface, ε. The x component of the Marangoni stress is computed at the center
of the cells centered on u, as illustrated by the green arrows on Fig. 4.6. The y component of the Marangoni stress
is computed at the center of the cells centered on v, as illustrated by the red arrows on Fig. 4.6. The computation

ncelly.t

ncellx.t
ε

Figure 4.6: Schematic representation of the Marangoni force computation on staggered grids.

of the derivatives of σ and φ appearing in Eq. (4.44) i.e., ∂σ∂x (x, t), ∂σ∂y (x, t), ∂φ∂x (x, t) and ∂φ
∂y (x, t) is done using

a classical second-order centered scheme.

4.4 Conclusion

In this chapter, the implementation of the equations that are necessary to account for surfactants, in the Level-
set modulus of JADIM, was detailed. The transport equation of surfactants on the bubble surface was written
in an Eulerian formulation. In order to be able to solve this equation, it is extended at the interface vicinity,
perpendicularly to the interface, into a volume of few cells thick. This extension is performed at every time step
of the numerical procedure.

The sink term accounting for the adsorption flux of surfactants from the liquid to the bubble surface is included
in the surfactant transport equation inside the liquid as an interfacial source term. Consequently, a no flux condition
is imposed on the bubble-liquid interface. This condition is enforced by extrapolating the surfactant concentration,
Cc, from the liquid in contact with the interface towards the gas phase, such that: ∇Cd · n = 0.

Finally, the Marangoni stress is distributed along the numerical thickness of the interface following the idea of
the Continuum Surface Force model

A simplified schematic of the successive steps performed during one physical time step of the numerical
procedure is presented on Fig. 4.7. The algorithm starts with the transport of the interface and the transport of
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surfactants on the bubble interface as well as inside the liquid. The capillary contribution, the Marangoni stress
and the other terms in the Navier stokes equations are computed and added inside the momentum balance equation
and an intermediate velocity field is obtained. This velocity field does not satisfy the continuity equation. The
projection method is used to deduce the pressure at the following time step, from which an updated velocity field
is obtained.

Figure 4.7: Schematic of the successive steps of the numerical procedure

In the next chapter, the implementation of each of these terms in the different equations is validated.
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CHAPTER 5

Validation of the numerical procedure

The LS modulus of JADIM has been validated previously (Abadie et al 2013, Abadie et al 2015). In this chapter,
validation tests regarding surfactants and the Marangoni stress are reported. More precisely, those tests aim to
validate the numerical implementation of (i) the different terms in the equation describing the surfactant transport
on the gas-liquid interface and (ii) the computation of the Marangoni stress. Concerning (i), several test cases are
performed, in particular situations where ∂Γ̃/∂t and only one other term of Eq. (4.25) are involved. For each test
case, Eqs. (4.25 and 4.26) are solved together and compared to a reference solution. For each test case, the ability
of the simulation to reproduce a reference solution is verified by computing the error based on the classical L1 and
L∞ norms:

ε1 =
1

Tf

n∑
i=0

|N(i∆t)−A(i∆t)|∆t (5.1)

ε∞ = max (|N(i∆t)−A(i∆t)|) (5.2)

where N (i∆t) is the solution computed with JADIM at time t = i∆t, A (i∆t) is the reference solution of the
test case at time t = i∆t, ∆t is the constant time step used for sampling and Tf = n∆t is the final simulation
time, with n an integer. A (i∆t) is the exact analytical solution of the test case when it exists. For the test case
presented in Sec. (5.3), for which an approximate analytical solution exists, or for the test case presented in Sec.
(5.2), for which the numerical method is an approximate one, A (i∆t) is the numerical solution computed with
the finest mesh, or smallest time step. For each test case, the evolution of the errors with the time step and mesh
size is presented, unless the contrary is explictely mentionned. It should be noted that the curves relating ε1 or ε∞
to ∆x or ∆t characterize both the speed at which the numerically computed solution converges and its ability to
reproduce the exact solution. In that sense, the convergence rates that are reported in this chapter do not strictly
characterize the convergence of the spatial and temporal discretization scheme that were used.

5.1 Validation of the numerical procedure used to transport surfactants
on the bubble surface

5.1.1 Expansion test

The test case presented here is inspired from Stone (1990). A two-dimensional bubble is initialized at the center
of the computational domain. A polar coordinate system is placed at the center of the bubble: r is the radial coor-
dinate and θ the angular one. er is the radial unit vector. In Eq. (4.25), the term Γ̃n · ∇v · n is a term accounting
for the change of the local curvature of the surface (Stone (1990)). To test its proper implementation, a growing
bubble with an homogeneous surfactant concentration field on its surface is simulated. There is neither adsorption
nor desorption of surfactants to/from the bubble interface from/to the bulk phase. A non-zero divergence velocity
field v = Krer is imposed, where K is a constant. It should be noted that Eq. (4.25) is only valid for incompress-
ible flows. However, the spatial discretization of the convective term, v · ∇Γ̃ , is done in a conservative manner
using the fact that the velocity field is divergence free: v · ∇Γ̃ = ∇ · (Γ̃v). Integrating ∇ · (Γ̃v) on the control



volume centered on a pressure cell yields
∫
V
∇· (Γ̃v) dV =

∫
S
n · (vΓ̃ ) dS. Therefore, Eq. (4.25) becomes valid

for compressible flows as well. The computational setup and the flow field are presented in Fig. 5.1.

Figure 5.1: A-two dimensional bubble is placed in a square domain. The bubble interface is expanded with the ve-
locity field v = Krer. The velocity field v is plotted by the means of vectors. The color characterizes
the value of the function F (red=gas; blue=liquid).

The differential equation governing Γ̃ is obtained by injecting the expression of v into Eq. (4.25):

dΓ̃

Γ̃
= −Kdt (5.3)

which yields:
Γ̃ = Γ0e

−Kt (5.4)

where Γ̃ (t = 0) = Γ0. Γ̃ is presented as a function of the time in Fig. 5.2a, with Γ0 = 1 mol/m2. The solid line
is the analytical solution (Eq. (5.4)) and the crosses are values of Γ̃ computed with JADIM, with a computational
domain containing 64 × 64 computational cells. It can be observed that the agreement between the computation
performed with JADIM and the analytical solution given by Eq. (5.4) is excellent. The errors ε1 and ε∞ are
presented in Fig. 5.2b as functions of the grid size ∆x. In order to guide the eye, a small solid back line is plotted
in Fig. 5.2b that shows a second-order convergence. It is observed that both ε1 and ε∞ follow a similar trend as
the solid black line. Note that the time step was fixed to ∆t = 1.4 10−4 s for all the computational grids.

The convergence of the numerical solution towards the solution given by Eq. (5.4), with the integration time
step has also been verified. The time step convergence is shown in Fig. 5.3. In order to guide the eye, a small solid
black line is drawn in Fig. 5.3 that shows a third-order convergence. It is observed that both ε1 and ε∞ follow a
similar trend as the solid black line. This is consistent with the third-order Runge–Kutta scheme that was used for
the time discretization of Eq. (4.25).

5.1.2 Advection test

The proper implementation of the advection term, v · ∇Γ̃ , in Eq. (4.25) is verified with the following test case.
A two-dimensional circular bubble is initialized at the center of the computational domain. A polar coordinate
system is defined, with an origin at the center of the bubble: θ is the angular coordinate and r the radial one; eθ
is the angular unit vector. The following velocity field is imposed: v = ωreθ, where ω is a constant. There is

27



Figure 5.2: This figure refers to the validation test presented in section 5.1.1. (a) Γ̃ as a function of the time for
the configuration depicted in Fig. 5.1. The continuous line gives the analytical solution (Eq. (5.4))
and the crosses give values computed with JADIM with a grid containing 64× 64 cells. (b) ε1 and ε∞
as functions of the cell size ∆x. In order to guide the eye, a small solid black line is drawn that shows
a second order convergence.

Figure 5.3: The errors, ε1 and ε∞ as functions of the integration time step, ∆t. The solid black line shows a
third-order convergence.

neither diffusion along the surface nor adsorption/desorption of surfactants. For this test case, it can be verified
that Eq. (4.25) reduces to:

∂Γ̃

∂t
+ ω

∂Γ̃

∂θ
= 0 (5.5)

The following initial condition is chosen: Γ̃ (θ, t = 0) = sin(θ) + 2. The analytical solution of Eq. (5.5) with this
initial condition can be found using the method of characteristics:

Γ̃ = sin(−tω + θ) + 2 (5.6)

The computational setup, the initial concentration field and the velocity field are presented in Fig. 5.4. For stability
reasons, for this test case, the integration time step is fixed to ∆t = ∆x/(ωR), where R is the bubble radius. The
solution given by Eq. (5.6) is plotted in Fig. 5.5a as a solid line, for θ = π

2 and ω = 1. Values computed with
JADIM, using 160 cells along the x and y directions, are plotted as crosses. It can be observed that the agreement
between the computation performed with JADIM and the analytical solution given by Eq. (5.6) is excellent. The
errors ε1 and ε∞ are plotted in Fig. 5.5b as functions of the grid size ∆x. In order to guide the eye, a small solid
red line is plotted in Fig. 5.5b that shows a convergence rate of 1.5.

It is noticed in this test case that, if the mesh is not fine enough, the peaks of Γ̃ are getting smaller as it is
transported. This is depicted in Fig. 5.6. In this figure, N = ωt/(2π) is the number of rotation that Γ̃ performs
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Figure 5.4: A two-dimensional bubble is placed in a square domain. The streamlines corresponds to the following
velocity field: v = ωreθ. The contour plot characterizes Γ̃ at a given time t. This computation was
performed with 80 cells along the x and y directions.

Figure 5.5: This figure refers to the validation test presented in section 5.1.2. (a) Comparison, for θ = π
2 and

ω = 1, between the solution given by Eq. (5.6) (black line) and values calculated with JADIM
(crosses), using a grid having 160 cells along the x and y directions. (b) The errors, ε1 and ε∞, as
functions of the cell size. The red line shows a convergence rate of 1.5.

around the perimeter of the bubble. It can be observed that when the mesh is coarse, the solution computed with
JADIM follows the solution of Eq. (5.6) for N = 0.1. However, as N increases, the peaks of the sinus function
tend to disappear. When the mesh is refined, the solution computed with JADIM follows the analytical solution
even for N = 13.

In this test case, it has been observed that, if the mesh size is fixed, decreasing the time step (starting from
∆t = ∆x/(ωR)) does not improve the solution calculated by JADIM. On the contrary, the peaks of the sinus
fonction gets smaller as ∆t gets smaller, for a fixed value of t = n∆t, where n is an integer. This is depicted
in Fig. 5.7, where the maximum value of Γ̃ is plotted as a function of N , for a mesh characterized by 40 cells
along the x and y directions. It is observed that the maximum value of Γ̃ decreases with time, this decrease being
more pronounced as ∆t is decreased. This is due to numerical diffusion that is known to increase as the ratio
of (∆x)2/∆t increases. We believe that the numerical diffusion observed for this test case is responsible for the
convergence order of 1.5.
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Figure 5.6: (a) Comparison between the solution given by Eq. (5.6) (black line) and values calculated with JADIM
at different times. Two grids are used for the computations. A grid having 32 cells along the x and y
directions (crosses) and a grid having 64 cells along the x and y directions (dots).
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Figure 5.7: Maximum value of Γ̃ as a functon of the number of rotation that Γ̃ performs around the perimeter of
the bubble (N = ωt/(2π))

5.1.3 Adsorption/desorption test

The proper implementation of the source term, KaCI

(
Γ∞ − Γ̃

)
− KdΓ̃ , in Eq. (4.25), is verified with the

following test case. A stagnant liquid pool with a free surface contains surfactants, with a constant concentration
C0. The free surface contains surfactants, with an initial concentration Γ0. In this situation, Eq. (4.25) reduces to
an ordinary differential equation:

dΓ̃

dt
= KaC0

(
Γ∞ − Γ̃

)
+KdΓ̃ (5.7)

whose solution is:

Γ̃ =
KaC0Γ∞ − e−(t+Q)(KaC0+Kd)

KaC0 +Kd
(5.8)

where Q = − 1
Ka C0+Kd

ln (Ka C0 Γ∞ − Γ0 (KaC0 +Kd)) is an integration constant. Fig. 5.8 presents the
computational domain. Eq. (5.8) is plotted as a solid line in Fig. 5.9a, together with values of Γ̃ calculated with
JADIM, for Ka = 1 mol×m3.s−1 Kd = 1 s−1, Γ0 = 1 mol/m2, Γ∞ = 5 mol/m2 and C0 = 2 mol/m3. In Fig.
5.9b, ε1 and ε∞ are plotted as functions of the integration time step used in JADIM. The solid line shows a third-
order convergence. This is consistent with the third-order Runge–Kutta scheme used for the time discretization of
Eq. (4.25).
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Figure 5.8: Computational setup for the simulation of a stagnant liquid pool containing surfactants. 64 square
cells are placed along the x and y directions. The colors characterize the value of the function F
(blue=liquid phase, red=gas phase).

Figure 5.9: This figure refers to the validation test presented in section 5.1.2. (a) Surface concentration, Γ̃ , as a
function of the time t. The black solid line is the solution given by Eq. (5.8) and crosses give values
computed with JADIM. (b) ε1 and ε∞ as functions of the integration time step ∆t. The solid line
shows a convergence rate of 3.

5.1.4 Diffusion test

The proper implementation of the term accounting for surface diffusion in Eq. (4.25) is verified with the following
test case, proposed by Xu and Zhao (2002). For reminder, the surface diffusion is discretized in the following
form:

Ds∇2
sΓ̃ = Ds

[
∇2Γ̃ − κ∇Γ̃ · n− n ·D2Γ̃ · n

]
(5.9)

A two-dimensional circular and stagnant bubble of radius r0 is initialized at the center of the computational
domain. A polar coordinate system is placed at the center of the bubble: r is the radial coordinate and θ is the
angular one. Without adsorption/desorption flux of surfactants to/from the interface, and using the polar coordinate
system, Eq. (4.25) reduces to:

∂Γ̃

∂t
=

1

r0
2

Ds
∂2Γ̃

∂θ2
(5.10)

This PDE is completed by a periodic boundary condition: Γ̃ (0, t) = Γ̃ (2π, t). The following initial condition is
used: Γ̃ (θ, t = 0) = sin θ + 2.
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Eq.(5.10) can be solved using separation of variables. It gives:

Γ̃ (θ, t) = 2 + exp

(
−Dst

r2
0

)
sin θ (5.11)

For stability reasons, for this test case, the integration time step is fixed to: ∆t = ∆x2/Ds. The surface con-

Figure 5.10: (a) Γ̃ (θ) at different times. The black solid lines are the solutions given by Eq. (5.10) at t = 0.005 s,
t = 0.01 s and t = 0.05 s, while crosses give values computed with JADIM. (b) ε∞ and ε1 at time
t = 0.01 s as functions of the mesh size ∆x. The solid black line shows a second-order convergence.

centration profile Γ̃ (θ, t) is shown in Fig. 5.10a, at different times. In this figure, the solid lines represent
the solution given by Eq. () and the crosses give values computed with JADIM. The grid used for the com-
putation contains 80 cells along both directions. Fig. 5.10b presents ε1 and ε∞ as functions of mesh size
∆x. Note that for this test case, ε1 and ε∞ are defined as: ε1 = 1

2π

∑n
i=0 |N(ti, i∆θ) − A(ti, i∆θ)|∆θ and

ε∞ = max (|N(ti, i∆θ)−A(ti, i∆θ)|), where ti denotes a specific time in the simulation. The solid black line
shows a second order convergence.

The convergence with the integration time step is also verified. The mesh size is fixed to ∆x = 0.003125 m

and the time step is varied. The diffusion coefficient is set to Ds = 0.01m2/s. The result is presented in Fig.
5.11a. In this figure, it is clearly seen that the solution computed with JADIM gets closer to the solution given by
Eq. (5.1.4) as the integration time step is reduced. The convergence rate is shown in Fig. 5.11b. A second order
convergence with the integration time step, ∆t, is observed.

5.1.5 Discussion

In this section, the convergence of the numerical procedure used to solve Eqs. (4.25 and 4.26) was verified. In
general, the convergence rate of the solution computed with JADIM towards an analytical solution with respect to
∆x was close or smaller than two. In particular, the expansion and the diffusion tests showed a convergence rate
close to two, which is consistent with the spatial discretization schemes of these terms (see chapter 4). Concerning
the advection test (see section (5.1.2), the convergence rate with ∆x is close to 1.5. It is hypothesized that this
lower convergence rate when compared to the other test cases might be due to the numerical diffusion observed
for this test case. Further investigations need to be conducted to confirm this hypothesis.

The convergence of the solution computed with JADIM towards an analytical solution with respect to ∆t was
also characterized. A convergence rate close to three was observed for the adsorbtion test (see section 5.1.3) and
the expansion test (see section 7.2). This is consistent with the use of the third-order Runge–kutta scheme for the
time discretization of Eqs. (4.25 and 4.26). Concerning the diffusion test, a convergence raete close to two was
observed. The reason of this lower convergence rate has not been investigated and is unknown.
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Figure 5.11: This figure refers to the validation test presented in section 5.1.4. (a) Γ̃ (θ) at t = 0.27 s. The black
solid line is the solutions given by Eq. (5.10) at t = 0.27 s while crosses give values computed with
JADIM for ∆t = 0.018 s, ∆t = 0.009 s and ∆t = 0.0045 s. (b) ε∞ and ε1 at time t = 0.27 s as
functions of the integration time step, ∆t. The solid black line shows a second order convergence.

It is expected that the term that exhibits the lowest convergence rate will dictate the convergence rate of the
whole numerical procedure, as it will be seen later.
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5.2 Exchange term in the surfactant tranport equation inside the bulk
phase

As pointed out in the section presenting the numerical method, the adsorption/desorption flux of surfactants to-
wards/from the surface is dealt as an interfacial source term inside the bulk transport equation (Eq. (4.41)) and
a no-flux condition towards the dispersed phase is imposed. In this subsection, we verify that this technique can
reproduce analytical results within an acceptable error margin. The following test case is designed for this purpose.

A flat horizontal interface is initialized inside a two-dimensional rectangular domain. The computational
domain is the same as in Fig. 5.8, but the red color corresponds to the liquid phase and the blue color corresponds
to the gas phase. The upper boundary is a wall where the bulk concentration is fixed to C = C1. The surfactant
concentration on the gas-liquid interface is fixed to Γ̃ = Γ1 . The side boundaries are walls with noflux boundary
conditions for the surfactants. The distance between the upper (lower) boundary and the interface is H1 (H2). At
equilibrium (i.e., for t → ∞) the surfactant diffusion flux in the upper phase is equal to the net surfactant flux to
the interface: SΓ̃ = (Dcn · ∇Cc) |I . Therefore, an equilibrium concentration at the vicinity of the interface, CI ,
exists, and can be expressed as follows:

CI =
−D1C1

H1
+KdΓ1

−D1

H1
+Ka (Γ∞ − Γ1)

(5.12)

The diffusion coefficient of the surfactants in the upper (liquid) phase is set to D1 = 10−3 m2/s. The adsorption
and desorption constants of the surfactants are fixed toKa = 1 mol×m3/s, Kd = 1s−1 and Γ1 = 2 mol/m2. Eq.
(5.12) is plotted as a solid line in Fig. 5.12a, whereas the values obtained with JADIM are plotted as crosses. The
values obtained with JADIM are obtained by solving Eqs. (4.41) and (4.42). The computation is performed with
128 cells along the x and y directions. The computation is able to reproduce the analytical solution with less than
2% of error, when t →∞. The convergence is verified by comparing the values of CI computed with JADIM to
the one computed with the finest grid. This is shown in Fig. 5.12b. To guide the eye, a small black solid line is
drawn that shows a first order convergence. It seems that the method of imposing the no-flux boundary condition

Figure 5.12: This figure refers to the validation test presented in section 5.2. (a) CI as a function of the time t.
The black solid line is the solution given by Eq. (5.12) and the crosses are the values computed with
JADIM. (b) ε1 as a function of grid size ∆x.

at the interface by solving Eq. (4.42) only in the gas phase leads to a solution that is in satisfactory agreement with
the analytical solution, however, the convergence rate of the solution is lower than what is expected.

The sensitivity of the solution calculated with JADIM to the number of pseudo time step (n) when solving
Eq. (4.42) was verified. It was observed that the solution computed with JADIM varies less than 0.6% when n is
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Figure 5.13: The parameter en = (CI (τ)− CI (τ = 16)) /CI (τ = 16) as a function of the number of pseudo-
time step.

increased from 2 to 16. This is illustrated in Fig. 5.13, where en = (CI (τ)− CI (τ = 16)) /CI (τ = 16) is plotted
as a function of τ . In the rest of the work performed in this thesis, the number of pseudo-time step performed
when solving Eq. (4.42) is n = 5.
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5.3 Marangoni stress

The proper implementation of the CSF model for the computation of the Marangoni stress is verified by simulating
an axisymetric bubble subjected to a constant surface tension gradient: σ = σ0

(
1− β zL

)
, where β is a constant.

The analytical expression of the terminal velocity of the bubble is given, in the creeping flow limit, i.e., for
Reb = ρcdVb

µc
→ 0, for a spherical bubble, i.e., for Cab = µcVb

σ0
→ 0, for vanishing Marangoni number, i.e.,

βd
L → 0, and in an unbounded medium, by Young et al. (1959):

Vb =
1

3

−σ0d
β
L

(2µc + 3µd)
(5.13)

The computational setup is presented in Fig. 5.14. The numerical solution obtained with JADIM by solving Eqs.
(3-4) is compared to Eq. (5.13) in Fig. 5.16a, with µd = µc = 0.2 Pa.s, ρc = ρd = 0.02 kg.s−1, d = 1 m,
σ0 = 10 N.m−1 and β = 0.27. The numerical solution is computed with a mesh characterized by a ratio of the
bubble diameter to the mesh size d/∆x equal to 64. It is calculated that Reb = 0.0889 and Cab = 0.017. This
confirms that Eq. (5.13) can be applied to predict Vb in this specific configuration. The difference between the
bubble velocity computed with Eq. (5.13) and the one computed with JADIM is less than 2 % and falls below
1% when the size of the mesh is ∆x = d/128. The convergence is characterized by comparing the values of Vb
computed with JADIM to the one computed with the finest grid. This is shown in Fig. 5.16b. The solid line shows
a second order convergence.

Figure 5.14: Computational setup for the axisymmetric simulation of a bubble subjected to a constant surface
tension gradient.

The convergence of the numerical procedure with the integration time step has also been verified. The values
of Vb are calculated with a mesh characterized with d/∆x = 64 and different values of ∆t. The convergence is
evaluated by comparing the values of Vb computed with JADIM with a given value of ∆t to the one computed
with the smallest value of ∆t. A third order convergence with the integration time step is observed, as expected
from a third order Runge–kutta scheme.
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Figure 5.15: This figure refers to the validation test presented in section 5.3. (a) Bubble velocity as a function
of the time computed with JADIM (solid line) and steady state bubble velocity given by Eq. (5.13)
(dashed line). (b) Relative error with respect to the finest mesh as a function of the mesh size (∆x).
The solid line shows a second order convergence.

Figure 5.16: This figure refers to the validation test presented in section 5.3. Relative error with respect to the
smallest time step as a function of the integration time step (∆t). The solid line shows a third order
convergence.

5.4 Bubble rising in an infinite stagnant liquid

In this section, the validation of the whole numerical procedure is done, with the following test case:

A bubble is initialized at the center of an axisymmetric domain. The domain and the boundary conditions are
presented in Fig. 5.17. The upper boundary of the domain is a wall, an axisymetric boundary condition is imposed
on the lower boundary and periodic boundary conditions are imposed on the side boundaries of the domain.
Gravity acts along the negative z axis (see Fig. 5.17) and, consequently, the bubble rises along the z−axis due to
its density difference with the surrounding liquid. The bubble interface is initially clean, i.e., Γ̃ (x, t = 0) = 0.
The surfactant concentration is initially uniform in the liquid C (x, t = 0) = C0. The non dimensional numbers
characterizing the studied system can be summarized as follows:

Re =
ρcUL
µc

, Bo =
ρg(d)2

σ0
, Mo =

(ρc − ρd)gµc4

(ρc2σ3)
, m =

ρd
ρc

, λ =
µd
µc

E =
RTΓ∞
σ0

, La =
kaC∞
kd

, Da =
Γ∞
LC∞

, α =
kaC∞L
U

, Pe =
UL
Dc

, Pes =
UL
Ds

where Re, Bo, Mo, E, La, Da, α, Pe, Pes, m, λ are the Reynolds number, the Bond number, the Morton number,
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Figure 5.17: Computational domain for the simulation of a bubble rising in a stagnant liquid. The length of the
periodic domain is L. The boundary conditions are indicated on the figure.

the elasticity number, the Langmuir number, the Damkohler number, the dimensionless adsorption rate, the Peclet
number based on the bulk surfactant diffusivity, the Peclet number based on the interfacial surfactant diffusivity,
the ratio of the gas viscosity (µd) to the liquid viscosity (µc) and the ratio of the gas density (ρd) to to the liquid
density (ρc), respectively. The velocity scale is set to U = Vhr, where Vhr is the terminal velocity given by
Hadamard–Rybczynski solution for a spherical bubble in the low Reynolds number limit moving in an infinite
domain (Clift et al. (1978)):

Vhr =
2

3

g(d/2)2(ρc − ρd)
µc

µc + µd
2µc + 3µd

(5.14)

The length scale is set to the bubble radius L = d/2. This length scale sets two additional number characterizing
the geometry: L/d and dh/d. The parameters are fixed to: E = 0.5, Da = 10, α = 20, Pe = 10, Pes = 100,
m = 0.1, λ = 0.025, Bo = 1, Mo = 0.1, L/d = 20, dh/d = 15 and La is set to 0 or 1. The terminal bubble
velocity computed with JADIM is compared to values computed by Tasoglu et al. (2008), who solved the same
problem using a Finite Difference/Front-Tracking method. For the chosen parameters, a clean buoyant bubble is
spherical (Clift et al. (1978)). The terminal values of the bubble Reynolds number, Reb = ρcVbd/µc, obtained
by Tasoglu et al. (2008) for a clean bubble (La = 0) and a contaminated one (La = 1) are Reb = 0.241 and
Reb = 0.164, respectively. Those values are plotted as the blue and red solid lines in Fig. 5.18a, respectively. On
this figure, the instantaneous values of Reb computed with JADIM, for La = 0 and La = 1, are presented as the
blue and red dashed lines, respectively. The following scale is used to define a dimensionless time: t? = t/

√
d/g.

Reb is plotted against t? in Fig. 5.18a. It is observed that the clean bubble accelerates and reaches smoothly its
terminal velocity. It appears that the terminal value of Reb computed with JADIM (Reb = 0.239) is in excellent
agreement with the one reported by Tasoglu et. al (2008). The contaminated bubble (i.e., La = 1) decelerates
after an initial acceleration, as surfactants adsorb on the bubble surface. The terminal bubble Reynolds number
computed with JADIM, Reb = 0.161, is again in very good agreement with the one reported by Tasoglu et. al
(2008). The convergence rate is verified by computing e = (Vb − Vref) /Vref , where Vb is the bubble terminal
velocity computed with JADIM with a given mesh, and Vref is the bubble terminal velocity computed with the
finest mesh; e is presented as a function of ∆x in Fig. 5.18b. To guide the eye, a small black solid line is drawn
that shows a convergence rate of 1.5. The points on this curve seems to follow this rate. This convergence rate
characterizes the whole numerical procedure presented in chapter 4, including the transport of surfactant along
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the gas-liquid interface and inside the liquid phase (Eqs. 4.25 and 4.41), the computation of the capillary pressure
jump, of the marangoni stress, of the viscous and intertial terms (Eq. 4.1), and the use of the projection method
to account for the incompressibility equation (Eq. 4.2). The lowest convergence rate observed in this chapter was
close to 1 for the “exchange term". However, the influence of this terms on the convergence rate of the terminal
velocity of the buoyant bubble seems to be limited. The convergence rate of the procedure seems to be dictated by
the advection term in Eq. 4.25. Further investigation of this feature is out of the scope of this thesis.

Figure 5.18: This figure refers to the validation test presented in section 5.4. (a) Bubble Reynolds number Reb as
a function of the dimensionless time computed with JADIM, for La = 0 (dashed blue) and La = 1
(dashed red). Blue and red solid lines: terminal values of Reb computed by Tasoglu et al. (2008)
using a Finite Difference/Front Tracking method. (b) Convergence parameter e as a function of ∆x.

Simulations were also performed varying Eo, Mo and La. The drag force acting on the bubble, Fd, has been
computed using the cylindrial coordinate system (r, z) as follows:

Fd = 2π

∫ zf

zr

(
τnt (z, rI (z))−

(
− pc (z, rI (z)) + τnn (z, rI (z))

)
r′I (z)

)
rI (z) dz (5.15)

where zr and zf are the axial coordinates localizing the back and the front of the bubble, respectively, rI (z) is
the radial coordinate localizing the gas-liquid interface, r′I = drI

dz , τnt =
(
T̄ · n

)
· t is the tangent viscous stress,

τnn =
(
T̄ · n

)
· n is the normal viscous stress and pc is the periodic component of the pressure inside the liquid

(i.e., pc = p + ρgz). In order to evaluate Fd, the values of τnt and τnn are first calculated at the center of the
computational cells and then interpolated on the gas-liquid interface. Using the coordinate system (r,z), the unit
tangent vector to the gas-liquid interface is calculated as t = − 1

‖∇φ‖

(
∂φ
∂r ,−

∂φ
∂z

)
. The drag coefficient of the

spherical bubble, based on the terminal bubble velocity and its diameter, is then computed for each simulation as:

CD = Fd/
(

0.5ρcπ (d/2)
2
V 2
b

)
(5.16)

In Fig. 5.19, drag coefficients computed with JADIM are compared to correlations predicting Cd as a function of
Reb for a clean spherical bubble (Mei et al. (1994)):

Cd =
24

Reb

(
2

3
+

(
12

Reb
+ 0.75

(
1 +

3.315

Reb
1
2

))−1
)

(5.17)

and for a rigid sphere (Schiller and Naumann (1935)):

Cd =
24

Reb

(
1 + 0.15Reb

0.687
)

(5.18)
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It can be observed in Fig. 5.18 that varying La from 0 to 1 allows obtaining a bubble rising with a drag coefficient
characterizing a spherical bubble with a clean interface (for La = 0) or characterizing a rigid sphere (for La = 1).

0 10 20 30 40
Reb

100

101

102

C d

La = 0
La = 0.1
La = 1

Figure 5.19: Drag coefficient, Cd, of a buoyant bubble as a function of its Reynolds number (terminal value).
Squares, pentagons and triangles are values of the drag coefficient of the bubble computed with
JADIM for values of the Bond number and Morton number equal to: (Bo = 1; Mo = 0.1),(
Bo = 1; Mo = 10−5

)
and

(
Bo = 0.1; Mo = 10−9

)
, respectively. Blue, black and red symbols are

values corresponding to La = 0, La = 0.1 and La = 1, respectively. The blue and red solid lines
give values of the drag coefficient predicted by the correlations given in Eqs. (5.17) and (5.18),
respectively.
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Table 5.1: Validation tests: a summary

Test name Validated equation number Order of convergence with ∆x Order of convergence with ∆t

Expansion test: sec-

tion 7.2

Eqs. (4.10, 4.11, 4.25 and 4.26) ≈ 2 ≈ 3

Advection test: sec-

tion 5.1.2

Eqs. (4.25 and 4.26) ≈ 1.5 /

Adsorption test:

section 5.1.3

Eqs. (4.25 and 4.26) / ≈ 3

Diffusion test: sec-

tion 5.1.4

Eqs. (4.25 and 4.26) ≈ 2 ≈ 2

Exchange term in

the surfactant tran-

port equation inside

the bulk phase: sec-

tion 5.2

Eqs. (4.41 and 4.42) ≈ 1 /

Marangoni stress:

section 5.3

Eqs. (4.1, 4.10, 4.11) ≈ 2 ≈ 3

Bubble rising in an

infinite stagnant liq-

uid: section 5.4

Eqs. (4.1, 4.10, 4.11, 4.25, 4.26, 4.41 and 4.42) ≈ 1.5 /

5.5 Conclusion

In this section, the implementation of the different terms in the equation describing the surfactant transport on the
gas-liquid interface and the computation of the Marangoni stress has been validated. A summary of the test cases
and the order of convergence is presented in Table 5.1.

In the next section, the code is applied to study the influence of soluble surfactants on the dynamics of de-
formable bubble inside horizontal microhannels.
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CHAPTER 6

Influence of soluble surfactants and deformation on the dynamics of
centered bubbles in cylindrical microchannels

This chapter presents a work that has been accepted for publication in the journal entitled Langmuir (Atasi et al.

(2018b)).

6.1 Introduction

Investigation of microscale flows is relevant for many microfluidic applications such as micro-heat exchangers,
micro-absorbers and micro-extractors (Han et al. (2012); Kashid et al. (2011)). In recent years, bubble micro-
absorbers were developed for industrial applications and, consequently, the motion of bubbles in microchannels
was investigated thoroughly. In such a gas-liquid microscale flow, inertial effects are often negligible while surface
tension and viscous forces dominate the system. The relative importance of inertial to viscous forces is assessed
by the means of the Reynolds number: Re = ρJld/µ, where ρ, µ, Jl and d are the density and viscosity of the
liquid, the mean flow velocity and the bubble diameter, respectively. The Reynolds number characterizing these
microscale flows is often close or smaller than unity. The relative importance of viscous forces to surface tension
forces is assessed by the means of the capillary number: Ca = Jlµ/σ, where σ is the surface tension of the
gas-liquid interface.

Among the investigations regarding the motion of bubbles in microchannels, the dynamics of bubbles with a
volume equivalent diameter, d, larger than the channel equivalent diameter, dh, has received considerable attention
(Hassanvand and Hashemabadi (2012); Abiev (2013); Abadie et al. (2012); Gupta et al. (2010a); Yu et al. (2007)).
The bubble equivalent diameter is defined as d = (6V /π)

1
3 , where V is the bubble volume. For example, it

was shown that the mass transfer in those systems is considerably enhanced due to recirculation of the liquid in
between bubbles, promoting mixing (Hassanvand and Hashemabadi (2012)). On the other hand, the motion and
dissolution of small bubbles in microchannels, i.e., bubbles with d/dh < 1, has received less attention. Cubaud
et al. (2012) studied experimentally and globally the dissolution of spherical bubbles within microchannels . Feng
(2010) studied the effect of Re and Ca on the dynamics of an isolated small bubble in a horizontal channel.
Khodaparast et al. (2015) studied, with experiments and numerical simulations, the motion of bubbles inside
horizontal channels . In their work, Re and Ca were varied (in the ranges 10−3 < Re < 103 and 10−4 < Ca <

10−1) and the shape and the velocity of the bubble, Vb, was monitored. For d/dh < 1, they observed that Vb/Jl
decreases as d/dh is increased. The same behavior was observed by Kurimoto et al. (2013) for buoyancy driven
bubbles in vertical pipes. Stan et al. (2011) studied the influence of Archimedes’ thrust on the vertical position of
spherical bubbles within a horizontal and straight rectangular microchannel. They also observed that, for neutrally
buoyant bubbles characterized by small Re and moderate Ca, the equilibrium position of the bubble is near the
symmetry axis of the channel. At larger Re, they observed that inertial migration forces shift this position off the
horizontal symmetry plane of the channel.

When surfactants are introduced in the liquid, they may adsorb on the bubble surface and alter the surface
tension of the gas-liquid interface. Consequently, an inhomogeneous distribution of the surfactants on the interface
causes Marangoni stresses, influencing the dynamics of the bubble(Bel Fdhila and Duineveld (1996); Cuenot et al.



(1997); Tasoglu et al. (2008); Takagi et al. (2009); Fukuta et al. (2008)). This property of surfactants make them
widely used in microfluidics to stabilize emulsions or to favor the formation of bubbles or droplets (Baret et al.

(2009); Riaud et al. (2018)). Regarding the dynamics of small bubbles translating along microchannels, Mikaelian
et al. (2015) performed direct numerical simulations of spherical bubbles, i.e., for Ca → 0, translating along a
horizontal channel . They investigated the effect of bubble confinement, through varying the parameter d/dh, on
the bubble velocity. They considered two limiting situations to model the presence of surfactants. They imposed
a zero shear stress on the gas-liquid interface in order to model the case of a clean interface. The presence of
surfactants was accounted for by imposing a no slip condition on the gas-liquid interface (i.e., by imposing that
the bubble behaves as a rigid sphere). They established correlations to calculate the ratio of the bubble velocity to
the mean flow velocity, Vb/Jl, as a function of d/dh, for the case of a clean interface:

Vb
Jl

= 1 + exp

(
−1.83

(
d

dh

)5
)

(6.1)

and for a bubble behaving as a rigid sphere:

Vb
Jl

= 1 + exp

(
−1.92

(
d

dh

) 9
4

)
(6.2)

These correlations were established in the range 0 < d/dh ≤ 0.75. Note that Rivero-Rodriguez and Scheid
(2018) extended the explored numerical range to 0 < d/dh ≤ 0.9 and used polynomial fittings to express Vb/Jl
as a function of d/dh .

The effect of the surfactants on the velocity of the liquid adjacent to the bubble surface depends on their
distribution on the gas-liquid interface. This distribution can be determined by solving the complete set of coupled
partial differential equations governing the transport of surfactants on the bubble surface and in the liquid. In
a microchannel bubbly flow, due to the bubble confinement created by the channel walls, the distribution of
surfactants on the gas-liquid interface is expected to be fundamentally different from their distribution in the case
of a bubble rising in an infinite liquid medium. To the best of our knowledge, the distribution of surfactants on
the surface of a bubble translating in a horizontal microchannel has not been studied yet. Furthermore, the effect
of the bubble deformability (i.e., the effect of Ca) on Vb/Jl in the presence of surfactants has not been studied in
previous works.

Accordingly, in this study, we investigate, by direct numerical simulations, the combined effect of the bubble
deformability, the presence of surfactants and the bubble confinement on the dynamics of isolated small bubbles
(i.e., d/dh < 1) transported by a liquid in a horizontal microchannel. We consider the presence of surfactants by
simulating their transport on the surface of the bubble and inside the liquid phase. We compute the Marangoni
stress induced by their inhomogeneous distribution on the surface. The numerical code used for this study is the
JADIM code, which has been developed to simulate dispersed two-phase flows (Cuenot et al. (1997); Dupont and
Legendre (2010); Abadie et al. (2015); Legendre and Magnaudet (1998); Legendre et al. (2003)). Our analysis
emphasizes on several parameters characterizing the system: the bubble shape, the ratio of the bubble velocity
to the mean flow velocity, Vb/Jl, the drag coefficient of the bubble, Cd, the fluid velocity tangent to the bubble
surface, Vs/Vb and the surfactant distribution on the interface, Γ . Our goal is to highlight and quantify the key
phenomena governing the studied system.

43



Figure 6.1: Axisymmetric bubble of density ρd and viscosity µd immersed in a viscous liquid of density ρc and
viscosity µc inside a cylindrical microchannel of lenght L and diameter dh. The unit vector normal
to the gas-liquid interface, n, and the unit vector tangent to the gas-liquid interface, t, are sketched in
this figure.

6.2 Problem statement

6.2.1 Geometry

We consider an axisymetric bubble of diameter d moving in a horizontal and rectilinear microchannel with a
circular cross section (referred to as a cylindrical microchannel in this work) of diameter dh, as sketched in Fig.
(6.1). The channel has a length L and a pressure difference ∆p > 0 is imposed between the left and the right
boundaries of the domain. The bubble is centered in the channel. Rivero-Rodriguez and Scheid (2018) have
recently shown that centered bubbles are stable provided that d/dh is larger than 0.85 or that the Ohneshorge
number Oh =

√
Ca/Re is larger or equal to 0.2 for bubbles with d/dh < 0.85. In addition, they showed that,

regardless of the value of Oh, Vb/Jl and the bubble shape are not affected by Re provided that Re . 8. In this
study, a particular attention is held to ensure that Oh ≥ 0.2, so that the bubble can be considered as centered. The
liquid and the bubble surface contain surfactants with initial concentrations C0 and Γ0 , respectively.

6.2.2 Equations and modeling assumptions

The governing equations are reminded in this section and the modeling assumptions are presented. The numerical
method to solve these equations have been presented in Chap. (5). Under the assumptions that (i) the fluids
are newtonian and incompressible, (ii) there is no gas-liquid mass transfer through the interface, (iii) the flow is
isothermal, the velocity field v and the pressure p satisfy the classical one-fluid formulation of the Navier–Stokes
equations (Scardovelli and Zaleski (1999)):

∇·v = 0 (6.3)

∂v

∂t
+ v · ∇v = −1

ρ
∇p+

1

ρ
∇·T̄ − σ

ρ
(∇·n)nδI −

1

ρ
∇σδI (6.4)

where ρ, µ, σ are the density, the dynamic viscosity and the surface tension, respectively. T̄ is the viscous stress
tensor, n is a unit vector normal to the interface, arbitrarily chosen pointing towards the liquid phase and δI is the
Dirac distribution associated to the bubble-liquid interface.

The transport equations of the surfactants in the liquid phase and on the gas-liquid interface are given by (Stone
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(1990); Cuenot et al. (1997)):
∂C

∂t
+ vc · ∇C = ∇· (Dc∇C) (6.5)

∂Γ

∂t
+∇s · (vsΓ ) = Ds∇s2Γ + SΓ (6.6)

where C is the surfactant concentration in the liquid phase, Γ is the surfactant concentration on the gas-liquid
interface, Dc and Ds are the diffusion coefficients in the liquid phase and on the interface, respectively, vc is the
velocity field of the liquid phase (vc = v when in the liquid phase), vs is the component of vc tangent to the
interface and ∇s =

(̄
I− (n⊗ n)

)
· ∇ (Batchelor (1967)). SΓ is the flux of surfactants from the liquid phase to

the interface, due to the adsorption/desorption of the surfactants, i.e., SΓ = (Dcn · ∇C) |I , where the subscript I
denotes the bubble-liquid interface. It is given by (Cuenot et al. (1997); Muradoglu and Tryggvason (2008)):

SΓ = kaCI (Γ∞ − Γ )− kdΓ (6.7)

where ka and kd are adsorption and desorption kinetic constants, respectively, and CI is the surfactant concen-
tration in the liquid in contact with the interface. It is assumed that the surface tension depends on the surfactant
concentration on the interface according to an equation of state derived from the Langmuir adsorption isotherm
(Levich (1962)):

σ = σ0 +RTΓ∞ ln

(
1− Γ

Γ∞

)
(6.8)

where R is the ideal gas constant, T is the absolute temperature, σ0 is the surface tension of the clean interface
and Γ∞ is the maximum packing concentration of surfactants on the interface.

Considering the boundary conditions, periodicity is imposed between the inlet and the outlet of the domain,
simulating therefore a train of bubbles, a no-slip condition with zero transfer rate is imposed on the wall and a
symmetry condition is imposed on the symmetry axis:

v
∣∣∣
zleft

= v
∣∣∣
zright

v
∣∣∣
r=dh/2

= 0

v · na
∣∣∣
r=0

= 0

(6.9)


C
∣∣∣
zleft

= C
∣∣∣
zright

∇C · nw
∣∣∣
r=dh/2

= 0

∇C · na
∣∣∣
r=0

= 0

(6.10)


Γ
∣∣∣
zleft

= Γ
∣∣∣
zright

∇Γ · na
∣∣∣
r=0

= 0
(6.11)

{
p
∣∣∣
zleft

= p
∣∣∣
zright

+ ∆p (6.12)

where nw is the unit vector normal to the channel wall, na is the unit vector normal to the symmetry axis, (z, r)

are the axial and radial coordinates, respectively (see Fig. (6.1)) and zleft and zright are the axial coordinates
localizing the left and right boundaries of the computational domain, respectively.
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6.2.3 Dimensional analysis

The governing equations are solved in their dimensional forms and the results are expressed in terms of relevant
dimensionless parameters. Let L and U be appropriately defined length and velocity scales, respectively. The
number of dimensional parameters, 16, minus the number of dimensions, 4, results in 12 dimensionless numbers
allowing to characterize the problem. Two of them characterize the geometry of the system, while 10 others
characterize its dynamics. These 10 dimensionless numbers are defined as follows:

Re =
ρcUL
µc

, Ca =
µcU
σ0

, m =
ρd
ρc

, λ =
µd
µc

E =
RTΓ∞
σ0

, La =
kaC∞
kd

, Da =
Γ∞
LC∞

, α =
kaC∞L
U

, Pe =
UL
Dc

, Pes =
UL
Ds

where Re, Ca, E, La, Da, α, Pe, Pes, m, λ are the Reynolds number, the Capillary number, the Elasticity
number, the Langmuir number, the Damkohler number, the dimensionless adsorption rate, the Peclet number
based on the bulk surfactant diffusivity, the Peclet number based on the interfacial surfactant diffusivity, the ratio
of the gas viscosity (µd) to the liquid viscosity (µc) and the ratio of the gas density (ρd) to to the liquid density
(ρc), respectively.

The velocity scale U is set equal to the mean velocity of the monophasic liquid Poiseuille flow that would have
been generated by the imposed pressure gradient, ∆p/L: U = Jlref = ∆pdh

2/(32µcL), and the length scale is
set as L = d. This length scale sets the two dimensionless numbers characterizing the geometry: d/dh and L/d.
It has been verified that the difference between Jlref and the actual value of Jl obtained in the simulations varies
between 0.8% and 2.8%, confirming that the chosen scale is appropriate for the setup considered in this work. The
Capillary number, the Langmuir number and the ratio of the bubble equivalent diameter to the tube diameter are
varied in the range: 10−2 < Ca < 1, 0 < La < 10 and 0.15 < d/dh < 0.75, respectively. The other parameters
are set to values usually encountered for surfactants in bubbly flows: Da = 0.1, E = 0.12, α = 0.1, Pes = ∞
(Takemura (2005); Takagi et al. (2009)). Furthermore the parametersm and λ are set tom = 10−3 and λ = 10−2,
which are typical values encountered in bubbly flows. In order to satisfy the criterion

√
Ca/Re ≥ 0.2, the value

of Re is either set equal to 1 if Ca ≥ 0.04, or to Ca/0.04 if Ca < 0.04. As discussed earlier, the bubble shape and
Vb/Jl do not depend on Re for Re . 8. The value of Pe sets the thickness of the surfactant diffusion boundary
layer around the bubble. A particular attention has to be payed to capture the surfactant concentration gradients
within this boundary layer. As a consequence, the value of Pe is set to a moderate value, Pe = 500, in order to
avoid too large computational costs. The value of L/d is increased gradually, starting from 4, until Vb/Jl becomes
independent of L/d.

6.3 Results

In this section, the dynamics of an isolated small bubble inside a horizontal microchannel is studied. Initially,
i.e., at t = 0 s, the bubble is at the center of the computational domain, as sketched in Fig. (6.1). The liquid
surrounding the bubble contains surfactants with an initially homogeneous concentration, C∞. The independency
of the bubble terminal velocity on the initial surfactant concentration on the bubble-liquid interface, Γ0, has been
verified. To illustrate this statement, the instantaneous bubble velocity, Vb, is presented in Fig. (6.2) as a function
of the time t, for different values of Γ0, as compared to the equilibrium value Γeq = Γ∞

La
1+La . For Γ0 = 0, it can
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Figure 6.2: Vb as a function of the time for different values of the initial concentration of surfactants on the gas-
liquid interface: Γ0 = 0, Γ0 = 1/2Γeq and Γ0 = Γeq, for Ca = 0.01, d/dh = 0.75 and Re = 0.25.

be observed that the bubble first accelerates. Then, as surfactants adsorb on the bubble-liquid interface, Vb begins
to decrease until it reaches its terminal value. When Γ0 is increased, the bubble reaches its terminal velocity at
an earlier time. It is observed that this terminal velocity is not affected by the value of Γ0. Therefore, in all the
numerical simulations presented in this work, the initial concentration of surfactants on the bubble-liquid interface
is set to the equilibrium value: Γ0 = Γeq. In this way, the effective simulation time is reduced.

The mass of surfactants is monitored on the bubble surface as: M (t) ≡
∫
S(t)

Γ̃dS (t), following the method of
Xu and Zhao (2002). In appendix, we provide more information about the calculation of M(t) and how it evolves
along the simulation. The simulations are stopped when ‖dM(t)

dt ‖/M (t) < 0.01 and ‖dVb(t)dt ‖/Vb (t) < 0.01.
Unless explicitly mentioned, all the results presented in this section relate to a stationary state of the studied
system.

In the first part of the result section, the dynamics of an isolated spherical bubble, i.e., Ca � 1, inside a
horizontal microchannel is studied. The second part deals with the shape and the flow field around a deformable
bubble, in the absence of surfactants. Finally, the combined effect of surfactants and bubble deformability on the
bubble dynamics is analyzed.

6.3.1 Spherical bubbles

Fig. (6.3) presents the steady state surface concentration field of the surfactants, Γ̃ , (presented at the vicinity of the
bubble surface only), bulk concentration field of the surfactants, C, and velocity streamlines in a reference frame
attached to the bubble mass center, for Re = 0.25, Ca = 10−2, d/dh = 0.75, La = 0 (Fig. (6.3a)), La = 0.1 (Fig.
(6.3b)), La = 1 (Fig. (6.3c)) and La = 10 (Fig. (6.3d)). The bubble moves from the left to the right in a laboratory
reference frame. As expected, for Ca = 10−2 and for Re ∼ 1, the bubble is spherical. As it can be observed in
Fig. (6.3), the structure of the liquid flow in the microchannel appears to differ significantly from the one observed
when a bubble rise in a liquid of infinite extend. More specifically, it is observed that the flow structure generates
a convergent stagnation point at the front of the bubble (point A in Fig. (6.4)) and a divergent stagnation point at
the rear of the bubble (point B in Fig. (6.4)). Moreover, the flow generates a convergent stagnation circle on the
back half of the bubble side (C in Fig. (6.4)) and a divergent stagnation circle on the front half of the bubble side
(D in Fig. (6.4)). Consequently, on the surface, the surfactants accumulate near the convergent point/circle and
are depleted near the divergent point/circle. This is clearly observed in Fig. (6.3).

The surfactants reduce the surface tension and, consequently, their inhomogeneous distribution on the bubble-
liquid interface induces surface tension gradients that are expected to alter the fluid velocity along the interface.
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Figure 6.3: Contour plots of (top) the surfactant concentration field on the bubble surface, Γ̃ , and (bottom) the
bulk surfactant concentration field, C. Velocity streamlines are drawn in a reference frame translating
with the bubble. The bubble moves from the left to the right. (a) La = 0, (b) La = 0.1, (c) La = 1
and (d) La = 10.

Figure 6.4: A spherical bubble inside a microchannel. The bubble goes from left to right. Red dots depict a
divergent stagnation point/circle on the bubble surface, where consequently the surface tension is
high. Blue dots depict a convergent stagnation point/circle on the bubble surface where the surface
tension is low. Velocity vectors, in black, are drawn in a reference frame attached to the bubble mass
center. Red arrows depict the direction of the Marangoni stress.

In Figs. (6.5a-d), the dimensionless surfactant concentration on the bubble surface, Γ̃/Γ∞, the dimensionless
tangent shear stress on the bubble surface, τntd/(Vbµc), the dimensionless surfactant concentration inside the
liquid adjacent to the bubble surface, C/C∞, and the dimensionless gas-liquid relative velocity on the bubble
surface, Vs/Vb, where Vs = (Vb − v · t), are plotted as functions of the axial coordinate, z, for different values
of La and with Re = 0.25, Ca = 0.01 and d/dh = 0.75. Note that the origin of the axial coordinate, z = 0, is
at the back of the bubble. As described previously, the recirculating flow in between bubbles causes surfactants
to accumulate near the convergent stagnation point/circle on the bubble surface and to deplete near the divergent
stagnation point/circle. This is confirmed by Fig. (6.5a). Notably, for La = 0.1, the adsorption flux of surfactants
towards the bubble surface is not sufficient to maintain surfactants around the divergent stagnation circle on the
front half of the bubble side (point D in Fig. (6.4)) and, consequently, the bubble surface is almost clean of
surfactants near this divergent stagnation circle. The tangent shear stress distribution on the bubble surface is
shown on Fig. (6.5b). It can be observed that the shear stress increases as La is increased. The shear stress is
positive on the side of the bubble and becomes negative at the back and at the front of the bubble. At the front
of the bubble, near the convergent stagnation point on the bubble surface (point A in Fig. (6.4)), surfactants
accumulate. On the contrary, near the divergent stagnation circle on the front half of the bubble (point D in
Fig. (6.4)), surfactants are depleted. This creates a Marangoni stress directed towards the back of the bubble, as
sketched on Fig. (6.4), leading to the negative values of τnt at the front of the bubble for La > 0 (see Fig. (6.5b)).
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Figure 6.5: (a) Dimensionless surfactant concentration on the bubble surface, Γ/Γ∞, (b) dimensionless shear
stress tangent to the bubble surface, τntd/(Vbµc), (c) dimensionless surfactant concentration inside
the liquid adjacent to the bubble surface, C/C∞, (d) dimensionless liquid velocity tangent to the
bubble surface, Vs/Vb, as functions of the axial coordinate, z, for different value of La; z = 0 is at
the back of the bubble. The other dimensionless numbers are fixed to Re = 0.25, Ca = 0.01 and
d/dh = 0.75.

A Marangoni stress directed towards the back of the bubble is also generated between C and B, for La > 0 (see
Fig. (6.5b)). On the other hand, as shown in Fig. (6.5b), on the side of the bubble, for La > 0, a Marangoni
stress induced in between the divergent stagnation circle and the convergent one is directed towards the front of
the bubble, as sketched in Fig.(6.4). It is observed in Fig. (6.5b) that the tangent shear stress reaches a maximum
on the side of the bubble, where the gap between the bubble and the channel wall is the smallest. For La = 0.1, as
discussed previously, the surfactant adsorption towards the interface is small when compared to the advective flux
of surfactant from the divergent stagnation circle to the convergent stagnation one. As a consequence, the shear
stress on the bubble surface does not increase significantly on the front part of the bubble when La is increased
from 0 to 0.1. It is observed on Fig. (6.5b) that the tangent shear stress, τnt, becomes independent of La when
La > 1. It should be noted that, as it might have been expected, τntd/(Vbµc) reaches its maximum value at
locations on the bubble surface where ∇Γ̃ is high. For instance, the shear stress profile on the bubble surface
presented on Fig. (6.5b), for La = 0.1, exhibits a maximum at z ≈ 0.75 mm. At that location on the bubble
surface, Γ̃/Γ∞ exhibits an important gradient, as it can be observed in Fig. (6.5a), for La = 0.1. It might be
expected that the Marangoni stresses induced by the interaction between the flow structure and the surfactants
tend to immobilize (in a reference frame attached to the bubble) the bubble surface for large values of La. This
is characterized in Fig. (6.5d), where Vs/Vb is plotted against the axial coordinate, z. When La = 0, the surface
velocity is positive on the side of the bubble, and changes sign near the front and the back of the bubble due to the
recirculating flow. When La is increased to 0.1, the fluid velocity is significantly reduced on the side of the bubble.
Moreover, Vs is also significantly modified on the front/back of the bubble. For instance, Vs/Vb reaches almost the
value of 0 in between the convergent stagnation point and the divergent stagnation circle on the front half of the
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bubble side (between A and D in Fig. (6.4)): the Marangoni stress induced in between the convergent stagnation
point and the divergent stagnation circle tends to immobilize the interface, in this region, when La is increased
from 0 to 0.1. As La is increased to 1, Vs approaches 0 everywhere on the bubble surface: the Marangoni stress
created in between the convergent stagnation circle (C in Fig. (6.4)) and the divergent one (D in Fig. (6.4)) leads
almost to the interface immobilization.

The surfactants induce an immobilization of the bubble surface (in a reference frame attached to the bubble)
through the mechanisms discussed in the previous paragraph. Thus, it might be expected that the surfactants have
a significant impact on the velocity of the spherical bubble. An important parameter in microfluidic bubbly flow is
the ratio of the bubble velocity, Vb, to the mean flow velocity, Jl. Mikaelian et al. (2015) established correlations,
valid for an isolated spherical bubble (i.e., for Ca → 0), to calculate this ratio as a function of d/dh, for two
limiting situations. (i) They imposed a stress-free condition on the bubble surface to model a situation without
surfactants. They proposed Eq. (6.1) to calculate Vb/Jl in this limiting situation. (ii) They imposed a no slip
condition at the bubble surface to model the influence of surfactants. They proposed Eq. (6.2) to calculate Vb/Jl
in this situation. The ratio Vb/Jl is presented on Fig. (6.6) as a function of d/dh, for different values of La and
for Ca = 0.01 and Re = 0.25. Eq. (6.1) and (6.2) are represented on this figure as the blue and red solid lines,
respectively. Squares give values calculated with JADIM for La = 0, 0.1, 1 and 10. It is observed that the two
limiting cases are well reproduced by our simulations, for La = 0 and La = 1. An intermediate value of Vb/Jl is
obtained for La = 0.1. In line with the observations in the previous paragraph, Vb/Jl becomes independent of La

for La > 1: the value of Vb/Jl that characterizes a bubble behaving as a rigid sphere is obtained for La > 1. It
is worth pointing out that, as seen in the previous section, a spherical bubble rising in a stagnant liquid of infinite
extent containing surfactants behaves also as a rigid sphere regarding its velocity when La ≥ 1. The analysis of
the velocity field for the different cases shows that recirculations at the front and at the back of the bubble are
present for all the cases presented in Fig. (6.6), except for the one with La = 0 and d/dh = 0.15. This is coherent
with the results of Mikaelian et al. (2015).

Figure 6.6: Ratio of the bubble velocity to the mean flow velocity, Vb/Jl, as a function of the ratio of the bubble
diameter to the channel diameter, d/dh. Blue and red solid lines are the correlations established nu-
merically by Mikaelian et al. (2015) for a stress free and an immobile interface, respectively. Squares
give values obtained with JADIM, for different values of La and for Re = 0.25 and Ca = 0.01

6.3.2 Deformable bubble without surfactants

In this subsection, the bubble shape, the bubble drag coefficient, Cd, and the ratio of the bubble velocity to the
mean flow velocity, Vb/Jl, are analyzed without surfactants. Accordingly, Ca is varied between 0.01 and 1, with
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La = 0. The bubble shape is characterized by plotting the (r, z) coordinates of the bubble interface as well as by
computing the curvature of its interface: κ = −∇· (∇φ/‖∇φ‖). Results regarding the bubble shape are presented
on Figs. (6.7a,b and c), for d/dh = 0.45, 0.6 and 0.75, respectively. The red (Ca = 0.01 and Re = 0.25), blue
(Ca = 0.1 and Re = 1) and green (Ca = 1 and Re = 1) symbols give values of the (r, z) coordinates of the
bubble interface. It is observed that the shape of the bubble is nearly spherical for Ca = 0.01 and Ca = 0.1,
for all values of d/dh. However, when Ca = 1, the bubble is elongated and takes a “bullet shape". This shape
is further characterized on Figs. 6.7(d,e and f), where the curvature, κ, of the gas-liquid interface is plotted as a
function of the axial coordinate, z. The curvature κ is normalized by the curvature of a spherical bubble that has
the same volume: 2/d. When Ca = 0.01, the curvature of the bubble is constant and equal to 2/d, regardless of
the value of d/dh, as depicted by the red dots on Figs. (6.7d,e and f). When Ca = 0.1, κ is not constant along the
bubble interface. For example, the dimensionless curvature profile shown on Fig. (6.7f) for Ca = 0.1 (Re = 1,
d/dh = 0.75) exhibits a value larger than one at z ≈ 0.5 mm (κd/2 ≈ 1.5) and a value smaller than one at
z ≈ 1.5 mm (κd/2 ≈ 0.75). At the front of the bubble, κd/2 is also larger than one and, at the back, it is smaller
than one. For Ca = 1 (Re = 1, d/dh = 0.75, Fig. (6.7f)), the normalized curvature is reduced all along the body
of the bubble except near its front and its back.

The dimensionless normal viscous stress on the interface, τnnd/(Vbµc), is plotted against the axial coordinate,
z, on Figs. (6.7g,h and i), for d/dh = 0.45, 0.6 and 0.75, respectively. Note that a negative value of τnnd/(Vbµc)
indicates a stress directed from the liquid toward the bubble interface (i.e., “pushing" the interface). On the
contrary, a positive value of τnnd/(Vbµc) indicates a normal stress directed from the interface towards the liquid
phase (i.e., “pulling" the interface). It is observed that τnnd/(Vbµc) is below zero near the divergent stagnation
circle on the bubble surface on the front half of the bubble. On the contrary, τnnd/(Vbµc) is higher than zero near
the convergent stagnation circle on the bubble surface, on the back half of the bubble. Finally, on Figs. (6.7j,k
and l), the periodic component of the dimensionless pressure in the liquid on the interface, pcd/(Vbµc), where
pc = p+ ∆p

L z, is plotted as a function of z. It is observed that −pc and τnn roughly follow the same trends, −pc
being significantly smaller than τnn for the cases reported here. The normal stress balance at the bubble-liquid
interface is written, for moderate values of Re, neglecting the viscosity of the gas phase, in dimensionless form,
as:

p̄d − p̄c + τ̄nn ≈
1

Cab
κ̄ (6.13)

where p̄d = pdd/(Vbµc) is the periodic component of the dimensionless pressure in the gas on the interface,
p̄c = pcd/(Vbµc), τ̄nn = τnnd/(Vbµc), κ̄ = κd and Cab = µcVb/σ0. Eq. (6.13) shows that, as p̄d is almost
constant, an increase of p̄c or a decrease of τ̄nn leads to a decrease of κ̄. Reciprocally, a decrease of p̄c or an
increase of τ̄nn leads to an increase of κ̄. This can be observed by comparing Figs. (6.7d and g), Figs. (6.7e and h)
and Figs. (6.7f and i). The recirculating flow in between bubbles generates points (or circles) on the bubble surface
where the normal viscous stress is locally negative, near the divergent stagnation point (or circle), or positive, near
the convergent stagnation point (or circle). Thus, Eq. (6.13) shows that, as Cab (or similarly Ca) is increased, the
inhomogeneous distribution of the normal viscous stress (and pressure) on the bubble surface, generated by the
recirculating flow, causes the curvature of the bubble surface to decrease near the divergent stagnation point (or
circle) and to increase near the convergent stagnation point (or circle). This leads to the elongation of the bubble
as Ca is increased.

Due to the recirculating flow in between bubbles, the bubble elongates as Ca is increased in contrast to the case
of a bubble rising in a stagnant liquid of infinite extent where the bubble is flattened. Thus, the drag coefficient
of the bubble Cd = 4Fd/

(
1/2 (Vb − Jl)2

πd2
)

based on the bubble equivalent diameter and the relative velocity
(Vb − Jl), is expected to be affected by the deformability of the bubble in a particular way. The drag coefficient
of the bubble is computed as presented in the validation section. It is plotted in Fig. (6.8a) as a function of Ca, for
d/dh = 0.15, 0.45, 0.6 and 0.75, respectively. Note that the values of the drag coefficient computed with JADIM
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Figure 6.7: (first row) Radial position of the interface as a function of z. (second row) Normalized curvature,
κd/2, as a function of z. (third row) Dimensionless normal viscous stress on the bubble surface,
τnnd/ (Vbµc), as a function of z. (fourth row) Dimensionless liquid pressure on the bubble surface,
pcd/(Vbµc), as a function of z. The different columns correspond to: (first column) d/dh = 0.45,
(second column) d/dh = 0.6 and (third column) d/dh = 0.75, respectively. Red dots: Ca = 0.01,
blue dots: Ca = 0.1, green dots: Ca = 1. These results have been obtained for a clean interface, i.e.,
La = 0.

are in good agreement with the ones deduced from calculations obtained by Rivero-Rodriguez and Scheid (2018).
It is observed that, in general, the drag coefficient of the bubble decreases as d/dh decreases. It is observed that
Cd is almost constant with respect to Ca when d/dh < 0.45. However, for larger values of this ratio, Cd decreases
when Ca gets larger than 0.1. To understand this effect, the radius of the projection of the bubble on a plane
perpendicular to the z axis, rp, is plotted against Ca in a small insert in Fig. (6.8a). As the capillary number
is increased from 0.1 to 1, rp decreases from d/2 to less than 0.8d/2. As discussed in the previous paragraph,
the recirculating flow in between bubbles causes the bubble to elongate for Ca ∼ 1. As the bubble elongates, rp
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decreases leading to the reduction of the drag force acting on the bubble. This partly explains why Cd decreases
when Ca is increased, as Cd is defined using the equivalent diameter, d. An alternative drag coefficient can be
defined using πrp2 as the reference surface: Cd∗ = Fd/(0.5 (Vb − Jl)2

πrp
2). This alternative drag coefficient is

plotted as a function of Ca in Fig. (6.8b). It is observed that Cd and C∗d exhibits the same kind of evolution with
respect to Ca, tough Cd∗ is slightly less affected by Ca than Cd. This indicates that the change in the distribution
of the pressure and of the normal viscous stress on the bubble surface induced when increasing Ca (see Figs.
(6.7g,h,i,j,k and l)) is mainly responsible of the reduction of Cd. Notably, it is shown in the next section that the
convergent stagnation circle on the front half of the bubble disappear when Ca is increased beyond Ca ∼ 0.5.

Cd is reduced as Ca is increased, especially for values of d/dh > 0.6. Thus, the effect of Ca on Vb/Jl is
expected to be significant, especially for values of d/dh > 0.6. In Fig. (6.9), Vb/Jl is plotted as a function of
d/dh, for Ca = 0.01, Ca = 0.1, Ca = 0.5 and Ca = 1. Vb/Jl decreases as d/dh increases when Ca = 0.01 and
Ca = 0.1. However, when Ca = 0.5 or Ca = 1, it is observed that Vb/Jl increases and takes a value larger than
2 as d/dh is increased. Furthermore, at a constant value of d/dh, increasing Ca leads to an increase of Vb/Jl. For
instance, when d/dh = 0.75, Vb/Jl increases from 1.6 to 2.2 when Ca is increased from 10−2 to 1.

Figure 6.8: (a) Drag coefficient, Cd = 4Fd/
(

0.5 (Vb − Jl)2
πd2
)

, as a function of Ca, for La = 0 and for
different values of d/dh. (b) Drag coefficient based on the effective projection area of the bubble on a
plane perpendicular to the main flow direction, Cd∗ = Fd/(0.5 (Vb − Jl)2

πrp
2), as a function of Ca,

for La = 0 and for different values of d/dh.

Figure 6.9: Vb/Jl as a function of d/dh, for Ca = 0.01, Ca = 0.1, Ca = 0.5 and Ca = 1 depicted by squares,
triangles, stars and circles, respectively. There is no surfactant in the system. The blue solid line is
the correlation established numerically by Mikaelian et al. (2015), predicting the value of Vb/Jl for a
bubble having a clean surface.
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6.3.3 Deformable bubble with surfactants

In this subsection, the combined effect of La and Ca on the bubble dynamics is analyzed for d/dh = 0.75. The
steady state surfactant concentration on the surface, Γ̃ , (presented at the vicinity of the bubble surface only) and
in the liquid, C, are presented on Fig. (6.10), for d/dh = 0.75, Re = 1, Ca = 0.5, (a) La = 0, (b) La = 0.1,
(c) La = 1 and (d) La = 10. It is observed that the bubble is elongated and that recirculations have disappeared

Figure 6.10: Contour plots of the surfactant concentration field, Γ̃ , (upper part) and the bulk surfactant concen-
tration field, C (lower part), for Ca = 0.5, d/dh = 0.75 and (a) La = 0, (b)La = 0.1, (c) La = 1
and (d) La = 10. Velocity streamlines are drawn in a reference frame translating with the bubble
velocity. The bubbles move from left to right. Note that the bubble sketched in (d) has burst and
might not have reached its terminal shape.

when compared to the cases presented in Fig. (6.3). As a consequence, only two stagnation points remain on the
bubble surface, one at the front of the bubble and one at the back. Surfactants are swept to the back of the bubble
and accumulate there, leading to a clean interface on the front half of the bubble. Consequently, surfactants desorb
from the surface at the back of the bubble leading to their accumulation in the liquid adjacent to the back of the
bubble. As La is increased from 0.1 to 1, more surfactants are adsorbed on the bubble surface and, consequently,
more surfactants accumulate at the back of the bubble. This leads to a slight invagination of the back of the
bubble. When La = 10, it appears that the invagination proceeds towards the front of the bubble and finally leads
to the bursting of the bubble. Due to the change in the flow structure, the divergent stagnation circle on the bubble
surface, where the liquid pressure, pc, and the normal viscous stresses, τnn, were contributing to increase the drag
coefficient of the bubble (see Fig. (6.7)) disappears. This might explain the diminution of the drag coefficient Cd∗

when Ca is increased (see Fig. (6.8)), and the consequent increase in Vb/Jl.

The results presented in Fig. (6.10) show that the deformation of the bubble, when Ca = 0.5, has a strong
influence on the structure of the flow near the bubble, when compared to a spherical bubble. This, in turn, has
a significant influence on the distribution of the surfactants on the surface of the bubble. To give more insights
into this, Γ̃/Γ∞ is plotted as a function of the axial coordinate, z, with z = 0 at the back of the bubble, in the
first column of Fig. (6.11), for Ca = 0.04 (first row), Ca = 0.1 (second row) and Ca = 0.5 (third row), for
d/dh = 0.75 and for different values of La. For Ca = 0.04, the bubble is almost spherical and, as mentioned
previously, it is observed that the surfactants accumulate near the convergent stagnation point/circle on the bubble
surface and are depleted near the divergent stagnation point/circle. When Ca is equal to 0.1, a similar distribution
of the surfactants on the surface of the bubble is observed, but with steeper gradients. Finally, when Ca is equal
to 0.5, it is observed that the surfactants are totally swept to the back of the bubble.

Increasing Ca induces a change in the flow field around the bubble and a consequent change in the surfactant
distribution on the bubble surface. Thus, it might be expected that the tangent shear stress distribution on the
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Figure 6.11: (first column) Surfactant concentration on the surface of the bubble, Γ̃/Γ∞, (second column) viscous
shear stress along the tangent to the bubble surface, τntd/(Vbµc), and (third column) ratio of the
liquid velocity tangent to the bubble surface to the bubble velocity, Vs/Vb. (first line) Ca = 0.04,
(second line) Ca = 0.1 and (third line) Ca = 0.5.

bubble surface, τntd/(Vbµc), is also strongly affected by an increase of Ca. On the second column of Fig. (6.11)
τntd/(Vbµc) is presented as a function of the axial coordinate, z, for different values of Ca and La. As Ca

increases from 0.04 to 0.1, the surfactant concentration decreases near the divergent stagnation circle on the front
part of the bubble side, causing a decrease of the shear stress at that location, for La = 1 and La = 10. As Ca is
increased further, all the surfactants accumulate at the back of the bubble leading to a clean surface on the most
part of the bubble, except at the back.

The tangent shear stress distribution on the bubble surface is expected to affect the interface velocity. On the
third column of Fig. (6.11), Vs/Vb is presented as a function of z, for different values of Ca and La. It is observed
that, in general, increasing La leads to the reduction of Vs/Vb. It is reduced at locations where the shear stress on
the bubble surface is high. For example, the shear stress profile observed for Ca = 0.04 and La = 0.1 (black dots
on Fig. (6.11b)) exhibits a peak at z ≈ 0.5, where the concentration profile of surfactants exhibits an important
gradient (black dots on Fig (6.11a)). The influence of La on Vs/Vb is reduced for Ca = 0.5 (see Fig. (6.11i)). As
mentioned previously, as Ca is increased, surfactants are swept to the back of the bubble and, consequently, have
a smaller influence on Vs/Vb.
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The drag coefficient of the bubble, Cd = 4Fd/
(

0.5ρc (Vb − Jl)2
πd2
)

, is also expected to be less influenced
by the presence of surfactants when Ca is increased. The effect of Ca and La on the drag coefficient of the bubble
is analyzed on Fig. (6.12a), where Cd is plotted as a function of Ca for several values of La and for d/dh = 0.75.
It is observed that, in general, the drag coefficient of the bubble increases with La. As it might have been expected,
when Ca is larger than approximately 0.5, the drag coefficient of the bubble becomes almost independent of La.
As for Cd, Vb/Jl becomes also independent of La when Ca is larger than 0.5, as it can be observed in Fig. (6.12b).
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Figure 6.12: (a) Drag coefficient as a function of Ca for d/dh = 0.75 and different values of La. (b) Vb/Jl as a
function of Ca for d/dh = 0.75 and different values of La.

The bubble velocity and the drag coefficient becomes independent of La as Ca reaches values close to unity, for
d/dh = 0.75. At this point, surfactants accumulate at the back of the bubble and reduce locally the surface tension
of the gas-liquid interface. This causes the back of the bubble to deform, as illustrated in Fig. (6.13). Increasing

Figure 6.13: Contours of the bubble for La = 0.1 and La = 1. The other parameters are set to Ca = 0.5 and
d/dh = 0.75.

La further causes the back of the bubble to invaginate. This can even cause the bubble to burst, as presented in Fig.
(6.14). This unsteady bursting phenomenon reported in Fig. (6.14) was also observed in previous experimental
and numerical studies that considered the effect of viscosity ratio (λ) on the shape and bursting behavior of drops
(Olbricht and Kung (1992); Nath et al. (2017)). In the previous section, Eq. (6.13) was used to discuss the change
in bubble shape with Ca. The same equation can be used to discuss the effect of La on the bubble shape. As seen
in the previous paragraph, as Ca reaches values close to 0.5, surfactants are swept to the back of the bubble and
consequently, reduces locally the surface tension of the gas-liquid interface. If Eq. (6.13) is evaluated at the back
of a bubble (a bubble such as the one in Figs. (6.13a or b)), with κ ∼ 2/rc, where rc is the radius of curvature of
the back of the bubble, an expression of rc can obtained:

rc =
2d

(p̄d − p̄c + τ̄nn) Cab
σ0

σ

(6.14)

In constrast to Eq. (6.13), the presence of surfactant is considered, and consequently, the effective surface tension
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Figure 6.14: Contours of the bubble at different time for La = 10, d/dh = 0.75 and Ca = 0.5.

of the gas-liquid interface appears in Eq. (6.14). The periodic component of the pressure inside the gas can be
estimated as: pd = 4σ/d. In dimensionless form, it gives: P̄d = 4/(Cabσ0/σ). Thus, Eq. (6.14) yields:

rc =
2d

4 + (−p̄c + τ̄nn) Cab
σ0

σ

(6.15)

It should be noted that when Cab → 0, the bubble is spherical and rc = d/2 is recovered from Eq. (6.15). At the
back of the bubble, −p̄c + τ̄nn is negative (see Fig. (6.7)). Thus, as Cab increases, the normal stresses at the back
of the bubble cause rc to increase, and consequenlty the back of the bubble flattens. As it is increased further, rc
might change sign if |(−p̄c + τ̄nn) Cabσ0/σ| > 4. This causes the back of the bubble to invaginate. As it can be
seen in Eq. (6.15), the same effect can be caused by surfactants accumulating at the back of the bubble, since the
presence of surfactants increase σ0/σ. This is visible in Fig. (6.13). Eq. (6.15) also shows that the increase of
Cab and/or σ0/σ can lead to the bubble bursting if rc approaches negative values close to zero. In Fig. (6.15), rc
is plotted as a function of Ca, for σ/σ0 = 0 and 0.5. In this figure, −p̄c + τ̄nn is imposed to -3. −p̄c + τ̄nn = −3

characterizes the normal viscous stresses at the back of a bubble with d/dh = 0.75 and Ca = 0.01 and 0.1 (see
Figs. (6.7)i and l). The blue and red vertical lines depict the critical value of Ca from which the back of the bubble
begins to invaginate. In Fig. (6.15), it is visible that increasing Ca causes the back of the bubble to flatten, and
to invaginate. If there are surfactants in the system, 0 < σ0/σ < 1. The case of σ/σ0 = 0.5 is presented on Fig.
(6.15). In this case, for Ca → 1, rc approaches 0 (being negative) indicating a bubble with a severe invagination
on its back. In this case, the bubble probably bursts.

As an example, a diagram presenting the different regimes obtained in the simulations for d/dh = 0.75 is
presented on Fig. (6.16). In this plot, 3 distinct regions can be identified, corresponding to classical bubble motion
with Vb/Jl < 2, bubble with velocity larger than the maximum velocity in the liquid, i.e., Vb/Jl > 2, and unstable
bubble, leading to burst. This figure illustrates a transition between a bursting bubble and a stable bubble (red solid
line in Fig. (6.16)). As it can be observed, this transition depends upon the bubble deformability (i.e., upon Ca),
and surfactants (i.e., upon La). This transition might also depend on other non dimensional numbers characterzing
the surfactants. However a complete parametric study is beyond the scope of this paper.
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Figure 6.15: rc as a function of Ca for different values of σ/σ0. The dashed vertical lines depict vertical asymptots

Figure 6.16: Bubble stability diagram for d/dh = 0.75. Black, blue and red symbols represent a simulation where
Vb/Jl < 2, Vb/Jl > 2, and where the bubble bursts, respectively.

6.4 Conclusion

We performed a numerical study to investigate the effect of soluble surfactants and deformability on the dynamics
of an isolated bubble translating in a horizontal microchannel of circular cross section. We use a Level-Set method
to capture the gas-liquid interface. The capillary pressure jump and the Marangoni stress are computed using
the Continuum Surface Force model. The transport of surfactants on the bubble surface is dealt in an Eulerian
framework and is coupled to its transport in the liquid.

In line with previous studies, we observed that when the bubble is spherical, the liquid recirculates in between
bubbles. As a consequence, surfactants accumulate on convergent stagnation point/circle on the bubble surface
and deplete on divergent stagnation point/circle. For a Langmuir number larger than 1, this causes the bubble
interface to get almost immobilized in between convergent and divergent stagnation point/circle (in a reference
frame attached to the bubble), due to Marangoni stresses induced by surface tension gradients; regarding its relative
velocity to the liquid, the bubble behaves as a solid sphere when La > 1. The ratio of the bubble velocity to the
mean flow velocity decreases as the ratio of the bubble diameter to the tube diameter increases. Furthermore,
when the bubble is spherical, it is shown that surfactants can increase the drag coefficient of the bubble by a factor
of 2.
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When the bubble is allowed to deform, i.e., when the capillary number is of order of unity, the curvature of its
interface is reduced near the divergent stagnation circle on the front part of the bubble side, where the viscous stress
normal to the bubble surface is high. This is due to the recirculating flow, which “hits" the bubble at this location,
and locally increases this stress. Consequently, it reduces the curvature of the bubble interface. Therefore, the
bubble elongates as Ca is increased. As the bubble elongates, it is shown that its drag coefficient decreases due to
the modification of the flow structure around the bubble. Consequently, the ratio of its velocity to the mean liquid
velocity, Vb/Jl, increases and can be larger than 2. For d/dh = 0.75, if Ca becomes larger than approximately
0.5, recirculations in between bubbles disappear and surfactants are swept towards the back of the bubble. They
have less influence on the drag coefficient of the bubble and on its velocity, Vb/Jl, than for a spherical bubble.
Increasing the amount of surfactant adsorbing to the bubble surface can eventually cause the back of the bubble to
invaginate and possibly the bubble to burst.
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CHAPTER 7

A numerical investigation of the lifetime of superficial bubbles inside
Mezcal

This chapter presents a work performed in a frame of a collaboration with Prof. Roberto Zenit from Universidad
Nacional Autonoma de Mexico. A paper has been submitted to the journal Proceedings of the National Academy
of Science regarding this work (Rage et al. (2018)).

7.1 Introduction

Superficial bubbles or surface bubbles are encountered in countless of natural environments such as in the case
of “ocean foams", or “bubble nests". In the former case, free gas bubbles are produced in the sea by the decom-
position of detrital matter or the impact of raindrops (Garrett (1967)). In the presence of natural or anthropic
surfactants, those bubble create stable foams that can accumulate on the shores. An example of such foams is
shown on the left of Fig. 7.1. In the latter, the Catfish for instance uses bubbles as nests for its larvae (Hostache
and Mol (1998)). The fish stabilizes those bubble with surfactants it produces. Such bubbles are shown on the
right of Fig. 7.1.

Figure 7.1: (left) Ocean foams at Ocean Beach in San Francisco (image taken from the website of the National
Oceanic and Atmospheric Administration). (right) Bubble nest on the surface of a pound (image taken
from Hostache and Mol (1998)) .

Surface bubbles are also encountered in beverages, such as beer, champagne or Mezcal, a traditional distilled
alcoholic beverage from Mexico. Mezcal is obtained by fermentation of agave, a plant living in arid climates.
Sample agave plants are shown in Fig. 7.2. The process of production of Mezcal begins by harvesting the
plants and extracting the “pina", or heart, by cutting off the plant’s leaves and roots. The pinas are cooked for
approximately three days in earthen ovens, giving mezcal its intense and distinctive smoky flavor (Rage (2017)).
The cooked pinas are then crushed and mashed (traditionally by the means of a stone wheel rotated by a horse)
(Rage (2017)). The obtained cooked and crushed agave is then left to ferment in large barrels with water added
(Rage (2017)). After fermentation, two distillations are performed in order to obtain a mixture containing between
40 and 55 % of alcohol (volume content). The beverage is often aged between one month and four years.

Once the Mezcal is produced, a traditional technique to asses the alcohol content in Mezcal is performed. In
this technique, the “Mezcalero" pours a stream of the beverage into a small vessel. As the vessel fills up with the
liquid, splashing of the stream with the liquid produces bubbles. If the alcohol content is correct, stable bubbles



Figure 7.2: Agave plants (taken from hDp://turismo.mexplora.com and hDp://www.taringa.net.)

form at the surface and float beneath the surface. Traditionally, the stream is formed by pouring Mezcal into a
reed having an opening of 2 mm in diameter. The successive steps of this procedure is shown in Fig. (7.3).

Figure 7.3: Traditional technique to asses the alcohol content of Mezcal. (a) The Mezcalero produces a stream
of the liquid with a small reed. (b) the stream splashes onto the stagnant liquid inside the vessel and
produces stable bubbles. (c) Images of the splashing of the stream with the liquid inside the vessel
(images are taken from Rage et al. (2018)).

The time that these bubbles “rests" under the surface, their lifetime, can be divided in two stages, namely, the
bouncing stage, and the film drainage stage (Kosior et al. (2014); Malysa et al. (2005)). Surfactants can alter the
lifetime of those surface bubbles by playing on both stages. For example, Kosior et al. (2014) performed experi-
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ments of a single air bubble rising in stagnant water contaminated with octanol. They showed that, depending on
the octanol concentration inside the water, the bouncing time changed from 10 ms to 90 ms. They identified that
this behavior was due to the change in both the bubble velocity before impacting the free surface and the bubble
shape. Surfactants also affect the lifetime of the bubble under the free surface by increasing the time taken for the
film to drain by immobilizing its surface (Wang et al. (2017)).

In this chapter, the problem of Mezcal is studied. In particular, several questions are adressed regarding the
lifetime of the bubbles beneath the surface of the vessel:

1. Does the traditional technique work? In particular, when the Mezcal contains the desired concentration
of alcohol (i.e., between 45 % and 55% volume content), does the bubble exhibit an extended lifetime
beneath the surface of the vessel? To answer this question, the team of Roberto Zenit performed controlled
experiments that are briefly explained and reported in section 7.2

2. What are the mechanisms controlling the lifetime of the bubbles? To answer this question, the first step
used in this work is to idealize the Mezcal as a mixture of water and alcohol that contains surfactants. The
second step is to perform numerical simulation using this idealized system in an attempt to put into light
some of the mechanisms that control the lifetime of the bubbles under the free surface.

In this way, the problem of the traditional technique to asses the alcohol content in Mezcal is addressed both
using experiments and numerical simulations, in a complementary manner.

7.2 Experimental observations

Experiments were performed by the team of Prof. Roberto Zenit in order to verify if this traditional technique
actually works. First, measurement of the properties of a water-alcohol mixture are reported in Fig. 7.4a. In
this figure, the properties of the mixture, ρc, µc and σ are plotted as a function of the alcohol volume fraction of
the mixture, xv . The values of each of these properties is scaled by the properties of water. Interestingly, it is
observed that the maximum of viscosity is observed for xv = 55% while other quantities are less affected. The
concentration of alcohol has a strong influence on the viscosity, with a maximum corresponding to the Mezcal
properties indicating that the longer lifetime of bubbles inside Mezcal and the peak in viscosity at xv = 55% are
certainly correlated.

Second, an experimental setup that mimics this traditional technique was prepared. The reed used in the tra-
ditional technique (see Fig. 7.3) was reproduced and the mean diameter of the bubble formed using the procedure
explained in the introduction was determined, d ≈ 2 mm. Solutions were prepared by mixing pure Mezcal (Mez-
cal Sanchez, see for exemple https://www.mezcalreviews.com/mezcal/la-herencia-de-sanchez-ponche-de-frutas/),
with water or ethanol to change its alcohol content, pure Mezcal containing 55 % of alcohol (volume content). The
diluted Mezcal is referred in this text to as alterated Mezcal. The properties of Mezcal Sanchez was measured by
the team of Roberto Zenit: ρc = 919.0 kg/m3, µc = 3.07 Pa.s and σ = 30.6 mN/m was obtained. The lifetime
obtained in the mixtures is presented in Fig. 7.4b. In this figure, the black circle presents the lifetime of a bubble
in pure Mezcal. It is observed that diluting Mezcal with alcohol or water leads to the reduction of the lifetime of
the bubbles (as materialized by the red circles in Fig. 7.4b). The experiments of the team of Prof. Roberto Zenit
show that the traditional technique works. It was supposed that the extended lifetime of the bubbles inside the
vessel that contains pure Mezcal when compared to diluted Mezcal is due to: (i) high viscosity of a water/alcohol
mixtures at around 55 % alcohol content (ii) and to the surfactants naturally present in Mezcal that are diluted if
water or ethanol is added in it.

In order to confirm these hypothesis (i and ii), we perform numerical simulations using JADIM. In particular,
those are the questions we aim to address
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1. How can Mezcal be idealized in order to perform numerical simulations of a bubble rising in a a cup filled
with it?

2. Can the peak of lifetime as a function of alcohol content be reproduced using this model and JADIM

3. If yes, can we identify some of the mechanisms in play that controls the lifetime of the bubbles under the
free surface.

Figure 7.4: (a): Properties of the water alcohol mixture as a function of alcohol volume content measured by the
team of Roberto Zenit. (b): Life time of bubbles inside pure mezcal (red square), and alterated mezcal
with either ethanol or water.

In order to adress these questions, the rest of this chapter is organized as follows. Section 7.3 presents the
idealization of the Mezcal that we propose. Section 7.4 briefly presents the computational setup for the simulations
and outlines some features regarding the requirement in terms of mesh refinement. Section 7.5 shows the role of
surfactants in determining the lifetime of the bubbles. Section 7.6 presents the results of the simulations. In
particular, it presents results regarding the lifetime of bubbles as a function of alcohol content obtained in the
simulations and identifies some physical mechanism that play a role in determining the lifetime of the bubbles.

7.3 Problem statement

Mezcal is a mixture of ethanol, water, and numerous organic compounds including methanol, acetic acid, ethyl
acetate, higher alcohols, esters, ketones, terpenes, among others (López (2010)). It was shown that long chain
alcohols such as octanol or dodecan-diol adsorb on an interface between air and an aqueous solutions and reduce its
surface tension (Srinivas and Ghosh (2012); Giribabu and Ghosh (2007); Chang and Franses (1995)). In this study,
the Mezcal is considered as a mixture of water and ethanol that contains surfactants with a bulk concentration C0.
The properties of the water-alcohol mixtures are: ρc (xv), µc (xv), σ (σ0(xv), C0), where ρc is the density of the
mixture, µc is the viscosity of the mixture, σ is the surface tension of the interface between the mixture and the
air and xv is the volume fraction of alcohol inside the mixture; σ0 is the surface tension of the interface of the
pure water-alcohol mixture, i.e., that does not contain surfactants. The properties of the surfactants are: Γ∞, ka,
kd, Ds, where Γ∞ is the maximum packing concentration of surfactants on the interface, ka and kd are adsorption
and desorption constants, respectively and Ds is the diffusion coefficient of the surfactants along the air/liquid
interface. As can be seen, in the model we propose the properties of the water-alcohol mixture depend upon
the alcohol volume fraction inside the mixture (xv). The surface tension σ depends upon the volume fraction of
alcohol xv that fixes the values of σ0 and the concentration of surfactants inside the water-alcohol mixture C0.
The properties ρ (xv), µ (xv), σ0 (xv), have been measured by the team of Prof. Roberto Zenit (see Fig. 7.4a).
Those values are used as input parameters for the simulations.
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In the next section the computational setup for the simulations is presented.

7.4 Setup for the simulations

7.4.1 Domain

The computational domain of the simulations is presented in Fig. 7.5. An initially stagnant and spherical bubble

Figure 7.5: Computational domain for the simulation of bubbles inside Mezcal

of diameter d = 3.1 mm is depicted. The centroid of the bubble is initially at z = d (see Fig. 7.5). A free surface
is placed at z = 2d. Gravity acts along the negative z axis. Walls are placed on three boundary of the domain
as illustrated in Fig. 7.5 and a symmetry axis is placed along the z axis, therefore simulating an axisymmetric
configuration.

7.4.2 Mesh

The mesh used for the computations is organized in three blocks as depicted in Fig. 7.6. The blocks have lengths
of l1 = 1.75d, l2 = 0.5d and l3 = 0.25d, each block containing N1 N2 and N3 computational cells along the
z-axis respectively. The computational domain contains Nz = N1 +N2 +N3 and Nr computational cells along
the z and r axis, respectively. The first block (depicted in Fig. 7.6 with the symbol “I") is characterized with
a decreasing cell size along the z direction. An arithmetic sequence is used to generate the mesh along the z
direction in the first block: 

∆zi = ∆z0 + q i

l1 =

N1∑
i

∆zi
(7.1)
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Figure 7.6: Subdivision of the computational domain into three subregions

The length of block I, l1, the minimum value of ∆z, i.e., ∆z0, and the desired number of cells in block I along the
z-axis, N1 are known. Thus, in order to generate the mesh inside block I, the unknown q is deduced:

q1 = 2
l1 −N1∆z0

N1(N1 + 1)
(7.2)

The block II contains the free surface (see Fig. 7.6). The cells in this block have a uniform size of ∆z =

∆z0 = l2/N2, where N2 is the desired number of cells along the z-axis in block II. The mesh in this region needs
to be fine enough to capture the dynamics of the drainage of the film between the top of the bubble and the free
surface. This is illustrated below.

In block III, the cell size along the z-axis increases gradually as z increases following an arithmetic evolution
given by Eq. (7.2), where the subscript 1 are replaced by 3.

Four mesh were tested in order to identify the proper one allowing to capture the drainage dynamics of the
film. The characteristics of each mesh are given in table 7.1. More specifically, a mesh convergence study has been

Table 7.1: Values of the parameters characterizing the computational meshes

Nx Nr d/∆z0 q1 q3

100 50 76.58 2.66× 10−6 6.73× 10−6

200 100 153.16 6.73× 10−7 1.76× 10−6

400 200 306.32 1.69× 10−7 4.51× 10−7

800 400 612.64 4.240× 10−8 1.14× 10−7

conducted in order to identify the refinement that is required in order to capture the dynamics of the film drainage.
In particular, simulations have been performed with the setup presented in Fig. 7.5. The distance between the
tip of the bubble and the free surface, h0, was monitored for the four meshes as a function of time. The results
are presented in Fig. 7.7. It is visible that h0 decreases with time, as the bubble rises and approaches the free
surface for all the meshes. However, for the two coarsest meshes, the computations are not able to capture the film
drainage and coalesence occurs instantly when the bubble approaches the free surface (black and green curves in
Fig. 7.7). The two other meshes are able to capture the bounce of the bubble on the free surface and the film
drainage, these two phenomena being discussed in the results section. The film rupture occurs when its thickness
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Figure 7.7: Vertical distance between the tip of the bubble and the free surface as a function of time, t. The
computations were performed with four different meshes.

is of the order of the cell size. For this reason, the exact time at which the bubble coalesces does not converge
satisfactorily towards a fixed value when the mesh is refined for the range of meshes used in this study. However, it
is clearly visible that the shape of the curve h0(t) converges. This feature indicates that in the present simulations,
the physics governing the lifetime of the bubble is satisfactorily captured when the mesh is characterized with 400
and 200 cells along the z and r directions respectively. In the remaining, simulations are performed with the mesh
characterized with Nx = 400 and Nr = 200 (see table 7.1). This mesh is characterized by ∆z0 ≈ 10 µm, which
sets the coalescence thickness to approximately hc ≈ 50 µm. This thickness was observed to be approximately
the same for all the simulations performed within this project.

The team of Prof. Roberto Zenith inferred the rupture thickness of the film in their experiments from the speed
at which the leading piercing edge moves as the bubble bursts (Culick (1960)). This thickness was determined by
the team of Roberto Zenith to be: hr = 24±4 µm. Due to computing limitations, the minimum grid size we could
apply in the numerical simulations was ∆z0 ≈ 10 µm which sets the coalescence thickness to hc ≈ 50 µm. In
the case of a film drainage between two rigid interfaces, and in the limit Bo� 1, the thinning at the apex follows
h ∝ t1/2 (Scheid et al. (2012)). Consequently, a decrease by a factor two for the critical film rupture should
imply an increase by a factor four of the lifetime. Though this correction factor is certainly a good approximation,
the numerically obtained bubble lifetimes have not been corrected with this factor. The reason for this is that the
drainage dynamics with surfactants can significantly differ from the one between rigid interfaces. In conclusion,
the goal of the present study is to highlight the key phenomena governing the bubble lifetime under the free surface
rather than obtaining quantitative values of bubble lifetime.

7.5 Results

7.5.1 Determination of the lifetime

As mentioned in the introduction, three stages can be observed when a bubble rises in a stagnant liquid: the rising,
the bouncing and the film drainage stages (Kosior et al. (2014); Malysa et al. (2005)). In the simulations performed
in this work, these three stage have been observed. They are illustrated in Fig. 7.8. In this figure, the bubble
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velocity is plotted against time, for a simulation characterized with: ρc = 966.61 kg/m3, µc = 0.0022 Pa.s,
σ = 0.038 N/m, ka = 3 m/(mol.s), kd = 1 s−1 and C∞ = 0.025 mol/m3. In this figure, it is observed that

Figure 7.8: Bubble velocity, Vb, as a function of time, t.

during the rising stage, the bubble velocity first increases. As the bubble gets closer to the free surface, it begins to
decelerate. This stage is annotated with the letter “a" in Fig. 7.8. The bouncing stage happens in some cases, when
the bubble velocity is large enough when impacting the surface. In fact, the bubble dismisses the excess kinetic
energy into the deformation of its surface and backward motion, resulting into bounces (Zawala et al. (2007);
Sunol and González-Cinca (2010); Kosior et al. (2014)). This stage is depicted with the letter “b" in Fig. 7.8. In
the case presented in Fig. 7.8, several bounces with decreasing intensity are visible. In this work, the film drainage
stage is defined after the first bounce till the coalescence occurs. The film drainage stage is annotated with the
letter “c" in Fig. 7.8. In this work, the lifetime of the bubble is therefore defined as the time taken for the film to
drain after the first bounce (stage c in Fig. 7.8).

7.5.2 Role of surfactants

The role of surfactants in this system is illustrated in this subsection. Fig. 7.9 presents the contours of a bubble and
of the free surface at time t = 0.055 s, after it bounced one time under the interface. The mixture is characterized
with the following properties: ρc = 927.3 kg/m3, µc = 0.0030 Pas and σ0 = 0.030 N/m, which corresponds
to xv = 0.50. The angle θ is defined in Fig. 7.9, with the origin of the polar coordinate system defined on the
bubble mass center. As illustrated, θ = 0 refers to the symmetry axis of the problem. The role of surfactants in

Figure 7.9: Contour of the air-liquid interfaces, at time t = 0.055 s

this system is illustrated by plotting vs = (Vb − v · t), where t is the unit tangent vector to the gas/liquid interface
and Vb is the bubble velocity, for θ = 0.35 rad, as a function of the normal distance to the bubble surface which is
called s. Surfactants reduce the liquid velocity especially near the bubble surface (i.e., at s = 0), and consequently,
increase the drainage time of the film. It also induces a flow in the opposite direction of the main drainage flow
direction, near the bubble surface, as can be seen in Fig. 7.10 at s ≈ 0. It should be noted that simulations with
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Figure 7.10: vs as a function of the normal distance to the interface for θ = 0.35rad. s = 0 corresponds to the
bubble surface and s = 1 refers to the free surface.

other amount of surfactants have also been performed. Above a threshold value of C0, the same kind of velocity
profile as the black lines in Fig. 7.10 was observed. Below this threshold value, the velocity profiles in the film
was like if there were no surfactants in the system. Those threshold values depend upon several parameters of the
system, including ka, kd, µc among others.

The reduction of the drainage velocity near both surfaces induced by surfactants drastically increase the film
drainage time, when compared to the case where no surfactants are present. This can be rationalized as follows:

In the absence of surfactants, the force balance in the film is approximately given by:

ρcg ∼ µc
d2u

dx2
(7.3)

where x is the coordinate along the horizontal direction, as skecthed in Fig. 7.9, u is the velocity component along
x and scale as u ∼ d/tp, where tp is the time taken for the film to drain. Thus the balance can be approximated
by:

ρcg ∼
µc
d2

d

tp
(7.4)

The drainage time of the film is deduced:
tp ∼

µ

ρgd
(7.5)

In the presence of surfactants, as observed in Fig. 7.9, the liquid velocity is reduced on the bubble surface and
on the free surface. Thus, the shear stress resists the gravitational drainage:

ρcg ∼ µc
d2u

dy2
(7.6)

where y is the coordinate along the vertical direction (see Fig. 7.9). Inside the film, y scale with the thickness of
the film, h, thus the drainage time of the film scales as:

tp ∼
µd

ρgh2
(7.7)

The ratio of the drainage time of the film in the absence of surfactants to the drainage time in the presence of
surfactants is nothing else than the square of the aspect ratio ε = h/d, also referred to as the film parameter.

In the preliminary simulations performed in this work, it was observed that h varies from 150 microns towards
30 microns, the thickness at which the film ruptures. Taking h as 100 microns yields h/d ≈ 0.03. This scaling
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Table 7.2: Values of the parameters characterizing the liquid for case 1 (black pentagons in Figs. 7.11,7.12a and b

xv (%) ρcg (N/m3) σ (N/m) µ (Pa.s) tp (s) tp
∗ Bo

6.19 9691.28 0.057 0.0011 0.05 1316.75 1.62

11.87 9621.70 0.048 0.0014 0.059 1275.50 1.902

17.11 9570.71 0.044 0.0017 0.063 1114.98 2.08

21.95 9527.07 0.041 0.0019 0.064 972.20 2.2189

26.43 9482.50 0.039 0.0022 0.069 931.58 2.36

30.6 9433.14 0.036 0.0023 0.076 950.80 2.49

34.48 9377.34 0.035 0.0024 0.081 958.30 2.59

38.11 9318.37 0.034 0.0025 0.0812 920.25 2.66

41.51 9260.33 0.033 0.0027 0.094 1011.38 2.73

47.7 9151.17 0.031 0.0030 0.10 973.97 2.87

50.52 9097.68 0.030 0.0031 0.11 996.87 2.92

53.18 9043.87 0.029 0.0031 0.11 957.45 2.96

55.70 8990.46 0.029 0.0031 0.010 881.02 2.98

66.46 8753.38 0.028 0.0029 0.085 796.98 3.04

81.7 8382.92 0.025 0.0023 0.084 951.40 3.19

analysis shows that, the reduction of the fluid velocity on the bubble surface and on the free surface caused by
surfactants increases the drainage time of the film by a factor of 900, when compared to a case where surfactants
are not present. When surfactants were not present in the simulations, the bubble coalesced instantaneously when
it approached the free surface. In order to capture the dynamics of the drainage without surfactants, both the cell
size and the time step used in the computations has to be decreased drastically. This is out of the scope of this
work. From now on, the parameters concerning surfactants are fixed to the values characterizing octanol in an
aqueous solution: ka/kd = 3 m/(mol), C∞ = 0.025 mol/m3 and the influence of alcohol volume fraction is
studied. The ratio Γ∞/σ0 is the parameter relating the surface tension, σ, to the surfactant concentration on the
interface, Γ̃ . In this study, the parameter Γ∞/σ0(xv) is kept constant in between the simulations. This means that
when xv is varied, σ0 varies, and, Γ∞ is adapted such that Γ∞/σ0(xv) remains constant. This is done in order to
keep the dimensionless numbers concerning the surfactants constant in between simulations (i.e.,E = RTΓ∞/σ0)
and to analyze only the influence of fluid properties on the lifetime of the bubbles.

7.5.3 Lifetime of bubbles as a function of the alcohol volume fraction.

In this section, we test if the idealization of mezcal that we propose together with the numerical method imple-
mented in this thesis is capable of reproducing the evolution trend of the lifetime as a function of alcohol content
observed in the experiments.

For this purpose simulations are performed varying xv , the other parameters being fixed: Γ∞/σ0 = 0.1/(RT ),
where R is the ideal gas constant and T is the absolute temperature, ka = 3 m/(mol.s), kd = 1 s−1, C∞ =

0.025 mol/m3, D = 10−9 m2/s and Ds = 10−14 m2/s. Throughout this study, the bubble equivalent diameter
is set to d = 3 mm. The properties of the water alcohol mixture as a function of alcohol content is summarized in
Table 7.2.

The lifetime of the bubbles obtained in the simulations are plotted as a function of xv in Fig. 7.11b. It
is observed that the lifetime of the bubbles under the free surface increase gradually as xv = 6.19% towards
xv = 55%. Beyond xv = 55%, the lifetime of the bubbles decreases as xx is increased. As in the experiments,
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Figure 7.11: (a) Lifetime of the bubbles under the surface measured in the experiments performed by the team
of Prof. Zenit, inside pure mezcal (red square) and alterated mezcal (black squares). (b) Simulated
lifetimes of the bubbles under the surface as a function of alcohol volume fraction

the maximum lifetime of the bubbles is obtained for an intermediate alcohol concentration of xv = 55%. It should
be noted that the lifetime obtained with the numerical simulations follow the same evolution trend with respect to
the alcohol volume fraction as the viscosity (see Fig. 7.4). This suggests that in the simulations, the lifetime of
the bubble at the surface of the liquid is set at leading order by the competition between gravitational drainage,
and viscous forces which slows down the drainage. It is worth saying that simulations with other concentrations
of surfactants (C0) have been performed. It was observed that the lifetime increases with increasing surfactant
concentration in the range of values of C0 that was tested. However, the mechanisms by which this effect occurs
was not investigated, and thus the data are not reported here. They can be found in Rage et al. (2018).

The conclusion in this subsection is that the idealization we propose for the mezcal together with the imple-
mented numerical method allows to obtain a trend for the evolution of the lifetime as a function of xv that is
comparable to the evolution trend of the viscosity with the alcohol volume fraction. This conclusion is also in
agreement with the prediction of Eq. (7.7) that arises from a scaling analysis that considers that the lifetime is
governed by the competition between gravity and shear stress.

7.5.4 Scaling analysis

It was observed in the previous section that the lifetime of the bubbles in the simulations performed in this work
is governed by the competition between gravitational drainage and viscous shear. A time scale can be build by
balancing these two effects, using Eq. (7.7) and the definition of ε = h/d: tscale = ε−2µc/(ρcgd). This time scale
is based on a dynamic balance that takes place inside the thin film, between gravitational drainage and viscous
shear. However, a static balance between capillary force and gravitational forces is also taking place in the system
the outcome of which dictates the shape of the bubble and of the free surface. Those shapes are expected to affect
the lifetime of the bubbles. The Bond number can be build with the ratio of this two effects: Bo = (ρgd2)/σ0.
Now, the lifetime of the bubble is expected to follow the following evolution trend:

tp = ε−2 µc
ρcgd

F (Bo) (7.8)

According to this analysis, for fixed surfactant properties, the lifetime of a bubble under the surface depends upon
a time scale which is set by the competition of gravitational drainage and viscous effects : ε−2µc/ρcgd. This time
scale is modulated by a function of the Bond number Bo = ρgd2

σ0
. In the next paragraph, we first verify if this

analysis applies to our simulations. We then try to understand the physical meaning of the function F (Bo).
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Two sets of simulations are performed to test if the scaling applies to the simulations. First, the alcohol volume
fraction of the mixture is varied and tp is monitored. The lifetime obtained from these simulations is plotted as
black pentagons in Fig. 7.12a as a function of Bo. These simulations are referred as “case 1". The values of xv ,
ρg, σ, tp and tp∗ = tpε

−2ρgd/µc associated to each black pentagon in Fig. 7.12a are summarized in Table 7.2.

In Fig. 7.12, the lifetime obtained with the data in Table 7.2 show no clear trend with Bo. This is expected
since, if the analysis presented in the previous paragraph is valid, then tp is a function of Bo and of the time scale
µc/(ρcgd).

This is why a second series of simulations are performed, where the parameters ρcg, µc and σ are varied
arbitrarily regardless of xv . The lifetime obtained from these simulations are plotted as green pentagons in Fig.
7.12a. As it can be observed from this figure, for the same value of Bo, different values of lifetime are obtained.
However, if tp is normalized by the timescale ε−2µc/(ρcgd), the black and green pentagons now collapse onto

Figure 7.12: (a) Relative lifetime of the bubble under the surface (tp/max (tp)) as a function of the Bond number.
(b) Scaled lifetime, tp∗/max (tp

∗) as a function of the Bond number. The scale is given by Eq. (7.8).
Note that in Fig. 7.12b, few black symbols are hidden behind green symbols.

a single curve as clearly shown in Fig. 7.12b. Thus, the non-dimensional lifetime, i.e tp∗ = ε−2tpρcgd/µc, is a
function of the Bond number. We would like to note that in between simulations, the thickness at which the film
ruptured was always approximately 30 microns, i.e., when the bubble surface and the free surface are seperated by
3 computational cells. We note also that, when experimental data regarding the lifetime of bubbles inside alterated
mezcal is non dimensionalized with the time scale ε−2µc/(ρcgd), the data shows the same evolution trend with
Bo, i.e., tc∗ increases with Bo for Bo . 1 and decreases for Bo & 1. Those data not presented here can be found
in Rage et al. (2018). In the next paragraph, the physical meaning of the function F (Bo) is investigated.

The Bond number characterizes the competition between gravitational forces that deform the bubble as well
as the free surface, and surface tension force that counters the deformation of those surfaces. Thus, the influence
of the Bond number on the bubble shape and free surface shape is analyzed. The contour of the bubble is plotted

(a) (b) (c)

Figure 7.13: Bubble shapes while “resting" under the surface : (a) Bo = 0.5, (b) Bo = 1.5 and (c) Bo = 3.2

in Fig. 7.13 for µ = 0.002 Pa.s, ρ = 930 Kg/m3 d = 3.1mm and g = 9.81 for different values of Bo: Bo = 0.5

(Fig. 7.13a), Bo = 1.5 (Fig. 7.13b) and Bo = 3.2 (Fig. 7.13c). The values of Bo are varied by changing σ0.
In this way, the timescale µc/ (ρcgd) is kept constant between the simulations. The bubble shapes presented in
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Fig. 7.13 are in good qualitative agreement with theoretical and experimental results of Teixeira et al. (2015). In
fact, in their work, they propose a theoretical model, validated with experiments of the shape of bubbles “resting"
under a free surface in a solution containing surfactants. They show that, as Bo is increased, the bubble loses
progressively its spherical shape, and in particular, the bottom part of the bubble flattens. This behavior is clearly
observed in Fig. 7.13. In addition, the drainage dynamics associated to the deformability of the interfaces makes
the film non-uniform along the bubble. In particular, a neck region occurs for sufficiently large Bond number,
associated to a local thinning of the film (Fig. 7.13b). And the position of the neck changes position from the top
of the bubble toward the liquid bath, as the Bond number increases (Fig. 7.13c). As a consequence, the position
where coalescence occurs gets farther from the symmetry axis of the bubble. This is characterized by computing
the position of the minimum film thickness during the drainage phase at a time for which the bubble shape seem at
“rest", i.e., after the bouncing phase. This position is measured with the polar angle θ introduced in Fig. 7.9. It is
observed that as Bo increases from 0.5 towards 3, θ passes from less than 0.2 rad towards more than 1 rad, with
a sharp increase in between Bo = 1 − 2. As Bo increases, the film drains faster near the side of the bubble than

0.5 1.0 1.5 2.0 2.5 3.0
Bo

0.2

0.4

0.6

0.8

1.0

1.2

Figure 7.14: Angular position, θ, of the minumum film thickness while the bubble “rests" under the surface (θ) as
a function of Bo.

close to its symmetry axis, leading to a coalescence occurring at the bubble side. To understand this phenomena,
the curvature of the free surface, κ = −∇·n, is plotted as a function of θ in Fig (7.15a) for three values of Bo.
The curvature is maximum at θ = 0, near the symmetry axis of the free surface for all values of Bo. However,
the curvature profile κ (θ) changes with Bo. It seems that as Bo increases, the curvature of the free surface gets
constant near the symmetry axis of the problem and displays a steep gradient farther from this axis.

In the liquid film, near the free surface, the pressure is given by pl ≈ pg + κσ, where κ is the curvature of the
free surface. Taking the derivative of this expression, assuming pg constant, gives: dpldθ ≈ σ

dκ
dθ . Thus, any variation

of curvature of the free surface result in an additional pressure gradient that creates a flow inside the film. In the
configurations depicted in Fig. 7.13a,b and c, the curvature variation produces a capillary induced drainage of the
film. In order to identify the dependency of this capillary induced drainage on Bo, the maximum value of dκ

dθ is
plotted as a function of Bo in Fig. 7.15b. In this figure, it is visible that at Bo ≈ 1.2, the variation of the curvature
of the free surface is minimum. This means that at this Bo, the capillary induced drainage is minimum, leading to
a maximum in the dimensionless lifetime of the bubble (as shown in Fig. 7.12b). Now, a bubbles formed using
the traditional technique to asses the alcohol content has a diameter close to d ≈ 2 mm. Inside a water-alcohol
mixture of xv ≈ 50%, those bubbles are characterized with a Bond number of Bo ≈ 1.2. In this situation the
bubbles benefit both of a maximum viscosity (as shown in Fig. 7.4) and a minumum capillary induced drainage
(as shown in Fig. 7.15b), thus “rests" the longest under the free surface.

This analysis seems convincing and seems to apply for the simulations. Of course, in the experiments, several
other important effects might play a role in determining the lifetime of the bubbles. In particular, ethanol evapo-
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Figure 7.15: (a): Non-dimensional curvature profile of the free surface for different values of Bond. (b): Maximum
value of the curvature variation of the free surface as a function of Bo.

rates at room temperature. Thus, especially inside the thin film between the bubble surface and the free surface,
its concentration might be less than near the side of the bubble. The surface tension of an interface between air
and a mixture of water and alcohol increases as its alcohol content diminishes as shown in Fig. 7.4. Thus, this
evaporation of alcohol might induce a marangoni stress directed from the side of the bubble towards the thin film,
that might play a role in determining the lifetime of the bubble. Of course, the exact effect of this Marangoni stress
on the lifetime of the bubble is not easy to predict and depend upon many parameters such as the speed at which
the alcohol diffuses from the side of the bubble towards the thin film or the evaporation rate of the alcohol inside
the film. Those parameters will dictate if sufficient surface tension gradients will be induced by the evaporation of
alcohol inside the thin film. Direct numerical simulations could be used in future works to investigate the effect of
the evaporation of alcohol on the lifetime of the bubbles. The evaporation of alcohol inside the thin film will also
induce a decrease of the liquid temperature which in turn might also generate Marangoni stresses directed from
the bubble side towards the thin film. However, at first sight, surfactants and alcohol evaporation seem to induce
Marangoni stresses directed from the side of the bubble towards the thin film between the bubble and the free
surface. As a result, it seems that the simulations performed on this idealized system (Mezcal = Water/alcohol +
surfactants) contains the main ingredients that determine the lifetime of the surface bubbles inside Mezcal: Gravi-
tational drainage of the thin film, capillary induced drainage of the thin film, viscous stresses resisting the drainage
and Marangoni stresses immobilizing the bubble surface and the free surface.

7.6 Conclusion and perspective

In this chapter, the numerical method has been used to understand the physical mechanisms controlling the lifetime
of superficial bubbles inside Mezcal. For this purpose, the Mezcal has been idealized as a mixture of water and
alcohol containing surfactants. The simulations were ran using experimental data regarding the properties of a
mixture of water and ethanol, and the properties of octanol as a surfactants.

The simulations were run for a single value of the surfactant concentration. It was observed that, the bubbles
exhibit a maximum lifetime for an intermediate concentration of alcohol, i.e., xv = 0.55, as in the experiments.

It was first shown that, in the idealized system, surfactants increase the time taken for the film to drain by
immobilizing the surface of the bubble and the free surface. A classical scaling analysis showed that when both
surfaces are immobilized, the lifetime of the bubbles is given by tp ∼ µR

ρgh2 , which is obtained by balancing
viscous forces to gravitational forces. This scaling analysis is pushed further using the physical argument that
surface tension should play a role in determining the lifetime of the bubbles. Performing simulations show that
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indeed, in the idealized system, in addition to gravitational drainage, a capillary induced drainage exists and affects
the lifetime of the bubbles. Simulations results show that this capillary induced drainage reaches a minimum at a
value of Bo ≈ 1.2. The minimum of the capillary induced drainage is materialized by a peak on the curve relating
by tpρcgd/µc to Bo. This peak is also observed on the experiments performed by the team of Roberto Zenit, the
data being available in Rage et al. (2018). This study has shown that the mechanism controlling the lifetime of
a bubble beneath the free surface seperating air and Mezcal are: gravitational drainage of the thin film, capillary
induced drainage of the thin film, viscous stresses resisting the drainage and Marangoni stresses immobilizing the
bubble surface and the free surface (induced by surfactants and alcohol evaporation).
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Part II

Dynamics of Taylor flow in Microchannels
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CHAPTER 8

Introduction

The motion of confined bubbles in capillaries or microchannels is a hydrodynamic problem with a large variety of
applications in industry, medicine and in everyday life. In recent years, microfluidics witnessed a large attention
in industry with the development of micro-heat exchangers, micro-absorbers and micro-extractors. These devices
often imply the translation of a bubble (or drop) of low viscosity, through a higher viscosity liquid, resulting in
the so-called Taylor flow regime. In such a microscale flow, inertial and buoyancy effects are often negligible
while surface tension and viscous forces dominate the system. The relative importance of inertial to viscous
forces is assessed by the means of the Reynolds number: Re = ρUa/µ, where ρ, µ, U and a are the density
and viscosity of the liquid, the bubble velocity and the microchannel half height (or radius of the capillary),
respectively. The relative importance of buoyancy to surface tension effects is assessed by the means of the Bond
number: Bo = ρga2/σ, where ρ and σ are the density of the liquid and the surface tension of the interface,
respectively. The Reynolds number and the Bond number characterizing these microscale flows is often small
when compared to unity. Finally, the relative importance of viscous forces to surface tension forces is assessed by
the means of the capillary number: Ca = Uµ/σ, which is the relevant parameter characterizing these microscale
flows.

The pioneering work on this problem was conducted by Fairbrother and Stubbs (1935). They noticed that a
tube filled with a viscous liquid cannot be emptied by pushing a less viscous fluid through the tube because of the
deposition of a lubrication film on the tube walls. Following this work, Taylor (1961) measured the thickness of
this film, h∞. It was observed that h∞ increases with Ca. This observation was rationalized by the theoretical
work of Bretherton (1961). The author showed that for Ca1/3 � 1 the thickness of the film was given by:

h∞ = 1.337aCa2/3 (8.1)

where a is the half height of the microchannel (or the radius of the capillary) Later, some authors extended the
applicability of Eq. (8.1) to values of Ca up to 2 (Aussillous and Quéré (2000); Klaseboer et al. (2014)).

The analysis performed by Bretherton (1961) rely on the lubrication approximation of the momentum conser-
vation equations. In the following section, the lubrication approximation is presented, and the main features of the
derivation of h∞ proposed by Bretherton (1961) are presented as well as the extension proposed by Aussillous
and Quéré (2000) and Klaseboer et al. (2014).

8.1 Lubrication approximation

The lubrication approximation is used to describe the flow in narrow gaps. In these configurations, the characteris-
tic dimension of the system in the main flow direction, l, is large when compared to the dimension in the crosswise
direction, h∞. The ratio of these two length scales being ε = h∞/l� 1. These two length scales are used to non
dimensionalize the variables:

x̄ =
x

l
, ȳ =

y

h∞
, ū =

u

U
, v̄ =

v

V
, t̄ =

t

tc
, p̄ =

p

∆p



where x is the coordinate along the main flow direction, y is the coordinate along the crosswise direction, U is
the typical velocity along the main flow direction, V is the typical velocity along the crosswise direction, tc is the
characteristic time scale of the system, and ∆p is the typical pressure drop in the system. Typically, since x is the
main flow direction, the velocity scale along y is set to V = ε U . The time scale is set to tc = h∞/V = l/U . The
x and y component of the momentum equations as well as the continuity equations, Eqs. (3.1 and 3.5), are written
in terms of these dimensionless variables, for a Cartesian coordinate system (x, y) as:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (8.2)

εRe
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∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
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(8.5)

where Re = ρuch∞
µ is the Reynolds number associated to the flow inside the gap. As it can be observed, the

typical pressure drop inside the gap is ∆p = Uµl
h2
∞

. In the lubrication approximation, Re � 1 and ε � 1, keeping
only the 0’th and 1’st order terms, and with ρgh∞ � (Uµl)/h∞ leads to the classical lubrication equations. In
dimensional form it gives:

∂u

∂x
+
∂v

∂y
= 0 (8.6)

0 = −∂p
∂x

+ µ
∂2u

∂y2
(8.7)

0 =
∂p

∂y
(8.8)

Part II of this thesis mainly relies on Eqs. (8.6), (8.7) and (8.8). In the next section, the pioneering work of
Bretherton (1961) that predicts the thickness of the lubrication film around a Taylor bubble is presented. In Chapter
9, an experimental method allowing to determine the thickness of this film is developed. Finally, in Chapter 10, a
variation of the theory of Bretherton (1961) is presented. In particular, the effect of gravity on the film thickness is
considered. In fact, when buoyancy effects are significant, the condition ρgh∞ � (Uµl)/h∞ leading to Eq. (8.8)
is not satisfied and, consequently, Eq. (8.8) becomes inadequate to describe the problem. It needs to be modified
to account for buoyancy effects. Experiments are performed to test the validity of the proposed theory.

8.2 The analysis of Bretherton

A typical Taylor bubble translating inside a microchannel is sketched in Fig. 8.1. In the classical analysis of
Bretherton (1961), the front of the bubble is divided into three distinct regions, (I): the capillary static region, also
referred to as the static meniscus, where surface tension forces are dominant and consquently the front cap of the
bubble forms a sphere of radius R. (II): the transition region, also referred to as the dynamical meniscus, where
viscous forces begin to be significant and are balanced by surface tension forces. Between (I) and (II), a matching
region is present where the interface shape of (I) and (II) match. (III): the thin film region, where a lubrication
film of constant thickness, h∞, deposits on the microchannel wall. Bretherton (1961) first developed an analytical
expression of h∞ that relies on the lubrication approximation. The main features of the analysis of Bretherton
(1961) leading to the expression of h∞ are presented here. The analysis relies on dividing the front of the bubble
into the aforementioned regions, treat the transition region (or dynamical meniscus) and connect the solution of
this region to the static meniscus in a common overlap region.
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Figure 8.1: A Taylor bubble translates inside a microchannel at constant velocity U . The microchannel height is
2a. The bubble is divided in three regions: (I) indicates the capillary static region, where the tip of the
bubble forms a sphere of radius R. (II) indicates the transition region in which the viscous forces are
balanced by the capillary forces due to the variation of the curvature along the interface. Between (I)
and (II), a matching region is present where the interface shape of (I) and (II) match. As the bubble
translates, a lubrication film of thickness, h∞ is deposited on the microchannel wall.

In region II, it is assumed that viscous effect are significant together with surface tension effects. Eq. (8.7)
holds and is used. Considering the problem in a reference frame translating with the bubble velocity, U , integrating
Eq. (8.7) with the no slip condition on the microchannel wall, i.e., y = 0, and the no shear condition at the gas-
liquid interface, i.e., y = h, leads to:

u(y) = −U +
1

2µ

∂p

∂x

(
y2 − 2yh

)
(8.9)

where U is the translating bubble velocity. From continuity, the flux across the lubrication film (region III) is equal
to the flux across region II, thus:

−Uh∞ = −Uh− h3

3µ

∂p

∂x
(8.10)

In the lubrication approximation, the normal stresses are dominated by pressure, thus the normal stress balance on
the gas-liquid interface reduces to:

pg − p = σκ (8.11)

where σ is the surface tension, pg is the pressure inside the gas which is set to pg = 0 and κ is the curvature of the
gas-liquid interface:

κ =
∂xxh(

1 + (∂xh)
2
) 3

2

(8.12)

Using the scales h∞ and l, with ε = h∞
l � 1 to non dimensionalize x and y leads to:

κ̄ =
∂x̄x̄h̄(

1 + ε2
(
∂x̄h̄

)2) 3
2

(8.13)

where κ̄ = κl. Since ε2 � 1, κ ≈ ∂xxh is obtained and consequently the normal stress balance reduces to:

p = −σ∂xxh (8.14)
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From Eq. (8.10), the differential equation governing the shape of the gas-liquid interface in region II is deduced:

3Ca
(h− h∞)

h3
+ ∂xxxh = 0 (8.15)

where Ca = Uµ/σ is the capillary number. Defining H = h/h∞ and X = Ca1/3x/(h∞) leads to the classical
Bretherton equation:

(H − 1)

H3
+ ∂XXXH = 0 (8.16)

The curvature of the gas-liquid interface κ ≈ ∂xxh is written in terms of the variables characterizing region II as:

∂xxh =
∂XXHCa2/3

h∞
(8.17)

In region I, the distance between the gas-liquid interface and the wall is of the order of the tube radius, a.
In this situation, viscous effects vanish and in the absence of buoyancy effects, the curvature of the gas-liquid
interface is constant. Furthermore, if the film thickness is small when compared to the microchannel heigth, i.e.,
h∞/a � 1, the spherical cap of the bubble fills approximately the entire gap between the microchannel wall. In
this situation the radius of curvature of the spherical cap of the bubble can be approximated as R ≈ a. In this
situation, the curvature of the front cap of the bubble is given by: 1

a .

The curvature of the gas-liquid interface in region II and in region I should match in a common overlap region
in which one can write:

1

h∞
lim
X→∞

∂XXHCa2/3 =
1

a
(8.18)

where a numerical solution of Eq. (8.16) shows that lim
X→∞

∂XXH = 1.337 (Bretherton (1961)), which leads to:

h∞
a

= 1.337Ca
2
3 (8.19)

This equation gives h∞/a as a function of Ca for h∞/a� 1.

8.3 Extension of the Bretherton model

Aussillous and Quéré (2000) and later Klaseboer et al. (2014) accounted for the contribution of the lubrication
film in defining the curvature of the front cap of the bubble. If Rf is the radius of curvature of the front cap of the
bubble, the matching condition (Eq. 8.18) becomes:

1

h∞
lim
X→∞

∂XXHCa2/3 =
1

Rf
(8.20)

where Rf < a, is the radius of curvature of the front cap of the bubble. The thickness of the lubrication film is
then given by:

h∞
Rf

= 1.337Ca
2
3 (8.21)

Rf is an unknown. The distance between the cell/tube centerline and the interface in the matching region Rf and
the liquid thickness CNh∞ should fit the radius of the tube. This gives an additional equation as proposed by
Klaseboer et al. (2014)

a = CN h∞ +Rf (8.22)
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where CN is a constant. Combining Eqs. (8.21 and 8.22) allows to obtain an expression of h∞/a:

h∞
a

=
1.337Ca

2
3

1 + 1.337 CN Ca
2
3

, (8.23)

The value of CN depends upon the geometry of the problem (tube of circular cross section or microchannel with
a rectangular cross section) and is not clearly defined. For example, for a tube of circular cross section, Aussillous
and Quéré (2000) found that CN = 2.5 by fitting Eq. (8.23) to the experimental measurements of Taylor (Taylor
(1961)). Later, Klaseboer et al. (2014) pointed out that the exact value of CN depends upon whereRf is evaluated
in the matching region and can take a value up to 2.9 if Rf is evaluated for H > 106, i.e X > 10000, and 2.34 if
it is evaluated for H = 6× 102, i.e X = 50. Finally in the case of a planar geometry, the correlation established
by Balestra et al. (2018) by performing 2D stokes simulations of a bubble translating along a planar channel
showed that CN = 2.19. In this thesis, theoretical considerations regarding the value of CN is not considered,
and Eq. 8.23 is used with CN = 2.5 when a tube of circular cross section is considered, and CN = 2.19 when a
microchannel of rectangular cross section is considered.

8.4 Conclusion

In this chapter, the basic equations governing the flow in thin films have been introduced, namely Eqs. (8.6), (8.7)
and (8.8). The classical analysis of Bretherton (1961) allowing to obtain Eq. (8.1) which predicts the thickness of
the lubrication film around a bubble and a microchannel was presented. The extensions of the original analysis to
larger values of Ca (Eq. (8.23)) was introduced (Aussillous and Quéré (2000); Klaseboer et al. (2014); Balestra
et al. (2018)).

In the next chapter, we develop a method to measure the thickness of a lubrication film in Taylor bubbles. In
particular an equation that is analogous to Eq. (8.23) is developed and its validity is tested.
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CHAPTER 9

How to measure the thickness of a lubrication film in a pancake bubble
with a single snapshot?

This chapter is part of a paper that has been published in the journal Applied Physics Letters in October 2018
(Atasi et al. (2018a)).

9.1 Introduction

Large air bubbles translating inside confined geometries, or pancake bubbles, are encountered in countless situa-
tions including oil extraction, gas-liquid absorption and treatment of pulmonary disorders. The dynamics of these
bubbles relies on the lubrication film in between the bubble and the walls of the channel in which they translate.

Numerous experimental works aimed at measuring the thicknesses of lubrication films formed between a
bubble or drop and a solid surface. Direct measurement of film thickness have been performed extensively, using
Interferometric imaging in various situations, including the thickness of thin vapor film in Leindenfrost drops
(Tran et al. (2012)), or the thickness of air film trapped beneath a drop impacting a solid surface (Driscoll and
Nagel (2011)).

Direct measurement methods of the film thickness forming between a pancake bubble and the walls of a
microchannel also requires interferometric top-view imaging (Han et al. (2011); Chen et al. (2015); Huerre et al.

(2015a)) or bright-field side-view imaging (Atasi et al. (2017)). Indirect measurement methods rely instead on
a model that relates another measured quantity to the film thickness itself. The most classical indirect method
consists in measuring the bubble velocity and recovering the film thickness via a Bretherton-like model (with the
use of Eq. (8.1) or (8.23) (Warnier et al. (2008); Howard et al. (2011); Khodaparast et al. (2018)). This classical

method requires a temporal sequence of images and the knowledge of the channel height as well as the fluid
properties, such as the viscosity and the surface tension. Other indirect measurement methods have also been used
to infer the thickness of the lubrication film around bubbles in microchannels. For instance, Chen (1986) exploited
the link between the conductivity across a channel containing a bubble and the thickness of the lubrication film.
We propose in this work a new method, also indirect, that only requires a single instantaneous bright-field image
of the bubble and the sole knowledge of the refractive indices of the fluids.

Numerous techniques based on bright-field images allow to characterize the geometrical properties of bubbles
or drops. For example, a raytracing technique has been used to relate the optical pattern viewed on brightfield
images of layered bubbles to the geometry of these layers (van der Net et al. (2007)). Some researchers used the
lensing effect of a drop deposited on a solid substrate, illuminated with a laser or a low aperture light, to measure
the contact angle of the drop. In fact, the drop both refracts and reflects bright circles on the image, their diameter
being related to the contact angle of the drop (Allain et al. (1985); Zhang and Chao (2002, 2003); Campbell and
Christenson (2018)).

The method we propose relies on the location of specific intensity peaks, called glare points, created on the
image of a bubble illuminated using a light beam (e.g., emitted from a laser or diffusive light source) (Hulst and
Wang (1991)). These intensity peaks correspond to different interaction orders of the beam with the bubble. When



two of these intensity peaks are visible on the brightfield image of a spherical bubble, the distance between these
two points can be used to obtain the bubble diameter. This technique is entitled Glare Point Velocimetry and Sizing
(GPVS) (Dehaeck et al. (2005)) and has been used to size particles or measure the refractive index of liquids. A
typical optical setup used for GPVS measurements is shown in Fig. 9.1. A spherical bubble is illuminated with a
laser from the bottom of the scene. Observation is performed at angle of 96◦ with respect to the vertical direction
(see Fig. 9.1). Two intensity peaks are visible on the bright-field image at the right of the scene. The point C
arises from the rays that are reflected once on the bubble surface and that reach the objective. These rays produce
an intensity maximum that is indicated with the letter C. The point B arises from rays that interact three times
with the bubble before hitting the objective lens. The trajectory of these rays is drawn in grey in Fig. 9.1. In this
technique, the bubble diameter can be inferred from the distance B-C, if the refractive indices of the bubble and
of the liquid surrounding the bubble are known. In GPVS, the glare points are visualized in focus. When these

Figure 9.1: An optical setup allowing to observe two glare points on the bright-field image of a spherical bubble.
This image was taken from Dehaeck et al. (2005).

glare points are visualized out of focus, interference patterns form on the image. The period of these interference
fringes is used to size particles in suspensions or sprays (Kœnig et al. (1986); Glover et al. (1995)). This technique
is entitled Interferometric Laser Imaging for Droplet Sizing (ILIDS). In contrast to the above techniques, we use in
this paper an in-line configuration. In this case, the glare points connect to form a glare ring or circle as described
in Dehaeck and van Beeck (2007). In the case of spherical bubbles, Dehaeck and van Beeck (2007) established an
analytical expression correlating the radius of the glare ring to the radius of the spherical bubble:

Rg =
1 +

√
1 + 8n1

2/n2
2

4n1
2/n2

2
Re (9.1)

where n1 is the refractive index of the liquid surrounding the bubble, and n2 is the refractive index of the gas.
Even though in-line measurements of these glare points have been used to size bubbles (with the use of Eq. (9.1))
(Dehaeck and van Beeck (2007)) and measure refractive indices (Gavrilovic (2017)), to our knowledge, they have
not yet been used to measure the thickness of lubrication films.

In this chapter, a new method to measure the thickness of lubrication films is developed. This method requires
a single brightfield image of a bubble translating in a microchannel, as the one presented on the left of Fig. 9.2.
This image was recorded with a standard transmission microscope. A schematic of the optical setup allowing to
obtain the images on Fig. 9.2 is shown on Fig. 9.3. The microchannel, of width w and height 2a, is illuminated
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Figure 9.2: (Left) Top-view bright-field image of a pancake bubble inside a microchannel. (Right) Zoom on the
glare ring inside the shadow region, the contrast of which has been enhanced for visualization purpose.

1

collimated beam

Figure 9.3: Side-view of a pancake bubble inside a microchannel of half height a. The bubble translates with a
velocity U and generates on the walls a lubrication film of constant thickness, h∞. The static meniscus
(orange line) of constant radius 1/κf is connected to the lubrication film (blue line) through a dynamic
meniscus (green line). The light rays (in gray) producing the glare ring on the bright-field image have
been reconstructed by raytracing, n1 and n2 being the refractive index of each phase. The ray that
exits the channel perpendicularly (red dashed line) is used to determine δr.

with a collimated light source from the top of the scene and in-line observation is performed from the bottom with
a standard transmission microscope. The rays producing the glare ring on the bright-field image are refracted on
the bubble-liquid interface, reflected and refracted a second time before exiting the bubble from the bottom of the
scene. The ray that exits the microchannel perpendicularly is depicted in red in Fig. 9.3. The distance between the
position at which this ray exits the bubble and the bubble edge is denoted as δr (see Figs. 9.2 and 9.3). As it can
be intuitively understood, δr correlates with the curvature κf of the bubble interface, which itself can be linked to
the thickness of the lubrication film, h∞, through a model.
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9.2 Methodology

The methodology followed in this work is (i) to establish numerically a relationship between δr and h∞ and (ii) to
perform experiments in order to validate the established correlation. For (i), a raytracing algorithm is developed
and validated. The raytracing algorithm is applied to a shape function describing the bubble interface:

F (x, y, z) = 0 (9.2)

where (x, y, z) define the Cartesian coordinate system as represented in Figs. 9.2 and 9.3. This raytracing algo-
rithm allows to calculate δr/a for a given value of m = n1/n2 and h∞/a, where n1 and n2 are the refractive
indices of outer and inner phases, respectively (see Fig. 9.2). Applying the algorithm for different values of m
allows us to build the correlation. (ii) The accuracy of the correlation is verified by performing experiments of a
single air bubble translating inside a microchannel of rectangular cross section.

In this section, first the experimental setup is presented including the microchannel fabrication process, the
optical setup allowing the visualization of the bubbles and the image processing procedure allowing to extract the
parameter δr and the bubble velocity. Secondly, the raytracing algorithm, developed in this thesis, allowing to
establish the relationship between δr/a, h∞/a and m is presented. Finally, the model that is used to construct
the shape of a pancake bubble translating along a microchannel, on which the ray-tracing algorithm is applied, is
presented.

9.2.1 Experimental setup

Experiments are performed at room temperature, using mineral oil and silicon oil as working fluids. Air is used to
produce bubbles inside these fluids.

Microchannel

The microchannel fabrication process is sketched in Fig. 9.4. It is based on a method proposed by Carofiglio
et al. (2008). Two glass slides having a thickness of 0.9 mm and one photo-lithography mask are used. The mask
is transparent to ultraviolet light (UV), except on an area where it is black. This area contains the pattern of the
microchannel. The microchannel contains one flow-focusing device, as described by Garstecki et al. (2005), and
one rectilinear channel of width w = 3 mm.

1. Four holes are drilled on one glass sheet on locations where the fluid will be injected in the channel and
withdrawn (glass A on Fig. 9.4)

2. Four spacers of 200 microns thickness are glued on 4 corners of the other glass sheet (glass B). The back of
the glass B (the side that does not contain the spacers) is covered with black tape. This step avoids reflection
of ultraviolet light during the insolation of the channel.

3. An optical glue, Norton Optical Adhesive (NOA), is then poured on the front of glass B and glass A is
deposited on it.

4. The photolithography mask is deposited on glass A. Glycerol is poured on glass A before depositing the
mask to avoid air bubbles to get trapped between the glass and the mask

5. The structure is insolated with UV light for 2-3 seconds with the glass A on the top.

6. Nanoports are glued to the holes that were drilled during the first step.
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7. The NOA that has not been exposed to UV light is still fluid and is sucked-up through the nanoports using
a vacuum pump. Ethanol and acetone is injected through the nanoports to help evacuate the NOA.

8. The chip is then insolated with UV light for 3 minutes and then left in an oven at 50◦C during 12 hours.

A schematic of a side view of the obtained channel is presented on Fig. 9.4. As can be seen, the top and
bottom walls of the channel are composed of glass. The side walls are composed of NOA. The distance between

Figure 9.4: Microchannel fabrication process

the two glass plates inside the channel, 2a, has been measured using a 3D microscope. The height distribution
obtained is shown on Fig. 9.5. a = 109 ± 3 µm is obtained. This procedure allows to produce a microchannel
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Figure 9.5: Number of measurements as a function of channel height.

with good optical quality for the visualization of a bubble and, in particular, of the glare-circle.
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Optics

Brightfield microscopy is used to visualize the bubbles. A collimated beam is mounted on an optical microscope.
The in-line bright-field image of the bubble is recorded using a 12 bit camera having an acquisition speed of 11
frame per second and a pixel size of 3.45 µm. A schematic of the optical setup is shown in Fig. 9.6. The bubble
is illuminated from the top of the scene with parallel illumination. Light rays travel across the bubble and exit the
bubble from the bottom of the scene after multiple interactions. The rays that interact three time with the bubble
form a bright ring within the shadow region of the brightfield image. A schematic of the output image is shown at
the bottom of the scene. This optical setup allowed visualization and detection of a sharp interface between the gas

Figure 9.6: A bubble translates inside an horizontal microchannel of height 2a and width w. A collimated light
beam is used to illuminate the bubble and the microchannel from the top of the scene. The bubble is
observed from the bottom of the scene using a magnification lens (2x and 10x) and a camera.

and the liquid phases as well as the glare-circle on the brightfield image using a 10x magnification (Khodaparast
et al. (2013)). The image processing procedure is detailed below.

Image processing

The bubble velocity, U , and the parameter δr are extracted by the following procedure.

The bubble velocity is measured by tracking the nose of the bubble on consecutive images. Consecutive images
such as the one on the left of Fig. 9.2 are used for this purpose. These images are obtained by the means of a 2x
magnification lens.

The parameter δr, is determined on images such as the one on the right of Fig. 9.2. Those images are obtained
by the means of a 10x magnification lens. The procedure used to measure δr on images can be summarized as
follows: The images are scanned and only images containing the front part of the bubble are kept. The objective
lens is moved such that the field of view is characterized by approximately −15◦ . θ . 15◦, where θ is the
angle between the channel axis and the normal to the bubble-liquid interface (see Fig. 9.2). The contour of the
front part of the bubble is detected using a “Canny edge detection" algorithm. The glare points are detected using
an intensity threshold. A second-order polynomial is fitted on a sufficiently high number of points that have
been identified as belonging to the exterior contour (for reminder, this identification is performed with the use
of the Canny algorithm). The normal to this polynomial is computed and the closest point to this normal, that
has been identified as a glare point, gp, is identified (for reminder, the identification of the glare points is done
using an intensity threshold) . A second-order polynomial is fitted on a sufficiently high number of points, evenly
distributed at both side of gp. This polynomial is a part of the glare ring. The intersection between the normal to
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the bubble edge and the glare ring is calculated and the distance between the points on both polynomial that are
joint by the normal is calculated. This procedure is done on evenly space points that have been identified as being
part of the exterior contour of the bubble. As an example, a processed image is presented on Fig. 9.7. In this
figure, the red line is a second-order polynomial that has been fitted to the locations of the glare points (forming
therefore a part of the glare ring). The blue line is a second-order polynomial that has been fitted to the bubble
contour. The distance δr is depicted in this figure.

Figure 9.7: A bubble translates inside an horizontal microchannel of half height a, from left to right, with Ca =
0.005. The bubble is observed with a magnification of 10x.

Once δr is extracted from the bright-field images, in order to infer the film thickness from values of δr, a
correlation relating δr to h∞ needs to be established. This is done by applying a ray-tracing algorithm on a
model of the bubble shape. In the next section, the ray-tracing algorithm developed in this thesis is presented and
validated.

9.2.2 Raytracing

We developed an algorithm that allows to simulate the interaction between a bundle of parallel light rays and an
interface separating two media. The algorithm is then used to simulate the path of the light rays across the bubble.

Let us consider the interaction between a light ray and an interface between 2 media. The refraction and the
reflection of the ray on the interface are described by the Snell-Descartes equations:{

n1 sin θ1 = n2 sin θ2 (refraction)

θ1 = θ2 (reflection)
(9.3)

where n1 and n2 are the refractive index of medium 1 and 2 respectively, θ1 is the angle between the incoming
ray and the normal to the interface and θ2 is the angle between the refracted/reflected ray and the normal to the
interface.

A ray is described with the equation: Rj(x, y) = y − ajrx − bjr = 0, where ajr and bjr are two parameters
and j is an integer accounting for the interaction order of a ray with an interface. The interface is described in the
general form: F (x, y) = 0. The normal to the interface is given by n = ∇F

‖∇F‖ .

The algorithm is composed of 2 main steps:

1. the calculation of the intersection between the incoming ray (Rj(x, y)) and the interface (F (x, y)).

2. The calculation of the refracted and reflected rays

The input parameters of the algorithm are the (x, y) coordinates of the geometrical shape with which the rays
will interact, and the refractive index of the two media that are separated by the interface.
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The first step of the algorithm is to compute the intersection between the incoming rays, Rj(x, y) = y−ajrx−
bjr = 0, and the geometrical shape, F (x, y) = 0. This is performed in two steps, first the point of the geometrical
shape (xi, yi) that is the closest to the incoming ray is identified. Second, the function F is defined at the location
(xi, yi) as: Fi = aix

2
i + bix + ci = 0, where ai, bi, ci are fitting parameters. The fitting parameters are found

by applying the least square method on the 3 points (xi−1, yi−1), (xi, yi) ,(xi+1, yi+1). The exact intersection
point is computed by equating F (xI , yI) = Rj(xI , yI), where xI is the abscissa of the intersection and yI is the
ordinate of the intersection. The abscissa of the intersection is equal to:

xI =
1

2

−bi − ajr
ai

±

√√√√√
(bi − ajr

ai

)2

− 4
ci − bjr
ai


 (9.4)

The ordinate of the intersection is deduced by evaluating Rj (xI , yI) = 0: yI = ajrxI + bjr.

The second step of the algorithm deals with reflection/refraction of the ray on the interface. For this purpose,
the slope of the normal to the interface at the position (xi, yi) is computed: Ai = − (2aixi + bi)

−1. The angle
between the incoming ray and the normal to the interface, θ1 is deduced: θ1 = arctan (Ai). Eqs. (9.5) are applied
to calculate θ2. The refracted/reflected ray are then constructed by calculating their slope:

ajr =

{
tan (θ1 − π + θ2) if Ai > 0

tan (θ1 − π − θ2) if Ai < 0
(9.5)

The parameter bjr is deduced: bjr = yI − ajrxI . The new ray is constructed using the parameters ajr and bjr and the
new intersection between the geometrical shape and the ray is calculated.

It should be noted that, during step 1 of the algorithm, once the the point of the geometrical shape, (xi, yi),
that is the closest to the incoming ray has been identified, the following variables are defined: ∆x = xi−xi+1 and
∆y = yi− yi+1. If |∆x| ≥ |∆y|, then the procedure described above is done. On the other hand, if |∆x| ≤ |∆y|,
then the function F is defined at the location (xi, yi) as: Fi = aiy

2
i + biyi + ci = 0 and the rest of the procedure

of step 1 and 2 is done by replacing xi by yi and reciprocally. This allow to apply the raytracing algorithm on
closed curves, line a circle or an ellipse.

The raytracing algorithm has been validated with the following test case: a circle of radius Re is intiallized as
sketched in Fig. 9.8. Light rays are thrown towards the circle from the top of the scene. These rays are depicted
in grey in Fig. 9.8. The trajectory of the rays that interact three time with the circle is calculated. The position
at which those rays exit the bubble vertically, Rg is determined. The value of Rg computed with the ray-tracing
algorithm is compared the prediction of Eq. (9.1).

Eq. (9.1) is plotted as a solid line in Fig. 9.9, for n1 = 1.467 and n2 = 1. Stars give values of Rg computed
with the raytracing algorithm developed for this work. As it can be observed, there is a good match between the
prediction of Eq. (9.1) and the algorithm.

Now, the algorithm has been developed and validated, it is ready to use on a model of a bubble shape. In the
next section, two models for the shape of the bubble are presented.

9.2.3 Model of the bubble shape

In order to establish the relationship predicting h∞/a as a function of δr/a and m the raytracing algorithm
presented above is applied on a model for the bubble shape.

88



j=3

j=2

j=1

Re

Rg

Figure 9.8: Trajectory of the rays that interact with a circle. The ray are incident upon the bubble from the top
of the scene. Green rays are reflected on the circle after the first interaction (j=1), orange rays are
refracted at the second interaction (j=2) and gray rays are refracted after the third interaction (j=3).
The rays that exit the bubble vertically form the glare points. These rays are depicted in red.
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Figure 9.9: Rg as a function of Re for a circle. The solid line is calculated using Eq. (9.1), whereas stars give
values calculated with the raytracing algorithm.

Bretherton model for the bubble shape

For the sake of simplicity, the bubble shape function F (x, y, z) is considered at the plane z = 0, i.e., F (x, y, z =

0) and, by symmetry about the axis y = a, where a is the half height of the channel, only the bottom half of the
shape is considered. As sketched in Fig. 9.3, this shape is composed of a dynamic meniscus of thickness h(x)

connecting the flat lubrication film of thickness h∞ and the static meniscus of constant curvature κf at the front
of the bubble. In the frame of the lubrication approximation, i.e., for h∞/a � 1, as seen in the previous chapter,
h(x) can be obtained by solving the Bretherton equation that balances the capillary and viscous forces:

h3κ′ = 3U
µ

σ
(h− h∞) (9.6)

where the prime denotes the x-derivative, κ is the surface curvature, µ is the viscosity of the liquid and σ is the
surface tension of the bubble/liquid interface. In virtue of the least degenerancy principle (Van Dyke (1964)), the
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full expression of the curvature κ = h′′
(
1 + h′2

)−3/2
is used to patch the curvatures between the dynamic and the

static menisci (see Eq. (8.12)). Balestra et al. (2018) performed 2D numerical simulations of the Stokes equation
and established a correlation for the curvature of the static meniscus,

a κf =
1 + 2.925Ca2/3

1 + 0.495Ca2/3
(9.7)

as well as for the thickness of the lubrication film, as discussed in the previous chapter:

h̄∞(U) ≡ h∞
a

=
1.337Ca2/3

1 + 1.337× 2.19Ca2/3
(9.8)

The model of Balestra and the correlations (9.7) and (9.8) have been proven to be valid for Ca . 5 · 10−2

Balestra et al. (2018). Now, given a certain value of Ca, Eq. (9.6) is solved as an initial value problem, with
h(0) = h∞ + ε, h(0) = h(0) = ε, using ε = 10−3 and Eq. (9.8) to calculate h∞. The equation is solved until the
patch of curvatures is reached (i.e., when κ = κf , with κf calculated with Eq. (9.7)). The corresponding bubble
shape F (x, y) is then reconstructed and implemented in the raytracing algorithm, from which the value of δr/a
is obtained for a given value of the refractive index ratio m = n1/n2. Even though for gases n2 ≈ 1, the use of
m makes the method also applicable to inviscid pancake drops, as discussed later. The procedure is repeated for
various values of Ca and m.

Simplified model for the bubble shape

Another shape function of the bubble is also considered, composed of a static meniscus of radius R = a − h∞
connected to a flat lubrication film of thickness h∞. This model, though not based on rigorous physical grounds, is
considered here because of its simplicity. In fact, using Eq. (9.1), this model gives rise to an analytical expression
predicting h∞/a:

h∞
a

= 1 +
δr
a

(
4m2

1 +
√

1 + 8m2 − 4m2

)
(9.9)

Comparison of the two models

We want to test if the simplified model can be used to correlate h∞/a and δr/a instead of applying the ray-tracing
algorithm on the Bretherton model to build this correlation. For this purpose, values of δr/a calculated by applying
the ray-tracing algorithm on the Bretherton model are compared to Eq. (9.9) in Fig. 9.10. As it can be seen on this
figure, the simplified model over-predicts h∞/a for a given value of δr/a as compared to the Bretherton model.
The discrepancy between the prediction of these two models being enhanced as δr/a decreases. For example,
for δr/a = 0.30, the the simplified model predicts a value of h∞/a twice larger than the value predicted by the
Bretherton model. This shows that the simplified model (i.e, Eq. (9.9)) cannot be used to deduce values of h∞/a
from values of δr/a. To do so, a correlation needs to be build relating δr/a to h∞/a based on a more accurate
model.

This is why in the first part of the next section, this correlation is build by applying the ray-tracing algorithm
on the Bretherton model (presented in the first subsection of Section 9.2.3). After building the correlation, the
method we propose consists in using this correlation to infer the lubrication film thickness from a single snapshot
of the bubble. This is presented in the second part of the result section.
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Figure 9.10: Position of the glare circle relative to the bubble edge, δr/a, as a function of the lubrication film
thickness, h∞/a, for m = 1.46. Th

9.3 Results and discussion

The results section is divided into two subsection. In the first subsection, the relationship correlating h∞/a to
δr/a and m is established. In the second subsection, the accuracy of the correlation is verified. Measurements of
δr/a performed in the experiments are used to calculate h∞/a using the established correlation.

9.3.1 Establishment of an alternative equation for measuring the thickness of the lubri-
cation film and the channel height

In order to relate δr/a to h∞/a the following procedure is followed: given a certain value of Ca, a dimensionless
bubble profile, F (x, y)/a = 0, is calculated using Eqs. (9.6), (9.7) and (9.8). The raytracing algorithm, presented
in the methodology section, is applied on F (x, y)/a = 0 and the value of δr/a is calculated, for a fixed value of
m. This procedure is done for several values of Ca and m.

The curves relating δr/a to h∞/a are obtained, and are plotted in Fig. 9.11 for different values of m. It is
observed that δr is linearly correlated to h∞. Notably, for a static bubble, i.e., for Ca→ 0, the film becomes very
thin, i.e., h∞ → 0, (see Eq. 8.23). Thus, the front of the bubble forms a circle of radius R = a. In this situation,
using Eq. (9.1), one has an expression relating a to δr,0:

a(δr,0) =
δr,0

1− 1+
√

1+8m2

4m2

≡ δr,0
ξ(m)

, (9.10)

As it can be seen, by only measuring δr,0 on an image of a static bubble, the channel height can be calculated. It
should be noted that in practice, even for a static bubble, a lubrication film stabilized by Van Der Waals interactions
is still present. However, the thickness of these films is known to be around a hundred nanometer therefore can be
assumed to be zero in the frame of the present method. The empty symbols in Fig. 9.11 are given by Eq. (9.10).
Finally, a new correlation based on the data of Fig. 9.11 can be written, as

h̄∞(δr) ≡
h∞

a(δr,0)
=
ξ(m)

f(m)

(
1− δr

δr,0

)
, (9.11)

where f(m) = Am2 + Bm + C with A = −1.41 ± 0.05, B = 4.9 ± 0.2 and C = −3.5 ± 0.1 being the
best fitted coefficients together with their standard deviations (see insert of Fig. 9.11). Note that this correlation
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Figure 9.11: Position of the glare ring relative to the bubble edge, δr/a, as a function of the lubrication film
thickness, h∞/a for various values of the ratio of refractive indices m. Full symbols give values
of δr/a computed with our raytracing algorithm and empty symbols are calculated with Eq. (9.10).
Lines for usual values of m corresponding to bubbles (resp., drops) are solid (resp., dashed). The
insert depicts value of the function f(m) appearing in Eq. (9.11) and its best second-order polynomial
fit (green dashed line)..

is established using only perpendicular rays (see dashed red line in Fig. 9.3), i.e., for an acceptance angle of the
objective equal to 0: α ≡ arcsin(NA) = 0, where NA is the numerical aperture of the objective lens. For finite
acceptance angles of the acquisition system (see gray area in Fig. 9.3), corrections based on the numerical aperture
(NA) of the objective are derived below. For the configuration used here, it leads to a bias of about 3% in δr or
a(δr), which is comparable to their experimental determination uncertainties. Nevertheless, for the calculation of
h̄∞(δr), this error cancels out as can be inferred from Eq. (9.11).

In the next section, values of h̄∞(δr) are compared to values of h̄∞(U) (obtained by measuring the bubble
velocity and using Eq. (9.8)).

9.3.2 Experimental measurements

We remind that experiments were performed at room temperature using mineral and silicon oils as working liquids.
Air bubbles are produced inside a microchannel filled with these liquids, hence m = n1. A constant pressure
difference is applied along the channel to induce the translation of bubbles. The bubble velocity and the parameter
δr are measured during these experiments (as explained in the methodology section).

First measurement of δr/a(δr,0) is reported for the two fluids, where a(δr,0) is obtained with Eq. (9.10). It is
observed in Fig. 9.12 that δr/a(δr,0) is a decreasing function of Ca. The shift between the curves obtained with
the two different fluids is due to the difference in refractive indices.

At this stage, the two correlations (9.8) and (9.11) can be used independently for the indirect measurement of
the lubrication film thickness, h∞. In the following, they are referred to as the Classical and the New methods,
respectively. It is worth noting that the two methods do not require the same set of input parameters as summarized
in Table 9.1, in which the parameter values obtained using appropriate instruments are provided. It should be
noted for instance that a is an input parameter for the classical method and has been measured with a 3D confocal
microscope over a wide area of the channel. Contrarily, a is an output parameter for the new method and has
been obtained by measuring δr,0 at one (or several) specific (x, z) location for a quiescent bubble. Yet the two
measurements of the channel depth are in excellent agreement. Now, since both U and δr were measured during

92



0.005 0.010 0.015 0.020 0.025
Ca

0.30

0.32

0.34

0.36

0.38

r/a

Mineral oil
Silicon oil

Figure 9.12: Measurement of δr/a(δr,0) as a function of Ca where the channel height a(δr,0) is inferred from
Eq. (9.11).

Table 9.1: Summary of the indirect measurement of h̄∞ = h∞/a with the classical and new methods. The mea-
surement techniques and the corresponding instruments used for the input parameters are: (a) rheometer
(Rheosens), (b) Tensiometer (KRUSS DSA 100), (c) 3D confocal microscope (Keyence VK-X 200),
(d) Bright-field microscope (Nikon eclipse Ti-5), (e) Standard camera (ALLIED GC2540), and (f) Re-
fractometer (ATAGO DR-A1). The lines corresponding to the output parameters are in bold face.

Method Parameters Mineral oil Silicon oil Technique

Clas-
sical

µ (mPa/s) 22 ± 0.5 19 ± 0.5 (a)
σ (mN/m) 29.8 ± 0.1 20.6 ± 0.1 (b)
a (µm) 109 ± 3.1 (c)
U (µm/s) U ± ∆U (d,e)
h̄∞(U) see Fig. 9.13 Eq. (9.8)

New
m 1.4638 1.402 (f)

δr (µm) δr ± ∆δr (d,e)
a(δr,0) (µm) 110 ± 1.5 111.5 ± 0.2 Eq. (9.10)
h̄∞(δr) see Fig. 9.13 Eq. (9.11)

the experiments, the two methods can directly be compared, as plotted in Fig. 9.13. The excellent agreement with
the parity line thus validates the approach.
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Figure 9.13: Comparison of indirect measurements of the lubrication film thickness h̄∞ = h∞/a, between the
classical method using Eq. (9.8) and the new method using Eq. (9.11).

Furthermore, by equating Eqs. (9.11) and (9.8), the new method can be used to measure the velocity U of the
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Table 9.2: Measured values of the visco-capillary velocity using direct techniques as given in Table 9.1 and (in
bold) the indirect method that combines the classical and the new methods.

Mineral oil Silicon oil

σ
µ (m/s) 1.35 ± 0.03 1.08 ± 0.029 see Table 9.1

1.26 ± 0.26 1.08 ± 0.09 Eqs. (9.8, 9.10, 9.11)

bubble, provided the ratio σ/µ is added to the set of input parameters. As the new method necessitates only a
single snapshot of the bubble, it can be advantageous when the velocity of the bubble is not uniform or when a
high speed camera is not available. More interestingly, if U and δr are measured simultaneously, combining the
methods enables to measure the ratio σ/µ, referred to as the visco-capillary velocity:

σ

µ
= 1.337

3
2U

(
1− 2.19 ξ(m)

f(m)

(
1− δr

δr,0

)) 3
2

(
ξ(m)
f(m)

(
1− δr

δr,0

)) 3
2

(9.12)

Nevertheless, as it can be observed in Fig. 9.13, the uncertainties associated to the calculation of h̄∞(δr) are
smaller for the lower values of this variable due to slight blurring of the images at higher translation velocities.
For this reason, the precision on the calculation of σ/µ is larger for small values of h̄∞(δr), and here, only the
data points corresponding to a translation velocity lower than 0.00701m/s have been kept for validation purpose.
Results are again in excellent agreement with independent techniques as shown in Table 9.2.

Note that to increase the accuracy on δr, we have used the value averaged over the range of angles ϑ ≈ ±15◦,
as represented on the right of Fig. 9.2. Despite the fact that the shape function F (x, y) used in this work is strictly
valid for ϑ = 0, the corresponding variation made on the shape for small variations along the perimeter of the
bubble remains small. Indeed, using the model of Burgess and Foster (1990), we have estimated the maximum
of the variation ∆h/a at ±0.004, i.e., well below the uncertainty of our experimental measurements, as it can be
deduced from the amplitude of the error bars in Fig. 9.13. This said, our method can easily be adapted to other
situations such as a pancake drop instead of a pancake bubble, at the sole condition that m > 1. To this purpose,
the new shape function should be constructed depending additionally on the viscosity ratio, denoted λ = µd/µ,
between the viscosity of the drop, µd, and the one of the surrounding liquid (Balestra et al. (2018)). Updating
the raytracing algorithm with these new shapes should allow to extend the correlating function in Eq. (9.11) for
non-zero viscosity ratio, i.e., f(m,λ). Nevertheless, as mentioned earlier, the correlating function f(m) is already
valid for inviscid pancake droplets. Practically,Balestra et al. (2018) have demonstrated that the shape of droplets
for λ . 10−2 is almost identical to the shape obtained for λ = 0, as it has been considered in this work. This
said, it is worth mentioning that the ratio of refractive indices m being lower for droplets than for bubbles, the
sensitivity of the method would also be lower, as inferred from Fig. 9.11.

The raytracing and analytical determination of the glare ring position so far assumed an effective numerical
aperture (NA) equal to 0, i.e. only perpendicular rays enter the system and are able to enter the camera. In the last
section, we will examine what happens when a finite acceptance angle of the microscope objective is present.

9.3.3 Effect of a finite numerical aperture

A representative sketch of the setup is shown in Fig. 9.14. In the experiments, the microscope illumination path
is made as parallel as possible, whereas the NA of the used 10x objective is 0.3. Thus, all outgoing rays with an
angle below α ≡ arcsin(NA) = 17.4◦ after refraction at the glass-air interface enter the microscope (see Fig.
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Figure 9.14: Trajectory of the rays that interact three times with a circular interface. The radius of the circle is
Re. The ray that exits the bubble perpendicularly defines Rg , as described in Eq. (9.1). This ray is
depicted in red.

9.14). As it can be seen, this leads to a broadening of the glare ring. In the experiments, the microscope objective
is focused on the middle of the channel in order to have a sharp bubble edge. From Fig. 9.14, it can be noticed that
the axial rays delimiting the glare ring converge towards a focal point nearby (red dot in Fig. 9.14). Therefore, on
the experimental images of the bubble, the thickness of the glare ring is small and its center can be assumed to be
at the focal point δr,fp of the axial rays delimiting the glare ring.

Following raytracing simulations, the induced error (δr,fp − δr)/δr is plotted as a function of the NA of the
used objective in Fig. 9.15. The curves in this plot were calculated for silicon oil and accounting for the fact
that the objective is immersed in air. The curves show that as NA increases, the shift between the focal point
and the perpendicular ray increases. For NA = 0.3, this shift reaches 3.4%. However, this shift does not depend
significantly on h∞/a for NA = 0.3 in the range of values of h∞/a obtained in the experiments. As a result,
the bias on the calculation of δr and δr,0 is approximately equal and almost cancels out in the calculation of
h∞/a (see Eq. (9.11). In conclusion of this section, raytracing simulations for a finite acceptance angle of the
objective indicate that the bias could be approximately of 3% in the present case. This was calculated based on the
position of the focal point of the axial rays delimiting the glare ring. However, not all rays in the glare ring will go
through this point and the experimental location of the focal plane is also difficult to determine. As such, it seems
unrealistic to present corrections on the given correlation based on the NA of the used objective. In addition, the
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Figure 9.15: Relative shift between the position of the ray that exits the bubble perpendicularly and the focal point
of the rays exiting the bubble as a function of the numerical aperture of the lens for m = 1.402.

corrections would tentatively be similar or smaller than the experimental uncertainty in the determination of δr.
Therefore such corrections have not been taken into account.

9.4 Conclusion

In conclusion, we have shown how one can measure the lubrication film thickness around a pancake bubble or
inviscid drop, from a single bright-field image, as can be typically obtained with a transmission microscope. We
also demonstrated how one can combine this technique with the measurement of the bubble velocity to extract a
measure of the visco-capillary velocity. It is believed that the new method presented in this work can be of wide
use in the future as it requires a standard microscope and a visual inspection of a single image, hence a smaller
amount of less sophisticated instruments, as outlined in Table 9.1.

In this chapter, buoyancy effects were neglected because of the small dimensions of the studied system. In the
next chapter, the effect of buoyancy on the motion of a long bubble translating inside an horizontal and cylindrical
microchannel is studied with experiments and theoretical analysis. In particular the influence of buoyancy on
lubrication film thickness and on the bubble orientation is analyzed.
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CHAPTER 10

Effect of buoyancy on the motion of a long bubble in a horizontal tube

This chapter presents a work that was conducted at Princeton University during an eight month stay (1st February
2016 - 30’th September 2016). It has been performed at the department of Mechanical and Aerospace Engineering
(MAE) in the “Complex Fluid Lab" directed by Prof. Howard A. Stone. The aim of this work is to analyze by the
means of experiments and theory, the effect of buoyancy on the dynamics of Taylor Flows. As briefly discussed in
chapter 8, the presence of buoyancy affects the system by adding a hydrostatic pressure contribution to Eq. (8.8).
As it will be shown, this has an influence on the thickness of the lubrication film. This collaboration between
ULB and PU gave rise to papers in the journals entitled Physical Review fluids and Langmuir (Atasi et al. (2017);
Khodaparast et al. (2018)). Only the work regarding the effect of buoyancy on the dynamics of Taylor flows is
presented in this chapter because of its relevance with the previous chapter. The second publication studies the
dynamics of the dewetting of the lubrication film in microchannels and is mentioned in the conclusion of this
thesis. These two works were conducted in collaboration with Sepideh Khodaparast, a former Post-doc in the
Complex Fluid Lab.

10.1 Introduction

The motion of elongated bubbles in small liquid-filled confined geometries is a hydrodynamic problem with a large
variety of industrial and medical applications in lubrication, heat and mass transfer, oil extraction and treatment
of pulmonary disorders. The problem involves translation of a low viscosity fluid at average speed U into a higher
viscosity liquid with density, viscosity and surface tension of ρ, µ and γ, respectively; the density of the bubble is
negligible relative to that of the continuous liquid phase (Fig. 10.1). Characterization of the motion and the shape
of the bubble requires consideration of the Reynolds number, Re = ρUa

µ , where a is the radius of the tube, in

order to characterize the relative magnitudes of inertial and viscous effects, the Bond number, Bo = ρga2

γ , where
g denotes the gravitational acceleration, in order to characterize buoyancy effects relative to interfacial tension
effects, and the capillary number, Ca = µU

γ , in order to assess the relative magnitudes of viscous and interfacial
tension effects. In microscale geometries, the effects of buoyancy and inertia are often negligible (Bo,Re � 1)
and the motion of elongated bubbles can be described by a single dimensionless number, namely the capillary
number Ca. However, as the dimensions of the geometry increase to millimeter lengths, gravitational effects have
significant impacts on the shape and dynamics of the bubbles. In this paper, we aim to quantify such effects for
long bubbles in millimeter diameter tubes at moderate capillary numbers and in the absence of inertia.

It was first observed by Fairbrother and Stubbs (1935) that in a circular tube filled with liquid a bubble moves
slightly faster than the bulk liquid due to the formation of a thin liquid film between the bubble and the boundary.
In other words, the deposition of a thin liquid film on the wall does not allow the entire volume of the more viscous
liquid to be pushed out of a closed geometry using a less viscous fluid. The amount of liquid left on the tube wall
is observed to increase with the velocity of the bubble. Accurate determination of the volume of liquid left on
the bounding walls of the geometry was pioneered by the theoretical work of Bretherton (1961) and experimental
measurements of Taylor (1961). Bretherton’s theory predicts the thickness of the liquid film h to increase with
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Figure 10.1: Schematic of a typical elongated bubble translating at capillary number Ca ≈ 10−2 in a horizontal
tube of radius a. The bubble is immersed in a viscous liquid of density ρ and viscosity µ. Here U and
L are the velocity and the length of the bubble, respectively. A spherical cap is present at the front of
the bubble for low to moderate capillary numbers, followed by a transition region and a lubrication
film. Because gravity g acts perpendicular to the tube axis, the bubble is inclined and the thin film
has different thicknesses at the front (h+

front and h−front) compared to the back (h+
back and h−back). At the

back of the bubble, a capillary wave is present (Bretherton (1961)).

Ca2/3 for Ca < 10−3 in the visco-capillary regime

h̄Br =
h

a
= 1.337 Ca2/3. (10.1)

Later, Aussillous and Quéré (2000) provided a scaling analysis to extend Bretherton’s theory to a wider range of
Ca by considering the contribution of the liquid film thickness in defining the curvature at the front of the bubble:

h̄ =
h

a
=

1.337 Ca2/3

1 + 3.35 Ca2/3
. (10.2)

The empirical coefficient in the equation above, 3.35, was found by fitting the result of their scaling analysis to
the experimental measurements of Taylor for capillary numbers up to Ca = 2 (Taylor (1961)).

More recently, several attempts have been made to investigate the gravitational effects on different features of
the shape and the dynamics of confined elongated bubbles (Suresh and Grotberg; Zheng et al. (2007); de Lózar
et al. (2008); Han and Shikazono (2009); Gupta et al. (2010b); Leung et al. (2012)). Such effects were generally
neglected in the small horizontal geometries discussed above. A summary of the most relevant works, including
studies of the motion of semi-infinite low viscosity air fingers progressing in liquid flows, is presented in Table
10.1. In general, two main features have been reported in the literature:

1. In the cross-sectional plane, buoyancy causes asymmetry in the distribution of the liquid film around the
bubble. In two-dimensional geometries, this effect simply leads to a thinner liquid film at the top compared
to the bottom of the tube. For example, Jensen et al. (1987) showed that for Ca < 10−3 the liquid film at
the front of a long finger of gas translating in viscous liquid can be predicted analytically by h̄± = h̄Br

1±Bo ,
where the + and− superscripts correspond to the top and the bottom of the channel, respectively. However,
this model has not been tested against experimental measurements performed at finite Bo. Thus, here we
modify the theory proposed by Jensen et al. to account for finite values of Ca and test its validity against
experimental measurements for long bubbles in a tube of circular cross-section.

2. In the direction of the flow, a bubble is inclined with respect to the horizontal axis of symmetry; see the
schematic in Fig. 10.1. As a result, a uniform film thickness region between the front and the back menisci,
as predicted by Bretherton, no longer exists when gravitational effects are significant. Leung et al. (2012)
showed that the inclination of a bubble is caused by the drainage of the liquid in the thin film region from
the top to the bottom of the tube. Their experimental quantification of the drainage volume followed well
the predictions of a mass balance analysis proposed in their study for Bo ≤ 0.25. The inclination angle
was observed to be fairly constant along the length of the bubble (Han and Shikazono (2009); Leung et al.
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Table 10.1: Previous research on the motion of bubbles in horizontal and inclined channels with significant gravi-
tational effects.

Ref. Problem and geometry Approach Flow parameters Focus of study

Jensen et al. (1987) Saffman-Taylor finger∗

2D (Hele-Shaw)

Theory,

experiments

Ca < 10−3,

0 < Bo < 3.3

Effect of Ca and Bo on the shape of the front

meniscus, pressure jump across the interface

and the film thickness at the front.

Brener et al. (1993) Saffman-Taylor finger,

2D (Hele-Shaw)

Theory,

experiments

- Effect of buoyancy on the shape of the

front meniscus in tilted channels.

Suresh and Grotberg liquid slug bounded

between 2 air bubbles,

2D

Theory 0 < Ca < 0.05,

0 < Bo < 2,

0 < θ∗∗ < 180◦

Effect of buoyancy on the shape of

the front meniscus in tilted channels.

Zheng et al. (2007) liquid slug bounded

between 2 air bubbles,

2D

Numerics 0.03 < Ca < 0.4,

0 < Bo < 0.6,

0 < θ < 180◦

Effect of buoyancy on the flow pattern

in the liquid plug region.

de Lózar et al. (2008) infinite finger,

3D (rectangular cross-section)

Numerics 0.002 < Ca < 20,

Bo = 0, 1, 2.5,

1 < AR
∗∗∗ < 8

Effect of channel aspect ratioAR, Ca and Bo

on the cross-sectional shape of the bubble and

pressure jump across the front meniscus.

Han and Shikazono

(2009)

slug flow,

3D (circular cross-section)

Experiments 10−4 < Ca < 0.4 Effect of Ca, Bo, Re on the distribution of

the liquid film thickness around the bubble.

Leung et al. (2012) slug flow,

3D (circular cross-section)

Theory,

experiments

0.03 < Ca < 0.2,

Bo = 0.07, 0.17, 0.25

(I) Effect of buoyancy on the distribution of

the liquid film thickness around the bubble.

(II) Velocity measurement in the liquid plug.

Present study isolated elongated bubble,

3D (circular cross-section)

Theory,

experiments

10−3 < Ca < 0.15,

0.05 < Bo < 0.42,

10 < L∗∗∗∗ < 35

(I) Effect of Ca and Bo on the inclination angle

and the film thickness.

(II) Effect of bubble length on the film thickness.

* The Saffman-Taylor problem refers to the motion of a low viscosity fluid displacing a higher viscosity fluid in a Hele-Shaw geometry.
** θ is defined as the angle between the orientation of the channel and the vertical direction for a tilted channel.
*** AR is the aspect ratio of the cross-section of the channel defined as the ratio of the width to the height.
**** L is the length of the bubble divided by the channel radius.

(2012)), however, direct experimental quantification of the angle and its correlation with the flow parameters
has not been reported. In this chapter we quantify the angle of the inclination for finite values of Bo and a
range of Ca. Due to the inclination, the length of the bubble is expected to be an important parameter in
determining the thickness of the film along the bubble, which we demonstrate and quantify below.

In a continuous train of bubbles separated by slugs of liquid on the orders of the tube radius and when buoyancy
effects are significant, consecutive bubbles are observed to influence one another due to hydrodynamic interactions
(Zheng et al. (2007)). This effect modifies the flow pattern in front of a translating bubble and therefore alters the
shape of the front meniscus and the film thickness with respect to that of a single translating isolated bubble. To
avoid such hydrodynamic interactions, here we study isolated independent bubbles in horizontal tubes of circular
cross-section.

We provide a theoretical analysis by combining the available models in the literature for different geometrical
and flow parameters, which predicts the evolution of the liquid film thickness around an elongated air bubble in
a horizontal tube of circular cross-section. Also, we report experimental data to quantify the buoyancy effects
on the motion of confined elongated bubbles. In particular, we perform bright-field side-view microscopy to
directly observe the asymmetries in the flow caused by buoyancy. This approach allows direct quantification of
the inclination angle and the distribution of the film thickness along the length of the bubble. Different Ca andBo
numbers are tested by systematically varying the velocity of the liquid phase and tube diameter. We also identify
the influence of bubble length.
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10.2 Experimental setup

10.2.1 Refractive index matching

Experiments were performed in glass capillaries of radii a = 0.51, 0.75, 1.15, 1.51mm and length L = 10 cm,
which were submerged in a refractive index matching box filled with glycerol. The diameters of the tubes were
measured optically using pre-calibrated microscope objectives. The region of interest (ROI) was observed through
the straight side wall of the box (Fig. 10.2). This approach, together with the identical refractive indices of the
working fluid, tube material and surrounding glycerol pool (n = 1.47), ensured no optical distortions of the
ROI due to light refraction at the outer and inner curved walls of the capillary (Budwig (1994)). Moreover, the
refractive index matching design prevented total internal reflections, and thus allowed us to resolve the thin liquid
film formed between the two-phase interface and the inner tube wall.

injection

collimated LED

outlet (Patm)

Refractive index matching box

tube microscope

SLR camera

glass capillary of radius a

syringe pump

Figure 10.2: Schematic of the experimental setup showing a capillary placed in a box filled with refractive index
matching liquid to eliminate optical distortions.

10.2.2 Experiments

All experiments were performed at T = 25◦C using glycerol as the continuous liquid phase (viscosity µ = 0.84

Pa.s, density ρ = 1186 kg/m3, and surface tension γ = 0.063 N/m) and air as the dispersed gas phase. The
glycerol used in the experiments was kept in sealed containers to minimize the effect of humidification and the
viscosity was measured before and after the tests to ensure no water absorption. The glass capillary, which was
fixed to the sides of the refractive index matching box, was connected to a syringe pump using a long flexible
tube at the entrance, whilst at the exit another flexible tube emptied the outlet fluid at atmospheric pressure (Fig.
10.2). The entire volume of all connection tubes was filled with glycerol. At the beginning of each experiment, a
long air finger was created at the inlet of the flexible tube by slightly elevating the tube inlet relative to the outlet.
The air-filled inlet was then connected to the syringe pump needle that was filled with liquid to create a confined
bubble of length L ∼ 20a. The bubble was carried into the ROI as glycerol was pumped at a constant flow rate.
This procedure ensured no acceleration or deformation of the bubble caused by the injection geometry.

100



10.2.3 Visualization and image processing

Experimental measurements were obtained by processing the digital shadow-graphy images. The refractive index
matching box was placed between a green collimated light source and a home-made tube microscope equipped
with long working distance objectives of 5X and 10X magnification (with spatial resolution, respectively, 2.44 µm
and 1.22 µm per pixel). Bright-field microscopy allowed visualization and consequently detection of a sharp in-
terface between the gas and the liquid phases using a Canny edge detection algorithm (Khodaparast et al. (2014)).
Images of the ROI were recorded by a Nikon D5100 camera at 30 frames per second. Film thickness measure-
ments were performed using the bright-field images captured at the front and the back of the bubble. Prior to each
measurement, the horizontality of the camera was ensured using a digital level. To measure the film thickness at
the top of the channel, acquired images at the front and back of the bubble were cropped starting from the top wall
towards the middle plane of the channel. The bubble edge was detected on the cropped image with a Canny edge
detection algorithm. The film thickness was inferred as h+

∞ = y, where y is the coordinate of the detected edge in
the direction perpendicular to the flow. To measure the film thickness on the bottom wall, acquired images at the
front and back of the bubble were cropped starting from the bottom wall towards the middle plane of the channel
and the procedure described above was repeated. The maximum relative error in the film thickness measurements
reported for the smallest Ca is 14%, while the rest of the measurements have a maximum experimental error of
5%.

(a) (b) (c)A

A’ L1 mm 2 s 1 mm

2a

Figure 10.3: Sample visualization results for an elongated bubble of length L = 22 mm in a horizontal tube of
radius a = 1.51 mm at Ca = 0.076 and Bo = 0.42. The dashed horizontal line shows the centerline
of the tube. (a) A sample image of the grey-scale bright-field microscopy. Bubble translates from the
left to the right. Time-strip analysis is performed along a sample line such as section AA’. The field
of view in a typical image covers less than 2 mm length of the tube. (b) Time-strip analysis result
showing evolution of section AA’ in time. Note that the horizontal axis represents time. (c) The
horizontal time axis in (b) is converted to the length axis using the bubble velocity. The inclination
angle is measured by fitting a straight line to the bubble interface as shown by the red lines. Note
that images similar to the one presented in (c) are only used to measure the length and the inclination
angle of the bubble.

Obtaining high spatial resolution in the images requires high magnification in the optical setup, which conse-
quently leads to a relatively small field of view (FOV). For example, using the 5X objective in our experiments,
we could visualize only about 2 mm of the tube length in the images, which is obviously not adequate to capture
the axial evolution of the shape of the long bubbles (Fig. 10.3a). In order to construct an image of the full length
of the bubble that does not fit in the FOV, we applied the post-processing time-strip method to the sequence of
shadow-graphy images (Borhani et al. (2010)). In this approach, we followed the evolution of a specified vertical
line of pixels along the tube diameter (Fig. 10.3a) for a long period of time starting before the arrival of the
bubble front until after departure of the back of the bubble (Fig. 10.3b). Knowing the bubble velocity, time is
then converted to the displacement of the bubble and the shape of the bubble is constructed (Fig. 10.3c). The final
image was then processed to obtain the length and the inclination angle of the bubble. The difference between
the thickness of the liquid film at the top and at the bottom as well as the inclination of the bubbles are clearly
noticeable in Fig. 10.3b and Fig. 10.3c. In order to obtain the inclination angle, a straight line was fitted to the
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detected air-glycerol interface. The maximum experimental error in identifying the inclination angle at the lowest
Bo and Ca is 30%, while the rest of the measurements contain a maximum experimental error of 10%. The capil-
lary number Ca = µU

γ was calculated based on the bubble velocity measured by tracking the nose of the bubble.
The high optical resolution used in the present study allowed determination of Ca down to values on the order
of Ca = 10−6. The spatial resolution of the time-strip image perpendicular to the flow is fixed by the physical
pixel size, the objective magnification and the numerical aperture of the objective. On the other hand, the axial
resolution of the time-strip image along the flow depends on the image acquisition frequency and on the speed of
the bubble. The minimum and maximum axial resolutions of the time-strip images in the experiments reported
here were respectively of 256 µm and 1.3 µm. Note that the low optical resolution observed at the nose and the
back of the bubble in Fig. 10.3c is due to the large velocity of the bubble at larger Ca. This effect, however, does
not influence measurement of the bubble length or the inclination angle.

The camera and the tube were levelled horizontally prior to the start of the experiments. Furthermore, in order
to ensure that the tube is horizontal, the refractive index matching box is mounted on a stage that is translated in
the axial x-direction. Two images were captured as the box is moved between two points that were axially 5 cm
apart. Comparison between these two images ensured no inclination in the ROI.

10.2.4 First experimental observation

Examples of the shape of the nose, the central region and the back of the bubbles at differentCa andBo are shown
in Fig. 10.4. Two major differences are observed when comparing the present side-view visualizations at finiteBo
numbers with the classic predictions of bubble shape with negligible buoyancy effects: (1) Due to non-negligible
buoyancy effects, the liquid film at the front of the bubble is not uniformly distributed but instead is thinner at the
top than at the bottom of the tube. (2) Furthermore, the back of the bubble is elevated relative to the nose. This
feature was shown by Leung et al. (2012) to be caused by the drainage of the liquid in the film from the top to the
bottom of the tube.

10.3 Theoretical predictions

In this section, we provide theoretical considerations to predict quantitatively both the film thickness and the
inclination angle as a function of Ca and Bo. The model presented here for the film thickness at the front of the
bubble is mainly based on the two-dimensional analysis proposed by Jensen et al. (1987) at low Ca and finite Bo
in Hele-Shaw geometries. This model is extended here to account for the effect of finite Ca using the correction
that was originally suggested by Aussillous and Quéré (2000), and a physical argument is provided to show that
the lateral curvature of the tube does not affect the thin film thickness. The basic steps of Jensen et al. (1987) are
included in this section, wherever necessary, to ensure the self-sufficiency of the arguments. Moreover, we utilize
the mass balance analysis proposed by Leung et al. (2012) to obtain an estimate for the average inclination angle
of the bubble. In the next section, these theoretical models are compared to our experimental measurements of the
film thickness at the front and the inclination angle of the bubble, for a range of Ca and Bo (< 1).

10.3.1 Thickness of the liquid film at the front of the bubble

Following the classical approach of Bretherton, we divide the front of the bubble into three distinct regions, as
discussed in Chapter 8 (Fig. 10.5). The description of these regions is similar to that of Chapter 8 with few
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Figure 10.4: Examples of bubble shapes at different Ca and Bo. (a) Bo = 0.11, (b) Bo = 0.25, and (c)
Bo = 0.42. Bubbles move from the left to the right. Images contain experimental visualization
of the nose, the central part and the back of the bubble. The central region demonstrates a typical
zone between the bubble nose and back, where the liquid film at the top/bottom acquires a linearly
decreasing/increasing thickness towards the back. The back of the bubble exhibits a capillary wave,
meaning a region of negative curvature (Giavedoni and Saita (1999)). The red dashed lines indi-
cate the centerline of the tube. Note that the optical magnifications used in visualization of flows at
different Bond numbers are not identical.

differences:

1. In region I, entitled the capillary static region (CS), the pressure is hydrostatic, in contrast to the case
presented in Chapter 8 where buoyancy was neglected and, consequently, the pressure was considered as
constant (see Eq. (8.8)).

2. In region II, entitled the transition region, the surface tension force is balanced by the viscous forces.

3. In region III entitled the thin film region, the axial flux (in the reference frame translating with the bubble)
is balanced by the lateral drainage induced by buoyancy.

Capillary static region (CS)

In this region, our approach follows closely that of Jensen et al. (1987). However, we extend the original
formulation by adding the condition that at higher Ca the thickness of the film is not negligible compared to the
radius of the front nose of the bubble (Aussillous and Quéré (2000)). Moreover, we consider the top to bottom
asymmetry in the interface height with respect to the tube centerline (Fig. 10.5).

The dimensionless film thickness at the front of the bubble h̄±∞ in a two-dimensional geometry and at very low
capillary numbers Ca→ 0 was determined by Jensen et al. (1987) to be

h̄±∞ =
hBr

1± Bo
, (10.3)
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Figure 10.5: Side-view schematic of the front of a bubble in a horizontal tube of radius a. The bubble moves from
left to right and is inclined with respect to the centerline of the tube. The + and − superscripts stand
for the quantities at the top and the bottom, respectively. The bubble is divided in three regions: (I)
indicates the capillary static region, where the tip of the bubble forms a sphere of radius R. The tip
of the bubble is off-center with respect to the tube and is located at (x, y) = (0, ε). (II) indicates the
transition region in which the viscous forces are balanced by the capillary forces due to the variation
of the curvature along the interface. Between (I) and (II), a matching region mr is present where the
interface shape of (I) and (II) match. The position of the interface in the matching region with respect
to the tube centerline is at y = ±R±f . (III) indicates the thin film region, where the axial flux (in the
reference frame of the bubble) is balanced by the lateral drainage flux of the liquid in the film.

where hBr = 1.337Ca
2
3 is the classic prediction of the film thickness by Bretherton (1961) at very low Ca and

negligible buoyancy effects and ± indicates the top (+) or the bottom (−) relative to the axis of symmetry. Both
of these analyses were conducted by neglecting the azimuthal curvature of the bubble. For a two-dimensional
configuration, in a Hele-Shaw cell, the pressure difference caused by capillary forces between the liquid and the
gas in the thin film region is δpf ≈ 0, while in theCS region δpCS ≈ −

γ
a leading to a pressure difference between

the thin film and the CS region of δpf −δpCS ≈
γ
a . In a tube of circular cross-section and for thin liquid films, the

pressure difference caused by capillary forces between the liquid and the gas in the thin film region is δpf ≈ −
γ
a

due to the azimuthal curvature and in the CS region is δpCS ≈ −
2γ
a , which leads to a pressure difference between

the thin film and the CS region of δpf − δpCS ≈
γ
a . Thus, the azimuthal curvature of the interface does not

change the pressure difference between the thin film region and the CS region in a tube when compared to the
two-dimensional case. We will, therefore, conduct this first part of our analysis by not considering the azimuthal
curvature.

In the CS region, where the pressure is hydrostatic, the coordinate system (x, y) has its y origin at the center of
the channel and its x origin at the tip of the bubble (Fig. 10.5). Due to buoyancy, the tip of the bubble is elevated
with respect to the center plane of the geometry and is located at y = ε � a. In the liquid phase, the pressure
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gradient is given by
∂p

∂y
= −ρg (10.4)

where ρ is the density and g the gravitational acceleration. We emphasize on the fact that the present equation is
different from Eq. (8.8) presented in Section 8. In fact, due to gravity, the pressure in the capillary static region is
hydrostatic. This has an influence on the curvature of the front meniscus of the bubble as shown in what follows. In
fact, integrating the pressure gradient with the Laplace pressure jump condition at the interface, i.e. at y = r±(x):
pg − p = ∓γκ±, where pg is the pressure inside the bubble, γ the surface tension, and κ the curvature of the
interface, yields:

p+ ρgy − pg = ρgr± ± γκ±. (10.5)

Using the Cartesian coordinate system (x, y) shown on Fig. 10.5, the curvature of a two-dimensional interface in
a Hele-Shaw configuration is given by:

κ± =
∂xxr

±(
1 + (∂xr±)

2
) 3

2

(10.6)

Since the gas pressure is constant, we can set pg = 0 without loss of generality. Furthermore, we can express the
pressure in terms of the reduced pressure pr = p+ ρgy such that pr is independent of y and use the scales a for r
and γ

a for pr to finally obtain

p̄r = Bor̄± ± ∂x̄x̄r̄
±(

1 + (∂x̄r̄±)
2
) 3

2

, (10.7)

where Bo = ρga2

γ is the Bond number and an overbar denotes dimensionless variables. Next, we multiply Eq.
(10.7) by ∂x̄r̄± and integrate assuming p̄r constant to find

p̄rr̄
± =

Bo

2
r̄±2 ∓ 1(

1 + (∂x̄r̄±)
2
) 1

2

+ c±, (10.8)

where c± is the integration constant. The hypothesis of constant reduced pressure in the CS region will be verified
subsequently. We evaluate this equation in the matching region, where we assume viscous effects become signifi-

cant. In the matching region | ∂x̄r̄± |� 1 and r̄± = ±R
±
f

a , where R±f is the distance between the interface and
the cell centerline (+) top and (-) bottom. Substituting these expressions in Eq. (10.8), we obtain

±p̄r

R±f
a

=
Bo

2

(
R±f
a

)2

∓ 1 + c±. (10.9)

Setting R±f = a in Eq. (10.9), we recover the formulation proposed by Jensen et al. (1987) for pr in the limit of
vanishing Ca and R±f ≈ a. We can evaluate Eq. (10.8) at the tip of the bubble, where ∂x̄r̄± → ∓∞ and r̄± = ε

a ,
in which ε

a � 1 and subtract the equation corresponding to the bottom from the top to find c+ = c− as Jensen
et al. (1987). We then evaluate Eq. (10.9) at the top and at the bottom and do the subtraction top minus bottom to
obtain pr:

p̄r

(
R+
f

a
+
R−f
a

)
= −2 +

Bo

2

(R+
f

a

)2

−

(
R−f
a

)2
 (10.10)

For Bo� 1 Eq. (10.10) can be approximated as:

p̄r ≈ −
2a

R+
f +R−f

(10.11)
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Note that pr does not depend on the axial coordinate as assumed before when integrating Eq. (10.7). Equation
10.11 says that the pressure in the liquid in the CS region is less than in the gas by the amount−4γ/(Rf

+ +Rf
−).

If Bo = 0, Rf+ = Rf
−, the Laplace pressure jump condition is recovered, in dimensional form it gives p =

−γ 2
Rf

. Having the expression of p̄r, we substitute it in Eq. (10.7) and evaluate this equation in the matching
region, i.e. for | ∂x̄r̄± |� 1, to find:

∂x̄x̄r̄
± = ∓ 2a

R+
f +R−f

−
BoR±f
a

, (10.12)

Note that the choice of coordinate system gives that ∂x̄x̄r̄+ < 0 and ∂x̄x̄r̄− > 0 (Fig. 10.5). Equation (10.12)
shows that buoyancy affects the curvature of the front meniscus of the bubble , through the Bond number. As it
will be shown, this has an influence on the thickness of the lubrication film.

Transition region

In the transition region, we start by considering the lubrication approximation and the balance between the pressure
gradient and the viscous forces (per volume) along the x-direction. The steps are standard, as first developed by
Bretherton (1961), and summarized in Chapter 8 of this thesis. With the coordinate system introduced earlier, in
dimensionless variables, we have:

∂p̄

∂x̃±
= Ca

∂2ū

∂ỹ±2
(10.13)

where ū = u
Ub

with Ub the bubble velocity, ỹ± = ∓ȳ + 1 and x̃± = x̄ + s̄±, with s being a shift in the axial
coordinate, as defined in Fig. (10.5) and s̄ = s

a . We integrate Eq. (10.13) twice with ū = −1 at ỹ± = 0 and the
no shear stress condition at the interface, i.e. ∂ū

∂ỹ± = 0 at y = h±, where h± = 1 ∓ r±. The pressure gradient
along x̃± is given by the curvature gradient ∂p̄

∂x̃± = −∂x̃±x̃±x̃± h̃±. Integrating the velocity field along ỹ± yields
the classical third-order differential equation (also presented in Chapter 8), where the variables have been rescaled
as ¯̄h± = h̃±

Ca
2
3

and ¯̄x± = x̃±

Ca
1
3

,

¯̄h±
3 d3¯̄h±

d¯̄x±3 = 3
(

¯̄h± − ¯̄h∞
±)

, (10.14)

where ¯̄h±∞ =
h±∞

aCa
2
3

. We obtain the classical form by defining H =
¯̄h±

¯̄h±∞
and X = ¯̄x±

¯̄h±∞

H3 d
3H

dX3
= 3 (H − 1) . (10.15)

We now express the second derivative ∂xxr±, with the variables from the transition region:

∂xxr
± = ∓ 1

a¯̄h±∞
∂XXH. (10.16)

The curvature expressed with the variables from the transition region and from the CS region should match in a
common overlap region, in which one can rewrite Eq. (10.12) in the form

∓ 1
¯̄h±∞

lim
X→∞

∂XXH = ∓ 2a

R+
f +R−f

−
BoR±f
a

, (10.17)

where a numerical solution of Eq. (10.15) shows that lim
X→∞

∂XXH = 1.337 (Bretherton (1961)), which finally
leads to

h±∞
a

=
1.337Ca

2
3

2a
R+
f +R−f

± BoR±f
a

. (10.18)
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This result generalizes the development of Jensen et al. (1987) to the case of moderate values of Ca and the
development of Klaseboer et al. (2014) to the case of finite Bo. From Eq. (10.18) we are able to recover the three
limiting cases presented previously in the literature:

• At very low capillary numbers Ca → 0 and consequently very thin lubricating liquid films, the nose of
the bubble approximately fits the entire gap between the top and bottom plane (or the tube diameter), thus
R±f ≈ a. In this limit and for Bo > 0, we recover

h±∞
a

=
1.337Ca

2
3

1± Bo
, (10.19)

which was originally obtained by Jensen et al. (1987).

• For negligible buoyancy effects Bo→ 0, no asymmetry is present at the nose of the bubble, thus R±f = Rf .
In this limit, if we consider moderate Ca the radius of the spherical cap of the bubble no longer fits the
radius of the tube, i.e. a 6= Rf , and Eq. (10.18) is reduced to the form presented by Aussillous and Quéré
(2000) and discussed further by Klaseboer et al. (2014):

h±∞
Rf

= 1.337Ca
2
3 . (10.20)

• Finally, for Ca→ 0 and Bo→ 0, R±f ≈ a, we recover the expression of Bretherton (1961):

h±∞
a

= 1.337Ca
2
3 . (10.21)

The distance between the cell/tube centerline and the interface in the matching region R±f and the liquid
thickness CNh±∞ should fit the radius of the tube. This gives an additional equation as proposed by Klaseboer
et al. (2014)

a = CN h±∞ +R±f , (10.22)

where CN is a constant and h±∞ is given by Eq. (10.18). Notice that combining Eq. (10.18) and Eq. (10.22) in the
limiting case when Bo = 0 and R+

f = R−f , we recover an equation similar to Aussillous and Quéré (2000) and
Klaseboer et al. (2014),

h±∞
a

=
1.337Ca

2
3

1 + 1.337 CN Ca
2
3

, (10.23)

where CN = 2.5 by fitting Eq. (10.23) to the experimental measurements of Taylor (Taylor (1961); Aussillous
and Quéré (2000)), and CN = 2.79 following a theoretical analysis proposed by Klaseboer et al.. However,
Klaseboer et al. (2014) pointed out that the exact value of CN depends on whereRf± is evaluated in the matching
region and can take a value up to 2.9 if Rf± is evaluated for H > 106, i.e X > 10000, and 2.34 if it is
evaluated for H = 6 × 102, i.e X = 50. We choose CN = 2.5 in this work since it has been shown to fit the
experimental measurements. It should be noted that as the film gets thicker with increasing Ca, for a given value
of the tube radius a, CN could decrease since the liquid plus the bubble should fit in the tube radius. However,
experimental results of Taylor (Taylor (1961); Aussillous and Quéré (2000)) show no such effect for Ca up to 2.
On the other hand, the influence of Bo on CN needs further investigation. Eq. (10.18) and (10.22) form a system
of 4 equations with 4 unknowns R+

f , R−f , h+
∞ , h−∞, which is solved numerically using the Nsolve function of

Wolframe Mathematica. Note that much above a critical Bond number, i.e., Bo� Boc, the pressure in the bottom
film becomes hydrostatic:

ρgRf �
Uµl(
h−∞
)2 (10.24)
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where l is the length of the transition region and scales with l ∼ Ca1/3, h−∞ ∼ Ca2/3 and Rf ∼ 1−Ca2/3, thus:

Boc ∼
1

1− Ca2/3
(10.25)

The critical value for the Bond number is Boc = 1 for vanishing Ca, i.e., Rf± ≈ a, however, for moderate Ca,
i.e., Rf± < a, the value of Boc increases with Ca. Equation (10.18) is valid for Bo� Boc.

As first discussed by Jensen et al. (1987) and extended in this work, in a Taylor flow, buoyancy mainly affects
the lubrication film thickness through affecting the front meniscus of the bubble. This give rise to Eq. (10.18) that
predicts a thinner film at the top of the bubble when compared to the bottom. However, as it is discussed in the
next section, buoyancy also affects the thin film region through the drainage of liquid it causes in this region.

10.3.2 Inclination angle in the thin film region

Leung et al. (2012) directly visualised the drainage flow from the top to the bottom of the channel in the thin film
region. Using a mass balance analysis in the central region of the bubble, and assuming the thin film limit, they
demonstrated that the drainage was causing the thin film to be inclined at an angle. Their main point was that,
in the reference frame translating with the bubble velocity, liquid flows in the film. The volume of liquid in the
film that is drained from the top to the bottom of the channel increases as one proceeds towards the back of the
bubble, leading to less liquid flowing in the film as the back of the bubble is reached at the top of the channel; this
description rationalizes the thinning of the film at the top. From their mass balance (Eq. (14) from ref. Leung
et al. (2012)) we can obtain

tanα± = ∓
h∞

(
θ = π

2

)3
3Ca

Bo, (10.26)

where h∞
(
θ = π

2

)
is the film thickness at the center plane of the channel and is approximately given by h∞

(
θ = π

2

)
≈

(h+
∞+h−∞)

2 . It should be noted that possible deformation of bubble in the cross-sectional plane is assumed to be
negligible in order to obtain Eq. (10.26).

10.4 Experimental results and discussions

In this section, we present results of our experimental measurements as a function of capillary Ca and Bond Bo

numbers for the range of 5 × 10−4 < Ca < 0.12 and 0.05 < Bo < 0.42. The largest value of the Reynolds
number in our experiments was Re = 0.023, therefore, inertial effects are negligible. We distinguish features of
the thin film at the top and bottom of the front of the bubble as well as quantifying the inclination of the bubble due
to buoyancy effects. Moreover, we present measurements of the film thickness at the back of the bubbles, which
are different from those obtained at the front due to the inclination of the bubble. Our main goal in this section is to
report experimental results, organized systematically using Ca and Bo, and to compare with the theory presented
in the previous section.

10.4.1 Thickness of the liquid film at the front of the bubble

Experimental measurements of the film thickness at the front of the bubble are performed at both top and bottom
of the tube. Results of these measurements are presented in Fig. 10.6 for four different values of the Bond
number. Note that these experimental data points may correspond to bubbles of different lengths. Nevertheless,
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Figure 10.6: Top (open symbols) and bottom (full symbols) film thickness measurements at the front of the bubble
for different Bond numbers: (a) Bo = 0.056, (b) Bo = 0.11, (c) Bo = 0.25, (d) Bo = 0.42. The thin
black solid line is the prediction given by Eq. (10.23) with the empirical constant CN = 2.5. The
dotted lines are the predictions obtained by solving the system of Eqs (10.18) and (10.22) numerically.
The results computed with Eq. (10.18) are in good agreement with the experiments. As Bo increases
the agreement becomes less satisfactory due to the non-negligible drainage of liquid in the transition
region. For the smallest Bo, the dashed and the dotted lines converge toward the solid line.

the dispersion of the experimental points are within the experimental error and the film thicknesses at the front of
the bubble h±front do not depend significantly on the length of the bubble. Consistent with the theoretical prediction,
the film thickness at the front of the bubble is thicker at the bottom than the top, whilst the difference between the
values of the top and bottom film thicknesses at the front become larger as the Bo increases.

The data in Fig. 10.6 is compared with two models presented in section 10.3, one being the extended Brether-
ton without buoyancy effect as presented in Eq. (10.23), and a second model derived here, which was inspired
by Jensen et al. accounting for buoyancy effects. The extended Bretherton formulation (solid line in Fig. 10.6)
always lies in between the experimental measurements at the top and bottom of the tube. The theoretical pre-
diction obtained by solving the system of Eq. (10.18) and Eq. (10.22) (dotted lines in Fig. 10.6) follows the
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experimental measurements well. However, we note that an under-prediction of the film thickness at the bottom
and an over-prediction of that at the top is present for all cases, which can be due to non-negligible lateral drainage
from the top to the bottom of the channel in the transition region.

A scaling argument supporting this idea is the following: the time taken for liquid to be convected in the
transition region is tc ≈ l

Ub
, where l is the length of the transition region. The drainage time of the liquid from

top to bottom is td ≈ πa
Ud

, where Ud is the drainage velocity. One can estimate the drainage velocity by balancing
gravity and viscous shear along the vertical direction Udµ

h∞(θ≈π2 )
2 ≈ ρg which yields:

Ud ≈
ρgh∞

(
θ = π

2

)2
µ

(10.27)

Using the scales l ∼ Ca
1
3 and h∞

(
θ = π

2

)
∼ Ca

2
3 we obtain the ratio between the two time scales:

td
tc
∼ 1

BoCa
2
3

(10.28)

For sufficiently small values of Bo and Ca, the ratio of time scales is large enough to ensure no influence of the
lateral drainage, but for the upper bounds of these parameters in our experiments the ratio decreases towards 3,
meaning that drainage in the transition region begins to be significant. It should be noted that the larger difference
between the experiments and the proposed model for the film thickness at the bottom compared to that at the top,
especially at higher Bond numbers (Bo = 0.25 and Bo = 0.42), may also be a consequence of enhanced drainage
for thicker films.
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Figure 10.7: Inclination angle of the bubble at the (a) top and (b) bottom as a function of capillary number Ca for
different Bond numbers Bo. The error bars (visible when larger than the symbol size) correspond to
the standard deviation of the measurements obtained in three independent experimental tests.

10.4.2 Inclination of the bubble

Measurements of the inclination angle α of the bubble at the top α+ and bottom α− of the tube are presented in
Fig. 10.7. The inclination angle increases at higher Bo due to the enhanced drainage from the top to the bottom of
the tube. We observe that the inclination angle at the top of the bubble is smaller than that at bottom of the tube.
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This feature is believed to be due to the slight deformation of the circular cross-section of the bubble due to the
buoyancy, which is not included in the theoretical analysis provided here. Such deformations due to gravity have
been reported by de Lózar et al. (2008).

Since the scaling analysis discussed in Eq. (10.26) is performed considering a circular cross-section all along
the bubble, we compare the theoretical prediction with the average inclination angle calculated for the top and
bottom αave = α++α−

2 . The result of this comparison is presented in Fig. 10.8, where excellent agreement is
obtained between the experimental measurements and the prediction of the mass balance analysis, Eq. (10.26).
Note that according to both theory and the present experiments, buoyancy effects are observable even at the lowest
Bond number Bo = 0.056. Moreover, the dependency of the inclination angle on the capillary number diminishes
at higher Ca. Fig. 10.8 shows that the mass balance argument provided by Leung et al. (2012) can provide
a reliable prediction method for the average inclination angle of the bubble in the presence of non-negligible
buoyancy.
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Figure 10.8: Mean inclination angle of bubbles computed by averaging the measurements at the top and the bottom
αave = (α+ + α−)/2. Solid lines present the prediction of Eq.(10.26).

10.4.3 Liquid film at the back of the bubble

Unlike the film thickness at the front of the bubble, the film thickness varies with the length of the bubble at the
back due to the drainage of the liquid film and the consequent inclination of the bubble. This effect is observed in
our experimental measurements of the film thickness at the back of the bubble h±back. Fig. 10.9 presents the ratio
of the film thickness at the back of the bubble to that at the front h̄±back/h̄

±
front versus the dimensionless length

of the bubble L̄ = L/a obtained in the experiments. Three main features are clearly observed in Fig. 10.9: (1)
h̄±back/h̄

±
front is linearly correlated to the dimensionless length of the bubble L̄ = L/a. (2) The magnitude of the

slopes of the best linear fits to experimental data are slightly larger at the bottom compared to the top of the tube.
This finding once again shows that the cross-section of the bubble loses its circular shape towards the back of the
bubble. (3) For the limit of L̄→ 0 all the linear trends at both the top and the bottom of the tube reach unity (Fig.
10.9).

At low Ca and finite Bo, the film thickness at the top of the tube and at the nose of the bubble is less than
10 µm. As this thickness decreases towards the back of the bubble, it can eventually reach values smaller than
1 µm for long bubbles of L ∼ 10 mm. Thin films of partially wetting liquids with thicknesses below 1 µm are
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Figure 10.9: Ratio of the back to front film thicknesses h̄±back/h̄
±
front obtained in the experiments versus the di-

mensionless length of the bubble L̄ = L/a. Open and closed symbols correspond to the measure-
ments at the top and bottom of the channel, respectively. Solid lines represent the best linear fit to
the experimental data. h̄±back/h̄

±
front shows a linear trend with L̄ and approaches unity in the limit

L̄→ 0.

known to be metastable and thus may dewet the wall of the channel (Callegari et al. (2005); Huerre et al. (2015b);
Khodaparast et al. (2018)). This effect causes dewetting on the top wall of the channel, which was observed in
our experiments at low capillary numbers Ca < 10−3. Therefore, not only the mean liquid film thickness but also
the minimum film thickness caused by the effect of the buoyancy at the top rear of the bubble must be considered
in studies where the film thickness has a critical effect on the final results, e.g. critical heat transfer determination
for a heated pipe.

10.5 Conclusion

In this chapter we investigated the effect of buoyancy on the thickness of the liquid film formed around elon-
gated confined bubbles, which translate in a horizontal tube of circular cross-section. We performed systematic
experiments, in which the dimensionless parameters, namely capillary Ca and Bond Bo numbers were studies. In
general, buoyancy effects were observed even at very low Bond numbers Bo and were amplified at higher Bo.

At finite Bo, the film thickness at the front of the bubble is thinner at the top than the bottom. We extended
the theory originally proposed by Jensen et al. in a two-dimensional configuration for low capillary numbers
Ca < 10−3 and finite Bo (Jensen et al. (1987)), to account for the film thickening effect observed at moderate
capillary numbers (Aussillous and Quéré (2000); Klaseboer et al. (2014)). The resulting theoretical correlation
quantitatively predicts the present experimental measurements with less than 12% relative error. In general, the
theory underpredicts the effect of buoyancy on the film thickness especially at higher Bo and Ca, which may be a
consequence of the lateral drainage in the transition region.

Due to buoyancy, a lateral drainage of liquid exists from the top to the bottom, which leads to the thinning of
the liquid film towards the back of the bubble at the top. Therefore, the body of the bubble is inclined relative
the centerline of the tube so that the back of the bubble is elevated. We quantified this inclination angle at the
top and the bottom of the bubble. Whilst the angle of inclination remains constant along the bubble, it is slightly
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larger at the bottom of the bubble. We believe that this effect is a consequence of the deformation of the bubble
in the cross-sectional plane as compared to a circular shape. If the cross-sectional deformation of the bubble is
neglected, a mass balance analysis for the liquid around the bubble in the central region by Leung et al. provides
a theoretical prediction for the inclination angle (Leung et al. (2012)). We showed that this prediction can well
predict the mean value of our experimental measurements of the inclination angles at the top and bottom of the
bubble. Additionally, our findings suggest that the role of the drainage of the liquid in the transition region at the
nose of the bubble and deformation of the bubble in the cross-sectional plane is an avenue for future theoretical
analysis.
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CHAPTER 11

Conclusions and perspectives

11.1 Conclusion

This work has focused on obtaining fundamental knowledge of gas-liquid dispersed flows in microfluidics using
experimental and numerical approaches together with analytical modelling.

The first part of this work focused on characterizing the effect of soluble surfactants and deformability on
the dynamics of bubbly flow inside a horizontal microchannel. A numerical study has been performed for this
purpose. A numerical method allowing to solve the transport equation of surfactants on a moving and deforming
surface has been implemented to JADIM. This equation has been coupled to the transport equation inside the
bulk phase. The Marangoni stresses induced by an inhomogeneous distribution of surfactants on an interface
has been discretized using the continuum surface force model. The simulations results obtained regarding the
dynamics of bubbly flow in microfluidics in the presence of surfactants give insights into the complexity of the
coupling of the different phenomena controlling the dynamics of the studied system. To begin with, it rationalized
the “rigidification" process of bubble interfaces in microchannels due to the presence of surfactants for the first
time. In particular, acounting for surfactants in the numerical method allowed to cover the entire range of possible
speeds for centered spherical bubble in microchannels, namely from the stress-free to the rigid limit. In addition it
unveiled the coupled effect of surfactants and deformability on the dynamics of the single bubble. More precisely,
we showed that the speed and drag coefficient of deformable bubble is less affected by surfactants than spherical
bubble. However, at a certain point, increasing the bubble deformability and the surfactants in the system may
lead to the bubble bursting, a mechanism that we rationalized within this thesis.

The development of the numerical method allowing to simulate dispersed two phase flows with soluble surfac-
tants gave rise to a collaboration with Prof. Roberto Zenit. In this collaboration, an ancient technique to asses the
amount of alcohol in Mezcal, an alcoholic beverage produced in Mexico was studied. In this technique, bubbles
are produced in a vessel filled with Mezcal, and the lifetime of the bubbles under the free surface are monitored.
The lifetime of these bubbles are extended when the Mezcal contains the correct concentration of alcohol, i.e.,
50% volume content. Using JADIM and the numerical method implemented in this thesis to account for sur-
factants, insight was gain into the mechanisms controlling the lifetime of these bubbles under the free surface.
We elucidated by numerical inspection the two mechanism responsible for longer lifetime of the bubbles in the
ancestral process. There are the viscosity effect and the size effect. In fact, a dynamic balance between viscous
shear created by the presence of Marangoni stresses and gravitational drainage, taking place inside the thin film
separating the bubble surface and the free surface was identified to play a role in determining the lifetime of these
bubbles. In addition, a static balance that takes place in a larger scale, between capillary forces and gravitational
forces, the outcome of which determines the shape of the bubble and of the free surface, was shown to play a role
in determining the lifetime of these bubbles. However, work still remains in order to identify and model the key
phenomena creating the Marangoni stresses on both surfaces(i.e., the evaporation of alcohol inside the thin film).

The second part of this work aimed at characterizing the dynamics of Taylor flow.

In the first section of this second part, a new method was developed to measure the thickness of the lubrication
film forming between a pancake-like bubble and the walls of a microchannel. The method requires only a single



snapshot of the bubble and the knowledge of the refractive index of the liquid surrounding the bubble. In addition
to the snapshot, if the bubble velocity is measured, then the surface tension or the viscosity can be measured. In
addition to measuring the lubrication film thickness and the surface tension, the technique also allows to measure
the depth of a microchannel with a single snapshot of a quiescent bubble. We believe that the simplicity of use of
this technique and the few amount of equipment it requires makes it of wide interest to the scientific community.

In the second section of the second part, we performed experiments and theoretical analysis for a long bubble in
a horizontal microchannel of circular cross section, to investigate the effect of Bo on the thickness of the liquid film
and the bubble orientation at different Ca. In particular, we provide prediction, derived from available theoretical
considerations, that gives the evolution of the film thickness from the front to the back of the bubble. Moreover,
we provided systematic experimental measurements for 10−3 < Ca < 10−1 and 0.05 < Bo < 0.5, which allow
verification of the proposed theory. Specifically, we investigated several features of the lubricating film around the
bubble: (1) Due to the gravitational effects, the film deposited on the upper wall of the channel is thinner than the
film at the bottom wall. We extended the available theory for the film thickness at the front of the bubble in a two-
dimensional geometry at low capillary numbers Ca < 10−3 and finite Bo to account for the effect of larger Ca.
The resulting model shows good agreement with the experimental measurements. (2) Due to the asymmetry in the
liquid film thickness and the consequent drainage of the liquid from the top to the bottom of the tube, the bubble
is inclined relative to the channel centerline and our side-view visualizations allowed direct quantification of the
inclination angle, which increases with both Bo and Ca. While the inclination angle at the top is smaller than that
at the bottom of the tube, the average of these two values follows the predictions of a mass balance analysis in the
central region of the bubble. (3) The inclination of the bubble causes the thickness of the thin film at the back of
the bubble to depend on the length of the bubble. This feature can have important consequences in applications
where the thickness of the film is an important parameter for the design and functioning of microfluidic devices,
e.g. heating/cooling of pipes, microreaction engineering. In fact, at low Ca and finite Bo, the film thickness at
the top of the tube and at the nose of the bubble is less than 10 µm. As this thickness decreases towards the back
of the bubble, it can eventually reach values smaller than 1 µm for long bubbles of L ∼ 10 mm. Thin films of
partially wetting liquids with thicknesses below 1 µm are known to be metastable and thus may dewet the wall of
the channel (Callegari et al. (2005); Huerre et al. (2015b); Khodaparast et al. (2018)). This can influence the heat
transfer capabilities of the aforementioned applications.

The dynamics of dewetting of the lubrication film in a Taylor flow has been investigated in the frame of this
thesis in collaboration with Sepideh Khodaparast and Professor Howard A. Stone (Khodaparast et al. (2018)).
In particular in a microchannel of rectangular cross section, the liquid in the film leaks towards the low pressure
corners of the geometry leading to local minima of the thickness of the film in the cross sectional plane of the
microchannel. It was shown in this study that this feature induces dewetting of the thin film of partially wet-
ting liquids at the location of those minima. Depending on the capillary number and on the wettability of the
microchannel walls, it was shown that this feature can create either dry patches or wide dry zones on the mi-
crochannel wall, as depicted in Fig. 11.1. In this figure, an in-line bright-field image of a bubble translating at
Ca ≈ 10,−3 inside a microchannel filled with water is shown. In (a), the microchannel wall is hydrophobic, and as
can be seen, the lubrication film surrounds the bubble only on its front part and the rest of the bubble is directly in
contact with the microchannel wall. The red arrow on this figure shows the 3 phase contact line between the walls
of the microchannel, the air bubble and the lubrication film. In (b), the walls of the microchannel are hydrophilic.
In this case, the whole bubble is surrounded with a lubrication film except at specific locations where dry patches
form (higlighted in red in Fig. 11.1).

It can be seen that this work has contributed to several key aspects regarding the dynamics of bubbles in
microchannels. It has contributed to give insight to the understanding of the complex coupling between the liquid
flow inside a microchannel, the dynamics of surfactants, and the bubble dynamics. It has also contributed to the
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Figure 11.1: Taylor bubble translating from the left to the right inside a microchannel at Ca ≈ 10−3. (a): the
channel wall has not received any surface treatment and is less wettable by the surrounding water.
(b) the channel wall has received plasma treatment and is more wettable. Taken from Khodaparast
et al. (2018).

characterization of the thickness of the lubrication film in Taylor flows. In fact, a new and simple technique to
measure the thickness of the lubrication film in Taylor flows has been developed and tested. Finally, it has brought
into light that, gravity, though often neglected in microfluidics, can have an impact on the dynamics of the Taylor
flow. However, much work still remains and the outlooks for future work are various and promising.

11.2 Perspectives

The direct outlooks of this work concerning the study of the bubbly flow regime in the presence of surfactants, is
to extend the parametric study performed in this work to other non dimensional numbers characterizing the surfac-
tants, in an attempt to construct a multidimensional map depicting regions where the bubbles are stable, or regions
where the bubbles burst. In parallel, an experimental work can be conducted to test if these regimes, observed in
the simulations, can also be observed in the experiments for a bubble. The invagination and bursting of a viscous
drop has been observed by Olbricht and Kung (1992), as presented in Fig. (11.2). However, to our knowledge, the
bursting of bubbles and the role of surfactants on this behaviour has not been studied experimentally. In addition,
the numerical method that accounts for surfactants that was implemented in this thesis needs to be extended to
3D in order to consider the combined effect of surfactants, bubble deformability and bubble eccentricity on the
dynamics of the bubble translating along the microchannel.

Concerning the characterization of the thickness of the lubrication film in Taylor flows, the experimental
method developed in this work for bubbles can be extended to drops of non vanishing viscosity ratio. As it was
observed in Chapter 9, the sensitivity of the method increase as the ratio of the refractive index of the outer phase
to the refractive index of the droplet increases. Furthermore, the method is only applicable if this ratio is larger
than one. For these reasons, first, the list of the refractive index of usual liquids needs to be done, and if there is
sufficient couple of liquids for which the refractive index ratio of the inner phase is larger than the one of the outer
phase, then a generalized correlation, valid for bubble and drops of non vanishing viscosity ratio can be built using
the methodology developed in this thesis.

In recent years experimental work have shown that the lubrication film around a pancake-like bubble has a
complex 3D topography (Huerre et al. (2015a); Reichert et al. (2018)). Thus, the methodology we developed in
this thesis to measure the thickness of the lubrication film near the middle plane of the pancake bubble should
be extended to the whole bubble. For this purpose, experiments need to be performed to test if the method is
sufficiently sensitive to the variation of the thickness of the lubrication film around the bubble perimeter. If yes,
the raytracing algorithm needs to be applied on a appropriate shape function that takes into account the azimuthal
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Figure 11.2: Sequence of photography depicting a droplet with Ca = 1 and µd/µc = 0.1 (from Olbricht and
Kung (1992))

variations of the bubble shape. The raytracing algorithm needs to be applied on this model and a generalized
correlation that predicts the film thickness as a function of the position of the glare circle at a given azimuthal
angle needs to be built.

In addition, it might be interesting to study the effect of soluble surfactants on the shape and dynamics of a
pancake like bubble. A recent work conducted by Reichert et al. (2018) study this subject experimentally, and
few studies exists on this subject. Fig. 11.3 show the 3D topography of the lubrication film around a pancake
drop translating inside a microchannel filled with a liquid that contains surfactants. The drop translates from the
left to the right. As can be seen, the lubrication film exhibits a complex topography. In particular, it is thicker at
the back than at the front of the drop, because of surfactant accumulation at the back and consequent Marangoni
stress inducing a local thickening of the lubrication film. The 3D topography of the lubrication film surrounding

Figure 11.3: Three dimensional topography of the lubrication film around a pancake-like bubble translating at
Ca = 7 .10−4. This figure was taken from Reichert et al. (2018)

a pancake drop needs to be better characterized and the effect of the surfactants on this topography as well. For
this purpose, the Level-set modulus of JADIM where the method allowing to simulate surfactant transport and
Marangoni stress was implemented can be used. For this purpose, the equation implemented in the frame of this
thesis needs to be extended to 3D.
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CHAPTER 12

Appendixes

12.1 Appendix A

In this appendix we present the fifth order, Weighed Essentially Non Oscillatory (WENO) scheme. This scheme
uses 5 discrete point around the discrete location where the derivative of the scalar field is calculated. It then
constructs 3 stencils with this 5 points around the point "i" where the derivative is calculated. The derivative at
this point will then be calculated as a weighted sum of the derivatives calculated with each of the stencils. The
weights are calculated such that derivatives calculated with the stencils where the function is the most regular are
dominant in the sum. The stencils where the derivatives D−x Γ̃ni,j and D+

x Γ̃ni,j are calculated, are represented on
figure 12.1. The derivatives D±x Γ̃ni,j are given by :

Figure 12.1: Stencils for the construction of the derivativesD−x Γ̃ni,j andD+
x Γ̃ni,j , with the 5th order WENO scheme
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where q± are given by : 
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The 5th order WENO scheme computes an approximation of the derivatives of a scalar field on (i, j), by doing a
weighted sum of D±x Γ̃n 0

i,j , D±x Γ̃n 1
i,j , D±x Γ̃n 2

i,j :

D±x Γ̃ni,j = ω±0 D
±
x Γ̃n 0

i,j + ω±1 D
±
x Γ̃n 1

i,j + ω±2 D
±
x Γ̃n 2

i,j (12.3)

where the weights ω±0 , ω±1 , ω±2 are given by :

ω±0 =
α±0

α±0 + α±1 + α±2

ω±1 =
α±1

α±0 + α±1 + α±2

ω±2 =
α±2

α±0 + α±1 + α±2

(12.4)

so that the weighting is consistent, ω±0 + ω±1 + ω±2 = 1, and with α±0 , α±1 , α±2 given by :
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where ε is generally fixed to 10−6 to avoid the denominator to be null, and where the IS± represent the regularity
indicators : 
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(12.6)

The procedure is identical when computing the following non-centered derivatives : D+
y Γ̃ni,j et D+

y Γ̃ni,j . The
procedure is applied one direction at the time.
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12.2 Appendix B

In this appendix, the calculation of the instantaneous surfactant mass on the surface of an axisymmetric bubble is
detailed.

In the level set formulation, the surface integral of the surfactant concentration on the interface, Γ , can be
written as (Xu and Zhao (2003)):

M (t) ≡
∫
S(t)

ΓdS (t) =

∫
V (t)

Γ̃δ(φ)dV (12.7)

where S is the surface on which the surfactant mass is calculated and V is the volume of the domain embedding the
interface; δ(φ) is a Dirac distribution that accounts for the distribution of the surfactant mass along the numerical
thickness of the interface. It is given by (Xu and Zhao (2003)):

δ(φ) =
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− 1
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− 1

6ε

(
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(12.8)

Finally, in the axisymmetric configuration studied in the chapter 6, the surfactant mass is calculated as:

M (t) = 2π

∫ 0.5dh

0

∫ L

0

rΓ̃δ(φ)dzdr (12.9)

The evolution of the surfactant mass on the surface of a bubble translating inside a cylindrial microchannel with
La = 0.1, Ca = 10−2 and d/dh = 0.15 (see chapter 6) is shown in Fig. 12.2.
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Figure 12.2: Surfactant mass on the bubble surface as a function of the time; Mmax = πd2Γ∞ is the maximum
mass of surfactant that can be present on the bubble surface.

The bubble surface is initially clean of surfactants. At time t = 0, surfactant begin to adsorb to finally
reach a constant mass on the surface at t ≈ 0.1 s. This constant mass on the bubble surface is the result of an
equilibrium between the overall adsorption flux of surfactants towards the surface and the desoption flux. The
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mass of surfactant on the bubble surface was monitored for all the simulations performed in chapter 6 in order to
ensure that the studied system has reached its equilibrium condition regarding the bubble velocity and adosrbed
surfactant mass.
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