
�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� 
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/25179

Rizzo Aquino, Erika and Saqui-Sannes, Pierre de and Vingerhoeds, Rob A. A Methodological Assistant for Use Case

Diagrams. (2020) In: 8th MODELSWARD : International Conference on Model-Driven Engineering and Software

Development, 25 February 2020 - 27 February 2020 (La Valette, Malta).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/267810393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Methodological Assistant for Use Case Diagrams

Erika Rizzo Aquino1,2 a , Pierre de Saqui-Sannes1 b and Rob A. Vingerhoeds1 c

1 ISAE-SUPAERO, Université de Toulouse, France
2 ITA, São José dos Campos, Brazil

erika.rizzo-aquino@student.isae-supaero.fr, {pdss, rob.vingerhoeds}@isae-supaero.fr

Keywords:
Use Case Diagram, Methodology, SysML, UML.

Abstract:
Use case driven analysis is the corner stone of software and systems modeling in UML and SysML,
respectively. Although many books and tutorials have discussed the use of use case diagrams,
students and industry practitioners regularly face methodological problems in writing good use
cases. This paper defines a methodological assistant that helps designing use case diagrams relying
on formalized rules and reuse of previous diagrams. The methodological assistant is implemented
in Python. It is interfaced with the free SysML software TTool, and with Cameo Systems Modeler.

1 INTRODUCTION

Adoption of Model-Based Systems Engineer-
ing approaches is a challenging issue for sys-
tems and software manufacturers. Implementing
a MBSE approach requires working on a triptych
(language, tools, method). Ranging from formal
methods to diagrammatic notations such as UML
(OMG, 2018) and SysML (OMG, 2017), many
papers have discussed model simulators, formal
verification tools, and code generators. By con-
trast, little work has been published on tools that
may assist UML and SysML diagrams designers
in implementing a method.

This paper discusses the use of UML and
SysML use case diagrams, and good ways of de-
veloping them using a methodological assistant.
Two complementary avenues are explored. First,
the assistant can help constructing use case dia-
grams relying on formalized rules and repositories
of previously designed use case diagrams. Second,
the assistant can check use case diagrams a pos-
teriori.

The paper is organized as follows. Section 2
identifies difficulties in writing good use case di-
agrams. Section 3 discusses the design and im-
plementation of UCcheck, a methodological as-

a https://orcid.org/0000-0002-1840-691X
b https://orcid.org/0000-0002-1404-0148
c https://orcid.org/0000-0002-2339-4853

sistant that is coded in Python and interfaced
with TTool (TTool, 2019) and Cameo Systems
Modeler (Casse, 2018). Section 4 discusses a case
study. Section 5 surveys related work. Section 6
concludes the paper and outlines future work.

2 GUIDELINES FOR DRAWING
USE CASE DIAGRAMS

2.1 Use Case diagrams

A SysML (resp. UML) use case diagram identifies
the main functions and services to be offered by
a system (resp. a piece of software).

A rectangle defines the boundary of the sys-
tem or software, and names it (On Figure 1 the
system is named Real-Time System). The ovals
depict the use cases that contain the names of the
functions or services to be offered. On Figure 1,
Perform Computation is a use case.

A use case diagram defines relations between
pairs of use cases. On Figure 1, the extend
relation makes InformUsers and StoreResults
an option of PerformComputation. The
include relation from PerfomComputation to
AcquireInputs states each computation de-
mands to acquire values from sensors.

A use case diagram also shows the system or



Figure 1: Use Case Diagram for real-time systems

software interacts with its environment, the latter
being depicted by a set of actors. On Figure 1,
a link connects use case AcquireInputs to actor
Sensors.

2.2 Generic use case diagram

To create a generic use case diagram for a large
variety of systems, one needs to keep in mind
that:

• A system has a nominal behavior.

• A system may enter downgraded modes.

• A system must run a set up procedure before
starting its execution.

• A system must run a shutdown procedure be-
fore being moved or updated, and more gen-
erally maintained and serviced.

• Maintenance is a normal concern when one is
designing a system.

Relying on previous principles, Figure 1 de-
picts a generic use case diagram for a real-time
system controller that receives inputs from sen-
sors and triggers output devices, part of the lat-
ter being in charge of informing the user and the
supervisor of the system.

The use case diagram in Figure 1 depicts the
set-up, shutdown and maintenance phases that
are usually concealed by the use case diagrams
presented in paper or books addressing real-time
systems modeling. One may note that Figure
1 does not mention degraded modes: they will
be addressed in sequence or activity diagrams
associated with the use case diagrams. These
documentation-purpose sequence and activity di-
agrams are not presented in this paper. Discus-
sion is limited on use case diagrams for them-
selves.

2.3 Difficulties for Beginners

SysML textbooks and tutorials usually recom-
mend a four-step process to create a use case dia-
gram: (1) define the boundary of the system; (2)
identify the actors as external entities that inter-
act with the system; (3) identify the use cases
from the actors goals; (4) establish the connec-
tions between actors and use cases, and set up re-
lations between pairs of use cases. This method-
ology is usually explained through an example for
a simple system (Weilkiens, 2011).

However, a major difficulty among beginners
is to maintain the use cases at the right level



and to not confuse between high-level functions
and elementary actions. The structure of the
use case diagram induces functional decomposi-
tion and consequent insertion of low-level func-
tions that do not generate value for the actors
(Holt and Perry, 2008).

With experience, the identification of use cases
becomes easier as the designer can rely on past
models. Thus, one way to help beginners is to
provide various examples of use case diagrams.
However, the number of examples needed to cover
multiple domains may be very large. A better
solution is to provide generic diagrams, which can
be adapted to similar systems. These diagrams
can be designed by experts based on experience,
and then be provided to beginners to serve as
guides. Consequently, an assistant for use case
diagrams should manage a repository of example
diagrams, helping to retrieve and customize them.

Other common beginners’ errors have been in-
vestigated in the literature. The studies were
conducted with students and identified difficulties
with choosing the right type of relationship, defin-
ing the direction of the extend relationship and
proper naming of elements (Kruus et al., 2014a)
(Chren et al., 2019a) (Holt and Perry, 2008). For
example, they reported the absence of verbs in
use case names and the use of proper names for
actors rather than a common name representing
a role. Consequently, an assistant for use case
diagrams should not only guide the identification
of actors and use cases, but also verify the dia-
gram compliance with SysML/UML and systems
engineering guidelines.

3 METHODOLOGICAL
ASSISTANT

3.1 Overview

In order to help designing use case diagrams, two
forms of assistance can be proposed: a priori as-
sistance, to facilitate the creation of a correct di-
agram from scratch; and a posteriori assistance,
to increase quality and correctness of a semi-
finished diagram. The methodological assistant
discussed in this paper offers the two forms of as-
sistance. The first version of the tool merely ver-
ified whether a diagram is compliant with SysML
and Systems Engineering guidelines or not. This
was insufficient to help beginners, who find it dif-
ficult to select elements (actors and use cases) at a

good level of abstraction. The tool was enhanced
to guide the creation of a new diagram from a
reference one. An additional module was devel-
oped to store the reference use case diagrams in
a database.

The methodological assistant is developed us-
ing Python and the Tkinter library for user in-
terfaces. The rest of this section overviews the
main modules of the tool, the use of which will
be illustrated in Section 4.

3.2 Verification Module

The Verification module receives a use case dia-
gram in XML format, identifies its elements and
verifies them against SysML rules and guidelines.
The module accepts XML files generated by two
modeling tools: TTool (TTool, 2019), a free soft-
ware developed by Telecom Paris, and CAMEO
Systems Modeler (Casse, 2018), a tool devel-
oped by NoMagix, now a subsidiary of Dassault
Systèmes.

A first step of the analysis consists of trans-
forming the XML file to a common object-
oriented structure. In this structure, the diagram
is a class that possess components and connec-
tors. Components have as attributes: name, type
and position in the diagram. Connectors, on the
other hand, have name, position and a reference
to each one of two components being linked. The
objective of this pre-processing step is to gain in-
dependence from the modelling tool. Then, to
extend the assistant to a new SysML/UML tool,
one need only to write a program that extracts
the elements and stores them in the class struc-
ture.

A set of rules, not listed here for space rea-
sons, has been established (Rizzo Aquino, 2019).
Part of these rules can be verified automatically.
Others require user confirmation about the com-
pliance with the rules.

Two Python libraries were important for the
verification module: wordnet to identify the
grammatical class of actors and use cases names,
and networkx to verify some relationship proper-
ties after transforming the diagram into a graph.

3.3 Import Module

The Import module accepts a use case diagram
in XML format from TTool or CAMEO Systems
Modeler and stores it into a database.

A graphical interface asks the user whether
the inserted file is a reference or an example one.



A reference is defined as a general diagram for a
group of similar systems and can be used to guide
the conception of new diagrams. An example is
a diagram for a specific system, which must be
associated with the name of a general category.

Using a database structure allows one to rep-
resent the diagrams independently of the SysML
tool. The database model mimics the object-
oriented structure explained in 3.2. Moreover, a
database stores a large number of diagrams, and
the execution of complex queries.

3.4 Creation Module

The Creation module guides the user on the iden-
tification of actors, use cases and relationships
based on a reference diagram chosen from the
database. Then, a graph is drawn to display ele-
ments and connections identified in the diagram.

At each design step, the program suggests im-
provements. For example, if two actors are asso-
ciated with the same use cases, the program asks
whether they cannot be grouped into one com-
mon general actor.

4 CASE STUDY

4.1 A priori Assistance

To demonstrate the functionalities and benefits
of the verification module, this section uses an
agricultural drone. The first version of the use
case diagram (Figure 2) contains purpose-made
errors that will be identified by the assistant.

According to the use case diagram, the system
possess two main functions: “control drone” and
“spread pesticides”. Actor Buyer is interested in
the two main functions. Actor Farmer is inter-
ested in pesticide application. Actor operator
is responsible for controlling the drone. An ac-
tor named Customer can be seen isolated in the
diagram.

The interface of the verification assistant is di-
vided into tabs, each tab for one group of rules.
(Figure 3) shows the tabs. The first one overviews
the use case diagram and the points to be verified.
A checklist helps clarifying the step-by-step ver-
ification process and quickly localizing the mis-
take(s). Additionally, the program helps the user
to improve the level of abstraction of the diagram.
Having more than 20 (Balzert, 2006) use-cases
may indicate the presence of too low-level func-
tions.

The next two tabs are focused on actors and
use cases. The program automatically verifies
rules such as “Names must start with a capital
letter, be unique and belong to correct grammar
class.” The actors should be named by common
nouns. Use cases should start with a verb. Also,
the program looks for use cases and actors that
remain isolated.

The semantic compliance checks whether the
actors and the use-cases respectively represent ex-
ternal roles and high-level functions that produce
an observable result to an actor.

Note that verifying string equality is not suf-
ficient to assure uniqueness of actors names.
Therefore, the Leacock-Chodorow similarity
function of Pythons library wordnet is used to
certify that all names are semantically different.

For our case study, it was possible to identify
syntactical errors. For instance, actor operator
does not start with a capital letter. Further, actor
Adjustment in strong wind must be rephrased
with the verb Adjust. The program also pointed
out that the actor Customer is isolated in the dia-
gram. Through the semantic analysis mentioned
above, a high correlation is identified between the
names Customer and Buyer. Thus, one could hy-
pothesize that the user changed the name of actor
from Customer to Buyer but forgot to delete the
old one. In this case, the correction will be to re-
move the isolated actor from the diagram. How-
ever, in other situations, the problem may be a
relationship that is missing.

Besides, through answering the questions, the
user noticed some incorrect use cases: Control
valves was too low-level and could be removed,
and Control drone was in the point of view of
the user and should be rewritten as the real func-
tion performed by the drone, which is “Change
direction by remote control”. An extract of the
actors check tab is provided by Figure 3. The use
cases check tab follows the same structure.

Then, the assistant checks the correctness of
the relationships between elements of the use case
diagram. Similarly, it is possible to automatically
verify some basic properties, such as no double
linkage between the same pair of elements, no cy-
cles, and correct type of elements for each type of
relationship (for example, an association can only
be defined between one actors and one use case).
These checks guarantee no relationship was left
unintentionally.

For our case study, it was identified the incor-
rect use of an association to link two use cases.
This relation needs to be changed to either an



Figure 2: Initial use case diagram for an agricultural drone

Figure 3: Extract of Actor Tab for verifying the name and meaning of the actors

“include’, an “extend” or a “generalization” re-
lation - the only possibilities between use cases.
The correction applied by the user is to change
the association to a include relationship. Further
verification of relationships is only possible if all
the above properties are respected. The user has
to apply the corrections mentioned until then and
resubmit an intermediate version of the diagram.

The correctness of the basic properties allows
the user to verify whether the type of relation-
ships between use cases agrees with the desired
meaning. Asking the user if it is a necessary,
an optional or a specialization relation accom-
plishes this. These ideas should correspond to
the “include”, “extend” and “generalization” re-

lationship, respectively. A warning message is
exhibited in case of mismatch. The user is also
asked if the relation is in the correct direction
or not. Only with the use case diagram, it is
not possible to verify automatically if relation-
ships are consistent with their meaning. There-
fore, the check is user dependent. The advantage
of the designed interface is that it does not di-
rectly use the SysML/UML nomenclature, which
poses problems for beginners. Instead, it uses to
idea behind the relationship type, which is less
prone to confusion and helps to reinforce nomen-
clature learning. The interface designed to verify
the points mentioned above is portrayed in Figure
4.



Figure 4: Extract of Relationships Tab for verifying connection properties

For the diagram in Figure 2, the user of the
methodological assistant identified two reverse
relations, and one incorrect meaning. He no-
ticed that the use case Return to base should be
rewritten to represent an action performed only
in case of bad weather conditions. With the right
set of questions, the assistant reinforces inspec-
tion on commonly misunderstood points.

Furthermore, the tool contributes for a cleaner
diagram by identifying unnecessary relations. For
example, an actor associated to a use case does
not need to be associated to its refined use cases,
since there is already an implicit communication.
Similarly, a specialized actor implicit communi-
cates with the use cases linked to the generalized
actor. No unnecessary relationship was found in
our case study.

Finally, by analyzing relationships, the assis-
tant can identify those actors and use cases that
are possibly of too high-level, in the case they are
connected to all elements. It can also identify ac-
tors that may represent the same role in the case
they are associated to the same set of use cases.

The assistant identifies that actor Buyer is a
too high-level one. This means that either the
diagram conveys the point of view of Buyer and
the latter does not need to appear, or that Buyer
represents multiple roles and should be decom-
posed, or that some use case is missing. For the
case study, a decomposition of actor Buyer leads
to actors that are either similar to Farmer or to
Operator, in the sense that they would be con-
nected to the same set of use cases. Thus, the
user finds out that actor Buyer actually combines
the two roles already in the diagram and can be
taken out of it. In other words, one can say that
the diagram is represented from the buyer’s point
of view.

The two remaining tabs are focused on points
not directly related to actors, use cases and rela-
tionships. The layout tab checks for the presence
of a border. It also verifies whether the actors

were positioned according to the categorization
into primary actors whose goal is fulfilled by the
system, and secondary actors who support the
system. Although the classification into primary
or secondary actors is not a language standard, it
is a common guideline among SysML/UML com-
munity that should be followed for interpretation
purposes.

The coherence tab certifies that each use case
is documented by at least one scenario. This is
accomplished by asking the user to match the use
case to the corresponding documentation, which
can be a textual description, a sequence diagram
or an activity diagram. Additionally, the match-
ing must be coherent with the relations between
pairs of use cases. For example, an included use
case should appear in all the scenarios of the in-
cluding use case, because there is a necessary re-
lation between the two. On the other hand, an
extended use case should only appear in some spe-
cific scenarios. Together, these checks reinforce
the completeness of the model and the meaning
of the relationships between use cases.

In summary, the case study demonstrated the
assistants ability to improve the diagram. The
syntactical errors were corrected, and the unnec-
essary relationships were eliminated. The mean-
ings of the actors, use case and relationships were
reinforced through the questions answered by the
user of the tool. The two patterns (one element
related to all the others, and actors associated
to the same use cases) contributed to identify
possible missing elements. Finally, the coherence
matching helped to check whether each use case
was documented in a scenario expressed by a se-
quence diagram.

However, one limitation of the verification
module is the dependence on users inputs, which
may be incorrect. Further work should explore
how to automate the user dependent check. One
idea would be to use information from other di-
agrams of the model of the system. For exam-



ple, the context diagram could be used to verify
whether an actor is an external entity to the sys-
tem, or not. The sequence diagram together with
scenario matching could be used to verify the as-
sociation between actors and user cases.

4.2 A posteriori Assistance

The functionalities of the creation assistant and
its potential benefits for beginners will be demon-
strated through a case study for a mobile phone
camera. This system belongs to the group of real-
time systems, whose generic use case diagram is
presented in Section 2.2.

The first step in the creation module consists
of filling up basic information about the model
(author, date and systems name) and selecting
the use case diagram to use as reference. The
process requires the reference diagram to be pre-
viously inserted into the database. In order to
guide the user, the interface presents the name of
all example systems stored in the database that
are associated with the generic group.

Th user then proceeds to actor identification
using the interface presented in Figure 5. A list
of suggestions is given based on the reference di-
agram. For each suggested actor, the user can
identify one or more actors of the specific sys-
tem being modeled. For example, for a cellphone
camera, the touch screen corresponds to the sen-
sor that receives capture order and triggers the
“Take photograph” functionality. This function is
executed by the cellphone camera module itself,
which corresponds to the actuator. The given
name must start with a capital letter, be unique
and contain a common noun.

For our case study, we identified two possible
storage devices: the cellphone internal memory
and an external memory. The system user plays
the role of taking and visualizing the photo and
will be called Photographer. The supervisor per-
forms the role of starting and closing the appli-
cation and will be identified as the Cellphone
Owner. Often, these actors correspond to the
same person in the physical world. Additionally,
no maintenance actor was selected, since the part
of the system being conceived will not comprise
maintenance functions.

Having a list of suggestions from a reference
diagram facilitates actor identification, by trans-
forming it to an analogy exercise, and helps to
keep the diagram in an adequate level of abstrac-
tion. By combining a verification procedure, the
assistant guarantees the syntactic correctness of

actors names.

Then, the user proceeds to use case identifi-
cation. The process is similar to that used for
actors, except that each suggestion only derives
one use case. For each suggested use case, the
user must choose whether or not to add it to the
diagram, and by what name. The name must
start with capital letter, be unique and start with
a verb.

The suggestion list is optimized based on the
actors selected. Only use cases that communi-
cate to at least one selected actor are suggested
to the user. In our case study, since no mainte-
nance actor was chosen, the use cases related to
maintenance will not be suggested to the user.

Finally, the user must establish the connec-
tions between the chosen elements. Three tables
are depicted in the interface: the first one for rela-
tions between actors, the second one for relations
between use cases, and the third one for associa-
tions between actors and use cases.

These tables are automatically semi-filled
based on the reference diagram. The user must
input additional relations and make necessary
changes. For example, functions that are optional
for some real-time systems may be systematically
executed in particular ones. Then, the user has to
manually change from “extend” to “include” re-
lationship. For a cellphone camera, the use case
Show image for the photographer when taking a
photo will always happen, even if for other types
of camera it may be optional.

The advantage of the assistant is to combine
orientation from the pattern with a verification
procedure. For each new relationship, a series of
functions prevent the appearance of cycles, multi-
ple inheritance and unnecessary relationships, as
explained in Section 4.1.

The use case diagram created is displayed in a
graph format, where blue nodes represent actors,
red nodes represent use cases, and relationships
are given by edges. A list of warnings may be
presented to indicate the presence of isolated ele-
ments, too-high level elements, that is, connected
to all the others, or actors that could represent
the same role. Figure 6 exhibits the use case di-
agram representation generated by the assistant
for the case study.

The benefits provided by the creation assis-
tance are an easier process of actors and use cases
identification, since it is replaced by an analogical
reasoning based on a reference diagram; and a fi-
nal model more in accordance with UML/SysML
rules, as verification procedures are automatically



Figure 5: Selecting actors relying on a generic diagram

Figure 6: Graph representation of the use case diagram created through the assistance for the cellphone camera.
Suggestions for improvements and warnings of missing elements are displayed next to the graph.

performed when possible.

One drawback of the implemented procedure
lies in the necessity to work with a generic dia-
gram, which introduces some dependence on the
work of an expert who created the generic di-
agram. How to obtain generic diagrams auto-
matically from a series of example diagrams for a
group of systems is still an open issue.

At the moment, it is not possible to export
the graph representation of the use case diagram
to a modelling tool because of the positioning
problem. An automatic positioning function was

used to obtain the most readable graph. How-
ever, the arrangement made does not comply with
SysML/UML standards. The automatic layout of
use case diagrams is a complex problem addressed
by some studies (Eichelberger, 2008).



5 RELATED WORK

5.1 Verifying use case diagrams

Several studies have been conducted on verifica-
tion of UML/SysML diagrams. Unfortunately,
research has tended to focus on analysis of sce-
narios rather than of use case diagrams. Sce-
narios can be either modeled by sequence or ac-
tivity diagrams, or documented by a textual ex-
planation of the use case. Analysis techniques
include graph transformation (Zhao and Duan,
2009) (Klimek and Szwed, 2010), logical verifi-
cation (Klimek and Szwed, 2010) and grammar
formalization (Chanda et al., 2009) (Christiansen
et al., 2007).

In (Zhao and Duan, 2009) and (Klimek and
Szwed, 2010), the authors focused on verifying
the correctness and completeness of a scenario,
but they did not address a syntactical verification
of UML standards. On the other hand, Chanda
(Chanda et al., 2009) investigated the use of for-
malization to verify syntactical rules, however no
computational tool is proposed. The study in
(Christiansen et al., 2007) complements the prior
by proposing the use of natural language tech-
niques to transform a use case description in the
formal model. Deep natural language analysis is
not necessary for the proposed assistant, since it
works with use case diagrams, in which phrases
are simpler and follow a structure - for example,
to identify the verb of a use case, extracting the
first word of the sentence should be enough.

Some modeling tools have incorporated basic
checks for use case diagrams. For example, ver-
ification of double relationships and of repeated
elements is available in Cameo System Modeler.
The assistant discussed in this paper is different
from Cameo by the broader spectrum of points
to be verified, and by the dialogue with the user
of the assistant, asking him or her questions such
as “Is this actor really an external entity?”

5.2 Assistance for use case
diagram creation

Many attempts have been made on how to au-
tomate the creation of use case diagrams. Cer-
tain studies proposed its derivation from other
textual documents through natural language pro-
cessing. The transformation process has been ap-
plied to requirement (Seresht and Ormandjieva,
2008), use case descriptions (El-Attar and Miller,
2008) and user stories (Elallaoui et al., 2018).

The drawback of these proposals is that the qual-
ity of the use case diagram highly depends on the
quality of the textual documents. Additionally,
in a system engineering logic, these documents
are supposed to be conceived from the use case
diagram, and not the opposite.

Other studies proposed the reuse of previ-
ous diagrams using case base reasoning (CBR)
(Srisura and Daengdej, 2010) or ontology
(Bonilla-Morales et al., 2012) approaches. From
an initial draft of a use case diagram, it was pos-
sible to retrieve the most similar diagram from a
database. However, the authors did not investi-
gate how to use this approach to create diagrams
for new systems.

Finally, some authors examined the problem
of UML design from the educational point of
view. The studies (Chren et al., 2019b) and
(Kruus et al., 2014b) had pointed out the com-
mon mistakes made by students in SysML/UML
courses. In (Ramollari and Dranidis, 2007),
Ramollari proposed an object-oriented modelling
tool suitable for students. The tool, called Stu-
dentUML, includes design and verification of
some UML diagrams, as the sequence and class
diagram. Particularly, the use case diagram is
not addressed. Verification is only available for
diagrams drawn in the platform. With respect
to creation, the assistant proposed in this arti-
cle differs from Ramollaris tool by the guidance
functionality that is provided to beginners. Ac-
tually, StudentUML works like other modelling
tools, but it offers a simpler interface and further
verifications.

6 CONCLUSIONS

A MBSE approach relies on a triptych (lan-
guage, tool, method). In terms of language, this
paper focuses on use case diagrams and more
precisely on the version of them supported by
the OMG-based languages UML and SysML. In
terms of tool and method, the authors of this pa-
per make a 3-fold statement: (1) use-case dia-
grams have been existing for many years ; (2)
their use is the cornerstone of the use case driven
analysis step of the methods associated with UML
and SysML, and (3) Nevertheless, many people
still have difficulties in writing good use cases.

Previous three statements provide the ra-
tionale behind the design and prototyping of
a methodological assistant that help UML and
SysML model designers to create and review their



use case diagrams. The tool named UCcheck
helps constructing use case diagrams relying on
formalized rules and repositories of previously de-
signed use case diagrams. It also check use case
diagrams a posteriori and suggests improvements.

UCcheck is a free software coded in Python.
UCcheck was first interfaced with TTool, the free
software from Telecom Paris that we used to draw
the use case diagrams in Figure 1 and Figure
2. TTool has further been applied for teach-
ing, enhancing the expression power of SysML
(de Saqui-Sannes and Apvrille, 2016), and for
tooling the first steps of the life cycle of sys-
tems (de Saqui-Sannes et al., 2018) (Mattei et al.,
2017) (Daigmorte et al., 2019).

The use of UCcheck is not restricted to TTool.
Indeed, UCcheck stores use case diagrams using
an intermediate form that is not specific to one
particular UML or SysML tool. An interface ex-
ists for Cameo Systems Modeler, a commercial
tool from Dassault Systems. Similarly, UCcheck
can be interfaced with other SysML tools such
as Entreprise Architect (SparkSystems, 2019)
and Rhapsody (IBM-Rhapsody, 2019).

Beyond its interfaces with SysML tools,
UCcheck can be extended in several directions. In
terms of language, the tool may evolve if SysML2
(Object-Management-Group, 2017) modifies the
syntax or semantics of use case diagrams. In
terms of assistance technique, introduction of
Case Base Reasoning (CBR) may contribute to
reuse SysML models or patterns to assist the de-
signer of use case diagrams.

ACKNOWLEDGEMENTS

First author has received financial support from
the BRAFITEC program funded by CAPES. The
authors acknowledge the support of ARISE chair
and Thales.

REFERENCES

Balzert, H. (2006). UML 2 compact (In French). Ey-
rolles.

Bonilla-Morales, B., Crespo, S., and Clunie, C.
(2012). Reuse of use cases diagrams: an ap-
proach based on ontologies and semantic web
technologies. IJCSI International Journal of
Computer Science Issues, 9(2).

Casse, O. (2018). SysML in Action with Cameo Sys-
tems Modeler. ISTE Press, Elseiver.

Chanda, J., Kanjilal, A., Sengupta, S., and Bhat-
tacharya, S. (2009). Traceability of requirements
and consistency verification of uml use case, ac-
tivity and class diagram: A formal approach.
In 2009 Proceeding of International Conference
on Methods and Models in Computer Science
(ICM2CS), pages 1–4. IEEE.

Chren, S., Buhnova, B., Macak, M., Daubner, L.,
and Rossi, B. (2019a). Mistakes in uml dia-
grams: analysis of student projects in a soft-
ware engineering course. In Proceedings of the
41st International Conference on Software En-
gineering: Software Engineering Education and
Training, pages 100–109. IEEE Press.

Chren, S., Buhnova, B., Macak, M., Daubner, L.,
and Rossi, B. (2019b). Mistakes in uml dia-
grams: analysis of student projects in a soft-
ware engineering course. In Proceedings of the
41st International Conference on Software En-
gineering: Software Engineering Education and
Training, pages 100–109. IEEE Press.

Christiansen, H., Have, C. T., and Tveitane, K.
(2007). From use cases to uml class diagrams us-
ing logic grammars and constraints. In RANLP,
volume 7, pages 128–132.

Daigmorte, H., de Saqui-Sannes, P., and Vinger-
hoeds, R. A. (2019). A sysml method
with network dimensioning. 5th IEEE Inter-
national Symposium on Systems Engineering
(ISSE 2019).

de Saqui-Sannes, P. and Apvrille, L. (2016). Mak-
ing modeling assumptions an explicit part of
real-time systems models. the 8th European
Congress Embedded Real Time software and sys-
tems (ERTS2)).

de Saqui-Sannes, P., Vingerhoeds, R. A., and
Apvrille, L. (2018). Early checking of sysml mod-
els applied to protocols”. In 12th International
Conference on Modeling, Optimisation and Sim-
ulation (Mosim 2018), Toulouse, France.

Eichelberger, H. (2008). Automatic layout of uml use
case diagrams. In Proceedings of the 4th ACM
symposium on Software visualization, pages 105–
114. ACM.

El-Attar, M. and Miller, J. (2008). Producing robust
use case diagrams via reverse engineering of use
case descriptions. Software & Systems Modeling,
7(1):67–83.

Elallaoui, M., Nafil, K., and Touahni, R. (2018). Au-
tomatic transformation of user stories into uml
use case diagrams using nlp techniques. Procedia
computer science, 130:42–49.

Holt, J. and Perry, S. (2008). SysML for systems
engineering, volume 7. IET.

IBM-Rhapsody (2019). https://www.ibm.com/ca-
en/marketplace/architect-for-systems-
engineers.

Klimek, R. and Szwed, P. (2010). Formal analysis of
use case diagrams. Computer Science, 11:115–
131.



Kruus, H., Robal, T., and Jervan, G. (2014a). Teach-
ing modeling in sysml/uml and problems en-
countered. In 2014 25th EAEEIE Annual Con-
ference (EAEEIE), pages 33–36. IEEE.

Kruus, H., Robal, T., and Jervan, G. (2014b). Teach-
ing modeling in sysml/uml and problems en-
countered. In 2014 25th EAEEIE Annual Con-
ference (EAEEIE), pages 33–36. IEEE.

Mattei, A.-P., Loures, L., de Saqui-Sannes, P., and
Escudier, B. (2017). Feasibility study of a mul-
tispectral camera with automatic processing on-
board a 27u satellite using model based space
system engineering. IEEE Systems Conference
(SysCon).

Object-Management-Group (2017). Systems model-
ing language (sysml) v2 rfp.

OMG (2017). OMG Systems Modeling Lan-
guage. Object Management Group,
https://www.omg.org/spec/SysML/1.5.

OMG (2018). OMG Unified Model-
ing Language (OMG UML) Version
2.5. Object Management Group,
https://www.omg.org/spec/UML/2.5/PDF.

Ramollari, E. and Dranidis, D. (2007). Studentuml:
An educational tool supporting object-oriented
analysis and design. In Proceedings of the 11th
Panhellenic Conference on Informatics, pages
363–373.

Rizzo Aquino, E. (2019). Guidelines and tools for
uml and sysml use case diagrams. Internal Re-
port RT/2019/2 - DISC Department - ISAE SU-
PAERO.

Seresht, S. M. and Ormandjieva, O. (2008). Auto-
mated assistance for use cases elicitation from
user requirements text. In Proceedings of the
11th Workshop on Requirements Engineering
(WER 2008), volume 16, pages 128–139.

SparkSystems (2019). Entreprise-architect,
https://www.sparxsystems.com/products/ea/.

Srisura, B. and Daengdej, J. (2010). Retrieving
use case diagram with case-based reasoning ap-
proach. Journal of Theoretical and Applied In-
formation Technology, 19(2):68–78.

TTool (2019). An open-source uml and sysml toolkit,
https://ttool.telecom-paristech.fr.

Weilkiens, T. (2011). Systems engineering with
SysML/UML: modeling, analysis, design. Else-
vier.

Zhao, J. and Duan, Z. (2009). Verification of use case
with petri nets in requirement analysis. In Inter-
national Conference on Computational Science
and Its Applications, pages 29–42. Springer.


