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A DOMAIN DECOMPOSITION APPROACH TO FINITE-EPSILON
HOMOGENIZATION OF SCALAR TRANSPORT

IN POROUS MEDIA∗

YOHAN DAVIT† , FABRICE GOLFIER‡ , JEAN-CLAUDE LATCHÉ§ ,

AND MICHEL QUINTARD†

Abstract. Modeling scalar transport by advection and diffusion in multiscale porous struc-
tures is a challenging problem, particularly in the preasymptotic regimes when non-Fickian effects
are prominent. Mathematically, one of the main difficulties is to obtain macroscale models from
the homogenization of conservation equations at microscale when epsilon, the ratio of characteristic
lengthscales between the micro- and macroscale, is not extremely small compared to unity. Here,
we propose the basis of a mathematical framework to do so. The focal idea is to decompose the
spatial domain at pore-scale into a set of N subdomains to capture characteristic times associated
with exchanges between these subdomains. At macroscale, the corresponding representation consists
of a system of N coupled partial differential equations describing the transport of the spatially aver-
aged scalar variable within each subdomain. Besides constructing the framework, we also compare
numerically the results of our models to a complete resolution of the problem at the pore-scale, which
shows great promises for capturing preasymptotic regimes, non-Fickian transport, and going toward
finite-epsilon homogenization.

Key words. non-Fickian, scalar transport, advection and diffusion, porous media, domain
decomposition, spatial averaging
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1. Introduction. In most structures displaying multiscale heterogeneities, such
as porous media, the complexity of the geometry often prevents the computation of
conservation laws at the smallest scales. A standard solution to this consists in filtering
out the high-frequency fluctuations contained in the microscale details and adopting
a homogenized point of view. In porous media, a famous example of one such model
is Darcy’s law describing momentum transport using the gradient of the spatially
averaged pressure, a filtration velocity, and a permeability. Obtaining the average
equations directly from fundamental principles at the microscale can be performed
using a number of mathematical approaches, including homogenization theories (HTs
[30, 46, 5, 48]) often based on multiscale asymptotics (MA) and the volume averaging
theory (VAT [52, 26]). For linear problems and locally periodic structures, VAT and
HT often yield very similar macroscale equations in which effective parameters, such
as the permeability, can be calculated by solving closure problems in a unit-cell.

With these two techniques, the macroscale model represents an asymptotic limit
of the partial differential equations describing conservation laws at the microscale.
For MA, this is formalized by studying a sequence of problems in the limit where
the ratio between the microscopic and macroscopic lengthscales, ε, goes to zero.
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UPS, Toulouse, France (yohan.davit@imft.fr, michel.quintard@imft.fr).
‡University of Lorraine/CNRS/CREGU, GeoRessources Laboratory, Vandoeuvre-les-Nancy,

France (fabrice.golfier@ensg.univ-lorraine.fr).
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Constraints regarding the scaling of dimensionless numbers are also necessary in order
to further account for the fact that a real physical system is associated with only one
finite value of ε. To illustrate this point, consider Taylor’s dispersion of a solute in
a fluid flowing through a tube (Poiseuille velocity profile) of radius R and length L,
with a cross-section average velocity 〈v〉 and a molecular diffusion coefficient D. In
this configuration, the standard homogenized description is an advection-dispersion
equation with a dispersion coefficient that depends on the square of the Péclet number
(dimensionless time t′ = tR2

/D and space x′ = x/R). This result, however, is only valid
asymptotically when each solute molecule has had time to visit the whole section of
the tube before reaching its end (more details about Taylor’s dispersion in [50, 2, 3]
and about the convergence in [12, 55, 54]). This constraint can be expressed in terms
of the characteristic time for radial diffusion, R

2
/D, which must be much smaller than

the time for longitudinal advection, L/〈v〉. In dimensionless form, we can write this
constraint as εPe� 1 where ε = R/L and the Péclet number is defined as Pe = 〈v〉R/D.
For a finite value of ε, this means that we must have Pe� ε−1 and that the homog-
enized model will not describe accurately transport when the Péclet number is too
large, i.e., when Pe = O (ε−n) with n > 1. Overcoming this limitation and deriving
homogenized models that hold for large Péclet numbers and any finite value of ε is
an important challenge in applied mathematics, one that remains unsolved.

In this paper, we propose an idea to do so and develop the corresponding math-
ematical framework using the VAT, which is based on a domain decomposition of
the microscale domain. The focal concept is that the domain of interest can be de-
composed into a finite set of subdomains spanning the whole domain and that the
number of subdomains, N , can be used to control the small parameter, therefore
relaxing constraints in the standard HT or VAT. For example, for the case of Tay-
lor’s dispersion, we could decompose the fluid in the tube into a nested set of coaxial
tubes. Our method would lead to a macroscale representation with a system of N
coupled equations, each equation describing the average concentration within each
portion of the tube. The idea underlying this decomposition is that the homoge-
nized model may now hold when each molecule of solute has had time to visit each
subdomain independently, not the whole fluid phase. For a given value of the dif-
fusion coefficient, this time depends directly on the size of these subdomains, which
is controlled by N . The constraint would now be that the time for radial diffusion

within each subdomain, R2

N2D , must be much smaller than the longitudinal time for
advection within each subdomain. For each subdomain α, this yields the inequality
ε
NPe(α) � 1, with the Pe(α) the Péclet number associated with the subdomain α, so

that we need max
α

( εNPe(α)) � 1 instead of εPe � 1. The difference between these

two expressions is that, for a finite value of ε, we can define the small parameter as
δ = ε

N , which in theory can be made as small as needed by increasing the number of
subdomains, N . This can be extended to any locally periodic heterogeneous material
where the unit-cell is decomposed into a set of N subdomains. Of course, this is just
the intuitive idea of our developments and we will study the effect of N in more detail
numerically in model cases.

Another angle on this problem emerges from the consideration of real systems,
which we know often display non-Fickian effects at the macroscale. For example,
breakthrough curves describing the response of a geological formation to an impulse
concentration often feature tailing effects that cannot be captured by an advection-
dispersion equation [33, 7, 6, 8, 25, 17, 15]. This type of behavior is often attrib-
uted to heterogeneities at various scales, for instance, it will occur when the prop-
erties of the medium, for instance, the diffusion or permeability coefficients, display
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distributions with large variances. Further, boundary conditions, nonlinearities, source
terms, topological effects, or transient phenomena can generate or amplify nonequi-
librium effects—large gradients at the microscale—leading to non-Fickian transport.
Several approaches [16, 36] are used to describe these phenomena, including stochas-
tic [23], nonlocal [31], higher-order, multirate mass transfer (MRMT) [27, 4, 53] and
multicontinua models (e.g., mobile-mobile, mobile-immobile, dual-porosity, or dual-
permeability). For MRMT and multicontinua models, the central point is the intro-
duction of characteristic times that describe exchanges between different subdomains
at the microscale by coupling equations representing each phase separately, as is the
case of our approach. However, a mathematical basis, as the one associated with HTs
and upscaling, defining clearly the contours of such models is still lacking.

Several non-Fickian transport models have been obtained using both the MA
and VATs, but these only apply to specific cases and lack generality. For instance,
mobile-immobile models have been developed using HT in the case where the unit-
cell contains two different domains that differ by the value of the diffusion coefficients
[30, 29]. The approach relies on the constraint that these diffusion coefficients are
several orders of magnitude different, which is formalized using a scaling of the ratio
between both diffusion coefficients in ε. With the VAT, formulations with two equa-
tions (one for each domain, and exchange terms between the two) have been obtained
by treating the case of two phases connected via transmission (boundary) conditions
[1, 32, 14, 13, 35, 38, 44, 20]. Such models seem to be more general as nonequilib-
rium effects can be postulated as a working hypothesis without the need to identify
a priori the origin of the gradients. These could originate from a particular scaling
of dimensionless numbers, but also from non-linearities, boundary, initial, or reactive
conditions. Another important aspect of these two-equation models obtained using
VAT is that they (1) feature counterintuitive (nondiagonal) coupling terms for the
advective and diffusive operators, which are not present in heuristic MRMT models,
and (2) they can be easily extended to many situations such as mobile-mobile or
reactive conditions, which is not necessarily the case of MRMT because of the lack of
link with the microscale physics.

One of the limitations of the VAT approach, which we overcome in this paper, is
that there exists no general theory that deals with any number of subdomains, as is
the case for empirical MRMT models [4]. Further, the nonequilibrium approach with
the two-equation model is mostly used when two distinct physical phases (when the
microscale is the pore-scale) or regions (when the microscale is the Darcy-scale in het-
erogeneous systems) can be identified [44], which is limiting. An important question
is therefore: Can we still apply the same idea and perform the domain decomposition
independently of the number of physical phase or region in order to derive a the-
ory that overcomes the limitations associated with finite-ε problems and scalings of
dimensionless numbers? For instance, it was shown for momentum transport that
even one physical phase can be decomposed into two fluids [47]. Of course, the prob-
lem for momentum transport is not the same as the one for scalar transport that
we study here; however, this is a clue suggesting that there is not necessarily a link
between the number of physical phases and the number of subdomains that is relevant
for upscaling.

Here, our goal is to develop a sound physical and mathematical background for
models containing any number N of subdomains. We will also look at toy problems to
figure out if there is hope that this may be used to overcome limitations of standard
homogenized representations. For simplicity, we focus on a generic linear advection-
diffusion problem of a scalar quantity in a locally periodic medium, this problem
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having direct applications in a number of important problems such as solute transport
in heterogeneous multiscale materials (e.g., porous or biological media), heat transfer
in composites, or flow in large-scale geological formations. We first define (section 2)
the microscale problem and corresponding operator notation. We then use a modified
form of the VAT in section 3 to derive a macroscale model for any number N of
subdomains. Finally, we go on to test our approach for model dispersion problems
(section 4) and compare our results for two- and three-equation models with direct
numerical simulation at the microscale.

2. Definitions and microscale problem.

2.1. Problem definition and notation. The spatial domain of interest (see
Figure 2.1) is a set Ω ⊂ Rn that is characterized by a lengthscale L and boundary ∂Ω.
This domain is locally periodic with unit-cell Y , which has dimensions `1 × · · · × `n
and is characterized by a lengthscale ` (a mean value of `i∈[1,n], for instance). We

further decompose Y into N subdomains Y (α) with α ∈ [1, N ]. The interior boundary
of each subdomain Y (α) is noted ∂Y (α) and boundaries between subdomains Y (α) and
Y (β) are noted ∂Y (αβ) = ∂Y (α) ∩ ∂Y (β). The domain decomposition extends to the
entire domain Ω by periodicity and we write Ω(α) =

⋃
Y (α). Similarly, we also define

∂Ω(α) =
⋃
∂Y (α) and ∂Ω(αβ) =

⋃
∂Y (αβ).

We consider the following linear partial differential equation:

(2.1) ∂tu+ Lu = 0 in Ω× R,

where L is an advection-diffusion operator such that

Lu ≡ v (x) ·∇u−∇ · (A (x) ·∇u) .(2.2)

We do not detail the boundary conditions on ∂Ω here as they are not needed for the
formal upscaling developments. Alternatively, this can be written in indicial form as

∂Ω

Y (2)

Y

Ω

∂Y (58)

1

2

3

4

5

6

7

8

Fig. 2.1. The picture on the left-hand side shows schematics of a domain, Ω ⊂ R2, the unit-
cell, Y , decomposed into N = 8 subdomains, Y (α). The picture on the right-hand side represents
an example averaging volume V (x) centered at point x, the vector pointing within the averaging
volume, ξ = r− x, and the center of unit-cell i, Xi.
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(2.3) Lu = vi (x) ∂iu− ∂i (Aij (x) ∂ju) ,

with the summation convention over repeated indices. The velocity field v (x) satisfies
the incompressibility condition, ∇ · v = 0. A (x) is a periodic symmetric coercive
dyadic field. For simplicity, we treat the variability in space implicitly in the remainder
of this paper and simply write v and A instead of v (x) and A (x). We also define a
flux operator J such that

(2.4) J u ≡ vu− A ·∇u,

and Lu = ∇ ·J u.
Finally, we consider the equivalent domain decomposition problem with trans-

mission boundary conditions,

∂tu
(α) + L(α)u(α) = 0 in Ω(α) × R,(2.5)

JuK(αβ)
= 0 on ∂Ω(αβ) × R,(2.6)

n(αβ) · JJ uK(αβ)
= 0 on ∂Ω(αβ) × R,(2.7)

where α, β ∈ [1, N ] with α 6= β, JgK(αβ) ≡ g(α) − g(β) is a jump notation and

(2.8) L(α) ≡ v(α) ·∇u(α) −∇ ·
(
A(α) ·∇u(α)

)
,

with v(α) and A(α) are restrictions of, respectively, v and A from Ω to Ω(α). This
formulation is completely equivalent to (2.1) but is going to be the starting point for
developing the N -equation formulation.

2.2. Averaging notation and perturbation decomposition. To homoge-
nize the transport equations, we first need to define the spatial averaging operator.
The most general formulation is a spatial convolution as discussed in [39, 40, 43, 42,
41, 21, 34]. The average of u(α) evaluated at point x reads

(2.9)
〈
u(α)

〉∣∣∣
x
≡
∫
Rn
m (x− r)χ(α) (r)u (r) dr,

which we can simply write as

(2.10)
〈
u(α)

〉∣∣∣
x
≡ m ∗

(
χ(α)u

)∣∣∣
x

with m a kernel normalized so that
∫
Rn m = 1 and χ(α) the fluid-phase indicator

function, whose value is 1 in the subdomain α and 0 otherwise. In applying the
convolution, there is of course an issue in the vicinity of ∂Ω. There are a number of
ways this problem can be solved (see, for instance, [37]), at least formally.

The role of the convolution is to act as a low-pass filter, eliminating lengthscales
that are smaller than or equal to the size of the unit-cell `. The definition of the
averaging operator using convolutions is fundamental to control properties of the
average fields, the smoothness in particular, by adequately choosing the kernel m.
For simplicity and because this is not the subject of this paper, we assume that the
averaging operator is ideal with regard to the volume averaging procedure (see [21]
for more details), i.e., that
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1. m is symmetric regarding each spatial direction,
2. m ∈ Ck (Rn) with k the order of the closure and of the Taylor series expan-

sions used in volume averaging,
3. the averaging operator, 〈•〉, is idempotent and if g is periodic with unit-cell
Y , then 〈g〈u(α)〉〉|x = 〈g〉|x〈u(α)〉|x,

4. if g is periodic with unit-cell Y , then m ∗ g (x) = mu ∗ g (x) with mu =∏n
i=1R (xi) the standard averaging kernel and R the one-dimensional rectan-

gular function.
We now define the porosity of the domain α as φα ≡ 〈1〉|x = m ∗ χ(α) (x). Since χ(α)

is periodic, we also have φα = mu ∗ χ(α) (x) using property 4 above. The intrinsic
average of u(α) is

(2.11) Uα|x ≡
m ∗

(
χ(α)u

)
m ∗ χ(α)

(x) =
m ∗

(
χ(α)u

)
φα

(x)

so that we have the relationship

(2.12) Uα = φ−1
α

〈
u(α)

〉
and can define a pertubation decomposition as

(2.13) u(α) ≡ Uα + ũ(α).

The idea in using such a perturbation is to separate the spatial frequencies of the
field, with Uα containing only low-frequency variations.

3. Upscaling via volume averaging. The first step of the method consists
in applying the averaging operator to each subdomain. Since all subdomains are
immobile, this operation yields, for any point in Ω, the following average equation for
each subdomain α:

(3.1) ∂tUα + φ−1
α

〈
L(α)u(α)

〉
= 0.

3.1. Perturbations. The second step is the subtraction of (3.1) from (2.5). This
operation yields the following perturbation equations, for any point in Ω(α):

(3.2) ∂tũ
(α) + L̃(α)u(α) = 0,

where the notation L̃(α)u(α) ≡ L(α)u(α) − φ−1
α

〈
L(α)u(α)

〉
is a generalization of the

perturbation notation for u to partial differential operators. Upon assuming quasi
stationarity of this problem (this issue is not discussed in detail here as it is a standard
assumption used in most techniques [52, 10, 5] and can also be relaxed by introducing
time convolutions [20, 18, 19]) and using the perturbation decomposition (2.13), we
can simplify the problem as

(3.3) L̃(α)ũ(α) = −L̃(α)Uα,

along with the boundary conditions on ∂Ω(αβ),

JũK(αβ)
= − (Uα − Uβ) ,(3.4)

n(αβ) · JJ ũK(αβ)
= −n(αβ) ·

(
J (α)Uα −J (β)Uβ

)
.(3.5)
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3.2. Approximate form of the solution. The next step is to postulate an
approximate form of the perturbation problem. Considering average terms as sources
in the perturbation equations, (3.3) to (3.5), suggests an approximation in the form

(3.6) ũ(α) =
(
a

(α)
j − δαj

)
Uj + b

(α)
j ·∇Uj + h.o.t.,

where we have used the summation convention over repeated indices j, δαj is the
Kronecker symbol, and h.o.t. is an abbreviation for higher-order terms. In these

equations, a
(α)
j are scalars and b

(α)
j are first-order tensors. We therefore construct

our approximate solution for the scalar field as

(3.7) u(α) = a
(α)
j Uj + b

(α)
j ·∇Uj ,

and for the flux, we write

(3.8) J (α)u(α) =
(
J (α)a

(α)
j

)
Uj +

(
J (α)b

(α)
j − Aa

(α)
j

)
· ∇Uj .

3.3. Closure problems. We then inject (3.7) and (3.8) into (3.3). Since, by
construction, (3.7) must be correct for any value of Uj and ∇Uj , we can identify each
problem associated with Uj and ∇Uj to obtain a set of problems that are usually
termed closure problems. In fact, it is exactly for this reason that we postulated this
form of perturbation. For terms corresponding to Uj , we have

(3.9) L̃(α)a
(α)
j = 0

with conditions

JajK
(αβ)

= 0 on ∂Y (αβ),(3.10)

n(αβ) · JJ ajK
(αβ)

= 0 on ∂Y (αβ),(3.11) 〈
a

(α)
j

〉
= δαjφα,(3.12)

Periodicity.(3.13)

For terms corresponding to∇Uj , we find a coupling between both closure variables

b
(α)
j and a

(α)
j that stems from derivatives of the product a

(α)
j Uj . This yields

(3.14) L̃(α)b
(α)
j = −J̃ (α)

a
(α)
j + ∇̃ ·

(
A(α)a

(α)
j

)
with

JbjK
(αβ)

= 0 on ∂Y (αβ),(3.15)

n(αβ) · JJbjK
(αβ)

= n(αβ) · JAajK(αβ)
on ∂Y (αβ),(3.16) 〈

b
(α)
j

〉
= 0,(3.17)

Periodicity,(3.18)

where we have used a perturbation notation generalized to operators, e.g.,

(3.19) J̃
(α)
a

(α)
j = J (α)a

(α)
j − φ−1

α

〈
J (α)a

(α)
j

〉
.
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Also, note the following important properties of the closure problems:

1. In the first set of closure problems, the equality
∑
j a

(α)
j = 1 can be easily

obtained by summing up all the different closure problems.

2. In the second set of closure problems, if A is continuous, then n(αβ) ·JAajK(αβ)

= 0.
Formally, we can condense these equations as

(3.20) u(1)

...
u(N)

 =


a

(1)
1 · · · a

(1)
N

...
. . .

...

a
(N)
1 · · · a

(N)
N


 U1

...
UN

+


b

(1)
1 · · · b

(1)
N

...
. . .

...

b
(N)
1 · · · b

(N)
N

 ·
 ∇U1

...
∇UN


and the closure problems as

L̃
(1)

. . .

L̃(N)



a

(1)
1 · · · a

(1)
N

...
. . .

...

a
(N)
1 · · · a

(N)
N

 = 0,(3.21)

L̃
(1)

. . .

L̃(N)




b
(1)
1 · · · b

(1)
N

...
. . .

...

b
(N)
1 · · · b

(N)
N

(3.22)

=


−J̃ (1)

a
(1)
1 + ∇̃ ·

(
A(1)a

(1)
1

)
· · · −J̃ (1)

a
(1)
N + ∇̃ ·

(
A(1)a

(1)
N

)
...

. . .
...

−J̃ (N)
a

(N)
1 + ∇̃ ·

(
A(N)a

(N)
1

)
· · · −J̃ (N)

a
(N)
N + ∇̃ ·

(
A(N)a

(N)
N

)
 ,

with the same boundary and integral conditions. In this system, each line corresponds
to a subdomain α while columns correspond to the source terms Uj and ∇Uj .

3.4. Eliminating integro-differential operators in the closure problems.
The operator L̃(α)♦ = L(α)♦−φ−1

α

〈
L(α)♦

〉
is, by definition, integro-differential with

L(α)♦ partial differential and
〈
L(α)♦

〉
integral. However,

〈
L(α)♦

〉
is uniformly con-

stant over each unit-cell because of the periodic boundary conditions. We can there-
fore eliminate the integral part of the operator using simple changes of the unknown
functions.

3.4.1. First closure problem. The first closure problem can be written as a

function of the coefficients hαj ≡ 〈L(α)a
(α)
j 〉. Equation (3.21) reads

(3.23)L
(1)

. . .

L(N)



a

(1)
1 · · · a

(1)
N

...
. . .

...

a
(N)
1 · · · a

(N)
N

 =

φ
−1
1

. . .

φ−1
N


h11 · · · h1N

...
. . .

...
hN1 · · · hNN

 ,
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with boundary conditions on ∂Y (αβ)

JajK
(αβ)

= 0,(3.24)

n(αβ) · JJ ajK
(αβ)

= 0,(3.25) 〈
a

(α)
j

〉
= φαδαj ,(3.26)

Periodicity.(3.27)

All the constant terms hαj are not independent and before going on with the changes
of unknown functions, we first need to make explicit the relationships between hαj .
Considering the sum

(3.28)
N∑
α=1

hαj =
N∑
α=1

〈
L(α)a

(α)
j

〉
=

N∑
α=1

〈
∇ · J (α)a

(α)
j

〉
and using the divergence theorem, it is straightforward that

∑N
α=1 hαj = 0 because

of the continuity of the fluxes between the different subdomains and the periodic
boundary conditions. Therefore, we can write h1j = −∑N

α=2 hαj and

(3.29)

h11 · · · h1N

...
. . .

...
hN1 · · · hNN

 =


−∑N

α=2 hα1 · · · −∑N
α=2 hαN

h21 · · · h2N

...
. . .

...
hN1 · · · hNN

 .

With (N − 1)×N unknowns for hαj , we now introduce the following decomposition:

(3.30)


a

(1)
1 − 1 · · · a

(1)
N

...
. . .

...

a
(N)
1 − 1 · · · a

(N)
N

 =


d

(1)
2 · · · d

(1)
N

...
. . .

...

d
(N)
2 · · · d

(N)
N


h21 · · · h2N

...
. . .

...
hN1 · · · hNN

 .

Further injecting (3.30) into (3.23), we have that d
(α)
j solves

(3.31)

L
(1)

. . .

L(N)



d

(1)
2 · · · d

(1)
N

...
. . .

...

d
(N)
2 · · · d

(N)
N

 =


−φ−1

1 · · · −φ−1
1

φ−1
2

. . .

φ−1
N


with boundary conditions for d

(α)
j that are unchanged compared to a

(α)
j , i.e., conti-

nuity inside the unit-cell and periodicity on the outside boundaries. Since integral

terms have been removed and the problem is now purely differential on d
(α)
j , this can

be solved by standard numerical methods.
However, the values of hαj are still unknown and to calculate them we need to

consider the average conditions. For each column in (3.31), the variables d
(α)
j are

defined uniquely up to a constant (see section 3.4.3 for details about existence and
uniqueness) so that we must use an average condition to have a unique solution. We

choose the average conditions 〈d(1)
j 〉 = 0 to fix this constant. This choice is compatible

with the average conditions applying to a
(1)
j , as we have from averaging the first line
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in (3.30) that 〈a(1)
j 〉 = φ1δ1j . The rest of the average conditions on a

(α>1)
j , i.e.,

〈a(α)
j 〉 = φαδαj , are then used to calculate the exchange coefficients. Averaging (3.30)

and removing the first line, which has already been used, we find the relationship

(3.32)

h22 · · · h2N

...
. . .

...
hN2 · · · hNN

 =


〈
d

(2)
2

〉
· · ·

〈
d

(2)
N

〉
...

. . .
...〈

d
(N)
2

〉
· · ·

〈
d

(N)
N

〉

−1φ2

. . .

φN

 ,

which can be used to calculate the N2 exchange coefficients hαj when combined with

h1j = −∑N
α=2 hαj and hα1 = −∑N

j=2 hαj .

3.4.2. Second closure problem. We proceed in a similar way for the second
closure problem. This may be written as

L
(1)

. . .

L(N)




b
(1)
1 · · · b

(1)
N

...
. . .

...

b
(N)
1 · · · b

(N)
N

(3.33)

=

φ
−1
1

. . .

φ−1
N


V11 · · · V1N

...
. . .

...
VN1 · · · VNN



+


−J̃ (1)

a
(1)
1 + ∇̃ ·

(
A(1)a

(1)
1

)
· · · −J̃ (1)

a
(1)
N + ∇̃ ·

(
A(1)a

(1)
N

)
...

. . .
...

−J̃ (N)
a

(N)
1 + ∇̃ ·

(
A(N)a

(N)
1

)
· · · −J̃ (N)

a
(N)
N + ∇̃ ·

(
A(N)a

(N)
N

)


with

Vαj =
〈
L(α)b

(α)
j

〉
.(3.34)

We use the following change of unknown functions:


b

(1)
1 · · · b

(1)
N

...
. . .

...

b
(N)
1 · · · b

(N)
N

 =


e

(1)
1 · · · e

(1)
N

...
. . .

...

e
(N)
1 · · · e

(N)
N



+


d

(1)
2 · · · d

(1)
N

...
. . .

...

d
(N)
2 · · · d

(N)
N


V21 · · · V2N

...
. . .

...
VN1 · · · VNN

 .(3.35)
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The idea here is to use the linearity of the operators in order to decompose the solution
into two distinct parts corresponding to different source terms in the equations. Here,

e
(α)
j are solutions of

(3.36)

L
(1)

. . .

L(N)




e
(1)
1 · · · e

(1)
N

...
. . .

...

e
(N)
1 · · · e

(N)
N

 = S̃

with the average condition 〈e(1)
j 〉 = 0, continuity/jump conditions on boundaries, and

(3.37)

S̃ =


−J̃ (1)

a
(1)
1 + ∇̃ ·

(
A(1)a

(1)
1

)
· · · −J̃ (1)

a
(1)
N + ∇̃ ·

(
A(1)a

(1)
N

)
...

. . .
...

−J̃ (N)
a

(N)
1 + ∇̃ ·

(
A(N)a

(N)
1

)
· · · −J̃ (N)

a
(N)
N + ∇̃ ·

(
A(N)a

(N)
N

)
 .

Vαj can then be calculated by averaging (3.35) and removing the first line to obtain

(3.38)V21 · · · V2N

...
. . .

...
VN1 · · · VNN

 = −


〈
d

(2)
2

〉
· · ·

〈
d

(2)
N

〉
...

. . .
...〈

d
(N)
2

〉
· · ·

〈
d

(N)
N

〉

−1

〈
e

(2)
1

〉
· · ·

〈
e

(2)
N

〉
...

. . .
...〈

e
(N)
1

〉
· · ·

〈
e

(N)
N

〉
 ,

or equivalently, combined with (3.32), we also have

(3.39)V11 · · · V1N

...
. . .

...
VN1 · · · VNN

=−

h11 · · · h1N

...
. . .

...
hN1 · · · hNN


φ
−1
1

. . .

φ−1
N



〈
e

(1)
1

〉
· · ·

〈
e

(1)
N

〉
...

. . .
...〈

e
(N)
1

〉
· · ·

〈
e

(N)
N

〉
 .

3.4.3. Solvability condition for the closure problems. The closure prob-
lems (3.31) and (3.36) are not homogeneous. Because of the periodic boundary con-
dition, there are strong constraints applying to the source terms on the right-hand
sides of these equations. Classical results of the analysis of elliptic equations show
that these problems are well-posed under the solvability condition:

(3.40)

∫
Y

Sj = 0.

We can easily check that this is true for all the source terms in the closure problems.
For dj , we have Sdj = −φ−1

1 χ(1)+φ−1
j χ(j), for which it is trivial to show that

∫
Y
Sdj = 0.

In the other closure problem, (3.36), the source terms, S̃, are perturbations in the form

SMj =
∑
α[χ(α)M(α)

j −
∫
Y
χ(α)M(α)

j ] that also verify
∫
Y
SMj = 0.

3.5. Average model. Equation (3.1) can be written as, for any point in Ω,

(3.41) φα∂tUα +
〈
∇ ·J (α)u(α)

〉
= 0.
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3.5.1. Complete model. Injecting (3.8) into (3.41), we obtain

(3.42) φα∂tUα + Cαj ·∇Uj = Aαj : ∇∇Uj − hαjUj

with exchange coefficients

(3.43) hαj =
〈
L(α)a

(α)
j

〉
,

effective velocities

(3.44) Cαj =
〈
L(α)b

(α)
j

〉
−
〈
∇ ·
(
A(α)a

(α)
j

)〉
+
〈
J (α)a

(α)
j

〉
,

and dispersion tensors

(3.45) Aαj =
〈
A(α)a

(α)
j

〉
−
〈
J (α)b

(α)
j

〉
.

This problem can be written formally as

(3.46)

∂t

 φ1U1

...
φNUN

+ CN ·

 ∇U1

...
∇UN

 = AN :

 ∇∇U1

...
∇∇UN

−
h11 · · · h1N

...
. . .

...
hN1 · · · hNN


 U1

...
UN


with

(3.47) CN =

C11 · · · C1N

...
. . .

...
CN1 · · · CNN

 and AN =

A11 · · · A1N

...
. . .

...
AN1 · · · ANN

 .

Since we consider a homogeneous porous medium here, we can also write this in a
conservative form as

(3.48)

∂t

 φ1U1

...
φNUN

+∇ ·

CN
U1

...
UN


 = ∇ ·

AN ·
∇U1

...
∇UN


−

h11 · · · h1N

...
. . .

...
hN1 · · · hNN


U1

...
UN

.
3.5.2. Discussion. Problem (3.48) is a system of convection-diffusion-reaction

equations with constant coefficients, so that standard results of partial derivative
equations analysis show that it admits a unique global in time solution as soon as the
diffusion matrix AN satisfies the coercivity assumption ξtANξ > α|ξ|2 for any vector
ξ of RN×n with α > 0 (see, e.g., [11, pp. 340–341] and references therein). Thus far,
we have not been able to prove this property for the general expression of matrices AN
given in terms of the closure problems. However, since AN is a constant real matrix,
it may be checked a posteriori each time for the specific problem at hand. With this
respect, note that AN may be replaced in the coercivity relation by its symmetric part
1/2(AN + AtN ), which is diagonalizable. In practice, the issue of coercivity thus boils
down to searching for the lowest eigenvalue of a symmetric real matrix, and many
packages are available for this purpose.

Independently from the issue of well-posedness, the nondiagonal terms in CN and
AN may yield unphysical results, such as negative concentrations or values outside
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initial bounds (see an example in section 4.5). Physically, these issues stem from the
fact that the derivation of the model above, (3.46), is based on a particular form of the
solution (3.7) and a set of hypotheses that may not be correct for any initial/boundary
condition or any point in the domain. The result is that the macroscale model may
yield negative concentrations, so that the model needs to be used carefully. Some
of the hypotheses used in deriving the closure (3.7) may not always be valid and
examples for which the model yields nonphysical results can be easily constructed for
specific choices of initial conditions (see an example in section 4.5).

The question of coercivity is a major one, as it conditions the well-posedness of
the problem. In practical applications, if the coercivity is not verified, regularization
is one way to resolve the issue. For instance, one may use an approximant of AN
that has all the required properties to obtain a well-posed problem, e.g., the nearest
symmetric positive semidefinite matrix to AN [28], possibly constrained to respect
important properties, such as to keep the sum of all the terms

∑
i,j Aij identical. In

the one-dimensional numerical examples treated in section 4, there is no need for such
elaborate approaches as the coercivity of the matrix was obtained for all the cases
presented. However, we emphasize that this needs to be dealt with carefully and that
either a demonstration of general coercivity or a robust approach to correct it will be
needed for the general case.

The issue about respecting initial bounds is not as important as, in many cases,
the primary goal is to obtain an accurate approximation of the signal, even if it means
breaking min/max principles. This problem is not specific to the VAT but rather stems
from the multirate macroscopic formulation and was already observed in [22]. In many
cases, obtaining a slightly negative concentration may be acceptable especially if this
vanishes in the long-time limit [22]. In section 4.5, we provide examples of negative
solutions that still capture all the important features of the scalar field. If this cannot
be tolerated for a particular problem, a variety of approaches could be used. As
a very simple example, we can diagonalize the velocity and dispersion matrices via
lumping as

(3.49)C11 · · · C1N

...
. . .

...
CN1 · · · CNN

→
C1

. . .

CN

 and

A11 · · · A1N

...
. . .

...
AN1 · · · ANN

→
φ1A

∗

. . .

φNA∗


with Cα =

∑
j Cαj and A∗ =

∑
α,j Aij . Example solutions with this simplification

are presented in section 4.5. Another approach could be to weight nondiagonal terms
with a regularizing function that eliminates the nondiagonal terms when Uj is getting
close to initial bounds (zero, for example). Similar approaches are used for diffu-
sion reaction models with cross-diffusion in biological systems [51] or multicomponent
mass transport [49, 24]. A considerable issue, however, is that the system becomes
nonlinear, making computations of the solutions a lot more complicated.

3.5.3. Theoretical comparison with MRMT. How is this model different
from MRMT? Besides the fact that, contrary to MRMT models, we have derived a
direct link (the closure problems) between the microscale geometry and the effective
parameters, there are also differences in the macroscale form compared to MRMT
models. To better understand this, we consider the generic form from [4] that we
straightforwardly extend to the mobile-mobile cases by allowing each phase to flow.
With our formalism, this reads
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(3.50)

∂t

 φ1U1

...
φNUN

+∇·

QN
U1

...
UN


 = ∇·

DN ·
∇U1

...
∇UN


−
h11 · · · h1N

...
. . .

...
hN1 · · · hNN


U1

...
UN


with

(3.51) QN =


〈
v(1)

〉
. . . 〈

v(N)
〉
 and DN =

φ1d1

. . .

φNdN

 .

The first striking difference is that CN and AN feature nondiagonal (coupling) terms,
whereas the MRMT model does not. From a theoretical point of view, this suggests
that the model derived here is actually more general as it contains additional cou-
plings. The simplified diagonalized version of our model with (3.49) is almost identical
to the MRMT. The only difference is that the values of the terms on the diagonal
are not necessarily the same. The most obvious example of this is for the velocities.
Indeed, for QN the diagonal terms correspond to the average physical velocity of each
subdomain, whereas Cα contains additional terms.

4. Validation against direct numerical simulations.

4.1. Description of the geometries and microscale problems. As a toy
problem, we consider scalar transport in two-dimensional periodic arrays of 40 unit-
cells (see Figure 4.1(a)). Each unit-cell (see Figure 4.1(b)–(f)) consists of a fluid
phase f with incompressible Stokes flow (see solutions for individual unit-cells in
Figure 4.1(g)–(i)),

0 = −∇p+ µ∆v + ex in phase f,(4.1)

∇ · v = 0 in phase f,(4.2)

v = 0 on ∂Ωt, ∂Ωb, and ∂Ωfni ,(4.3)

Periodicity on ∂Ωl and ∂Ωr.(4.4)

For the scalar transport problem, we have

∂tu
(f) + v · ∇u(f) =

1

Pe
∆u(f) in phase f,(4.5)

∂tu
(ni) =

Γ(ni)

Pe
∆u(ni) in the nodule ni,(4.6)

u(f) = u(ni) on ∂Ωfni ,(4.7)

nfni · ∇u(f) = nfni · Γ(ni)∇u(ni) on ∂Ωfni ,(4.8)

∂yu = 0 on ∂Ωt and ∂Ωb,(4.9)

u = 0 on ∂Ωl and ∂Ωr,(4.10)

u (x, y, t = 0) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .(4.11)

We consider two classes of geometries for the unit-cell, one with a relatively large
centered nodule and one with two smaller nodules (dashed line in Figure 4.1). We
impose Γ(nα) = 1.0 for the case with one nodule and Γ(nβ) = 0.1, Γ(nγ) = 0.01 for the
geometry with two nodules.
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Fig. 4.1. Geometries of (a) the whole domain containing a total of 40 unit-cells. (b)–(f) Ge-
ometries of each unit-cell with the one- and two-nodule configurations. The dashed lines correspond
to the geometry while the colors describe the subdomain decomposition. The letters f and n refer to
the decomposition for the microscale transport with, respectively, the fluid (f) and nodules (nα, nβ ,
nγ). The numbers 1, 2, and 3 correspond to the subdomain decomposition for the macroscale model,
which is independent from the fluid/nodule decomposition. (g)–(i) The normalized x-component of
the velocity field, vx

φ−1
f
〈vx〉

, for one and two nodules.

4.2. Macroscale problems. We consider the one-, two-, and three-equation
models for each geometry (referred to as 1eq, 2eq, and 3eq). For 1eq, the macroscale
problem reads

(4.12) ∂tU + 〈v〉 ∂xU1eq = A?∂xxU1eq
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with A? the standard dispersion tensor (see [52, 45, 9]). For 2eq (Figure 4.1(b), (c),
and (d)), we have (

φ1 0
0 φ2

)
∂t

(
U2eq

1

U2eq
2

)
+

(
C11 C12

C21 C22

)
∂x

(
U2eq

1

U2eq
2

)
=

(
A11 A12

A21 A22

)
∂xx

(
U2eq

1

U2eq
2

)
−
(
h11 h12

h21 h22

)(
U2eq

1

U2eq
2

)
,(4.13)

and finally, for the 3eq (Figure 4.1(e) and (f)),φ1 0 0
0 φ2 0
0 0 φ3

 ∂t

U3eq
1

U3eq
2

U3eq
3

+

C11 C12 C13

C12 C22 C23

C13 C23 C33

 ∂x

U3eq
1

U3eq
2

U3eq
3


=

A11 A12 A13

A12 A22 A23

A13 A23 A33

 ∂xx

U3eq
1

U3eq
2

U3eq
3

−
h11 h12 h13

h21 h22 h23

h31 h32 h33

U3eq
1

U3eq
2

U3eq
3

 .(4.14)

We also consider the simplified diagonalized equations (as described in section 3.5.2)(
φ1 0
0 φ2

)
∂t

(
US2eq

1

US2eq
2

)
+

(
C1 0
0 C2

)
∂x

(
US2eq

1

US2eq
2

)
=

(
φ1A

∗2eq 0
0 φ2A

∗2eq

)
∂xx

(
US2eq

1

US2eq
2

)
−
(
h11 h12

h21 h22

)(
US2eq

1

US2eq
2

)
,(4.15)

and finally, for the 3eq,φ1 0 0
0 φ2 0
0 0 φ3

 ∂t

US3eq
1

US3eq
2

US3eq
3

+

C1 0 0
0 C2 0
0 0 C3

 ∂x

US3eq
1

Us3eq2

US3eq
3


=

φ1A
∗3eq 0 0

0 φ2A
∗3eq 0

0 0 φ3A
∗3eq

 ∂xx

US3eq
1

US3eq
2

US3eq
3

−
h11 h12 h13

h21 h22 h23

h31 h32 h33

US3eq
1

US3eq
2

US3eq
3

 .(4.16)

For the initial condition, we impose U (x, t = 0) = 1
σ
√

2π
e−

(x−µ)2

2σ2 , for all models,

this corresponding to the initial condition of the microscale model in section 4.1. For
the boundary conditions, we have U (x = 0, t) = 0 and U (x = 40, t) = 0.

4.3. Numerical methods.

4.3.1. General description. Microscale (section 4.1) and macroscale (section
4.2) equations are solved using standard finite element methods. Stokes flow at the
microscale is solved on a P2/P1 Lagrange basis. Microscale advection-diffusion equa-
tions for the direct numerical solution and the closure problems are solved on cubic
Lagrange elements with streamline and crosswind diffusion. Macroscale equations are
solved on quadratic Lagrange elements without stabilization. The time discretiza-
tion for direct numerical simulations and the macroscale equations is implicit with
the backward differentiation formula. For the resolution of linear systems, we use
MUMPS (Multifrontal massively parallel sparse direct solver).
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4.4. Resolution algorithm. First, we solve directly the microscale model (sec-
tion 4.1), this serving as a reference for comparison with homogenized models. Second,
we solve the homogenized problem with the different models. To do so, we start by
solving the closure problems for d and e over each unit-cell with periodic boundary
conditions (Figure 4.1, orange, yellow, and blue corresponding to different subdo-
mains). We then use these fields to calculate the effective parameters and construct
a and b (section 3.4) for each value of the Péclet number, Pe. For all cases presented,
we verified that the dispersion matrices are coercive, so that the problems are well-
posed. Once we have calculated the values of the effective parameters as functions of
Pe, the macroscale models are solved to obtain Ui for one, two, and three subdomains
(section 4.2). The accuracy of each homogenized model can then be evaluated by
comparing these results to those obtained from the direct numerical simulations of
the microscale model.

We will go one step further in the comparison by reconstructing the microscale
fields from Ui and the closure fields a and b. The first step in doing so is to extend the
fields a and b, only defined over a single unit-cell, to the entire domain by periodicity.
The corrector-type results may then simply be written as

u1eq (x, y, t) = U1eq (x, t) + b (x, y) ∂xU1eq (x, t) ,(4.17)

u2eq (x, y, t) =

(
a1 (x, y)
a2 (x, y)

)(
U2eq

1 (x, t)

U2eq
2 (x, t)

)
+

(
b1 (x, y)
b2 (x, y)

)(
∂xU2eq

1 (x, t)

∂xU2eq
2 (x, t)

)
,(4.18)

u3eq (x, y, t) =

a1 (x, y)
a2 (x, y)
a3 (x, y)

U3eq
1 (x, t)

U3eq
2 (x, t)

U3eq
3 (x, t)

+

b1 (x, y)
b2 (x, y)
b3 (x, y)

∂xU3eq
1 (x, t)

∂xU3eq
2 (x, t)

∂xU3eq
3 (x, t)

 ,(4.19)

which can be directly compared to direct numerical simulations of u(f) and u(ni), that
we simply write udns over the entire unit-cell.

4.5. Results and discussion. To facilitate comparison of the two-dimensional
fields from direct numerical simulations, udns (x, y, t), with the one-dimensional fields
from the macroscale equations, we project udns (x, y, t) onto the x-axis and define

uPdns (x, t) =
∫ 1

0
udns (x, y, t) dy. Although uPdns (x, t) still contains high-frequency

fluctuations in x, it is one-dimensional and therefore can be easily compared to

UNeq (x, t) =
∑
i

φiUNeqi (x, t)

for the one-equation, U1eq, two-equation, U2eq, and three-equation U3eq models.

4.5.1. Preliminary aspects. In this first section, we present ancillary results
regarding the effect of the initial condition, of matrix diagonalization, and of the
choice of domain decomposition. These aspects are not fully explored here and only
serve as a basis to understand and discuss the impact of the number of subdomains
on the results, which is studied in the remainder of section 4.5.

We start by assessing the influence of the initial condition for the case with one
nodule and Pe = 300. Figure 4.2 presents U3eq

2 and US3eq
2 (geometry in Figure 4.1(e))

at time t = 1 for increasing values of the standard deviation, σ, of the initial Gaussian
signal. Results show that the smallest value of σ, which corresponds to the strongest
initial gradients of concentration, yields negative solutions for U3eq

2 , as was already
observed for MRMT in [22]. We also see that this effect disappears when the gradients
occur over a lengthscale that is much larger than the unit-cell. This is because strong
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Fig. 4.2. Comparisons (geometry in Figure 4.1e) of non-diagonalized U3eq
2 and diagonalized

US3eq2 models (in subdomain 2) for different values σ, the standard deviation of the initial condition,
and (Pe = 300 and t = 1).

gradients are incompatible with assumptions in the VAT and, therefore, may lead to
unphysical results of the model. To understand this, let us construct a simple example
showing analytically how a two-domain decomposition can lead to negative solutions.
We consider

∂t

(
φ1U1

φ2U2

)
+

(
C11 C12

C21 C22

)(
∂xU1

∂xU2

)
=

(
A11 A12

A21 A22

)(
∂xxU1

∂xxU2

)
−
(
h11 h12

h21 h22

)(
U1

U2

)
(4.20)

on R × R+∗ with initial conditions U1 (x, t = 0) = 0 and U2 (x, t = 0) =

U ref
2 e
− 1

2

(
x2

(Lδ)2
−1

)
. Here, L is a characteristic lengthscale and δ is a small parame-

ter, δ � 1. Let us consider the point x = Lδ, for which we have U2 (Lδ, 0) = U ref
2 ,

∂xU2 (Lδ, 0) = −U
ref
2

Lδ , and ∂xxU2 (Lδ, 0) ≈ Uref
2

(Lδ)3
. Since δ � 1, we have

(4.21) φ1∂tU1 (Lδ, 0) ≈ A12
U ref

2

(Lδ)
3 .

Without loss of generality, we consider A12 < 0, so that ∂tU1 (Lδ, 0) < 0 and, with
U1 (x, t = 0) = 0, U1 becomes negative.

One way to get rid of this issue consists in eliminating the nondiagonal terms in
the dispersion matrix and simplifying the problem as is done in (4.16). In Figure 4.2,
we plot the results for US3eq, Pe = 300, and t = 1, as a function of σ. We see that,
contrary to the model with nondiagonal terms, solutions always remain nonnegative.
To further evaluate the effect of removing nondiagonal terms, we plot in Figure 4.3

0 5 10 15 20 25 30 35 40
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5 · 10−2

0.1

x

uPdns, Pe = 300

uPdns, Pe = 500

U3eq, Pe = 300

U3eq, Pe = 500

US3eq, Pe = 300

US3eq, Pe = 500

Fig. 4.3. Comparisons (geometry in Figure 4.1(e)) of nondiagonalized U3eq and diagonalized
US3eq models to uPdns for Pe = 300 and Pe = 500 at t = 10.
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Fig. 4.4. Comparisons of U2eq for the circular (Figure 4.1(b)) and elliptic (Figure 4.1(c))
domain decompositions to uPdns Pe = 300 at t = 10.

U3eq and US3eq (geometry in Figure 4.1(e)), for Pe = 300 and Pe = 500 at t = 10,
and compare both fields to the reference uPdns. Comparisons of US3eq with uPdns

indicate that the simplified model fails in capturing the bimodal nature of the signal
for Pe = 300. However, it is difficult to evaluate further the relative loss in accuracy in
diagonalizing from these graphs and we leave that for future work. In the remainder
of this work, we focus on the fully coupled nondiagonal models, with the idea that
one can use the diagonalized version to maintain positivity but with an accuracy that
will need to be assessed.

In Figure 4.4 (geometries in Figure 4.1(b) and (c)), we show that the choice of
domain decomposition also has an impact on the fields, with different results for the
circular and elliptic central domains. The model based on the ellipse seems to capture
the fastest propagating peak of concentration better than the circular decomposition.
This difference may stem from the fact that both decompositions sample the distri-
bution of the velocity field differently. For the circular decomposition, one subdomain
corresponds to a nonzero velocity, while the other one is the nodule where the velocity
is zero. On the other hand, for the elliptic decomposition, part of the low velocity
region close to the nodule is included in the subregion. The rationale is that, since
the velocities close to the nodule are relatively small, describing the fluid as a unique
subdomain may penalize the macroscale model. In this case, we see from Figure 4.4
that the fastest propagating peak of concentration is faster for the elliptic than for
the circular decomposition.

More generally, this raises the question of optimal domain decomposition for a
given geometry. In more realistic geometries, there can be strong heterogeneities of
the velocity or diffusion fields at the microscale. When these fields are distinctly multi-
modal, the choice of subdomain decomposition is relatively straightforward. However,
when this is not the case, specific methods could be developed, for instance, using
optimization approaches that minimize a cost function capturing the heterogeneity
of the medium or of the velocity field. It is beyond the scope of this paper to study
this important issue. In the remainder of this paper, we focus on the impact of the
number of phases, which is the focal point of the paper.

4.5.2. Comparison of macroscopic and direct numerical simulation
results. We then go on to compare models with one, two (Figure 4.1(b) and (d)),
and three (Figure 4.1(e) and (f)) equations for different values of the Pe number in
Figure 4.5 (t = 10 and σ = 3). For the one-nodule geometry and small Pe numbers,
all models exhibit very similar behaviors and provide an accurate description of the
transport at the macroscale. For larger Pe numbers, however, the one-equation de-
scription fails to capture the bimodal nature of the scalar field. For the case with
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Fig. 4.5. Comparison of the one-, two- (Figure 4.1(b)), and three- (Figure 4.1(e)) equation
models for the geometry with one nodule, t = 10, σ = 3 and different Péclet numbers.

two nodules (Figure 4.6), the one-equation model fails for even lower values of the
Péclet number (less than 100) and clearly overestimates the spreading of the signal.
This issue, which corresponds to an overestimation of the dispersion coefficient in
the short time and preasymptotic regimes, is rather standard with the one-equation
model. However, it is important to emphasize that the one-equation model is the
usual result from HTs and that it completely fails here. Two- and three-equation
descriptions remain very accurate in all cases. The only question is now whether the
three-equation model is better than the two-equation one. In the case with one nod-
ule, there is very little difference between the two models. This, we hypothesize, stems
from the fact that the geometry displays two, not three, primary subdomains. It is
composed of the central nodule, where the scalar is only transported by diffusion, and
the fluid, where advection dominates diffusion at large Péclet numbers. We therefore
observe an important difference between one- and two-equation formulations, but not
between the two- and three-equation models. For the geometry with two nodules,
Figure 4.6, we see that the two- and three-equation models display slightly larger
differences. This is because the geometry exhibits three distinct regions, with each
nodule now being associated with different diffusion coefficients. Even though the
differences exist, it is difficult to determine from the average fields whether the two-
or the three-equation model is closer to the direct numerical simulations. We will see
in the next sections, using reconstructed scalar fields at the microscale, Figures 4.7
and 4.8, that the three-equation model is in fact significantly more accurate.
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Fig. 4.6. Comparison of the one-, two- (Figure 4.1(d)), and three- (Figure 4.1(f)) equation
models for the geometry with two nodules, t = 10, σ = 3 and different Péclet numbers.

(a) Microscale simulation

(b) 1 equation model

(c) 2 equations model (geometry in Fig 4.1d)

(d) 3 equations model (geometry in Fig 4.1f)

Fig. 4.7. Reconstructed fields corresponding to the one-, two-, and three-equation models for
the geometry with two nodules t = 10, σ = 3 and Pe = 100.

4.5.3. Comparison of reconstructed (corrector-type) and direct numer-
ical simulation results. To get a better evaluation of the accuracy of the approx-
imate solution for the perturbations, we now focus on the corrector-type results and
microscale reconstructions of the field. We have plotted the reconstructed fields for
the case with two nodules for Pe = 100 in Figure 4.7 and Pe = 300 in Figure 4.8
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(a) Microscale simulation

(b) 1 equation model

(c) 2 equations model (geometry in Fig 4.1d)

(d) 3 equations model (geometry in Fig 4.1f)

Fig. 4.8. Reconstructed fields corresponding to the one-, two-, and three-equation models for
the geometry with two nodules t = 10, σ = 3 and Pe = 300.
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Fig. 4.9. L2-norm of the error for Péclet numbers in the set {100, 300, 500} for the one-,
two- (Figure 4.1(b) and (d)), and three- (Figure 4.1(e) and (f)) equation models. The first line
corresponds to the geometry with one nodule, while the second line describes results for two nodules.

(t = 10, σ = 3). In all cases, the one-equation model completely fails in describing
even the most basic features of the fields, whereas the two- and three-equation models
are much more accurate. We also see that the approximate form of the perturbation
that we have devised can lead to negative values of the scalar field. This is because,
although it conserves the zeroth-order moment of the distribution (the integral of
u over the whole domain), it does not necessarily respect bounds of the microscale
advection-diffusion problem (min/max principles). The three-equation model drasti-
cally reduces this issue and provides a better approximation of the extrema than the
two-equation model with min/max values that are much closer to the results from the
direct numerical simulations.
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Fig. 4.10. Projections of the fields for the direct numerical simulations and the reconstructions
for the one-, two- (Figure 4.1(d)), and three- (Figure 4.1(f)) equation models for the geometry with
two nodules, t = 10, σ = 3 and different Péclet numbers.

We further quantify in Figure 4.9 differences between the models by computing the
L2-norm of the difference between the microscale solution, udns, and the reconstructed
microscale field, uNeq,

(4.22) Error =

√∫
Ω

(udns (x, y)− uNeq (x, y))
2
dxdy,

with an integral over the entire domain Ω. We recover behaviors similar to those
we have described earlier, with two- and three-equation descriptions always more
accurate than the one-equation model. The three-equation model is always better
than the two-equation one, with significant differences only for the case with two
nodules. In this figure, we also show that, in the limit of a very short time, the three-
equation model is slightly more accurate even for the case with one nodule. Finally,

we calculate the projected fields, uPNeq (x, t) =
∫ 1

0
uNeq (x, y, t) dy, for all models in

Figure 4.10. The main result here is that an approximate solution for perturbations
in the three-equation model indeed leads to a more accurate description of the signal.

These results suggest that there may be an optimal number of subdomains, where
gain in accuracy balances computational and complexity costs. For instance, in the
case with one nodule, we may use two-equation models for practical applications,
while three-equation models may be useful for other configurations. Further, this
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optimal number of subdomains strongly depends upon the microstructure, the spa-
tial distribution of the parameter fields, the Péclet number, the initial and bound-
ary conditions, or even the time of interest, the size of the macroscopic domain,
or the accuracy required. For instance, if we were interested in larger macroscale
domains and longer times, even the one-equation model would be accurate. There-
fore, the cost function of an optimization problem aiming at determining the optimal
number of subdomains would need to be defined specifically for each problem and
accuracy required.

5. Conclusions. In this work, we have developed models for the description
of scalar transport through heterogeneous media. Standard HTs usually yield one-
equation descriptions at the macroscale, which fail in the short time limit and when
constraints regarding the dimensionless number are not met (e.g., the Péclet num-
ber is too large). Here, we propose an alternative formulation based on a domain
decomposition method. The macroscale model consists of a set of coupled equations
describing average values of the scalar fields within each subdomain. We have shown
that, even for very simple structures, two- or three-equation models overcome im-
portant limitations of the standard model. As the number of subdomains increases,
so does the accuracy of the description and a decomposition in three subdomains
is always better than the one in two subdomains. This work lays the foundation
of a theory for finite-epsilon homogenization that shows great potential. However,
several aspects must be improved in order to obtain more robust formulations that
can be readily used in practical applications. For instance, the approximate form of
the solution for the perturbations does not necessarily respect min/max principles
for the scalar. Further, the difference between using N and N+1 subdomains may
not always be significant and, in many cases, there is probably an optimal number of
subdomains, in particular when a clear multimodal distribution of properties can be
identified. Another important improvement would be the derivation of a general result
for the coercivity of the dispersion matrix, which in our approach must be verified a
posteriori for each case. Other improvements include (1) applications to three-
dimensional structures with different spatial distributions of properties, (2) decompo-
sition into a larger number of sudomains to assess how the accuracy evolves with a
large number of subdomains, (3) optimality of the geometry/topology of the subdo-
mains, and (4) rigorous convergence results with the number of subdomains.
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