
Official URL

DOI : https://doi.org/10.1007/978-3-030-31157-5_10

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24978

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Hurault, Aurélie and Quéinnec, Philippe Proving

a Non-Blocking Algorithm for Process Renaming with TLA+. (2019) In:

13th International Conference on Tests and Proofs (TAP 2019), part of

the 3rd World Congress on Formal Methods, 9 October 2019 - 11

October 2019 (Porto, Portugal).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/267810362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proving a Non-blocking Algorithm

for Process Renaming with TLA+

Aurélie Hurault and Philippe Quéinnec(B)

IRIT, Université de Toulouse, Toulouse, France
{hurault,queinnec}@enseeiht.fr

Abstract. Shared-memory concurrent algorithms are well-known for
being difficult to write, ill-adapted to test, and complex to prove. Wait-
free concurrent objects are a subclass where a process is never prevented
from progressing, whatever the other processes are doing (or not doing).
Algorithms in this subclass are often non intuitive and among the most
complex to prove. This paper presents the analysis and the proof of a
wait-free concurrent algorithm that is used to rename processes. By its
adaptive and non-blocking nature, the renaming algorithm resists to test,
because of the cost of covering all its states and transitions even with a
small input set. Thus, a proof has been conducted in TLA+ and verified
with TLAPS, the TLA+ Proof System. This algorithm is itself based on
the assembly of wait-free concurrent objects, the splitters, that separate
processes. With just two shared variables and three assignments, a split-
ter seems a simple object but it is not linearizable. To avoid explicitly
in-lining it and dealing with its internal state, the proof of the renaming
algorithm relies on replacing the splitter with a sequential specification
that is proved correct with TLAPS and verified complete by model-
checking on finite instances.

Keywords: Formal verification · Non-blocking algorithm · TLA+

1 Introduction

Increase of computer performance is now obtained by multi-core multiproces-
sor units. Concurrent programming with locks or monitors is an old topic, and
methodologies have been presented that allow developing software with few (or
at least not too many) synchronization bugs. All these methodologies revolve
around a blocking paradigm: identifying the condition for valid progress (e.g.
exclusive access on a resource), and blocking while this condition is not true
(e.g. waiting to acquire a lock). However, these approaches are inefficient under
high load and are subject to deadlock when a process stops while holding a
lock or an access. Non-blocking algorithms have been considered to alleviate
these difficulties [MS98]. In a non-blocking algorithm, the delay or failure of

_https://doi.org/10.1007/978-3-030-31157-5 10

a process does not prevent the progress of other processes. Subclasses of non-
blocking include lock-free, where system progress is guaranteed, and wait-free,
where process progress is guaranteed [Her91]. Thus, wait-free algorithms are
the most interesting to ensure individual progress in an adversary environment.
Whatever the progress of the other processes, a process will be able to progress
as long as the scheduler ensures that it has access to some CPU resources. Thus,
wait-free algorithms are of great importance in highly concurrent environments.

Unfortunately, wait-free algorithms are hard to design and prone to bugs.
They rely on low-level instructions, such as test-and-set, compare-and-swap, or
shared data structures. Among these, atomic registers [Lam86,KS11] provide
strong guarantees in presence of concurrency. An atomic register is a lineariz-
able object with two operations, read and write. Progress is guaranteed even in
presence of process failure. In a system where the only shared objects between
processes are atomic registers, any concurrent execution (with true parallelism)
is equivalent to a sequential execution on a single processor with interleaving.
This nice property is instrumental in checking and verifying a wait-free algorithm
as it spares us to consider true parallelism.

Nevertheless, writing a wait-free algorithm is error-prone. Correctness is often
on paper only, and cannot be certified. Lastly, testing these wait-free algorithms
is difficult as they generally exhibit a large reachable state space, and execution
interleaving leads to a huge number of executions to consider. Bugs are often
hidden in the deepest part of the algorithm and few schedulings can trigger them.
Wait-free algorithms and data structures have started being used in standard
libraries (for instance the ConcurrentLinkedQueue class in Java) but their first
implementations were not always exempt of bugs [JDK08].

In this paper, we present the study of Moir and Anderson renaming algorithm
[MA95]. The goal of this algorithm is to assign names (or identifiers) to processes
such that the size of the namespace is small. This algorithm is wait-free, and is
itself built upon wait-free objects, the splitters. This study has been conducted
with the TLA+ tools [Lam94] to provide a certified proof of the correctness of
the renaming algorithm.

The contributions of this paper are:

– A mechanized proof of a wait-free renaming algorithm, based upon wait-free
objects;

– An approach to handle the internal wait-free objects as black boxes;
– A combination of model-checking and formal proofs to verify correctness and

completeness of the wait-free objects.

The TAP Artifact Evaluation Committee has reviewed the full artifact of our
approach (available on [HQ19]). The four reviewers have found it consistent with
the paper and have noted that the structure of the proofs in the artifact match
their description in the paper. Regarding correctness, the four proof files have all
been replayed without errors. As expected, checking the completeness is more
intricate, and the reviewers have reached different upper bounds depending on
their computing power.

2 TLA+ Specification Language and Tools

2.1 Language

TLA+ [Lam02] is a formal specification language based on untyped Zermelo-
Fraenkel set theory for specifying data structures, and on the temporal logic of
actions (TLA) for specifying dynamic behaviors. TLA+ allows specifying sym-
bolic transition systems with variables and actions. An action is a transition
predicate between a state and a successor state. It is an arbitrary first-order
predicate with quantifiers, set and arithmetic operators, and functions. In an
action, x denotes the value of a variable x in the origin state, and x′ denotes its
value in the next state. Expressions rely on standard first-order logic, set opera-
tors, and several arithmetic modules. Functions are primitive objects in TLA+.
The application of function f to an expression e is written as f [e]. The set of
functions whose domain is X and whose co-domain is a subset of Y is written as
[X → Y]. The expression domain f is the domain of the function f . The expres-
sion [x ∈ X �→ e] denotes the function with domain X that maps any x ∈ X to
the expression e (which can include x). The notation [f except ![e1] = e2] is
a function which is equal to the function f except at point e1, where its value
is e2. A specification of a system is usually a disjunction of actions. Fairness,
usually expressed as a conjunction of weak or strong fairness on actions, or more
generally as an LTL property, ensures progression.

2.2 Tools

The TLA+ toolbox contains the TLC model checker, the TLAPS proof assis-
tant, and various tools such as a translator for the PlusCal Algorithm Lan-
guage [Lam09] into a TLA+ specification, and a pretty-printer that converts a
textual TLA+ specification into a LATEX file.

PlusCal. Pluscal is an algorithm language that looks like a programming lan-
guage (assignment, loop, conditional) augmented with constructs for describing
concurrency and non-determinism. PlusCal is actually more expressive than a
traditional programming language as its expressions are any TLA+ expressions.

TLC. TLC, the TLA+ Model Checker, is an enumerative explicit-state model-
checker that can check safety and liveness properties. Its parallel implementation
achieves a close to linear speedup for checking safety properties. To verify a
TLA+ specification, TLC requires all constants (e.g. number of processes) to be
instantiated.

TLA+ Proof System. TLAPS, the TLA+ Proof System, is a proof assistant
for writing and checking TLA+ proofs [CDLM10]. TLA+ proofs are written in
a hierarchical and declarative style with steps and substeps. A proof manager
translates these steps in proof obligations, checks the trivial ones and uses back-
end provers for the other ones. These backend provers include SMT provers

(CVC3 is supplied, and Z3, CVC4, VeriT and Yices are supported), a TLA+

theory in Isabelle, Zenon (an automated theorem prover for first-order logic
based on the tableau method), or LS4 (to prove Propositional Temporal Logic).

3 The Renaming Problem

The renaming problem consists in renaming processes so they have a unique
name on a small space. Initially, every process is assumed to have a unique
identifier on an arbitrary large space (for instance, the IP address of the computer
it is running on and the memory address of its control block). The only property
of these identifiers is that they allow distinguishing processes, that is they can
be compared for equality. A renaming algorithm assigns a distinct value, called
a name, to each process, so that no two processes have the same name and
the range of these names is small with regard to their initial identifiers. This
algorithm is useful as it allows to efficiently refer to a set of processes, for instance
by using an array indexed with their names.

In a shared-memory context, a trivial algorithm can solve the renaming prob-
lem using a counter and a lock. To get a name, a process acquires the lock, gets
the current value of the counter and increments it, and releases the lock. Then the
range of names for renaming N processes is optimal with size N. This algorithm
has two shortcomings: it is inefficient under high load because of contention on
the lock, and it is not delay-tolerant or fault-tolerant. If a process is delayed or
stops while holding the lock, the other processes have to wait for it to complete
its invocation, potentially infinitely. This can happen for instance if a process is
paused or swapped by the process scheduler, or in an adversary environment,
when an evil process does a denial-of-service attack by holding the lock.

Several wait-free algorithms for the renaming problem have been proposed
[MA95,AM99,GR10,CRR11,RR11]. In these wait-free algorithms, the lack of
progress of one process has no impact on the progress of the others. In this
paper, we focus on the first wait-free algorithm for renaming that has been
proposed, by Moir and Anderson [MA95]. This algorithm renames up to N

processes from an arbitrary large namespace to a namespace of size N(N+1)
2

with time complexity Θ(N). We have actually considered a more demanding
variation of the original algorithm: the proven algorithm is adaptive, in the sense
that the size of the resulting namespace only depends on the actual number of
participants (as opposed to the maximal number of participants for non-adaptive
renaming).

3.1 Informal Description

Moir and Anderson algorithm is based on a building block, the splitter (Fig. 1).
A splitter is used to separate processes. When a process executes the code of a
splitter, it eventually receives a value of stop, right or down. The main property
is that at most one process ever receives stop, not all processes receive right
and not all processes receive down. Simultaneous invocations of a splitter are

n processes

≤ n − 1 processes

≤ n − 1 processes
≤ 1 process

stop right

down

Fig. 1. Specification of a splitter

0 1 2 3 4

0

1

2

3

4

0 1 3 6 10

2 4 7 11

5 8 12

9 13

14

ri
di

Fig. 2. Structure of Moir-Anderson algorithm for up to 5 processes

possible, and its code is concurrently executed. Equipped with this splitter, the
renaming algorithm consists in a half-grid of splitters (Fig. 2).

Every process starts in the (0, 0) box and follows the rule of the splitter it
is on. If it receives stop, it gets the name on this splitter and ends. If it receives
right (resp. down), it moves to the right (resp. down) splitter. For N processes, a

half grid of N(N+1)
2 splitters ensures that every process eventually gets a unique

name (on the diagonal in the worst case, which it needs N moves to reach, thus
time complexity of Θ(N), splitters being Θ(1)).

3.2 Algorithm

The renaming algorithm is given Fig. 3. Each splitter at coordinate (d, r) is
implemented with two atomic registers X and Y that are shared by all pro-
cesses. These registers ensure that reads and writes are atomic under concurrent

1 initially ∀ d,r ∈ 0..N−1, d+r < N : Y[d][r] = FALSE ∧ X[d][r] = ?
2 rename(id)
3 while (d+r < N−1 ∧ ¬ stop) do

4 X[d][r] := id;
5 if Y[d][r]
6 then r := r + 1 \∗ right
7 else

8 Y[d][r] := TRUE
9 if (X[d][r] = id)

10 then stop := TRUE \∗ stop
11 else d := d + 1 \∗ down
12 endif

13 endif

14 end while

15 return 1

2
(r + d)(r + d + 1) + d

Fig. 3. Code of the renaming algorithm

access. More precisely, an atomic register is a linearizable object that has two
operations read and write. Informally, linearizability means that each operation
call appears to take effect instantaneously at some point between its invocation
and its response. More rigorously, linearizability means that the object behaves
as if all processes agree on a sequential history of operations that is correct with
regard to the sequential definition of the object (i.e. a read returns the most
recent written value), and such that this history does not reorder completed
operations. From a proof point of view, it means that the algorithm behaves as
an interleaving of atomic process actions, where an action can read or write at
most one shared variable.

Initially, all the Y are false, and the X can hold any value. The variables d, r
and stop are local to each process. An arbitrary number of processes (up to N)
concurrently call rename with their original ids on the large namespace. Each
process individually progresses at its own speed. When it gets a stop or reaches
the diagonal, it computes a return value from its coordinates in the grid, using
Cantor pairing function (a bijection from N × N to N).

4 Proving the Renaming Algorithm with In-Line

Splitters

4.1 A Focus on the Splitter

Let’s consider one splitter in isolation (Fig. 4). A splitter is inherently concurrent,
and it cannot be specified as a sequential object with a single operation. This
is shown by contradiction. Assume there is a sequential object with a single
operation that behaves as a splitter. As it is sequential, there exists a first process
to invoke its operation. As this process may be alone, it must obtain stop (right
and down are incorrect if it is alone). The next processes can receive either down

1 initially Y = false ∧ X = ?
2 direction (id)
3 X := id
4 if Y then dir := right
5 else Y := true
6 if (X = id) then dir := stop
7 else dir := down
8 endif

9 endif

10 return dir

Fig. 4. Implementation of a splitter with two registers

or right, without restriction. Such a sequential object has fewer behaviors than
a splitter: with a splitter, a concurrent execution allows half the processes to
receive down and the other half to receive right, and none to receive stop. For
instance, consider two processes that simultaneously enter the code in Fig. 4.
Process 1 writes register X with its id (line 3); process 2 overwrites it with its
own id; process 1 tests Y and finds it false (line 4); it checks the value of X

(line 6), does not found its id, and gets down; then process 2 checks Y (line 4),
finds it true, and gets right. Thus, a splitter cannot be called as a function, and
its code is in-line in the code of the renaming.

Correctness Properties. The correctness properties of a splitter are:

Coherency processes are split in at least two categories, and at most one stop:

�

∀p, q ∈ Proc, dirp = stop ∧ dirq = stop ⇒ p = q

∧ ∃p ∈ Proc, dirp 	= right

∧ ∃p ∈ Proc, dirp 	= down

 (1)

Termination every correct entering process eventually gets a direction:

∀p ∈ Proc,�(p enters the splitter ⇒ ♦(dirp ∈ {stop, down, right})) (2)

State Space. Another difficulty with the splitter (and more generally with
wait-free objects) is that the reachable state space is a significant part of the
possible valuations of the variables. The direction variable can hold four values
(the undetermined value ⊥, stop, down, right), thus the corresponding state
space for N processes is 4N . The number of valid assignments of directions that
respect the property of coherency (1) is1:

1 The percentage decrease is explained by the progressive dominance of multiple stop
in the invalid assignments.

Number of processes 2 3 4 5 6 7 8

Possible assignments 16 64 256 1024 4096 16384 65536

Valid assignments 13 52 187 646 2185 7288 24055

Percentage 81% 81% 73% 63% 53% 44% 38%

Table 1. Model-checking of a Splitter with registers (left) and of the Renaming Algo-
rithm with registers (right). NP is the number of processes, distinct states is the number
of distinct states found by TLC, and depth (or diameter) is the length of the longest
execution (ignoring stuttering loops). Times are wall-clock time. Experiments were
conducted on a 32 core 2,1 GHz computer with 16 GB.

NP distinct states depth time

2 98 11

3 1389 16

4 17164 21

5 193115 26 2 s

6 2041458 31 15 s

7 20675305 36 1 min 50 s

8 203055896 41 12 min 24 s

9 1948989879 46 16 h 08 min

NP distinct states depth time

2 142 14

3 21260 33 1 s

4 6381732 58 56 s

5 5183748425 90 51 h 19 min

4.2 An Attempt at Proving the Renaming Algorithm

The renaming algorithm has been specified in TLA+, using PlusCal [Lam09]. The
steps have been chosen such that there is at most one read or write of a shared
register at each step. This leads to six atomic transitions. Even if the principle
and the algorithm are quite simple (13 lines, 2 matrices of shared registers, 2
conditionals and 1 loop), the proof of the uniqueness of the names is not trivial.

Correctness Properties. The renaming algorithm must verify:

Coherency processes obtain unique names:

∀p, q ∈ Proc, p 	= q,�(namep 	= ⊥ ∧ nameq 	= ⊥ ⇒ namep 	= nameq) (3)

Termination every correct entering process eventually gets a name:

∀p ∈ Proc,�(p enters the renaming ⇒ ♦(namep 	= ⊥)) (4)

Model Checking. To get an idea of the degree of interleaving, we have model-
checked both a splitter and the renaming algorithm with TLC, the TLA+ model
checker (Table 1). Observe that model-checking was quickly overwhelmed for the
renaming algorithm. Checking with four or five processes is insufficient to get
confidence in the correctness of the algorithm. Scaling from four to five processes
took a lot of time (more than two days compared with less than one minute)
and resources (16 GB memory and up to 110 GB disk space were required).

Proof. In the original paper, the correctness proof is given “on paper” and
takes 4 pages and 12 invariants. Half of these invariants are considered trivial,
and no proofs are given. Mechanically proving these trivial invariants was already
challenging because of the intricate behavior of the splitters, and it was clear
that a complete proof would require too much effort.

5 Proving the Renaming Algorithm with Linearizable

Splitters

Seeing that the trivial parts of the proof were not that trivial, we decided to
rethink the original algorithm:

– to reduce the interleaving, by reducing the number of step/transitions in the
algorithm;

– to hide the internal parts of the splitters, as much as possible;
– to take advantage of the grid architecture (Fig. 2) by finding a way to make

direct call to the splitters and being able to use theorems on splitters.

5.1 Making the Splitter Linearizable

To reduce interleaving and being able to see the splitter as a black box, the nat-
ural idea is the notion of atomic or linearizable objects [HW90]: a linearizable
object behaves as if it is accessed sequentially, even in presence of concurrent
invocations. Unfortunately, as shown in Sect. 4.1, a splitter is inherently con-
current, and it cannot be expressed as a linearizable object with one operation.
However, the results of [CHQR19] state that the splitter can be transformed in
an object with a sequential specification composed of two operations set and get.

A Set/Get Splitter. The specification of the splitter with two operations (set
and get) is given in Fig. 5. Each of the operations is divided in an enabling
condition (setenabled/getenabled) and a construction of the new state (set/get).
The set operation is enabled if the process is not already in the splitter and
registers that the process is entering the splitter. The get operation corresponds
to a process receiving a direction. The pre-condition of the get operation ensures
that the answer is valid regarding the specification in Fig. 1 and Eq. (1).

For a variable spl and a process p ∈ Proc, a well-formed usage of the module
is a sequence of two TLA+ actions: setenabled(spl, p) ∧ spl′ = set(spl, p), then
∃dir ∈ {Stop,Down,Right} : getenabled(spl, p, dir) ∧ spl′ = get(spl, p, dir).

Proofs of Correctness and Completeness. To be useful, this version of
the splitter needs to be correct and complete. The correctness is the coherency
property (1) and the termination property (2). The completeness means that any
correct output can be delivered by the splitter with set/get. Indeed, the goal of
this version of the splitter is to be used as a black box in the renaming algorithm.
The proof of the renaming algorithm will be done with the black box version,
and the implementation will use a particular implementation of the splitter, for
instance the one in Fig. 4. If the black box version is not complete, the proof
may omit some pathological cases.

module Splitter

constant Proc the calling processes

None � “none”

Right � “right”

Stop � “stop”

Down � “down”

Direction � {None, Right , Stop, Down}

Type � [participants : subset Proc,

stop : subset Proc, down : subset Proc, right : subset Proc]

new � [participants }{→� , stop }{→� , down }{→� , right }{→�]

setenabled(s, pid) � s /∈ s.participants set not already called

set(s, pid) � [s except !.participants = s.participants ∪ {pid}]

getenabled(s, pid , ans) �

∧ pid ∈ s.participants ∧ pid /∈ (s.stop ∪ s.right ∪ s.down) set done and get not done

∧ ∨ ans = Stop ∧ s.stop = {} valid answers

∨ ans = Right ∧ (s.right ∪ {pid}) �= s.participants

∨ ans = Down ∧ (s.down ∪ {pid}) �= s.participants

get(s, pid , ans) � case

ans = Stop → [s except !.stop = {pid}]

✷ ans = Right → [s except !.right = s.right ∪ {pid}]

✷ ans = Down → [s except !.down = s.down ∪ {pid}]

Fig. 5. The TLA+ set/get specification of a splitter

Correctness. The correctness proof is done assuming that the splitter is well-
used, i.e. that set is called before get and the enabling conditions of each opera-
tion are true. The proof of termination (2) is trivial: there is no loop and whatever
were the return values to previous processes, a process can always get at least
one valid value and thus cannot be blocked in the enabling condition getenabled.
The proof of coherency (1) has been conducted with TLAPS for any number of
processes (file Splitter correct proof.tla in [HQ19]).

Completeness. Completeness of this specification has also been considered. It
must be shown that all correct combinations of output values are possible. The
predicate CorrectDirection(Proc, direction) states that direction is a valid out-
put array satisfying (1), and dir is the received values of the processes. Complete-
ness is expressed as (where EFP is the CTL (computational tree logic) temporal
operator stating that there exists a branch where P is eventually true):

Completeness � ∀direction ∈ [Proc → Direction] :

CorrectDirection(Proc, direction) ⇒ EF(dir = direction)

TLA+ is based on LTL (linear temporal logic) and this CTL formula is not
checkable. However, the negation of EFP is AG¬P , and as P is a state predicate,
this corresponds to the LTL invariant �¬P . Thus, completeness can be verified
in the following way. First, TLC is used to enumerate all the valid arrays of direc-
tion. Then, each of them is stated as unreachable (�¬(. . .)), and this property is
checked with TLC. A counter-example proves that the state is actually reachable.
Optimisations based on symmetry have been introduced, and the completeness of
the set/get splitter has been verified up to 10 processes (255877 distinct states
to check for reachability, reduced to 119 with permutations, 1 h 42min on a
modern quad core laptop).

5.2 The Renaming Algorithm Using Linearizable Splitters

The renaming algorithm has been rewritten using set/get splitters. The PlusCal
version of the renaming problem using set/get splitters is given in Fig. 6. The
translated TLA+ had to be slightly tweaked because the provers have difficulties
handling except with multi-dimensional arrays, whereas the equivalent form
that defines an array is fine2.

5.3 Proof Sketch of the Coherency Property

The full proof has been conducted with TLAPS and is available online [HQ19].
The line numbers below refer to the file Renaming.tla that holds the algorithm
and its proof.

Overall Picture. The correctness property (3) states that all the processes
must have distinct names (Uniqueness property in the TLA+ module – line
2027). This uniqueness is guaranteed if all the processes end with different coor-
dinates (I12 property – line 1955, whose proof (lines 1957–1979) is used to prove
the Uniqueness property (lines 2030–2040)). A process ends either on the diag-
onal (condition d + r < NP − 1 violated, line 14 in Fig. 6) or if it gets Stop in a
splitter that is not on the diagonal (lines 15–17 in Fig. 6). Consider two different
processes that get a name (line 28):

– they both stop in a splitter that is not on the diagonal: as at most one pro-
cess can stop in a splitter, they stop in different splitters and do not have the
same coordinates (StopDifferentProcessesDifferentCoordinates prop-
erty – defined line 429 and proved lines 353–434);

– one process stops in a splitter that is not on the diagonal, and the other
one stops on the diagonal: they trivially do not have the same coordinates
(StopAndDoneDiffCoord property – defined line 566 and proved lines 438–
574);

– they both stop on the diagonal: this is not trivial and is explained in the
following (IDDX property – defined line 1851 and proved lines 577–1906).

2 The construct [x except ![e1] = e2] is a shortcut for [i ∈ domain x �→ if i =
e1 then e2 else x[i]]. For multi-dimensional arrays, provers work better with the
latest.

1 module renaming

2 extends Naturals

3 constant NP – number of processes

4 instance Splitter with Proc ← 1 . . NP

5 Coord � 0 . . NP − 1 – coordinate in the grid

7 --algorithm renaming

8 variables spl = [i ∈ Coord �→ [j ∈ Coord �→ new]] ;

9 fair process proc ∈ 1 . . NP

10 variables d = 0, r = 0, name = 0 ;

11 begin

12 l0: await setenabled(spl [d][r], self) ;

13 spl [d][r] := set(spl [d][r], self) ;

14 l1: if (d + r < NP − 1) then

15 l2: either await getenabled(spl [d][r], self , Stop) ;

16 spl [d][r] := get(spl [d][r], self , Stop) ;

17 goto l8 ;

18 or await getenabled(spl [d][r], self , Right) ;

19 spl [d][r] := get(spl [d][r], self , Right) ;

20 r := r + 1 ;

21 goto l0 ;

22 or await getenabled(spl [d][r], self , Down) ;

23 spl [d][r] := get(spl [d][r], self , Down) ;

24 d := d + 1 ;

25 goto l0 ;

26 end either

27 end if ;

28 l8: name := ((r + d) ∗ (r + d + 1) ÷ 2) + d ;

29 end process

30 end algorithm

31

Fig. 6. Renaming algorithm in PlusCal using set/get splitters.

Number of Participants in a Splitter. To prove this last case, the key
inductive invariant is that (NbParticipants property – line 588):

∀i, j ∈ Coord : Cardinality(splitters[j][i].participants) = 0

∨Cardinality(splitters[j][i].participants) ≤ NP − (i + j)

The first disjunction handles the case where the coordinates are outside the
half-grid (i+j ≥ NP), and the second one handles the case where the coordinates
are inside the half-grid (i + j < NP).

A simple induction using that processes enter a splitter (i, j) either from the
splitter on top (i − 1, j) or from the splitter on left (i, j − 1), and that not all

processes can go down or right, gives that there is at most NP − (i−1+ j)−1+
NP −(i+j−1)−1, i.e. 2∗(NP −(i+j)) processes in the splitter (i, j). This basic
induction fails. As an example, consider the splitter (1, 1). To receive NP − 2
processes from the splitter (0, 1), there must be at least NP − 1 processes in the
splitter (0, 1). It means that there is at most 1 process in the splitter (1, 0). This
process, alone, stops in this splitter and no process comes from the splitter (1, 0)
to the splitter (1, 1).

Since a simple induction fails, another invariant is needed
(NbParticipantsBis property – line 795):

∀i, j ∈ Coord : Cardinality({p ∈ ProcSet : d[p] ≥ j ∧ r[p] ≥ i}) = 0

∨Cardinality({p ∈ ProcSet : d[p] ≥ j ∧ r[p] ≥ i}) ≤ NP − (i + j)

This invariant considers the triangle below and to the right of (i, j), i.e. the
triangle with coordinates (i, j), (NP − 1 − i, j) and (i,NP − 1 − j). In the
following, we refer to this triangle as the (i, j) triangle.

The proof is done by proving that the property is preserved by all the tran-
sitions. For the (i, j) triangle, the two non-trivial cases are when a process in a
splitter in column i− 1 moves right, or a process in a splitter in line j − 1 moves
down. In both cases, the number of processes in the (i, j) triangle increases.
These two cases are symmetric, and only the first one is discussed.

The intuition behind the proof is shown in Fig. 7.

– The induction hypothesis gives that in the (i−1, j) triangle (green in Fig. 7),
there are less than NP − i − j + 1 processes.

– The fact that self can move right ensures that there is at least another pro-
cess in the splitters including or below the one of self (orange in Fig. 7).
This property (2InColumnWhenRight property – line 1380) is proved thanks
to another invariant that states that if at one point there is a participant
in a splitter, there will always be (at least) a process in the column of
the splitter (AlwaysOneInColumn property – line 1248). This last one is
proved thanks to the correctness of the splitter: not all processes can go right
(EnableRightExistsOtherNotRight – line 199 in the Splitter.tla file).

This means that before self moves, there is at most NP − i − j + 1 − 2
processes in the (i, j) triangle (blue in the Fig. 7). So after the transition, there
are at most NP − i − j + 1 − 2 + 1 = NP − i − j processes in the (i, j) triangle.
QED.

Metrics of the Proof. The first version was 3000 lines, and after cleaning
(factorization into lemma and removing steps not needed by TLAPS), it consists
in 2000 lines of TLAPS for the renaming, and 200 lines for the splitter, with a
total of 70 lemmas and theorems, and 963 proof steps.

The splitter proofs are composed of 93 proof obligations. Among them, 43
are obvious and discharged by tlapm (the TLA+ proof manager). The other 50
are proved by SMT (we use CVC3, VeriT and Z3).

0 1 2 3 4 . . .

0

1

2

3

4

. . .

(i-1,j) (i,j) . . .

. . .

self . . .

. . .

. . .

. . .

r

d

Inductive hypothesis:

|{p ∈ ProcSet : d [p] ≥ j ∧ r [p] ≥ i − 1}|

≤ NP − i − j + 1

At least

2 processes

self + other

|{p ∈ ProcSet : d [p] ≥ j ∧ r [p] ≥ i}|

≤ NP − i − j + 1 − 2

(Green - Orange)

Fig. 7. Intuition behind the proof of Moir-Anderson algorithm (Color figure online)

The renaming proof is composed of 1541 proof obligations. Among them, 914
are trivial and proved by tlapm. Among the 627 left, 108 are proved by Zenon
(an automated theorem prover), 35 are proved by LS4 (temporal logic), 475 are
proved by SMT and 9 are proved by Isabelle (properties on sets).

To check the proof, TLAPS takes 10 min on a quad core modern laptop.

5.4 Proof Sketch of the Termination Property

The second correctness property is the termination (4): every correct process
eventually gets a name. To do this, we show by induction that, for each process,
(d, r) lexicographically increases until either the sum reaches NP , or the process
receives a Stop and terminates. Assume a process is at l0 (Fig. 6, lines 12–
13), that its current value of (d, r) is (i, j) and that (d, r) has lexicographically
increased until that point, meaning that it is the first time it reaches (i, j).
At l0, setenabled is true as the process has not previously called set on the
splitter (i, j). The process reaches l1 (line 14). At l1, the process can go to l8
and terminate (QED), or continue to l2. At l2 (lines 15–27), getenabled is true
as the process has previously called setenabled on this splitter, the process has
not previously called get on this splitter (first occurrence of (i, j)), and at least

Concurrent splitter
correctness (TLAPS)
completeness (TLC)

Splitter with set/get
correctness (TLAPS)
completeness (TLC)

⇒ conc. splitter ≈ set/get splitter

Renaming with set/get splitter
correctness (TLAPS)

⇒
Renaming with
concurrent splitters
correctness

termination (paper) termination (paper)

Fig. 8. Summary of the approach. For each property, the verification method is given
(proof with TLAPS, model-checking with TLC, proof on paper).

one of the choices {Stop,Right,Down} is enabled (the specification of a splitter
(Fig. 5) guarantees that the three sets stop, down and right are disjoint, thus at
least one choice is enabled). If the process gets Stop, it goes to l8 and terminates
(QED); if it gets Down or Right, d or r increases, thus (d, r) becomes (i + 1, j)
or (i, j + 1), and so lexicographically increases. The condition in l1 eventually
becomes false, and the process reaches l8 (QED).

TLAPS does not support checking liveness properties, and this proof has not
been mechanically verified.

5.5 Back to the Original Algorithm

The last step to prove the original Moir-Anderson algorithm of Fig. 3 consists
in putting back the concurrent splitters implemented with registers in place of
the linearizable splitters with set/get. Both versions of the splitter have been
proved equivalent by proving that they satisfy the same correctness properties
(properties (1) and (2)) and are both complete3. For the concurrent splitter, the
proof of coherency (1) has been done in TLAPS (file Splitter register.tla

in [HQ19]). It consists in 8 lemmas and theorems that prove 17 elementary
properties with 30 proof steps. The proof of termination (2) is trivial as it is
straight-line code. The proof of completeness has been done by model-checking
just like for the linearizable splitter (Sect. 5.1).

Regarding termination of the renaming algorithm with concurrent split-
ters (4), a similar argument to 5.4 shows that, for each process, (d, r) lexico-
graphically increases until either the sum reaches NP , or the process receives a
Stop and terminates.

3 Another approach would have been to show a bisimulation between their transition
systems. Note that it requires to exhibit a parameterized bisimulation, as we have
to consider any number of concurrent invocations. We had already proved the prop-
erties on the concurrent splitter during our initial attempt at proving the renaming
algorithm (Sect. 4.2) and it seemed simpler to continue onward.

A summary of the approach we have used to prove the original Moir-Anderson
algorithm is shown in Fig. 8.

6 Related Work

Wait-free data structures were introduced by Herlihy [Her91], and then auto-
matically derived from a sequential implementation using universal simula-
tions [Her93]. However, the state of the art universal construction [CER10] is still
far too slow compared to the hand-crafted lock-free or lock-based versions. In
[TP14], the authors observe that wait-free implementations are notoriously hard
to design and often inefficient. One approach consists in designing a lock-free
data structure, and then in manually transforming it into a wait-free data struc-
ture. [TP14] presents a mechanical transformation of lock-free data structures
to wait-free ones. The limits of this work is first, the existence of the lock-free
implementation, which has to be written and proven, and secondly, that this
implementation must have a normalized form to be convertible.

[GGH05] is a rare example of the certified proof of a lock-free algorithm. The
proof of safety has been conducted in PVS, while the proof of progress is on
paper. Building on this experience, [GH04] presents a reduction theorem that
allows reasoning about a lock-free program to be designed on a higher level than
the elementary synchronization primitives. Lamport’s refinement mappings are
used to prove that the lower-level specification correctly implements the higher-
level one. The reduction theorem has been verified with PVS.

Wait-free implementation of tasks have been mechanically proven (e.g.
[ORV+10,TSR14,DGH13]). However, to the best of our knowledge, no non-
trivial wait-free algorithm built upon wait-free tasks has been mechanically
proved. Our intuition for this situation is that proofs cannot be made mod-
ular and compositional when using bricks which are inherently concurrent if
their internal structure must be visible to take into account this concurrency.
Several complex and original algorithms can be found in the literature such as
Moir and Anderson renaming algorithm [MA95] that we have considered in this
paper, stacks implemented with elimination trees [ST97], lock-free queues with
elimination [MNSS05]. In these papers, the correctness proofs are intricate as
they must consider the algorithm as a whole, including the tricky part involving
wait-free objects, and they have not been mechanically checked. Our approach
which exposes a more simple and sequential specification (instead of a complex
concurrent implementation) seeks to alleviate this limitation.

Other works have studied the replacement of the complex implementation of
part of a system with a simpler one to ease the proof. For example in [GKR+15],
the authors use the notion of deep specification to verify a layer-based architec-
ture. By taking into account the context, a given deep specification may have
several implementations which all yield equivalent behaviors. Then, a proof of a
whole program can be done using the deep specification of a subprogram (which
is simpler than the implementations) and it will stay valid when replacing this
subprogram with its implementation. Our approach is similar with a non-layered

algorithm, and the set/get specification can be seen as a deep specification,
adhering to the coherency property and compatible with the non-linearizable
nature of the splitter.

7 Conclusion

Mechanically proving and certifying a wait-free algorithm built upon wait-free
objects is a challenging task. An important step is the replacement of the internal
wait-free objects with objects having a sequential specification. This allows a
compositional approach to the proof, where theorems are proved on the internal
objects and reused in the proof of the algorithm. Moreover, this black box view
greatly reduces the number of control points in the algorithm, and thus the
number of interleavings.

TLA+ has been found well adapted for this task. It natively contains
advanced data structures (sets, arrays and maps) with the usual mathematical
foundations and notations. Concurrency is intrinsic, both in algorithm descrip-
tion and in reasoning. Tool support is adequate, allowing tests (possibly exhaus-
tively on small models) and proofs. The hierarchical structure advocated by
Lamport [Lam12] helps in incrementally building the proofs, by focusing on the
important cases of a theorem and delaying the proofs of the obvious or marginal
cases. Proving a realistic algorithm such as Moir-Anderson algorithm requires
various theories: numbers (coordinates in the grid), sets (cardinality and parti-
tioning), functions (arrays), temporal logic (invariants). The hierarchical struc-
ture allows decomposing the proof of a theorem that requires several theories
in steps where only one is needed. This in turn allows using the most adequate
prover for this theory and simplifies automation of the proof.

A Description of the Artifact

This artifact [HQ19] allows to replicate all the results that we claim in the paper:

– the proof of correctness of the splitter with registers,
– the proof of correctness of the splitter with set/get,
– the way to check the completeness of the splitter with set/get,
– the way to check the completeness of the splitter with registers,
– the proof of correctness of the renaming algorithm using the set/get splitter.

Combining these results implies that the renaming algorithm is correct when
used with the original splitter with registers.

A.1 Requirements

Running the artifact relies on the TLA+ Toolbox and the TLA+ Proof System.
Both are included in the distributed files, and a script is supplied to install them.
The verification of the correctness proofs is achievable on a standard laptop,
checking the completeness requires much more resources (at least a quad core
with 8 GB of memory, and a 32 core computer with 16 GB was used for the
largest numbers of processes).

A.2 Proofs of Correctness

The proof of correctness of Moir-Anderson renaming algorithm is built upon the
four following files:

– Splitter.tla: the set/get splitter with some lemma needed for the correct-
ness proof of the renaming;

– Splitter correct proof.tla: the proof of correctness of the set/get splitter;
– Renaming.tla: the Renaming algorithm and its proof of correctness;
– Splitter register.tla: the splitter based on register and its proof of cor-

rectness.

One just has to load them in the toolbox and launch the verification, as explained
in the artifact distribution.

A.3 Proofs of Completeness

The goal is to verify the completeness of an implementation w.r.t a property P,
i.e. that all the valid (w.r.t to P) assignments of the variables are reachable in
the implementation.

Our approach consists in two steps: first generate all the valid assignments;
then, for each of these assignments, verify that it is reachable. As we rely on TLC,
the TLA+ model checker, this approach works for a given number of processes.

1. Choose a number of processes;
2. generate-states nbproc Splitter config.tla

The module Splitter config.tla is used to generate all the return values that
satisfy the correctness property of the splitter, for nbproc processes.

3. check-reachability vars XXX.tla

For each valuation (read from stdin), a module is built with an invariant

invariant Unreachable
∆

= vars 	= valuation

and it is model-checked with the specification in XXX. It should end with a
violation, which proves that this state is reachable.

4. Once all states have been checked, this proves the completeness of XXX for
this number of processes.

A script runall enumerates the verification of both splitter specifications for
1, 2, 3 etc. processes. One can also check a specific size.

References

[AM99] Afek, Y., Merritt, M.: Fast, wait-free (2k)-renaming. In: 18th Annual ACM
Symposium on Principles of Distributed Computing, pp. 105–112 (1999)

[CDLM10] Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying safety prop-
erties with the TLA+ proof system. In: Giesl, J., Hähnle, R. (eds.) IJCAR
2010. LNCS (LNAI), vol. 6173, pp. 142–148. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14203-1 12

[CER10] Chuong, P., Ellen, F., Ramachandran, V.: A universal construction for
wait-free transaction friendly data structures. In: 22nd ACM Symposium
on Parallelism in Algorithms and Architectures, pp. 335–344 (2010)

[CHQR19] Castaneda, A., Hurault, A., Queinnec, P., Roy, M.: Modular machine-
checked proofs of concurrent algorithms built from tasks. In: Submitted
to DISC 2019 (2019)

[CRR11] Castañeda, A., Rajsbaum, S., Raynal, M.: The renaming problem in shared
memory systems: an introduction. Comput. Sci. Rev. 5(3), 229–251 (2011)

[DGH13] Drăgoi, C., Gupta, A., Henzinger, T.A.: Automatic linearizability proofs
of concurrent objects with cooperating updates. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 174–190. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 11

[GGH05] Gao, H., Groote, J.F., Hesselink, W.H.: Lock-free dynamic hash tables with
open addressing. Distrib. Comput. 18(1), 21–42 (2005)

[GH04] Gao, H., Hesselink, W.H.: A formal reduction for lock-free parallel algo-
rithms. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 44–
56. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9 4

[GKR+15] Gu, R., et al.: Deep specifications and certified abstraction layers. In: 42nd
ACM Symposium on Principles of Programming Languages, pp. 595–608
(2015)

[GR10] Gafni, E., Rajsbaum, S.: Recursion in distributed computing. In: Dolev,
S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp.
362–376. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
16023-3 30

[Her91] Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst.
13(1), 124–149 (1991)

[Her93] Herlihy, M.: A methodology for implementing highly concurrent objects.
ACM Trans. Program. Lang. Syst. 15(5), 745–770 (1993)

[HQ19] Hurault, A., Quéinnec, P.: TLA+ proof of Moir-Anderson renaming algo-
rithm (2019). http://hurault.perso.enseeiht.fr/RenamingProof

[HW90] Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for con-
current objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

[JDK08] Bug JDK-6785442: ConcurrentLinkedQueue.remove() and poll() can both
remove the same element (2008)

[KS11] Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algo-
rithms, and Systems. Cambridge University Press, Cambridge (2011)

[Lam86] Lamport, L.: On interprocess communication. Distrib. Comput. 1(2), 77–
101 (1986)

[Lam94] Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang.
Syst. 16(3), 872–923 (1994)

[Lam02] Lamport, L.: Specifying Systems. Addison Wesley, Boston (2002)
[Lam09] Lamport, L.: The PlusCal algorithm language. In: Leucker, M., Morgan,

C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 36–60. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03466-4 2

[Lam12] Lamport, L.: How to write a 21st century proof. J. Fixed Point Theory
Appl. 11(1), 43–63 (2012)

[MA95] Moir, M., Anderson, J.H.: Wait-free algorithms for fast, long-lived renam-
ing. Sci. Comput. Program. 25(1), 1–39 (1995)

[MNSS05] Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to imple-
ment scalable and lock-free FIFO queues. In: 17th ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 253–262 (2005)

[MS98] Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe
locking on multiprogrammed shared memory multiprocessors. J. Parallel
Distrib. Comput. 51(1), 1–26 (1998)

[ORV+10] O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying
linearizability with hindsight. In: 29th ACM Symposium on Principles of
Distributed Computing, pp. 85–94 (2010)

[RR11] Rajsbaum, S., Raynal, M.: A theory-oriented introduction to wait-free syn-
chronization based on the adaptive renaming problem. In: 25th IEEE Inter-
national Conference on Advanced Information Networking and Applica-
tions, pp. 356–363 (2011)

[ST97] Shavit, N., Touitou, D.: Elimination trees and the construction of pools
and stacks. Theory Comput. Syst. 30(6), 645–670 (1997)

[TP14] Timnat, S., Petrank, E.: A practical wait-free simulation for lock-free data
structures. In: ACM Symposium on Principles and Practice of Parallel
Programming, PPoPP 2014, pp. 357–368 (2014)

[TSR14] Tofan, B., Schellhorn, G., Reif, W.: A compositional proof method for
linearizability applied to a wait-free multiset. In: Albert, E., Sekerinski, E.
(eds.) IFM 2014. LNCS, vol. 8739, pp. 357–372. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10181-1 22

