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Abstract 

 

An important mechanism that is essential to avoid error and is possessed by human beings 

is the ability to monitor one’s own cognitive functioning, often referred to as ‘action 

monitoring’. Force production is one example from numerous real life situations which 

requires precise and continuous action monitoring, in which an irreversible false decision 

during its execution could lead to highly dangerous situations. Despite its importance, most 

of the studies in the area of action monitoring investigated tasks with discrete response 

parameters (i.e., left or right hand responses during flanker task), leaving action monitoring 

during continuous tasks like force production insufficiently investigated. The general aim 

of the present research was to learn more about the response dynamics during a simple 

one-dimensional force production task so that the monitoring processes involved in the 

brain during the task execution could be better understood. Therefore, two studies were 

conducted. The first study (N = 48) investigated how force execution of a simple one-

dimensional force production task unfolds. The results from this study indicated that 

magnitude and timing of the force pulse (i.e., the response force parameters) were defined 

by the motor program even before response execution. As a force pulse is a ballistic process, 

an early definition of the response parameters seems to be an efficient monitoring strategy, 

as it allows for a fast force production and could provide information for error detection 

process. However, the process of determining these response parameters seemed to 

precede the process of determining the correctness of the response itself. The second study 

(N = 40) incorporated a modified Psychological Refractory Period (PRP) paradigm using 

two consecutive simple force production tasks, to investigate if force monitoring process 

during these two subsequent force tasks was modulated by different Response-Stimulus 

Intervals. This study showed successful replication of a PRP effect in an adapted force 

paradigm. On a behavioral level, PRP effect seemed to modulate not only Response Time, 

but also the response force parameters such as Peak Force and Time-to-Peak Force. 

Furthermore, PRP effect also seemed to modulate the neural correlates of force monitoring. 

Finally, three alternative models were postulated to elucidate how the different Response-

Stimulus Interval affected the information processing stages of two subsequent simple one-

dimensional force tasks. Taken together, findings from the second study could serve as an 

evidence that PRP effect is present in subsequent simple force production tasks, without 

the necessity of motor overlap between the first and the second task.
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I. Introduction and Theoretical Background  

 

1.1 Errors vs. Efficient Performance Monitoring  

 

The human body is a complex system comprising billions of cells which interact 

with one another, creating subsystems that enable an individual to perform different tasks 

in everyday life. To respond to environmental contingencies, human requires not only a 

system that generates a response in a certain way, but also a sufficient monitoring system 

to assure that an action is performed properly. When the monitoring system fails to perform 

its function properly or is somehow disrupted, an ‘error’ occurs. An ‘error’ is defined as 

the failure of a planned sequence of mental or physical activities to achieve its intended 

outcome when these failures cannot be attributed to chance (Reason, 1990). Generally, 

errors depend on two types of failure: (1) actions do not go as intended; (2) the intended 

actions are not the correct one. What differentiates these two types of errors is, for the first 

case, the desired outcome may or may not be achieved, while for the second case, the 

desired outcome cannot be achieved. Note that this study was focused on the first definition 

of error, thus the second type of error is irrelevant.  

Human being is a big contributor to errors in a working system. In term of 

understanding how human ‘contributes’ to an error, it is important to separate active and 

latent errors. Active error happens at the level of a frontline operator, whose effects can be 

felt almost immediately, while latent errors includes things such as poor design, incorrect 

installation, faulty maintenance, incorrect management decisions, and poorly structured 

organizations. A good example of both errors can be illustrated by a plane crash. Here, the 

crash is a consequence of a committed error. This error can be categorized as an active or 

a latent error, depending on how the situation unfolds. In this case, an active error is 

committed when the pilot crashed the plane unintentionally, for instance, due to a lack of 

attention or drowsiness. On the other hand, a latent error is committed when a previously 

unknown design malfunction (i.e., a faulty sensor that erroneously reported that the 

airplane was stalling during take-off) caused the system to automatically maneuver the 

plane strangely in a way that the pilot (i.e., the frontline operator) could not control, which 

resulted in a plane crash. Often, only ensuring that an active error is not committed does 

not guarantee for a safe system. Latent errors are more likely to be ‘hidden’ in a system 



2 
 

design of a routine process, thus posing a big threat to safety in a complex system, since 

they are often unrecognized and can result in multiple active errors. That being said, it is 

actually terrifying to think that even an action is done properly, a danger in numerous 

situations in life is sometimes unavoidable. A widely known real-life situation that 

exhibited how latent error occurred and how significant the consequences were, is the 

Chernobyl nuclear disaster, which was a result of a design flaw in the reactor system 

combined with human errors. Thus, a thorough understanding of a specific system is 

necessary to avoid unforeseeable error(s) that can lead to multiple active errors and 

potentially dangerous situation.  

An important mechanism that is essential to avoid errors and is possessed by human 

beings is the ability to monitor one’s own cognitive functioning (from now on, referred to 

as monitoring). In order to successfully conduct a motor action (for example, a simple 

motor action like moving from one point to another), human brain needs a mental 

representation of how this action could be done, using the available information (i.e., in 

this case: sensory information, memory, possible routes, means to get to the other spot, 

possible obstacles, et cetera). To create this mental representation, an adequate action 

monitoring system plays a significant role in detecting movement error and planning an 

appropriate reaction (i.e. immediately modify inappropriate movements, immediately stop 

before bumping into some obstacles). When access to information is limited for evaluation, 

or when organizing information becomes a difficulty, a monitoring process can be 

impaired (Chan et al., 2015) and therefore the probability of an error commission is 

increased.  

Numerous real life situations require very precise and continuous action monitoring, 

when the simplest mistakes could possibly lead to highly dangerous situations. One of 

many situations where an accurate monitoring system is essential to avoid dangerous 

situations is while producing force. Note that force production itself is regarded as a 

‘continuous task’, since it is a time-related activity and therefore requires continuous motor 

control during its execution (i.e., determining the response force parameters such as peak 

force and time-to-peak force) until the Peak Force is reached. Consequently, errors in force 

production are not exclusively errors in the process of selecting the ‘appropriate response’, 

which is usually the case in discrete choice tasks such as flanker or go/no-go tasks. In a 

force production task, there are two kinds of errors: (1) errors in response selection (e.g., 

while deciding to produce a high or low response force); (2) errors during the ‘program’ 

execution (e.g., failure to produce the exact force units planned during a specific time 
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interval, which leads to under/over-producing the response force). A rather ‘spectacular’ 

example that illustrates the necessity of continuous monitoring process during force 

execution would be, when a pilot of a fighter aircraft needs to apply a particular amount of 

force on the rudder pedal in order to maintain a straight and level flight while moving in a 

high speed. Another occasion when a precise and continuous force monitoring is highly 

necessary would be during a surgical operation, where the surgeon (or a machine controlled 

by surgeon) needs to apply an accurate amount of force when cutting a patient’s flesh and 

not damage the nerves or organs in a close proximity. However, even in less spectacular 

situations, like chopping vegetables or peeling fruits with a knife, an efficient force 

monitoring system is essential.  

 

1.2 Performance Monitoring in a Simple One-dimensional Force 

production  

 

As previously described, accurate force production requires a good synergy of not only 

cognitive and motor processes, but also efficient monitoring system. In order to obtain 

basic understanding regarding the nature of force production itself, one should start from 

the simplest task. This study started with an investigation of performance monitoring 

during a simple one-dimensional force production task (i.e., achieved through a simple key 

press along the vertical axis, enabling upward or downward finger movement). In this 

section, a general overview of various means of investigation used in this study were 

outlined.  

 

1.2.1 Univariate Approach: The Use of Event-Related Potentials  

Electroencephalography (EEG) allows for measuring the brain electrical fields via 

metal electrodes placed on the human’s head. The electrical fields were resulted from 

electro-chemical signals passing from one neuron to another. These so called electrical 

fields would be powerful enough to be measurable using noninvasive instruments (i.e., 

EEG devices) when a large amount (billions) of these very little signals are passed 

simultaneously in neural populations which are aligned geometrically, and are spatially 

extended (Cohen, 2017). So, what exactly ignites this electrical field? Basically, when a 

neuron receives new information, an electrical signal is transmitted. This electrical signal 
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triggers the release of chemicals known as neurotransmitter at special locations (known as 

synapses). As previously mentioned, a noninvasive instrument such as an EEG device can 

be used to measure the electrical signaling between the neurons via metal electrodes, 

usually used with a conductive gel to ensure a better contact between the metal electrodes 

and the scalps. Whenever a group of neurons are activated, local current flows (which vary 

in time) are produced (this flows consist of mainly Na+, Ca++, K+, and CL-). Every neuron 

creates a tiny electrical dipole between the soma (neuron’s body) and the apical dendrites 

(the neural branches), and this will cause the current flow to be pumped through the 

membrane channels of the neurons, in the direction governed by the membrane’s potential 

(Teplan, 2002). This process leads to excitatory or inhibitory postsynaptic potentials that 

add together in the cortex and extend to the surface of the scalp, resulting in a measurable 

voltage at the scalp (Luck, 2005). This voltage is what measured by EEG devices.  

Event-related potentials (ERPs) are described as very small voltages in the brain in 

response to specific events such as stimuli (Blackwood & Muir, 1990). ERP signals are 

actually EEG changes which are time-locked to sensory, motor, or cognitive events, and 

provide a safe non-invasive approach to investigate neural correlates of certain mental 

processes. They allow for observation of cognitive operations that happen from before the 

sensory information is delivered to the peripheral nervous system, until after a behavioural 

response is made. According to Peterson et al. (1995), ERPs reflect the summed activity 

of postsynaptic potentials produced when a large amount (thousands or even millions) of 

cortical pyramidal neurons fire in synchrony while information is being processed. In 

human beings, ERPs can be divided into 2 categories. The ERP signals peaking during the 

first 100 ms after a stimulus presentation are called ‘sensory’ or ‘exogenous’, since these 

signals are largely dependent on the physical properties of the stimulus. On the other hand, 

ERPs which are generated later reflect the moment when the stimulus is being evaluated – 

and are known as ‘cognitive’ or ‘endogenous’ ERPs since they reflect information 

processing. To extract ERPs from a vast amount of EEG data, the time points when a 

stimulus occurs and when a response is initiated have to be marked (as stimulus and 

response triggers). Using these triggers, a large amount of specific time-windows can be 

extracted from the continuous EEG data. These time windows are known as ‘epochs’, and 

are usually time-locked to one of these triggers (depending on the needs). The length of 1 

epoch is usually pre-defined (e.g., -300 ms before until 300 ms after a response is triggered). 

This whole procedure of extracting epochs from a single continuous EEG data is called 

‘EEG epoching’. The obtained epochs are then averaged. This averaging is important, 
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since it allows for filtering out all activities in the brain signal that are not related to the 

event of interest. To average out these unrelated signals, of course, an adequate amount of 

trials is required. 

Averaged ERP waveforms consists positive and negative deflections. A significant 

positive or negative deflection is termed as ‘component’. Usually, a component is indicated 

by its polarity and the approximate time points when it happens. For instance, a negative 

deflection that occurs approximately 100 ms after stimulus presentation is called “N100” 

(the letter ‘N’ indicates polarity, and the number ‘100’ indicates the time point when this 

deflection is observable relative to the onset of the event). Until recently, various ERP 

components were discovered and these component are known to be associated with certain 

processes. In force production paradigms, several components have been identified as 

indicators of different aspects of error processing as well as error-specific variations. In 

below sections, the roles of these components in force monitoring are discussed.  

 

 

1.2.1.1 Response-locked Event-Related Potentials  

The first and the most used ERP component in performance monitoring studies is 

the frontocentral error-(related) negativity (Ne/ERN), a sharp negative deflection peaking 

between 0 to 180 ms after error response onset (see Falkenstein et al., 1990). This 

component was said to be originated from the anterior cingulate cortex (ACC), which is 

located in the medial frontal cortex (see Dehaene, Posner, & Tucker, 1994; Ullsperger & 

von Cramon, 2001; Yeung et al., 2004). Ne/ERN reflects early error processing 

mechanisms. A component with similar characteristics, the correct response negativity 

(CRN), occurs after correct responses and has been found to index response uncertainty 

(e.g., Vidal, et al., 2000).  

The error positivity (Pe), which is an indicator of an error detection mechanism 

related to error awareness, peaks around 300 ms after an erroneous response (Nieuwenhuis 

et al., 2001; Steinhauser & Yeung, 2010). Although Pe has been neglected in recent force 

monitoring studies, it constitutes an interesting behavioural adaptation, error awareness 

and error evidence accumulation in general error-monitoring studies. For example, 

Nieuwenhuis et al. (2001) pointed out that the amplitude of Pe (but not the Ne/ERN) 

covaried to the degree of error awareness. This is supported by another study from 

Leuthold & Sommer (1998), which also provided evidence that Pe amplitude correlated 

with the salience of information that induced errors. Nieuwenhuis et al. (2001) also 
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reported that Pe correlated with behavioural adaptation after a committed error (i.e. the 

post-error slowing). What makes it particularly interesting to incorporate Pe into force 

monitoring is the fact that, unlike Ne/ERN that usually peaks before the peak force of a 

brief force pulse is reached, Pe usually peaks around 300 ms after the response onset. This 

is the point where the peak force of a brief force pulse is (often) already reached – making 

it a potentially interesting neural indicator for force-related error processing mechanisms.  

 

1.2.1.2 Feedback-locked Event-Related Potentials 

Ensuring that a force is produced accurately is a complex process, therefore most 

of the time human (aside from motor-experts) needs not only internal but also external 

monitoring, which is provided by external feedback following a force response. Feedback 

related negativity (FRN) is a widely known ERP component which was expected to follow 

the feedback in each trial, as this component reflects external error processing. FRN can 

be observed around 250 ms after an error feedback onset. According to the reinforcement 

learning theory, this component indicates prediction errors, such as if an outcome was 

worse than the expectation (Holroyd & Coles, 2002). FRN could also reflect error-related 

information that were not reflected in the Ne/ERN (i.e., first-indicator hypothesis, see 

Holroyd & Coles, 2002).  

FRN is often followed by the Feedback P3, which was defined as a positive 

deflection around 300 ms after the feedback onset. The literature suggested that Feedback 

P3 is affected by factors that also influence FRN (Sailer et al., 2010), in particular the 

conformity to expectations. In reward-related processes, an increased Feedback P3 

followed a larger magnitude of win or loss feedback (e.g., Yeung and Sanfey, 2004; Yeung 

et al., 2004, Hajcak et al., 2005). However, in term of directions, the literature also 

provided conflicting findings. For instance, Bellebaum and Daum (2008) as well as Hajcak 

et al. (2005) found a larger P3 amplitude only for the positive feedback, while Frank et al. 

(2005) observed an increase P3 amplitude for negative feedback. Furthermore, Holroyd et 

al. (2003) observed larger P3 amplitudes when reward was unexpected (i.e., larger than 

expected).  

 

1.2.2 Multivariate Approach: The Use of Multivariate Pattern Analyses  

Aside from the classical ERP components, the use of machine learning-based 

techniques has been increasingly popular nowadays in neuroscience research. Machine 
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learning itself is an implementation of algorithms and statistical models that computer 

systems use to perform a specific task effectively without using a priori knowledge or 

explicit instructions, usually relying on patterns and inference. A mathematical model 

(based on a ‘training set’ of a specific sample data) is created through the use of specific 

algorithms, in order to create a decision boundary that can be used to categorize data with 

similar characteristics/ patterns to different groups. Note that this decision boundary does 

not have to be linear. Machine learning is often seen as a subset of artificial intelligence, 

and is currently applied in a wide range of problems. Email filtering is one example of 

machine learning application in everyday life.  

One implementation of these machine learning algorithms in a form of 

chronometric, multivariate approach (multivariate pattern analysis / MVPA; see Bode et 

al., 2012; Bode & Stahl 2004) was used in the current study. To analyze neural data, MVPA 

classifiers are trained to predict information contained in the cognitive processes – directly 

from local spatial activation patterns. Despite the fact that MVPA has been used since 

decades ago, this method is currently experiencing vast development in term of its 

techniques. Recent studies have incorporated MVPA to analyze functional magnetic 

resonance imaging (fMRI) and EEG data (e.g., Haynes & Rees, 2006; Tong & Pratte, 2012; 

Bode & Stahl, 2014). Note that in comparison to fMRI, the use of MVPA on EEG data 

provides a far better temporal resolution (in the range of milliseconds). Utilizing the 

multivariate nature of EEG signals, different techniques of MVPA were used to predict 

stimulus types, decision outcomes, decision models’ parameters, as well as errors – all 

directly from the obtained brain activity patterns (e.g., Bode & Stahl, 2014; Bode et al., 

2012; Bode et al., 2014; Philiastides et al., 2006; van Vugt et al., 2012;).  The advantage 

of this approach becomes particularly apparent when no variation in ERP components was 

found to be linked to the specific cognitive process of interest. In other words, the use of 

MVPA does not require existing knowledge of the exact timing and location of a cognitive 

process, allowing a more explorative search for information related to the event of interest.  
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1.3 Performance Monitoring in Two Successive Simple One-

dimensional Force Productions: Challenges of the Psychological 

Refractory Period  

 

Aside from investigating how a simple force production involving a single button 

press unfolds, it is of the author’s interest to see what happened when a simple one-

dimensional force was produced successively in a very short time. In the context of ‘two 

successive tasks’, the current work will rely on a widely known dual task paradigm –the 

so called Psychological refractory period (PRP), which is described as a period of time 

during which the response to a second stimulus is significantly slower because the first 

stimulus is still being processed. A PRP paradigm, as described by Pashler (1994), required 

two successive speeded responses to be made, while the time interval between the two 

stimulus onsets, known as the Stimulus Onset Asynchrony (SOA) is varied. A PRP effect 

is induced when the SOA between the two stimuli is reduced, resulting in a slowing of the 

second response.  

So far, there are two popular theories that explain this effect. The first theory, the 

Central Capacity Sharing theory, postulates that dual-task interference is caused by a 

capacity limited process that allocates capacity in a graded fashion (Joliccoeur, 2002). To 

put it simply, the performance deficits during a reduced SOA emerge since there is a 

capacity limit of processes that can be run at the same time in the central processing 

mechanisms. These processes are, for example, memory encoding and retrieval, response 

selection, and other cognitive processes, which can originate from one or more tasks at the 

same time and happen before a motor response. A performance deficit (i.e., slowing in 

reaction time for the second task because of this shared cognitive capacity with first task) 

occurs when the central processing capacity reaches its maximum limit to process the 

cognitive processes required to execute the task(s) in a short period of time. What is 

noteworthy, this model considers that all stages of the two tasks, including the Central 

Processing stage such as selection of response, can proceed in parallel. This theory was 

supported by several empirical studies which demonstrated that the human information 

processing system is, in a number of different ways, sharply capacity-limited. For instance, 

a study by Miller (1956) suggested that one can only hold a limited amount of information 

in the short-term memory. However, other aspects of the processing system, for instance, 

the early stages of visual perception (Barbur et al., 1993), seem to show very large capacity. 
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For these aspects (of the processing system) with large capacity, capacity limitations could 

be the factor that induce bottlenecks in the flow of information processing. This theory is 

illustrated in Figure 1. 

 

 

Figure 1. An Illustration of the Central Capacity Sharing Theory. Adapted from Figure 

1B in Joliccoeur (2002, p. 3) 

 

 

Although some researchers (e.g., Heil, et al., 1999; Jolliccoeur, 2002; Meyer & 

Kieras, 1997; Tombu & Jolliccoeur, 2005) believe that people can parallel multitask, 

laboratory studies (e.g., Pashler, 1992; Pashler, 1994) suggested otherwise. Researchers 

nowadays (e.g., Lien & Schweickert, 2003; Ruthruff, et al., 2003; Sigman & Dehaene, 

2006; Jentzsch et al, 2007; Ulrich & Miller, 2008) seem to prefer the second theory, the 

Central Bottleneck Theory (see Welford, 1952) to explain PRP effect. This theory 

suggested that central mental processing can only process one task at a time. As a result, 

when a person needs to do the Central Processing stage for two tasks within a short period 

of time, the Central Processing stage of Task 2 is postponed, resulting in a slower reaction 

time for Task 2 (see Figure 2). It is important to note that, the only stage where an overlap 

is deemed ‘impossible’ to happen according to this model is the Central Processing stage. 

Thus, an overlap in other stages is possible (e.g., Perceptual Encoding for Task 1 and Task 

2 could happen at the same time). 
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Figure 2. An Illustration of the Central Bottleneck Theory. Adapted from Figure 2 in 

Pashler (1994, p. 5)  

 

In Figure 2, a cognitive bottleneck was illustrated to happen during the short SOA 

condition, when Perceptual Encoding of Task 2 finished before Central Processing of 

Task 1 is fully completed. Pashler (1992) used the analogy of a bank teller to describe the 

Central Bottleneck Theory. When a bank teller is faced with two customers almost at the 

same time, the customer that arrives later will experience the so-called bottleneck delay. 

 PRP effect was found to be existent in different paradigms incorporating discrete 

choice tasks (e.g., left and right hand response in a two-choice flanker task). For example, 

in an experiment conducted by Luck (1998), in which the participants were required to 

make two button-press responses for two consecutive stimuli (i.e., one to indicate the color 

of the first stimulus, and one to indicate the form of the second stimulus), a longer response 

time for the second stimulus was observed during the shorter SOA. In another experiment 

conducted by Tombu and Jolliceur (2002), participants were assigned to two tasks, the first 

task being a tone discrimination task and the second task being a shape-matching task. 

Different SOA was introduced and a response time delay caused by PRP effect was 

observed for the second task. There are many other studies investigating PRP effect, 

mainly debating whether this effect was caused by central capacity sharing, central 

bottleneck, or a combination of both.  
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 Until recently, researchers utilizing PRP paradigm as a mean to investigate the 

human cognitive architecture have been incorporating two discrete choice tasks, 

particularly focusing on response time for the second task. Thus, here the overlap of 

decision processes was investigated.  However, there have been no studies that investigated 

PRP effect in a subsequent continuous tasks like force production, which requires 

continuous motor control in its execution. The existence of a PRP effect in such subsequent 

tasks might modulate the information processing stages involved in the first and second 

tasks differently, in comparison to those involved in two discrete choice tasks. In the case 

of two successive simple force production tasks, more complex cognitive motor 

controlling processes are likely to be involved (i.e., to simultaneously execute a force 

production task and continuously monitor the task’s performance), as opposed to the 

discrete choice task. For instance, in discrete choice tasks, the response selection process 

is often regarded as the main stage of the whole task execution, that is mainly processed 

during the Central Processing stage. However, in a continuous task like force production, 

the ‘main task’ includes not only a decision of the amount of force needed to be produced, 

but also other processes like: deciding how long the task execution is going to last (i.e., 

decision regarding how much time is needed to reach the Peak Force), as well as how many 

force units (see PFUM; Ulrich & Wings, 1991) are going to be deployed during the whole 

time period until the Peak Force is reached – which needs to be continuously monitored to 

ensure that the response force produced is as accurate as possible. That being said, the 

increased complexity of a continuous task might inflict further consequences – beside the 

prolonged response time for the second task, and these consequences might be observable 

not only on a behavioral level, but also on neural level.  
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1.4 Recent Developments on Force Production Monitoring     

   

Despite the fact that our everyday activities usually consist of continuous 

movements, most of the studies in the area of action monitoring investigated tasks with 

discrete response parameters. This means, the response alternatives were clearly separated 

by effectors (e.g., left and right hand responses in two-choice flanker tasks, for review see 

Gehring et al., 2012). However, such binary left-or-right responses (e.g., Armbrecht et al., 

2013; Stahl, 2010) are likely to be less complicated (in term of its motor execution) than a 

continuous force response which requires precise monitoring in a specific time interval, 

and are consequently easier to monitor.  

The first to investigate action monitoring in a performance task with a continuous 

response parameter (i.e., the response force) in a task where the participants were required 

to produce a certain amount of force by pressing a button was De Bruijn et al. (2003). A 

mathematical model which accounted the relevant aspects of force production itself is 

called the Parallel Force Unit Model (Ulrich & Wing, 1991). In their study, the authors 

explained that two mechanisms determine the amount of force produced by the muscles: 

(1) the number of recruited force-producing motor units (so called force units; i.e., the 

more force units are activated, the higher the resultant response force; note, one motor unit 

consists of the muscle fibres activated by one motor neuron); and (2) the duration of force 

unit activation (i.e., the longer the force units are activated, the higher the resultant 

response force).  

In De Bruijn’s study on force production monitoring, the participants pressed a key 

such that the maximum of the produced force (peak force, PF) reached an amount within 

an individually defined range in one of two force conditions: low target force (e.g., 250–

549 cN) and high target force (e.g., 550–850 cN). Thus, all responses with a force above 

and below these ranges are incorrect, which means there is not just one incorrect outcome 

but an unlimited number (for the given example, PF < 250 cN or PF > 850cN), which 

might explain why it is more difficult to monitor the quality of a continuous response 

parameter compared to binary left-or-right responses (e.g., Armbrecht et al., 2013; Stahl, 

2010). Interestingly, De Bruijn et al. (2003) showed that for the correct responses, higher 

CRN amplitudes were observed during the high target force condition, compared to the 

low target force condition. This indicates that the action monitoring system was also 

sensitive to the magnitude of force required. Furthermore, the Ne/ERN amplitude was 
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increased only for force selection errors, but not for force execution errors. A force 

selection error means that, for example, in a low force condition a high force was selected 

(e.g., higher than 549 cN in the above-mentioned low target force condition), whereas a 

force execution error occurs when participants aimed for the correct low force range but 

produced an even lower force. Based on these findings, Armbrecht et al. (2013) reasoned 

that the force selection errors might not reflect the actual errors per se, but could be directly 

linked to controlling different aspects of the specific response dynamics (i.e., preparing the 

response force, or initiating the timing in response execution). To investigate this 

possibility, they assessed the effects of two response parameters on the Ne/ERN and CRN 

independently: (a) peak response force (PF) and (b) Time-To-Peak (TTP, i.e. the time 

period between response onset and maximum point of the force pulse). Participants were 

instructed to produce four types of isometric force pulses (i.e., high PF with a short TTP, 

high PF with a long TTP, low PF with a short TTP, and low PF with a long TTP). 

Independent of response accuracy, the amplitudes for both Ne/ERN and CRN were higher 

in the high target force condition compared to the low target force condition (similar to de 

Bruijn et al.’s findings). Interestingly, Armbrecht et al. also found significantly reduced 

amplitudes for both Ne/ERN and CRN for long TTP compared to short TTP, independent 

of response accuracy. However, they found no error-related effects (which would 

correspond to force execution errors in Bruijn et al.’s terminology) for Ne/ERN and CRN. 

Taken together, these studies provided evidence that Ne/ERN and CRN are affected by 

continuous response parameters (peak force and TTP) as well as by error-specific 

variations, but the functional meaning of the Ne/ERN and CRN in these tasks was still not 

clear.   

  Notably, neither de Bruijn et al. (2003) nor Armbrecht et al. (2013) found clear 

neural evidence of error processing during force execution. However, a previous study on 

pianists, who are highly trained in force execution, showed that expertise is linked to more 

precise response dynamics of finger presses (Parlitz et al., 1998). The results suggest that 

the action monitoring system is indeed capable of tracking response force during execution. 

Taking these results into consideration, the absence of effects during force execution stage 

in de Bruijn et al. (2003) and Armbrecht et al. (2013) studies could be due to the lack of 

substantial training for the participants.  
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1.5 The Current Research       

  The studies outlined above found variations depending on the force levels, yet it 

remains unclear how these differences would unfold during the force execution stage. 

Understanding how force execution unfolds was the focus of the first study. By modifying 

the force production paradigms used in the previous studies, an attempt to gather more 

information about response dynamics in a simple one-dimensional force production, as 

well as to elucidate the time course of information relevant to the monitoring processes 

was made. To do this, not only classical ERP components but also a multivariate approach 

was used to find pattern in the brain activity to distinguish two different experimental 

conditions (i.e., different force conditions and response quality), and to predict continuous 

cognitive variables such as response force parameters (i.e., Peak Force and Time-to-Peak).   

The second study was designed to investigate the course of two subsequent simple 

one-dimensional force tasks. In such subsequent tasks, depending on the length of the 

interval between the two tasks, the information processing stages (which consist of 

different processes such as response planning and error monitoring) for the second task 

might be somehow impaired or less efficient (i.e., response time for the second task is 

prolonged when the interval between the two tasks is very short). Such impairment on the 

second task’s processing has been widely known as a ‘PRP effect’, and has been observed 

in studies using two subsequent discrete tasks such as flanker tasks. It is particularly 

interesting to see how varying the length of interval between subsequent force tasks would 

modulate the processing of the latter task. Thus, an adapted PRP paradigm for two 

subsequent force production tasks was used in the second study, to understand how one or 

more parts in the information processing stages of a continuous task such as force 

production is affected by different Response-Stimulus Interval / RSI (i.e., an adapted 

version of Stimulus Onset Asynchrony / SOA used in the second study’s paradigm). A 

further challenge would be, to explain where in the information processing stages the PRP 

effect comes into play, and how it modulates the second task’s response parameters on a 

behavioural as well as neural level.   
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II. Empirical Evidence  

 

2.1 Study 1  

 

2.1.1 Objective of the Study  

  The first study was focused on investigating action monitoring during force 

execution in a simple one-dimensional force production task. The general idea was to learn 

more about response dynamics in force production, and to elucidate when information 

relevant to the monitoring processes (i.e., response force parameters, error specific 

information) becomes available and was reflected in brain activity. For this reason, two 

approaches were used: (1) classical ERP components, and (2) a chronometric, multivariate 

approach (e.g., Bode & Stahl, 2014). Using the latter method provides an advantage in 

addition to the classical univariate approach: it allows for identifying the onset of the 

availability of specific information regarding response parameters (i.e. response quality, 

force magnitude, TTP) in distributed patterns of brain activity. It can also be used – by the 

means of multivariate regression – to predict single-trial response parameters from brain 

activity patterns. This multivariate approach has been used successfully in detecting 

movement intentions (Jochumsen et al., 2016), classifying different movements when 

force and speed are varied (Jochumsen et al., 2013), as well as error detection before an 

overt response in a digit-flanker task (Bode & Stahl, 2014).  

  In order to focus on force execution, a modified version of force production 

paradigms from preceding studies (de Bruijn et al., 2003; Armbrecht et al., 2013) was 

utilized by using just one target force range (with two possible force execution errors: 

responses above the target force range, here referred to as the “too high condition” and 

below the target force range, referred to as the “too low condition”). The decision to 

incorporate only one target force range was made to fully eliminate force selection errors 

and to further diminish the need of substantial training of different target forces. To 

minimize confounding factors which might be introduced by further TTP variations, 

participants were further trained to produce only one specific brief force pulse with a short 

TTP in each trial. Thus, participants could not confuse the required target range with the 

target pulse length. In each trial, force parameters could be defined in terms of PF and TTP, 
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while errors could only be defined as missing the target force range (i.e. under-producing 

or over-producing the required force).  

  The modified paradigm used in this study allows for linking the classical ERP 

components to different aspects of response dynamics. First, several contrasting 

hypotheses for Ne/ERN as well as CRN were tested: if the Ne/ERN merely reflects error 

monitoring (but not force magnitude monitoring), no difference between the Ne/ERN in 

the two error conditions (too low and too high) would be expected. However, for both error 

conditions, the Ne/ERNs should be larger than the CRN. If the observed components are 

sensitive to the force magnitude but not to the correctness of the response, as suggested by 

Armbrecht et al. (2013), the components’ amplitudes should be scaled accordingly to the 

conditions (i.e., smallest when under-producing the force, medium when reaching the 

target force range, and highest when over-producing the force). If the components 

happened to be reflect both error processing and force production monitoring, identifying 

clear differences between conditions might be more difficult.  

  Secondly, the Pe component was investigated. Although Pe has been neglected in 

recent force monitoring studies, this component establishes an interesting indicator of 

aware error detection (e.g., Nieuwenhuis et al., 2001) as well as the accumulation of error 

evidence (e.g., Steinhauser & Yeung, 2012). The Pe usually peaks around 300 ms after 

response, which in this case after the peak force is usually reached, therefore making the 

Pe an interesting measure in term of force-related error detection.  

  The FRN was the third ERP component investigated in this study, since this 

component reflects externally-induced mechanism of error processing. According to the 

first-indicator hypothesis (see Holroyd & Coles, 2002), if an error is already detected 

during the time of responding, a feedback would not provide additional information, which 

means that error-related effects should not be reflected in the FRN (but only in the 

Ne/ERN). On the other hand, if errors were not detected at the time of responding, the 

(external) feedback would serve as the first indicator of error commission, which means 

that the FRN (but not the Ne/ERN) should reflect error-related information (Stahl, 2010).  

  The second motivation for this first study was to better understand how force 

execution process unfolds. To do this, a chronometric multivariate approach (MVPA; see 

Bode et al., 2012; Bode & Stahl, 2014) was used. This multivariate approach takes into 

account not only spatial but also temporal aspects of force production. The goal was to 

investigate if information related to a force response (i.e. response quality / correctness, 

types of error, force magnitude and TTP) could be foreshadowed from the spatially-
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distributed ERP signals in small, consecutive time-windows while the response was 

planned and subsequently executed. This technique allows for detecting when (before 

and/or after the response onset) information that predicts the response dynamics of single 

trial response force parameters (i.e., PF, TTP) becomes available in the brain activity 

pattern, as well as whether the target force range will be missed (errors vs. correct 

responses), or, in case where an error is committed, force will be under- or overproduced. 

These analyses might, beyond clarifying the role of ERP components in force monitoring, 

further explain how a simple 1-dimensional response force is produced, i.e. how early 

specific response information is set up and locked in, which would be essential for early 

error processing in the current task. 

 

2.1.2 Method  

2.1.2.1 Participants  

Seventy-eight participants (46 females) from the University of Cologne 

participated in this study. Due to insufficient number of errors (less than 10 trials per 

condition) and technical artefacts, data from 30 participants were excluded. The analyses 

reported here were based on data from the remaining 48 participants (33 females, age 

range: 17 to 44 years; mean ± SD: 25.47 ±  years). All participants had normal or 

corrected-to-normal vision, and were right handed. Informed consent was obtained from 

all participants, and they were rewarded with course credit for their participation.  

 

2.1.2.2 Apparatus  

  A custom-made force-sensitive key, mounted on a board which provided full 

forearm support (see Figure 4), was used to record the behavioural data. Participants 

initiated a response by briefly pressing the force key with their right index finger. The 

response force was measured by a strain gauge attached on the fixed end of a leaf spring, 

which was held by an adjustable clamp at one end, leaving the other end free for the 

participant to press. When participants pressed the free end of the force key, an analogue 

electrical signal which corresponds to the exerted force was produced. This signal was 

recorded with a sampling rate of 500 Hz. A chin rest with an adjustable height was used to 

maintain a constant and stable posture while keeping a distance of 56 cm from the monitor.  
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2.1.2.3 Maximum Voluntary Force  

  Before the experiment, participant’s maximum voluntary force (MVF) was assessed. 

This assessment was necessary to determine the individual force ranges (defined in % 

MVF; see below) as MVF varies across participants. The participants received an 

instruction to press the force key with their right index fingers as hard as possible without 

moving the forearm. This procedure was repeated ten times in a row. A start signal initiated 

each of the ten key presses. The individual MVF was calculated by averaging the PF of the 

last seven key presses (e.g., Armbrecht et al., 2013). Five force ranges relative to the 

individuals’ MVF were then defined (target range: 46–54% MVF; too high:  > 60% MVF; 

slightly too high: 54–60% MVF, slightly too low: 40–46% MVF; too low < 40% MVF). 

 

2.1.2.4 Experimental Task  

  Participants were tested individually in a 50-minute experimental session. The 

experiment comprised six blocks, each consisting of 44 trials. Each trial began with a 

presentation of a white square in the middle of the screen, serving as a start signal. 

Participants were then required to produce a brisk, isometric force pulse with their right 

index finger. To minimize TTP variability, a timed-feedback presentation was used (the 

white square became red if the participants failed to reach the peak force after 180 ms) in 

the first block. In all blocks, force feedback was presented for 700 ms after a response was 

made, to indicate whether the participants successfully reached the target range (see Figure 

3): The green area - located in the middle of the force ruler corresponded to the ‘correct’ 

area. The upper red area corresponded to the too high condition, and the bottom red area 

corresponded to the too low condition. The yellow areas represented the ‘slightly too high’ 

and ‘slightly too low’ conditions (the yellow areas were not included as separate conditions 

in the final analyses). A white cursor (see Figure 3B) represented the force level that was 

produced in the respective trial. The feedback presentation was followed by a black screen 

with a randomly jittered inter-trial duration (300-600 ms).  
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Figure 3. (A) Time course of each trial and (B) all feedback types in the force task. A 

response was indicated by a key press; the feedback was presented according to the force 

produced in the respective trial. 

 



20 
 

 

Figure 4. Experimental Setup: a strain gauge attached on the fixed end of a leaf spring 

(measurements: 110 x 19 x 2 mm) held by an adjustable clamp at one end of the key was 

used to measure response force; participant pressed the free end of the key to produce an 

analogue electrical signal corresponding to the exerted force. 

 

 

2.1.2.5 Data Acquisition  

Behavioural Data 

  Response time (RT) was defined as the first time point when the participant’s 

response force exceeded 50 cN (i.e. response onset), measured from the stimulus onset. 

Peak force (PF) was defined as the maximum of the force (in cN) of a single trial force 

pulse. Time-to-Peak force (TTP) was defined as the time point (measured from response 

onset) at which the peak force was reached. Frequency of correct responses, frequency of 

too high responses, frequency of too low responses, mean RT, mean PF, and mean TTP 

were determined separately for each condition and each participant.  

 

Electrophysiological Data  

  EEG data were obtained from 61 scalp electrode sites according to the standard 

international 10–20 system (Jasper, 1958). The active Ag/AgCl electrodes (actiCAP, Brain 

Products) were referenced against the left mastoid. The vertical electrooculogram (EOG) 

was recorded from an electrode infraorbital to the left eye and the horizontal EOG was 
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recorded at the outer canthi of each eye. The EEG was continuously recorded at a sampling 

rate of 500 Hz using BrainAmp DC (Brain Products).  

 The electrophysiological data were time-locked to (a) the response onset; (b) the 

Time-To-Peak; and (c) the feedback onset. In the case of response-locked and feedback-

locked analyses, data were epoched ranging from 100 ms before until 600 ms after response 

(or feedback) onset. For the Time-To-Peak-locked analyses, data were epoched ranging 

from 300 ms before until 300 ms after peak force was reached. Baseline correction was 

performed with the period of 100 ms before response/feedback onset for the response-

locked and feedback-locked analyses, and with the period of 100 ms before stimulus onset 

for TTP-locked analyses. An ocular correction algorithm was applied in order to reduce 

the impact of eye movements (Gratton, Coles, & Donchin, 1993), followed by a second 

baseline correction. Afterwards, an artefact-rejection procedure was carried out to 

eliminate contaminated trials exceeding maximum/minimum amplitudes of ± 100 V. The 

remaining trials were averaged. A current source density (CSD) analysis was then 

performed on the averaged ERP waveforms. This analysis accounted for the curvature of 

the head using a spline algorithm (Perrin et al., 1989), and was performed to reduce the 

effect of neighbouring currents. The CSD signals (order of splines = 4; lambda = 10-5; 

maximal degree of Legendre polynomials = 10) were computed for each electrode site by 

taking the second derivative of the distribution of the voltage over the scalp. Lastly, the 

ERP components (Ne/ERN, CRN, Pe/Pc for correct trials and FRN; both peak amplitudes 

and mean amplitudes as the standard indicator for the area under the curve in the defined 

time ranges – hereafter referred to as ‘area’) were determined separately from the 

individual mean CSD-ERP waveforms at the electrode sites FCz and Cz. Ne/ERN (CRN) 

was defined as the most negative peak in a time window ranging from 0–180 ms after 

response onset at electrode site FCz. Pe (Pc) was defined as the most positive peak in a 

time window ranging from 150–300 ms after response onset at electrode site Cz. Finally, 

the FRN was defined as the most negative peak in a time window ranging from 150–250 

ms after feedback onset at electrode sites Cz and FCz. The selected time windows and 

electrode sites for each component were in line with previous studies (e.g., de Bruijn et al., 

2003; Falkenstein et al., 2000).   
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2.1.2.6 Univariate Statistical Analyses  

  Several repeated-measures analysis of variance (ANOVA) were conducted for the 

within-subject factor force range (correct, too high, too low) for all behavioural measures 

(RT, PF, TTP, ΔRTpost, ΔPFpost) using SPSS 23. Due to low number of error trials (less 

than 6 trials), the slightly too high condition and slightly too low condition were not 

incorporated for the separate analyses (but the trials were included for the regression 

approach of MVPA). Separate ANOVAs with the within-subject factor force range were 

further performed for the respective ERP components’ peak amplitudes (Ne/ERN, CRN, 

Pc, Pe) and the components’ area measures. A two-way ANOVA with the within-subject 

factors force range (correct, too high, too low) and electrode site (FCz and Cz) was 

performed for the FRN peak amplitude. The electrode factor was used here as the source 

of the component was less clear compared to the other components. Significant ANOVA 

results were followed up using Bonferroni adjusted post-hoc tests. Level of significance 

were adjusted using Geisser and Greenhouse (1958) correction in case the sphericity 

assumption was violated. Effect sizes are reported in terms of partial eta² (ηp
2). 

 

2.1.2.7 Multivariate Pattern Classification Analysis 

 Multivariate pattern classification analysis (MVPA) was used to find the earliest 

time point after stimulus presentation that allowed for decoding the response outcome from 

distributed spatio-temporal patterns of ERPs. In this study, two types of MVPA analyses 

were conducted using the Decision Decoding ToolBOX (Bode et al., 2019). For the first 

set of analyses, support vector machine classification (SVC) was used in a moving analysis 

window approach to decode the following conditions in the force task: (1) correct vs. too 

high condition; (2) correct vs. too low condition; (3) too high vs. too low condition. 

Additionally, too high and too low conditions were aggregated to one condition which was 

referred to as the incorrect condition, and an additional SVC analysis for incorrect vs. 

correct was conducted. As the number of trials in the too high and too low condition was 

imbalance (with the ratio of 2:3), the number of trials for these two conditions was balanced 

for both the training and test data sets of the incorrect condition. In all cases, the moving 

analysis windows were applied to the brain activity pattern before and after the response 

onset. For the second set of analyses – aimed at identifying the first time point at which 

the response parameters (PF, TTP) were decodable –support vector regression (SVR) was 

used, which allows the decoding of continuous outcome variables. 
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Classification Analyses 

 For the first set of classification analyses using SVC, each participant’s artefact-

cleaned data was sorted into three groups with respect to the force produced: (1) correct; 

(2) too high; (3) too low. For an additional correct vs. incorrect analysis, group 2 (too high) 

and group 3 (too low) were combined into one group (incorrect condition). The EEG 

epochs (for all groups) were time-locked to the response onset and (additionally) the time 

point when the peak force was reached (TTP). Then, six classification analyses were 

conducted to analyses three pairwise classification analyses for both response-locked and 

TTP-locked data, respectively. For the main classification analyses (response-locked), data 

starting from 150 ms before response onset was included since Bode and Stahl (2014) were 

able to predict whether responses would be erroneous or correct from about 100 ms before 

response onset. As the task was to reach a specific maximum force, and the TTP point 

marked the end point of the force production phase, it was of interest to decode information 

in neural signals leading up to this time point, mirroring the classical ERP analyses. For 

these classification analyses, data starting from 300 ms before the peak force and after the 

peak force was reached were included.  

 For each individual pattern classification analysis (correct vs. too high; correct vs. 

too low; too low vs. too high; correct vs. incorrect) the following steps were performed. A 

non-overlapping spatio-temporal analysis time-window of 10 ms that contained 5 data 

points for each of all 61 channels was used, covering the entire epoch (cf., Bode & Stahl, 

2014). For each trial, all data points included in this window were transformed into vectors, 

to represent the spatio-temporal patterns associated with each condition. These were then 

randomly assigned to ten separate sets. The linear classifier (using the default 

regularisation parameter C = 1) was trained on vectors from the two conditions of interest 

by interfacing with the LIBSVM toolbox (Chang & Lin, 2011). Importantly, only 90% of 

the data (i.e., 9 of the 10 sets) were randomly drawn and were used to train the classifier. 

Based on these exemplars, the classifier estimated a decision boundary that optimally 

separated exemplars from the two classes (i.e. categories). The vectors from the remaining 

independent 10% of the data were subsequently used for testing the classifier (Bode et al., 

2019). Note that in order to avoid biased results because of an imbalanced trial numbers 

(i.e., samples), the trial numbers for conditions before dividing the data into training and 

test sets were balanced. Note that only the smaller number of trials of the two conditions 

were used, and the trials of the condition with larger trial numbers were randomly drawn 
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to match this number. This means, there was an equal number of trials in both the training 

set and the test set, and the number of exemplars was always the same between conditions.  

 The percentage of correct classifications (decoding accuracy) is based on the 

estimated decision boundary served as the outcome measure. Above chance classification 

indicates that the data from the respective analysis time window contained information 

about the two conditions, while chance-level classification (50% with two classes) 

suggests no evidence for such information. In order to minimise the risk of false positive 

results when determining the decoding accuracy, the classification process was first 

repeated using a 10-fold cross-validation procedure in which each set containing 10% of 

the data served as test data once while the classifier was re-trained on the remaining 90% 

of the data, until all of the sets were independently used for testing once. In addition, to 

avoid potential drawing biases, all ten cross-validation steps were then repeated ten times 

in an identical fashion, but with newly randomly drawn 10 sets for training and testing, 

resulting in a total of 100 analyses. The average of all of these analysis steps constituted 

the estimate of the individual classification accuracy for the respective analysis time 

window.  

 Finally, statistical testing was performed at group-level. For this, a series of 

Bonferroni-corrected t-tests for each (10 ms) analysis time window were conducted to test 

the performance of the classifier against empirical chance results from the near-identical 

shuffled-labels analysis (Bode et al., 2019), in which the same data and the same labels 

were used in the same number of cross-classification steps (and iterations thereof), but the 

assignment of labels to data was randomly assigned for each step. This means, both the 

real and the empirical chance distributions were composed of the average accuracies (or 

Fisher-Z transformed correlation coefficients for SVR) across 100 analyses per participant 

(10 x 10 cross-validation steps). The decision to use the empirical chance distributions was 

made because it provided a stricter test than testing against the theoretical chance level of 

50% (Bode et al., 2012; Bode & Stahl, 2014).  

 

Support Vector Regression (SVR) 

For this analysis, all artefact-cleaned data (without further grouping into any 

condition) were included. A slightly longer interval of the same EEG epochs (response-

locked, -400 ms to 300 ms related to response onset) and the same set of parameters for 

the spatio-temporal analysis (non-overlapping analysis time windows of 10 ms that 

included 5 data points from each of the 61 channels) were used as for the classification 
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analysis. The decision to include data points starting at 400 ms before response onset for 

SVR was made because if evidence regarding erroneous response was present in the brain 

already around 100 ms before response onset (see Bode & Stahl, 2014), information 

regarding response related parameters (i.e. PF and TTP) might be present in the brain 

activity pattern even earlier. The model was again trained on vectors from all data using 

LIBSVM (we used the default parameters epsilon-SVR = 3 and C = 1). To estimate the 

regression model, data from all trials (including the slightly high force/slightly low force 

conditions) were again, randomly divided into 10 equally-sized sets. Out of these, 9 (90% 

of all data) sets were randomly drawn and used to train the model, while the left-out one 

(10% of all data) was used for testing. As before, a 10-fold-cross validation procedure was 

then applied for which each data set was used for testing once and the other 9 were used 

for training. The same strict 10-times repetition of the entire cross-validated analysis was 

conducted as described above. The only difference to the classification analysis was that 

the results of SVR are individual correlation coefficients between the predicted variable 

(PF or TTP) based on the regression model and their true values, averaged across all 

iterations for each given time window. a Fisher-Z transformation for the correlation 

coefficients was conducted, and the final measure was one average coefficient per 

participant per analysis time window, reflecting information regarding the condition of 

interest (e.g., Bode et al., 2014). In other words, a significant coefficient means that 

information regarding PF (or TTP) was represented in brain activity in the respective 

analysis time window. The same analysis was then conducted with randomly shuffled 

labels (i.e., PF or TTP values) for each participant and each analysis time window to obtain 

an empirical distribution of regression results under the null hypothesis for each analysis 

step. Group level Bonferroni-corrected t-tests were then used to compare the real empirical 

results with the shuffled label SVR results for each time window.  
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2.1.3 Results  

 

2.1.3.1 Behavioural Data  

The first set of analyses was done to investigate whether responses for the different peak 

force ranges classified as too high, correct and too low also differed with respect to TTP. 

The respective ANOVA showed that Force Range had a significant effect, F(2,47) = 22.79, 

p < 0.001, ηp
2 = 0.245. The longest TTP was observed in the too high condition (252.74 ± 

13.42 ms), followed by the correct condition (245.38 ± 15.56 ms) and the too low condition 

(212.95 ± 12.53 ms). Follow-up post-hoc tests confirmed significant differences between 

the correct and the too low condition (p < 0.001), as well as between the too high condition 

and the too low condition (p < 0.001), but not for the too high condition and the correct 

condition (p = 0.999). No significant Force Range effect was observed for RT, F(2,47) = 

0.325, p  = 0.723. Distribution of response types was also investigated (see Figure 5), and 

the correct responses were found to be the most frequent (46.44 ± 1.39%), followed by the 

too low condition (18.82 ± 1.30%) and the too high condition (12.81 ± 0.82%).  

 

 

Figure 5. Average force distributions for all six blocks (N=48) 
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2.1.3.2 Electrophysiological Data  

Response-locked and TTP-locked Averages  

 A series of ANOVAs was conducted, each testing the effect of the within-subjects 

factor Force Range (conditions: too low, correct, too high) on the peak amplitude in the 

time window of interest (specific for each ERP component) at the respective channels, as 

described in the method section. Identical analyses for the same components were 

conducted with data time-locked to the response and to the TTP, respectively. The Force 

Range did neither affect the response-locked Ne/ERN peak amplitude (CRN for the correct 

condition), F(2,47)  = 3.08, p  = 0.050, ηp
2  = 0.062, nor Ne/ERN area, F(2,47)  = 0.86, p  

= 0.424 (see Figure 6A). The additional TTP-locked analyses for Ne/ERN (see Figure 6B) 

showed a similar pattern of results. Neither Ne/ERN peak amplitude, F(2,47)  = 0.59, p  = 

0.554, ηp
2  = 0.025, nor Ne/ERN area, F(2,47)  = 1.68, p  = 0.197, ηp

2  = 0.068, showed 

significant effects.  

 Significant effects of Force Range were detected for both response-locked Pe peak 

amplitude, F(2,47)  = 3.77, p = 0.030 , ηp
2 = 0.141, and Pe area, F(2,47)  = 6.98, p = 0.002, 

ηp
2 = 0.233, at Cz (Figure 6C). Post-hoc tests showed significant differences for Pe area 

between the correct condition (11.29 ± 1.40V/cm2) and the too high condition (15.42 ± 

2.26V/cm2, p = 0.017), as well as between the too low condition (9.95 ± 1.26V/cm2) 

and the too high condition (15.42 ± 2.26V/cm2, p ≤ 0.001). A near-identical pattern of 

results for the TTP-locked analyses for Pe peak amplitude and areas was also observed 

(see Figure 6D). Significant effects of Force Range were observed for both Pe peak 

amplitude, F(2,47)  = 7.521, p < 0.001 , ηp
2 = 0.246, and Pe area, F(2,47)  = 15.569, p < 

0.001, ηp
2 = 0.471, at Cz. Post-hoc tests showed significant differences for Pe area between 

the correct condition (10.36 ± 1.27V/cm2) and the too high condition (16.72 ± 

1.85V/cm2, p < 0.001), as well as between the too low condition (9.87 ± 1.24V/cm2) 

and the too high condition (16.72 ± 1.85V/cm2, p ≤ 0.001). Highly similar post-hoc 

results pattern for Pe peak amplitude were observed for both response-locked and TTP-

locked results. Additionally, response and time-to-peak locked analyses for correct vs. 

incorrect (combination of too low and too high trials) were also presented (see Figure 7) 

to give a better illustration regarding the general differences between the correct and 

erroneous conditions.  
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Figure 6. Averaged event-related potentials of the force task time-locked to the response 

onset (A, C), time-locked to the Time-To-Peak (B, D), and time-locked to the feedback-

onset (E, F) for the two electrode sites of interest FCz (A, B, F) and Cz (C, D, E) for error–

related negativity (Ne/ERN), error positivity (Pe) and feedback-related negativity (FRN). 
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Figure 7. Averaged event-related potentials of the force task for correct vs. incorrect 

condition time-locked to the response onset (A, C), time-locked to the Time-To-Peak (B, 

D), and time-locked to the feedback-onset (E, F) for the two electrode sites of interest FCz 

(A, B, F) and Cz (C, D, E) for error–related negativity (Ne/ERN), error positivity (Pe) and 

feedback-related negativity (FRN). 
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Figure 8. Topography distribution for the ERP signals 

 

Feedback-locked Averages  

  The ANOVAs for FRN peak amplitude (see Figure 6E, F) revealed a significant 

effect of Force Range at Cz, F(2,47) = 6.43, p = 0.002, ηp
2 = 0.120. Post-hoc comparisons 

showed that FRN peak amplitude of the too low condition (-5.08 ± 1.95V/cm2) was 

significantly more negative than of the correct condition (0.45 ± 1.88V/cm2; p = 0.002). 

No significant differences were observed between the too high condition (-3.05 ± 1.87 

V/cm2) and the other two conditions (ps > 0.10). A near-identical pattern of results was 

observed when the FCz electrode was used to determine the FRN. Here, FRN area was not 

investigated because for a relative negative component, the area is usually not very 

informative.  

 

2.1.3.3 Multivariate Pattern Classification 

 

To investigate whether error-specific information is predictable from the 

distributed ERP signal, and to identify when (i.e., time point(s)) this error specific 

information is decodable from brain activity, the first six sets of multivariate classification 

analyses were conducted. The first three classifications were conducted using response-
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locked ERP data (see Figure 9), and the other three were conducted using TTP-locked ERP 

data (see Figure 10). For each analysis, each pair of the defined force ranges were used as 

distinct classes for the classifier, each time using a moving-window approach with 10 ms 

analysis time windows: correct vs. too high (Figure 9A,10A), correct vs. too low (Figure 

9B, 10B), and too high vs. too low (Figure 9C, 10C). We also conducted a correct vs. 

incorrect classification analysis (Figure 11) to investigate whether a more ‘general’ error-

related processes could be reflected in the ERP signal.  

 

Figure 9. Classification accuracies of group classifications and permutation test results 

using multivariate pattern analysis (Support Vector Classification, SVC, A-C), time-

locked to the Response Onset (R), for (A) correct vs. too high classification, (B) correct vs. 
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too low classification, (C) too high vs. too low classification; corrected for multiple 

comparisons (N = 48; p < .05; error bars indicate standard errors of the mean; grey time 

windows indicate significant accuracy). 

 

Figure 10. Classification accuracies of group classifications and permutation test results 

using multivariate pattern analysis (Support Vector Classification, SVC, A-C), time-

locked to the Time-to-peak (TTP), for (A) correct vs. too high classification, (B) correct 

vs. too low classification, (C) too high vs. too low classification; corrected for multiple 

comparisons (N = 48; p < .05; error bars indicate standard errors of the mean; grey time 

windows indicate significant accuracy). 
 

The main (response-locked) classification results (Figure 9) showed significant 

classification accuracies for all three analyses. For all three analyses, no evidence for 
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substantial prediction before response onset was found (0 ms), but several significant time 

windows between response onset and the average TTP (ranging between 213 and 253 ms, 

see behavioural data) were identified, indicating that information about the quality of the 

response outcome was available in brain activity before the actual maximum force was 

reached. The additional TTP-locked classification analyses (Figure 10) confirmed that 

information regarding the quality of the response outcome was available as early as 80-

110 ms before peak force was reached. Interestingly, both the response-locked and TTP-

locked analyses (Figure 9C, 10C) showed that the classifier also identified differences 

between the two error conditions (too high vs. too low). Furthermore, the absence of any 

significant time windows for the correct vs. incorrect analysis (Figure 11) suggested that 

the classifier was not able to pick up information regarding a more general error-related 

processes from the brain activity. Added together, these results showed that instead of 

accuracy-related evidence of the response, information regarding force magnitude was 

presumably decoded. 

 

 

 

 

* TTP = time point where Participants reached Peak Force 

 

Figure 11. Classification accuracies of group classification and permutation test result 

using multivariate pattern analysis (Support Vector Classification, SVC) for correct vs. 

incorrect (too high & too low) classification; corrected for multiple comparisons (N = 48; 
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p < 0.05; error bars indicate standard errors of the mean; no analysis time window was 

significant). 

 

Since the classification results suggested that the ERP activity patterns might reflect 

information regarding force magnitude instead of correctness, a further investigation to 

see when specific force parameters of the actually executed force could be predicted was 

conducted. To address this point, SVR was used to predict the single-trial PF (single-trial 

TTP) from the ERP patterns. The trials were not separated by conditions any longer but 

were included in the same analysis. The first SVR analysis (Figure 12A) showed that the 

PF could be predicted from 140 ms before the response onset up to the point in time of the 

average TTP. As TTP and PF reflected different aspects of a response (across trials, the 

mean correlation was small; r = 0.19), a further attempt to predict TTP was made in an 

independent SVR analysis (Figure 12B). These findings showed that TTP, which reflects 

the temporal dynamics of a force pulse, could be predicted starting from around 270 ms 

before the response up to 300 ms after the response (remarkably, during the entire time 

interval after response onset), pointing towards the fact that not only the force magnitude 

but also the timing of the force pulse was processed (prepared) clearly before the response 

onset and approximately 100 ms earlier compared to PF.  
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*R = Response onset 

Figure 12. Fisher Z-correlation coefficients and permutation test results using multivariate 

pattern analysis (Support vector regression, SVR, A, B) for (A) force prediction (PF), and 

(B) time to peak prediction (TTP); corrected for multiple comparisons (N  = 48; p < 0.05; 

error bars indicate standard errors of the mean; grey time windows indicate significant 

correlation).  
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2.1.4 Discussion  

 

Until recently, not much information was available regarding the processes 

involved in action monitoring during tasks with continuous response parameters, such as 

force production. The first study aimed to fill this gap in the literature and investigated 

action monitoring during a simple force execution using a force production task with one 

target force range. Three error-related ERP components were assessed, the Ne/ERN/CRN, 

Pe, and FRN, which are known to be well-established indicators of various error processing 

mechanisms. Furthermore, a novel multivariate approach (MVPA) was used to investigate 

the time course of force execution monitoring, pre and post response. Although clear error-

specific variations from the ERP components were not able to be identified, the MVPA 

results provide first evidences that response related parameters (TTP, PF) are decodable 

from the brain activity clearly before response was initiated.  

 

2.1.4.1 Force Execution Monitoring   

 From previous work, it was unclear whether the medial-frontal negative ERP 

components (i.e., Ne/ERN and CRN) were sensitive to errors committed during force 

execution, because of some confounding factors in these studies (Armbrecht et al., 2012, 

2013; de Bruijn et al., 2003). An attempt to answer this question was made by 

implementing a pure force execution task in this study, therefore eliminating force 

selection process (and therefore potential confounding factors that comes with it). 

However, no clear error-specific variation between Ne/ERN (too high, too low) and CRN 

was observed. The components’ sensitivity to the force ranges was also not reflected in the 

present data, despite the fact that others have reported higher peak amplitudes at the higher 

force ranges (Armbrecht et al., 2013; de Bruijn et al. 2003). To avoid the amplitude-

reducing effects caused by high variation in TTP (Armbrecht et al., 2013), the participants 

were trained to produce a brief force pulse but were not given a strict TTP limit (and a 

feedback indicating TTP) in order to focus on correct peak force production. Unfortunately, 

variability in the TTP was still quite high, which might have affected the components and 

might explain the unclear findings for Ne/ERN and CRN. 

Clear Pe variations were observed between force ranges. Interestingly, the Pe was 

observable not only in the two erroneous conditions but also in the correct condition. 

According to the literature, the Pe was often discussed to reflect conscious evaluation of a 
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committed error (see Nieuwenhuis et al., 2001) as well as error evidence accumulation 

(Steinhauser & Yeung, 2010). For instance, in studies investigating left-right hand errors, 

a clear Pe was observed in error trials but not in correct trials (see Nieuwenhuis et al., 

2001). The existence of Pc in the correct condition might reflect the participants’ 

uncertainty when distinguishing a correct from an erroneous response, particularly in trials 

close to the lower threshold of the correct force range. The higher Pe in the too high 

condition (compared to the too low condition) could be resulted from more error evidence 

accumulation during a shorter time period (Steinhauser & Yeung, 2012) — hence, in the 

erroneous conditions, participants were more aware of errors made after a stronger key 

press than a weaker key press. 

Another interesting finding is, the FRN amplitude was significantly more negative 

in the too low condition compared to the correct condition. However, no significant 

difference was observed when comparing the FRN in the too low condition to the too high 

condition, nor when comparing the correct condition to the too high condition. According 

to the first indicator hypothesis brought up by Holroyd & Coles (2002), the FRN amplitude 

should be higher in conditions in which the error was not detected at the time of responding. 

These results are complementary to the Pe results, which exhibited significant differences 

only between the correct and too high conditions, suggesting that these differences were 

immediately detected, while the other error type: the too low errors, was not. Consequently, 

participants needed feedback to become aware of error responses committed in the too low 

force production range, which would lead to higher FRN amplitudes for the too low 

condition (compared to correct condition), but not the too high condition. The lack of 

significant difference in the FRN between the two error conditions, however, provides a 

challenge to this interpretation. An alternative theory called the expectancy violation 

hypothesis (Hajcak et al., 2005) might explain this specific pattern of results. Previous 

studies have exhibited that the FRN was larger in conditions with a lower probability of a 

negative outcome, because a negative outcome was less expected (Hajcak et al., 2007; 

Holroyd & Krigolson, 2007). If the higher Pe in the too high condition reflected successful 

error detection, the participants should have already expected a feedback showing that an 

error response was committed. Consequently, there was no violation of expectation in this 

condition, and therefore a smaller FRN would be observed compared to the too low 

condition, in which the error feedback was particularly surprising, because the 

unsuccessful error detection in this condition (as suggested by the Pe results). In other 
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words, receiving error feedback in the too low condition could have represented 

expectancy violation, which resulted in a comparably larger FRN.  

 

 

2.1.4.2 Decoding of Force Production Specific Information from the ERP signals 

  Previous literature has exhibited that upcoming errors were reflected in the ERP 

up to 90 ms before an overt response (Bode & Stahl, 2014). Therefore, a set of analyses 

using a more sensitive method – MVPA – was conducted, to see if (furthermore, when) 

information regarding any of the response-related parameters contributing to the quality of 

a single trial response (i.e., correctness, error types, single trial PF and TTP) was actually 

able to be decoded from the ERP signal.  

 By the means of classification analyses, correct trials were able to be distinguished 

from the two incorrect conditions quite reliably after response onset. The response-locked 

as well as the TTP-locked classification results for correct (target force) vs. too low (error) 

and correct (target force) vs. too high (error) could be explained by: (1) a variation of force 

magnitude (i.e., too low < correct (target force) < too high); (2) by error monitoring activity 

(correct vs. incorrect); or by (3) a combination of both. However, the classifiers were also 

able to distinguish the two incorrect conditions from each other. If the ERP patterns solely 

reflected correctness of a response, the classifier should not have been able to identify 

differences between the two incorrect conditions. Furthermore, this was supported by an 

additional classification analysis, where two erroneous conditions (too low and too high) 

were combined into one ‘incorrect’ condition, and a decoding attempt of correct vs. 

incorrect condition was conducted. The result obtained from conducting this analysis 

confirmed that the classifier was not able to predict general error-related process from the 

ERP pattern. Considering both findings, it can be concluded that instead of merely error 

specific information, force magnitude information was decoded by the classifier. What is 

more, if this was the case, the additional correct vs. incorrect classification would give the 

expected result, since both “incorrect” patterns (for the too high and too low conditions) 

would be marked differently from each other, and the correct pattern would then lie in-

between them, reducing the classifier’s ability to reliably distinguish differences between 

conditions. It is also remarkable that the significant classification results were distributed 

consistently starting from the time of responding until 300 ms after response onset, and 

therefore less likely to only mirror differences in the ERP components described above. 

While on average most accuracies did not significantly differ from chance, accuracies were 
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enhanced in some time windows (even before response onset). This could point to some 

trials during which the final PF was determined very early, which in turn was reflected 

already in the brain activity patterns. The cognitive origins of these patterns are rather 

diffuse. However, it remains difficult to clearly relate these results to specific cognitive 

processes based on these analyses alone. Another noteworthy thing is, the methods used in 

this study were aimed to estimate a lower bound which is conservative and can be trusted 

(i.e. not to be a false positive result). There are a variety of ways to optimize classifiers’ 

accuracy (e.g. modification of the analysis time window width, steps reduction in the cross-

validation process, feature elimination, and many other ways). A decision to sacrifice 

absolute accuracy was made in favour of statistical rigour, since absolute accuracy could 

falsely imply that it is a measure of how much of the process can be predicted from the 

brain activity pattern. Instead of optimizing accuracy level, it is more important to ensure 

that the obtained accuracy values were truly above chance. Note that researches in the field 

adapted a similar approach, with accuracy rarely exceeding 60% (e.g., Fahrenfort, Grubert, 

Olivers, & Eimer, 2017; Hogendoorn & Burkitt, 2018).    

 The following SVR analyses revealed that the single-trial PF could already be 

decoded from the ERP pattern at least 140 ms before the response onset. This suggests that 

the information regarding the response outcome was clearly available before response was 

initiated in the periphery (i.e. when the minimum force of 50 cN required to be considered 

as a button press was exceeded). Similar to this, a previous study incorporating force 

sensitive keys has shown that the response quality (correctness) of simple decisions (i.e., 

erroneous responses during flanker task) could be decoded around 100 ms before an overt 

response was registered (see Bode & Stahl, 2014). However, this previous study did not 

attempt to make prediction of the actual response force, and differences in force ranges 

were not considered as a component of the task either. Taken together, results of the current 

study suggest that the brain seems to process information that is indicative of subsequent 

response errors long before response initiation. However, this does not necessarily mean 

that this information is available to use for immediate response monitoring, as it could 

simply reflect neural patterns which are associated with incorrect response planning.  

The second SVR analysis showed that the single-trial TTP was decodable during 

the entire period after response onset even more consistently than the PF. Furthermore, this 

result pointed out that the temporal dynamics of force production —reflected by TTP— is 

likely to be affected by processes even earlier than the maximum of the force itself, since 

it was decodable already 270 ms before response onset (the PF was – in comparison to 
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TTP – only decodable starting from 140 ms before response onset). It was suggested by 

Ulrich et al. (1995) that TTP and PF are not fully independent parameters, but more than 

just two sides of the same coin. This is supported with one of the findings in this study; 

that both parameters were only marginally correlated. The Parallel Force Unit Model 

(Ulrich & Wing, 1991) provides a reasonable explanation for this partial independence: 

when participants produced force in a specific time, they would need to adjust two response 

parameters: the duration of force unit activation (which is reflected in the TTP) and the 

number of recruited force units (i.e., force-producing motor units - reflected in the PF).  

Combined findings from both SVR analyses (for PF and TTP) provided important 

evidence that the timing and magnitude of a simple one-dimensional force pulse were 

planned already before response execution. However, since a force pulse is regarded as a 

ballistic process (Desmedt, 1982; Cordo, 1987), with some controllable aspects, like by 

the modification of the number of the involved force units (Ulrich & Wing, 1991), an early 

definition of the response parameters in the motor program is likely to be an efficient 

strategy for a fast force production, and therefore might serve as information for an error 

detection process. However, this early force magnitude monitoring process seemed to have 

happened before the process of determining the correctness of a certain response (if they 

were not completely independent), in relation to ‘the default force’ required for a response 

to be deemed correct. In consequence, even though the brain seemed to be fast enough in 

term of planning the response parameters, the correctness aspect of the response itself was 

not yet foreshadowed in the neural activities.  

 

2.1.5 Limitations 

 

The first set of analyses in this study was conducted to see if the classical ERP 

components reflected error monitoring, force monitoring, or a mixture of both processes. 

However, the ERP findings showed no clear differentiation between error processing 

activity from force-time related activity, which is presumably related to the nature of the 

force task used in the study, as the information about the response quality (correctness) is 

naturally contained in the force magnitude and modulated by its temporal dynamic. The 

multivariate analyses results showed that the magnitude of response force – instead of 

correctness could be decoded from the brain. However, it is important to consider that 

there is still a possibility that error specific information was in fact encoded in the brain 
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activity, and the method used in the first study might not have been sensitive enough to 

pick up this information. Another limitation is that although the trial numbers for each 

condition for each classification analysis was balanced (which always resulted in equal 

number of trials for both conditions in all training and test sets), there is always a risk that 

differences in variance between conditions could bias the classifier. However, there was 

no evidence for differences in variance in the higher-dimensional space in the current 

data’s patterns, and the SVR analyses did not include different conditions, which makes it 

unlikely that any systematic biases have occurred.  

 

 

  



42 
 

2.2 Study 2   

 

2.2.1 Objective of the Study  

 The second study was designed to investigate the course of two subsequent simple 

force production tasks. During subsequent tasks, depending on the length of the interval 

between the two tasks, response execution for the second task could be impaired (i.e., 

resulting in a prolonged response time for the second task). Such phenomenon has been 

widely known as a ‘PRP effect’, and has been found in studies using subsequent discrete 

choice tasks, such as flanker tasks. In this second study, a paradigm was specifically 

designed to investigate if response execution during two subsequent force production tasks 

was modulated by a similar PRP-like effect. Note that in a simple choice-response task, a 

‘response’ is considered discrete, since it does not require further monitoring and 

adjustment after initiation (to illustrate, a decision process is completed once the brain has 

decided for one response option as the ‘correct’ answer, and a response is therefore 

completed after the chosen response is given– for example, when a button corresponding 

for the chosen option is pressed). However, as opposed to a simple n-choice response task, 

force production task is more complex in its execution. For instance, the accuracy of a 

force response is defined as a range on the force continuum, which means, the response 

planning process (i.e., force programming) starts before responding (as exhibited in the 

first study’s result) and the force monitoring process does not end at the time when a 

response was initiated. Instead, this monitoring process goes on at least until the PF is 

reached, during which the brain has to continuously control the amount of Force Units 

produced to ensure that the force execution is going as planned. Consequently, instead of 

varying interval between the two subsequent stimuli (i.e., Stimulus Onset Asynchrony / 

SOA) which is commonly used in PRP studies using discrete choice tasks, for the 

investigation of force production the time interval between the first response and the onset 

of the second stimulus, the so called Response-Stimulus Interval (RSI), is more relevant in 

the present study.  

The first aim of this study was to replicate the PRP effect, that is the delay of the 

response time for the second task, which usually arises during two consecutive discrete 

choice tasks, in an ‘adapted’ PRP paradigm designated for two consecutive simple force 

tasks. However, beyond replicating this effect, this study was further aimed to investigate 
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how different Response-Stimulus Interval (RSI) affect the cognitive processes involved in 

force production, not only on a behavioral level (i.e., response time and response force 

parameters), but also on a neural level (i.e., force monitoring-related ERP components). 

To investigate PRP effect on a neural level, Ne/ERN (CRN for the correct condition) was 

tested, to see how the different RSIs modulated the monitoring activity of the second force 

task. If the PRP effect happened to modulate error monitoring activity of the second task, 

Ne/ERN (CRN) should be lower in the short RSI condition, and gradually increased in the 

longer RSI conditions. The Pe (Pc) component was also investigated, as it reflects 

accumulation of error evidence and thus might be an interesting measure in term of force-

related error detection. Furthermore, Pc (Pe in the correct condition) is also known to be 

linked to the level of uncertainty while performing a task, which could be an indicator that 

one or more parts of the information processing stages were interrupted. Thus, 

investigating Ne/ERN (CRN) and Pe(Pc) could provide evidence on how the information 

processing stages in the current paradigm was modulated by RSI manipulation, and 

therefore allows for better understanding on how two subsequent force production tasks 

unfold – depending on the length of ‘pause’ between the two tasks.      

 The FRN and Feedback P3, which were related to the external feedback-processing, 

were also investigated in this study. In force production tasks, external feedback provides 

important information such as the precise response force produced during a trial - which is 

difficult to obtain only through internal action monitoring, especially considering that the 

participants used in this study were not motor experts. Thus, not only that (external) 

feedback is needed to ‘confirm’ that a correct response was produced, it is also necessary 

for response adaptation process (i.e., planning the motor program for the next trial), after 

under/over-producing a response force. Furthermore, one could look into these feedback-

related components to detect any discrepancy between the expected and received outcomes 

of both tasks, which could provide a clearer picture regarding the participants’ behaviour 

while processing external feedback, thus allowing a better understanding regarding the 

flow of the information during the execution of both tasks.  

  

 

  



44 
 

2.2.2 Method  

 

2.2.2.1 Participants  

Forty-eight participants (39 females), all students of the University of Cologne, 

participated in this study. Due to insufficient number of errors (less than 6 trials per 

condition) and technical artefacts, data from 8 participants were excluded. The analyses 

reported here were based on data from the remaining 40 participants (34 females, age 

range: 18 to 42 years; mean ± SD: 24.47 ±  years). All participants had normal or 

corrected-to-normal vision, and were right handed. None of the participants reported to be 

ambidextrous. Informed consent was obtained from all participants, and they were 

rewarded with course credit for their participation.  

 

2.2.2.2 Apparatus  

 

 

Figure 13. Experimental Setup: Force keys were embedded in an adjustable custom made 

3D-printed plastic structure to measure response force; participant pressed the free end of 

the key to produce an analogue electrical signal corresponding to the produced force.  

 

 

A different set of force sensitive keys (Figure 13) was used to record the behavioural data. 

In each key, a force sensor (FCC221-0010-L, DigiKey MSP6948-ND) was installed. These 

force sensitive keys were embedded in a 3D-printed plastic structure whose positions were 
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adjustable to the accommodate the varying size of the participants’ hands and fingers. Note 

that although these keys can record force response from eight fingers, only two keys were 

used; one for the left index finger (i.e., for the first button press) and one for the right index 

finger (i.e., for the second button press). A force response was registered as soon as the 

keys were pressed with a force of 45 cN or more. The analogous signal was digitized by 

using a VarioLab AD converter (Becker-Meditec) at a sampling rate of 1024 Hz with a 

resolution of 16 bits. A photo sensor was additionally attached to this converter, which 

enabled the detection of a stimulus onset (on the screen) through a change of brightness. 

This mechanism allows for events assessments (i.e., stimuli, responses, feedbacks) in a real 

time without noticeable temporal delay.  The participants were instructed to lay their arms 

on a board placed between them and the computer screen, and an adjustable chin rest was 

installed around 85 cm from the screen to maintain a stable posture. Prior to the experiment, 

participants were required to adjust the force keys and the provided chin rest to ensure a 

comfortable and a stable posture throughout the experiment. Before the experiment started, 

the keys were calibrated to the individual finger weight.  

 

 

2.2.2.3 Maximum Voluntary Force  

 At the beginning of the first and the second training session (see below for details), 

participant’s maximum voluntary force (MVF) for the left and right index finger were 

separately assessed, to determine the individual force ranges for each finger (defined in % 

MVF; see below), as MVF varies across participants. The participants were instructed to 

press the force key with their left or right index finger as hard as possible without moving 

the forearm, and repeated this procedure seven times in a row. A start signal (“JETZT 

DRÜCKEN” German for ‘push now’) initiated each of the seven key presses. The 

individual MVF was calculated by averaging the PF of the last four key presses. Three 

force ranges were then defined relative to the individuals’ MVF (i.e., for the right index 

finger, target range: 43–58% MVF; too high:  > 58% MVF; too low < 43% MVF; for the 

left index finger, target range: 37–52% MVF; too high: > 52% MVF; too low < 37% MVF). 

The decision to slightly differ the target ranges of the two fingers was made after taking 

into accounts the results of a previously conducted pilot study (with 15 participants), and 

was aimed to control for a similar difficulty level between the two tasks, as a previous 

study (see Lien et al., 2003) have shown that PRP effect can be nullified by making the 

first task easier.   
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2.2.2.4 Experimental Task 

Participants were tested individually in a 50-minute experimental session, preceded 

by a 20-minute training session (see Figure 14) which was divided into three parts. The 

first part of the training session (50 trials) was aimed to train the participant to reach the 

target force range with their left index finger. Each trial began with a stimulus presentation 

of two squares on a black background; the left square was colored in white and the right 

square was a white frame fill in black. The white-colored left square indicated that the 

participants were required to produce a brisk, isometric force pulse with their left index 

finger, as soon as this picture appeared on the screen. On each trial, the participants were 

asked to reach the middle range of their maximum force (represented by the green area in 

the middle of the force ruler) as quick as possible. In addition, they were required to reach 

the peak force within 180 ms after response initiation. If they could not reach the peak 

force within 180 ms, they would receive an error message ‘Taste wurde so lang gedrückt’ 

(German for ‘button was pressed too long’) and would not be presented with a feedback. 

To encourage the participant to make a quick response, they would also receive an error 

message ‘zu langsam’ (German for ‘too slow’) when a button press was not initiated within 

500 ms after the stimulus onset. They received a feedback when they responded quick (RT 

< 500 ms) and fulfilled the TTP requirement of 180 ms. When the participants made at 

least 30% correct responses in the first training part, they were allowed to proceed to the 

second part. The second part of the training session was exactly the same as the first; the 

presented stimulus consisted of two squares, except that the right square was filled in white 

(while the left white square frame was filled in black), and the participants were required 

to produce a brisk, isometric force pulse with their right index finger.  
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Figure 14. Separate training session for the left and right index finger 

 

When the participants made at least 30% correct responses in the second training 

part, they were allowed to proceed to the third part (Figure 15), which was identical to the 

actual experiment. In this last part of the training session, the participants had to respond 

to two subsequent stimuli. They were required to press the force key with their left index 

finger when shown the first stimulus (i.e., two squares with the left square colored in white) 

and then press the force key with their right index finger when shown the second stimulus 

(i.e., two squares with the right square colored in white). The time interval (RSI) between 

the onset of the first response and the second stimulus onset was varied without the 

knowledge of the participants (i.e. lag 1: 550 ms, lag 2: 700 ms, lag 3:1100 ms; lag was 

varied within block). After making two subsequent button presses (first with the left index 

finger, followed by the right index finger), two individual feedbacks were displayed one 

after another. The first feedback was presented for 500 ms to indicate whether the correct 

target range for the first response (by the left index finger) was reached, and the second 

feedback was also presented for 500 ms to indicate whether the correct target range for the 

second response (by the right index finger) was reached. The green area in the middle of 

the force ruler is a representation of the correct force range. The upper red area 

corresponded to the too high condition, and the bottom red area corresponded to the too 

low condition. The produced force level in the current trial was indicated by a white cursor. 

The actual experiment (Figure 15) was exactly the same as the third training part, except 

that it consisted of 7 blocks with 50 trials in each block. Between each block, the 

participants were forced to make a brief 3-minute rest.  



48 
 

 

 

Figure 15. Training session part 3 and actual experimental trial 

 

 

2.2.2.5 Data Acquisition  

 

Behavioral Data  

RT was defined as the first time point when the participant’s response force 

exceeded 45 cN (i.e. response onset), measured from the stimulus onset. PF was defined 

as the maximum of the force (in cN) of a single trial force pulse. TTP was defined as the 

time point (measured from response onset) at which the peak force was reached. Frequency 

of correct responses, frequency of too high responses, frequency of too low responses, 

mean RT, mean PF, and mean TTP were determined separately for each button press in 

each condition and for each participant. 

 

Electrophysiological Data  

  EEG data were obtained from 61 scalp electrode sites according to the standard 

international 10–20 system (Jasper, 1958). The active Ag/AgCl electrodes (actiCAP, Brain 

Products) were referenced against the left (i.e., active reference) and right mastoid (i.e., 

passive reference). The electrooculogram (EOG) signals were recorded using passive 

bipolar Ag/AgCl electrodes (ExG-Amplifier, Brain Products). The vertical EOG was 

recorded above and below the left eye, and the horizontal EOG was recorded at the left 

and right temples. The EEG was continuously recorded at a sampling rate of 500 Hz using 

BrainAmp DC (Brain Products).  
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 The electrophysiological data for each button press were time-locked to (a) the 

response onset; and (b) the feedback onset. Data were epoched ranging from 100 ms before 

until 500 ms after response (or feedback) onset. Baseline correction was performed with 

the period of 100 ms before response onset (or feedback onset, for the feedback-locked 

data). An ocular correction algorithm was applied in order to reduce the impact of eye 

movements (Gratton, Coles, & Donchin, 1993), followed by a second baseline correction. 

Afterwards, an artefact-rejection procedure was carried out to eliminate contaminated trials 

exceeding maximum/minimum amplitudes of ± 100 V. The remaining trials were 

averaged. A current source density (CSD) analysis was then performed on the averaged 

ERP waveforms. This analysis accounted for the curvature of the head using a spline 

algorithm (Perrin et al., 1989), and was performed to reduce the effect of neighbouring 

currents. The CSD signals (order of splines = 4; lambda = 10-5; maximal degree of 

Legendre polynomials = 10) were computed for each electrode site by taking the second 

derivative of the distribution of the voltage over the scalp. Lastly, the ERP components 

(Ne/ERN, CRN, Pe/Pc for correct trials, FRN, and Feedback P3; both peak amplitudes and 

mean amplitudes as the standard indicator for the area under the curve in the defined time 

ranges – hereafter referred to as ‘area’) were determined separately from the individual 

mean CSD-ERP waveforms at the electrode sites FCz and Cz. Ne/ERN (CRN) was defined 

as the most negative peak in a time window ranging from 0 to 180 ms after response onset 

at electrode site FCz. Pe (Pc) was defined as the most positive peak in a time window 

ranging from 150 to 300 ms after response onset at electrode site Cz. FRN was defined as 

the most negative peak in a time window ranging from 150 to 250 ms after feedback onset. 

Finally, the Feedback P3 was defined as the most positive peak in a time window ranging 

from 260 to 460 ms after feedback onset. Both FRN and Feedback P3 were investigated at 

the electrode site FCz.  

 

 

2.2.2.6 Statistical Analyses  

 

RSI Effect on Behavioral Data and Neural Correlates of Force Monitoring (Response – 

locked Averages)  

Several repeated-measures analysis of variance (ANOVAs) were conducted for the within-

subject factor Response-Stimulus Interval / RSI (short, medium, and long RSI) for all 
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behavioural measures (RT, PF, TTP) separately for each button press (i.e., left hand and 

right hand) using SPSS 23. An additional ANOVA with the within-subject factor error 

rates (frequency of errors for the left hand and the right hand) was conducted. Note that, 

data from all trials and all force conditions (correct, too high, too low) were used for the 

behavioural data. Another set of ANOVAs with the within-subject factor RSI (short, 

medium, and long RSI) were further performed for the respective ERP components’ peak 

amplitudes (Ne/ERN and CRN at the electrode side FCz, Pe/Pc at the electrode side Cz) 

and the components’ area measures, separately for each button press (left hand and right 

hand) and each force condition (correct, too low). The too high condition was excluded 

from the ERP analyses due to insufficient number of trials (less than 6 trials for this 

condition). Additionally, to investigate force range effect, several two-way ANOVAs with 

the within-subject factors force range (correct, too low) and RSI (short, medium, and long 

RSI) were performed separately for the Ne/ERN or CRN and Pe/Pc peak amplitudes and 

area measures. Note that these additional analyses were aimed to see variations between 

the force conditions (correct, too low), thus interaction effect and RSI were not relevant 

and therefore were not further investigated. Significant ANOVA results were followed up 

using Bonferroni adjusted post-hoc tests. Level of significance were adjusted using Geisser 

and Greenhouse (1958) correction in case the sphericity assumption was violated. Effect 

sizes are reported in terms of partial eta² (ηp
2).  

 

Force Effect on Feedback Processing (Feedback-locked Averages)  

Several two-way ANOVAs with the within-subject factors force range (correct, too low) 

and RSI (short, medium, and long RSI) were performed separately for the FRN peak 

amplitude and the Feedback P3 peak amplitude (and areas) for each button press, at the 

electrode side FCz. Note that factors other than force range (i.e., RSI and interaction effect) 

were not of interests in the present study, thus were not further investigated. Significant 

ANOVA results for force were followed up using Bonferroni adjusted post-hoc tests. Level 

of significance were adjusted using Geisser and Greenhouse (1958) correction in case the 

sphericity assumption was violated. Effect sizes are reported in terms of partial eta² (ηp
2). 

 

 

 



51 
 

2.2.3 Results  

2.2.3.1 Behavioral Data  

The first set of analyses was conducted to see whether the RSI affected RT, PF, and 

TTP of the second button press (see Figure 16). For these analyses, data from all conditions 

(correct, too high, and too low) were used. The same analyses were also conducted for the 

same parameters (RT, PF, and TTP) of the first button press (left index-finger response) as 

a sanity check (i.e., to confirm that the PRP effect was exclusive to the second button press). 

The respective ANOVA for the second button press showed that RSI had a significant 

effect on Response Time, F(2,38) = 1585.853, p < 0.001, ηp
2 = 0.987. The slowest response 

was observed in the short RSI condition (475.66 ± 6.62 ms), followed by the medium RSI 

condition (309.46 ± 5.97 ms), and the long RSI condition (168.48 ± 4.56 ms). Follow-up 

post-hoc tests confirmed significant differences between the short and long RSI condition 

(p < 0.001), the short and medium RSI condition (p < 0.001), as well as the medium and 

long RSI condition (p < 0.001).  

In term of PF, ANOVA results showed significant RSI effect on the second button 

press, F(2,38) = 22.403, p < 0.001, ηp
2 = 0.541. The highest force was observed in the short 

RSI condition (990.91 ± 31.50 cN), followed by the medium RSI condition (975.49 ± 31.37 

cN), and the long RSI condition (944.18 ± 31.28 cN). Follow-up post hoc tests confirmed 

significant differences between the short and medium RSI condition (p = 0.002), the 

medium and long RSI condition (p < 0.001), as well as the short and long RSI condition 

(p < 0.001).  

Significant RSI effect was also observed on TTP for the second button press, 

F(2,38) = 10.913, p < 0.001, ηp
2 = 0.365.  The longest TTP was observed in the medium 

RSI condition (169.54 ± 5.89 ms), followed by the short RSI condition (167.75 ± 6.22 ms), 

and the long RSI condition (157.47 ± 5.06 ms). Post-hoc t-test result for TTP confirmed 

significant differences between the short and long RSI condition (p = 0.004) and between 

the medium and long RSI condition (p < 0.001).  

Lastly, RSI effect on error commission rates was investigated (see Figure 17). No 

significant RSI effect was observed on error commission rates for the second button press, 

F(2,38) = 0.305, p = 0.739, ηp
2 = 0.016. No significant RSI effect was observed for the 

first button press for RT (p = 0.555), response force (p = 0.098), TTP (p = 0.124), and error 

commission rates (p = 0.282)  
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Figure 16. RSI effect on behavioral data for the first button press (S1 – left index finger) 

and the second button press (S2 – right index finger). Error bars represent standard errors 

of means. Significant differences between conditions are marked with asterisks.     
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Figure 17. RSI effect on error commission rates for the first button press (S1 – left index 

finger) and the second button press (S2 – right index finger). Error bars represent standard 

errors of means.    

 

 

2.2.3.2 Electrophysiological Data  

RSI Effect on Response-locked Averages  

Multiple repeated measures ANOVAs were conducted separately for each force 

condition (conditions: too low, correct), to test the RSI effect on the peak amplitude and 

area for Ne/ERN and Pe after the second button press. In the too low condition, significant 

RSI effect was observed in the Ne/ERN area for the second button press, F(2,38)  = 4.397, 

p  = 0.020, ηp
2  = 0.101 at FCz (see Figure 18). Post-hoc test results showed significant 

differences for Ne/ERN area between the short RSI (26.29 ± 2.03V/cm2) and the medium 

RSI condition (31.71 ± 2.40V/cm2, p = 0.002). No significant difference was observed 

between the long RSI condition (29.44 ± 2.19V/cm2) and the other two conditions (p > 
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0.402). No significant RSI effect was observed in the Ne/ERN peak amplitude for the 

second button press, F(2,47)  = 0.88, p  = 0.423, ηp
2  = 0.045.  

In the correct condition, significant RSI effect was observed in the CRN area for 

the second button press, F(2,38)  = 4.940, p  = 0.012, ηp
2  = 0.206 at FCz. Post-hoc results 

(Figure 19) showed significant differences for CRN area between the short (26.39 ± 

1.69V/cm2) and the medium RSI condition (31.65 ± 2.44V/cm2, p = 0.012), as well as 

between the short (26.39 ± 1.69V/cm2) and the long RSI condition (31.42 ± 2.66V/cm2, 

p = 0.049). Highly similar results patterns for main effect and post hoc comparisons were 

observed in the CRN peak amplitude for the second button press, F(2,38)  = 5.204, p  = 

0.010, ηp
2  = 0.215.  

As a sanity check, a series of ANOVAs was also conducted for the first button press 

to see if different RSIs affected Ne/ERN (or CRN) in both – the too low condition and the 

correct condition. The ANOVA results for the first button press showed no significant 

effect of RSI for Ne/ERN peak amplitude (F(2,38)  = 1.198, p  = 0.313, ηp
2  = 0.061) and 

area (F(2,38)  = 0.045, p  = 0.956, ηp
2  = 0.002)  in the too low condition, as well as for 

CRN peak amplitude (F(2,38)  = 0.889, p  = 0.420, ηp
2  = 0.045) and area (F(2,38)  = 1.625, 

p  = 0.210, ηp
2  = 0.079) in the correct condition.  
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Figure 18. Averaged event-related potentials of the force task for the different RSI 

conditions (short, medium, and long), time-locked to the response onset, for the first button 

press (A, C) and the second button press (B, D), in the too-low condition (A, B) and the 

correct condition (C, D), at the electrode side FCz, for error/correct-related negativity 

(Ne/ERN or CRN). 
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Figure 19. Post hoc results on RSI effect for the Ne/ERN (CRN) areas (A, B) and peak 

amplitudes (C, D), in the correct condition (A, C), and the too low condition (B, D), for 

the first and second button press. Significant differences between conditions are marked 

with asterisks.  

 

Significant effects of RSI for the second button press were detected for both 

response-locked Pc peak amplitude, F(2,38)  = 7.111, p = 0.023 , ηp
2 = 0.099, and Pc area, 

F(2,38)  = 4.369, p = 0.020, ηp
2 = 0.191, at Cz for the correct condition (Figure 20). Post 

hoc results for Pc peak amplitude (see Figure 20) showed significant difference between 

the short RSI (20.52 ± 2.65V/cm2) and medium RSI (13.86 ± 2.38V/cm2, p = 0.006) 
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condition, and marginally significant difference between the medium RSI (13.86 ± 

2.38V/cm2) and the long RSI (19.50 ± 3.06V/cm2, p = 0.073) condition. While for the 

Pc area, significant difference was observed between the medium (12.46 ± 1.10V/cm2) 

and long RSI (19.50 ± 3.06V/cm2, p = 0.015) condition. No significant difference was 

observed between the short RSI condition (12.46 ± 1.10V/cm2) and the other two 

conditions (p > 0.50). ANOVA results for the Pe peak amplitude for the second button 

press in the too low condition showed no significant RSI effect, although it is noteworthy 

to mention that the p value almost reached the level of significance, F(2,38)  = 2.697, p = 

0.081 , ηp
2 = 0.127. Further post hoc result also showed marginally significant difference 

between Pe peak amplitude between the short RSI (25.18 ± 3.12V/cm2) and the medium 

RSI condition (18.63 ± 2.53V/cm2, p = 0.072).  No difference was observed between the 

long RSI condition (21.05 ± 3.24V/cm2) and the other two conditions (p > 0.50). No 

significant RSI effect for the second button press was observed for Pe area, F(2,38)  = 

1.145, p = 0.329 , ηp
2 = 0.058. 

As a sanity check, a series of ANOVAs was also conducted for the first button press 

to see if different RSIs affected Pe (Pc – in the correct condition) in both – the too low and 

the correct condition. The ANOVA results for the first button press showed no significant 

effect of RSI for Pe peak amplitude (F(2,38)  = 1.053, p  = 0.359 , ηp
2  = 0.055) and area 

(F(2,38)  = 1.219 , p  = 0.307 , ηp
2  = 0.062)  in the too low condition, as well as for Pc 

peak amplitude (F(2,38)  = 1.161, p  = 0.324, ηp
2  = 0.058) and area (F(2,38)  = 1.799, p  = 

0.179, ηp
2  = 0.086) in the correct condition.  
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Figure 20. Post hoc results on RSI effect for the Pe(Pc) areas (A, B) and peak amplitudes 

(C, D), in the correct condition (A, C) and the too low condition (B, D), for the first and 

second button press. Significant differences between conditions are marked with asterisks. 
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Figure 21. Averaged event-related potentials of the force task for the different RSI 

conditions (short, medium, and long), time-locked to the response onset, for the first button 

press (A, C) and the second button press (B, D), in the too-low condition (A, B) and the 

correct condition (C, D), at the electrode side Cz, for error/correct positivity (Pe or Pc). 
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Force Effect on Response-locked Averaged Event-related Potentials  

A series of repeated measures ANOVAs were carried out separately for the first 

and second button press (i.e. left-index finger and right-index finger) to see if there are 

difference(s) between the two force conditions (i.e. correct and too low conditions) in term 

of ERP components (i.e. Ne/ERN and Pe/Pc peak amplitudes and areas) in the time 

window of interest, specific for each ERP component (see Figure 21). The first series of 

ANOVA results for the second button press showed marginally significant difference 

between the Pe peak amplitude (21.62 ± 2.35V/cm2) and the Pc peak amplitude (18.51 

± 2.30V/cm2), F(1,39)  = 3.297, p  = 0.077, ηp
2  = 0.080. There was no significant force 

effect observed for the Pe(Pc) area, F(1,39)  = 0.593, p  = 0.446, η p
2  = 0.016. In term of 

Ne/ERN (CRN), significant force effect was observed between the Ne/ERN peak 

amplitude (57.16 ± 3.59V/cm2) and the CRN peak amplitude (51.06 ± 3.31V/cm2), 

F(1,39)  = 15.563, p  < 0.001, ηp
2  = 0.291. There was no significant force effect observed 

for the Ne/ERN (CRN) area, F(1,39)  = 0.637, p  = 0.429, ηp
2  = 0.016. 

ANOVA results for the first button press showed neither significant force effect for 

Pe (Pc) peak amplitude, F(1,39)  = 0.459, p  = 0.502, ηp
2  = 0.012, nor for Pe(Pc) area, 

F(1,39)  = 2.537, p  = 0.119, ηp
2  = 0.063. As for Ne/ERN (CRN), significant force effect 

was observed for the first button press between Ne/ERN peak amplitude (-49.83 ± 

3.44V/cm2) and CRN peak amplitude (-46.83 ± 3.52V/cm2), F(1,39)  = 6.313, p  = 

0.016, ηp
2  = 0.142. Similar results pattern was observed for Ne/ERN (CRN) area, F(1,39)  

= 5.994, p  = 0.019, ηp
2  = 0.136. The Ne/ERN area was found to be significantly higher 

(28.11 ± 2.03V/cm2) than the CRN area (25.96 ± 2.07V/cm2).  
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Figure 22. Force effect for the Ne/ERN(CRN) areas and peak amplitudes (A, B) and for 

the Pe(Pc) areas and peak amplitudes (C, D), separately shown for the first button press 

(A, C) and the second button press (B, D). Significant differences between the force ranges 

are marked with asterisks.  
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Force effect on Feedback-locked Averaged Event-related Potentials  

 

A series of repeated measures ANOVAs were conducted separately on feedback-

locked data for the first and second button press (i.e. left-index finger and right-index 

finger) to see if there are difference(s) in term of feedback processing between the two 

force conditions (i.e. correct and too low conditions) in term of ERP components (i.e. FRN 

and Feedback P3 peak amplitudes and areas) in the time window of interest, specific for 

each ERP component (see Figure 22, 23).  

ANOVA results for the second button press exhibited significantly higher (more 

negative) FRN peak amplitude in the too low condition (-17.78 ± 2.61V/cm2) than the 

correct condition (-12.14 ± 2.19V/cm2), F(1,39) = 9.080, p = 0.005, ηp
2  = 0.189. 

Significantly higher Feedback P3 peak amplitude was also observed in the too low 

condition (33.96 ± 3.80V/cm2) compared to the correct condition (19.03 ± 2.18V/cm2), 

F(1,39)  = 23.270, p < 0.001, ηp
2  = 0.374. Highly similar results pattern was observed on 

Feedback P3 area, F(1,39)  = 20.028, p < 0.001, ηp
2  = 0.339. 

No significant force effect was observed for the first button press between the FRN 

peak amplitude in the too low condition (-15.05 ± 2.17V/cm2) and the correct condition 

(-14.47 ± 2.18V/cm2), F(1,39)  = 0.239, p  = 0.628, ηp
2  = 0.168. However, significantly 

higher Feedback P3 peak amplitude for the first button press was observed in the too low 

condition (28.97 ± 3.79V/cm2) than the correct condition (18.88 ± 2.21V/cm2), 

F(1,39)  = 7.855, p  = 0.008, ηp
2  = 0.168. Highly similar results pattern was observed on 

Feedback P3 area, F(1,39)  = 7.038, p  = 0.011, ηp
2  = 0.153. 
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Figure 23. Force effect during feedback processing for the FRN peak amplitudes (A, B) 

and for the Feedback P3 areas and peak amplitudes (C, D), separately shown for the first 

button press (A, C) and the second button press (B, D). Significant differences between the 

force conditions are marked with asterisks. 
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2.2.4 Discussion 

 

In the second paradigm, the PRP effect known from S1-S2 paradigms was also observed 

for this new R1-S2 force production paradigm. Instead of using discrete choice tasks, two 

‘continuous’ force production tasks were used: the first task was done with the left-index 

finger and the second task with the right-index finger. In this study, not only RT but also 

response force parameters (i.e., PF and TTP; see Ulrich & Wings 1991), as well as the 

neural aspect of force monitoring (i.e., analyzed ERP components, see methods) were 

investigated. First, to induce a PRP effect, it is important to control the difficulty level of 

the two subsequent tasks, as PRP effect was reported to be diminished when there is a huge 

difference of difficulty between the two tasks (i.e., the first task is too easy in comparison 

the second task; see Ruthruff et al., 2006). Therefore, a series of pilot tests with a total of 

25 participants were conducted to ensure that both tasks have a similar level of difficulty. 

The number of choice alternatives was also controlled to simplify the paradigm, by 

incorporating only one target range for both the first and second tasks, since evidence from 

previous literature (e.g., Jolliccoeur et al., 2002) showed that the number of response 

alternatives in the second task was additive with the RT of the second task. Further attempt 

to control for possible confound was made considering the brain asymmetry. Since the left 

hemisphere of the human brain controls the movements of the right body parts (and vice 

versa), the decision to use left-index finger for the first button press (Task 1), and the right-

index finger for the second button press (Task 2) was made, to avoid bottleneck caused by 

unfinished motor execution, in case responses were produced by only one hand.  

 

2.2.4.1 PRP-like Effect During Continuous Force Production: Behavioral Level    

 A PRP-like effect was successfully replicated on RT for the second button press. 

RT was the slowest in the short RSI condition, followed by the medium and the long RSI 

condition. This delayed RT effect is a common effect in PRP paradigms, and will be further 

discussed in a latter part of the discussion section (see section 2.2.4.3). Interestingly, 

significant RSI effect was also observed on the PF and the TTP of the second button press. 

The highest force was observed in the short RSI condition, followed by the medium and 

the long RSI condition. These results seem reasonable, since the PRP effect was most 

pronounced at the short RSI condition, during which the participants – who were actually 

not ready to produce the second response, felt the time pressure to response quickly and 
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simultaneously reach the correct target range. The unavailability of some mental resources 

to monitor the second button press in a very short period of time might lead the participants 

to overly assign the number of force units they need to produce the force response. As for 

the TTP, the participants reached the peak force the fastest during the long RSI condition, 

because in this RSI condition they have completed the Central Processing for the first 

button press way earlier (compared to the shorter RSI conditions) and were expecting to 

‘complete’ the second response as fast as possible. This might consequently lead to the 

participants producing a lower response force, since they spent less time to reach the PF 

(less force units were produced in a shorter time period, than in a longer time period). 

Further discussion regarding the PF and TTP modulations (following the delayed RT 

effect) will also be presented in the latter part of the discussion section (see section 2.2.4.3).  

 

2.2.4.2 PRP-like Effect During Continuous Force Production: Neural Level  

Response-locked Averages  

First, in term of Ne/ERN (CRN), a highly similar negative deflection like Ne/ERN 

was observed in the correct condition (which was referred to as CRN), and a general force 

effect was observed between the two force conditions (i.e., correct and too low). Ne/ERN 

in the too low condition was higher than the CRN in the correct condition, which was a 

common finding in studies investigating performance monitoring: error monitoring 

activity is larger in the erroneous than the correct condition (e.g., Hajcak et al., 2004, 

Hogan et al., 2005). What is particularly remarkable, a PRP-like effect was reflected on 

both the Ne/ERN (in the incorrect-too low condition) and CRN (in the correct condition) 

of the second button press. A significantly lower Ne/ERN(CRN) in the short RSI condition 

indicated some kind of impaired cognitive process which resulted in lower error 

monitoring activity compared to the longer RSI conditions.  In regard to the smaller 

Ne/ERN observed in the short RSI condition (compared to the other two RSI conditions), 

the brain seemed to lack some mental resources to perform the same amount of error 

monitoring activity observed in the medium and long RSI condition, presumably because 

the Response Preparation stage for Task 2 in the short RSI condition was interrupted by 

other processes, thus it was more difficult for the brain to retrieve an adequate amount of 

information (e.g., a planned amount of force units released at a certain time point) 

necessary for efficient error monitoring. The process of information retrieval from the 

Stimulus Processing and Response Preparation stages might be further interrupted because 

the participants were conditioned under a time pressure. What is more interesting, the 
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absence of significant RSI effect on Ne/ERN between the medium and long RSI condition 

suggested that this effect was reduced (if not completely diminished) when the time 

interval between the two tasks was at least 700 ms (i.e., time interval for the medium RSI 

condition). Of course this does not exclude the possibility that there might be an ‘optimal’ 

time period between 700 ms (the medium RSI) and 1100 ms (the long RSI) in which an 

optimal error monitoring could be performed. 

The next component that was investigated was Pe (Pc). Like in the first study, Pc 

(Pe in the correct condition) was also observed in the correct condition of the second study. 

Furthermore, an interesting RSI effect was reflected in the Pc of the second button press. 

Previous literature has suggested that Pc indicated participants’ uncertainty on their 

response (e.g., Hewig et al., 2011), which could also explain the present study’s results. 

This ‘uncertainty’ might be caused by an unsuccessful attempt to derive an accurate 

representation of the correct response (even though in this case, the correct force response 

might have been executed). In the present study, Pc in the medium RSI condition was 

significantly lower compared to the other two RSI conditions. On the other hand, Pc was 

highest at the short RSI condition, and was significantly higher than the medium RSI 

condition. This result was similar to the CRN results; higher uncertainty in the short RSI 

condition (as reflected by the Pc) was a product of insufficient error monitoring (indicated 

by the lower CRN in this RSI condition), and the Pc was significantly lower in the medium 

RSI condition, during which the participants presumably had enough time to retrieve as 

much information needed for an efficient monitoring, so that the uncertainty factor that 

was accounted in the short RSI condition could be avoided. However, in the long RSI 

condition, the uncertainty level (indicated by a higher Pc compared to the medium RSI 

condition) seemed to have increased again, presumably because the participants had more 

than enough time until they could execute their response, and this period of ‘waiting’ might 

cause some kind of interference from other cognitive processes, which consequently led to 

higher response uncertainty in this RSI condition.  

 

Feedback locked averages  

Separate feedback presentation for the first and second button press provided an 

opportunity to see how the brain processed feedback for each task. The feedback locked 

results (see Figure 23) showed a general force effect during feedback processing of both – 

the first and second button press. FRN peak amplitude (and area) appeared to be larger 

during the too low condition than the correct condition (for both tasks). This result is 
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consistent with the first study’s result. Like the first study, more pronounced FRN during 

the too low trials seemed to be induced by a violation of expectation. What is remarkable, 

this effect arose regardless the different RSI between the two tasks. To put it simply, 

regardless the increased level of difficulty to execute the second task caused by the 

different RSIs (i.e., difficulty to monitor the response quality / correctness for the second 

task was affected by the length of RSI, as exhibited in the response-locked results), the 

participants still hoped for a ‘positive’ outcome (i.e., in this case, a feedback indicating a 

correct response in every RSI conditions), which resulted in a larger FRN when this 

expectation is violated. This result is, like the first study, in line with the existing literature 

(see Holroyd et al., 2009; Hajcak et al., 2007; Holroyd & Krigolson, 2007) – in which 

larger FRN was observed when a response outcome was different from what was expected.  

Another interesting thing to mention is, this force effect emerged not only for the 

second button press (which was done by the right hand – the more dominant hand for the 

participant) but also for the first button press (which was done by the left hand). This result 

seemed plausible, since the participants were instructed that both key presses are of equal 

importance. Note that the FRN amplitude for both force conditions appeared to be smaller 

for the first button press, which seemed reasonable since this response was executed by the 

not-dominant hand. In other words, even though the participants might expect a correct 

response from their left hand, this ‘expectation’ might not be as high as their expectation 

for the responses done with their more dominant hand (the right hand). Other than 

handedness, a possible reason for the generally smaller FRN for the first button press is 

the fact that the first button press happened much earlier in each trial, and in addition to 

that the feedback for the second button press was shown after the feedback for the first 

button press, which enhanced the likeliness that memory regarding response quality for the 

first button press was replaced (or at least, contaminated) by the second button press, which 

consequently led to a decrease of the general level of expectation for the first button press.  

The Feedback P3 results also showed larger peak amplitude (and areas) for the too 

low condition. This effect was also shown not only during the second button press but also 

the first button press. This finding is in line with the existing literature, for instance, there 

were studies indicating an increased Feedback P3 during negative feedback as opposed to 

positive feedback (Groen et al., 2007; Groen et al., 2008). In the current study, a feedback 

showing that the participants have made a correct response is likely to be perceived as a 

‘positive’ feedback, compared to a feedback indicating an error response. As a result, the 

more ‘negative’ feedback (i.e., feedback showing too low errors) induced higher Feedback 
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P3 amplitudes. Another factor that might add to the increased Feedback P3 in the too low 

condition is the frequency of occurrence of this condition. Previous studies have suggested 

that one of the Feedback P3’s prominent features is that it decreases when target probability 

increases (Donchin & Coles, 1998), possibly due to an increased conformity to 

expectations (Hajcak et al., 2005; Yeung & Sanfey, 2004). Considering that the too low 

condition occurred less frequently than the correct condition, this might have caused a 

more pronounced Feedback P3 in the too low condition.  

 

2.2.4.3 PRP effect in subsequent force production tasks: what caused the delay of Task 

2’s processing?    

 

The presented paradigm demonstrated successful replication of the PRP effect on RT2, 

whereas RT1 was unaffected by these variables. However, there are some differences 

between the PRP effect observed in the current paradigm, in comparison to the PRP effect 

observed in the previous studies which mostly utilized two subsequent discrete choice 

tasks (e.g., Luck, 1998; Tombu & Jolicoeur, 2002; Ruthruff et al., 2003).  The first 

difference is that most contemporary accounts of the PRP paradigm are primarily 

concerned with the nature of the central bottleneck stage during the overlap between the 

processing of Task 1 and Task 2, where other bottleneck scenarios of Task 2’s processing 

received little to no attention. This is surprising, considering that some studies suggested 

that even when S2 is presented after R1 was executed (thus, Task 1 and Task 2 do not 

overlap in time, like in the current paradigm), RT2 was still found to be decreased with 

increasing RSI (e.g., Welford, 1980; Pashler, 1994; Jentzsch et al., 2007). To simplify, 

most PRP-effects observed in the literatures occurred during the condition RT1 > SOA, 

while in the current paradigm, the PRP effect was observed even when RT1 < RSI, possibly 

similar to the residual PRP effect observed by Jentzsch et al. (2007).  

The second difference lies on the task execution stages. In discrete choice tasks, 

there are three stages of information processing from stimulus presentation until before the 

execution of motor response (as described in the literature review section): (1) Perceptual 

Encoding; (2) Central Processing; and (3) Response Processing. During the Perceptual 

Encoding stage, one tries to decode the given stimulus to retrieve necessary information 

for response planning. In a PRP paradigm, this stage can be manipulated to vary perceptual 

processing time to induce a bottleneck, for example, by manipulating the stimulus contrast 

(e.g., Pashler & Johnston, 1989; Jentzsch et al., 2007). Next, the Central Processing stage 
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consists of reviewing the response alternatives and choosing the supposedly ‘right’ 

outcome. In this stage, the brain reviews all the available information obtained during the 

first stage (Perceptual Encoding), and decides which response is expected from the shown 

stimulus. The level of cognitive load during this stage would depend on the congruency of 

the stimulus and the expected response (i.e., cognitive load is lower when one is instructed 

to press the ‘right arrow’ on the keyboard when a stimulus is presented on right side of the 

computer screen, as opposed to pressing the ‘left arrow’ on the keyboard for the same 

stimulus), as well as the number of choice alternatives (i.e., it is easier and faster to decide 

between two response choices as opposed to four response choices).  The last stage in this 

scheme (just before the motor execution takes place), is the Response Processing stage, 

during which the brain decides how the chosen response will be carried out (e.g., if during 

the Central Processing stage the brain decides to go for the ‘right arrow’ on the keyboard, 

in this Response Processing stage the brain decides which hand and which finger should 

be used to execute the planned response). However, when the goal of the two subsequent 

tasks was to produce a certain response force like in the current paradigm, the information 

processing stages during the task execution itself should be adapted accordingly. Since 

accurate force production was the main focus of the task, motor execution as well as the 

corresponding monitoring processes (which are necessary to ensure the force is produced 

as accurate as possible) should be included in the information processing stages (i.e., 

specifically, in the Central Processing stage). It is important to note that in the current 

paradigm, the participants were not presented with more than one choice alternative of 

response (i.e., they were required to produce force in a certain range, and this range does 

not change throughout the whole experiment), and the order of stimulus were always the 

same in every trial (i.e., left hand response followed by the right hand response). 

Taking into account the differences between the information processing stages of 

the current paradigm and the usual PRP paradigm (in discrete choice tasks), three 

alternative models were contrasted. In these models, adapted versions of the regular 

information processing stages (specific to the current force paradigm) were proposed to 

illustrate the PRP effect that was observed in the current force paradigm. The information 

processing stages started with the Stimulus Processing stage, basically a less complex stage 

than the usual Perceptual Encoding stage in the PRP paradigms involving discrete choice 

tasks, considering that information retrieved by the participants did not vary in each trial 

(but rather, each stimulus presentation was just a ‘response cue’ for the participants). To 

avoid any bottleneck happening at this early stage, stimuli for the left and right hand 
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responses were presented at the same level of contrast, and both rectangles for response 

cue were colored in the same color (white). To further exclude the possibility of delays 

induced by incongruent stimulus and response, the white rectangle appeared on the left 

side of the computer screen for the left hand response, and on the right side of the computer 

screen for the right hand response. Following the Stimulus Processing, the next stage is the 

Central Processing for Force Task, which is basically the ‘Central Processing’ stage where 

an overlap between tasks could not happen according to the Central Bottleneck Theory, 

since this stage introduces the highest cognitive load compared to the other stages. Note 

that the same term, ‘Central Processing’, was used for this stage for an easier comparison 

between the discrete and continuous task (in the context of the Central Bottleneck Theory). 

However, unlike the Central Processing stage in the discrete choice task, the Central 

Processing stage for the continuous force production task (as assumed by these newly 

postulated models) consists of two sub-stages: (1) the Response Preparation stage; and the 

(2) Action Monitoring stage. Unlike the discrete choice task design in which motor 

execution is excluded from the information processing stages, the current paradigm 

considers motor execution as an integrated part of the information processing stages. This 

consideration was made considering the fact that the ‘response’ itself did not end with a 

decision of how much Response Force should be produced, but continuous controlling, 

adaptation, and evaluation mechanisms were involved - at least until the Peak Force was 

reached, to continuously ensure that the task execution was going as planned. That being 

said, the Response Preparation (or motor programming, Rosenbaum 1985) stage consists 

initial planning regarding the force response parameters which were investigated in detail 

during the first study: PF and TTP. This stage is followed by the Action Monitoring stage, 

which consists of Motor Execution stage, during which the amount of exerted Force Units 

and the required time to reach the amount of planned response force are continuously 

monitored (for details, see Ulrich & Wing, 1991), and Response Evaluation stage, during 

which the brain evaluates the quality of the resulting response force. Basing on these 

adapted information processing stages, three alternative models aimed to explain the 

observed PRP effect in the current force production paradigm were postulated.   
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Figure 24. Response Evaluation Bottleneck Model (Model 1) for short, medium, and long RSI 

scenarios. The information processing stages are color-marked in: green for Stimulus Processing 

stage(SP), blue for Response Preparation stage (RP), yellow for Action Monitoring stage (Motor 

Execution and Response Evaluation). The Central Processing stage consists of Response 

Preparation and Action Monitoring.  

 

Model 1: Response Evaluation Bottleneck Model  

Within the first model, the ‘Response Evaluation Bottleneck Model’, it is assumed that 

some sort of bottleneck was induced by Response Evaluation stage of Task 1 (see Figure 

24).  This model suggested that the Central Processing stage for Task 2 cannot begin until 

the Response Evaluation 1 is finished, which consequently leads to a bottleneck before the 

Response Preparation 2 (as seen in the short RSI condition). In the medium RSI condition, 

the bottleneck still exists, but with a reduced duration, which resulted in a faster response 

time compared to the short RSI condition. This bottleneck effect is nullified in the longer 

RSI condition, during which the participants had enough time to finish the Response 

Evaluation stage of Task 1, before processing Task 2. This model is in line with a study 

by Welford (1980), which offered a specific explanation for factors that might contribute 

to a bottleneck (i.e., during a PRP paradigm when SOA > RT1). Welford proposed that an 

extended bottleneck period might be caused by the monitoring process for Task 1 response 

(R1), which requires a fresh retrieval of Task 1 Stimulus (S1) and R1 codes from the 

previous information processing stages. Note that in the postulated model (which was 

adapted to the paradigm used in the present study), the evaluation process for R1 (which 

requires retrieval of S1 and R1 codes) is seen as a part of the Central Processing stage of 
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Task 1, thus offering a slightly different interpretation. In Welford’s model, the evaluation 

process of R1 (which requires retrieval of S1 and R1 codes) is seen as the bottleneck itself, 

while the proposed model suggested that, the Response Evaluation 1 causes the bottleneck 

(instead of being the bottleneck itself), because the Response Preparation 2 has to wait 

until this stage is completed. Furthermore, there could be other processes involved during 

this bottleneck phase, that might enhance the delay. For instance, one or more memory 

related processes of recalling the second response (R2) codes from the previous trial might 

simultaneously happen, in order to prepare for executing R2 in the corresponding trial. 

This interpretation is supported by evidence from the previous studies that observed 

adaptation attempts following an erroneous response (post-error adaptations; see 

Nieuwenhuis et al., 2001; Overbeek et al., 2005), in which the participants tried to 

incorporate the previous trial’s outcome to improve response quality at the corresponding 

trial. Note that the application of this model might be limited since the participants were 

not asked to evaluate their performance for each button press. In spite of that, this model 

still could be used explain the behavioral data’s result patterns. The bottleneck that was 

assumed for the short and medium RSI conditions have put the participants under time 

pressure, that led them to exert higher PF, compared to the long RSI condition. Further, 

the TTP results showed no significant differences between the medium and short RSI, but 

longer TTP in both conditions compared to the long RSI condition. This result might be 

interpreted in a way that, because of the cognitive bottleneck, the brain was somehow 

‘conditioned’ to set a longer TTP in the short and medium RSI condition, since the 

participants could not assign enough force units in a very short time (see PFUM model; 

Ulrich & Wings, 1991), so they had to choose another strategy to exert a higher force 

(which is induced by the time pressure), and the only reasonable strategy to achieve this is 

by ‘assigning’ a longer TTP. On the other hand, time pressure is not a deciding factor (in 

term of the PF) in the long RSI condition. Therefore, the participants could control the PF 

better and therefore were able to reach the PF within a shorter time period. Interestingly, 

in term of neural variations, higher monitoring activities were observed during the medium 

and long RSI conditions than the short RSI condition. What is remarkable, that even though 

there was still a bottleneck during the medium RSI condition – which consequently caused 

a delayed R2 in this condition, no significant difference (in term of monitoring activities, 

as reflected by Ne/ERN and CRN) was observed between the medium and long RSI, which 

suggested that the brain was still capable of performing more or less similar monitoring 

activity even in a bottleneck condition, given enough time. Furthermore, the Pc results 
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indicated less uncertainty in the medium RSI condition compared to the long RSI condition, 

which could offer another interesting interpretation, that there might be an optimal time 

interval between the medium and long RSI used in the current study, which is ‘free’ from 

the bottleneck effect and at the same time does not require the participants to wait to 

execute their response when they are ready to respond. This period of ‘waiting’ during the 

long RSI condition might cause the monitoring activity to be interfered by other cognitive 

processes (e.g., memory retrieval, decision evaluation, et cetera), which might enhance the 

participants’ level of uncertainty during this waiting period.  

 

 

 

Figure 25. Recovery Model (Model 2) for short, medium, and long RSI scenarios. The 

information processing stages are color-marked in: green for Stimulus Processing stage (SP), blue 

for Response Preparation stage (RP), yellow for Action Monitoring stage (i.e., Motor Execution 

and Response Evaluation). The Central Processing stage consists of Response Preparation and 

Action Monitoring.  

 

Model 2: Recovery Model  

The second postulated model, the ‘Recovery Model’, as depicted in Figure 25, assumed 

that the brain needs a certain period time (i.e., a ‘recovery phase’) to ‘reboot’ before it can 

process another task optimally. In the short RSI condition, the Central Processing for Task 

1 (which includes the Response Evaluation 1) finished before the onset of the stimulus for 

Task 2. However, the brain is, as assumed by this model, still at a ‘recovery phase’, at the 
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same time when task 2 begins, which leads to an extended Response Preparation stage of 

task 2, caused by the lack of available cognitive resources to perform this stage at its 

‘optimal’ speed. Note that the Stimulus Processing 2 is not affected by this recovery period 

since this process was just a go signal for force execution in the current paradigm, and 

therefore does not inflict a considerable amount of cognitive load that might lead to an 

extension of this stage. This ‘recovery phase’ theory is supported by a study by Telford 

(1931) in which the participants had to perform a keypress response to an auditory stimulus. 

In this study, the stimuli were presented continuously at 0.5s, 1s, 2s, or 4s intervals 

according to a predefined chance order. A dramatic increased of response time (335 ms) 

for the 0.5 s inter-stimulus interval was found compared to the other longer intervals (241 

ms, 245 ms, and 276 ms). These results pointed out the existence of a refractory period 

that happens after one has responded to a specific stimulus during which no other action 

can be executed, which is similar to the refractory period found in single neuron. This 

refractory period is seen a period of intrinsic unreadiness to emit a response which exists 

in a neural level, as suggested by the dramatic increase in RT presented during very short 

interval compared to the other longer intervals in Telford’s study. With that being said, the 

Central Processing 2 stage in the long RSI condition (in the postulated model) is not 

affected by this recovery phase, thus, the response preparation stage can proceed without 

interference from the rebooting phase of all cognitive activities. Like the first model, this 

model could explain the behavioral results pattern found in this study. In the short RSI 

condition, the second stimulus appeared when the recovery phase just started, and all 

cognitive activities began to tone down / reboot, causing the Response Preparation 2 stage 

to be extended. The participants were, at this point, aware that the second response should 

be produced, but unable to execute a fast response since their brain was still in the early 

stage of this period of intrinsic unreadiness. This inability to respond fast created a time 

pressure, which led to a higher PF in this condition. Additionally, to compensate for the 

lack of cognitive resources during the recovery phase, the brain deliberately set a longer 

time to reach the PF, as indicated by the higher TTP. On a neural level, monitoring activity 

for the second task was disrupted by this recovery mechanism and therefore was 

significantly lower than the other RSI conditions, as indicated by a low Ne/ERN and CRN. 

In the medium RSI condition, the brain almost completely ‘recovered’ when the Response 

Preparation stage for Task 2 started. However, this stage was still interfered by the 

recovery phase, thus the motor programming was done faster (compared to the short RSI 

condition), and more activities in term of error monitoring was observed (indicated by a 
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higher Ne/ERN and CRN), but the participants were still under time pressure, which 

resulted in a higher PF and TTP compared to the long RSI condition. Meanwhile, the time 

pressure factor was completely eliminated during the long RSI condition, which explained 

the fastest RT, lowest PF, and lowest TTP for Task 2, compared to the other two RSI 

conditions. Interestingly, the Pc result suggested that, in the long RSI condition, the 

participants were almost as uncertain about their response as in the short RSI condition 

(i.e., Pc was lowest at the medium RSI condition, and no significant difference was 

observed between Pc in the short and long RSI condition). If the recovery phase was not 

the trigger of such uncertainty (since the recovery process ended long before the Stimulus 

Processing for Task 2 started in the long RSI condition) then a possible cause of an 

increased uncertainty in this condition was interference from other cognitive processes 

(e.g., memory retrieval of Task 1’s response) which might ensue from a long period of 

‘waiting’, like in the first model. Note that there is a conceptual difference between model 

1 and model 2. Model 1 does not assume the existence of a recovery phase, thus the 

‘bottleneck’ in model 1 is induced simply because the Central Processing for Task 2 

cannot start until the Central Processing for Task 1 is completed. So, no cognitive 

processes were toned down (in model 1), and the delay was caused merely by a period of 

waiting. Unlike model 1, the Response Preparation for Task 2 could start when the brain 

is ‘recovering’, but since cognitive resources are limited during this recovery phase, this 

stage takes longer to complete, causing a delay to occur.    

      

 

Figure 26. Response Preparation Model (Model 3) for short, medium, and long RSI 

scenarios. The information processing stages are color-marked in: green for Stimulus 
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Processing stage(SP), blue for Response Preparation stage (RP), yellow for Action 

Monitoring stage (i.e., Motor Execution and Response Evaluation). The Central Processing 

stage consists of Response Preparation and Action Monitoring. 

 

Model 3: Response Preparation Model  

 

The third model, the ‘Response Preparation’ model (see Figure 26), offers a slightly 

different interpretation from the other two models, as it places more emphasize on the task 

execution details and the nature of the paradigm itself, instead of the ‘traditional’ 

information processing stages used in the previously conducted PRP studies. Considering 

that the stimulus for Task 1 (S1) and Task 2 (S2) was more like a go signal (thus, only a 

temporal information provider in this paradigm), the order of the information processing 

stages in this model was slightly changed. In this model, the Response Preparation stage 

is assumed to precede the Stimulus Processing stage, since the presented stimulus for both 

tasks were always the same and therefore did not affect the response decision. As 

illustrated in the model, the stimulus for Task 2 (S2) during the short RSI condition 

appeared on the screen when the Response Preparation for Task 2 has not yet finished, 

resulting in the prolongation of RT2. This prolongation of RT2 did not occur in the longer 

RSI condition, since the Response Preparation stage for Task 2 has been finished before 

the onset of S2. Thus, this model proposed a concept where RT2 prolongation was possible 

without the necessity of a bottleneck in both tasks. On a behavioral level, this model could 

explain the RSI effect observed in the PF (for task 2: PF during short RSI > PF during 

medium RSI > PF during long RSI). In the short RSI condition, the participants have not 

finished preparing their response by the time S2 appeared on the screen, which positioned 

them under a time pressure, and caused them to produce higher amount of force. 

Meanwhile, this time pressure situation did not occur in the long RSI conditions, in which 

the participants finished preparing their response and had ‘spare time’ to wait for the go 

signal for Task 2 (S2) to appear on the screen. Furthermore, if it was true that during the 

short RSI condition the participants were put into some sort of time pressure since they 

have not finished the Response Preparation for Task 2, this could also explain the Ne/ERN 

and CRN results pattern in this study (i.e., lower Ne/ERN and CRN in the short RSI 

condition compared to the other two RSI conditions, resulted from the accentuated time 

pressure during the short RSI condition). This explanation is in line with the evidence from 

the literature, in which decreased / diminished Ne/ERN during speeded tasks was reported 
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(e.g., Dudschig & Jentzsch, 2009). Thus, following this theory, starting from the medium 

RSI condition, the brain presumably had enough time to produce a similar amount of 

monitoring activities (as reflected by the absence of significant differences of Ne/ERN and 

CRN between the medium and long RSI conditions). Note that in the long RSI condition, 

the Response Preparation stage for Task 2 is prolonged until the second response is cued, 

introducing an enhanced possibility for an ‘interference’ from the other cognitive activities 

(e.g., recalling response codes for Task 2 from previous trial, attempting to evaluate 

whether response for Task 1 was correct, etc.), which resulted in an increased uncertainty 

level in this RSI condition, as reflected by a higher Pc compared to the medium RSI 

condition.  

Despite the different concepts underlying the proposed models, all theories 

presented in this study postulate that the bottleneck in the current paradigm could not have 

happened during the Motor Execution stage, since even during the short RSI condition 

where the period between RT1 and Stimulus onset 2 was as short as 550 ms, the 

participants had some time (see the grey area in Figure 27) until Stimulus 2 appeared on 

the screen. 

 

 

Figure 27. An example of experimental trial with a short RSI. The grey area represents the 

amount of time ‘left’ from the end of Response Execution for Task 1 until S2 onset  

 

Thus, if a bottleneck exists, this bottleneck should have occurred after the Motor 

Execution stage of Task 1. However, one can only hypothesize what kind of processes 

might incur after this stage, that would cause a prolongation of RT2. It is also important to 
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bear in mind that the postulated models rely heavily on the Central Bottleneck Theory, 

focusing on the concept that two Central Processing stages for two different tasks cannot 

happen at the same time. It is important to note that the ‘Central Processing’ stage in this 

present study was redefined (i.e., consists of Response Execution and Response 

Evaluation) and thus conceptually different from the ‘Central Processing’ stage in the 

discrete choice tasks (i.e., reviewing response alternatives and selecting the appropriate 

response). However, the original ‘idea’ from the Central Bottleneck Theory (i.e., that 

Central Processing stage from two different tasks cannot overlap) was taken into account 

while developing the models in the present study. Furthermore, it is important to consider 

that the participants were instructed to place equal emphasis on each of the two tasks, and 

to respond as fast as possible not only for the first but also the second stimulus. This 

instruction was intended to encourage the participants to emit their response for Stimulus 

1 as soon as possible, so that the participants did not withhold their Task 1 response until 

their Task 2 response was also ready, consequently diminishing the possibility for a shared 

central capacity between the two tasks to happen – which simplified the paradigm and 

allowed for easier data interpretation.  

Taken together, findings from the second study provided the first evidence that 

some kind of PRP effect is present in subsequent simple force production tasks – even 

when there is no motor execution overlap between the first and second task. However, 

further investigation would be necessary to determine the underlying cause of this effect 

and to disentangle the postulated models. For example, readiness-potential (RP), which 

was found to reflect action preparation or general anticipation of the occurrence of an 

action (e.g., Mele, 2017), could be investigated using stimulus-locked neural correlates to 

find out if the Response Preparation stage of Task 2 preceded the Stimulus Processing 

stage of Task 2. If RP is detected before S2 onset, and starts earlier during the long RSI 

condition (i.e., RPonset long RSI > RPonset medium RSI > RPonset short RSI), this result would 

be in favor of model 3. Otherwise, a regression-based MVPA (SVR) could be used to 

regress the response-force parameters (i.e., PF & TTP) separately for the short and long 

RSI conditions, in order to see if the results would support one of the other two models. If 

the SVR result showed a long period of absence of information regarding the response-

force parameters (i.e., PF and TTP) after S2 onset (and before R2 onset) during the short 

RSI condition, this would presumably be caused by a bottleneck that happened after the 

Stimulus Processing of Task 2, during which no evidence regarding response-force 

parameters should be reflected in the brain activity pattern. Additionally, if the SVR result 
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for the long RSI condition showed an earlier prediction of the response-force parameters 

(in comparison to the short RSI condition), this results pattern would then support model 

1. If the SVR results showed only a short period of absence of information regarding force-

related parameters (which is assumed to reflect the Stimulus Processing stage) after the S2 

onset for both the short and long RSI conditions, then model 2 should explain the PRP 

effect found in the present study.  

 

2.2.5 Limitations 

 

The paradigm used in the second study allowed for replicating PRP effect during a 

subsequent simple continuous tasks such as force production. Results of the data analyses 

have exhibited successful replication of the PRP effect on Response Time for the second 

force task. A similar, PRP-like effect was also observed on the response-force parameters 

(i.e., PF and TTP), as well as different neural correlates of force monitoring. However, the 

results from the too high condition had to be omitted since there was not enough trials for 

this condition. The complexity of the task itself – combined with the various attempts to 

control for potential confounds - made it difficult to induce an adequate amount of both 

too high trials and too low trials for every participant, since they were not given a specific 

instruction to use a certain strategy to reach the correct target force range. Suppose an equal 

amount of too high and too low trials could be induced for most participants, it would have 

been possible to see if PRP-like effect arose in all force conditions, and error-specific 

differences caused by different RSI could be thoroughly investigated. Another possible 

improvement to the current method is to add one or more RSI points to induce smoother 

curves for the PRP effects, which would allow better comparisons between the RSI 

conditions, that might be very useful to understand the processes involved during the 

information processing stages of both tasks, since these processes vary according to the 

RSI. However, doing this could introduce some consequences, such as: (1) it would be 

more difficult to get an adequate amount of trials for each force level conditions in each 

RSI variations; (2) this could result in prolongation of the experimental session, and thus 

increasing the risk of having other confounds like mental fatique.  

Second, general force effects were observed during feedback presentations for both 

key presses. A comparison regarding PRP effect could have been conducted between the 

feedback for the second button press and the feedback for the first button press. However, 
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a direct comparison (between the two feedbacks) was not possible because of an unplanned 

structural limitation of the current paradigm; instead of appearing always at the same time 

point in each trial, feedbacks for the first button press were relative to the different RSI, 

making it difficult to see if any effect observed during feedback presentation for the second 

button press was solely caused by the RSI manipulation. Suppose that an RSI effect was 

observed on the second button press, it would still be hard to distinguish, if this effect was 

induced by the different RSI or was just a general effect, since the feedback for the first 

button press was not completely free from the influences induced by the different RSIs.  
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III. General Discussion  
 

3.1 General Perspective on a Simple One-dimensional Force Production   

 

In the following, general aspects of force production and its monitoring based on 

the empirical evidence will be discussed. Firstly, I will highlight the substantial differences 

between force production tasks and discrete choices task. Then, findings from each study, 

as well as how the two studies influence each other, will be elaborated. Finally, future 

directions that ensue from the present studies’ findings will be discussed.  

As previously mentioned, it is important to fully understand the nature of the force 

production task used in the present study, and understand how the ‘unique’ nature of force 

production influenced the design of the paradigms used in the first and the second study. 

The first important concept in the force construct is the so-called ‘response quality’. As 

previously mentioned, response quality – in a large body of research - has been often 

dichotomized into correct and incorrect. The force paradigm introduced in the first and 

second study has not only offered a broader view on the complexity of ‘simple’ continuous 

task like one-dimensional force production, but also a different perspective to the word 

‘correctness’. First, this study introduced a broader definition of the term accuracy, which 

is often used as performance measure during performance tasks. The term ‘accuracy’ in 

this study is defined as an ‘area’ between an upper and lower limit on a force continuum. 

Thus, many force response outcomes can be categorized as ‘correct’ (and vice versa), 

which is a concept that is not usually applicable in most discrete performance tasks (e.g., 

in n-choices flanker tasks). The next important concept that needs to be kept in mind in the 

context of force production, and at the same time the most distinctive ‘feature’ of a force 

task, in comparison to the usual discrete task, is the continuous nature of this task. To 

produce a force response, one needs to control two aspects: (1) the time needed until the 

Peak Force is reached / TTP; (2) the number of force units that will be assigned 

continuously during this designated time period to produce a force as accurate as possible 

(see Ulrich & Wings, 1991 for details). This unique and continuous mechanism of force 

production has influenced how a number of cognitive activities were carried out (in 

comparison to discrete choice tasks), for example: response planning, error monitoring, 

and feedback decoding.  

Therefore, two investigations were carried out in this study, to see how the 

previously mentioned cognitive processes (e.g., error monitoring) proceed during a simple 
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force production. Note that there has not been a large body of research investigating 

continuous task (i.e., force production) like in the present study, therefore this section is 

more focused on presenting findings from the two studies in an elaborate manner, rather 

than comparing the present study’s result with the existing literature.  

The first study showed that although one cannot fully disentangle force magnitude 

from response quality (correctness), the process of determining force magnitude (i.e., 

motor programming, Rosenbaum, 1985) seems to precede the process of determining the 

correctness of a force response. Interestingly, although the brain appeared to be fast 

enough in term of planning the response parameters (i.e., PF and TTP) while the 

correctness aspect of the response itself was not foreshadowed in the neural signals (as 

shown in the first study result), it is very difficult (if not impossible), to pinpoint the exact 

amount of force (in cN) produced in such simple force production task. This finding also 

led to another interesting question: if such specific information like response force 

parameters (i.e., PF and TTP) was reflected in the brain activity before response onset, 

should not information about correctness be reflected somewhere in the brain activity as 

well? As an illustration, evaluating whether a force response is correct or incorrect (i.e., 

over/under-produced) should be ‘easier’ than stating the exact amount of produced-force 

(e.g., 246 cN). The latter is supposedly hard even for motor-experts. However, further 

investigation would be needed to investigate if information regarding correctness was not 

reflected in the brain activity (of naïve participants), or if the current method was not 

sensitive enough to detect evidence regarding correctness in the brain activity. While 

evidence regarding correctness might not be reflected in the brain activity of naïve 

participants because they would need more evidence to establish a mental representation 

of a response quality, this might not be the case with motor-experts. Unlike naïve 

participants, motor-experts might not require ‘further evidence’ (e.g., evidence provided 

by external feedback) to establish a mental representation of correctness, which 

consequently could be reflected in their brain activity. What is also particularly interesting 

to investigate, is whether different types of feedback (other than visual feedback) like 

sound or haptic feedback would help the brain to create a representation of correctness of 

a response. It is imaginable that, given adequate external feedback (sound, haptic, or both), 

a motor expert or even a naïve participant that receives enough training could precisely 

identify the quality of a force response.   

Findings from the first study provided important evidence regarding response-

dynamics in force production, and eventually led to further interesting questions, such as: 
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if decision regarding force response parameters was reflected as early as 270 ms before 

response onset (as indicated from the first study’s result), would this decision process be 

interrupted or delayed if one had to do another force task with the same difficulty within a 

short period of time? Would one have enough time to evaluate the quality of the first 

response without the help of external feedback? Would the brain then use different 

strategies to program the response force parameters?  

The second study served not only as an ‘overview’ of the course of subsequent 

simple force productions, but was also intended to provide insights on how the information 

processing stages in two subsequent continuous tasks were modulated, depending on the 

pause (i.e., RSI) between the two tasks. Like the accuracy concept in the first study, the 

paradigm used in the second study introduced necessary modifications (i.e., the use of RSI 

instead of SOA) of an existing paradigm. The results from this study have provided insights 

regarding response dynamics in two subsequent force production tasks. For example, in 

line with the first study’s result that indicated evidence of early TTP programming 

(reflected in the brain activity pattern), the second study’s results showed that no 

significant difference in term of TTP was observed during the short and medium RSI 

condition, which could be linked to the first study’s finding. Since TTP was presumably 

programmed earlier than the PF (as indicated in the first study’s result), and the Response 

Preparation stage of Task 2 (including the programming of PF and TTP) of the short and 

medium RSI conditions (but not the long RSI condition) was interrupted by some kind of 

bottleneck, it was presumably harder for the participants to make significant alteration of 

TTP during the motor programming of Task 2, thus varying the amount of force units 

might be a better ‘strategy’ as they were programmed later (than the TTP). It is particularly 

noteworthy to mention that the second study serves as the first evidence that a PRP effect 

exists in two continuous tasks without neither the necessity of motor execution overlap of 

the two tasks nor the need of increasing Task 1’s difficulty level. For instance, some PRP 

studies in discrete choice tasks deliberately administered a difficult first task, or increased 

the number of response alternatives for Task 2, to induce a PRP effect. The time interval 

for the short RSI condition in this study could have been made shorter (i.e., to fulfill the 

‘usual’ PRP requirement: RSI < RT1). However, with these ‘arrangements’, one cannot be 

sure if the PRP effect was induced purely because of a mental bottleneck, or if it was an 

‘added’ effect of motor execution overlap.  

 One particular challenge when designing the second study’s paradigm was to 

incorporate response evaluation for both tasks in the paradigm. In the first set of the pilot 
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test conducted for the second study, the pilot participants were actually asked to rate their 

responses for both button presses, but this procedure introduced more cognitive load which 

exhausted the participants, rather than providing useful information. Of course, it would 

have been interesting to obtain information on whether the participants were aware of error 

commissions, which would give more information regarding feedback processing and/or 

response adaptation. But in exchange, incorporating response evaluation to the paradigm 

could introduce further confounds (i.e., mental fatigue caused by excessive cognitive load). 

Therefore, for the sake of simplicity and easier data interpretation, a decision to exclude 

this evaluation process was made.  

To conclude, some important findings from both studies that could be underlined 

for future studies are: (1) motor programming for simple force production task was done 

before response onset, which might be useful for early error detection; (2) the information 

processing stages (i.e., including cognitive processes such as error processing, response 

parameters planning) in two subsequent simple force tasks are modulated by the length of 

RSI between the first and second task, and the differences in the information processing 

stages are reflected not only on a behavioral level, but also on a neural level.  

 

3.2 Future Research 

  

Apart from the inherent limitations in the present study, there are exciting 

possibilities for future research that ensue from the present findings. In regard to the first 

study, a possibility for future research would be, to have the participants rate their force 

response as correct or incorrect after each response and before feedback presentation. This 

mechanism would allow detected and undetected errors to be separated, whose differences 

might provide further insights regarding error detection related processes during simple 

force production. This allows to reveal whether information regarding correctness is 

available in trials with detected errors. Since the participants had only little time to practice 

before performing the task, it is interesting to see whether it is possible to detect incorrect 

force production after more practice (by using several practice sessions or by investigating 

motor experts such as pianist; Parlitz et al., 1998) and if this would be reflected in a clearer 

differentiation between the early brain activity (CRN, Ne/ERN) of correct and incorrect 

responses. Another possible alteration of the currently used paradigm was to vary TTP 

experimentally (i.e., short and long TTP; similar to Armbrecht et al., 2013). This would 
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allow investigating how the timing of the PF might serve as an aggravating or a supporting 

factor for successful force error detection.   

The results from the second study also provide interesting directions for future 

investigations. First, a multivariate approach such as MVPA could be utilized to detect 

what kind of information was contained in the brain activity, especially during the time 

interval that occurred after the first button was pressed until before the second button was 

pressed. This would allow determining what kind of information was processed during this 

period and might be a usable tool to explain the postulated models. It would be also helpful 

to administer questionnaires which contain different questions regarding strategies used by 

the participants to improve their response quality specifically for each button press. 

Another possibility for future research is to conduct a follow-up study on motor experts 

(e.g., pianists, footballers, kickboxers, etc.), which allowed more task variations that might 

help elucidating the underlying cause of the PRP effect in subsequent force tasks.  
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IV. Summary   
 

Overall, the two studies focused on action monitoring during simple force 

production, a topic which has not been fully elucidated and thus needing further 

investigations. The first study was aimed to shed light on how force execution of a simple 

one-dimensional force production task unfolds. Using a modified paradigm based on the 

existing literature, information regarding response dynamics during a simple force 

execution task was gathered. Furthermore, an attempt to elucidate the time course of 

information relevant to the monitoring processes was made. The investigation was 

conducted using classical ERP components to see error-specific variations during simple 

force production task, and a multivariate approach was used to distinguish two different 

experimental conditions (i.e., different force levels and correctness of the response), and 

to predict when information regarding response force parameters such as PF and TTP are 

available in the brain activity pattern. The ERP results showed no clear error-specific 

variations between different force production ranges (characterised as too low, correct, and 

too high with respect to the target range). On the other hand, the multivariate approach 

(MVPA) was able to distinguish response quality (e.g., correct vs. incorrect response), as 

well as different force conditions (e.g., over-produced vs. under-produced force). 

Moreover, this approach could decode single-trial response parameters like PF and TTP 

before the response onset, indicating that the magnitude and timing of the force pulse were 

defined before response execution, while the response quality (i.e., correctness) of a 

response was not yet foreshadowed in the ERP signals.  

The second study incorporated a PRP paradigm adapted to two consecutive one-

dimensional force production tasks. Beyond replicating the widely known PRP-effect in 

discrete choice tasks, this study was aimed to see if response execution during two 

subsequent force production tasks was modulated by a similar PRP effect found in two 

subsequent discrete tasks. The investigation was carried out to see variations caused by the 

different length of RSI, not only on a behavioural level (i.e., by looking at RT, force 

response parameters such as PF and TTP, and error rates) but also on a neural level (i.e., 

by investigating RSI-specific variations on ERP components). On a behavioural level, the 

carried out investigation exhibited PRP effect not only on RT (for Task 2) but also on the 

response force parameters (i.e., PF and TTP) of Task 2. Moreover, PRP effect was also 

observed on a neural level, as reflected in the neural correlates of error monitoring (e.g., 

lower Ne/ERN and higher Pc in the short RSI condition). To further understand how PRP 
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effect modulates the flow of information processing stages in two subsequent force tasks, 

three models based on the Central Bottleneck Theory were postulated. Taken together, 

findings from the second study provided the first evidence that a PRP effect is actually 

present in subsequent simple force production tasks, without the necessity of motor overlap 

between the first and the second task. Moreover, the different length of RSI between the 

two force tasks modulated the information processing stages of the second task, and the 

difference between RSI conditions is reflected not only on a behavioral level, but also on 

a neural level.  
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Appendix  
Appendix A 

Statistical Analyses Results of ERP Components in Study 1   

Table A1. Peak amplitude and areas for all ERP components (correct vs. incorrect-too high vs. 

incorrect- too low) in study 1  

RESPONSE LOCKED 

PEAK AMPLITUDE (V/cm2) 

ERP component 

(channel) 
peak amplitude (mean ± SEM)  F value  P value  

Ne/ERN (FCz)  

Incorrect – too high  -25.41± 3.26  

3.08 0.050 Correct -21.81± 2.67  

Incorrect – too low -22.89 ±2.71  

Pe (Cz) 

Incorrect – too high  9.39 ± 2.95 
3.77 0.030* Correct 5.09 ± 2.19 

Incorrect – too low 4.37 ± 1.47 

AREA (mV/cm2) 

ERP component 

(channel) 
area (mean ± SEM)   F value  P value  

Ne/ERN (FCz) 

Incorrect – too high  16.44 ± 2.25 

.86 .424 Correct 15.82 ± 1.97 

Incorrect – too low 15.26 ± 1.92 

Pe (Cz) 

Incorrect – too high  15.42 ± 2.26 

6.98 0.002* Correct 11.29 ± 1.40 

Incorrect – too low 9.95 ± 1.26 

TIME-TO-PEAK LOCKED 

PEAK AMPLITUDE (V/cm2) 

ERP component 

(channel) 
peak amplitude (mean ± SEM)  F value  P value  

Ne/ERN (FCz)  

Incorrect – too high  -22.96± 1.69  

.59 .554 Correct -21.60± 2.57  

Incorrect – too low -22.65 ±2.57  

Pe (Cz) 

Incorrect – too high  15.94 ± 2.95 

7.52 <0.001* Correct 8.41 ± 1.93 

Incorrect – too low 8.89 ± 1.96 

AREA (V/cm2) 

ERP component 

(channel) 
area (mean ± SEM)   F value  P value  

Ne/ERN (FCz) 

Incorrect – too high  12.05 ± 1.98 

1.68 .197 Correct 13.66 ± 1.77 

Incorrect – too low 12.05 ± 1.72 

Pe (Cz) 

Incorrect – too high  16.72 ± 1.85 

15.56 <0.001* Correct 10.36 ± 1.27 

Incorrect – too low 9.87 ± 1.24 

FEEDBACK LOCKED 

PEAK AMPLITUDE (V/cm2) 

ERP component 

(channel) 
peak amplitude (mean ± SEM)  F value  P value  

FRN (Cz)   

Incorrect – too high  -3.05 ± 1.87  

6.43 0.002* Correct 0.45 ± 1.88 

Incorrect – too low -5.08 ± 1.95 
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FRN (FCz) 

Incorrect – too high  -4.15 ± 2.03  

5.54 0.007* Correct -0.31 ± 2.00  

Incorrect – too low -5.24 ± 1.88  

 

 

Table A2. Peak amplitude and areas for all ERP components (correct vs. incorrect) in study 1  

RESPONSE LOCKED 

PEAK AMPLITUDE (V/cm2) 

ERP component 

(channel) 
peak amplitude (mean ± SEM)  F value  P value  

Ne/ERN (FCz)  
 Correct -21.81 ± 2.67 

0.16 0.695 
Incorrect   -22.93 ± 1.99 

Pe (Cz) 
Correct  5.09 ± 2.19 

1.98 0.166 
Incorrect 6.51 ± 1.49 

AREA (V/cm2) 

ERP component 

(channel) 
area (mean ± SEM)   F value  P value  

Ne/ERN (FCz) 
Correct 15.82 ± 1.97 

0.64           0.428 
Incorrect 15.56 ± 1.37 

Pe (Cz) 
Correct  11.29 ± 1.40 

0.63 0.433 
Incorrect 10.65 ± 1.13 

TIME-TO-PEAK LOCKED 

PEAK AMPLITUDE (V/cm2) 

ERP component 

(channel) 
peak amplitude (mean ± SEM)  F value  P value  

Ne/ERN (FCz)  
Correct -21.60 ± 2.57 

0.00 0.991 
Incorrect -21.59 ± 1.91 

Pe (Cz) 
Correct  8.41 ± 1.93 

2.26 0.140 
Incorrect 9.78 ±  1.53 

AREA  (V/cm2) 

ERP component 

(channel) 
area (mean ± SEM)   F value  P value  

Ne/ERN (FCz) 
Correct  10.66 ± 1.77 

2.67 0.060 
Incorrect 11.76 ± 1.01 

Pe (Cz) 
Correct  10.36 ± 1.27 

0.17 0.679 
Incorrect 11.20 ± 1.06 

FEEDBACK LOCKED 

PEAK AMPLITUDE (V/cm2) 

ERP component 

(channel) 
peak amplitude (mean ± SEM)  F value  P value  

FRN (Cz)   
Correct  0.45 ± 1.88 

9.01 0.004* 
Incorrect -4.37± 1.44 

FRN (FCz) 

Correct  -0.31 ± 2.00 

5.74 0.021* Incorrect -4.87 ± 1.44 
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Appendix B 

Statistical Analyses Results of ERP Components in Study 2   

 

Table B1. RSI effect on peak amplitude and areas for all ERP components (separately 

investigated for correct and incorrect-too low conditions) for Task 2 in study 2  

RESPONSE LOCKED (Task 2)  

PEAK AMPLITUDE (V/cm2) 

Ne/ERN or CRN 

(at FCz) 
peak amplitude (mean ± SEM)  F value  P value  

Correct (CRN) 

Short RSI -46.26 ± 2.99 

5.21 0.010*  Medium RSI -54.26 ± 3.69 

Long RSI  -52.79 ± 3.87 

Incorrect – Too 

Low (Ne/ERN) 

Short RSI -56.26 ± 4.08 

0.88 0.423 Medium RSI -58.97 ± 3.91 

Long RSI  -56.24 ± 3.70 

Pe or Pc (at Cz) peak amplitude (mean ± SEM) F value  P value  

Correct (Pc) 

Short RSI 20.52 ± 2.65 

7.11 0.023* Medium RSI 13.86 ± 2.38 

Long RSI  19.50  ± 3.06 

Incorrect – Too 

Low (Pe) 

Short RSI 25.18 ± 3.12 

2.697 0.081 Medium RSI 18.63 ± 2.53 

Long RSI  21.05 ± 3.24 

AREA (V/cm2) 

Ne/ERN or CRN 

(at FCz) 
area (mean ± SEM)  F value  P value  

Correct (CRN)   

Short RSI 26.39 ± 1.69 

4.94 0.012* Medium RSI 31.65 ± 2.44 

Long RSI  31.42 ± 2.66 

Incorrect – Too 

Low (Ne/ERN) 

Short RSI 26.29 ± 2.03 

4.39 0.020* Medium RSI 31.71 ± 2.40 

Long RSI  29.44 ± 2.19 

Pe or Pc (at Cz) area (mean ± SEM) F value P value 

 Short RSI 12.46 ± 1.10   

Correct (Pc) Medium RSI 12.46 ± 1.10 4.37 0.023* 

 Long RSI 19.50 ± 3.06   

Incorrect – Too 

Low (Pe)  

Short RSI 17.69 ± 1.87     

Medium RSI 14.22 ± 1.98 1.145 0.329 

Long RSI  15.57 ±  1.82   
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Table B2. RSI effect on peak amplitude and areas for all ERP components (separately 

investigated for correct and incorrect-too low conditions) for Task 1 in study 2  

RESPONSE LOCKED (Task 1)  

PEAK AMPLITUDE (V/cm2) 

Ne/ERN or CRN 

(at FCz) 
peak amplitude (mean ± SEM)  F value  P value  

Correct (CRN) 

Short RSI -45.89 ± 3.36 

0.89 0.420 Medium RSI -47.05 ± 3.51 

Long RSI  -48.49 ± 3.91 

Incorrect – Too 

Low (Ne/ERN) 

Short RSI -50.64 ± 3.73 

1.19 0.313 Medium RSI -50.51 ± 3.74 

Long RSI  -48. 47 ± 3.28 

Pe or Pc (at Cz) peak amplitude (mean ± SEM) F value  P value  

Correct (Pc) 

Short RSI 28.43 ± 2.59 

1.16 0.324 Medium RSI 28.96 ± 2.87 

Long RSI  26.69 ± 2.51  

Incorrect – Too 

Low (Pe) 

Short RSI 26.11 ± 2.41 

1.05 0.359 Medium RSI 27.76 ± 2.93 

Long RSI  28.69 ± 2.60 

AREA (V/cm2)  

Ne/ERN or CRN 

(at FCz) 
area (mean ± SEM)  F value  P value  

Correct (CRN)   

Short RSI 25.18 ± 2.04 

1.63 0.210 Medium RSI 26.21 ± 2.13 

Long RSI  27.41 ± 2.28 

Incorrect – Too 

Low (Ne/ERN) 

Short RSI 28.27 ± 2.20 

0.45 0.956 Medium RSI 28.16 ± 2.22 

Long RSI  27.89 ± 2.02 

Pe or Pc (at Cz) area (mean ± SEM) F value P value 

 Short RSI 18.99 ± 1.72   

Correct (Pc) Medium RSI 20.21 ± 2.07 1.79 0.179 

 Long RSI 17.92 ± 1.82    

Incorrect – Too 

Low (Pe)  

Short RSI 16.28 ± 1.76   

Medium RSI 17.45 ± 1.96 1.22 0.307 

Long RSI  18.17 ± 1.91   
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Table B3. Force effect on peak amplitude and areas of response-locked averages for Task 2 in 

study 2   

RESPONSE LOCKED (Task 2 – Force effect) 

PEAK AMPLITUDE (V/cm2) 

ERP component 

(channel) 
peak amplitude (mean ± SEM)  F value  P value  

 

Ne/ERN or CRN 

(FCz) 

 

Correct 

 

-51.01 ± 3.31 

 

15.56 

 

<0.001* 

Incorrect – too low -57.16 ± 3.59  

Pe or Pc (Cz) 

    

3.29 

 

0.077 Correct 18.51 ± 2.30 

Incorrect – too low  21.62 ± 2.36 

  AREA (V/cm2)   

ERP component 

(channel) 
area (mean ± SEM) F value P value 

Ne/ERN or CRN Correct 29.82 ± 2.05 0.64 0.429 

(FCz) Incorrect – too low 29.15 ± 1.94    

Pe or Pc Correct 14.65 ± 1.30 0.59 0.446 

(Cz) Incorrect – too low 15.59 ± 1.44   

 

 

Table B4. Force effect on peak amplitude and areas of response-locked averages for Task 1 in 

study 2   

RESPONSE LOCKED (Task 1 – Force effect) 

PEAK AMPLITUDE (V/cm2) 

ERP component 

(channel) 
peak amplitude (mean ± SEM)  F value  P value  

Ne/ERN or CRN 

(FCz) 

Correct -46.83 ± 3.52 
6.31 0.016* 

Incorrect – too low  -49.91 ± 3.44 

Pe or Pc (Cz) 

  

 0.46 0.502 Correct 28.47 ± 2.56 

Incorrect – too low  27.52 ± 2.36  

  AREA (V/cm2)   

ERP component 

(channel) 
area (mean ± SEM) F value P value 

Ne/ERN or CRN Correct 25.95 ± 2.07  5.99 0.019* 

(FCz) Incorrect – too low  28.11 ± 2.04    

Pe or Pc Correct 18.92 ± 1.81 2.54 0.119 

(Cz) Incorrect – too low 17.30 ± 1.69   
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Table B5. Force effect on peak amplitude and areas of feedback-locked averages for Task 2 in 

study 2   

FEEDBACK LOCKED (Task 2 – Force effect) 

PEAK AMPLITUDE (V/cm2) 

ERP component 

(channel) 
peak amplitude (mean ± SEM)  F value  P value  

 FRN (FCz) 
Correct -12.14 ± 2.67  

9.08 0.005* 
Incorrect – too low -17.78 ± 2.19  

Feedback P3 (FCz) 

  

 23.27 <.001 * Correct 19.03 ± 2.18 

Incorrect – too low  33.96 ± 3.80  

  AREA (V/cm2)   

ERP component 

(channel) 
area (mean ± SEM) F value P value 

Feedback P3 (FCz) Correct 13.58 ± 1.18 20.03 <.001 * 

 Incorrect – too low 19.38 ± 1.49   

 

 

Table B6. Force effect on peak amplitude and areas of feedback-locked averages for Task 1 in 

study 2   

FEEDBACK LOCKED (Task 1 – Force effect) 

PEAK AMPLITUDE (V/cm2) 

ERP component 

(channel) 
peak amplitude (mean ± SEM)  F value  P value  

 FRN (FCz) 
Correct -14.47 ± 2.18 

0.24 0.628 
Incorrect – too low -15.05 ± 2.19  

Feedback P3 (FCz) 

  

 7.85 0.008* Correct 18.88 ± 2.21 

Incorrect – too low  28.97 ± 3.78  

  AREA (V/cm2)   

ERP component 

(channel) 
area (mean ± SEM) F value P value 

Feedback P3 (FCz) Correct 13.26 ± 0.89 7.04 0.011* 

 Incorrect – too low 16.74 ± 1.49   

 

 

 

 

 

  


