
Approximating solution spaces
as a product of polygons
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APPROXIMATING SOLUTION SPACES AS A PRODUCT

OF POLYGONS

HELMUT HARBRECHT, DENNIS TRÖNDLE, AND MARKUS ZIMMERMANN

Abstract. Solution spaces are regions of good designs in a potentially
high-dimensional design space. Good designs satisfy by definition all
requirements that are imposed on them as mathematical constraints.
In previous work, the complete solution space was approximated by a
hyper-rectangle, i.e., the Cartesian product of permissible intervals for
design variables. These intervals serve as independent target regions
for distributed and separated design work. For a better approximation,
i.e., a larger resulting solution space, this article proposes to compute
the Cartesian product of two-dimensional regions, so-called 2d-spaces,
that are enclosed by polygons. 2d-spaces serve as target regions for
pairs of variables and are independent of other 2d-spaces. A numerical
algorithm for non-linear problems is presented that is based on iterative
Monte-Carlo sampling.

1. Introduction

Some technical systems, such as vehicles or airplanes, are difficult to design
because of complexity: many interacting components from different tech-
nical disciplines with uncertain properties are to be arranged and adjusted
such that the overall system behavior satisfies overall system requirements
and the system reaches its design goal [31].

Established methods such as sensitivity analysis [27] or multidisciplinary
design optimization [19] address design complexity due to many design vari-
ables, however without uncertainty treatment. Uncertainty is considered in
robust design optimization [1] or reliability-based design optimization [25].
These methods are, however, only applicable when a detailed uncertainty
model is available and is equipped with appropriate data, e.g., on the density
distribution of random variables.

Development procedure models, such as the so-called V-model, see [17], pro-
vide a framework for so-called top-down design without uncertainty model.
Technical systems are decomposed into smaller and more manageable parts.
These parts may be seen as sub-systems or sub-sub-systems, etc., and will be
referred to as components. In order to direct the design work on components
towards the overall design goals, component requirements are formulated.
They have to be such that they are (1) sufficient for reaching the overall
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system goal, (2) as little restrictive for component design as possible, and
(3) independent of component interaction.

Requirements can be expressed quantitatively as so-called solution spaces,
[32]. Solution spaces are sets of good designs, i.e., design points that satisfy
all system level-requirements. Solution spaces are typically approximated as
axis-parallel hyper-rectangles, called solution boxes. They are maximized in
order to enclose uncertainty and provide design flexibility. The edges of a
solution box represent permissible regions for each design variable. As long
as each uncertain design variable assumes a value from within its associated
permissible interval the overall system goal is reached. Design variables
on components are considered to be decoupled in a particular sense: their
interaction is not relevant anymore as long as they stay within their intervals.

Expressing decoupled component requirements with solution spaces enables
separated component development in different teams. The interval widths
provide room for design flexibility and to cope with uncertainty. Tedious
coordination and iteration between teams may be thus avoided. Practical
applications can be found for vehicle crash design in [9, 12], for the design of
vibrating systems in [20, 23], for chassis components in [7, 30], for product
family design in [6], and for control systems design in [21, 22].

There are several algorithms that compute solution spaces as high-dimensio-
nal axis-parallel solution boxes. A detailed analysis of the basic algorithm
introduced in [32] can be found in [14]. In [10], linear support vector ma-
chines are utilized to find hyperplanes that represent the good design space.
Then, hypercubes are computed that lie within this good design space. In
[26], a combination of a cellular evolutionary strategy and interval arith-
metic is applied to find a hyper-rectangle. However, this technique requires
that the objective function is known explicitly, which is not the case in this
article. An algorithm proposed in [2] uses fuzzy set theory and cluster analy-
sis to find a hypercube. On the downside, it requires a so-called membership
function, which cannot be given for a design process as presented in this
article.

In some cases, solution boxes are too small for practical applications and
larger solution spaces are desirable. One approach to alleviate this prob-
lem is to divide the design variables into so-called early- and late-decision
variables and enlarge the solution space for early-decision variables by com-
pensating with late-decision variables, for details see [29]. Another approach
relies on so-called 2d-spaces where only pairs of design variables are decou-
pled: their permissible regions would then be two-dimensional regions. An
algorithm to compute convex and piece-wise linear 2d-spaces for linear prob-
lems was proposed in [8]. In [16], design variables were also coupled and the
2d-spaces were represented as rotated boxes (as opposed to axis-parallel
boxes).



APPROXIMATING A SOLUTION SPACE AS A PRODUCT OF POLYGONS 3

This paper aims at extending the approach based on 2d-spaces. An al-
gorithm will be presented that computes a solution space as the product
of arbitrary 2-dimensional polygon-shaped 2d-spaces. As polytopes are the
equivalent of polygons in higher dimensions, the problem addressed in this
paper is referred to as polytope optimization.

The rest of this article is structured as follows. The problem statement is
introduced in Section 2. Section 3 gives the overview to manipulations of
polygons, which are used later in the polytope optimization algorithm. The
polytope optimization algorithm is then proposed in Section 4. In Section 5,
numerical examples are provided. Finally, conclusions are drawn in Section
6.

2. Problem Statement

Properties of product components are measured by design variables xi ∈ R.
The overall design is given by the possibly very high-dimensional vector
x = (x1, . . . , xd)> ∈ Rd. The performance of a design is evaluated by an
objective function f : Ωds → R, where Ωds ⊂ Rd is the space of all admissible
designs. The function f measures the performance of the design, e.g. related
to passenger safety or vehicle dynamics. This leads to the optimization
problem

(2.1) f(x)→ min
x∈Ωds

.

The evaluation of f may be quite expensive, since it describes a complex
numerical simulation. Therefore, it is mandatory to keep the number of
function evaluations small. Moreover, f is a black-box function. It might
be noisy and no information about its gradient is available.

The box optimization algorithm replaces problem (2.1) and instead tries to

find a hyperbox Ωbox =
∏d

k=1[ak, bk] such that all designs x ∈ Ωbox fulfil
the relaxed optimality criterion f(x) ≤ c for a given threshold value c ∈ R.
The corresponding optimization problem reads (compare [11, 16])

(2.2)





Maximize the volume µ (Ωbox)

over all axis-parallel boxes Ωbox ⊂ Ωds

subject to f(x) ≤ c for all x ∈ Ωbox.

In order to work with this problem, the following definitions are introduced
(compare again [11, 16]):

Definition 2.1. A design x is called a good design or a good design point
if f(x) ≤ c and bad design or bad design point if f(x) > c for a critical
threshold value c ∈ R which is given. Additionally, the set of all good
designs is defined as the complete solution space

Ωc := {x ∈ Ωds : f(x) ≤ c} .
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For example, if f is the Rosenbrock function,

f(x) = (1− x1)2 + 100(x2 − x2
1)2,

then Ωc is U–shaped for c = 20, see Figure 1. An axis-parallel box will
settle somewhere in the lower curve of the U–shape, which ignores a large
part of the good design space Ωc (see left plot in Figure 1). By contrast,
a solution space with the shape of a polygon with an arbitrary number of
vertices is able to adjust to the U–shape, and approximates the complete
solution space better (see right plot in Figure 1).
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Figure 1. An axis-parallel box (left) and a polygon (right)
inside the U-shape.

In order to allow for polytopes as solution spaces, the concept of 2d-spaces
is utilized. The idea of 2d-spaces is to couple pairs of design variables xi and
xj . Then, instead of searching for two separate intervals [ai, bi] and [aj , bj ]
that satisfy the optimization problem (2.2), one can try to find a joint set
Si,j in the associated 2d-space such that each pair (xi, xj) ∈ Si,j is part of a
good design. Formally, a 2d-space can be defined as follows.

Definition 2.2. The 2d-space Ωi,j is defined as

Ωi,j :=
{
y ∈ R2 : y = πi,j(x), x ∈ Ωds

}
,

where πi,j is the projection (x1, . . . , xd) 7→ (xi, xj) with 1 ≤ i, j ≤ d. That
is, the 2d-space Ωi,j is the projection of Ωds onto the dimensions i and j.

Note that have aready been introduced in [8]. In the polytope optimization
algorithm, this concept of 2d-spaces is utilized and the joint set that is com-
puted on each 2d-space is a polygon. Thus, the axis-parallel hyperbox Ωbox

is replaced by a solution space Ωpol, which is a product of one-dimensional
intervals Ik and two-dimensional polygons Pi,j ,

(2.3) Ωpol :=
∏

k∈Jint
Ik ×

∏

(i,j)∈Jpair
Pi,j ,
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where, with JP = {1, . . . , d} \ Jint, we have

Jint =
{
i ∈ {1, . . . , d} : i is an unpaired dimension

}
,

Jpair =
{

(i, j) ∈ JP × JP : the dimensions i and j are coupled
}
.

The solution space Ωpol is thus a specific high-dimensional polytope. As an
example, Figure 2 illustrates a solution space Ωpol in three dimensions. If
Ωpol is a product of polygons only, i.e.

Ωpol =
∏

(i,j)∈Jpair
Pi,j ,

it is a product prism, which is the term for a polytope that is a product
of polytopes with two or more dimensions (see [4]). Likewise, we define a
polytope that can be written in the fashion of (2.3) as a product polytope.
We define the space of admissible product polytopes as

Ωprod :=



Ωpol ⊂ Ωds

∣∣∣∣∣Ωpol =
∏

k∈Jint
Ik ×

∏

(i,j)∈Jpair
Pi,j



 .

Finally, problem (2.2) can be rewritten in the following way:

(2.4)





Maximize the volume µ (Ωpol)

over all polytopes Ωpol ∈ Ωprod

subject to f(x) ≤ c for all x ∈ Ωpol.

x1

x2

x3

Figure 2. Visualization of a polytope Ωpol = I3 × P1,2

in three dimensions, where I3 = [0, 1.5] and Pi,j =
{(0,−1), (1.5,−0.5), (2, 2), (1, 2), (0.7, 1), (−0.3, 0.5)}.

As explained in [16], loss of flexibility by coupling pairs of design variables
is accepted, because the volume of the polytope is expected to be much
larger when compared to an axis-parallel hyperbox. We emphasize that the
design problem at hand in general yields a natural choice for the design
variables that should be coupled. For example, it is reasonable to couple
design variables that one designer has full access to. Design variables are
paired with at most one other design variable, and are thus represented on
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at most one 2d-space. Design variables that have not to be paired with
another variable are assigned to an interval Ik.

3. Manipulating Two-Dimensional Polygons

This section intends to give an overview of the basic manipulation steps
of two-dimensional polygons. They are the the basic ingredients for the
polytope optimization algorithm presented in Section 4. A polygon P has
a fixed number N of vertices and is represented by the ordered sequence of
vertices, that is

P =
{
v(1), . . . ,v(N)

}
.

3.1. Sample Points. A design point inside the polygon P is obtained by
constructing a bounding box around P and sampling uniformly distributed
random points inside the bounding box until a point x ∈ R2 is found that
also lies within P . Determining whether a point lies within a polygon can be
done via the winding number algorithm (compare [18]). After a fixed number
of design points have been sampled, all design points x are evaluated with
the objective function f and then marked as good and bad points, compare
Figure 3 for an illustration.

Figure 3. Points are sampled in the dashed bounding box
(left), then design points outside the box are removed and
the remaining ones are marked as good and bad (right).

3.2. Trim Polygons. In order to find the good solution space, a polygon
needs to be trimmed such that it contains no more bad sample points. This
is done by successively removing bad sample points from the polygon. To
accomplish this, a bad sample point is specified. A good sample point is
chosen (see Figure 4, top left) and a triangle out of this good sample point
and two neighbouring vertices is formed, such that the bad sample point
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is contained in this triangle (see Figure 4, top right). Then, the vertices
are moved towards the good sample point until the bad sample point lies
on the edge of the polygon (see Figure 4, bottom left and right). Thus,
the bad sample point lies no longer in the polygon. This procedure is then
repeated for each good sample point, yielding multiple polygons that are
differently trimmed. From those, the best polygon (according to the quality
measures in Subsection 3.3) is chosen as the new, trimmed polygon. Then,
this procedure is repeated again for all bad sample points remaining in the
trimmed polygon.

Figure 4. From a good and a bad point (top left) a triangle
is constructed (top right) and the vertices are moved toward
the good point for two possible polygons (bottom left and
right).

The details of this procedure can be found in Algorithm 1. It requires a
polygon P with vertices v(1), . . . ,v(N), a good point xgood and a bad point
xbad as inputs (line 1). For each vertex v(k), it is checked whether the bad

point lies within the convex hull of xgood, v(k) and v(k+1), which is exactly
the triangle formed by those points (lines 3 and 4). If xbad does lie within
the triangle, the polygon is trimmed as explained above by Algorithm 2
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Algorithm 1 trim_polygon: Trim a polygon, keeping as many good sample
points as possible.

1: Input: P, xgood, xbad

2: Output: P

3: for all v(k) ∈ P do
4: if xbad ∈ conv({xgood,v(k),v(k+1)}) then

5: P1 ← trim_triangle(P,xgood,xbad,v(k),v(k+1))

6: P2 ← trim_triangle(P,xgood,xbad,v(k+1),v(k))

7: P (k) ← evaluate(P1, P2)
8: end if
9: end for

10: P ← evaluate({P (k)}Nk=1)

(lines 5 and 6). The two possible outcomes are evaluated with the quality
measures from Section 3.3 and the better one is kept (line 7). Finally, the

best polygon P (k) is chosen as output in line 10.

Algorithm 2 takes a polygon P , a good point xgood, a bad point xbad, and
two neighbouring vertices v1 and v2 as input arguments (line 1). It trims
the triangle formed by xgood, v1 and v2 by moving the edge between v1 and
v2 such that it lies on xbad. At first, the edges of the triangle are initialized
(lines 3 and 4). Then, in line 5, the system

[e1,−e2] · t = v2 − v1

is solved and the value t1 is used to determine how far the vertex v1 has
to be moved (line 6). Finally, the corresponding vertex in the polygon is
updated (line 7).

Algorithm 2 trim_triangle: Trim a triangle inside a polygon.

1: Input: P, xgood, xbad, v1, v2

2: Output: P

3: e1 ← xgood − v1

4: e2 ← xbad − v2

5: Solve [e1,−e2] · t = v2 − v1

6: v1 ← v1 + t1 · e1

7: P ← update(P,v1)

3.3. Evaluation of Polygons. As multiple trimmed polygons are obtained
at several steps of the optimization algorithm, the best polygon has to be
chosen from among those polygons. For this purpose, quality measures for
the polygons need to be introduced. A polygon not fulfilling one of these
measures is immediately rejected and not used in the algorithm further. The
polygons are rated as follows:
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Minimum number of self-intersections. Each polygon should be free of self-
intersections. Self-intersections lead to unwanted behaviour of the algo-
rithms. It is not clear how to trim a polygon with self-intersections, and
multiple self-intersections overlaying each other obscure what the inside of
the polygon is. Thus, polygons having no self-intersections are preferred
over polygons with self-intersections (see Figure 5).

Figure 5. The black polygon is preferred over the red poly-
gon because it has no self-intersections.

Minimum/maximum size of angles. Polygons with very small angles or very
large angles form spikes, see Figure 6. When a spike is trimmed, it is very
likely that a self-intersection is induced. Additionally, there is only a small
chance for a point to be sampled within a spike, which in turn means that
the spike will not be removed in a trimming step, making the vertex in the
corner of the spike redundant. For these reasons, polytopes with no or only
a few spikes are preferred. For a fixed threshold angle α, polygons which
satisfy α < φ < 2π − α for as many vertex angles φ as possible (see Figure
6) are favored over others.

Maximum number of good points. Finally, after rejecting all polygons with
a bad shape, the size of the good design space is considered. Therefore, the
numbers of good points within the polygons are compared and the polygon
containing the most is chosen. If that polygon is not unique because several
polygons contain the same highest number of points, then one from among
those is chosen at random (see Figure 7).

3.4. Remove Spikes. After trimming and evaluating the polygon, it might
still contain spikes. If this is the case, i.e., if there are vertices whose angles
φ violate the condition α < φ < 2π−α, then these vertices are relocated, as
seen in Figure 8. After this step, the polygon has no spikes any more while
losing not too much of its volume.
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Figure 6. The black polygon is preferred over the red poly-
gon because it has less spikes.

Figure 7. The black polygon is preferred over the red poly-
gon because it contains more good points.

3.5. Relocate Vertices. A further manipulation step consists of relocating
vertices. The idea behind this step is to avoid degeneration of the polygon,
especially to avoid regions where vertices form clusters. This reduces the
risk of a polygon developing new spikes.

The strategy of the relocation is as follows: The shortest edge of the polygon
is removed by replacing its endpoints by the midpoint of the edge. Hence,
one vertex is removed from the polygon. To keep the number of vertices
constant, a new vertex is placed at the midpoint of the longest edge of the
polygon (see Figure 9).
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Figure 8. Relocating vertices in order to remove spikes
(red) from a polygon.

Figure 9. Two short edges (red) are removed from a poly-
gon, then two vertices are added on the longest edges.

3.6. Grow Polygon. In this step, the polygon is grown in all directions.
This allows the polygon to extend into regions of good design space. Every
vertex of the polygon is moved by the same factor g along its outward
pointing angle bisector (see Figure 10). The vector of the angle bisector is
normalized to 1.

3.7. Remove Self-Intersections. Sometimes, the trimming, growing, and
relocating steps might introduce self-intersections of the polygon, despite
the quality measures trying to prevent this. Therefore, an algorithm is
presented that removes those self-intersections. It removes the interior self-
intersections by finding the hull of the polygon, whose vertices coincide with
all vertices of the original polygon which do not lie within that polygon,
compare Figure 11 for an illustration of this procedure. This part of the
algorithm is based on the Graham scan method , which finds the convex hull
of a finite set of points, see [15]. Then, if the polygon consists of multiple
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Figure 10. Growing a polygon.

Figure 11. A polygon with self-intersections (left) and its
counterpart without self-intersections (right).

connected components, the largest of these connected components is chosen
as the new polygon and all the smaller components are removed. Afterwards,
vertices are added or removed to maintain the total number of vertices.

In detail, the algorithm consists of the following steps:

Starting with the vertex that has the smallest y-coordinate (it is for sure
a vertex of the new polygon), those line segments are considered that di-
rectly connect the vertex to other vertices and intersections. From these
line segments, the one that encloses the smallest angle with the x-axis and
its endpoint is chosen as an edge of the new polygon. This procedure is
repeated from the endpoint of that edge, compare Figure 12.

When the algorithm arrives at the starting vertex again, it has found the
hull of the polygon and terminates, see Figure 13.
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Figure 12. Finding the polygon hull. The possible line
segments to choose from in each step are blue, the discarded
line segments are red, and the chosen segment is green.

Figure 13. Final hull of the polygon.

Nonetheless, the polygon might still consist of multiple different connected
components. Thus, the polygon hull algorithm is implemented such that the
list of vertices of the hull is given as an output. All vertices that appear more
than once in the list are points where at least two different connected com-
ponents are touching. If the polygon consists of more than two connected
components, this information can be used to recursively find all connected
components of the polygon hull. Then, the largest of the connected compo-
nents is chosen as the new polygon. Finally, vertices are added like in the
relocate vertices step (cf. Section 3.5) to regain the prescribed amount of
vertices. We refer to Figure 14 for an illustration.



14 HELMUT HARBRECHT, DENNIS TRÖNDLE, AND MARKUS ZIMMERMANN

Figure 14. Finding and choosing the largest connected
component of the polygon’s hull.

4. Polytope Optimization Algorithm

The steps in the polytope optimization algorithm are very similar to those
of the box optimization algorithm and the rotated box optimization algo-
rithm (see [16]). An overview of the most important steps of the polytype
optimization algorithm can be found in Figure 15.

The initial polytope is usually given. If no specific polytope is given, one can
use genetic algorithms [14] to find points around which a polytope could be
constructed. All polygons Pi,j have a fixed number N of vertices, and, in the
algorithm, each polygon is represented by an ordered sequence of vertices,
that is

Pi,j =
{
v

(1)
i,j , . . . ,v

(N)
i,j

}
.

4.1. Exploration Phase. In the exploration phase, those parts of the ini-
tial polytope are trimmed that contain bad design points. Then, the poly-
tope is grown again. These steps are repeated nexp times. This allows the



APPROXIMATING A SOLUTION SPACE AS A PRODUCT OF POLYGONS 15

Initial polytope

Sample
design
points

Trim
polytope

Polytope
trimmed
nexp

times?

Grow
polytope

Sample
design
points

Trim
polytope

Polytope
trimmed
ncon

times?

Final trimmed polytope

Exploration phase

no

yes

Consolidation phase

no

yes

Figure 15. A flowchart for the polytope optimization algorithm.

polytope to move through the design space Ω in order to find a spot with a
large volume of good design space. After going through all nexp steps of the
exploration phase, the algorithm switches to the consolidation phase.
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4.1.1. Sample Points. For each sample point x, all entries xk, k ∈ Jint, and
xi, xj , (i, j) ∈ Jpair, are sampled separately. The entries xk can easily be
drawn from the interval Ik. The entries (xi, xj) are obtained by sampling
a point inside the polygon Pi,j as described in Subsection 3.1. After the
sample points are found, they are evaluated. All of the sample points x
with an objective value f(x) ≤ c are collected in the set

X good :=
{

(1)x
good, . . . , (ngood)x

good
}
,

and all of the sample points x with an objective value f(x) > c are collected
in the set

X bad :=
{

(1)x
bad, . . . , (nbad)x

bad
}
,

compare Figure 16. The sets are sorted by the objective values of the sample
points, from highest to lowest.

× ×

Figure 16. A polytope consisting of two polygons and an
interval with good and bad sample points.

4.1.2. Trim Polytope. After the sampling step, the bad points are removed
by trimming the polytope. The framework of this step is outlined in Algo-
rithm 3. As input, a polytope Ωpol and ordered sets of good sample points

X good and bad sample points X bad (line 1) are required. The output (line
2) is a polytope Ωpol that contains no more bad sample points.

Because the bad sample points have to be removed successively, a loop over
the bad sample points is initialized in line 3. Since as many good sample
points as possible should be kept, the good sample points are iterated and
each sample point (m)x

good is set as an anchor point once (line 4). For each

anchor, the current bad sample point (`)x
bad is removed from the polytope

such that at least the anchor point (m)x
good remains within the polytope.

The bad sample point (`)x
bad is removed by moving the boundary of an

interval Ik or a polygon Pi,j onto (`)x
bad, thereby trimming the polytope.

Thus, all intervals Ik and polygons Pi,j are iterated (see lines 5–10). For

each interval Ik and polygon Pi,j , the boundary is moved onto (`)x
bad via the

trim_interval and trim_polygon algorithms and the resulting polytope is
stored in a new variable Ω(k) or Ωi,j , respectively, leaving all other intervals
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Algorithm 3 Polytope trimming: Trim the polytope, keeping as many good
sample points as possible.

1: Input: Ωpol, X good,X bad

2: Output: Ωpol

3: for ` = 1, . . . , nbad do
4: for m = 1, . . . , ngood do
5: for all k ∈ Jint do
6: Ω(k) ← trim_interval(Ωpol, k, (m)x

good, (`)x
bad)

7: end for
8: for all (i, j) ∈ Jpair do

9: Ωi,j ← trim_polygon(Ωpol, (i, j), (m)x
good, (`)x

bad)
10: end for
11: Ω(`) ← evaluate

(
{Ω(k)}k∈Jint , {Ωi,j}(i,j)∈Jpair

)

12: end for
13: Ωpol ← evaluate({Ω(`)}ngood

`=1 )
14: end for
15: Ωpol ← reshape(Ωpol)

and polygons untouched. Note that the algorithm trim_polygon coincides
with Algorithm 1 except for needing the coordinates (i, j) of the respective
polygon Pi,j as input arguments. The algorithm trim_interval operates
on the interval Ik and simply relocates one of the end points onto the bad
sample point such that the good sample point remains in the output interval.

Then, in line 11, the function evaluate is applied to all polytopes Ω(k)

and Ωi,j . It returns the result Ω(`) that maximizes the quality measures,
applied in the same order as listed in Subsection 3.3. The quality measures
are modified for polytopes such that the polytope with the most polygons
that fulfill the self-intersection and angle-size measures that also contains as
many good design points as possible is chosen as the optimum.

After every good point has been set as anchor once, the polytopes Ω(`) (line
13) are evaluated and the best of them is used to replace Ωpol. Following
this, the next iteration of the loop starts, where the next bad design point
is removed. The polygon trimming is completed when all of the bad points
are removed.

In order to avoid degenerate polytopes, finally spikes are removed and ver-
tices are relocated by the function reshape in line 15. This function consists
of the operations remove spikes (see Subsection 3.4) and relocate vertices
(see Subsection 3.5), which are applied to each polygon Pi,j individually as
explained in Subsections 3.4 and 3.5, respectively.

4.1.3. Grow Polytope. The polytope is grown as the final operation of a
single step of the exploration phase. To this end, the end points ak and bk



18 HELMUT HARBRECHT, DENNIS TRÖNDLE, AND MARKUS ZIMMERMANN

of each interval Ik are moved by a factor g(`) in order to grow the polytope in
each dimension k. Each polygon Pi,j is grown by the factor g(`) as explained
in Subsection 3.6.

The factor g(`) is the growth rate in the `-th step of the exploration phase.
It can either be constant or dynamic. A constant growth factor means that
g(0) = g(1) = · · · = g(nexp). A dynamic growth factor depends on the number
of good design points and the growth rate of the previous step (see [14]):

g(`) =
agood
`

atarget
g(`−1).

Here, agood
` = ngood/(ngood + nbad) is the percentage of good points in the

`-th exploration step before trimming the polytope and atarget is the desired
percentage of good design points inside the polytope during the exploration
phase.

The growth factor is large when many good design points have been found
in the sampling step before trimming the polytope. This indicates that the
polytope lies in a region with good design space and it could gain potentially
more good design space by growing. The growth factor is small when the
polytope contains many bad design points, because this implies that the
polytope grew out of the good design space into bad design space. Thus,
the growth rate should be kept small in order to ensure that the polytope,
after having been trimmed, can probe for the potential border between the
good and the bad design space.

4.2. Consolidation Phase. Having completed the exploration phase, the
candidate polytope might still contain some bad design space. The goal of
the consolidation phase is to remove as much bad design space as possible.
Thus, one step of the consolidation phase consists of the execution of sample
points (see Subsection 4.1.1) and trim polytope (see Subsection 4.1.2). Dur-
ing this phase, the polytope is no longer grown. The consolidation phase is
terminated after either a fixed number of ncon steps or when no bad design
points have been sampled three times in series. The resulting polytope is
returned as final output for the polytope optimization algorithm.

5. Numerical Experiments

5.1. Problem 1: 2d Polygon. We consider a first simple two-dimensional
test example. For

A =




1/8 1/4
4/17 2/17
−1/2 1/2
−1/2 −1/3
−1/3 −2/3

1 −3/2




and b =




1
1
1
−1
−1
1



,
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we consider the problem of finding x ∈ Ωds = [0, 4]2 such that

f(x) = Ax− b ≤ 0.

The good design space is a two-dimensional six-sided polygon (compare
Figure 17).

Algorithm
Mean Absolute

Volume
Mean Normalized

Volume
Box Optimization 2.35 0.15

Rotated Box Optimization 2.99 0.19
Polytope Optimization 4.28 0.27
Table 1. Results of the different optimization algorithms in
case of Problem 1.

The problem under consideration shows in a simple manner how the poly-
tope optimization works. Especially, it allows for an easy comparison be-
tween the box optimization, the rotated box optimization, and the polytope
optimization algorithms. Each of these algorithms has been applied 100
times to the objective function f . Every time, the number of steps in the
exploration and the consolidation phase is set to nexp = ncon = 100. Ad-
ditionally, in every step, 100 design points are sampled. The growth rate
is dynamic, with atarget = 0.8 and g(0) = 0.05. The polytope optimization
has been performed with polygons that have 10 vertices, where the required
minimum size of angles is α = 20◦ and the vertex relocation takes place in
every tenth step of the exploration phase. The results can be found in Table
5.1.

0 1 2 3 40

1

2

3

4

0 1 2 3 40

1

2

3

4

0 1 2 3 40

1

2

3

4

Figure 17. Problem 1: An axis-parallel solution space
(left), a rotated solution space (middle) and a polygonal so-
lution space (right) of normalized volumes 0.15, 0.2 and 0.27,
respectively. The green color indicates the good solution
space.

As one might have expected, the polytope optimization yields the high-
est average volume for this problem, with 80% more volume than the box
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optimization and 42% more volume than the rotated box optimization. Ex-
amples for the solution spaces found by the different optimization algorithms
are given in Figure 17.

5.2. Problem 2: 4d Rosenbrock Function. The Rosenbrock function
is a popular test function for optimization techniques. For x ∈ Ωds =
([−2, 2]× [−2, 3])d/2, where d is even, it is given by the formula

f(x) =

d/2∑

i=1

(1− x2i−1)2 + 100(x2i − x2
2i−1)2.

The rotated box optimization and the polytope optimization are applied
100 times on the problem, with d = 4 and c = 120. The 2d-spaces for the
rotated box optimization and the polytope optimization are set to Ω1,2 =
Ω3,4 = [−2, 2] × [−2, 3]. The parameters are set as in Problem 1, except
that, for the dynamic growth rate , atarget = 0.6 and the minimum angle
for inside the polygons is set to 10◦. The mean absolute volume of the
rotated box optimization is 3.26 (mean normalized volume: 0.0082) and the
mean absolute volume of the polytope optimization is 16.4 (mean normalized
volume: 0.041). This means that solution spaces found by the polytope
optimization have approximately 500% more volume than those found by
the rotated box optimization.
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Figure 18. Problem 2: A rotated box with volume 3.2 and
a polytope with volume 16.77.
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In Figure 18, a rotated box with absolute volume 3.2 and a polytope with vol-
ume 16.77 are plotted. Note that this visualization is different than before.
On each 2d-space Ωi,j , 1000 design points x = (x1, . . . , x4) are sampled with
xk ∈ Ωbox or xk ∈ Ωpol, respectively, for k 6= i, j and xk ∈ Ωi,j for k = i, j.
This means that every design point is inside of Ωpol, except for the coordi-
nates xi and xj , which may be distributed anywhere on the 2d-space Ωi,j .
In a certain way, this illustrates the region around Ωpol from the “inside” of
Ωpol. This visualization makes clear that the results are reasonable and not
much more good design space could be gained by the polytope optimization,
Ωpol fills out most of the U-shaped good design space, whereas the rotated
box only fills one side on each 2d-space.

5.3. Problem 3: Application to an Optimal Control Problem. Con-
sider the following problem: Five heat sources have to be designed such
that they keep the temperature in a control volume on a given constant
level. Each heat source has a fixed position xi = (xi,1, xi,2) in the control
volume and a circular shape with radius ri. The temperature at the i-th
heat source is given by the constant factor ti. The distribution of the heat
emitted by the heat sources throughout the control volume is modelled by
the steady-state heat equation (compare [28] for example)

(5.1)
−∆u(x) = gr,t(x), x ∈ D := (0, 1)2,

u(x) = 0, x ∈ Γ := ∂D,

where

gr,t(x) =
5∑

i=1

ti · XBri (xi)(x).

Here, XB is the characteristic function

XB(x) =

{
1, x ∈ B,
0, else,

and Bri(xi) denotes the ball with radius ri around the center xi. The
positions of the centers xi are given by

x1 = (0.15, 0.4), x2 = (0.45, 0.9), x3 = (0.87, 0.7),

x4 = (0.88, 0.25), x5 = (0.5, 0.3).

We intend to determine the variables r and t such that the maximum devi-
ation from the desired temperature, i.e.

f(r, t) = ‖u?r,t − ud‖L∞(K)

is minimized. Here, ud = 0.5 is the desired constant temperature and K :=
[0.3, 0.7]2 ⊂ D the region inside the control volume where that temperature
should be close to ud. The problem under consideration is an optimal control
problem, where r and t are the control variables to be determined such that
they minimize the cost function f , see [28] for example.
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Figure 19. Problem 3: A solution space with volume 11.88.

In the context of the polytope optimization, f is the objective function and
r and t are the design variables, where we choose Ωds := Ωr ×Ωt as design



APPROXIMATING A SOLUTION SPACE AS A PRODUCT OF POLYGONS 23

space with

Ωr = [0.01, 0.17]× [0.01, 0.2]× [0.01, 0.2]× [0.01, 0.18]× [0.01, 0.15],

Ωt = [0, 100]× [0, 80]× [0, 150]× [0, 180]× [0, 100].

The radius and temperature of each heat source are coupled by a 2d-space
such that Ω1,2 = [0.01, 0.17] × [0, 100], Ω3,4 = [0.01, 0.2] × [0, 80], Ω5,6 =
[0.01, 0.2] × [0, 150], Ω7,8 = [0.01, 0.18] × [0, 180], and Ω9,10 = [0.01, 0.15] ×
[0, 100].

Figure 20. Problem 3: A solution of the heat equation
represented by a design point taken from within the polytope
seen in Figure 19. The region K is marked with a black
square and the radii of the heat sources are marked with
black circles.

Again, the algorithm is applied 100 times with 100 steps in the exploration
and consolidation phases and 100 sampled design points in each step. Each
polygon on a 2d-space has 10 vertices, the minimum angle is 10◦ and the
vertices are relocated every 10 steps. The growth rate is dynamic with
atarget = 0.6 and g(0) = 0.05. Moreover, as critical value, we choose c = 0.15,
which means that the temperature generated by the heat sources is allowed
to deviate by up to 30% from the desired temperature.

The resulting mean absolute volume of the solution spaces is 11.37 and the
mean normalized volume is 1.37 · 10−6. Figure 19 shows a polytope with
absolute volume 11.88, plotted in the same way as Figure 18. It fills most
of the pocket of good design space it has found. A solution of (5.1) with a
design taken from within that polytope is plotted in Figure 20. Figure 21
shows each 2d-space as a heat map of the 100 solution spaces. The brighter
a region, the more solution spaces cover that region. The picture suggests
that they usually stay within the same region, so it can be concluded that
the algorithm delivers robust results.
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Figure 21. Problem 3: Heat map for 100 solution spaces.

6. Conclusion

The algorithm presented in this article utilizes the concept of 2d-spaces,
introduced in [8], to form a coupling between the coordinates. It replaces
the box-shaped solution space on each 2d-space by a polygonal solution
space, whose product results in a high-dimensional polytope. Numerical
results confirm that this setting allows the algorithm to find solution spaces
of larger volume than those found by its predecessors from [16] and [32]
while the cost, i.e., the number of sample points, is the same.
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