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Summary 
 
Schistosomiasis remains the most important helminthic disease, infecting over 240 millions of 

people in tropical and subtropical areas of the world, while close to 800 millions of people 

live at risk of contracting it. Unfortunately, children are among the most affected and the 

disease often results in stunting, malnutrition and cognitive and physical retardation. 

Praziquantel (PZQ), being effective, cheap and safe, remains the cornerstone of 

schistosomiasis treatment and is distributed on a wide scale within drug administration 

programs. Until recently it was believed schistosomiasis among young children, below the 

age of six years, is not very common and consequently, they were not regularly treated. 

However, in 2011 WHO acknowledged these children are a risk group and could be included 

in the administration programs in the future, but pharmacokinetic data (PK), crucial to 

establish effective and safe dose of PZQ for pre-schoolers, is not readily available. 

Furthermore, in vitro and in vivo data on antischistosomal activity of PZQ for S. 

haematobium, responsible for the highest number of infections, is lacking. Moreover, PK 

studies in this sensitive population are tedious in conduct and call for a more patient friendly 

sampling approach, while the quality of sampling remains uncompromised.  

The aim of the present thesis was to gain more information about activity of both enantiomers 

of PZQ, R- and SPZQ, as well as the racemic drug and the main human metabolite (R-trans-

4-hydroxy-PZQ) in vitro, in vivo and in humans.  

S. haematobium was studied in vitro and in vivo to evaluate and confirm its greater 

susceptibility to PZQ, compared to S. mansoni and S. japonicum. This species of 

schistosomes is characterised with a life-cycle, tedious to maintain in laboratory conditions 

and consequently, understudied compared to other species of the parasites. We determined 

IC50 values for racemic PZQ, both enantiomers and the main human metabolite on adult 

worms in vitro. Moreover, ED50 values for both enantiomers and the racemic drugs in hamster 

model were reported in vivo. In light of the development of paediatric formulation for PZQ, it 

would be important to evaluate how these findings translate to humans. 
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Two PK studies were conducted within dose finding studies to investigate PK of both PZQ 

enantiomers and the main human metabolite. For the first time, PK parameters, such as area 

under the curve, maximal blood concentration and half-life of these analytes were revealed 

and compared. Influences, e.g. age and infection species on the PK processes were 

investigated. Moreover, a PK model for in depth study of influence on metabolic processes of 

RPZQ is currently under development.  

As a sub-study within SAC infected with S. haematobium, a novel micro-sampling device, 

called Mitra™, was evaluated in comparison to established dried blood spots technique, in the 

laboratory and under field conditions. A sample preparation method for PZQ with Mitra™ 

was established, optimised and validated in compliance with Food and Drug Administration 

guidelines. Owing to practicality and simplicity during both sampling and extraction process, 

Mitra™ showed great potential; however, overestimation of concentrations compared to dried 

blood spots in incurred, but not in spiked samples, is yet to be clarified. 

To conclude, we revealed PK parameters of the main entities, contributing to antischistosomal 

activity of PZQ. The PK model for RPZQ will reveal influences on metabolic processes of the 

proposed eutomer of PZQ. These findings will contribute to establishment and tailoring of 

guidelines for treating paediatric populations, infected with schistosomiasis, using PZQ. 

Validation of Mitra™ as a potential micro-sampling tool for PK studies will pave the way 

towards higher quality of sampling while maintaining high patient adherence. Last but not 

least, the study of S. haematobium in vitro and in vivo will compliment the existing data on 

activity of PZQ towards different species of schistosomes. Since SPZQ and the main human 

metabolite showed non-negligible activity towards S. haematobium, the decision whether to 

develop an enantio-pure paediatric formulation, consisting of RPZQ only, should be carefully 

evaluated. 
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1 Schistosomiasis 

1.1 Epidemiology 

Schistosomiasis, caused by blood-dwelling flukes of the genus Schistosoma, belongs to the 

group of so-called neglected tropical diseases (NTD) (WHO, 2013). As a subgroup of 

infectious diseases, NTDs affect over a billion people worldwide, predominantly in rural 

tropical and sub-tropical areas, where poverty is concentrated (Adenowo et al., 2015; WHO, 

2015). Despite their high social, economic and clinical impact, these diseases have been 

neglected to a great extent in the recent past by funders, researchers and decision-makers 

(King and Dangerfield-Cha, 2008; Feasey et al., 2010). One of the main causes behind NTDs 

is attributed to inadequate access to safe water, proper sanitation, health services and 

infrastructure (Chitsulo et al., 2000).  

The most vulnerable group, affected by schistosomiasis, are children, where the prevalence of 

the disease is increasing with age (Gryseels et al., 2006; Verani et al., 2011). The latest 

numbers show over 250 million people are infected with schistosomiasis, while a staggering 

779 million people, accounting for 10% of world’s population, are at risk of contracting a 

schistosome infection (GBD 2015 DALYs and HALE Collaborators, 2016). The burden of 

schistosomiasis is estimated to be 2.6 million of disability adjusted life years (DALYs), which 

account for the years lost due to premature mortality (YLL) and years lived with disability 

(YLD) (GBD 2015 DALYs and HALE Collaborators, 2016). Nonetheless, the estimations 

can vary greatly depending on how the burden was calculated and can peak as high as 56 

million DALYs (King and Dangerfield-Cha, 2008).  

There are three principle species of schistosomiasis infecting humans that are of public health 

importance: Schistosoma haematobium, S. mansoni and S. japonicum. Together they cause 

two main forms of the disease: hepatosplenic and urogenital schistosomiasis (Gryseels et al., 

2006; Knopp et al., 2013). S. haematobium is responsible for the highest number of infections 

(approximately 64%), followed by S. mansoni (approx. 34%) (Hotez et al., 2014). S. 
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japonicum causes urinary schistosomiasis in South-East Asia, while S. mekongi and S. 

intercalatum are of a local importance only (Gryseels et al., 2006).  

Schistosomiasis is a water-borne disease, endemic in 78 countries in tropical regions of 

Africa, Asia and South America (Chitsulo et al., 2000; Steinmann et al., 2006) (see Figure 1). 

Biomphalaria snails are intermediate host of S. mansoni, which causes intestinal and hepatic 

schistosomiasis in Africa, the Arabian peninsula and South America. S. haematobium, the 

infectious agent behing urinary schistosomiasis, is transmitted by Bulinus snails and common 

in Africa and the Arabian peninsula. S. japonicum, parasitizing Oncomelania snails, results in 

intestinal and hepatosplenic schistosomiasis in Indonesia, China and the Philippines (Lockyer 

et al., 2003; Colley et al., 2014). The expansion of water infrastructure to meet the power and 

agricultural requirements raising with increasing development resulted in growing 

transmission, especially of S. mansoni, while population growth and migration have added up 

to the introduction of the disease to new areas (Chitsulo et al., 2000; Ross et al., 2002). 

 



PhD Thesis: Jana Kovač                   Chapter 1 

 

4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Distribution of schistosomiasis in the world (WHO 2012) and in Côte d’Ivoire 

(GAHI), where the field component of this thesis took place 
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1.2 Biology and life-cycle 

Schistosomes belong to the Trematoda class, forming the Platyhelminthes phylum together 

with the Cestoda and Monogenea classes. Trematodes are further divided into two subclasses, 

namely Aspidogastrea, obligate parasites of molluscs, and Digenea, obligate parasites of both 

molluscs and vertebrates. Most trematodes are hermaphrodites and posses both male and 

female organs, except schistosomes, which are dioecious (Farley, 1971; Cribb et al., 2003; 

Olson et al., 2003).  

All Schistosoma species that infect humans are characterised by a very similar life cycle 

(Figure 2.1), which includes a fresh-water mollusc as an intermediate host, where asexual 

reproduction takes place and a human as a definitive host, where schistosomes reproduce 

sexually. Fresh-water sources (typically natural streams, ponds and lakes), where gastropods 

reside, become contaminated when an infected individual defecates (S. mansoni and S. 

japonicum) or urinates (S. haematobium) in or near the water, excreting parasitic eggs, which 

can remain viable up to 7 days (Gryseels et al., 2006). Eggs hatch upon contact with fresh 

water and miracidiae penetrate a mollusc of a certain species (Lockyer et al., 2003; Gryseels 

et al., 2006). After two generations of sporocysts over a course of 4-6 weeks, free-swimming 

cercaria (Figure 2.2) are released, recognised by their characteristic bifurcated tail (Gryseels 

et al., 2006). Transmission of the infection occurs when an individual comes into contact with 

a fresh-water source, carrying infectious cercariae, which are able to survive in water for up to 

72 h (Gryseels et al., 2006). Those will penetrate human skin, shedding their tails and 

becoming schistosomula (Figure 2.3) (Gryseels et al., 2006; McKerrow & Salter, 2002). 

Following skin penetration, schistosomula migrate to the lungs, where they mature to the 

juvenile stage. They then move through the circulatory system to the liver and finally, to the 

portal venous system (S. mansoni) or veins draining pelvic organs (S. haematobium), where 

they reach maturation within 5-7 weeks post infection (Colley et al., 2014). 

Adult schistosomes have separate sexes and are 7-20 mm long, characterised by a syncytial 

tegument and two terminal suckers. Females, which are typically thinner and longer, will 

reside inside the so-called gynaecophoric channel of the thicker male (Steinauer, 2009). The 



PhD Thesis: Jana Kovač                   Chapter 1 

 

6 

parasitic pairs will move to their final destination- mesenteric veins of the intestine (S. 

mansoni and S. japonicum) or pelvic venous plexus (S. haematobium), where they can live on 

average 3-5 years, but can reach also as high as 20 years (Warren et al., 1974). In the veins, 

they feed on blood via anaerobic glycolysis and produce and release up to thousands of eggs, 

containing miracidium, per day (Cheever et al., 1994). The eggs migrate to the lumen of the 

intestine or bladder with the aid of proteolytic enzymes and are expelled with stool 

(S.mansoni and S. japonicum) or urine (S. haematobium). Some eggs will get trapped in the 

surrounding tissues, eliciting host immune responses resulting in eosinophilic inflammatory 

and granulomatous reactions, which are progressively replaced by fibrotic deposition, typical 

for chronic infection (Colley et al., 2014). 
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Figure 2: Life cycle of S. mansoni (2.1): infected individual defecates in fresh water sources 

(I), excreting parasitic eggs (A: 1a S. mansoni, 2a S. haematobium, 3a S. japonicum), which 

hatch to free swimming miracidiae (II), penetrate a mollusc (III) (B: 1b Bulinus spp.; 2b 

Biomphalaria spp.; 2c Oncomelania spp.) and after asexual reproduction, infectious cercariae 

(IV) are excreted, penetrating human skin and moving through the body to reach their final 

destination in mesenteric veins (S. mansoni and S. japonicum) or veins draining pelvic organs 

(S. haematobium), where they live as mature adult worm pairs, shedding eggs; (2.2) cercariae 

shedded from a snail; (2.3) schistosomulae after transformation 
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 1.3 Pathological and clinical aspects 

Schistosomiasis manifests in two stages. Acute infection is characterised by flu-like 

symptoms but can often remain asymptomatic in endemic populations. However, if not 

treated, it can progress to the chronic phase, which can carry severe health consequences. 

1.3.1 Acute schistosomiasis 

The percutaneous penetration of cercariae can cause a temporary urticarial skin rash on the 

location of the entry (so called swimmer’s itch), especially after first-time infections, more 

common in tourists and migrants (Colley et al., 2014). Acute schistosomiasis, also known as 

Katayama fever, is a systemic hypersensitivity reaction caused by migrating schistosomula in 

the body and is species-independent. It can appear up to a few weeks or months after the 

primary infection and is characterised by very unspecific symptoms, such as fever, fatigue, 

malaise, myalgia, cough and possibly abdominal symptoms in the later phase (Lambertucci, 

1993). Katayama fever is common for people without a history of previous infection, for 

example tourists, travellers and other people accidentally exposed to transmission (Ross et al., 

2007). People living in endemic areas, which are chronically infected, rarely observe acute 

symptoms due to S. mansoni or S. haematobium infections (Bottieau et al., 2006; Gryseels et 

al., 2006; Ross et al., 2007). In contrast, Katayama fever due to S. japonicum has been 

observed also in patients with a history of chronic infections (Gryseels et al., 2006; Ross et 

al., 2007). 

1.3.2 Chronic schistosomiasis 

Chronic schistosomiasis is a result of host immune responses, due to parasitic eggs trapped in 

tissues during perivesical (S. haematobium) or peri-intestinal (S. mansoni) migration 

(Gryseels et al., 2006; Pearce & MacDonald, 2002). Antigens excreted by trapped eggs will 

evoke development of granulomatous lesions around the eggs, which will be gradually 

replaced by fibrotic deposition, as the eggs die (Pearce and MacDonald, 2002; Colley et al., 

2014). Hence, the severity of chronic clinical manifestations depends on individual immune 

response and severity of the infection (Gryseels et al., 2006). Especially in children, 

schistosomiasis is connected to malnutrition, growth-stunting and hindered cognitive 
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development (Stephenson, 1993; Jukes et al., 2002; Colley et al., 2014). Organs affected in 

this process are species-dependent and since the focus of this PhD thesis was on S. 

haematobium and S. mansoni, chronic infection caused by these two species only are 

described below. 

• Hepatosplenic schistosomiasis 

This type of schistosomiasis is caused by S. mansoni and results in hepatic pathology. A very 

typical symptom, expressed commonly by children and adolescents, is hepatomegaly, 

following inflammation, granulomatous lesions and finally calcifications (Ross et al., 2002; 

Gryseels et al., 2006; Barsoum et al., 2013). Liver cirrhosis, portal hypertension and 

premature death all stem from enlarged liver (Danso-Appiah et al., 2013). Since the liver is 

one of the main organs involved in metabolic processes of drugs, changes in its functionality 

might influence deposition of praziquantel enantiomers and with it, pharmacokinetics 

(Prescott et al., 1975). For this reason, we were interested to study the impact of 

schistosomiasis, among other factors, on the pharmacokinetics of praziquantel, in a paediatric 

population (See Chapter 3). Additionally to the hepatic morbidity, S. mansoni infection results 

in intestinal pathology as well. During the peri-intestinal migration, eggs trapped mainly in 

colon and rectum provoke inflammation, leading to symptoms such as abdominal pain and 

discomfort, loss of appetite and blood in stool, the latter being important indicator and a 

common first sign of the infection (Gryseels et al., 2006). Extensive fibrosis, leading to 

hepatosplenic disease with periportal fibrosis, also known as Symmer’s pipe-stem fibrosis, is 

a common manifestation in the immune-compromised patients (Colley et al., 2014). 

• Urogenital schistosomiasis 

Urogenital schistosomiasis is caused by S. haematobium and rarely by the other two main 

species of the parasite. Early symptoms, apparent two to three months post infection, occur 

due to poor immunoregulation of parasitic antigens excreted by parasitic eggs, trapped in 

vesical and ureteral wall, leading to haematuria and dysuria (King and Bertsch, 2013; Colley 

et al., 2014). A firm connection between haematuria and schistosomiasis has been established 

and consequently, haematuria is recognised by the World Health Organisation (WHO) as one 
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of the markers for mapping prevalence of urinary schistosomiasis, additionally to standard 

egg count based criteria (WHO, 2006). Following early symptoms, chronic lesions result in 

fibrosis and calcifications of the bladder and lower ureters, advancing to hydronephrosis and 

hydroureter (Gryseels et al., 2006). Kidney failure, which is the ultimate manifestation after 

parenchymal damage caused by the disease, is recognised as one of the risk factors of 

squamous bladder cancer (Johansson and Cohen, 1997; Brindley et al., 2015). Female genital 

schistosomiasis results in inflammatory lesions of ovaries, cervix and vulva, affecting female 

reproductive health (Colley et al., 2014). A connection with increased risk of abortion and 

infertility has been confirmed and furthermore, this type of infection is recognised as one of 

the risk factors for HIV infection (Kjetland et al., 2006). For men, the consequences of 

urogenital schistosomiasis are typically haematospermia and prostatitis, among others (Colley 

et al., 2014). However, treatment with PZQ can reverse the schistosomiasis caused morbidity 

to a certain extent, more readily for men than women but confirmed also for young children, 

emphasising the importance of regular chemotherapy (Barda et al., 2017). 

1.4 Diagnostics  

While tourists and travellers presenting symptoms are usually examined for and diagnosed 

with schistosomiasis upon return to their home country, inhabitants of endemic areas are 

commonly treated within large-scale mass drug administration programs, without prior 

diagnosis (WHO, 2006) . Diagnostic tools used for diagnosing travellers without previous 

history of infection differ from those used at different stages of disease control and 

monitoring programs with regards to sensitivity and detection limits (Utzinger et al., 2015). 

While tools for rapid confirmation of infection in endemic areas for assessing prevalence and 

intensity of infection during morbidity control programs are available, highly sensitive and 

specific assays for monitoring and surveillance for post-transmission control and elimination 

phases are lacking (Montresor et al., 1998; Utzinger et al., 2015).  

The current methods can roughly be grouped as urine/stool microscopy and serological 

methods (Utzinger et al., 2015), briefly summarised below. 
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Microscopic examination of excreta (faeces for S. mansoni and S. japonicum, urine for S. 

haematobium) remains the diagnostic gold standard. Due to their typical size and shape, with 

a lateral (S. mansoni) or terminal (S. haematobium) spine, the eggs are easily detected, 

identified and distinguished using light microscopy (Gray et al., 2011). The Kato-Katz 

method (S. mansoni) and urine filtration (S. haematobium) method are commonly used for 

quantification of infection. The result is expressed as eggs per g of faeces or eggs per 10 ml of 

urine (Utzinger et al., 2015). Kato-Katz is a thick smear stool examination and is known to be 

simple, inexpensive and rapid (Katz et al., 1972). It is recommended by the WHO for 

diagnosing intestinal schistosomiasis with high infection intensity and often used in field 

studies (Montresor et al., 1998). Urine filtration is a technique used to diagnose urinary 

schistosomiasis and consists of filtration of 10 ml urine through a nitrocellulose filter (or 

other poly-carbonate filter with pores of 8-30 μm) (Peters et al., 1976). However, there are 

several drawbacks when it comes to these techniques: the parasitic eggs are excreted in 

irregular intervals (e.g. mid-day urine should be used for diagnosing S. haematobium 

infection) and samples need to be taken on several days in duplicates (or even triplicates) to 

enhance the accuracy (Utzinger et al., 2001). Additionally, light intensity infections are 

difficult to detect without concentrating the sample using methods, such as centrifugation or 

filtration followed by examination of the sediment (Utzinger et al., 2015). This can result in 

underestimating the prevalence of the infection on one hand and overestimating the cure rates 

after treatment on the other (Utzinger et al., 2001; Stete et al., 2012; Knopp et al., 2013). 

Simple point-of-care (POC) diagnostic tools in the form of microhaematuria-detecting 

dipsticks for S. haematobium and circulating cathodic antigen (CCA) to diagnose S. mansoni 

and S. japonicum are very simple and have shown superiority over microscopic methods in 

terms of sensitivity (Coulibaly et al., 2011; Danso-Appiah et al., 2016). They can be 

successfully used for mapping and subsequent monitoring of the treatment distribution 

programs (Utzinger et al., 2015).  

Other methods, such as FLOTAC, can be used for S. mansoni detection. Originating from 

veterinary medicine, FLOTAC has been validated for diagnosing human nematodes. Faeces 
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are homogenised, filtered and the flotation solution is added, bringing helminthic eggs to float 

which can then be counted under the microscope (Utzinger et al., 2015). Mini-FLOTAC is a 

simpler version of FLOTAC, more suitable for rural settings since it does not require 

centrifugation, but is still reasonably sensitive (limit of 10 epg) (Barda et al., 2013a). Studies 

evaluating performance of mini-FLOTAC in the field showed higher accuracy compared to 

other techniques (direct faecal smear, formalin ether concentration technique and Kato-Katz) 

(Barda et al., 2013a; Barda et al., 2013b). 

There are several options among serological tests, however most of them are based on the 

same principle- detection of anti-schistosome antibodies in blood, which develop within 6-8 

weeks post-infection (Utzinger et al., 2015). Usually antibodies can be detected before eggs 

are excreted in stool or urine; nonetheless antibodies are not schistosome-species specific and 

very early infections might be missed using this approach (Nausch et al., 2014; Utzinger et 

al., 2015). They are commonly used to determine if a person has been exposed to 

schistosomiasis infection, although they cannot differentiate between past and current 

infection since high antibodies titres can persist after successfully treating the patient; 

therefore, their usefulness in endemic areas is limited (Nausch et al., 2014; Utzinger et al., 

2015). Serological tests are useful for diagnosing schistosomiasis in travellers returning from 

endemic areas, before the onset of clinical symptoms, often absent or unspecific in light 

infections (Utzinger et al., 2015). Tests able to detect and quantify parasitic DNA in clinical 

samples have been emerging in high number, offering great specificity and sensitivity, 

comparable to or higher than conventional microscopic methods. The great advantage of these 

techniques, one of them being polymerase chain reaction (PCR), is the ability to use other 

specimens additionally to stool and urine, including semen and vaginal lavages. However, 

regardless of advantages, PCR requires highly skilled personnel and expensive equipment, 

limiting its use in resource-scarce settings (Utzinger et al., 2015).  
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 1.5 Chemotherapy against schistosomiasis  

Praziquantel (PZQ), a pyrazino-isoquinoline derivative, has remained a cornerstone of 

schistosomiasis treatment for decades (Utzinger and Keiser, 2004; Cioli et al., 2014; Olliaro 

et al., 2014). Characterised with mild adverse events (e.g. abdominal symptoms) and no long-

term toxicity, PZQ has been successfully used in mass drug administration (MDA) programs 

for years, with hundreds of millions of people treated (Raso et al., 2004; Doenhoff et al., 

2008; Geary et al., 2010; Olliaro et al., 2014). However, PZQ is only effective against adult 

worms and to successfully treat the infection, the drug needs to be re-administered in the 

weeks following the first treatment (Pica-Mattoccia and Cioli, 2004). Furthermore, 

dependence on a single drug is not ideal and lack of knowledge regarding the mechanism of 

action of PZQ represents one of the main obstacles on the way to develop effective analogues 

(Doenhoff et al., 2008; Pica-Mattoccia et al., 2008; Wu et al., 2011).  

PZQ is a racemic compound and is currently marketed as a mixture of both enantiomers, R- 

and S-praziquantel (R-/SPZQ), in equal parts (Cioli et al., 2014; Olliaro et al., 2014). 

Although there are still some disagreements, several researchers have confirmed RPZQ bears 

the main antischistosomal activity against S. mansoni (Shua-Hua and Catto, 1989; Meister et 

al., 2014) and S. japonicum (Tanaka et al., 1989), while SPZQ is believed to be responsible 

for side effects, including the awfully bitter taste (Meyer et al., 2009). S. haematobium, 

however, remains largely unstudied, although it is responsible for the largest part of 

schistosomes infections (Botros et al., 2005). Halving the dose and maintaining the level of 

activity while reducing adverse events is a very attractive solution, especially for paediatric 

populations, which have difficulties swallowing the tablet due to its size and very bitter taste 

(Meyer et al., 2009). To compliment existing data on S. mansoni and S. japonicum and 

contribute to a better understanding of antischistosomal activity of PZQ, we conducted in 

vitro and in vivo studies with S. haematobium (see Chapter 2). 

With no available alternative, resistance development to PZQ has been a hot topic in recent 

years due to increasing drug pressure originating from MDA programs. Oxamniquine, 

effective solely against S. mansoni, was used in Brazil successfully for many years and is no 
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longer available (Gryseels et al., 2006; Cioli et al., 2014). Metrifonate, used to treat 

schistosomiasis caused by S. haematobium, has shown little efficacy as a single dose but 

could potentially be used as a multiple dose treatment (Kramer et al., 2014). No evidence of 

resistance to PZQ, except in the laboratory, has been documented so far (Vale et al., 2017). 

However with a wide coverage, planned by the London declaration (London Declaration On 

Negelected Tropical Diseases, 2012) and high frequency of treatment, essential for control 

and eventually elimination of schistosomiasis, resistance development is only a matter of time 

(Fallon and Doenhoff 1994; WHO, 2006). New effective drugs for treating schistosomiasis 

are very much needed. 

1.6 Intervention and control 

The main strategy of schistosomiasis control remains preventive chemotherapy (PC) with 

PZQ (Hotez et al., 2007). These programs aim to lessen the extent, severity and duration of 

the infection morbidity by distributing PZQ to people living in endemic areas, without prior 

positive diagnosis (Shuford et al., 2016). The priority is to achieve high coverage of risk 

groups: school-aged children (SAC) are one of the groups considered to be at the highest risk 

of contracting the infection, apart from adults in frequent contact with infected water due to 

occupation (e.g. fishermen, farmers…) and pregnant or lactating women (WHO, 2006). The 

frequency of treatment depends on the risk magnitude- high risk communities, where the 

prevalence of schistosomiasis is 50% detected by parasitology methods (or at least 30% of 

urinary schistosomiasis prevalence based on history of haematuria) are treated annually while 

moderate risk communities with a prevalence of the disease at least 10%, are given treatment 

every 2 years (Inobaya et al., 2014). Within low-risk communities, only SAC are treated 

twice during their primary schooling (WHO, 2006). Treating pregnant women is of great 

importance, since heavy helminthic infection can exacerbate maternal anemia, leading to 

increased danger of labour complications and mortality, especially in the regions where 

malaria is co-endemic (Ajanga et al., 2006). Additionally, connection between women with 

genital schistosomiasis and higher risk of HIV establishment and AIDS acceleration has been 

confirmed (Kjetland et al., 2006). Due to the lack of safety data for this age group, preschool- 
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aged children (PSAC) are excluded from PC programs and can only be treated on an 

individual basis (WHO, 2006). 

To monitor the impact of drug administration program on morbidity, disease specific 

indicators are used. For schistosomiasis, these are prevalence and intensity of infection (using 

parasitological methods), prevalence of micro- and macro-haematuria, prevalence of anemia 

and prevalence of lesions in urinary tract and liver (using ultrasound) (WHO, 2006). Usually, 

PC programs lean on the existing health systems or other established community based 

approaches for drug distribution (WHO, 2006). PC has been implemented in numerous 

countries as a part of national schistosomiasis control programs; however, regardless the low 

costs of PZQ, these countries are struggling to sustain it and the coverage is still below 

optimal- in 2016, 52 % of SAC were globally reached, distant from the aim set to minimum 

75% by World Health Assembly in 2001 (WHO, 2006, 2017).  

 

 

 

 

 

 

 

 

 

Figure 3: Integrated schistosomiasis control (adapted from Ross et al., 2017) 

 

The WHO goal was to control morbidity of schistosomiasis by 2016 and eliminate it by 2020. 

Bearing the parasitic life-cycle and transmission pathways in mind, there are two possible 

targets: influencing the transmission from human to the vectors or the other way around, from 

snails to humans. Nonetheless, treatment administration alone affects solely the human to 

snails pathway and only for as long as the treatment is given and consequently, prevalence 
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levels can quickly reach the baseline values within 18-24 months - therefore, it is not enough 

to successfully interrupt the transmission of the disease (Gray et al., 2010). A 

multicomponent approach of the treatment, complimented with health education and 

promotion, improved water infrastructure and sanitation together with vector control (e.g. 

molluscicides) could aid to approach schistosomiasis elimination (Inobaya et al., 2014; Ross 

et al., 2017) (see Figure 3). 

1.7 Treatment gap 

While SAC are recognised as one of the main groups at risk for contracting schistosomiasis 

and have been included in PC programs (Figure 4B), their younger peers, PSAC, have been 

left out and need to wait up to the age of six to receive their first treatment or they are treated 

off label with the WHO recommended dose for adults (WHO, 2006; Bustinduy et al., 2017). 

One of the reasons for this exclusion is the assumption that young children (< 6 years) are not 

as affected by schistosomiasis as they don’t come into contact with infected water as actively 

(e.g. swimming) as older children (Odogwu et al., 2006). Additionally, they are also harder to 

diagnose using standard parasitological methods, since they often harbour a lower burden of 

the parasites (Ross et al., 2002; Bosompem et al., 2004; Geary et al., 2010). Nonetheless, 

researchers showed PSAC are regularly bathed by their mothers and guardians, using water 

from infected water sources, unaware of the risks or simply without sources of clean water for 

bathing (Figure 4A) (Mafiana et al., 2003; Sousa-Figueiredo et al., 2010). Furthermore, 

epidemiological surveys have confirmed schistosomiasis among young children (< 6 years) is 

indeed very common and the prevalence can peak as high as 86% (Ekpo et al., 2012). 

Overlooking schistosomiasis in PSAC is of great concern, since this age group might have a 

role in maintaining local transmission of the disease within communities integrated in PC 

programs (Stothard and Gabrielli, 2007). Although the intensity of infection is usually milder 

compared to older children, they are in contact with water many times a day, adding to the 

contamination of water sources (Odogwu et al., 2006). Furthermore, it is not yet clear 

whether early parasitic infection can exacerbate or attenuate the clinical impact of 

schistosomiasis and its subsequent morbidity (Stothard and Gabrielli, 2007).  
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Since PSAC have been recognised by the WHO in 2010 as one of the risk populations for 

contracting schistosomiasis infection, the incentive to include them in PC programs is getting 

stronger (WHO, 2010). However, metabolic processes of PZQ have never been studied in 

children and pharmacokinetic (PK) data crucial to establish a safe and effective dose for this 

age group is lacking (Keiser et al., 2011). Since differences in PK processes between children 

and adults, a consequence of maturation processes, have been described in details, a simple 

extrapolation of doses used for adults to children is very uncertain (Anderson, 2002; Hattis et 

al., 2003). Furthermore, the use of standard PZQ formulation, characterised with bitter taste 

and big tablets, is only aggravating integration of young children into drug administration 

programs. All these facts underline a compelling need for a child-friendly paediatric 

formulation (Meyer et al., 2009; Stothard et al., 2011). 

Figure 4: Mother bathing her preschool-aged child (A); SAC waiting to receive treatment (B)

B A 
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1.8 Pharmacokinetic methods 

PK studies are used to investigate and quantify the effect the human body has on an active 

substance after administration (Batchelor and Marriott, 2015). The aim is to assess absorption, 

distribution, metabolism and elimination (ADME) of the active substance and the influences 

on these processes, affecting the concentration of the drug in body fluids (Toomula et al., 

2011). Typically, an intensive sampling scheme is applied to determine concentration of the 

drug in blood at several points in time after treatment, resulting in concentration over time 

curve (Patel et al., 2010). These studies are important to determine a suitable dose of drug for 

patients and are especially important for specific populations of patients, such as those with 

liver failure or other diseases, where impairment of organs involved in ADME processes 

could have an impact on the PK of the active ingredient. Use of a drug lacking evidence-

supported tailored dosing can result in sub-optimal efficacy and unexpected adverse events 

(Yewale and Dharmapalan, 2012). 

Although PZQ has been successfully used to treat schistosomiasis for decades, not much is 

known about its PK. The only available PK data originates from studies performed with 

healthy adult volunteers and in patients with different conditions (such as liver impairment) 

(El Guiniady et al., 1994; Lima et al., 2009). To this point, only a single study, reporting PK 

parameters of R- and SPZQ, is available for paediatric populations (Bustinduy et al., 2016). 

Since the demand to include PSAC in PC programs is growing and with it, a need for a 

paediatric PZQ formulation, PK data to establish a safe and effective dose for this age-group 

of children is crucial (Keiser et al., 2011) and therefore, the aim of our PK studies was to fill 

this gap in knowledge and aid to the development of the paediatric formulation of PZQ (See 

Chapter 3). 

Mass spectrometry (MS) is an analytic tool frequently applied to measure concentration of a 

drug in PK samples. Coupling of liquid chromatography with mass spectrometry joins the 

abilities of physical separation of liquid chromatography with the sensitive detection 

capabilities of MS. Generally, the analytes of interest are first separated from the remaining 

matrix by partitioning between the stationary phase, packed in a column of suitable 
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characteristics, and a liquid mobile phase, which elutes them further into the MS part. In the 

first part of the MS, the source, the analytes are ionised, then separated based on different 

principles and finally detected and quantified by a detector. Triple quadrupole is a type of 

tandem mass spectrometer, used commonly for quantification in the bio-chemical field due to 

ease of use and good quality of results. Multiple reaction monitoring, one of the popular 

operation modes of triple quadrupole, enabling detection of targeted analytes with high 

sensitivity, was used also in our experiments and described in more details in Figure 5 and 6 

(Pitt, 2009).  

To be able to measure and quantify the concentration of the analytes in a sample using liquid 

chromatography tandem mass spectrometry (LC-MS/MS), the samples need to be in a liquid 

state, in contrast to gas chromatography, where analyte is in gaseous state. The sample 

preparation method for each analyte from different sampling matrices needs to be developed, 

optimised and validated, assuring constant recovery of analytes and accounting for possible 

matrix effects. The sample preparation method for PZQ from dried blood spots, DBS, 

(discussed in more details below) had already been developed in our group (Meister et al., 

2016), while the extraction method for Mitra™ was a part of this PhD project, as described in 

Chapter 4.  

All the PK analysis used to obtain results for this thesis were performed on an 6460 Series 

triple quadrupole LC-MS/MS machine using a method for detection of PZQ, validated in 

compliance with FDA regulations for analytical method validation (Food and Drug 

Administration, 2015). The equipment used is described in detail in Chapter 3.  

Figure 5: Fragments of interest for multiple reaction monitoring
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Figure 6: Multiple Reaction Monitoring. Only targeted parent ions are selected in Q1 (MS 

level 1) and allowed to pass to the second quadrupole (Q2) for collision-induced dissociation 

(CID). Third quadrupole, Q3 (MS level 2), allows only selected fragment ions to pass to the 

detector.  
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1.9 Micro-sampling in pharmacokinetic studies 

As a consequence of recent updates in legislation, PK trials in paediatric population are 

becoming an essential part of the drug development process (Zisowsky et al., 2010). When 

conducting clinical trials with sensitive populations, such as children, the focus of clinical 

research is to reduce the invasiveness of the sampling process and increase the patient 

compliance (Goodenough et al., 1997; Batchelor and Marriott, 2015; Altamimi et al., 2016). 

PK trials in particular typically have an intensive sampling scheme; therefore assuring the 

sampling process is as comfortable for the patient as possible is of utmost importance 

(Altamimi et al., 2016). One of the most commonly used sampling techniques is 

venepuncture, known to be very uncomfortable and invasive, therefore not appropriate for 

sensitive populations (Patel et al., 2013; Altamimi et al., 2016).  

In search of alternatives, one technique has stood out- DBS have been successfully used in 

new-born screening for genetic disorders for decades and have been gaining popularity as a 

PK sampling tool in the recent past (Guthrie and Susi, 1963; Meesters and Hooff, 2013). DBS 

are droplets of capillary blood, collected from a finger after a finger prick, disposed on filter 

paper cards and dried at room temperature (Mei et al., 2001). They offer several advantages 

over venepuncture, in addition to increased compliance (Edelbroek et al., 2009). Since they 

do not require a hospital environment and cold chain storage or transport, they are very 

suitable for use in low resource settings, such as tropical areas of Africa (Denniff and 

Spooner, 2014). However, DBS sampling requires additional equipment to transfer blood 

droplets from a finger to the card, such as coagulant-coated capillaries (Figure 7B), to assure a 

spot of a sufficient size and acceptable shape for quantification (De Kesel et al., 2015). 

Within an intensive sampling scheme under a time pressure and with short blood coagulation 

times, often seen in young children, preparing spots acceptable for quantification can be 

challenging. Another issue, emerging from the DBS technique, is the haematocrit bias, which 

has been extensively studied and described in the literature (Capiau et al., 2014; Denniff and 

Spooner, 2014). These factors together can result in unreliable and variable measurements. 
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Due to all of the above-mentioned issues stemming from the use of DBS, efforts have been 

aimed towards developing a better alternative. Phenomenex has recently introduced a device 

called Mitra™, a volumetric absorptive micro-sampling tool (Denniff and Spooner, 2014). The 

sample collection is based on wicking- using capillary forces to draw the liquid inside the 

pores of the substrate (De Kesel et al., 2015; Kok and Fillet, 2017). The volume absorbed is 

controlled by the porosity and quantity of the polymeric material from which the tip is made 

of. The substrate is directly in contact with the liquid sample and as such, it avoids the need 

for additional equipment, e.g. capillaries, to transfer the sample. Moreover, it assures 

consistent and repeatable volume of samples, regardless of blood haematocrit (Figure 7A) (De 

Kesel et al., 2015; Kip et al., 2017; Kok and Fillet, 2017). The whole substrate is 

subsequently extracted, eliminating the need for punching and simplifying the workflow as 

compared to DBS (Denniff et al., 2015; Spooner et al., 2015). Moreover, it can be used for 

sampling different biological liquids, such as blood, plasma, urine or saliva (Denniff and 

Spooner, 2014; Mercolini et al., 2016). Mitra™ has been studied and tested in laboratory 

conditions, using both animal and human blood, but never in field conditions (Kok and Fillet, 

2017). Thus, our aim was to evaluate its performance in the field compared to DBS not only 

from the quantification point of view, but also user-friendliness and practicality (see Chapter 

4). 

 

 

 

 

 

 

Figure 7: Preparation of Mitra™ (A) and DBS (B) samples in laboratory conditions 

 

A B 
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2 Aim and objectives 

Schistosomiasis is one of the most prevalent NTDs. Children are typically the most affected 

population and while SAC are regularly treated, PSAC are left out of drug distribution 

programs or treated off-label with the WHO recommended dose for adults of 40 mg/kg. Since 

PSAC have been recognised as commonly affected by schistosomiasis, there is a growing 

consensus to include them in PC programs with PZQ as well, directed by WHO in 2010 

(WHO, 2010). However, PK data, crucial to establishing safe and effective doses to treat this 

age group, are sparse.  

The main aim of this thesis was to elucidate the pharmacokinetics of PZQ and its enantiomers 

and its relation to efficacy in PSAC and SAC infected with S. mansoni and S.haematobium.   

This was pursued with the following specific objectives: 

1. To evaluate the in vitro and in vivo activity of PZQ enantiomers and its main metabolite 

against S. haematobium (Chapter 2) 

2. To conduct PK studies with PZQ in SAC and PSAC, infected with S. mansoni and S. 

haematobium and obtain PK parameters using non-compartmental analysis (Chapter 3) 

3. To further deepen the understanding of factors influencing PK of PZQ and with it the dose-

response relationship by constructing a model for R-PZQ (in collaboration with Dr. C. 

Falcoz) and using it to model the data collected during PK studies, resulting in evidence-

supported guidelines for dosing regimen in PSAC (see Chapter 7.2) 

5. To develop, optimise and validate an extraction method for a new conventional micro-

sampling device, Mitra™, a potential substitute for DBS and compare its performance to the 

DBS method by sampling a subset of S. haematobium infected patients with both methods 

after treatment with PZQ (Chapter 4) 
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Abstract 

Background: Praziquantel (PZQ) is the mainstay of schistosomiasis control and has been successfully used for 

decades. Despite, its mechanism of action is not fully understood. While the majority of studies have been 

conducted on Schistosoma mansoni, it is not known which enantiomer, R- or S-Praziquantel (R-/S-PZQ), is 

responsible for the activity on S. haematobium. 

Methods: In vitro and in vivo studies were conducted to evaluate the activity of R- and S-PZQ, racemic PZQ 

and the main human metabolite, namely trans-4-OH-PZQ, on S. haematobium. IC50 values on adult S. 

haematobium were determined in vitro. Dose response relationship studies were performed in golden Syrian 

hamsters, harbouring a chronic S. haematobium infection.   

Findings: R-PZQ displayed the highest activity against adult worms in vitro, revealing an IC50 of 0.007 μg/ml at 

4 and 0.01 μg/ml at 72 h. S-PZQ on the other hand was 501x less active (eudysmic ratio at 4 h), with an IC50 of 

3.51 and 2.46 μg/ml (4 and 72 h, respectively). Racemic PZQ resulted in an IC50 of 0.03 μg/ml at 72 h. Trans-4-

OH-PZQ had an IC50 of 1.47 μg/ml at 4 and 72 h, respectively, 2.3-2.4-fold lower than S-PZQ. In vivo, R-PZQ 

was the most potent drug with worm burden reductions (WBRs) of 98.5, 75.6 and 73.3% at 125, 62.5 and 31 

mg/kg, respectively. A single oral dose of 250 mg/kg PZQ resulted in a WBR of 99.3%. S-PZQ was highly 

active at 250 and 500 mg/kg with WBRs of 83.0 and 94.1%, respectively. The lowest tested dose of S-PZQ, 125 

mg/kg, showed moderate activity (WBR of 46.7%). The calculated ED50 for R- and S-PZQ were 24.7 and 127.6 

mg/kg, respectively, with a corresponding eudysmic ratio of 5.17. 

Conclusion: Our data supports the theory of R-PZQ driving the antischistosomal activity. Interestingly, also S-

PZQ proved to possess a significant activity towards S. haematobium, particularly in vivo. 

 

Key words: praziquantel, Schistosoma haematobium, in vivo, in vitro  
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Introduction 

Schistosomiasis is one of the prominent Neglected Tropical Diseases (NTDs), caused by blood-

dwelling flukes of the genus Schistosoma. It is affecting over 230 millions of people around the 

world, mostly concentrated in poor, tropical and subtropical areas (1–3). 

Intestinal schistosomiasis, caused by S. mansoni and S. japonicum, manifests with abdominal 

symptoms (e.g., blood in stool, abdominal discomfort, diarrhoea) and can lead to liver failure (4, 5). S. 

haematobium on the other hand causes urinary schistosomiasis, triggering bladder pathology and 

often resulting in bladder cancer (4, 6). In addition, schistosomiasis influences the course and outcome 

of pregnancy and affects child’s intellectual and physiological development (7, 8). 

Praziquantel (PZQ) is the only effective drug available against schistosomiasis and has been 

successfully in use for decades (4, 6, 9–13). Originating from veterinary medicine and repurposed for 

human use, it has been thoroughly studied; however knowledge regarding the mechanism of action is 

scarce (9, 11). PZQ is a racemic compound consisting of two enantiomers, R- and S-PZQ (9, 11). 

While there have been some in vitro and in vivo studies on the activity of PZQ, they mostly studied 

the racemic drug (14–20). In the few studies, which explored the activity of either R- or S-PZQ, the 

reported findings vary. Nevertheless, most studies reported greater activity of R-PZQ (21–24) over S-

PZQ. Staudt et al. (24) suggested that the main metabolite, trans- 4-hydroxy-praziquantel (trans-4-

OH-PZQ), also possesses a high antischistosomal activity on S. mansoni. A similar finding was 

reported by Xiao et al. (25) for S. japonicum.  

It is worth highlighting that the above-mentioned studies, testing the enantiomeric activity of R- and 

S-PZQ, were conducted using exclusively S. mansoni and S. japonicum. S. haematobium remains 

largely unexplored, regardless of the fact that it is responsible for the largest number of infections 

(26). One of the many reasons of negligence might be the life cycle of the parasite, which is difficult 

to maintain in the laboratory conditions (27–29). However, drug activity shoul be tested on S. 

haematobium as well, since there is evidence that the activity of drugs, e.g. PZQ, oxamniquine or 

metrifonate differs between species of the parasite (18, 30). 

In this study, the activity of both PZQ enantiomers, R- and S-PZQ, as well as the racemic drug and 

the main metabolite (trans-4-OH-PZQ) on S. haematobium was assessed. The activity of all entities 

was tested in vitro on adult worms and the results were reported as IC50 values. The S. haematobium 

hamster model was used for testing different dosages of R-PZQ and S-PZQ compared with racemic 

PZQ in vivo. ED50 values were reported and worm burden reductions (WBRs) were compared 

between different treatment groups of R- and S-PZQ and the control group. 
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Methods and materials 

Drugs, media and animals 

Drugs 

Pure analytes, R-, S- and trans-4-OH- PZQ were kindly supplied by Merck (Darmstadt, Germany). 

Racemic PZQ was purchased from Sigma Aldrich (Buchs, Switzerland). Drugs for in vitro studies 

were dissolved in dimethyl sulfoxide (DMSO; Fluka, Buchs, Switzerland). A mixture of 7% (vol/vol) 

Tween 80 and 3% ethanol (vol/vol) was used to suspend the drugs for in vivo treatment.  

Media 

For cultivating adult schistosomes, standard RPMI 1640 medium (Life Technologies, Carlsbad, CA) 

with addition of 5% heat-inactivated foetal calf serum (iFCS), 100 U/ml of penicillin (Life 

Technologies) and 100 μg/ml of streptomycin (Life Technologies) was used.  

Animals 

30 LVG Golden Syrian Hamsters (male, weight approximately 150 g) infected with S. haematobium 

were obtained from the Biomedical Research Institute (NR-21966, Rockville, MD). The animals were 

kept under controlled conditions (22 °C, 50% humidity, 12/24 h of light and free access to water and 

rodent diet) to allow development of chronic infection for 3 months post infection date.  

In vitro and in vivo studies 

In vitro studies 

Adult worms were tested at a range of 0.01-3 μg/ml for R-PZQ and PZQ, at 0.1-30 μg/ml for S-PZQ 

and 0.1-3 μg/ml for trans-4-OH-PZQ. Drugs were prepared in medium using serial dilutions in flat 

bottom 24-well plates (BD, Falcon). Control wells consisted of 0.3% DMSO, which was the highest 

concentration of DMSO used to dissolve the drugs. 3 months post infection, S. haematobium infected 

hamsters were euthanized with CO2 and dissected. Adult worms were collected from hepatic portal 

and mesenteric veins. 2-3 worms, sexes equally represented, were placed per well and each 

concentration of the drug was tested in duplicates. Worms were incubated at 37 °C and 5% CO2 and 

the phenotypic changes were evaluated 1 h, 4 h, 24 h, 48 h and 72 h post incubation using a motility 

scale ranging from 3 (normal activity) to 0 (no activity, granularity present). 

IC50 values were calculated with CompuSyn® software (version 1.0) from motility values at different 

concentrations of each drug. The eudysmic ratio was calculated using the following formula: 

IC50 distomer/ IC50 eutomer, 

where R-PZQ is the eutomer and S-PZQ the distomer.  
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In vivo studies 

 Infected S. haematobium hamsters in groups of 3-4 were treated 3 months post infection with a single 

oral dose of 250 mg/kg PZQ, 125 mg/kg R-PZQ, 62.5 mg/kg R-PZQ, 31 mg/kg R-PZQ, 500 mg/kg S-

PZQ, 250 mg/kg S-PZQ or 125 mg/kg S-PZQ. 10 days post treatment hamsters were euthanized with 

CO2 and dissected. Adult worms from intestinal veins were counted and sexed and the liver was 

inspected for live/dead worms and eggs. The control group (untreated) was dissected at the same time 

and the mean worm burden of treated hamsters was compared with untreated hamsters to determine 

the worm burden reduction (WBR). ED50 and eudysmic ratios were calculated as described above. 

Statistics 

Statistical tests were performed using Prism software (version 7.03, GraphPad, CA, USA). Unpaired 

t-test allowing for unequal variances was used to determine differences in worm burden between the 

control group and the treatment groups. p< 0.05 was considered to be significant.  

Results 

In vitro studies 

In vitro IC50 and IC90 values (4 and 72 h of incubation) of racemic PZQ, pure enantiomers and trans-4-

OH-PZQ obtained against adult worms of S. haematobium are summarised in Table 1. The IC50 of R-

PZQ was 0.007 μg/ml at 4 and 0.01 μg/ml at 72 h, while S-PZQ was 501x less active (eudysmic ratio 

at 4 h) yielding IC50 values of 3.51 and 3.40 μg/ml (4 and 72 h, respectively). The IC50 of PZQ was 

0.03 μg/ml, which is 4.3x higher compared to R-PZQ. Trans-4-OH-PZQ revealed an IC50 of 1.47 

μg/ml at 4 and 72 h, respectively.  

In vivo studies 

In Table 2, total WBRs and female WBRs following different single oral doses of R-, S-PZQ and 

PZQ are presented. For all drugs and dosages tested, a higher activity on the female worms was 

observed. PZQ reduced the total worm burden by 99.3% at a single dose of 250 mg/kg. R-PZQ 

showed the highest total WBR at 125 mg/kg (98.5%) while with a half of the dose (62.5 mg/kg) the 

worm burden reduction was lower (75.6%). The lowest dose of R-PZQ, 31 mg/kg, yielded still a high 

total WBR of 73.3 %.  S-PZQ revealed a high activity at 500 and 250 mg/kg with total WBRs of 

94.1% and 83.0%. A moderate total WBR of 46.7% was observed when the hamsters were treated 

with 125 mg/kg of S-PZQ. The calculated ED50s for R- and S-PZQ were 24.7 and 127.6 mg/kg, 

respectively, with a corresponding eudysmic ratio of 5.17. All WBRs of the different treatment groups 

were significantly different from the control group (p < 0.05), except for the lowest doses of R- and S-

PZQ (31.5 mg/kg and 125 mg/kg, respectively), which showed not to be significantly better compared 

to the control group. 
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Discussion 

With no available alternative drug, PZQ is the mainstay of schistosomiasis control (9–12). Apart from 

reliance on a single drug, an additional drawback is the large dose required resulting in huge size of 

the tablet, containing a racemic mixture of PZQ (31–33). The discussion about the activity of each 

enantiomer of the drug, namely R- and S-PZQ, has been on-going and therefore it is time to reach a 

conclusion which enantiomer is responsible for the antischistosomal activity (9, 32–34). Moreover, 

development of a paediatric PZQ formulation is currently undergoing and thorough examination of in 

vitro and in vivo activity of PZQ and its enantiomers will not only contribute to a better understanding 

of the drug but also aid to select the optimal entity for the final formulation (R-PZQ or racemic PZQ) 

(35). While S. mansoni has been thoroughly researched, S. haematobium remains neglected in the 

laboratory, despite of being responsible for a large share of the burden of schistosomiasis (26, 29). 

This holds true also for drug sensitivity testing including studies on PZQ. While a few studies 

reported the activity of PZQ towards S. haematobium, all of them only evaluated the activity of 

racemic PZQ (18, 19, 29). Studies on S. haematobium are pivotal as many antischistosomals, 

oxamniquine, metrifonate and PZQ have very distinct profiles on the different schistosome species 

(30). Our study is the first to report the activity of both enantiomers of PZQ, at three different doses, 

compared to a single dose of PZQ, in vivo. Additionally, the activity of both enantiomers was 

compared also to the main human metabolite, trans-4-OH-PZQ, and the racemic drug, in vitro. 

Our results show that R-PZQ is driving the antischistosomal activity of PZQ, both in vitro and in vivo.  

The IC50 value of racemic PZQ was 4.3x higher compared to the enantiopure R-PZQ in vitro.  

In vivo results followed a similar pattern: R-PZQ at 125 mg/kg resulted in WBRs above 98%, as did a  

twice higher dose of PZQ, 250 mg/kg. The latter result is in the line with findings from the dose 

response relationship study with PZQ in S. haematobium infected hamsters conducted by Webbe and  

James, yielding an ED50 of 118 mg/kg (18).   

Strikingly, it seems that in case of S. haematobium in contrast to S. mansoni (36), also S-PZQ 

possesses non-negligible activity. An ED50 of 127.6 mg/kg was calculated for S-PZQ, which is close 

to the value of the racemic drug. For comparison, S. mansoni infected mice treated with 800 mg/kg S-

PZQ showed only a low WBR of 19.6%. Hence, the eudysmic ratio is 64-fold lower for S. 

haematobium compared to S. mansoni (36). However, it is worth highlighting that differences in the 

drug sensitivity between the two species might also be due to differences in the model, hamster versus 

mouse model (27). Finally, also trans-4-OH-PZQ revealed a 2.3-2.4-fold higher activity (72 and 4 h, 

respectively) against S. haematobium in vitro when compared to S. mansoni. A contribution of S-PZQ 

and trans-4-OH-PZQ to PZQ’s activity could explain the higher sensitivity of PZQ to S. haematobium 

when compared to S. mansoni in humans (30). In humans S. haematobium are residing in the venus 
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plexus of the bladder, getting exposed mostly to high concentrations of S-PZQ and the metabolite, as 

a consequence of first pass metabolism. This is in contrast with S. mansoni, where the adult worms 

are exposed to un-metabolised drug in the mesenteric veins, prior reaching the liver. 

Last but not least, we observed increased sensitivity of female worms compared to the male in vivo- 

the female WBRs were higher compared to total WBRs in all cases. The lowest dose of S-PZQ 

reached the female WBR of 95.6%, while total WBR was only 46.7%. The increased sensitivity of 

female worms to PZQ has been reported previously (20). 

Conclusion 

To sum up, we observed that R-PZQ possesses the highest activity among the PZQ enantiomers and 

main human metabolite tested against S. haematobium. Surprisingly, S-PZQ- showed a high activity 

in vivo. Additionally, the main human metabolite displayed an activity higher than S-PZQ in vitro. 

In the line with the current efforts to develop a paediatric formulation, an enantioselective R-PZQ 

formulation might bear some risk; however, clinical trials, including 

pharmacokinetic/pharmacodynamics relationship studies, would be required to confirm our findings.  
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Table 1: IC50 and IC90 values of PZQ, R-PZQ, S-PZQ enantiomers and trans-4-OH-PZQ against adult 

worms of S. haematobium  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
IC50 at 4 h 

(µg/ml) 

r-

value 

IC50 at 72 h 

(µg/ml) 

r-

value 

IC90 at 72 h 

(µg/ml) 

r-

value 

Eudysmic ratio 

PZQ 0.03 0.978 0.03 0.965 0.09 0.978 501 

R-PZQ 0.007 0.803 0.01 0.940 0.03 0.940 

S-PZQ 3.51 0.925 3.40 0.923 5.98 0.923 

Trans-4-

OH-PZQ 

1.47 0.891 1.47 0.891 3.31 0.891 
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Table 2: Worm burden reductions (WBRs) following different single oral doses of R, S-PZQ and 

PZQ. 
 

 

Number of 

hamsters 

cured/treated 

Mean number of alive worms (SD) 

WBR 

(%)  

Female 

WBR 

(%)  

ED50 

(mg/kg)a 
Liver Mesenteric 

veins 

Total Females 

Control 0/4 
2.75 

(3.77) 

31.0 

(9.49) 

33.8 

(16.8) 

15.3 

(5.2) 
-- -- -- 

PZQ         

250 

mg/kg 
3/4 

0.25 

(0.5) 

0 

 

0.3 

 (0.5) 

0 
99.3 100.0  

200 

mg/kg* 
 

    
77.2  

118.1 
150 

mg/kg* 
 

    
66.1  

100 

mg/kg* 
 

    
39.2  

R-PZQ         

125 

mg/kg 
2/4 

0.25 

(0.5) 

0.25 

(0.5) 

0.5 

(0.6) 

0 
98.5 100.0 

24.7 
62.5 

mg/kg 
1/4 

5.00 

(4.69) 

3.25 

(3.59) 

8.3 

(8.1) 

2.3  

(3.3) 
75.6 85.2 

31 

mg/kg 
0/3 

6.67 

(11.55) 

2.33 

(2.31) 

9.0 

(13.9) 

4.0  

(6.9) 
73.3 73.8 

S-PZQ  
    

  
Eudysmic 

ratio 

500 

mg/kg 
3/4 

1.25 

(2.5) 

0.75 

(1.5) 

2.0  

(4.0) 

0 
94.1 100.0 

127.6 5.17 
250 

mg/kg 
2/4 

4.0 

(4.90) 

1.75 

(2.06) 

5.8 

 (6.9) 

0 
83.0 100.0 

125 

mg/kg 
0/3 

7.0 

(6.24) 

11.0 

(6.0) 

18.0 

(12.1) 

0.7 

 (0.6) 
46.7 95.6 
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Abstract 

There is a growing consensus to include preschool-aged children in preventive chemotherapy programs 

with praziquantel to improve schistosomiasis control. However, pharmacokinetic data, crucial to 

establish safe and effective dose for this age group, are sparse. The objective of this study was to 

establish and compare pharmacokinetic parameters of praziquantel in preschool- and school-aged 

children with schistosomiasis. Two pharmacokinetic trials in school- and preschool-aged children 

infected with Schistosoma mansoni or S. haematobium, were conducted in Côte d’Ivoire. Dried blood 

spot samples were taken from 492 children at 10 time points following a single oral dose of 20, 40 or 

60 mg/kg of bofy weight of praziquantel and analysed using liquid chromatography mass spectrometry. 

Non-compartmental analysis (NCA) was performed to obtain the pharmacokinetic parameters of R-

praziquantel (RPZQ), S-praziquantel (SPZQ) and R-trans-4-hydroxy-praziquantel. No significant 

differences in pharmacokinetic parameters between species-specific infections were observed. While 

pharmacokinetic parameters differed significantly between age groups for S. mansoni, this trend was 

not observed with S. haematobium. Neither the area under the curve (AUC) nor the maximal blood 

concentration (Cmax) presented clear dose proportionality for R- and SPZQ.  Logistic regression 

indicated a relationship between the RPZQ AUC and Cmax and the probability of cure. Praziquantel is 

subject to complex metabolic processes following erratic absorption. While  the results of NCA are a 

very informative base for a better understanding of the drug, a more targeted approach in the form of 

population modelling is needed to quantify the factors influencing metabolic processes and draw 

conclusions. 
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Introduction 

Schistosomiasis, first described in 1851 by Theodor Bilharz (1), represents a major public 

health problem in rural tropical and subtropical areas of the world (2, 3). Caused by blood–

dwelling flukes of the genus Schistosoma, with S. haematobium, S. japonicum and S. mansoni 

being the principle species infecting humans, it affects over 250 million people (4). Acute 

schistosomiasis manifests with flu–like symptoms however, if it is not treated, it can result in 

severe chronic consequences, e.g. hepatic fibrosis, kidney failure or bladder cancer (5, 6).  

Despite years of research, praziquantel (PZQ) remains the only available drug effective 

against schistosome infections (7, 8). As a drug with relatively good efficacy and tolerability, 

PZQ has been successfully used in large scale drug administration programs (i.e. preventive 

chemotherapy) for the last decade (8, 9).   

One of the most vulnerable groups, affected by schistosomiasis, is children (10, 11). 

Preventive chemotherapy programs target school-aged children (SAC), while their younger 

peers, preschool-aged children (PSAC; age <6 years), are excluded from official treatment 

programs and treated only on individual basis, creating the so called “treatment gap” (12, 11). 

Nonetheless, early parasitic infection could exacerbate the clinical impact of schistosomiasis 

and its subsequent morbidity (13). Additionally, PSAC might have a role in maintaining the 

local transmission of the disease; therefore it is crucial to include them in treatment programs 

(13). 

One of the reasons behind targeting only SAC in preventive chemotherapy programs is the 

lack of the pharmacokinetic (PK) data, which would guide the establishment of safe and 

effective dose of PZQ for PSAC (11, 14, 15). Available data on the drug’s absorption, 

distribution, metabolism and elimination processes (ADME) is mostly derived from studies in 

healthy adult volunteers, carried out years ago, while basic PK information for the target 

population is lacking (8, 9, 16). Since physiological and enzyme differences in drug 
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metabolism between adults and children have been described in detail, the extrapolation of 

adult dosages to children is dubious (17–19). Furthermore, the only commercially available 

formulation of PZQ is a racemic mixture of both enantiomers, R-praziquantel (RPZQ) and S-

praziquantel (SPZQ), resulting in a big tablet difficult for small children to swallow, while the 

discussion regarding which entity is responsible for antischistosomal activity of the drug is 

ongoing (8, 16). The metabolism of both enantiomers has been studied and there is some 

evidence that the main human metabolite, R-trans-4-hydroxy-praziquantel (R-trans-4-OH-

PZQ), mainly originating from enantio-selective metabolism of RPZQ, might contribute to 

antischistosomal activity of PZQ (20–22).  

We conducted two PK studies using dried blood spot sampling (DBS) with the aim to 

elucidate the PK parameters of PZQ in PSAC and SAC, infected with S. mansoni or S. 

haematobium, in which each child was embedded in a single-blind, randomised, placebo 

controlled dose-finding study (23, 24). For the first time, the concentrations over time course 

of all three entities, namely, RPZQ, SPZQ and the main human metabolite, R-trans-4-OH-

PZQ, were analysed. Non-compartmental analysis (NCA) was conducted in order to derive 

PK parameters of the analytes, and relationships between drug exposure and efficacy were 

explored. Our study contributes to a better understanding of PZQ and possibly to the 

development of a paediatric formulation. 

Results 

Method revalidation 

The linearity range of the calibration lines was 0.009–2.232 μg/ml for R- and SPZQ and 

0.179 to 44.600 μg/ml for R-trans-4-OH-PZQ, with a coefficient of correlation (R2) above 

0.99. The results of the partial revalidation are summarized in Table S1 to S3 of the 

supplemental material.  

S. mansoni study 

A total of 2,540 DBS were analysed from 229 children (94 PSAC and 135 SAC) (median, 11 

DBS per participant, range, 9 to 11 DBS per participant.) Of these, 398 (16%) measurements 

for RPZQ were under the lowest level of quantification (LLOQ), while 311 (12 %) and 439 
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(17 %) were under the LLOQ for SPZQ and trans-4-OH-PZQ, respectively. Between 29 (40 

mg/kg of body weight) and 33 (60 mg/kg) PSAC and 42 (60 mg/kg) and 47 (20 mg/kg) SAC 

per treatment arm participated in the PK study. Both sexes were uniformly represented in 

each group and treatment arm (55% females for PSAC, 53% for SAC). Actual doses 

administered ranged from 17.0–23.3 (median, 20.2 mg/kg) for the 20 mg/kg treatment arm, 

35.4–42.7 (median, 39.2 mg/kg) for the 40 mg/kg treatment arm and 56.3–64.3 (median, 60.0 

mg/kg) for the 60 mg/kg treatment arm. 

Table 1: Patient characteristics. (Presented by Coulibaly et al.(23, 24) 

 Pre-school aged children School-aged childrena 

 

Schistosoma mansoni 

 

Treatment arm 20 mg/kg 40 mg/kg 60 mg/kg 20 mg/kg 40 mg/kg 60 mg/kg 

No. of children 32 29 33 47 46 42 

No. of girls  18 18 16 25 21 25 

Mean (minimum 

– maximum age) 

(years) 

3.8 (2 - 6) 3.8 (2 - 5) 3.9 (2 - 6) 
9.1 (6 - 

15) 
9.0 (6 - 14) 9.0 (6 - 14) 

Mean ± SD Wt 

(kg) 
13.8 (±2.5) 14.0 (±2.4) 14.0 (±2.5) 

25.2 

(±7.6) 
24.3 (±7.8) 25.9 (±7.6) 

No. of children 

absent at follow-

up 

3 2 1 1 1 1 

Geometric mean no. of eggs/g of stool 

Before treatment 19.6 (6 - 

168 

21.1 (6 - 

330) 

37.5 (6 – 

15) 

76.5 (6 – 

2034) 

84.1 (6 – 

2196) 

80.2 (6 – 

2286) 

After treatment 1.8 (0 – 

48) 

1.0 (0 – 

36) 

0.8 (0 – 

30) 

12.1 (0 – 

768) 
1.4 (0 – 72) 

0.7 (0 – 

1116) 

Egg reduction 

rate - % 
90.8 95.3 97.9 84.2 98.3 99.1 

No. of children positive for infection 

Before treatment 29 27 32 46 45 41 

After treatment 10 7 7 32 14 7 

Cure rate - % 65.5 74.1 78.1 30.4 68.9 82.9 

 

Schistosoma haematobium 

 

Treatment arm 20 mg/kg 40 mg/kg 60 mg/kg 20 mg/kg 40 mg/kg 60 mg/kg 

No. of children 39 43 41 45 46 44 

No. of girls  21 20 26 25 25 25 

Mean (minimum 

– maximum age) 

(years) 

3.7 (2 - 5) 3.9 (2 - 5) 4.0 (2 - 5) 
8.8 (6 - 

15) 
9.0 (6- 14) 9.2 (6 - 15) 

Mean ± SD Wt 

(kg) 
14.9 (±2.8) 15.0 (±2.6) 15.2 (±2.1) 

24.3 

(±5.2) 
25.0 (±6.2) 25.3 (±8.0) 

No. of children 

absent at follow-

up 

5 3 3 1 5 1 

Geometric mean no. of eggs/ml urine 

Before treatment 6.9 (1 – 

63) 

6.8 (1 – 

145) 

8.0 (0.3 – 

72) 

20.4 (1 – 

2317) 

16.6 (1 – 

237) 

15.7 (1 – 

223) 
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Egg reduction rates (ERRs; based on the geometric mean) for PZQ doses of 20, 40 and 60 

mg/kg were 90.8%, 95.3% and 97.9% , respectively, for PSAC and 83.9%, 98.3% and 99.1%, 

respectively, for SAC. Cure rates (CRs) ranged from 65.5% for 20 mg/kg to 78.1% for 60 

mg/kg (74.1% for the standard dose of 40 mg/kg), for PSAC. Among SAC, CRs were 30.4%, 

68.9% and 82.9% for PZQ doses of 20, 40 and 60 mg/kg respectively. All the patients’ 

characteristics are summarised in Table 1. 

S. haematobium study 

Altogether, 2808 DBS were analysed, (median, 11 DBS per participant; range, 9–11 DBS per 

participant. Four hundred two measurements (14 %) were under the LLOQ for RPZQ, 345 

(12 %) were under the LLOQ for SPZQ and 474 (17 %) were under the LLOQ for R-trans-4-

OH-PZQ. Thirty-nine PSAC received 20 mg/kg, 43 PSAC receivws40 mg/kg and 41 PSAC 

received 60 mg/kg (the numbers for SAC were 45, 47 and 45, respectively). The number of 

boys and girls was balanced between the treatment groups. The actual doses were 18.8–22.2 

mg/kg (median, 20.0 mg/kg), 37.5–41.4 mg/kg (median, 40.0 mg/kg) and 58.3–61.4 mg/kg 

(median, 60.0 mg/kg). CRs for PSAC were 88.2%, 77.5% and 67.6% for doses of 20, 40 and 

60 mg/kg, respectively, with corresponding ERRs of 98.6%, 97.1% and 96.3%. SAC 

exhibited CRs of 54.6%, 72.5% and 63.4%, respectively and ERRs of 97.5%, 98.8% and 

97.5%, respectively. The children’s demographics and parasitological characteristics are 

presented in more detail in Table 1. 

 

 

 

 

 

After treatment 
0.1 (0 – 7) 0.2 (0 – 5) 

0.3 (0 – 

27) 

0.5 (0 – 

14) 
0.2 (0 – 5) 

0.4 (0 – 

20) 

Egg reduction 

rate - % 
98.6 97.1 96.3 97.5 98.8 97.5 

No. of children positive for infection 

Before treatment 34 40 37 44 40 41 

After treatment 4 9 12 20 11 15 

Cure rate - % 88.2 77.5 67.6 54.6 72.5 63.4 
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Non–compartmental analysis  

PK parameters are summarised in Table 2 for S. mansoni and in Table 3 for S. haematobium, 

with the results presented as medians with interquartile ranges (IQR). The concentration-over-

time profiles of R- and SPZQ and the metabolite for S. mansoni- and S. haematobium-

infected SAC and PSAC are presented in Figures 1 and 2, respectively. 

Overall, great inter-patient variability was observed. The half-life (t1/2) could be estimated in 

75 % (IQR, 70 to 81%) of subjects and was similar for all analytes across different dosages 

and the two age groups and parasite species, at approximately 3–8 h for R- and SPZQ and 2–5 

h for the metabolite. The time to the maximal blood concentration (Tmax) was 1.5 to 6 h, for 

the metabolite, while the enantiomers attained their highest concentration in blood at 0.5– 3.0 

h in the four populations of children studied.  

In S. mansoni–infected SAC, the highest maximal blood concentration (Cmax) values were 

observed at 60 mg/kg for R-trans-4-OH-PZQ (median, 13.57 μg/ml; IQR 9.81 to 16.43 

μg/ml), followed by SPZQ (median, 1.00 μg/ml; IQR 0.62 to 1.37 μg/ml) and RPZQ (median, 

0.29 μg/ml; IQR 0.22–0.53 μg/ml). PSACs revealed considerablz higher Cmaxs than SAC for 

all three analytes as summarized in Table 2. In the S. haematobium study (Table 3), in SAC, 

the highest values for Cmax at 60 mg/kg PZQ were observed for R-trans-4-OH-PZQ (median 

11.49 μg/ml; IQR 9.05–13.78 μg/ml), followed by SPZQ (median 1.25 μg/ml; IQR 0.78–1.86 

μg/ml) and RPZQ (median 0.44 μg/ml; IQR 0.25–0.81 μg/ml). PSAC revealed similar Cmaxs 

and no significant differences from SAC were observed for any dose or analyte.  

Area-under-the-curve (AUC) values showed considerable and significant differences between 

SAC and PSAC infected with S. mansoni for the metabolite and RPZQ at all three dosages 

administered and for SPZQ at 20 and 60 mg/kg. No sdifference in AUC values between SAC 

and PSAC with urinary schistosomiasis was observed for any of the analytes at any dose. 

Logistic regression confirmed this finding: a significant effect of dose on AUC was found for 

children infected with S. mansoni but not for children infected with S. haematobium. 

When comparing the AUC of cured and uncured PSAC using Mann-Whitney analysis, no 

differences were observed for any of the analytes and both species of the parasite, while cured 
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SAC infected with S. mansoni reached AUCs significantly higher than those for uncured 

SAC. In S. haematobium infected SAC significantly higher AUC values  of RPZQ and SPZQ 

were observed in cured compared to uncured children, while there was no significant 

difference in metabolite exposure (data not shown). Logistic regression indicated a positive 

relationship between RPZQ exposure (for both AUC and Cmax) and the probability of cure, in 

which a higher exposure led to a higher probability of cure for all children analysed together, 

as shown in Figure 3 and 4. 

Discussion 

Schistosomiasis remains a considerable public health problem, despite the years of efforts to 

control it (2, 3). PZQ is the treatment of choice and has been successfully used for decades (7, 

8). While SAC are treated regularly, PSAC have been, up to this day, either excluded from 

preventive chemotherapy programs or treated off-label with the WHO recommended dose of 

40 mg/kg PZQ, used for adults and SAC (11, 12, 25).   

To date, several studies describing efficacy and safety of PZQ in young children have been 

conducted (13, 26, 27). The PK of PZQ have been studied mostly in healthy adults (28–31), 

while ADME processes of PZQ in children remain largely unexplored, except for the recent 

study by Bustinduy et al. (16).  

We have, for the first time, quantified all three main analytes of PZQ (RPZQ, SPZQ and R-

trans-4-OH-PZQ) using an intensive sampling scheme in blood. Our PK studies were 

embedded in two randomised controlled clinical trials allowing us to explore the PK of a 

large cohort of children in both age groups, PSAC and SAC, infected with either S. mansoni 

or S. haematobium and treated with three different dosages of PZQ (23, 24). The sampling 

technique used was novel DBS technology, which proved to be an excellent tool. It does not 

require medical staff or a hospital environment, which is crucial for rural settings. 

Furthermore, collection of blood is comparably less invasive than venepuncture, which is a 

benefit for sensitive populations, such as children. Adding up to these advantages are also the 

transport conditions: DBS do not require a cold chain and can be easily transported from the 

field to the laboratory (32, 33). 
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Table 2: PK parameters of SAC and PSAC infected with S. mansoni 

*Significant difference between SAC and PSAC of the same dose and analyte; +Significant difference between S. haematobium and S. mansoni  infections of same dose, age group and analyte 
#Significant difference between R and SPZQ of same dose, age group and species; Significant difference between the doses of 20 and 40 mg/kg (a), 20 and 60 mg/kg (b) or 40 and 60 mg/kg (c) 

for same age group, analyte and species of the parasite; T1/2 could be estimated in 75 (70–81)% (median (IQR)) of the subjects

S. mansoni 

R-trans-4-OH-PZQ RPZQ SPZQ 

SAC PSAC SAC PSAC SAC PSAC 

20 

mg/kg 

T1/2 (h) 2.73 (2.24–3.46) 2.88 (2.24–3.81) 3.12 (2.15–5.97) 5.02 (3.96–6.70) 3.59 (1.82–6.44) 4.32 (3.31–6.63) 

Tmax (h) 2 (2.0–2.5) 2.50 (1.50–3.00) 1.0 (0.5–1.5) 1.50 (1.00–2.50) 1.0 (1.0–1.5) 1.50 (1.00–2.50) 

Cmax (μg/ml) 6.43 (3.94–9.53)*,a,b 3.24 (2.26–7.34)*,a,b 0.07 (0.05–0.14)*,+,#,a,b 0.33 (0.15–0.60)*,b 0.19 (0.14–0.38)*,+,#,a,b 0.50 (0.32–1.04)*,b 

AUClast (h*μg/ml) 29.87 (19.60–43.11)*,a,b 16.84 (11.52–33.28)*,a,b 0.27 (0.16–0.46)*,#,+,a,b 1.35 (0.74–2.86)*,b 0.60 (0.36–1.13)*,#,+,a,b  1.82 (1.04–3.33)*,a 

40 

mg/kg 

T1/2 (h) 3.09 (2.66–3.82) 3.42 (2.68–3.80) 3.91 (1.86–6.57) 5.65 (3.70–7.80) 2.25 (1.46–4.61) 4.64 (3.12–6.36) 

Tmax (h) 2.5 (2.5–3.0) 2.00 (1.50–3.00) 1.50 (1.00–2.00) 1.00 (0.50–2.00) 1.50 (1.00–2.00) 1.00 (0.50–2.00) 

Cmax (μg/ml) 10.32 (8.21–14.17)*,+,a 6.92 (4.08–10.16)*,a 0.25 (0.15–0.37)*,#,a 0.49 (0.36–0.93)*,# 0.77 (0.52–1.02)#,a 0.90 (0.59–1.44)# 

AUClast (h*μg/ml)+ 56.59 (46.18–81.85)*,a,c 32.74 (21.76–50.42)*,a 0.78 (0.57–1.08)*,#,+,a 1.71 (1.15–2.73)* 2.19 (1.61–3.20)#,a,c 2.20 (1.64–4.42)c 

60 

mg/kg 

T1/2 (h) 3.19 (2.96–4.40) 3.54 (3.00–4.41) 4.49 (2.00–7.82) 5.95 (4.42–8.75) 4.05 (1.60–6.04) 4.58 (4.04–5.96) 

Tmax (h) 3.00 (2.50–6.00) 2.50 (1.50–3.00) 1.50 (1.00–2.00) 1.00 (0.50–2.00) 2.00 (1.50–2.75) 1.00 (1.00–2.00) 

Cmax (μg/ml) 13.57 (9.81–16.43)*,b 8.29 (5.69–11.85)*,+,b 0.29 (0.22–0.53)*,#,b 0.69 (0.43–1.25)*,#,b 1.00 (0.62–1.37)#,b 1.33 (0.80–1.78)#,b 

AUClast (h*μg/ml) 89.22 (61.98–141.97)*,c 49.94 (28.57–75.12)*,+,b 1.00 (0.83–1.93)*,#,+,b 2.74 (1.71–4.03)*,#,b 3.50 (2.54–4.71)*,#,+,b,c 4.99 (3.15–6.03)*,#,a,c 
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Table 3: PK parameters of SAC and PSAC infected with S. haematobium 

 

*Significant difference between SAC and PSAC of the same dose and analyte; +Significant difference between S. haematobium and S. mansoni  infections of same dose, age group and analyte 
#Significant difference between R and SPZQ of same dose, age group and species; Significant difference between the doses of 20 and 40 mg/kg (a), 20 and 60 mg/kg (b) or 40 and 60 mg/kg (c) 

for same age group, analyte and species of the parasite; T1/2 could be estimated in 75 (70–81)% (median (IQR)) of the subjects 

 
 

S. haematobium 
R-trans-4-OH-PZQ RPZQ SPZQ 

SAC PSAC SAC PSAC SAC PSAC 

20 

mg/kg 

T1/2 (h) 3.28 (2.54–4.78) 3.49 (2.79–5.21) 4.41 (3.52–9.36) 7.39 (4.03–9.42) 4.92 (2.15–7.75) 5.58 (2.08–8.57) 

Tmax (h) 2.50 (1.50–3.00) 2.00 (1.50–3.00) 2.50 (1.50–6.00) 1.00 (0.50–2.00) 1.50 (1.00–3.00) 1.00 (0.50–1.50) 

Cmax (μg/ml) 4.64 (4.08–5.84)a,b 4.92 (3.92–7.73)a,b 0.18 (0.09–0.35)+,#,b 0.32 (0.19–0.74)#,b 0.34 (0.21–0.77)+,#,a,b 0.60 (0.41–0.90)#,b 

AUClast(h*μg/ml) 22.20 (20.17–22.84)a,b 23.08 (16.49–41.36)a,b 1.01 (0.49–1.80)#,+,b 1.16 (0.50–2.03)#,b 1.67 (0.87–2.39)#,+,a,b 1.80 (1.25–2.59)#,b 

40 

mg/kg 

T1/2 (h) 3.70 (3.18–4.52) 3.71 (2.92–4.71) 4.33 (2.37–8.20) 5.57 (2.40–8.61) 4.61 (1.86–7.44) 4.94 (2.13–7.78) 

Tmax (h) 3.00 (2.25–6.00) 3.00 (1.75–3.00) 2.00 (1.50–3.00) 1.50 (0.75–2.50) 2.00 (1.00–3.00) 1.50 (0.50–2.00) 

Cmax (μg/ml) 8.16 (6.44–10.16)+,a,c 8.14 (6.18–11.47)a,c 0.32 (0.16–0.62)# 0.41 (0.21–0.62)#,c 0.74 (0.46–1.38)#,a 0.91 (0.54–1.14)#,c 

AUClast (h*μg/ml) 47.79 (39.14–60.79)+,a,c 42.59 (29.78–76.56)a,c 1.15 (0.75–2.30)#,+ 1.17 (0.84–2.13)#,c 2.73 (1.73–4.37)#,a,c 2.24 (1.65–3.60)#,c 

60 

mg/kg 

T1/2 (h) 3.86 (3.39–4.55) 3.64 (3.03–4.09) 5.34 (3.30–7.90) 5.09 (3.03–7.32) 5.58 (3.02–7.73) 4.80 (3.06–6.83) 

Tmax (h) 4.50 (2.88–6.00) 3.00 (2.00–3.00) 2.50 (1.00–3.00) 1.50 (0.50–2.00) 2.50 (1.50–3.00) 2.00 (1.00–2.50) 

Cmax (μg/ml) 11.49 (9.05–13.78)b,c 13.49 (10.65–15.09)+,b,c 0.44 (0.25–0.81)#,b 0.62 (0.37–1.18)#,b,c 1.25 (0.78–1.86)#,b 1.22 (0.96–1.78)#,b,c 

AUClast(h*μg/ml) 88.32 (68.10–136.91)b,c 107.44 (58.31–

148.66)+,b,c 1.84 (1.07–2.67)#,+,b 2.25 (1.58–3.79)#,b,c 5.09 (3.37–7.06)#,+,b,c 4.87 (3.85–7.59)#,b,c 
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Figure 1: Concentration over time profiles (mean with standard deviation as a shaded area) for increasing doses of all analytes in S. mansoni 

infected children. The blue lines indicate 20 mg/kg, the red lines 40 mg/kg and the yellow lines 60 mg/kg. 
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Figure 2: Concentration over time profiles (mean with standard deviation as the shaded area) for increasing doses of all analytes in S. 

haematobium infected children. The blue lines indicate 20 mg/kg, the red lines 40 mg/kg and the yellow lines 60 mg/kg. 
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We did not observe pronounced differences in half-life and Tmax parameters between SAC and 

PSAC and between species-specific infections (Tables 2 and 3). While we observed 

significantly higher exposure for the enantiomers (R- and SPZQ) in PSAC than in SAC, 

infected with S. mansoni, the exposure for the metabolite significantly lower. This finding 

could indicate slower metabolism or lower clearance in young children than in their older 

peers. Interestingly, these differences were not significant in children harbouring urinary 

schistosomiasis, where liver pathology is less pronounced. 

Figure 3:  AUC versus the probability of cure for RPZQ and all groups of children. 

 

The debate about which analyte drives the antischistosomal activity of PZQ is still ongoing. 

In a recent PK study in S. mansoni-infected children, Bustinduy et al proposed SPZQ to be 

the eutomer, since it exhibited a higher and longer exposure (AUC and half–life) compared to 

RPZQ(16). They also suggested a correlation between AUC of PZQ, in particular that of 

SPZQ, and CR. In our study, we observed higher AUCs for SPZQ compared to RPZQ as 

well, however logistic regression analysis points to a positive relationship between the AUC 

and Cmax of RPZQ and the probability of cure for both infecting species and age groups, 
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indicating that there might be a relationship between the exposure of RPZQ and the CR. 

However, one should bear in mind that the sample size on which our assumptions are based 

on is quite small. As CRs increased with increasing dosages, we had a few uncured children 

with which to sufficiently represent the exposure of this population. 

Figure 4:  Cmax versus the probability of cure for RPZQ and all groups of children. 

 

The observed interspecies differences in susceptibility to PZQ enantiomers and their impact 

on efficacy of the drug in humans are important issues. We recently showed that SPZQ had a 

higher and significant efficacy against S. haematobium compared to that of S. mansoni both in 

vitro and in vivo (21). It might therefore contribute to the overall activity of PZQ on S. 

haematobium. R-trans-4-OH-PZQ also showed signs of antischistosomal activity in vitro 

towards both species of the parasite, and this was more pronounced in the case of S. 

haematobium (21). Its contribution to the activity of RPZQ could explain a higher sensitivity 

of S. haematobium to PZQ within in vitro/in vivo frame; however in our studies we did not 

observe any correlation between exposure of the metabolite and the probability of cure.  
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In conclusion, we have described the PK processes of PZQ in a paediatric population by using 

three different dosages and comparing the two most prevalent species of Schistosoma spp. 

Based on our findings, the schistosome species causing infection (S. mansoni versus S. 

haematobium) does not play a role in influencing the PK parameters of PZQ. Age seems to 

have an effect though mostly with respect to Cmax and AUC in S.mansoni infection. While 

SPZQ is present in higher quantities than RPZQ, it did not show a relationship with CRs, 

while logistic regression indicated a positive relationship between RPZQ exposure and cure. 

Population pharmacokinetics studies with RPZQ are currently on going to study the patterns 

and eventual relationships of patient characteristics (e.g. weight, co-infections) with PK 

parameters in more detail. 

Methods and materials 

Chemicals and reagents 

R- and SPZQ and R-trans-4-OH-PZQ were kindly provided by Merck KgaA (Darmstadt, 

Germany). Eleven-fold deuterated PZQ (PZQd11), acquired from Toronto Research 

Chemicals (Ontario, Canada), was used as an internal standard (IS). Acetonitrile, ammonium 

formate, ammonium acetate and formic acid of mass spectrometry (MS) grade were 

purchased from Sigma-Aldrich (Buchs, Switzerland). Ultrapure water was obtained using a 

Millipore Milli-Q water purification system (Merck Millipore, MA, USA). Human blood was 

supplied by the local blood donation centre (Basel, Switzerland). PZQ tablets (Cesol™, 600 

mg) were donated by Merck KgaA (Darmstadt, Germany).  

LC–MS/MS equipment  

A 6460 Series triple quadrupole liquid chromatography- mass spectrometry, LC-MS/MS, 

(Agilent Technologies, Basel, Switzerland) was used to perform all the measurements. The 

LC module consisted of a 1290 series binary pump (G1312B), followed by 1200 Series Micro 

Vacuum (G1379B) degasser, Agilent 1260 Infinity High Performance autosampler (G1367E), 

equipped with a 12900 Infinity series Thermostat (G1330B) and electrospray ionization 

source (G1958–65138). MS/MS analyses were performed in positive ionization mode. Mass 
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Hunter Workstation software B.06.00 (Agilent Technologies, Basel, Switzerland) served to 

operate the instrument and analyse the data.  

LC–MS/MS method and partial validation 

The LC-MS/MS method was adapted from a recently validated method by Meister et al (34). 

Briefly, the compounds of interest were primarily separated from remaining matrix by a 

column trapping system (HALO C–18, 4.6 x 5 mm, Optimize Technologies, OR, USA), to 

minimize instrument contamination. 10 mM ammonium acetate with 0.015% formic acid in 

water (mobile phase A) at a flow rate of 0.3 ml/min served as a loading solution. After 1.00 

minute of loading, a mixture of 20 mM ammonium acetate and acetonitrile (1:4, mobile phase 

B) was used to elute the analytes from the trapping to the chiral column (Lux Cellulose–2 

(150x4.6 mm, 3 µm, Phenomenex, CA, USA)), with a flow rate ascending to reach 0.4 

ml/min at 3 minutes and remaining steady until 9.49 min. In the last minute (9.50–10.50), 

mobile phase A was used again to re-equilibrate the trapping column at a flow rate of 1.0 

ml/min. LC-MS/MS parameters are summarised in Table S4 in the supplemental materials 

and chromatograms are depicted in Figures S1 to S2. 

Partial revalidation was performed to ensure compliance with Food and Drug administration 

guidelines, since the LC-MS/MS method was transferred to another system (34).  

In brief, selectivity was assured by analysing 18 blank DBS extracts compared to double 

blank (pure extraction solvent without IS) DBS samples to exclude potential endogenous 

substances interference. Calibration lines (CL) were plotted as analyte peak area (normalised 

to IS) vs. concentration and fitted using linear regression. The suitable weighting factor (1/x2) 

was chosen to result in the minimal total error. Accuracy and precision were determined using 

quality control (QC) samples with known analyte concentration, 6 replicates of four 

concentration levels across the linearity range (lower level of quantification (LLOQ), low, 

middle and high concentrations). By comparing measured to nominal concentration (in 

percentage), accuracy was calculated. Inter- and intra-batch precision was analysed by 

measuring 3 batches of samples per day on 3 different days. Precision of +/− 15% (+/− 20% 

at LLOQ) was considered adequate, while the acceptable accuracy ranged from 85–115 % 
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(80–120% at LLOQ). Possible enhancing or suppressive matrix effects were evaluated by 

comparing the signal of biological matrix (DBS extract) and organic solvent, both spiked with 

analytes. The stability of all entities has been reported elsewhere (28, 34). 

Quality control and standard preparation    

The preparation of the solutions was adapted from Meister et al (34). Briefly, stock solutions 

of the analytes were prepared freshly in acetonitrile to obtain 1.0 mg/ml concentrations for R- 

and SPZQ, 5.0 mg/ml for R-trans-4-OH–PZQ and 1.25 mg/ml for PZQd11. A working 

solution of 53.0 μg/ml PZQ and 1071.0 μg/ml R-trans-4-OH-PZQ was used to prepare fresh 

CL and QC samples and diluted with acetonitrile to reach a range of 0.2–53.0 for PZQ and 

4.0–1071.0 μg/ml for R-trans-4-OH-PZQ. The IS solution was diluted 4:1 (v/v) with water to 

produce extraction solvent. 

CL and QC samples were prepared freshly for every analytical run. For the CL, blank human 

blood was spiked with the mixture of analytes to reach a final concentration range of 2.232 to 

0.009 (LLOQ) µg/ml for R- and SPZQ, and of 44.6 to 0.179 (LLOQ) µg/ml for R-trans-4-

OH-PZQ. For the QC, 6 samples of high, medium, low and LLOQ concentrations were 

prepared similarly and spotted on the DBS cards (903 Protein Saver Snap Apart Cards®, 

Whatman, UK). Disks of 5 mm in diameter were punched from DBS samples and extracted 

with 200 µl of extraction solvent. 

Study design and ethical considerations 

Ethical clearance was obtained by the Ethics Committee of North-western and Central 

Switzerland (EKNZ 162/2014) and the Ministère de la Santé et de l’Hygiène Publique in Côte 

d’Ivoire (CNER, 037/MSLS/CNER-dnk). The trial was registered as International Standard 

Randomised Controlled Trial (ISRCTN15280205). The S. mansoni study was carried out in 

the Azaguié region of Côte d’Ivoire between November 2014 and February 2015 (23, 24). S. 

haematobium PK study was implemented in Azaguié, Côte d’Ivoire between November 2015 

and January 2016 (24). 

94 PSAC (age 2–5 years) and 135 SAC (age 6–15 years) with confirmed S. mansoni infection 

using duplicate Kato-Katz method were included in the PK study. 122 PSAC and 137 SAC 



PhD Thesis: Jana Kovač                   Chapter 3 

 64 

infected with S. haematobium (diagnosed using the urine filtration method) participated in the 

second PK trial. All children were stratified according to infection intensity and randomised 

to receive 20, 40 or 60 mg/kg PZQ or placebo (data not shown). Randomisation, masking, 

field and laboratory procedures have been presented elsewhere (Coulibaly et al, Coulibaly et 

al submitted) (23). PZQ tablets (600 mg Cesol™) were administered according to the 

calculated dose per kilogram of body weight in half (S. mansoni) and quarter (S. 

haematobium) tablet increments. Since the bioavailability of PZQ is known to be influenced 

by food (8, 35), the treatment was administered after a standardised breakfast. For PSAC, the 

tablets were crushed and the powder was suspended in a mixture of sugar syrup and water to 

mask the taste.  

DBS samples collection 

Capillary blood (+/− 0.1 ml) was obtained using a finger pricker (e.g. Accu-check Softclix 

Pro®; Roche, Switzerland) at 0:00, 0:30, 1:00, 1:30, 2:00, 2:30, 3:00, 6:00, 8:00, 10:00 and 

24:00 hours after treatment with PZQ. Four drops of blood at each time point were transferred 

on the DBS cards, dried for approximately 1 h and stored afterwards in plastic bags with 

desiccant. The cards were transferred to Basel and kept at −80°C. 

Non–compartmental analysis 

The following PK parameters of RPZQ, SPZQ and trans-4-OH-PZQ were obtained using the 

Winonlin software (version 5.2; Certara, Princeton, NY, USA): 

Cmax         maximal blood concentration (μg/ml) 

Tmax            time needed to reach Cmax   (h) 

AUClast   area under the curve between 0 and the last positive concentration (h*μg/ml) 

T1/2             terminal half-life; time in which half of the absorbed drug is eliminated (h) 

Cmax and Tmax are observed parameters, while T1/2 was calculated as T1/2 = ln2/λ.  Constant of 

elimination (λ) was determined by the program using non-linear regression of the natural 

logarithm of concentration values in the elimination phase. Since the absorption of PZQ is 

erratic, half-life was only estimated for those patients who had a single peak in concentration 

and where the elimination phase was well estimated by the algorithm. AUClast was calculated 
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from 0 to the last quantifiable positive concentration, using linear trapezoidal rule. Volume of 

distribution and renal clearance were not reported, since bioavailability is needed to estimate 

them adequately. PK parameters were estimated for each study participant and the median 

and interquartile range (IQR) were calculated for patients of each treatment arm. AUC and 

Cmax values of both R- and SPZQ were compared between cured and uncured patients. Cure 

rate (CR) was defined as the percentage of patients who were positive for infection at the 

baseline but were not excreting eggs at the follow up. Egg reduction rate (ERR) was 

expressed as the geometric mean egg output after treatment divided by the geometric mean 

egg output before treatment (36). 

To compare the PK parameters, statistical analysis was conducted using Prism (version 7.03, 

GraphPad, CA, USA). Mann-Whitney or Kruskal-Wallis multiple comparison statistical test, 

depending on the number of groups being compared, were used to study parameters of 

children in different treatment arms, age groups and parasite species. A P value of <0.05 was 

considered as statistically significant.  
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Supplemental material  
 

Table 1: Optimized MS/MS parameters for detection of PZQ enantiomers, main human 

metabolite and PZQd11 on 6460 Series Triple Quadrupole LC-MS/MS 

 

 

 

 

 

 

 

 

 

 
     

 COMPOUNDS 

Parameters PZQ Trans-4-OH-PZQ PZQd11 

ESI polarity positive 

m/z 313/203 324/204 324/204 

Fragmentor 110 110 140 

Cell accelerator voltage 7 

Collision energy (CE) 10 15 15 

Gas temperature  (°C) 
350 

12 

400 

40 

400 

12 

32 

Gas flow (l/min) 

Ion source temperature (°C) 

Nebulizer (psi) 

Sheath gas temperature (°C) 

Sheath gas flow (l/min) 

Chamber current (nÅ) 
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Figure S1: Chromatogram of a pure internal standard PZQd11. 

 

 

 

 

 

 

 

 

 

Figure S2: Chromatogram of trans-4-OH-PZQ, RPZQ and SPZQ at the upper level of 

quantification 
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Table S2: Intra- and inter-assay accuracy and precision for RPZQ, SPZQ and trans-4-OH-

PZQ 

 anmin is the minimal amount of replicate measurements used for each mean concentration calculation. 

 

 

 

 

 

 

RPZQ Intra-assay a (nmin=12)a Inter-assay (nmin=12) a 

Nominal 

concentration 

(μg/mL) 

Mean 

concentration 

(μg/mL) 

Accuracy 

(%) 

RSD 

(%) 

Mean 

concentration 

(μg/mL) 

Accuracy 

(%) 

RSD 

(%) 

0.009 0.009 99 6 0.009 102 9 

0.0161 0.016 105 6 0.016 102 8 

0.161 0.166 107 6 0.158 101 9 

1.61 1.58 102 5 1.59 102 7 

SPZQ Intra-assay a (nmin=12)a Inter-assay (nmin=12) a 

Nominal 

concentration 

(μg/mL) 

Mean 

concentration 

(μg/mL) 

Accuracy 

(%) 

RSD 

(%) 

Mean 

concentration 

(μg/mL) 

Accuracy 

(%) 

RSD 

(%) 

0.009 0.009 98 6 0.009 98 10 

0.0161 0.016 103 4 0.016 102 8 

0.161 0.158 102 9 0.58 101 9 

1.61 1.58 102 5 1.60 103 8 

Trans-4-OH-

PZQ 
Intra-assay a (nmin=12)a Inter-assay (nmin=12) a 

Nominal 

concentration 

(μg/mL) 

Mean 

concentration 

(μg/mL) 

Accuracy 

(%) 

RSD 

(%) 

Mean 

concentration 

(μg/mL) 

Accuracy 

(%) 

RSD 

(%) 

0.179 0.178 98 8 0.178 99 10 

0.321 0.32 101 6 0.33 102 7 

3.21 3.24 104 7 3.12 100 9 

32.0 30.9 99 5 31.87 102 6 
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Table S3: Matrix effects for all analytes 

 

Table S4: Selectivity and carryover 

Analyte 

Average peak area (n = 18) Signal to 

noise 

(LLOQ 

to blank) 

Carryover 

% Solvent 

Double 

blank 

Blank DBS 

extract 

RPZQ 1.7 ± 1.6 2.7 ± 3.8 96 ± 12 6 ± 1 0.6 ± 0.6 

SPZQ 

Trans-4-

OH-PZQ 

1.3 ± 1.2 

3.0 ± 3.6 

1.1 ± 1.0 

4.7 ± 3.9 

90 ± 8 

7 ± 6.1 

6 ± 1 

100  ± 80 

0.3 ± 0.5 

0 

Analyte RPZQ SPZQ  Trans-4-OH-

PZQ 

Nominal 

concentration 

(μg/mL) 

Matrix effect 

± RSD (%) 

Matrix effect 

± RSD (%) 

Nominal 

concentration 

(μg/mL) 

Matrix effect 

± RSD (%) 

0.0161 106 ± 4 103 ± 5 0.321 103± 5 

0.161 103 ± 2 94 ± 4 3.21 93 ± 3 

1.61 103 ± 2 97 ± 2 32.0 90 ± 2 
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CL, calibration line; QC, quality control; LLOQ, lower level of quantification  
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Abstract 

Pharmacokinetic (PK) studies with paediatric populations are increasing in importance for drug 

development. However, conventional PK sampling methods are characterised by invasiveness and low 

patient adherence, unsuitable for use with sensitive population, such as children. Mitra™ is a novel 

volumetric absorptive micro-sampling device, which offers an alternative to the dried blood spotting 

(DBS) technique, a current popular sampling technique within PK studies. We tested Mitra™ for the 

first time in the framework of a randomized controlled trial in rural Côte d’Ivoire. Thirty-five school-

aged children, infected with Schistosoma haematobium, were sampled with both DBS and Mitra™, at 

10 time points after treatment with praziquantel (PZQ). A extraction method for PZQ from Mitra™ 

was developed, optimised and validated. Analytes, namely R- and S-praziquantel (R-/SPZQ) and the 

main human metabolite, R-trans-4-OH-praziquantel, were measured using liquid chromatography-

tandem mass spectrometry and the results were compared with Bland-Altman analysis to determine 
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agreement between matrices. PK parameters, such as maximal plasma concentration and area under the 

concentration-time curve, were estimated using non-compartmental analysis.  

While we observed strong positive correlation (R2 >0.98) and agreement between both matrices within 

the calibration line and quality control samples, Mitra™ revealed higher concentrations of all the 

analytes in the majority of patients’ samples compared to DBS sampling, namely 63% samples for 

RPZQ, 49% for SPZQ and 78% for the metabolite were overestimated. While T1/2 and Tmax were in 

agreement between both matrices, area under the curve and maximal blood concentration were up to 2x 

higher for Mitra™ samples, with P< 0.005 for all parameters except Cmax of SPZQ, which was not 

significantly different between the two matrices. The reasons for the higher PZQ concentrations, more 

pronounced in incurred Mitra™ samples compared to spiked samples, are yet to be fully explored. 

Mitra™ appears superior to DBS in terms of simplicity and practicality however labelling issues and 

the high price of Mitra™ are difficult to overlook. 

1. Introduction 

Clinical pharmacokinetic (PK) studies are crucial to determine the relationship between 

administered drug dosage and the resulting concentration of active substance in body fluids, 

particularly in patients with impaired renal or liver function or paediatric populations (1, 2). 

Physiological differences between children and adults, affecting absorption, distribution, 

metabolism and elimination of drugs have been well described and therefore PK processes 

and drug dosages cannot be simply extrapolated from adults to children (1, 3, 4). Use of a 

drug without supporting evidence for a tailored dose can result in sub-optimal efficacy and 

unpredictable adverse events (2). The number of paediatric clinical trials has been increasing 

in the recent past, due to new legislation enforced by both European Medicines Agency and 

American Food and Drug Administration (FDA) (5). Nonetheless, clinical studies involving 

PK analysis are especially difficult to conduct in children, given that intensive sampling 

schemes and invasive sampling techniques, (i.e. venepuncture drawing large volumes of 

blood) are often applied (6). While bruising is a common consequence of frequent sampling, 

venepuncture has also been associated with infection of the sampling site (3). Therefore, 

micro-sampling techniques have been evaluated in the recent past in order to carry out 

paediatric PK studies in a more ethical manner(2, 7).  
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Lately, the dried blood spot (DBS) technique, commonly used in new-born genetic screening, 

has been gaining in popularity for PK studies given its low-invasiveness and hence increased 

patient adherence (8, 9). DBS are droplets of capillary blood, obtained after a finger prick and 

deposited on a filter paper (10, 11). However, DBS require either an exact volume of blood 

spotted or a sub-punch of a certain diameter for quantification (12–14). Unfortunately, in non-

controlled settings, such as rural areas of the tropics and especially when working with young 

children, inhomogeneous spots of irregular shape or insufficient size can be common, giving 

rise to unreliable results (15, 16). Furthermore, the haematocrit is well known to have an 

effect on the accurate quantification of analytes from DBS(11, 13, 17–19) 

To overcome these obstacles, a new device, Mitra™, based on absorptive volumetric micro-

sampling, was launched recently (17). The volume of blood it absorbs is controlled by the 

porosity and quantity of polymeric material, eliminating a need for sampling aids and 

assuring a precise and repeatable sampled volume, regardless of haematocrit (12, 13, 17). 

Mitra™ has been tested in the laboratory using both human and animal blood, however it has 

not been evaluated in human clinical PK studies yet (12, 20, 21).  

The aim of the present work was to compare the quantification of the anthelmintic drug 

praziquantel (PZQ) extracted from DBS and Mitra™, in the framework of a PK trial. 35 

school-aged children (SAC) with a confirmed Schistosoma haematobium infection were 

sampled with both sampling techniques at 10 time points post treatment with 20, 40 or 60 

mg/kg PZQ (Kovac et al, submitted, Coulibaly et al, submitted). A method for extracting both 

enantiomers of PZQ, namely R- and S-praziquantel (R-/SPZQ) and the main human 

metabolite (R-trans-4-OH-PZQ) from Mitra™ was developed, optimised and validated in 

compliance with FDA guidelines (22). Liquid chromatography- tandem mass spectrometry 

(LC-MS/MS) analysis was performed. DBS and Mitra™ results were compared using Bland-

Altman statistics and PK parameters were calculated using non-compartmental analysis. Our 

findings will compliment the laboratory evaluations of Mitra™ and contribute to knowledge 

crucial for decision-making when choosing a suitable sampling technique for PK trials. 
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2. Methods and materials 

2.1 Chemicals and reagents 

Merck KgaA (Darmstadt, Germany) provided enantio-pure R- and SPZQ and the main human 

metabolite, R-trans-4-hydroxy-PZQ (trans-4-OH-PZQ). As internal standard (IS), deuterated 

PZQ (PZQd11), purchased from Toronto Research Chemicals (Ontario, Canada), was used. 

Solvents (methanol, acetonitrile, isopropanol) and reagents (ammonium formate, ammonium 

acetate and formic acid) of mass spectrometry grade were acquired from Sigma-Aldrich 

(Buchs, Switzerland). Ultrapure water was filtered using a Millipore Milli-Q water 

purification system (Merck Millipore, MA, USA). Human blood was supplied in lithium 

heparin-coated vacutainer tubes (BD, Allschwil, Switzerland) by the local blood donation 

centre (Basel, Switzerland). DBS 903 Protein Saver Snap Apart cards were purchased from 

Whatman (GE Healthcare Life Sciences, Cardiff, UK) and Mitra™ (10 μl) was ordered from 

Neoteryx® (Torrance, CA, USA). PZQ tablets (Cesol™, 600 mg) were donated by Merck 

KgaA (Darmstadt, Germany). 

2.2 LC-MS/MS equipment and DBS sample preparation method 

The LC-MS/MS equipment and DBS method used were described in details by Kovac et al. 

(submitted). Briefly, DBS (5 mm diameter) were punched out of the filter cards. Samples 

were extracted with 200 µl acetonitrile:water (4:1, v/v) containing 400 ng/ml IS, thermo-

mixed, ultra-sonicated and filtered through 2 µm PVDF membrane filter plates (Corning Life 

Sciences, Tewksbury, MA, USA) into 96-well plates by centrifugation (10 min at 2250 ×g 

and 25°C).  

A column-trapping system (HALO C–18, 4.6 x 5 mm, Optimize Technologies, OR, USA) 

was used to remove the analytes from the remaining matrix before eluting to the main chiral 

column (Lux Cellulose–2 (150x4.6 mm, 3 µm, Phenomenex, CA, USA)), for separation. 

Ammonium acetate (aqueous, 10 mM) with 0.015% formic acid served as mobile phase A, 

while mobile phase B consisted of a mixture of ammonium formate (20 mM) and acetonitrile 

(1:4, v/v). 
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All measurements were performed on a 6460 Series triple quadrupole LC-MS/MS (Agilent 

Technologies, Basel, Switzerland). Mass Hunter Workstation software B.06.00 (Agilent 

Technologies, Basel, Switzerland) was used to operate the instrument and analyse the data. 

2.3 Mitra™ sample preparation method optimisation and validation 

A method for extracting R-, SPZQ and R-trans-4-OH-PZQ from Mitra™ was developed and 

validated in compliance with the FDA guidelines for bioanalytical method validation (22). A 

volume of 200µl of a mixture of acetonitrile and water (4:1, v/v) was used as an extraction 

solvent (400 ng/ml IS). Samples were then thermo-mixed 5 min at 1400 rpm at room 

temperature followed by ultra-sonication during 40 min. 

Matrix effects and relative and total recovery were estimated at three different concentration 

levels (low, medium and high calibration range). Possible enhancing or suppressive matrix 

effects were evaluated by comparing the signal of biological matrix (blank blood Mitra™ 

extract) and blank extraction solvent, both spiked with analytes. Relative recovery was 

evaluated by comparing Mitra™ extracts of blood spiked with analytes to blank blood 

Mitra™ extracts spiked after extraction with corresponding concentrations, to estimate the 

uniformity of the extraction procedure. Mitra™ spiked blood samples compared to blank 

extraction solvent spiked with analytes, yielded total recovery. The limits were set to 85-

115% for all three parameters.  

Linearity of the selected method was evaluated in the calibration line (CL) range chosen for 

analysis. Analyte peak areas were normalised to those of the IS, plotted versus concentration 

and fitted with linear regression. Quality control (QC) samples were prepared in six replicates 

at four concentrations across the linearity range (lower limit of quantification (LLOQ), low, 

middle and high concentrations), to determine accuracy and precision. Inter- batch precision 

was analysed by comparing three batches of samples, extracted and measured on three 

different days, while intra-batch precision was determined by comparing three batches, 

extracted and measured on the same day. A precision of +/− 15% (+/− 20% at LLOQ) was 

considered adequate, while the acceptable accuracy ranged from 85–115 % (80–120% at 
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LLOQ). ). The haematocrit (HTC) effect was evaluated by including different HTC values in 

the QC sample preparation (25, 30, 35, 40, 45 and 50% HTC), as described below. 

4 h bench-top stability, 72 h auto-sampler/fridge stability, short-term (72 h) freezer stability 

and long-term (2 months) freezer stability at -80 °C of both PZQ enantiomers and the main 

metabolite in Mitra™ were evaluated and linearity, accuracy and precision calculated.  

2.4 Calibration line and quality control sample preparation 

Mitra™ and DBS CL samples were prepared freshly before every analytical run by spiking 

the blood of average HTC (35%) with a mixture of analytes to reach a concentration of 2.5, 1, 

0.5, 0.25, 0.1, 0.05, 0.025 and 0.01 (LLOQ) µg/ml for R- and SPZQ, and of 50, 20, 10, 5, 2, 

1, 0.5 and 0.2 (LLOQ) µg/ml for R-trans-4-OH-PZQ. QC samples were similarly obtained by 

spiking blood in six replicates, using different HTC values (25–50%), to reach final 

concentrations of 1.75, 0.175, 0.0175 and 0.01 µg/ml (high, medium, low and LLOQ 

concentrations) for R- and SPZQ, and to 35.0, 3.5, 0.35 and 0.2 µg/ml for the metabolite. 

DBS samples were prepared by depositing droplets of blood (20 µl) on filter paper cards, 

dried overnight and stored at room temperature in plastic bags, containing silica gel 

desiccants. Mitra™ samples were prepared similarly, by dipping the tip of Mitra™ into the 

blood and allowed to dry overnight in the respective container. DBS and Mitra™ samples 

were extracted and measured with LC-MS/MS as described in details above. 

2.5 Ethical considerations and field sample collection 

The S. haematobium PK study was performed in Azaguié, Côte d’Ivoire between November 

2015 and January 2016(23). Ethical clearance was obtained by the Ethics Committee of 

Northwestern and Central Switzerland (EKNZ 162/2014) and the Ministère de la Santé et de 

l’Hygiène Publique in Côte d’Ivoire (CNER, 037/MSLS/CNER-dnk). The trial was registered 

as International Standard Randomised Controlled Trial (ISRCTN15280205).  

35 SAC with a confirmed S. haematobium infection (using urine filtration) were treated with 

20, 40 or 60 mg/kg of PZQ, following a standardised meal. The exact dose of PZQ (600 mg 

Cesol™ tablets) was determined based on the body weight and the drug administered in 

quarter tablet increments. Capillary blood (+/− 0.1 ml) was obtained using a finger pricker 
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(e.g. Accu-check Softclix Pro®; Roche, Switzerland) at 0:30, 1:00, 1:30, 2:00, 2:30, 3:00, 

6:00, 8:00, 10:00 and 24:00 hours post treatment with PZQ. Four drops of 20 µl blood at each 

time point were transferred on the DBS cards using 75 μl glass capillaries coated with 

heparin, allowed to dry and subsequently stored in plastic bags with desiccant. At the same 

time, one Mitra™ sample of 10 µl was taken at every time point from each patient. Mitra™ 

samples were stored in pre-designed racks and allowed to dry for several hours. The samples 

were transferred to Basel and kept at −80 °C until assayed. 

2.6 Statistical analysis 

To assess the agreement between both matrices, Pearson’s correlation coefficient and Bland-

Altman statistics were used, plotting the percentage difference between the matrices (DBS/ 

Mitra™) against the average concentrations (24). All statistical analyses were performed 

using Prism (version 7.03, GraphPad, CA, USA). PK parameters of RPZQ, SPZQ and trans-

4-OH-PZQ were obtained using the Winonlin software (version 5.2; Certara, Princeton, NY, 

USA). The following parameters were estimated: 

Cmax             maximal blood concentration (μg/ml) 

Tmax                   time needed to reach Cmax   (h) 

AUClast       area under the curve between 0 and the last positive concentration (h*μg/ml) 

T1/2                 terminal half-life; time in which half of the absorbed drug is eliminated (h) 

T1/2 was calculated as T1/2 = ln2/λ.  Constant of elimination (λ) was determined with non-

linear regression of the natural logarithm of concentration values in the elimination phase. 

Trapezoidal rule was applied to calculate AUClast (AUC) from 0 to the last quantifiable 

concentration. PK parameters were estimated for all children and the median, interquartile 

range (IQR), minimum and maximum were reported. Cure rate (CR) was calculated as the 

percentage of patients, which were positive for S. haematobium infection at the baseline and 

not excreting eggs at the follow up. Egg reduction rate (ERR) was defined as the geometric 

mean egg output after treatment divided by the geometric mean egg output before treatment 

(25). Mann-Whitney test was used to evaluate differences in PK parameters between Mitra™ 

and DBS. A P-value of <0.05 was considered to be statistically significant. 
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3. Results 

3.1 Patients’ characteristics 

Thirty-five SAC were sampled with both Mitra™ and DBS. Eleven children received 20 

mg/kg of PZQ, while 12 children were treated with 40 mg/kg and 11 with 60 mg/kg. Median 

age was 8 years, with interquartile range of 7–10 years and the median weight was 22 (20–29) 

(IQR) kg. 20 girls and 15 boys were enrolled in the study. Infection intensity was 8 (3–22) 

eggs/10 ml of urine. All children, except one child in the 60 mg/kg treatment group, were 

cured after treatment. Characteristics of study participants are summarised in Table 1.  

Table 1: Patient characteristics 

 

3.2 Mitra™ sample preparation method validation 

The correlation coefficient (r2) of CLs were > 0.998 for all analytes. QCs’ accuracy and 

precision of all analytes were in line with FDA guidelines (Table 3) and results were 

independent of HTC values. Consistent matrix effects were obtained within the range of 99–

107%, with a RSD of less than 10%. Both relative and total recovery were in line with set 

requirements. Matrix effects, relative and total recovery results are summarised in the Table 

2. Results of intra- and inter-day precision and accuracy evaluation are presented in the Table 

3.   

Patient characteristics 

Treatment arm 20 mg/kg 40 mg/kg 60 mg/kg 

Median actual dose 

(IQR) in mg/kg 
20.7 (19.4–21.4) 40.0 (38.9–41.4) 61.1 (60.0–61.4) 

No. of children 11 13 11 

No. of girls (%) 8 (73) 7 (54) 5 (45) 

Median age (IQR) 

(yrs) 
8 (7–9.5) 8 (8–10) 8 (7.5–9) 

Median weight 

(IQR) (kg) 
22 (19–29.5) 26 (20–29) 22 (20.5–26) 

Geometric mean 

before treatment 

(eggs/ml urine) 

6.6 8.2 7.9 

Cure rate (%) 100 (11/11) 100 (13/13) 90.9 (10/11) 

Egg reduction rate 

(%) 
100 100 99.4 
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Table 2: Matrix effects, total and partial recovery of all analytes 

 

Stability of the analytes was evaluated for Mitra in different conditions. Stability for DBS was 

previously evaluated and reported elsewhere. All three analytes, namely R-, SPZQ and R-

trans-4-OH-PZQ proved to be stable after 4 h at room temperature, with the average accuracy 

and precision ranging from 91-101%.  The stability of all analytes at 4 °C for 72 h 

(autosampler/fridge stability) was confirmed to be sufficient, with an average accuracy and 

precision in the lines of 93-105%. Both long- and short-term freezer stability of all analytes 

did not deviate from the average more than tolerated +/- 15% (+/- 20% at LLOQ). Long-term 

(4 months) room temperature stability was confirmed as well. Stability of freeze-thaw cycles 

was not evaluated since we did not freeze and thaw samples more than a single time during 

our procedures. Stability results are further detailed in Table 4. 

 

 

 

 

Nominal 

concentration 

(μg/mL) 

Matrix effect 

± RSD (%) 

Relative recovery 

± RSD (%) 

Total recovery ± 

RSD (%) 

RPZQ 

1750 103.5 ± 2.4 101.9 ± 7.1 105.2 ± 8.9 

175 103.2 ± 2.6 96.2 ± 5.5 98.1 ± 4.3 

17.5 99.7 ± 5.5 93.1 ± 7.8 97.6 ± 6.5 

SPZQ 

1750 102.2 ± 1.8 104.5 ± 4.2 102.2 ± 8.3 

175 105.9 ± 2.0 90.1 ± 3.7 99.3 ± 9.7 

17.5 100.9 ± 1.6 93.6 ± 4.9 93.6 ± 1.7 

R-trans-4-OH-PZQ 

35000 101.3 ± 3.1 105.8 ± 7.2 106.7 ± 8.1 

3500 99.9 ± 2.1 100.9 ± 6.0 94.5 ± 7.8 

350 100.0 ± 7.3 97.1 ± 5.6 101.6 ± 2.8 
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Table 3: Inter- and intra-day precision and accuracy 

 

3.3 DBS and Mitra™ comparison 

For CL and QC samples, the data showed strong positive correlation based on Pearson’s 

coefficient, with R2 of 0.994 for RPZQ, 0.993 for SPZQ and 0.986 for the main human 

metabolite (P value of <0.0001 for all analytes). Both sampling methods were comparable 

when applying the Bland-Altman test within the full range of concentrations and HTC, with 

lower concentrations showing higher conformity and the differences growing with increasing 

RPZQ Intra-assay a (nmin=12)a Inter-assay (nmin=12) a 

Nominal 

concentration 

(μg/mL) 

Mean 

concentration 

(μg/mL) 

Accuracy 

(%) 
SD (%) 

Mean 

concentration 

(μg/mL) 

Accuracy 

(%) 
SD (%) 

0.010 0.010 105 13 0.011 109 7 

0.0175 0.017 96 7 0.017 94 4 

0.175 0.161 92 7 0.166 95 9 

1.750 1.810 103 5 1.862 106 6 

SPZQ Intra-assay a (nmin=12)a Inter-assay (nmin=12) a 

Nominal 

concentration 

(μg/mL) 

Mean 

concentration 

(μg/mL) 

Accuracy 

(%) 
SD (%) 

Mean 

concentration 

(μg/mL) 

Accuracy 

(%) 
SD (%) 

0.010 0.010 102 14 0.010 98 10 

0.0175 0.016 90 7 0.016 90 3 

0.175 0.158 90 6 0.167 95 8 

1.750 1.841 105 6 1.874 108 5 

R-trans-4-OH-

PZQ 
Intra-assay a (nmin=12)a Inter-assay (nmin=12) a 

Nominal 

concentration 

(μg/mL) 

Mean 

concentration 

(μg/mL) 

Accuracy 

(%) 
SD (%) 

Mean 

concentration 

(μg/mL) 

Accuracy 

(%) 
SD (%) 

0.200 0.214 107 6 0.212 106 7 

0.350 0.302 86 1 0.306 87 2 

3.500 3.170 91 6 3.301 94 7 

35.00 35.59 102 6 36.46 104 6 
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concentration. The same trend was noticed also within the correlation test. The graphs of 

correlation and Bland-Altman are depicted in Figure 1. 

Table 4: Stability results 

Patients’ samples were tested for the agreement between the two matrices in the same 

manner. Compared to R- and SPZQ, the metabolite was measured in higher quantities. 

Mitra™ samples reached higher values of analyte concentration compared to DBS samples 

for all three analytes for most of the patients. 63% (192/305) samples had higher values 

measured from Mitra™ for RPZQ and 78% (240/308) for the metabolite while for SPZQ the 

percentage was slightly lower, namely 49% (148/300). Only small percentages of samples 

was comparable between Mitra™ and DBS for the metabolite (13.6%), RPZQ (22%) and 

SPZQ (35%). Graphs in Figure 2 illustrate mean concentrations over time with 95% 

confidence intervals (dashed lines) and Bland-Altman graphs (dashed lines indicating upper 

and lower 95% limit of agreement and red dashed line the mean difference) for both matrices 

and all analytes. 

Nominal 

concentration 

(μg/mL) 

4 h bench-top 

stability 

(average 

± SD (%)) 

72 h at 4 °C 

stability 

(average ± SD 

(%)) 

Short-term 

freezer 

stability 

(average ± SD 

(%)) 

Long-term 

freezer 

stability 

(average ± SD 

(%)) 

 RPZQ 

1750 95.22 ± 10.79 100.50 ± 1.93 102.76 ± 10.43 91.62 ± 5.02 

175 94.75 ± 5.06 96.78 ± 8.21 88.76 ± 3.08 90.01 ± 3.34 

17.5 97.91 ± 7.95 101.10 ± 9.39 101.93 ± 3.77 94.99 ± 4.05 

10 91.07 ± 4.69 99.98 ± 7.07 104.28 ± 8.36 96.21 ± 7.20 

  SPZQ 

1750 100.38 ± 11.64 100.50 ± 2.07 101.07 ± 7.17 93.30 ± 5.85 

175 98.25 ± 6.43 95.55 ± 6.24 92.43 ± 5.06 88.75 ± 2.46 

17.5 91.47 ± 4.25 97.99 ± 9.47 99.10 ± 11.32 95.13 ± 6.63 

10 101.39 ± 10.04 99.89 ± 10.09 9.50 ± 5.22 93.96 ± 9.61 

  R-trans-4-OH-PZQ 

35000 100.63 ± 10.81 104.60 ± 1.75 99.41 ± 1.23 98.80 ± 6.11 

3500 91.72 ± 4.10 96.46 ± 5.63 94.53 ± 6.85 89.57 ± 3.02 

350 92.33 ± 2.63 94.79 ± 6.89 95.83 ± 4.97    87.76 ± 2.65 

200 96.35 ± 7.86 93.11 ± 3.41 95.30 ± 4.39 91.49 ± 3.68 
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PK parameters are summarised in Table 5 for all three analytes and both matrices. While half-

life and Tmax did not differ significantly in value between DBS and Mitra™, Cmax and AUC 

were up to 2x higher based on concentrations measured in Mitra™, for all analytes and were 

significantly different (P<0.005) for RPZQ and the metabolite. For SPZQ, only Cmax did not 

differ significantly between both matrices. 

Figure 1: Graphs of correlation (A, B, C) and Bland-Altman (a, b, c) for CL and QC samples 

(dashed lines indicating upper and lower 95% limit of agreement and red dashed line the 

mean difference). 
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Figure 2: Graphs showing mean concentrations over time (A, B, C) with 95% confidence 

intervals (dashed lines) and Bland-Altman graphs (a, b, c) for patient samples (dashed lines 

indicating upper and lower 95% limit of agreement and red dashed line the mean difference). 
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Table 5: PK parameters of patients for all 3 analytes and both matrices 

 

R-trans-4-OH-PZQ 

 DBS Mitra™ DBS Mitra™ DBS Mitra™ DBS Mitra™ 

 T1/2 (h) T1/2 (h) Tmax (h) Tmax (h) Cmax (μg/ml) Cmax (μg/ml) AUC (μg*h/ml) AUC (μg*h/ml) 

MEDIAN (IQR) 

3.53 

(2.87-4.19) 

 

3.84 

(3.25-5.06) 

 

3.0 

(2.5-6.0) 

 

3.0 (2.5-6.0) 

 

11.09 

(6.75-16.15) 

 

18.09 

(10.34-25.01) 

 

88.57 

(42.43-150.14) 

 

146.05 

(85.27-238.72) 

 

MIN 
2.15 

 

1.99 

 

1.00 

 

1.00 

 

1.44 

 

2.85 

 

10.82 

 

26.13 

 

MAX 
6.56 

 

8.15 

 

9.00 

 

9.00 

 

29.69 

 

43.17 

 

322.75 

 

379.51 

 

RPZQ 

MEDIAN (IQR) 

9.12  

(6.30-12.55) 

 

8.69  

(5.89-14.02) 

 

2.5  

(2.0-3.0) 

 

2.0 (1.0-3.0) 

 

0.44 (0.25-0.88) 

 

0.77 (0.61-1.26) 

 

2.56 (1.70-3.57) 

 

4.13 (3.34-5.60) 

 

MIN 
2.01 

 

1.72 

 

0.50 

 

0.50 

 

0.12 

 

0.28 

 

0.62 

 

2.03 

 

MAX 
17.37 

 

21.07 

 

9.00 

 

9.00 

 

2.25 

 

2.45 

 

14.43 

 

27.84 

 

SPZQ 

MEDIAN (IQR) 

6.61  

(4.34-10.26) 

 

7.82  

(5.51-12.84) 

 

2.5  

(2.0-3.0) 

 

2.5 

 (1.0-3.0) 

 

0.84  

(0.43-1.49) 

 

1.03 

 (0.72-1.76) 

 

4.39 

 (2.62-7.45) 

 

5.52  

(4.18-9.64) 

 

MIN 
1.37 

 

1.60 

 

0.50 

 

0.50 

 

0.25 

 

0.44 

 

1.22 

 

2.53 

 

MAX 
19.47 

 

21.20 

 

8.00 

 

9.00 

 

2.24 

 

2.38 

 

22.19 

 

24.97 
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4. Discussion 

Pharmacokinetic studies in paediatric populations are gaining in importance for the drug 

development process and are increasing in number (1, 5). However, conducting PK studies in 

children is a complex undertaking due to ethical requirements. DBS technology is an 

attractive tool for PK studies, since painful venepuncture is substituted with a simple and 

comparably less invasive finger-prick (26, 27). In addition to boosted patient adherence, 

convenient shipping and storage at room temperature are especially important features when 

studies are conducted in remote, rural settings (26). Disadvantages of the method generally 

include the haematocrit bias (17, 18) and tedious workflow (12, 13, 19, 20). The Mitra™ 

sampling method, based on volumetric absorptive micro-sampling, was thus introduced to 

mitigate some of the drawbacks (17). 

To date, Mitra™ has been studied under laboratory conditions, but not yet in the framework 

of a clinical PK study (12, 20, 21). Our study aimed to fill this gap by evaluating the 

performance of Mitra™, as compared to the current micro-sampling device, DBS, within a 

PK study in rural Côte d’Ivoire with S. haematobium infected children treated with PZQ 

(Kovac et al, submitted, (23).  

Both matrices showed a good agreement and a strong positive correlation when comparing 

CL and QCs samples using both correlation test based on Paerson’s coefficient and Bland-

Altman. However, when analysing patients’ samples, Mitra™ exhibited higher concentrations 

compared to DBS for all three analytes, as demonstrated by Bland-Altman graphs in Fig.2. 

The reasons behind this phenomenon are not yet clear. One explanation might be difference 

in the matrices, influencing the partition and recovery of PZQ. While the filter paper of DBS 

is of a more hydrophobic nature, Mitra™ consists of a hydrophilic polymer (17). Since PZQ 

is rather non-polar, extraction could result in the higher partition of analytes into more 

preferred mixture of acetonitrile and water. However, relative and total recovery were 

evaluated during method development and found within requirements at the full concentration 

range. Moreover, the difference in concentrations between DBS and Mitra™ was noticed 

solely in the incurred samples collected from the patients. Therefore, it is unlikely that the 
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recovery is the main reason for apparent higher extraction yield from Mitra™. Additionally, 

the overestimation of analytes concentration from incurred samples of Mitra™ has previously 

been reported, while the reasons for a different behaviour between spiked and incurred 

samples have not been elucidated yet (7, 12, 13). A bridging study with PZQ between whole 

blood, plasma and DBS in O.viverrini infected participants has been carried out by Meister et 

al., which showed that plasma concentrations tend to be higher for both R- and SPZQ, 

compared to whole blood and DBS, while the opposite trend was observed for the main 

human metabolite (28). Notably, a hypothesis that Mitra™ preferentially binds the plasma 

component of the blood and therefore exhibiting concentrations closer to the plasma 

concentrations than that in whole blood has been proposed (13). This could be a likely 

explanation for a drug such as PZQ, which binds to plasma proteins in a great extent, up to 

80%, however this phenomenon should be explored further (29, 28). Last but not least, the 

reason for differences in the concentrations of incurred versus spiked samples could be the 

preparation itself- while the spiked samples for CL and QC were prepared fresh, incurred 

samples from the field were stored frozen at -80 °C prior analysis. Although DBS did not 

exhibit this phenomenon regardless the same preparation and storage procedure, the 

differences in matrices could be the reason for the noticed discrepancy. 

Both Mitra™ and DBS have proven to be an excellent tool for sampling within the PK study 

in rural sub-Saharan Africa. While neither of the two methods requires cold chain for 

shipping or storage, Mitra™ was characterised with a higher practicality, since it does not 

require aids (i.e. capillaries) to transfer the blood. However, the problem of insufficient 

soaking and filling the tip, the equivalent of poorly soaked DBS, remains with Mitra™. The 

extraction procedure developed for Mitra™ was shorter and simpler, since no punching is 

necessary. Another practical advantage of Mitra™ is the drying process; while DBS need to 

be dried on separate drying racks, Mitra™ can be simply returned into the provided box and 

kept closed, enabling immediate transport and reducing contamination from the environment. 

This is in line with the literature, where the simplicity of extraction of Mitra™ has been 

discussed (12–14, 20).  Nonetheless, Mitra™ is much pricier compared to DBS. Furthermore, 
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DBS filter cards are easier to label and the chances of sample mix up are lower compared to 

Mitra™, which does not offer a suitable labelling surface on the plastic holder (Table 6). 

 

 

Table 6: Comparison of advantages between Mitra™ and DBS 

+ Based on the literature 
#Based on our analytes 

* Calculated based on price for 96-samples box of Mitra™ and the price of a 100 cards package of DBS 

 

One of the limitations of our work is the reliance on a single sample- due to a high price of 

Mitra™, only one sample was taken per time point and per patient, therefore re-analysis of 

samples which would strengthen the reliability of our results, was not possible.  

To conclude, Mitra™ showed great potential as a tool to be used in PK trials, including the 

low-resource settings. The method validation was successful and resulted in consistently good 

results for all parameters evaluated. However, there is still room for improvement, with 

emphasis on labelling issues and affordability. Finally, the reasons for discrepancy in 

quantification of PZQ between incurred and spiked Mitra™ samples should be further 

explored. 
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5 General discussion 
 

5.1 Rationale and objectives  
 
The rationale of this PhD thesis was to uncover more information and gain valuable insight 

into praziquantel (PZQ), a drug successfully used for decades to treat schistosomiasis but still 

remaining a mystery on so many different levels (see Figure 1 for the flowchart of this work).  

Firstly, to compare activity of PZQ on different species of Schistosoma spp, by conducting 

studies with S. haematobium, in vitro and in vivo, in order to reveal potential inter-species 

differences in antischistosomal activity of PZQ. The results of these studies fill the gap 

created by the lack of studies with S. haematobium and compliment the existing knowledge of 

antischistosomal activity of PZQ towards other species of schistosomiasis (see Chapter 2).  

Secondly, we wanted to explore the pharmacokinetics (PK) of PZQ in children of different 

age and infected with one of the main two species of the schistosomes, S. haematobium or S. 

mansoni, to explore the influences of covariates (e.g. age, parasite species) on PK processes 

of PZQ. Non-compartmental analysis (NCA) was a building base for initial insight into PK 

parameters of all three important analytes, namely R-praziquantel, S-praziquantel (R-/SPZQ) 

and the main human metabolite, R-trans-4-OH-PZQ (see Chapter 3). Following NCA, we 

were focusing on the analyte of interest, RPZQ, the proposed eutomer, aiming to construct a 

PK model, able to account for variability and effects of different covariates on processes of 

PZQ in the body and with it, efficacy. This model, currently under development in 

collaboration with Dr. Christine Falcoz (Certara, NJ, USA) would be able to predict with 

higher accuracy the concentration over time course of PZQ in patients and based on 

individual characteristics, a suitable treatment dose. Drawing a connection between dose-

response relationship and PK would let us adapt the current treatment guidelines for treating 

young children and achieve the most optimal treatment efficacy while reducing adverse 

events. The need to perform additional clinical studies in sensitive populations, such as young 

children, would be reduced as well (see Appendix, Chapter 7.2).   
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Clinical studies we conducted in paediatric population brought into discussion also a question 

of improving the sampling quality, while maintaining the patient adherence. While dried 

blood spots (DBS) method for collecting PK samples has been well established in the recent 

years, there are still some drawbacks arising from this technique, which have been extensively 

described in the literature, underlining a need for an improved sampling tool (Spooner et al., 

2009). Since a new product, called Mitra™, has been recently launched, we were interested to 

evaluate it in the frame of fieldwork and compare its performance to DBS, which in the lack 

of alternatives remain the current gold standard (Denniff and Spooner, 2014) (see Chapter 4). 

 

Figure 1: Flowchart of the projects involved in this PhD thesis: in vitro and in vivo studies of 

antischistosomal activity of PZQ on S. haematobium (Chapter 2), PK studies embedded in 

dose-finding studies with S. mansoni and S. haematobium infected children (Chapter 3) and 

comparison of DBS and Mitra™ within the frame of S. haematobium PK study (Chapter 4) 
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Table 1: Contribution of different chapters of this PhD thesis to the nexus of Swiss TPH- innovation, validation and application 

Chapter Title Innovation Validation Application 

2 In vitro and in vivo activity of 

R- and S- praziquantel 

enantiomers and the main 

human metabolite trans- 4-

hydroxy-praziquantel against 

Schistosoma haematobium 

 

First time both enantiomers of PZQ 

were tested within a range of doses 

separately on S. haematobium in 

vivo and the main human metabolite 

was tested in vitro. 

 Contributing to the knowledge 

about activity of PZQ on 

different species of 

Schistosoma spp. and the 

mechanism of action.  Data 

might aid decision of whether 

to select the racemate or 

enantiomer for the 

development of a paediatric 

formulation. 

3 Pharmacokinetics of 

praziquantel in Schistosoma 

mansoni and Schistosoma 

haematobium infected school- 

and preschool- aged children 

 

. Pharmacokinetic study with 

PZQ was carried out for the 

first time in schistosomiasis 

infected school- and preschool- 

aged children. Pharmacokinetic 

parameters were estimated and 

compared, influences on 

pharmacokinetics were studied. 

 Influencing guidelines for 

treating preschool-aged 

children by understanding the 

dose-response relationship and 

the covariates affecting the 

treatment efficacy. 

4 Evaluation of a novel micro-

sampling device, Mitra™, in 

comparison to dried blood 

spots, for analysis of 

praziquantel in 

schistosomiasis patients in 

rural Côte d’Ivoire 

 

Development and optimisation of 

sample preparation method for 

analysis of Mitra™. 

A novel micro-sampling 

device, Mitra™, is used for the 

first time in the field settings 

and evaluated not only from 

quantitation aspect, but also 

from the usefulness and 

practicality point of view. 

Leading the way for new 

sampling techniques to enter 

the field of rural clinical trials 

and increase the quality and 

simplicity of sampling. 
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5.2 In vitro/ in vivo studies with S. haematobium 

The objective of in vitro/in vivo studies of antischistosomal activity of PZQ on S. 

haematobium was to evaluate whether this species of the parasites exhibits a different 

sensitivity to main analytes of PZQ, namely the racemate itself, both enantiomers (R- and 

SPZQ) and the main human metabolite, R-trans-4-OH-PZQ, compared to S. mansoni. There 

have been some suggestions in the literature that this might be the case and furthermore, there 

are several examples of antiparasitic drugs, such as oxamniquine and metrifonate, differing in 

activity between parasitic species (Zwang and Olliaro, 2014). While S. mansoni has been 

extensively studied, followed closely by S. japonicum, S. haematobium on the other hand 

remains in the background (Botros et al., 2005).  

We evaluated the antischistosomal activity of both PZQ enantiomers, R- and SPZQ, and the 

racemate, in vitro and in vivo. Additionally, we assessed the activity of main human 

metabolite, R-trans-4-OH-PZQ, which is believed to contribute to antischistosomal activity as 

well, in vitro. This knowledge is contributing to the understanding of PZQ and on the higher 

level, underlining the importance of studying inter-species differences in susceptibility to 

PZQ, in humans.  

As expected based on S. mansoni data by Meister et al., our results showed that RPZQ is 

driving the antischistosomal activity of PZQ against S. haematobium, both in vitro and in vivo 

(Meister et al., 2014). The IC50 value of racemic PZQ was 4.3× higher compared to the 

enantiopure RPZQ in vitro. Similar pattern was observed also in vivo, with comparable worm 

burden reductions (WBRs) for RPZQ and a twice higher dose of PZQ. Strikingly, SPZQ also 

proved to possess a non-negligible antischistosomal activity towards S. haematobium, in 

contrast to S mansoni (Meister et al., 2014). An ED50 value estimated for SPZQ was very 

close to that of the racemic PZQ. We also observed increased sensitivity of female worms 

compared to the males in vivo for all entities, which has previously been reported (Pica-

Mattoccia and Cioli, 2004). Last but not least, also the metabolite, R-trans-4-OH-PZQ, 

revealed a higher effect on S. haematobium.  
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Our findings are in the line with literature (Webbe and James, 1977), suggesting S. 

haematobium is more sensitive to PZQ, possibly due to its residence in venus plexus of the 

bladder, where it gets exposed to the drug following the first pass metabolism, mainly to 

SPZQ and the metabolised form. S. mansoni, in contrast, resides in mesenteric veins (Figure 

2B), coming in contact with PZQ prior reaching the liver, meaning mostly un-metabolised 

drug. Stemming from our findings is the question how does the increased sensitivity of S. 

haematobium to PZQ in vitro and in vivo translate to humans.  

To conclude, our study contributed to the knowledge about PZQ and its antischistosomal 

activity on S. haematobium; however, there were some limitations that should be kept in 

mind. First, the differences stemming from different animal models used (hamster for S. 

haematobium, mice for S. mansoni) could not have been accounted for. Secondly, a low yield 

of adult worms for in vitro studies limited the number of replicates per experiment and with it, 

the strength of our findings. Lastly, due to inability of infected snails to sufficiently adapt to 

the artificial environment, in vitro studies with larval stages could not have been conducted. 

These are the factors that should be addressed in the future experiments.  

 

Figure 2: S. haematobium eggs (circled) found in the liver of the infected rodent (A) and 

adult worms of S. mansoni in the veins surrounding the intestine (B) 

 

 

 

A B 
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5.2.1 Praziquantel and schistosomes 

There are three principal species of Schistosoma spp. of importance in human parasitology, 

namely S. haematobium, S. mansoni and S. japonicum, additionally to S. intercalatum and S. 

mekongi, which are of local importance (Colley et al., 2014). The main difference between 

them is the final destination in human body where adult worms reside and with it, the organs 

where pathology is expressed (Gryseels et al., 2006). Connected to the residence in the veins 

is also the path by which parasitic eggs leave the human body, via either stool (S. mansoni, S. 

japonicum) or urine (S. haematobium). In the part of the parasitic life cycle taking place 

outside the main host, these species differ in the intermediate host species, the water snails 

(Gryseels et al., 2006). Since all three species of the parasite are characterised with obvious 

similarities, the question of the debate in the recent years has been differences in sensitivity to 

drugs, mainly PZQ, which is the standard treatment against all species of the parasite. 

However, S. haematobium is characterised with a life cycle, challenging to maintain in 

laboratory conditions (Moore and Meleney, 1954; Botros et al., 2005; Doenhoff et al., 2009). 

Additionally, time to develop a mature infection is much longer compared to S. mansoni and 

the infection intensities are often low, resulting in a low amount of adult worms yielded from 

animals (Loker, 1983; Rheinberg et al., 1998). Trying to comply with the 3R guidelines for 

animal work, it becomes difficult to perform experiments in a reasonable framework 

(Fenwick et al., 2009). Therefore, S. haematobium has remained largely unexplored, 

compared to S. mansoni and S. japonicum, although it is responsible for the highest share of 

the schistosomes infections (Keiser, 2010; Hotez et al., 2014). 

Reported results from studies evaluating antischistosomal activity of PZQ on different species 

of schistosomes generally support RPZQ as the carrier of antischistosomal activity towards S. 

japonicum (Irie et al., 1989; Tanaka et al., 1989; Wu et al., 1991), while there have been 

some controversial results with S. mansoni; some studies claim SPZQ as the active 

enantiomer (Irie et al., 1989; Tanaka et al., 1989), which is in disagreement with other reports 

(Xiao and Catto, 1989; Staudt et al., 1992; Meister et al., 2014) (see Table 2). Nonetheless, 

inconsistencies in the design of experiments could explain these discrepancies. Additionally, 
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there are examples of antiparasitic drugs where the metabolites originating from the main 

entity have been proven to possess activity, indispensable in addition to that of the parent 

compound (Staudt et al., 1992; Barrera et al., 2012). Activity of the metabolites could add to 

the overall activity of the drug, if not carry the main effect, bringing into the light a question 

of antischistosomal activity, contributed by the main human metabolite in case of PZQ. 

Except on S. mansoni studied by Meister et al. from our group and our S. haematobium study 

(Chapter 2), metabolites of PZQ remain largely unstudied, leaving room for further 

explorations (Meister et al., 2014; Kovač  et al., 2017).  

One possible explanation for differences in activities reported could be that there are inter-

species variations in presence of chiral receptors, only binding the respective enantiomer of 

PZQ; one chiral form only binding RPZQ and the other only SPZQ. This could be a reason 

for contradictory results reported between species and it underlines the need for a further 

exploration of both mechanism of action of PZQ and the activity in different species and 

strains. In addition, an interesting aspect to study would be also to assess differences in 

susceptibility to enantiomers of PZQ on other parasites- other intestinal worms, such as the 

liver flukes Opisthorchis viverrini and Clonorchis sinensis, lung worms of Paragonimus spp. 

and the other intestinal worms, such as Fasciolopsis buski and Echinostoma spp., besides 

cestodes, are sensitive to PZQ as well. Interestingly, Fasciola hepatica is the only trematode, 

insubmissive to PZQ and comparison of these parasites could contribute to the knowledge 

regarding the mechanism of action of PZQ (Andrews, 1985; Cioli and Pica-Mattoccia, 2003). 
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Table 2: Summary of in vitro and in vivo studies with PZQ from literature 

 
Analyte 

studied 

Stage of 

parasite 

IC50 (μg/ml) 

at 4 h 

Animal 

model 
DOSE WBR (%) 

ED50 

(mg/kg) 

 S. mansoni 

X
ia

o
 a

n
d

 C
a

tt
o

, 

1
9

8
9
 

PZQ N/A N/A Mouse 

50 3.1 

N/A 100 24.5 

200 53.5 

RPZQ N/A N/A Mouse 

50 19.6 

N/A 100 47.5 

200 73.2 

T
a

n
a

k
a

 e
t 

a
l.

, 

1
9

8
9
 

PZQ N/A N/A Mouse 
50 12.6 

N/A 
500 38.9 

RPZQ N/A N/A Mouse 
50 6.8 

N/A 
500 32.1 

SPZQ N/A N/A Mouse 
50 25.5 

N/A 
500 50.9 

M
e
is

te
r
 e

t 
a

l.
, 

2
0

1
4
 

RPZQ Adult worms 0.04 Mouse 

100 52.0 (30.8) 

95.4 200 98.1 (2.3) 

400 100.0 (0) 

SPZQ Adult worms 5.7 Mouse 
400 18.0 (21.4) 

3066777 
800 19.6 (22.2) 

PZQ Adult worms 0.1 Mouse 400 94.1 (8.6) 246.5 

R-trans-4-

OH-PZQ 
Adult worms 16.7 N/A N/A N/A N/A 

 S. japonicum 

T
a

n
a

k
a

 e
t 

a
l.

, 
1

9
8

9
 

PZQ N/A N/A Mouse 

50 10.9 

N/A 
500 76.8 

2x50 34.5 

2x250 83.5 

RPZQ N/A N/A Mouse 

50 -1.8 

N/A 
500 62.2 

2x50 67.9 

2x250 83.6 

SPZQ N/A N/A Mouse 

50 -0.5 

N/A 
500 1.9 

2x50 13.8 

2x250 -13.9 

W
e
b

b
e
 

a
n

d
 

J
a

m
e
s,

 

1
9

7
7
 

PZQ N/A N/A Mouse 

50 73.2 

N/A 

100 96.2 

 S. haematobium 

W
e
b

b
e
 

a
n

d
 

J
a

m
e
s,

 

1
9

7
7
 

PZQ N/A N/A Hamster 

100 39.2 

118 

 
150 66.1 

200 77.2 

K
o

v
a

č
 e

t 
a

l.
, 
2

0
1

7
 

RPZQ Adult worms 0.007 Hamster 

31 73.3 

24.7 62.5 75.6 

125 98.5 

SPZQ Adult worms 3.51 Hamster 

125 46.7 

127.6 250 83.0 

500 94.1 

PZQ Adult worms 0.03 Hamster 250 99.3 118.1 

R-trans-4-

OH-PZQ 
Adult worms 1.47 N/A N/A N/A N/A 
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5.2.2 Drug discovery for schistosomiasis- the bottleneck of anthelminthic development 

Drug development for schistosomiasis has been on the back burner compared to other 

parasites, such as nematodes, where the importance in the animal health sector is driving the 

research (Geary et al., 2009). There is also apparent lack of initiatives for anthelmintic drug 

development, common for other diseases, such as “The Big Three” (e.g. Medicines for 

Malaria Venture) (Utzinger et al., 2011). One of the reasons for this is PZQ, which is readily 

available, effective and cheap, resulting in health policy makers and philanthropic 

organisations to focus their efforts on the distribution of PZQ rather than to support and 

finance the search of alternative drugs (Caffrey and Secor, 2011).  

One of the crucial obstacles hindering development of new antischistosomal drugs is the lack 

of simple screening system and processes. Target-based approach is not feasible when it 

comes to schistosomiasis and cell lines or transgenic parasites do not exist either (Caffrey and 

Secor, 2011). Therefore, the screening relies on parasitic life cycle, which, additionally to 

being complex and requiring both a vertebrate and a molluscan host, is also difficult to 

maintain in the laboratory conditions. There is a growing need for robust and simple in vitro 

systems with objective and straight-forward, possibly automatized read-out, to move 

antitrematodicidal drug discovery to the higher gear (Keiser, 2010). 

The significant breakthrough of the antischistosomal drug development was in 1960s with the 

ability to maintain the life cycle in artificial conditions. With the greater demand for parasites, 

newer and better methods for cultivation and artificial transformation of cercariae were 

developed (Ramirez et al., 2007). In vitro methods are based on microscopic evaluation of 

phenotypic changes to the parasite after incubation with an investigational compound. A scale 

to evaluate phenotypic activity is standardised however the readouts themselves can be very 

subjective, not to mention time consuming. Partly automated screenings have emerged in the 

recent past, although the manual technique is still very common (Ramirez et al., 2007). The 

development of different methods, able to quantitatively estimate the phenotypic changes and 

based on it, predict the efficacy of a drug, is a current hot topic. Methods under development 

range from measuring the change in electrical impedance or heath flow (Smout et al., 2010), 



PhD Thesis: Jana Kovač                   Chapter 5 

 

 106 

to fluorescence based staining (Panic et al., 2015). One of the methodologies under 

development in our laboratory is based on measuring the difference in electrical impedance, 

caused by the movement or the lack of there of, of the parasites after adding the drug. 

There are two stages of the parasite used for in vitro testing, namely the larval stage (newly 

transformed schistosomula, NTS) and adult worms. NTS are obtained by forcing the cercaria, 

shed by infected snails, to loose the tail using different mechanic or chemical methods 

(Keiser, 2010). The process itself is cost effective and reasonably fast, nonetheless the 

infection rate of the snails can vary greatly and the shedding of cercariae is unreliable and 

variable as well, making it difficult to efficiently plan the experiments. The advantage of 

using larval stages is avoiding the need for animal use however the differences, which exist 

between mechanically produced schistosomula and the schistosomula, which have penetrated 

human skin, cannot be accounted for (Brink et al., 1977).  

Adult worms, on the other hand, are picked from the veins manually or using venous 

perfusion, surrounding the intestine or bladder of experimental animals, infected with 

cercariae and allowed to develop a chronic infection (Keiser, 2010). While it can take up to 3 

months to develop a mature chronic infection (S. haematobium), there are also other issues 

when it comes to animal models (Botros et al., 2005). The mouse model, for example, is not 

suitable for S. haematobium and rats as a semi-permitive hosts are not a good model for any 

of the schistosome species. S. haematobium in particular is very difficult to maintain under 

laboratory conditions and the infection rates are often very low, resulting in insufficient yield 

of adult parasites (Moore and Meleney, 1954; Botros et al., 2005; Doenhoff et al., 2009). As a 

consequence, the throughput for testing drug on adult worms is highly limited. 

Different animals can be used as schistosoma model for in vivo testing of the drugs. Each 

species of parasites has a preferred animal model (hamsters for S. haematobium, mice or 

hamsters for S. mansoni) in which it’s growth is substantial and possible differences, 

originating from inter-species variability of these animals, remain unaccounted for, leaving a 

zone of uncertainty (Keiser, 2010). While most mice strains can be used as S. mansoni model, 

also other animals have been used, e.g. primates (Keiser, 2010). Similarly to in vitro 
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procedure, the animals are first exposed to the infectious cercariae using different techniques 

(subcutaneous or intraperitoneal injections are common) and allowed to develop a chronic 

infection. Subsequently, the animals are treated with the drugs of interest and later sacrificed. 

The worms from the mesenteric veins are collected, sexed and counted. The liver is removed, 

compressed and examined for worms, alive or dead, and eggs (Xiao et al., 2007; Keiser, 

2010). Treatment outcome can be recorded in different ways, depending of the laboratory; 

most common parameters are adult worm count, liver egg count and oogram pattern (Ramirez 

et al., 2007). New approaches of investigating the activity and effect of drugs using non-

invasive determination of worm burden by in vivo imaging of schistosomes with positron 

emission tomography, with perspective to be used also in humans, are emerging (Salem et al., 

2010). 

To conclude, PZQ remains the only available antischistosomal drug, while the funding 

directed to the search of the alternatives is small compared to the burden the disease is 

causing. There is a great need to develop molecular target-based approach for drug screening, 

which would speed up the drug discovery process. Additionally, there are still challenges to 

overcome in the cultivation techniques and last but not least, automatized and objective 

readouts for the in vitro screenings are a necessity (Keiser, 2010). 

 

 

 

 

 

 

 

 

 

Figure 3: Liver of healthy (3A) versus infected (3B) experimental animal (courtesy of 

Valérian Pasche) 
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5.3 Pharmacokinetic studies with praziquantel in paediatric population 

This project represents the main part of this PhD thesis. The aim was to conduct PK sampling 

within the dose-finding trial with PZQ, in school-aged (SAC) and preschool-aged (PSAC) 

children, infected with S. mansoni or S. haematobium (see Chapter 3) (Figure 4). By 

following the concentration of the drug in blood over the time span of 24 hours, we were able 

to understand more about absorption, distribution, metabolism and elimination (ADME) 

processes of PZQ. NCA analysis was conducted with all of the collected data and secondary 

PK parameters (namely AUC, Cmax, T1/2, Tmax) obtained were compared within children of 

different age, parasite-specific infections and treatment dosages. We were interested in 

investigating the dose-response relationship and to elucidate the factors influencing PK of 

PZQ. This knowledge would be invaluable in guiding the clinicians on the way to tailor the 

dose for younger children. However, the strength of information obtained using NCA is only 

limited. Therefore, as an upgrade, we connected with Dr. Christine Falcoz to construct a 

population PK model for RPZQ, able to explore in depths and better explain influences and 

covariates on the metabolic processes of PZQ. This work is currently still on-going (see 

Appendix). 

PK parameters of all three analytes in children of different age and infected with either 

species of the parasite, are presented and discussed in details in Chapter 3. To summarise, we 

did not observe significant differences in PK parameters between parasite-specific infections. 

Both AUC and Cmax were lacking the signs of dose proportionality, since the exposure 

increased less than proportional with the dose. No correlation between probability of cure and 

AUC or Cmax was found, therefore, our findings do not support the use of neither AUC nor 

Cmax as an indicator of cure.  

Nonetheless, as mentioned above, NCA is not an ideal technique to describe metabolic 

processes for a drug with erratic absorption, such as PZQ. A population model, fitting all the 

concentration data from children of different ages and accounting for maturation processes 

and allometry, is a necessity in order to adequately describe ADME of PZQ. We hope this 

model will aid on the way to determine a suitable dose of PZQ for PSAC (see Chapter 7.2). 



PhD Thesis: Jana Kovač                   Chapter 5 

 

 109 

 

Figure 4: Flowchart of two clinical trials with infected SAC and PSAC 

The metabolism of PZQ has been studied and it is well known that the drug undergoes 

extensive first pass metabolism in the liver with CYP P450 enzyme family. For this reason, 

PK processes of PZQ can be influenced to a smaller or greater extent by the following factors: 

(i) inter-individual variability due to polymorphism of CYP isoenzymes, (ii) other substances 

influencing CYP system, taken concomitantly and (iii) the status of liver function (Olliaro et 

al., 2014). Until this date, the influence of these variables on the metabolism of PZQ has not 

been thoroughly explored. Additionally, the degree of polymorphism of the CYP system 

isoenzymes in the target populations, where PZQ is distributed on a large scale, has only 

recently been documented (Rajman et al., 2017). Moreover, the extent of people being treated 

with medicaments, affecting PK processes of PZQ, has not been recorded (Mutapi et al., 

2017). For example, rifampicin, a drug used to treat tuberculosis infection, can significantly 

reduce levels of PZQ in blood when taken concomitantly and since these two infections might 
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coincide geographically, this factor should be taken into consideration (Ridtitid et al., 2002). 

Studies of pharmacogenomics would be a very interesting addition to PK studies and could 

explain, at least to a certain extent, inter-patient variability in PZQ exposure and down the 

line, the treatment efficacy and the treatment failure (Mduluza and Mutapi, 2017). 

5.3.1 Young children and preventive chemotherapy with PZQ  

For many years, it was believed young children (<6 years) are not as affected by 

schistosomiasis as their older peers, since they do not come into contact with infected water 

as actively (Odogwu et al., 2006). Consequently, they have been, until recently, excluded 

from PC programs or are treated with a standard WHO recommended dose of 40 mg/kg, used 

for adults (Bustinduy et al., 2017). However, researches closely looking at the transmission 

and water contact patterns have realised young children are frequently exposed to infected 

water when bathed by their guardians several times a day, using water from infected sources 

(Mafiana et al., 2003; Odogwu et al., 2006). Furthermore, studies have confirmed a 

correlation between infection intensity and frequency of water exposure (Ekpo et al., 2012). 

Adding up to this is the fact younger children (< 6years), when left out of the treatment 

program, could be the overlooked source of infection, maintaining the transmission cycle in 

villages regularly treated with PZQ (Stothard and Gabrielli, 2007). Early infection with 

schistosomiasis is also believed to exacerbate the later morbidity (Bosompem et al., 2004; 

Odogwu et al., 2006; Stothard and Gabrielli, 2007). Thus, there is a growing consensus to 

tailor the dose of PZQ for young children and furthermore, WHO has recognised that PSAC 

living in endemic areas should be considered in the future as a target group for administration 

of PZQ (WHO, 2010).  

That being said, most of the information on PK of PZQ available originates from studies with 

healthy adults or studies in patients of a certain condition (e.g. liver failure) (Mandour et al., 

1990; El Guiniady et al., 1994; Olliaro et al., 2014). Furthermore, the differences in metabolic 

and enzymatic systems between children and adults, influencing PK of active substances, 

have been well described (Hattis et al., 2003; Kearns et al., 2003). Therefore, one cannot 

simply extrapolate the dose of a drug from adults to children. PK studies to closely observe 
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the differences in ADME processes are essential in order to adapt the dosing of children 

(Yewale and Dharmapalan, 2012; Batchelor and Marriott, 2015). In depth study of response 

exposure relationship is crucial to understand whether children are under-dosed when 

receiving the standard adult dose of 40 mg/kg and to tailor the WHO guidelines, with the aim 

of highest efficacy and lowest adverse events.  

Including children in treatment programs calls not only for an adapted dose, but also for 

suitable drug formulation. One of the well described issues when treating children with the 

standard commercially available formulation of PZQ stems from the formulation itself. The 

tablet consists of 600 mg racemic mixture of both enantiomers, R- and SPZQ, in 1:1 ratio 

(Olliaro et al., 2014). As a result, the size of the tablet is big and combined with an awfully 

bitter taste, presumably originating from SPZQ, it is very hard for young children to swallow, 

which we observed within our clinical studies as well (Meyer et al., 2009). Together with a 

risk of choking, these facts underline a need for a paediatric formulation. Ideally, it would 

consist only of RPZQ, which is the proposed protagonist of antischistosomal activity (Webbe 

and James, 1977; Meister et al., 2014b; Olliaro et al., 2014). SPZQ is presumably responsible 

for the adverse events (e.g. nausea, abdominal symptoms) originating from the drug and by 

removing it from the new formulation, perhaps these could be circumvented as well (Meyer et 

al., 2009). However, studies collecting evidence to firmly establish connection of SPZQ and 

undesirable adverse events are yet to be conducted. Moreover, in the light of our results from 

in vitro and in vivo studies of antischistosomal activity of PZQ on S. haematobium, indicating 

SPZQ might be contributing to the overall activity for this species, the answer to the question 

of whether the paediatric formulation should be racemic or enantio-pure, might not be that 

straight forward and requires further studies with different species of the parasites in humans. 

A public-private partnership was established in 2012 between Merck, Astellas and Swiss 

TPH, aiming to develop a paediatric formulation for PSAC. The efforts of this consortium are 

focused mainly on adapting the treatment dose to obtain safe and effective dose for young 

children, mitigating the bitter taste of PZQ and reduce the size of the tablet. Currently in the 

phase 2 clinical trial is an orodispersible tablet, much smaller compared to the current 
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formulation and with additional advantages, such as no need for water when administrating 

(except for babies and infants for which the tablet would need to be dissolved on a teaspoon), 

important in low-resource areas where PZQ is typically used (Mduluza and Mutapi, 2017). 

A very important reason why young children were for so long believed not to be infected by 

schistosomes and consequently not regularly treated, lies in the lack of suitable diagnostic 

tools (Knopp et al., 2013). Schistosomiasis prevalence and the burden of rises from the early 

age to reach the peak in SAC, therefore standard diagnostic tools are often not sensitive 

enough to use with young children, leaving them under-diagnosed (Gryseels et al., 2006). 

Additionally, the consistence of stool originating from young children might be unsuitable for 

methods such as Kato-Katz (Coulibaly et al., 2012). Furthermore, the worms themselves are 

maturing and the eggs can be excreted at very irregular intervals, resulting in a significant 

time-lag in the ability of the infection being discovered using the direct egg detection methods 

(such as stool smear or urine filtration), which are otherwise considered a gold standard 

(Poole et al., 2014). The consequence of underestimating the prevalence of schistosomiasis 

among young children and overestimating the efficacy of treatment are the misguided 

recommendations in helminth control programs. This underlines the need to develop new 

diagnostic tools and methods, able to meet predefined target product profile (Knopp et al., 

2013).  

 

5.3.2 Single drug dependence- PZQ forever? 

With PZQ being the only effective drug against schistosomiasis and immense drug pressure 

due to massive drug administration, the fear of resistance is non-negligible. The need to 

uncover new antischistosomal leads is now greater than ever, although the first case of 

resistance to PZQ is yet to occur (Vale et al., 2017). While researchers are working around 

the clock to find an alternative candidate, the antischistosomal pipeline remains rather empty 

(Caffrey and Secor, 2011). 

One of the many challenges when trying to develop novel candidates is the lack of 

information on mechanism of PZQ (Vale et al., 2017). There have been some theories about 
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the mechanism of action, in connection with Ca2+ ion influx to the worm, resulting in intense 

muscular paralysis and blebbing and structural alterations of tegument (Cioli et al., 2014). As 

a consequence of tegument disruption, parasitic surface antigens are exposed and recognised 

by host immune system, resulting in clearance of the parasite. Nonetheless, it is yet to be 

explained how PZQ disrupts the homeostasis of the parasite (Vale et al., 2017). Furthermore, 

subsequent studies failed to confirm the connection between calcium accumulation itself and 

antischistosomal activity of PZQ; e.g. cytochalasin D, antagonist of PZQ, blocks 

antischistosomal effect of PZQ while it does not prevent influx of calcium (Pica-Mattoccia et 

al., 2008). Additionally, it appears the genes coding for calcium channels are the same for 

both juvenile schistosomes, insensitive to PZQ and the susceptible adult worms (Aragon et 

al., 2009). Transcriptomic studies found genes possibly involved in aerobic metabolism and 

regulation of cytosolic calcium, which are differently regulated by PZQ exposure, suggesting 

that schistosomes undergo a transcriptomic response, similar to that of oxidative stress 

(Aragon et al., 2009). Last but not least, also calcium/calmodulin- dependent protein kinase 

type II might have a role in the antischistosomal activity of PZQ, representing a possible drug 

target (Vale et al., 2017). That being said, there are still plenty of questions waiting to be 

answered regarding the mechanism of PZQ and the molecular target remains in the dark, 

hindering the drug development for schistosomiasis (Vale et al., 2017). 

Similar to the mechanism of action, also a possible resistance mechanism remains to be 

proven. While there have been cases of reduced susceptibility to treatment, both in the 

laboratory and in the field, it is not yet clear whether these were cases of actual resistance or 

rather misinterpreted (Cupit and Cunningham, 2015). Attempts to induced resistance under 

laboratory conditions, first in vitro and followed by in vivo, go as far back as to 1970s, 

although the focus was on S. mansoni (Vale et al., 2017). In 1993, Couto and colleagues 

presented a simple and cost effective method of inducing resistance to PZQ, by treating 

infected snails with 100 mg/kg PZQ for 5 consecutive days and then using released cercaria to 

infect mice (Couto et al., 2011). So far, no resistance to PZQ in the field has been confirmed; 

however, there have been studies reporting reduced susceptibility to PZQ or treatment failure 



PhD Thesis: Jana Kovač                   Chapter 5 

 

 114 

(Herwaldt et al., 1995; Ismail et al., 1996). That being said, it is not yet clear whether these 

findings were confounded by other factors (e.g. possible mal-absorption of PZQ due to 

Giardia lamblia co-infection) (Vale et al., 2017).  

While PZQ is effectively treating schistosomiasis, it does not prevent reinfection and 

furthermore, since it is not able to clear the juvenile stages of the parasites, it requires re-

treatment few weeks post the initial treatment (Cioli and Pica-Mattoccia, 2003). One of the 

exciting aspects, which would have ameliorated many of the difficulties of PZQ treatment, is 

a possible antischistosomal vaccine, the search of which is currently undergoing. Ideally, 

antischistosomal vaccine would offer rather a reduced morbidity than sterile immunity 

(Siddiqui and Siddiqui, 2017). 75% worm burden reduction and significant reduction of egg-

induced pathology in animal models, preferably baboons, due to similarities in immune 

response to humans among other reasons, was suggested as a target value for a good vaccine 

(Mo et al., 2014). Furthermore, the possibility of multivalent vaccine, targeting not only 

schistosomes, but also other parasitic worms, would be of great benefit since these infections 

tend to coincide (Hotez et al., 2010). While schistosomes offer plethora of distinct antigens 

due to their advanced life cycle, out of 100 identified vaccine antigens, only three compounds 

have shown potential to enter human clinical trials (Merrifield et al., 2016). A single 

candidate against S. haematobium (Sh28GST), a glutathione S-transferase, demonstrated 

promising activity and acceptable safety profile during early clinical trials. Two vaccine 

candidates against intestinal schistosomiasis, a membrane protein domain (Sm-TSP-2) and a 

fatty acid binding protein (Sm-14) are currently in early stage clinical trials (Merrifield et al., 

2016). Smp80 (calpain) showed promising results in primates for both S. mansoni and S. 

haematobium and is moving towards the phase 1 and 2 clinical trials (Tebeje et al., 2016; 

Siddiqui and Siddiqui, 2017). However, no vaccine against any of the schistosome species 

infecting humans is currently commercially available (Tebeje et al., 2016).  
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5.3.3 From control to elimination of schistosomiasis: status quo 

Schistosomiasis remains one of the most prevalent neglected tropical diseases, regardless the 

efforts of control put in place by WHO in 2001 and endorsed by the member states (WHO, 

2013). Several countries implemented schistosomiasis control programs and progress has 

been made in the recent years (Inobaya et al., 2014). However, there are still significant issues 

hindering the effective control of schistosomiasis and trying to move to the next stage and 

towards the elimination, these will need to be taken into careful consideration. 

Access to PZQ itself used to be one of the issues but since Merck KGaA committed to donate 

250 millions of tablets annually, until the elimination of schistosomiasis is achieved, this is no 

longer the main problem (Tchuem Tchuenté et al., 2017). However, the target coverage of 

75% has not been achieved- furthermore, the global coverage lies as low as 20.74% of the 

population in need of preventive chemotherapy in 2014 (WHO, 2016). One must bear in mind 

the donation of PZQ itself is not enough- the countries where it is distributed, are struggling 

with weak and poorly structured and resource-lacking health systems, failing to act as 

effective delivery channel (Tchuem Tchuenté et al., 2017). Furthermore, assuring safe and 

efficient consumption of PZQ, connected to patient’s adherence, represent a whole new 

dimension of issues- having trained health professionals to distribute and supervise the 

treatment is rather an exception than a rule (Ross et al., 2017). The reasons for poor patient 

adherence are interconnected and complex- schistosomiasis can be asymptomatic or only 

manifest with mild symptoms for years and many people are not aware they are infected; 

connected to it is also the fact that patients will not necessarily notice a great improvement in 

their health and not feel the need to be treated. What the patients might notice, however, are 

the adverse events of treatment with PZQ, although usually mild and transient- this can add to 

the reduced patient adherence as well (Ross et al., 2017). Distribution of PZQ is largely 

bound to the education programs, distributing the drug to SAC; while this approach certainly 

has advantages, rural communities, non-school attending children and other risk groups are 

challenging to reach (Rollinson et al., 2013). Sustainability of control programs will be 

difficult to achieve without engaging the local community. 
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Elimination of schistosomiasis will not be possible without an integrated approach, as 

acknowledged by World Health Assembly resolution 65.21- while treatment with PZQ is the 

core of schistosomiasis control, it has only a temporary effect on transmission interruption 

and requires maintenance of the treatment for success (Rollinson et al., 2013). Intervention 

programs, such as WASH (Water, Sanitation and Hygiene), typically integrate access to safe 

water, proper sanitation (e.g. improved latrines and sludge management) and hygiene related 

education (e.g. safe defecation, hand washing, soap use, water storage practices), can have a 

significant effect on reducing transmission of schistosomiasis (Esrey et al., 1991; Bieri et al., 

2013; Campbell et al., 2014). However, these measures are unfortunately not prioritized by 

national governments in terms of funding and often left out. Additionally, not only 

establishment but also maintenance of the infrastructure is important to encourage people to 

use them. Targeting the snails population and with it, the pathway of transmission from the 

animal vector to humans, is one of the important measures for the disease control as well 

(Tchuem Tchuenté et al., 2017). Nonetheless, due to negative experience with niclosamide, 

known pollutant and widely distributed in the past, it brings to the spotlight the impact 

molluscides have on the environment. One of the solutions could be targeting only the so-

called focal hotspots- approach, which had proven to be successful in China (Rollinson et al., 

2013). Furthermore, this approach would reduce also the high costs, otherwise associated with 

mollusciding (Ross et al., 2017). To conclude, schistosomiasis will not be eliminated as a 

public health problem by 2025, as planned by the WHO; nonetheless, learning from the 

experience and carefully considering and planning the next steps, is the move in the right 

direction. 
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5.4 Mitra™: new gold standard for microsampling? 

Pharmacokinetic studies with paediatric population have become a standard part of drug 

development process in the recent years. Regulatory agencies have recognised a need for a 

tailored dose of medicaments, resulting in optimal efficacy and low adverse events for 

children and have released legislations, obliging to include studies of ADME processes in 

children, in registration dossier (Zisowsky et al., 2010). PK studies with children are not 

amongst popular and there are several reasons for it- they are typically characterised with 

invasive and painful phlebotomy, considering intensive sampling scheme and large blood 

volumes it requires, this technique is inappropriate for sampling in children (Goodenough et 

al., 1997; Patel et al., 2010; Batchelor and Marriott, 2015). Consequently, efforts have been 

aimed to find an alternative for collecting blood samples from young patients, allowing for 

lower invasiveness and still resulting in reliable and standardised quantification (Patel et al., 

2010; Altamimi et al., 2016).  

However, disadvantages stemming from this technique, such as haematocrit bias as one of the 

most important, quickly forced researchers to keep on looking for other options (De Kesel et 

al., 2015). Mitra™ is a new volumetric absorptive micro-sampling device, launched recently 

and promising to overcome the issues of DBS (Denniff and Spooner, 2014).  

We compared the performance of both techniques in the field, with regards not only to both 

practicality and work-flow, but also PZQ extraction yield (see Chapter 4). 35 SAC infected 

with S. haematobium were sampled using both DBS and Mitra™. A sample preparation 

method for PZQ with Mitra™ was developed and validated in compliance with FDA 

guidelines (FDA, 2013). It is essentially the same method as used for DBS, except with a 

shorter thermo-mixing time, reduced from 20min to 5min. Both samples were extracted and 

the concentration of PZQ enantiomers and the main human metabolite was measured using a 

validated LC-MS/MS method. The concentrations were compared for each patient using 

Bland-Altman statistics to determine if the matrices were comparable. Furthermore, PK 

parameters, namely Tmax, Cmax, T1/2 and AUC were calculated for both matrices and compared 
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as well. Additionally, we evaluated both tools regarding the practicality and usefulness in the 

field and in the laboratory conditions. 

The results are presented and discussed in details in Chapter 4. To summarise our findings, 

calibration line and quality control samples showed a strong positive correlation between both 

matrices for all three analytes, but moving to the patients’ samples, Mitra™ seemed to be 

over-estimating the concentrations. This phenomenon has previously been described, but not 

fully explained. Meister et al. described a similar situation for DBS and whole blood, where 

the concentrations of R- and SPZQ were lower compared to plasma (Meister et al., 2016). 

This could be due to the binding to plasma proteins, which is typical for PZQ (Olliaro et al., 

2014). That would mean concentrations obtained with using Mitra™ are closely related to 

plasma concentration values. Regarding usefulness and practicality of Mitra™, we confirmed 

it does carry additional advantages to those of DBS. Since no aids to transfer blood from a 

finger to the filter paper are needed, the workflow is simpler and faster (see Figure 5 and 6). 

The same goes for the laboratory work as well, where no punching is necessary and a whole 

tip can be extracted. However, the issue of incomplete soaking of the tip, an equivalent of 

insufficient spot size in DBS, remains with Mitra™ as well (see Figure 7). In addition, 

Mitra™ does not offer much of a labelling surface and consequently, the possibility of a mix-

up or sample misplacement is more likely. To overcome this issue, one can order Mitra™ pre-

labelled with barcode, allowing to have all information in an electronic database- however, it 

comes at a higher costs not only for the Mitra™ itself, but also to establish such database. To 

conclude, Mitra™ is about 4x more expensive per sample compared to DBS and since 

reliance on a single sample in PK analysis is not ideal, the overall costs of taking duplicates or 

triplicates of samples would result in much higher expenses of the sampling process. 

Therefore, cost-effectiveness must be carefully considered when selecting a suitable sampling 

method. 
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Figure 5: DBS workflow 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

 

Figure 6: Mitra™ workflow 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
Figure 7: Examples of DBS (A) and Mitra™ (B) of a bad quality from our field studies 
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This thesis aimed to study antischistosomal activity of praziquantel enantiomers (R-/SPZQ) and 

its main metabolite, R-trans-4-OH-PZQ, firstly in laboratory, including both in vitro and in vivo 

experiments with S. haematobium, the neglected species of Schistosoma spp. when it comes to 

research. We confirmed a suspected greater sensitivity of S. haematobium to PZQ compared to S. 

mansoni, with both SPZQ and the main metabolite having a non-negligible effect. Secondly, our 

work strived to translate results of the animal studies to humans- evaluation of PK behaviour of 

PZQ in paediatric population not only elucidated parameters, valuable in tailoring a treatment 

regimen for young children but also revealed influences on drug efficacy, critical to understand 

dose-response relationship. While NCA itself might not be sufficient to draw conclusions, it is a 

good building base for a PK model of RPZQ, the proposed eutomer of PZQ, which will aid to 

predict behaviour of the drug in the body using only simulations, reducing the need for invasive 

sampling. Thirdly, DBS, commonly used in PK sampling, are well known for their disadvantages 

originating mostly from haematocrit bias- thus, the aim of this thesis was to evaluate a promising 

novel micro-sampling device, Mitra™, in comparison to the current gold standard, DBS. The 

great practicality of Mitra™ was confirmed both in the laboratory and in the field; nonetheless, 

unexplained overestimation of concentrations in incurred samples compared to spiked samples, 

calls for further exploration.  

PZQ remains cornerstone of schistosomiasis treatment, although several aspects of its mechanism 

of action and dose-response relationship are not well understood. Reliance on a single drug when 

treating an infection, affecting over 200 millions of people in the tropics, is far from ideal. While 

PZQ is being widely distributed in endemic areas, not enough attention is paid to other pillars of 

successful disease control, such as sanitation and education. Last but not least, with prevalence 

rates descending and countries announcing the disease is no longer a major public health problem, 

the attention of funders and policy makers, needed now more than ever to take the next steps 

towards elimination, is fading. An integrated and persisting approach of control hand in hand with 

a greater understanding of both the target as well as the weapon, is needed to fight and eliminate 

this debilitating disease once and for all.  
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ABSTRACT   

L-praziquantel (PZQ) pharmacokinetic data were analyzed from two relative bioavailability Phase 1 studies in adult, healthy 

subjects with two new oral dispersion tablet (ODT) formulations of L-PZQ administered under various combinations of co-

administration with food, water, and/or crushing.  Linear mixed effects models adequately characterized the 

noncompartmental estimates of the pharmacokinetic profiles in both studies.  Dose, food, and formulation were found to 

significantly affect L-PZQ exposure in both studies.  The model for AUC was then extrapolated to children 2 to 5 years old 

accounting for enzyme maturation and weight.  The predicted exposures were compared to an external Phase 1 study 

conducted by the Swiss Tropical and Public Health Institute using a currently marketed formulation (Cesol 600 mg 

immediate-release tablets) and found to be substantially lower than observed.  A root cause analysis was completed to 

identify the reason for failure of the models.  Various scenarios were proposed and tested.  Two possible reasons for the 

failure were identified. One reason was that the model did not account for the reduced hepatic clearance seen in patients 

compared to the healthy volunteer population used to build the model.  The second possible reason was that PZQ absorption 

appears sensitive to meal composition and the model did not account for differences in meals between a standardized 

Phase 1 unit and clinical sites in Africa.  Further studies are needed to confirm our hypotheses. 
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Keywords:  Population pharmacokinetics, NONMEM, linear mixed effects models, root cause analysis, oral dispersion 

tablet, complex pharmacokinetics 

INTRODUCTION 

Praziquantel (PZQ) is the current gold standard treatment for schistosomiasis, one of the most 

neglected tropical diseases that remains one of the most prevalent parasitic diseases in developing 

countries.  Treatment and control of schistosomiasis is caused primarily by three main schistosome 

species, Schistosoma haematobium, S. japonicum and S. mansoni, and relies exclusively on PZQ [1].  

PZQ was co-developed by Bayer and Merck in the 1970s and commercialized under the name of 

Biltricide® 600 mg (Bayer), Cisticid® 600 mg and Cisticid® 500 mg (Merck KGaA) for human 

use. Other generic PZQ products are also marketed worldwide. Both products exist as a 1:1 racemic 

mixture with L-PZQ (or R-(-)-Praziquantel) being the biologically active enantiomer and the D-

isomer (or (S-(+)-Praziquantel) being the inactive enantiomer mostly responsible for its bitter taste [2-

4]. The absorption of PZQ from the gastrointestinal tract is nearly complete, with a peak 

concentration reached within 1 to 2 hours. Due to extensive first-pass metabolism, as little of the drug 

is excreted unchanged, almost exclusively via the renal path, PZQ has a short half-life of 1 to 3 hours 

in both healthy normal volunteers and infected adults [4].   

The prevalence of schistosomiasis among Sub-Saharan children is very high. In  2015,  53.2   million 

of 118 million school-aged children in need for treatment received preventive chemotherapy for 

schistosomiasis [5]. Current treatment is a single dose of 40 mg/kg using 500 mg or 600 mg PZQ 

tablets. The large size of the commercially available PZQ tablets makes it difficult, especially for 

young children, to swallow. Hence, PZQ in this population is mostly administered after crushing the 

tablet. While school-aged children are recognized as one of the most affected populations and 

regularly treated, pre-school children were until recently not considered. Nonetheless, it was shown 

that schistosomiasis among young children is very common and there is consensus that they should be 

included in treatment programs [6]. To address the gap of non-treatment of pre-school aged children, 
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the Pediatric Praziquantel Consortium (http://www.pediatricpraziquantelconsortium.org) was 

established under the umbrella of Lygature (Utrecht, the Netherlands) with partners from the 

pharmaceutical industry (Merck KGaA, Germany, Astellas Pharma, Japan and SimCyp, United 

Kingdom), the academic sector (Swiss Tropical and Public Health Institute, Swiss TPH), as well as 

Fiocruz foundation attached to the Brazilian Ministry of Health. The Schistosomiasis Control 

Initiative (SCI), part of Imperial College London, joined the Consortium in 2016. The consortium 

aspires to develop a new pediatric formulation of PZQ and register its use in the pediatric 

schistosomiasis indication. In the framework of the development of the pediatric formulation, two 

Phase 1 pharmacokinetic studies were conducted in healthy adult volunteers. The objectives of this 

current analysis were to characterize L-PZQ pharmacokinetics in adult, healthy subjects enrolled in 

these Phase 1 studies and to extrapolate these results to those obtained from a Phase 2 study in an 

African pediatric population infected with S. mansoni in order to determine the equivalent pediatric 

dose for use in a Phase 2 study in the target populations of children 2 to 6 years old to be conducted 

under the auspices of the PZQ Pediatric Consortium development program. 

METHODS 

Overview of Studies 200585-001 and 200661-001 

Study 200585-001 (https://clinicaltrials.gov/ct2/show/NCT02325713?term=200585-001&rank=1) 

was a Phase 1, open-label, randomized, four-period, crossover, single center trial to assess the relative 

bioavailability of a single oral dose of the new 150 mg Oral Dispersible Tablet (ODT) formulation of 

PZQ at  different dose levels vs. the current commercial 500 mg tablet formulation of PZQ in healthy 

male subjects. The primary objective of the trial was to assess the relative bioavailability of the newly 

developed racemic ODT-PZQ tablet of 150 mg dispersed in water versus the current racemate 

Cysticide® tablet of 500 mg after single oral administration at a dose of 40 mg/kg in healthy subjects 

under fed conditions.   

http://www.pediatricpraziquantelconsortium.org/
https://clinicaltrials.gov/ct2/show/NCT02325713?term=200585-001&rank=1
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Subjects were dosed in a 4-period crossover in different cohorts for logistic reasons with a 7 day 

washout between each administration of study drug. Treatments were: 

A. Racemic ODT-PZQ formulation at 40 mg/kg dispersed in water after a meal uncrushed (Period 

1 and 2) (n=30). 

B. Current PZQ formulation (Cysticide) at 40 mg/kg given with water after a meal uncrushed 

(Period 1 and 2) (n=30). 

C. Racemic ODT-PZQ formulation at 20 mg/kg dispersed in water after a meal (C1) or at 60 

mg/kg dispersed in water after a meal (C2) uncrushed (Period 3 and 4) (C1 n=14, C2 n=15). 

D. Racemic ODT-PZQ formulation at 40 mg/kg dispersed in water without a meal (D1) or current 

PZQ formulation at 40 mg/kg given as crushed tablets (using a mortar and pestle) with water after 

a meal (D2) (Period 3 and 4) (D1 n=14, D2 n=14). 

Study 200661-001 (https://clinicaltrials.gov/ct2/show/NCT02271984?term=200661-001&rank=1) 

was a Phase 1, open-label, randomized, single dose, five period, crossover, single center trial to assess 

the relative bioavailability of the 150 mg ODT formulation of L-PZQ vs. the current 500 mg PZQ 

commercial racemate tablet formulation in healthy male subjects. The ODT formulation in Study 

200661-001 was different than Study 200585-001 in that the latter was a racemic ODT and the former 

was a pure enantiomeric L-PZQ ODT. The primary objective of the trial was to assess the relative 

bioavailability of the recently developed L-PZQ 150 mg ODT tablet versus the current 500 mg 

racemate PZQ tablet (Cysticide) after single oral administration at a dose of 20 mg/kg of L-PZQ in 

healthy subjects under fed conditions. 

Subjects were dosed in a 5-period crossover in different cohorts for logistical reasons with a 7 day 

washout between each administration of study drug. Treatments were: 

A) L-PZQ ODT formulation at 20 mg/kg dispersed in water, after a meal (Period 1 and 2) (n = 36). 
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B) Current PZQ formulation (Cysticide) at 40 mg/kg given with water, after a meal uncrushed 

(Period 1 and 2) (n = 36). 

C) L-PZQ ODT formulation at 10 (C1) or 30 (C2) mg/kg (randomized 1 to 1) given dispersed in 

water, after a meal (Period 3, 4, and 5) (C1 n = 17, C2 n=17). 

D) L-PZQ ODT formulation at 20 mg/kg given dispersed in water without a meal (Period 3, 4, and 

5) (n = 35). 

E) L-PZQ ODT formulation at 20 mg/kg directly disintegrated in the mouth without water after a 

meal  (Period 3, 4, and 5) (n = 36). 

Doses in both studies were rounded to the nearest integer tablet size. So, for example, a 70 kg adult 

scheduled to receive 40 mg/kg of Treatment B, 2800 mg, would be rounded to 3000 mg (6 tablets). 

The population to be included in each study consisted of male subjects aged 18 to 55 years inclusive, 

and a body weight (BW) of 55 to 95 kg, who were certified as healthy by a comprehensive clinical 

assessment and fulfilled the inclusion and exclusion criteria. When a meal was to be administered 

with the dose in both studies, a standard high-carbohydrate meal was given consisting of a 100 g 

Breakfast cereal (All-Bran Flakes); 40 g Bread (Health Loaf/Granary); 250 g Milk (Low Fat/2% Fat, 

Fresh); 5 g Marmite, Yeast Extract; 10 g Sugar, White, Granulated. The meal contained ~75% 

carbohydrates of ~650 Calories.  Serial plasma samples for pharmacokinetic analysis were collected 

from each subject in each period in each study. The primary endpoint for each study was the 

pharmacokinetic parameter AUC0-∞ of L-PZQ assessed in plasma. 

All studies were conducted in accordance with the Declaration of Helsinki. Approval of the studies 

was done by the Medicine Control Council of South Africa and the Ethics Committee of the Faculty 

of Health Sciences, the University of the Free State, Bloemfontein. 
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Population Pharmacokinetic Analysis Using NONMEM 

Standard population pharmacokinetic (PopPK) methods and models using NONMEM (version 7.3, 

ICON Development Solutions, Ellicott City, MD) were used to analyze data from Study 200661-

001[7]. However, it became apparent during the analysis that the concentration-time profiles were not 

well-behaved and had multiple, irregular peaks (Figure 1 and Figure 2). Over a hundred models were 

examined with different absorption functions (split inputs, recycling, mixed first- and zero-order, 

etc.).  Different estimation methods were tried (FOCEI, SAEM, etc.). These peaks caused severe 

problems and after weeks of intense effort, a suitable model could not be found. Hence, further model 

development using population methods was terminated. 

Population Pharmacokinetics Using Linear Mixed Effects Modeling  

Since PopPK analysis using NONMEM failed, an alternative plan was devised. The concentration-

time data comprised a single dose and the proposed Phase 2 pediatric study also was a single dose 

study. Therefore, it was concluded that a linear mixed effect model approach using the 

noncompartmental pharmacokinetic estimates would be a viable alternative to nonlinear mixed effects 

modeling of the concentration-time profiles and would lead to the same conclusions regarding 

proposed AUC in the pediatric population.  

Noncompartmental analysis was done using Phoenix version 6.3 (Certara, St. Louis, MO).  AUC(0-

) was estimated using the linear up-log down trapezoidal method extrapolated to infinity. Cmax 

were estimated by direct examination of the data. Log-transformed noncompartmental estimates of 

AUC(0-), denoted AUC hereafter, were the dependent variables in the analysis.  Linear mixed 

effects models were used to analyze the dependent variable as a function of the covariates [8]. This 

approach can be considered to be an extension of the power model for dose proportionality with the 

addition of covariates to the model 

      covariatesLn AUC Ln Dose  .  (1) 



 

  
 

140 

All models were developed using the Mixed procedure in SAS for Windows (Version 9.3, SAS 

Institute, Cary NC). All models were fit using restricted maximum likelihood (REML). Fisher scoring 

was done if the initial model could not estimate the parameters. Each study was analyzed separately. 

First, a full model with all covariates was fit to the data. For Study 200585-0001, the covariate list 

included: log-transformed L-PZQ dose administered (DOSE), period (PERIOD), log-transformed 

weight (WEIGHT), formulation (ODT, 0=current, 1=ODT), whether the tablet was crushed (CRUSH, 

0=no, 1=yes), whether drug was administered with food (FOOD, 0=no, 1=yes), age of subject (AGE), 

and number of tablets administered (TABLETS). For Study 200661-0001 the covariate list included 

log-transformed DOSE, PERIOD, WEIGHT, ODT, drug taken with water (WATER, 0=no, 1=yes), 

FOOD, AGE, and TABLETS. Both intercept and log-transformed DOSE were treated as uncorrelated 

random effects. A simple residual covariance was assumed. Nonsignificant terms (p > 0.05 based on 

the Kenward-Rogers T-test of the parameter estimate) were removed from the model until a 

parsimonious model with only statistically significant terms (p<0.01) remaining in the model. 

Simulations and Extrapolation to a Pediatric Population 

The strategy for simulating exposures in African children (2 years to 18 years old) was as follows: 

1. Model L-PZQ AUC data from Studies 200661-001 and 200585-001 separately using a linear 

mixed effects model based on noncompartmental estimates (Eq. (1)). 

2. Establish Target AUC in Adults: Simulate L-PZQ exposure from 40, 50, and 60 mg/kg of 

current racemic PZQ formulation using model from Study 200661-001 using 1000 random 

resamples from 18 to 55 year olds weighing between 55 and 95 kg in the National Health and 

Nutritional Examination Status (NHANES) database [9]. These exposures are the reference 

exposures for comparison to children. Study 200585-001 would then be used as an external 

validation dataset in adults. 
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3. External Validation to Swiss TPH Study in S. mansoni infected Children (study details are 

given later in the section): Using the model developed for Study 200661-001, simulate L-

PZQ AUC exposures following doses of 20, 40, and 60 mg/kg of the current formulation with 

food in an African pediatric population (2 to 5 years old) and compare the results to the Swiss 

TPH study. 

4. Predict Doses in African Children to Match Adult Exposures: If Step 3 is successful then 

simulate and optimize the pediatric equivalent dose in African children for racemic ODT 

equivalent to current racemic formulation at 60 mg/kg in adults. 

5. Predict Doses in African Children to Match Adult Exposures: If Step 3 is successful then 

simulate and optimize the pediatric equivalent dose for African children L-PZQ ODT 

equivalent to current racemic formulation at 40, 50, and 60 mg/kg in adults. 

In Step 3, clearance in children (CLchildren) is expressed as 

 

0.75

70 kg
children adults

Weight
CL CL MFA

 
  

 
.  (2) 

where MFA is the degree of enzyme maturation. Hence, using the relationship AUC = F×Dose/CL 

and substituting Eq. (2) for CL, AUC in children can be modeled as: 

 
 

0.75

Predicted AUC from Adult Model in Eq. 1

70 kg

childrenAUC
Weight

MFA


 

 
 

.  (3) 

Modeling Cmax is problematic because no such equation exists. Hence, simulation of PZQ exposures 

in children was limited to AUC. 

In order to simulate the AUC in African children, the weight of the children and the degree of enzyme 

maturation (MFA) relative to adults must be accounted for[10]. To account for weight, age was varied 

in the simulations and the weight of the African child was imputed using growth charts reported by 
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the Liverpool School of Tropical Medicine [11], hereafter called the Liverpool dataset. MFA, which 

was provided by Simcyp within the Pediatric Praziquantel Consortium, was used to correct for 

enzyme maturation in very young children and was calculated on the basis of the ontogenies of each 

CYP isoform involved in the metabolism of L-PZQ and the fraction of L-PZQ clearance mediated by 

each CYP isoform determined from scaling in vitro metabolism data provided by Merck KGaA (data 

on file).  Eq. (4) to (8) describe the maturation of CYP isoforms involved in the metabolism of L-PZQ 

as a fraction of the adult abundance based on AGE: 

 

  

1.73

1.73 1.73

1.47
0.24 if age < 2

1 2 0.36

0.83 0.79exp 0.06 1.8 if age 2

AGE

CYP A AGE

AGE

 


  
    

  (4) 
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
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
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  (6) 
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External Comparison to Swiss TPH Study  

After completion of the analysis and all simulations of Steps 1 and 2, the results were compared to the 

observations from a randomized, single blind, parallel group Phase 2 study in African preschool (2 to 

5 years old) and school-aged (6 to 11 years old) S. mansoni patients [12]. In this study, children were 

randomized to receive a single-dose of placebo, 20, 40, or 60 mg/kg racemic praziquantel (Cesol 600 

mg tablets, Merck KgA). Praziquantel was administered based on weight (to the nearest half  tablet, 

respectively), which was measured during the physical examination before treatment. For the 

preschool children the tablets were crushed and mixed with 20-50 mL syrup-flavored water to mask 

the taste. A standardized food item (sandwich with butter or fishpaste) was provided before treatment. 

Dried blood spots were collected at 0, 0.5, 1, 1.5, 2, 2.5, 3, 6, 8, 12, and 24 h after dosing and 

analyzed for L- and D-praziquantel concentrations (linear calibration range of 0.01 to 2.5 µg/mL), as 

well as its active metabolite trans-4-hydroxypraziquantel, using a validated, enantioselective LC-

MS/MS method [13]. L-PZQ AUC results are presented here. These were compared to the predictions 

based on the linear mixed effect models developed in Steps 1 and 2. To make the comparisons valid, 

the raw noncompartmental results from that study were corrected for crushing of tablets (+20% 

multiplier, value taken from Treatment Arm D2 in Study EMR200585-001) and for use of dried blood 

spots as the bioanalytical matrix (+10% multiplier, value from [14]). 

Results 

Description of Observed Data  

Study 200585-001: A total of 119 noncompartmental estimates of AUC from 32 subjects were 

available for analysis. Subjects ranged in age from 21 to 44 years with a mean of 29.0 years and from 

53.5 to 91.6 kg in weight with a mean of 71.7 kg. The number of tablets administered (for both the 

current formulation and ODT formulation) ranged from 4 to 25 with a mean of 12.6. The number of 

subjects per treatment is shown in Table 1. Of all 32 (100%) healthy male subjects included in the 
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trial 19 subjects (59.4%) were Black or African American, 11 subjects (34.4%) were White and 2 

subjects (6.3%) were of other races. 

Study 200661-001:  A total of 177 noncompartmental exposure parameters of AUC from 36 subjects 

were available for analysis. Subjects ranged in age from 19 to 47 years with a mean of 26.3 years and 

ranged from 55.2 to 87.8 kg in weight with a mean of 69.4 kg. The number of tablets administered 

ranged from 8 to 12 with a mean of 9.5. The number of subjects per treatment is shown in Table 1.  

Of all 36 healthy male subjects included in the trial, 27 subjects (75.0%) were Black or African 

American, 6 subjects (16.7%) were White and 3 subjects (8.3%) were of other races. 

Swiss Tropical and Public Health Institute Study: A total of 28 to 33 AUC measurements per 

treatment group (95 children in total) ranging in age from 2 to 5 years old, treated with 20, 40 and 60 

mg/kg, and ranging in weight from 8.0 to 22.3 kg were used for our analyses. 

Model Development using Nonlinear Mixed Effect Modeling with NONMEM in Study 

200661-001 

A total of 977 observations were available from 36 individuals from Study 200661-001. The 

concentration-time profiles for L-PZQ were erratic within and across subjects. Dozens of models 

using population pharmacokinetic methods were tested with a variety of absorption models. No 

acceptable base model could be found. The reasons for failure were myriad, but were predominantly 

due to  unacceptable goodness of fit or convergence failure. As such, no model development was 

attempted for Study 200585-001. 

Modeling of AUC Estimates Using Linear Mixed Effect Models in SAS 

Study 200585-001: The Akaike Information Criterion (AIC) for the full model with all covariates was 

154.5. The best model, which had an AIC of 139.2, was one where only log-transformed DOSE and 

FOOD were included in the model. All other terms were not statistically significant (p > 0.01).  The 

parameter estimates for the AUC model are shown in Table 2. Goodness of fit plots for the model are 

shown in Figure 3. The best fit AUC model was: 



 

  
 

145 

   L-PMod ZQ el Ln A Dose iUC  9.99 2. n mg3 Ln  0.81 FOOD        (10) 

which in the original domain can be written as: 

   
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

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(11) 

Eq. (11) can also be expressed in terms of apparent oral clearance. It was assumed that the effect of 

Food would be manifest through its effect on F. Eq. (11) was then rewritten as 

   
2.3 2.3

22026

2.25FOOD

DOSE DOSE
AUC

CL

F

  . 

(12) 

These results showed that the presence of food increased AUC by 125% and that the dose-AUC 

relationship was supraproportional. They further showed that none of the other available covariates 

(age, weight, number of tablets, etc.) significantly influenced AUC. 

Study 200661-001: The AIC for the full model with all covariates was 288.2. The best model, which 

had an AIC of 269.0, was one where only log-transformed DOSE, ODT formulation, and FOOD were 

included in the model. All other terms were not statistically significant (p > 0.01). The parameter 

estimates in the AUC model are shown in Table 2. Goodness of fit plots for the model are shown in 

Supplemental Figure 1. The best fit AUC model was: 

   L-PZQ Model DosLn AUC  7 e.52 2.0 Ln 0.81 ODT  0.62 FOOD          (13) 

Which in the original domain can be written as: 
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   
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(14) 

These results showed that the presence of food increased AUC by 86%, that there was a 55% decrease 

in AUC with the L-PZQ ODT formulation, and that the dose-AUC relationship was 

supraproportional. They further showed that none of the other available covariates (age, weight, 

number of tablets, etc.) influenced AUC. 

External Comparison to Swiss TPH Study 

Aggregate noncompartmental pharmacokinetic data from the Swiss TPH study were used from 95 

patients. The results for total AUC stratified by total dose are shown in Table 3.   

Extrapolation and Simulation of Pediatric Exposures 

L-PZQ exposures in adults were simulated at doses of 40, 50, and 60 mg/kg with the current racemic 

formulation when administered with food and water using the NHANES adult database and the model 

from Study 200661-001 (Step 2 of the Simulation). Because of high variability of the tails of the 

distribution, the upper and lower tails were trimmed by 10% prior to data summarization. The 

observed and trimmed simulated results are presented in Table 3. Note that the observed target AUC 

in adults from 200661-001 study was 2066 ng*h/mL. The model did a reasonable job of predicting 

total AUC and was within 20% relative error for the median prediction.   

The next step (Step 4) was to simulate doses of 20, 40, and 60 mg/kg of the current formulation with 

food using an African pediatric population and compare the results to the Swiss TPH study.  

Supplemental Figure 2 presents a band plot of weight as a function of age in Africans and its 

comparison to Western subjects in the US NHANES database. Although the growth trajectories are 

similar, the weight of Africans is smaller than Western population. This importance of this difference 
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will manifest itself later in the dose requirements for Africans requiring smaller doses than their 

Western counterparts.  Supplemental Figure 3 presents a scatter plot of the observed doses used in the 

clinical studies compared to the simulated doses based on the Liverpool weight data. The simulated 

subject weights using the Liverpool dataset were similar to the observed subject weights in the Swiss 

TPH study confirming the validity of the Liverpool dataset to estimate age-specific weights in African 

children. 

Figure 4 presents a series plot of the effect of MFA on clearance in children (using the MFA equation 

used in this analysis compared to a published CYP3A4 MFA function published by Anderson and 

Larsson [15] as a function of age. Although the effect of MFA tends to plateau around 2 years of age, 

the overall effect on clearance, as reflected by the product of MFA and weight, doesn’t asymptote 

until well into adulthood and is predominantly linear in nature until then. Based on the results of the 

modeling of noncompartmental parameters from Study 200661-001, Eq. (14) was modified to 

incorporate the allometric effect of weight and effect of MFA in young children: 
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Figure 5 presents the observed AUC in Study 200585-001, 200661-001, and the Swiss TPH study 

compared to simulated values under the model developed using Study 200661-001. The model 

predicted values were significantly less than observed values from the Swiss TPH study. Simulated 

median AUC was underpredicted by ~10-fold compared to observed values from the Swiss TPH 

study. At this point further modeling and simulation efforts ceased because, despite our best efforts, a 

suitable model that could reliably extrapolate to a pediatric population could not be developed. 
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Discussion 

Failure Analysis – Post-Mortem 

It was clear from the results of the Swiss TPH study that the predicted exposures in African children 

extrapolated from the adult model were significantly lower than the observed results of the Swiss 

TPH study and that a dose of 40 mg/kg of the current formulation in African children would provide 

equivalent exposure as 40 mg/kg of the same formulation in adult Western healthy volunteers. The 

question is why? Either the model was “wrong” and the predictions from the model were too low or 

the model was “right” and the observed data were higher than expected. Were there clues that might 

have told us to be wary of the simulation results? Maybe. In hindsight.   

After it was realized that the modeling results were not successful, a root cause failure analysis 

(RCFA) was undertaken to look for possible reasons for the failure. RCFA has its origin in the NASA 

program to understand why rockets failed in their launches [16]. One definition of root cause analysis 

is [16]: 

“The primary aim of root cause analysis is: to identify the factors that resulted in the 

nature, the magnitude, the location, and the timing of the harmful outcomes 

(consequences) of one or more past events; to determine what behaviors, actions, 

inactions, or conditions need to be changed; to prevent recurrence of similar harmful 

outcomes; and to identify lessons that may promote the achievement of better 

consequences. ("Success" is defined as the near-certain prevention of recurrence)”. 

A brainstorming session was held and a number of factors were identified as possible causes: 

1. The model was “wrong” and predicted exposures were lower than expected, or 

2. The model was “right” but the observed Swiss TPH exposure data were higher than expected 

because of: 
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a. Differences in the study population (healthy volunteers vs patients); 

b. Differences between crushed tablets and intact tablets, number of tablets 

administered, or solubility saturation; 

c. Differences in the meal composition;  

d. Differences in bioavailability between adults and children; and/or 

e. Differences in biological matrix (plasma vs dried blood spot). 

Each factor was examined and either accepted or rejected as a possible factor:   

1.)  Could the model have been “wrong”? Could the discrepancy between simulated and observed 

exposures be explained by an inadequate model? Without going into the semantics of all models 

being wrong, could the extrapolation of adults to children resulted in predicted exposures that 

were too low? It should be pointed out that this was the first and immediate reason team members 

used to explain the discrepancy because the modeling approach that was used was not a standard 

approach and because “it’s a model.” The typical pediatric extrapolation approach is to first 

model the concentration-time profiles using PopPK and then extrapolate to children using an 

allometric scaling factor on clearance to account for differences in weight and, in really young 

children, to use a maturation factor to account for differences in enzyme immaturity. The 

approach herein modeled the AUC directly, and by extension, clearance indirectly since an 

adequate PopPK model could not be developed due to the erratic nature of the concentration-time 

profiles in adults. Since only a single dose of PZQ is given therapeutically, these approaches 

should have produced equivalent results. Indeed, the LMEM was very good at predicting the 

observed data in adults across all treatment arms. It may be that the traditional allometric scaling 

correction and maturation function used in this analysis do not apply to African children. There is 

only 1 report in the literature that we could find related to pediatric extrapolation in an African 

population. Zvada SP et al. [17] reported on the successful extrapolation of rifampicin, 
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pyrazinamide, and isoniazid exposures in African children with tuberculosis. For those 3 drugs 

the authors used the standard allometric equations to scale down clearance from adults to children 

and used a maturation function to account for age-related differences in children less than a year 

old. The maturation function was defined by a Hill model that starts from zero and asymptotes to 

an adult value of 1, and in which the values of TM50 (the age at which maturation is 50% of the 

adult value) and Hill (the slope coefficient) were fitted to the available data [18]. Our analysis 

used similar extrapolation methods as Zvada et al., although our maturation function was different 

than theirs, so the likelihood that extrapolation functional differences explain the discrepancy is 

low.   

We also questioned whether the population-extrapolation approach is universally successful. It 

could be that the PopPK approach, which works often in practice, has led to an unreasonable 

expectation that, due to publication bias, this approach will work uniformly for all drugs in every 

case. Certainly there is this impression in the literature as any example of extrapolation failure 

could not be found on PubMed and it does seem unlikely that any single method would work 

universally in every case for every drug. Bonate and Howard [19] stated that the predictability of 

human pharmacokinetic parameters from allometric scaling of animals to man was overly 

optimistic because of a positive publication bias in the literature and yet here we are again, almost 

20 years later, suggesting that allometric scaling of adult data to pediatrics might have the same 

bias, but may still be correct.   

Another suggestion was that the simulations were based only on the model developed from the 

200585-001 data and that perhaps a model using all the data from both studies would result in 

better predictions. A secondary analysis was completed after this suggestion was made and the 

results are shown in Supplemental Model 1. Using a combined model did not improve predictions 

– there was still a wide discrepancy between observed and predicted exposures. In the end, it’s 
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impossible to say with certainty if the discrepancy was due to model failure without another 

external dataset to validate against. 

2a.) The other reason for the discrepancy could be broadly categorized as the model was “correct” but 

the observed data in African children was higher than expected. There were many differences in the 

study design and populations used to develop the model and the target population the model would be 

extrapolated to. The model was built using data from a well-controlled, Phase 1 adult, Western South 

African population and was being extrapolated to a pediatric infected African population. Could the 

differences be explained by race? It seems unlikely. In Study 200585-001, 59% of the subjects were 

Black, while in Study 200661-001 the number was 75% Black. While the Phase 1 results were largely 

based on a Black study population, it seems reasonable to generalize the results to all Black Africans 

on face-value. A second factor considered were differences in subject weight. The simulations used a 

dataset developed by the University of Liverpool to simulate a given weight based on a given age 

range. If the weight ranges in the Liverpool dataset were not representative of the weight ranges used 

in the Swiss TPH study then different exposures could have been obtained. But examination of the 

simulated weights and observed weights in the Swiss TPH study revealed them to be similar 

(Supplemental Figure 3), ruling this out as a possibility.   

A third factor considered was that the Western adult studies were in healthy volunteers while the 

Swiss TPH study was in infected children. Mandour et al. [20] studied the differences in PZQ 

pharmacokinetics in healthy volunteers and Sudanese schistosomiasis patients with different grades of 

liver impairment using the Distocide®  and Biltricide® formulations. Large differences in exposure 

were seen related to the degree of liver impairment. For example, AUC was 4- to 5-times higher in 

severely impaired patients (Child Pugh C) than healthy volunteers after administration of 40 mg/kg 

Biltricide (15928 vs. 3823 ng*h/mL, respectively). Watt et al. [21] reported similar finding in Filipino 

patients with a disease-dependent increase in exposure with severe (AUC24 = 37.8 g*h/mL) > 

moderate (AUC24 = 22.9 g*h/mL) > unapparent (AUC24 = 8.9 g*h/mL) hepatic disease. Since 
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schistosomiasis causes periportal fibrosis and liver cirrhosis due to deposition of eggs in the small 

portal veins [22], an increase in AUC in the disease state seems entirely reasonable, although the 

disease in young children is generally not accompanied by liver abnormalities. In addition, 80% of 

preschool children analyzed in the Swiss TPH study harbored light infections [12], hence liver 

abnormalities are not expected.   

And lastly, it was considered was that PZQ absorption is sensitive to gastrointestinal (GI) pH.  

Sammon et al. [23] showed that in rural South African adults the mean 24 h stomach pH was 2.84 and 

at night was as high as 3.7, which was considerably higher than historical data in Western subjects.  

Reaching pH levels seen after cimetidine administration (pH 3.1 to 6, cimetidine package insert), 

higher basal stomach pH in African children may have contributed to higher than expected absorption 

and higher than expected exposure in the Swiss TPH study. Therefore, there were differences in the 

patient population that could explain part of the differences in the predicted exposures simulations. 

 

2b.) Another possible reason for the difference could have been differences in absorption and 

bioavailabilty due to crushing, the number of administered tablets, or solubility saturation. In the 

Swiss TPH study, the PZQ tablets were crushed prior to administration in preschool aged children.  In 

Study 200585-001, crushing decreased the L-PZQ AUC by 18% (90% CI: 31% to 2%) for the 

marketed formulation Cysticide. Hence, crushing decreased absorption, it did not increase it.  

Therefore, the effect of crushing could not account for the larger than expected exposures seen in the 

Swiss TPH study. 

Maybe the difference could have been due to the number of tablets administered? In Study 200585-

001, a large number of tablets were administered, 7 to 35 for the ODT formulation and 4 to 8 with 

Cysticide. In Study 200662-001, 5 to 7 Cysticide tablets and 4 to 17 ODT tablets were administered.  

For the Swiss study, 1 to 3 tablets were administered. Administration of a large number of tablets 

could result in a different dissolution profile and change the oral absorption of the drug. This 
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hypothesis was put forth early as a reasonable explanation. However, statistical analysis of the 

200585-001 and 200662-001 data did not detect any effect of number of tablets administered, i.e., the 

number of administered tablets did not affect exposure. Therefore, this seems an unlikely reason for 

the difference in exposures. 

Related to this was the hypothesis that PZQ saturation in GI fluids and its effect on absorption was the 

reason for the difference. PZQ is a Biopharmaceutics Class System (BCS) II drug meaning it has high 

permeability, low solubility and dissolution is the rate-limiting step in the absorption of PZQ. The 

therapeutic dose of 40 mg/kg in a 70 kg adult is around 3000 mg, which is quite high. With a water 

solubility of 0.38 mg/mL (https://www.drugbank.ca/drugs/DB01058) and a fasted state simulated 

intestinal fluid (FaSSIF) solubility of 0.26 mg/mL (Fagerberg JH et al., 2015), this means that in 70 

kg adults receiving a dose of 2800 mg, drinking a water volume of 250 mL, only 95 mg of drug is in 

solution at any given time with more than 97% of the dose initially not in solution (Figure 6). In a 5 

yr. old child weighing 13 kg who received a dose of 500 mg drinking a water volume of 50 mL 

(Shawahna R, 2016), 19 mg PZQ is in solution (~3% of the dose). One hypothesis assumed that with 

the bulk of drug being undissolved in the stomach and since water in the GI tract is not uniform but 

found in pockets [24], the erratic concentration-time profiles with multiple peaks could be explained 

by drug solubilization in water pockets and subsequent absorption, or by non-documental additional 

water intake by the subjects. But again, since the 80% of the drug is absorbed, despite a large amount 

of initially undissolved drug, sink conditions on the basolateral side of the enterocytes during 

intestinal absorption would provide an explanation for the amount of drug-related material absorbed, 

and thus it seems unlikely that an increase in F in children would result in the kind of exposure 

discrepancy that was observed  

 

2c.) There were also differences in the meal composition between the Western adult studies and Swiss 

TPH study that may have led to a difference in predicted exposures. The Western adult studies used a 

https://www.drugbank.ca/drugs/DB01058
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standard high-carbohydrate meal, while the Swiss TPH study used a sandwich with butter or 

fishpaste, which is more towards a high fat meal. Castro et al. [25] showed that PZQ 

pharmacokinetics were dependent on the composition of the meal. A standard high fat meal increased 

AUC by 172% and Cmax by 212% compared to the fasting state, but a high carbohydrate meal 

increased AUC and Cmax even more, 298% and 484%, respectively. It is possible that  differences in 

meal type between studies could account for some of the differences between the observed Swiss 

TPH results and predicted exposures.   

2d.) Another reason for the discrepancy could be related to differences between adults and children in 

oral absorption and first pass metabolism. It is assumed in any pediatric extrapolation that oral 

bioavailability (F) is the same in adults and children such that apparent oral clearance (CL/F) scales 

with weight. This works only if F is a constant between adults and children. Often this assumption is 

left unsaid in manuscripts and in presentations but it is a critical assumption. The correction using 

weight and maturation factors during the extrapolation process are for changes in total systemic 

clearance (CL) with age. There are no corrections for F with age, despite there being known 

differences in young children, particularly very young children less than a year of age [26]. Is F a 

constant in adults and children for PZQ? Patzschke et al. [27] showed that following a standard 

breakfast (200 mL water, 1 roll with margarine, boiled ham, and a cup of coffee), renal excretion after 

a radioactive dose of 46 mg/kg PZQ was 80  6%. Therefore, the fraction of dose absorbed, either as 

parent drug or metabolites, must be at least 80%. Hence, while there might be some role for 

differences in F, it seems unlikely to explain the discrepancy. Related to this explanation is another 

possibility that adults may have a clearance pathway that school-aged children do not. Although CYP 

pathways mature by 2 years of age, it’s possible there is an extra-hepatic pathway that hasn’t fully 

matured yet. There is no experimental evidence for this nor are there examples such pathways exist, 

so this possibility cannot be confirmed. In total, differences in first pass metabolism and oral 

absorption seem an unlikely cause to explain the simulation differences. 
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2e.) Another explanation could have been that the Swiss study used dried blood spots as the sample 

matrix and the Western studies used plasma. This was quickly ruled out because the analytical 

methods were both validated and were largely interchangeable with only a 10% difference in 

measured concentrations (plasma was slightly higher than DBS)[14]. 

Conclusions 

Because of the erratic nature of the concentration – time profiles, a suitable population 

pharmacokinetic model could not be developed using standard nonlinear mixed effect models. Using 

linear mixed effect modeling of the noncompartmental estimates for AUC a suitable predictive model 

could be developed, which produced parameter estimates consistent with the statistical analysis of the 

noncompartmental estimates. However, when this model was used to extrapolate to a pediatric 

population, the simulated exposures were ~10-fold lower compared to results obtained from a clinical 

study in the population of interest (the Swiss TPH study). A post-mortem afterwards suggested 

possible reasons for this difference, with differences in the meal composition and study populations 

being of sufficient magnitude to explain the discrepancy.  

Root cause analysis highlighted a number of important considerations that are not often made or 

reported in the literature. First, pediatric extrapolation likely has a publication bias – negative studies 

where the extrapolation has failed are not reported. Journals need to encourage publication of failed 

pediatric extrapolations so that modelers can learn from them and not make the same mistakes next 

time. Second, a very important assumption made in pediatric extrapolation is constant oral 

bioavailability from adults to children. The allometric scaling equation and maturation function were 

designed to work for scaling total systemic clearance assuming absorption is a constant in adults and 

children. This may or may not be the case for every drug. Shawahna [28] showed that the 

Biopharmaceutics Classification System Class can change from adults to children due to differences 
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in gastric volume and, if this is the case, it seems likely that bioavailability may change as well. This 

factor should be at least considered in any pediatric extrapolation. 

Study- and population-related differences seem the most likely cause to explain the difference 

between the observed and simulated data (Table 4). Two of them, patients vs. healthy volunteers and 

differences in meal composition, were of sufficient magnitude to suggest that these differences seen 

in published accounts could explain the discrepancy. Could all or some of these factors have played a 

role? Yes. But it is impossible to identify with any certainty the reasons for the discrepancy. The 

reasons do lead to possible future studies and hypotheses to be tested. 

While the idea of a root cause analysis to identify the reasons for model failure is useful, one must be 

careful not to put too much weight in their results because of confirmation bias. We know that the 

simulated and observed exposures were off by about 10-fold. So going back and looking for factors 

that might lead to a 10-fold increase in exposure and bring the exposure predictions in agreement with 

the observed Swiss TPH results is self-confirmatory. In  other words, we look for reasons that are in 

agreement with our 10-fold discrepancy and rule out those that don’t increase agreement between 

observations and predictions. Nevertheless, the root cause analysis did identify some factors and 

assumptions that might be useful to test and control in future pediatric extrapolations. These include a 

careful examination of differences in pharmacokinetics between healthy volunteer and patients, 

differences in drug administration and possible changes in BCS Class between adults children, and an 

examination that oral bioavailability is a constant between adults and children. 
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Tables 

 

Table 1: Number of Subjects for Each Treatment Group by Study 

 

Study Treatment Formulation Dose 

(mg/kg) 

With 

Water 

Fast 

or Fed 

Crush 

Tablets 

Number of 

Subjects 

200585-

001 

A Racemic 

ODT 

40 Water Food No 31 

 B Current 

Formulation 

40 Water Food No 31 

 C1 Racemic 

ODT 

20 Water Food No 14 

 C2 Racemic 

ODT 

60 Water Food No 15 

 D1 Racemic 

ODT 

40 Water Fasting No 14 

 D2 Current ODT 40 Water Food Yes 14 

200661-

001 

A L-PZQ ODT 20 Water Food No 36 

 B Current 

Formulation 

40 Water Food No 36 

 C1 L-PZQ ODT 10 Water Food No 17 

 C2 L-PZQ ODT 30 Water Food No 17 

 D L-PZQ ODT 20 Water Fast No 35 

 E L-PZQ ODT 20 ---- Food No 36 
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Table 2: Parameter Estimates from Best Linear Mixed Effect Models For L-PZQ AUC in Healthy 

Volunteers Enrolled in Studies 200585-001 and 200661-001 

Study Parameter Estimate Standard Error T-test p-value 

200585-001 Intercept -9.99 0.850 -11.76 < 0.0001 

 Ln-DOSE 2.30 0.116 19.9 < 0.0001 

 Food 0.811 0.0956 8.49 < 0.0001 

 Var(Intercept) 0.209    

 Residual 

Variance 

0.0972    

200661-001 Intercept -7.52 0.930 -8.09 <0.0001 

 Ln-DOSE 2.01 0.126 15.98 <0.0001 

 ODT 

formulation 

-0.81 0.0746 -10.85 <0.0001 

 Food 0.62 0.0754 8.17 <0.0001 

 Var(Intercept) 0.372    

 Residual 

Variance 

0.148    
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Table 3: Comparison of Observed and Simulated L-PZQ AUC Estimates 

 

Dose 

(mg/kg) 

Observed 

Study 200661-

001 

Simulated Using Model 

200661-001 

STPHI Study 

20   2730 

(489-17871) 

40 2066 

(660-6746) 

2164 

(599 – 7893) 

3256 

(726-7987) 

50  3474 
(1011-11666) 

 

60  5101 

(1427-17235) 

5567 

(855-22822) 
Data are reported as mean (range).   
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Table 4: Root Cause Analysis 

 

Reason Possible 

Magnitude of 

Effect 

Likelihood to Explain 

Discrepancy 

Model was “wrong”   

 Use of LMEM was not appropriate Small Unlikely (but unknown 

for sure) 

 Allometric scaling was inappropriate Unlikely Unlikely 

 Wrong maturation factor used Unlikely  Unlikely 

 Did not use all the data Small  Unlikely 

 Differences in infected patients and healthy 

volunteers not accounted for in model 

Small to 

Large 

Possible to Likely 

   

Study results were higher than normal   

 Racial differences (Western vs. African, 

Caucasians vs Blacks) 

Small Unlikely 

 Weight differences Small Unlikely 

 Healthy volunteers vs infected patients High Likely 

 Differences in meal types High Likely 

 Differences in stomach pH between Western 

and African patients 

Small Possible 

 Extrahepatic metabolic pathway in adults not 

seen in children 

Small to 

moderate 

Unlikely 

 Crushing of tablets in Swiss TPH study Small Possible 

 Differences in oral bioavailability between 

adults and children 

Small Possible 

 Differences in analytical methods Small Unlikely 

 Number of tablets administered Small Unlikely 

 Differences in PZQ saturation in GI tract 

between adults and children 

Small Unlikely 
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Index to Figures  

Figure 1.  Spaghetti plot of L-PZQ concentration-time profiles after oral administration in Study 

200585-001 stratified by treatment.  Black line is the median concentration.  Gray lines are individual 

subjects. 

Figure 2.  Spaghetti plot of L-PZQ concentration-time profiles after oral administration in Study 

200661-001 stratified by treatment.  Black line is the median concentration.  Gray lines are individual 

subjects. 

Figure 3.  Goodness of fit plot for L-PZQ AUC model for Study 200585-001.  Upper left: red line is 

the LOESS smooth to the data.  Symbols are by treatment.  Upper right: blue line is standard normal 

distribution, red line is kernel smooth to the empirical data.  Lower left: black line is line of unity, red 

line is LOESS smooth.  Symbols are by treatment.  Lower right: QQ plot of residuals; blue line is 

theoretical normal distribution line. 

Figure 4.  Effect of allometric weight and MFA, as calculated by two different methods (SimCYP 

method used in this analysis and CYP3A4 function reported by Anderson and Larrson [15], on 

clearance in Africans. 

Figure 5.  Forest plot comparing the observed L-PZQ AUC in Study 200585-001, Study 200661-001, 

and the Swiss Tropical and Public Health Institute Study to simulated AUCs based on the model 

developed using Study 200661-00.  Each box is the 1st and 3rd quartile.  The middle line in the box is 

the median (2nd quartile).  The diamons are the mean. The whiskers are 1.5 times the inter-quartile 

range. 

Figure 6:  Cartoon of drug dissolution in the stomach of adults and children.  It should be noted that 

dissolution can also take place in the intestine. 
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Index to Supplemental Figures 

Supplemental Figure 1.  Goodness of fit plot for L-PZQ AUC model for Study 200661-001 

Supplemental Figure 2.  Weight as a function of age in Africans as reported by Hayes et al. (2015) 

and comparison the US NHANES database. Band is the 5rd and 95th percentile for Africans. Solid 

blue line is the median for Africans.  NHANES data are reported as red symbols.  Red line is the loess 

smooth to the NHANES data. 

Supplemental Figure 3.  Total dose administered in Study 200585-001, Study 200661-001, and the 

Swiss Tropical and Public Health Institute Study compared to simulated doses using the current 

formulation 
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Figure 2. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Supplemental Figures 

Supplemental Figure 1. 
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Supplemental Figure 2. 
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Supplemental Figure 3. 
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SUPPLEMENTAL MODEL 1 

A criticism of the analysis was the initial decision to model the 200585-001 and 200660-001 data 

separately and then base the pediatric extrapolation solely on Study 200585-001.  A later analysis was 

conducted wherein a combined data model was developed using the same methods (with one 

exception) and procedures as before and then base the simulation on the joint model. In order to 

account for the differences in ODT formulations between studies, ODT was added as categorical 

factor in the linear mixed effects model (0=current formulation, 1=Racemic ODT, 2=L-PZQ ODT), 

as was STUDY (0=200585, 1=200660).  Under the joint model, a total of 296 observations were 

available from 32 subjects in Study 200585-001 and 36 subjects from Study 200660-001. 

 

AUC:  The AIC for the full model with all covariates was 416.4.  The best model, which had an AIC 

of 409.2, was one where only log-transformed DOSE, ODT, and FOOD were included in the model.  

All other terms were not statistically significant (p > 0.01), including STUDY.  The parameter 

estimates for the AUC model are shown in Supplemental Model Table 1. Goodness of fit plots for the 

model are shown in Supplemental Model Figure 1.  The best fit AUC model was: 

   

0 Current formulation

Model Ln AUC  8.54 2.13 Ln  0.667 FOOD 0.0794 L-PZQ ODT

0.776 Race

D

mic ODT

ose




       
 

  

(1) 

In a comparison to the fixed effects of the two individual study-specific models, the fixed effect 

estimates were quite comparable.  What wasn’t comparable was the intercept, which in the combined 

data model was a weighted mean of the intercepts from the study-specific values. 

Extrapolation and Simulation of Pediatric Exposures: A repeat of the simulations using the 

combined models showed similar results to results obtained using the study-specific model 

(Supplemental Model Figure 2).  These results showed that a combined model did  not improve the 

accuracy of the predictions and that there was still a discrepancy between the observed Swiss TPH 

data and the predicted data. 
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Supplemental Model Table 1: Parameter Estimates from Best Linear Mixed Effect Models Under the 

Combined Data Model for L-PZQ AUC 

Parameter ODT Estimate Standard Error T-test p-value 

Intercept  -8.54 0.653 -13.08 < 0.0001 

Ln-DOSE  2.13 0.0884 24.14 < 0.0001 

ODT Current 0 ---   

 Racemic -0.079 0.0690 -1.15 0.2504 

 L-PZQ -0.776 0.0657 11.87 < 0.0001 

Food  0.668 0.0601 11.13 < 0.0001 

Var(Intercept)  0.290    

Residual Variance  0.130    
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Figure 1 For Supplemental Model 

 

 

Goodness of fit plots for L-PZQ AUC under the combined data model. 
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Figure 2 For Supplemental Model 

 

 

Comparison of observed L-PZQ AUC in Study 200585-001, Study 200661-001, and the Swiss Tropical and 

Public Health Institute Study to simulated L-PZQ AUC based on the combined data model.   
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