ANALYSIS OF DYNAMICAL HEAT CONDUCTIVITY OF THE RESERVOIR AND FLUID EVACUATION ZONE ON THE GAS CONDENSATE WELL FLOW RATE

K. F. Anzian, MSc, M. I. Fyk, PHD

Національний технічний університет «Харківський політехнічний інститут» 61002 Харків, вул. Кирпичова, 2 <u>mfyk@ukr.net</u>

The equation of the inflow of the gas condensate mixture from the production formation to the wellbore is recorded using the filtration coefficients A, B and constant C, which generally determine the volume of natural gas extraction for a certain period [1], after input by according to our offer $K_{ng}:=(1-:-2)$, in SI unit

Comparison of the results of the heat flux values, using thermal conductivity [2], shows that the failure to take into account the influence of reservoir average pressures $P_{rav} = f(P_{pl}, P_{bh})$ and average temperatures $T_{rav} = f(T_{pl}, T_{bh})$ on the thermal conductivity of sedimentary rocks leads to an overestimation or undervaluation of the heat flow $Q=f(\Delta T_{he})$ by

$$T_{pl}-T_{bh} = D_j (P_{rav}, T_{rav}, \Delta P) \cdot (P_{pl} - P_{bh}) + \Delta T_{he} (P_{rav}, T_{rav}, \Delta T)$$
(2)

Light oil well extraction required less heat exchange surface, and guaranty a more intense heat transfer during production. An increase in the percentage of hydrocarbon condensates (in a gas-liquid mixture - well production) requires an even closer examination of the dynamical heat conductivity of the reservoir rock on the gas condensate flow rate.

References

1. Istomin V.A Non-isothermal filtration of gas in the bottomhole formation zone / V.A. Istomin // Scientific and Technical Collection of GAS SCIENCES. No 4 (15). 2013. p.132-141.

2. Kurbanov A.A The joint effect of reservoir temperatures and pressures on the thermal conductivity of fluid-saturated reservoirs // Mat. of reports V International. "New Ideas in Earth Sciences". Moscow, 2005. P.176.