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ABSTRAC T 

Overabundant western grey kangaroo Macropus fuliginosus are known to impact agriculture, but 

how are they impacting threatened fauna sharing their habitat? In Paruna Wildlife Sanctuary, 

southwest Western Australia, kangaroos are suspected of competing with the sympatric and 

endangered black-flanked rock-wallaby Petrogale lateralis lateralis, however there is no research 

to support this. If kangaroos are negatively impacting rock-wallabies, kangaroo densities may need 

to be managed to ameliorate competitive pressures on rock-wallabies. We investigated the 

potential for dietary competition between M. fuliginosus and P. l. lateralis by measuring the overlap 

in their diets and foraging patches, as well as food resource availability. A combination of scat 

analysis, motion sensor camera trapping and vegetation surveys were employed. Petrogale 

lateralis lateralis diets were dominated by forbs and overlapped with those of M. fuliginosus which 

featured mostly browse and forbs (Schoener index: 0.56). Some of their shared preferred food 

resources were spatially and/or temporally limited. Their foraging patches also overlapped (33.9%), 

however these macropod species predominantly used different areas of the outcrop. Evidence over 

the duration of the study indicates potential for low levels of dietary competition, however the 

availability of shared food resources and resource partitioning suggest that P. l. lateralis were not 

being adversely impacted. In terms of the threatening processes limiting P. l. lateralis recovery, 

predation has been ranked higher than competition, a finding that is likely supported by the present 

study. This will likely remain true even if M. fuliginosus densities increase in the future. 

Conservation actions should therefore continue to prioritise the mitigation of predation threats to 

P. l. lateralis populations. 
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1.  GENERAL IN TR ODUCTI ON 

Black-footed rock-wallabies Petrogale lateralis are a small to medium-sized species of macropod, 

of which there are three sub-species and two chromosomal races across Western Australia (WA) 

(Pearson 2013). All are currently threatened, with the black-flanked rock-wallaby P. l. lateralis listed 

as endangered (Department of Environment and Energy 2018).  Known key threatening processes 

limiting the recovery of extant P. l. lateralis populations, in order of their significance, include 

predation by European red foxes Vulpes vulpes and feral cats Felis catus, habitat degradation due 

to weed incursion, and competition for food and refuges with introduced herbivores, namely feral 

goats Capra hircus  (Burbidge et al. 2014). Furthermore, competition for food with other macropods 

has been identified as a potential threat (Avon Catchment Avon Catchment Council 2007; Capararo 

1994; Creese et al. 2019; Read and Ward 2011). 

Paruna Wildlife Sanctuary is an Australian Wildlife Conservancy (AWC) property near Perth in 

Western Australia that supports a translocated population of P. l. lateralis sourced from the Avon 

Wheatbelt. Maintenance of this population is a priority, but there is a paucity of information on their 

diet and foraging patterns, and whether sympatric western grey kangaroo Macropus fuliginosus, 

are utilising, and potentially competitively excluding them from, the same foraging resources.  

This study investigated the potential for dietary competition between P. l. lateralis and  

M. fuliginosus by measuring dietary overlap, spatial overlap in foraging patch use, and vegetation 

availability. A combination of scat analysis, motion sensor camera trapping and vegetation surveys 

were used. This is the first study to have combined such methods to examine dietary competition. 

We predicted that: 

 Petrogale lateralis lateralis and M. fuliginosus will exhibit some dietary overlap. 
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 Petrogale lateralis lateralis and M. fuliginosus will exhibit some spatial overlap in their use 

of foraging patches. 

 Petrogale lateralis lateralis will predominantly forage near refuges to minimise predation 

risk. 
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2.  LITERATURE REVIE W 

2.1 Black-flanked rock-wallaby 

2.1.1 Taxonomy and description 

Petrogale lateralis consist of three sub-species: P. lateralis lateralis, P. lateralis haketti and 

P. lateralis pearsoni, and two chromosomal races: warru P. lateralis MacDonnell Ranges race and 

P. lateralis West Kimberley race (Pearson 2013). Petrogale lateralis lateralis are listed as 

endangered under both the federal Environment Protection and Biodiversity and Conservation Act 

1999 and state Biodiversity Conservation Act 2016 (Department of Environment and Energy 2018).  

Petrogale lateralis lateralis are dark grey-brown in colour and distinguishable by their white cheek-

stripe and black feet and tail (Figure 1) (Eldridge and Close 1995; Threatened Species Scientific 

Threatened Species Scientific Committee 2016). Males are considerably larger than  

 

Figure 1: Dist inct ive features of  Petrogale lateral is lateral is :  whi te cheek-

str ipe and black feet and tai l .  Photo taken at Paruna Wi ldl i fe Sanctuary (J.  Whi te) .  
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females, weighing up to 5 kg compared to 3.8 kg for females (Eldridge and Close 1995). A suite of 

features enable them to swiftly navigate their rocky environments, including a strong, non-

prehensile tail, powerful hind limbs, and larger hind feet, with large pads and short nails (Pentland 

2014). 

2.1.2 Distribution 

Petrogale lateralis lateralis formerly had a wide, though patchy, distribution across WA, spanning 

from south of the Kimberley to southern offshore islands, as shown in Figure 2 (Pearson and 

Kinnear 1997). However, its distribution has severely declined since colonial settlement and the 

sub-species is now confined to areas of suitable rocky habitat in the Barlee, Bar Smith and Cape 

Ranges, Kaalpi (Calvert Range), Little Sandy Desert (Desert Queen Baths), Kalbarri National Park, 

Avon Wheatbelt (Nangeen Hill, Mount Caroline, Mount Stirling, Sales Rock, Tutakin Rock) and 

Barrow and Salisbury Islands (see Figure 2) (Burbidge et al. 2014; Threatened Species 

Conservation Threatened Species Scientific Committee 2016; Turpin et al. 2018).  

In recent decades, populations at Durba Hills, Gardiner’s Rock, Mount Shackleton and Mokenby 

became extinct and others were reintroduced into Avon Valley National Park, Cape Le Grande 

National Park, Kalbarri National Park, Paruna, Querekin Rock, and Walyunga National Park 

(Burbidge et al. 2014; Pearson et al. 2019; Threatened Species Conservation Threatened Species 

Scientific Committee 2016). The third, and most recent, translocation into Kalbarri National Park 

was carried out in May 2018, with animals from the largest current extant population at Nangeen 

Hill and Mount Caroline. 
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Figure 2: Distr ibut ion of  Petrogale lateral is lateralis  ( tr iangles and blue stars)  

and other  Petrogale lateral is sub-species and races,  together wi th former ranges 

(hashed areas)  and current ranges (sol id colour)  (Pearson 2013;  Turpin et al.  

2018) .   
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Note: The Depuch Island population has since gone extinct. 

2.1.3 Habitat requirements 

Petrogale taxa differ from other macropods in that they are refuge-dependent and typically only 

occur in rocky habitats such as cliffs, gorges and outcrops (Tuft et al. 2011b). Rocky substrates 

must be structurally complex (Pentland 2014), featuring crevices, extensive multi-entranced caves 

and overhangs to support P. l. lateralis (Pearson 2013). Such features provide protection from 

thermal extremes and predators, with the former being especially important in times of increased 

light intensity (sun or moon) or wind velocity (Pentland 2014). Refuges also offer shelter from 

precipitation and a secure place for courtship and raising young (Pentland 2014).  

Rock outcrops, with their geology, topography and superior water storage, support vegetation 

communities that are distinct from, and more productive than, the surrounding vegetation (Hunter 

and Clarke 1998). Greater water availability allows food resources for Petrogale taxa to persist in 

dry conditions for longer, thereby supporting their nutritional requirements through drought periods 

(Tuft et al. 2011b). Their water requirements are usually satisfied through their diet (Pentland 2014), 

however they will drink free water in dry conditions (Lim and Giles 1987; Pearson 2013; Pentland 

2014).  

In addition to the presence of rock structural components, the proximity of particular vegetation 

communities to refuges also determines if habitat can support P. l. lateralis (Chauvin 2015; Pearson 

2013). Vegetation must comprise palatable grasses, herbs and forbs, and be close enough to 

refuges for foraging P. l. lateralis to evade predation (Pearson 2013).  

2.1.4 Foraging and dispersal patterns 

Petrogale taxa are crepuscular or nocturnal central place foragers (Sharp 2009); returning to a 

central location between foraging trips (Boyd et al. 2014). Consequently, they exhaust the foraging 
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patches closest to their central location and then progressively move to those further away until 

costs (time, energy and predation risk) outweigh energy returns (food quality and quantity) (Orians 

1979). This strategy constrains them from choosing the optimum foraging patches (Bakker et al. 

2005) that yield maximum energy returns at minimum cost (Chauvin 2015; Olsson and Bolin 2014; 

Pentland 2014).  

A perceived risk of predation while foraging has been reported to further constrain their behaviour 

(Bakker et al. 2005), including the distance they travel from their refuge to forage (Banks et al. 

1999) and the time they spend foraging (Jacob and Brown 2000). Pentland (2014) observed that 

P. l. lateralis at Nangeen Hill presented signs of predation-induced fear in response to predator 

presence (principally foxes) and reduced their foraging time and foraging range to <35 m from their 

refuge, despite there being superior foraging patches further away. The eradication (through 

baiting) and exclusion of predators (through fencing), from this location has since corresponded 

with an expansion in their foraging range to encompass such patches (Chauvin 2015). Burbidge 

(2008) suggested that absence of predators from Barrow Island was also responsible for resident 

P. l. lateralis expanding their ranges; venturing as far as 1.4 km from their refuges.  

Petrogale lateralis lateralis display strong signs of site fidelity (Pentland 2014), but are also capable 

of independently dispersing to colonise vacant habitat (Pearson 2013). Their presence was 

recorded in Kokerbin Nature Reserve (Avon Wheatbelt) in 2004 (Avon Catchment Avon Catchment 

Council 2007) despite the population having been deemed extinct by the 1980s (Kinnear et al. 

1988). Freegard and Orell (2005) determined that this was the result of a small group having 

dispersed 8 km from Gundaring Nature Reserve.  

2.1.5 Dietary composition and selectivity 

Petrogale lateralis lateralis have a specialised dentition and forestomach capable of bacterial 

fermentation of cellulose, which enables them to consume and digest high fibre and silica 



8 

containing plant material (Tyndale-Biscoe 2005). This provides them with the flexibility to both graze 

and browse on a wide range of plant groups and species (Chauvin 2015), thereby facilitating their 

survival in a range of habitats and climatic zones; from limestone gorges with grassland in the arid 

north to granite outcrops amongst forest and woodland in the temperate south.  

Only two studies have directly investigated P. l. lateralis dietary composition (Chauvin 2015; Creese 

et al. 2019), with one of these also examining dietary selectivity (Chauvin 2015). Dietary 

compositions are spatially variable, differing between populations in the northern (Cape Range 

National Park) (Creese et al. 2019) and southern (Avon Wheatbelt and Avon Valley National Park) 

parts of WA (Chauvin 2015) (Figure 2).  

Petrogale lateralis lateralis in Cape Range National Park have diets consisting of mostly dicot 

species (60-70%) (Creese et al. 2019), whereas those in the Avon Wheatbelt have diets comprising 

predominantly monocot species (66.2%) (Chauvin 2015). The diets of P. l. lateralis in Avon Valley 

National Park varied to a lesser extent, containing close to even proportions of plant classes (56.4% 

monocots, 42.2% dicots) (Chauvin 2015). In terms of plant functional groups, the southern 

populations consume predominantly grass, followed by forbs, browse, sedges and ferns (Chauvin 

2015). Weed species are regularly consumed, with annual veldt grass *1Erharta longiflora 

accounting for 28.2% of dietary intake in the Avon Wheatbelt, compared to 17.6% of false brome 

*Brachypodium distachyon in Avon Valley National Park (Chauvin 2015). Cape weed *Arctotheca 

calendula has also been consumed in the Avon Wheatbelt (Nangeen Hill) (Pentland 2014). The 

spatial variation in dietary compositions is largely due to the considerably different vegetation 

compositions, and accordingly food resources available, between locations (Chauvin 2015; Creese 

et al. 2019).  

 
1Asterisks indicate invasive weed species 
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Dietary compositions are also temporally variable within select populations. Rock-wallabies adjust 

their feeding strategies from grazing (on grasses and herbs in the wet season) to browsing (in the 

dry season) in response to changes in food availability around their refuges (Tuft et al. 2011b): 

P. lateralis MacDonnell Ranges race (Capararo 1994), nabarlek P. assimilis, short-eared rock-

wallaby P. brachyotis (Telfer and Bowman 2006), brush-tailed rock-wallaby P. penicillata (Tuft et 

al. 2011b), and yellow-footed rock-wallaby P. xanthopus (Copley and Robinson 1983; Dawson and 

Ellis 1979). Contrastingly, P. l. lateralis in Cape Range National Park were instead reported to 

consistently consume similar proportions of plant functional groups (browse, fern/sedge, forbs, 

grasses, herbs and orchid/lily) across seasons (Creese et al. 2019).  

Dietary preferences and availability of different plant groups determine dietary composition (Sprent 

and McArthur 2002). Petrogale lateralis lateralis in the Avon Wheatbelt and Avon Valley National 

Park have been reported to exhibit a degree of dietary preference, consuming a greater proportion 

of several monocot and dicot plant species compared with that available in the vegetation (Chauvin 

2015).  

2.1.6 Key threatening processes 

2.1.6.1 Predation by foxes 

Fox predation has been a strong driver of the decline of Australian critical weight range (0.035 – 

5.5kg) mammals, including P. l. lateralis (Johnson and Isaac 2009; Kinnear et al. 2010; Kinnear et 

al. 1988; Kinnear et al. 1998). Several P. l. lateralis populations, including those on Depuch Island 

and Gardiner’s Rock, were driven to extinction by fox predation and single individual foxes are 

capable of causing devastating effects  (Short et al. 2002), initially targeting juveniles, sub-adults 

and females with large pouch young (Kinnear et al. 1984; Pentland 2014).  
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A sequence of studies determined that fox predation directly restricted the size and distribution of 

the Mount Caroline, Mount Stirling, Nangeen Hill, Sales Rock, Tutakin and Querekin P. l. lateralis 

populations in the Avon Wheatbelt (Kinnear et al. 1988; Kinnear et al. 1998). These populations 

had remained moderately static or declined from 1979 to 1982 for unknown reasons, but signs 

pointed to fox predation (Kinnear et al. 1988). Fox control undertaken over subsequent years (1983 

to 1986) at two sites (Mount Caroline and Nangeen Hill) led to an increase in resident P. l. lateralis 

numbers, by 138 (223%), and also resulted in increased habitat use (Kinnear et al. 1988). 

Predictably, resident P. l. lateralis numbers at the two sites not exposed to fox control (Tutakin and 

Querekin) declined by 14 (85%) (Kinnear et al. 1988). The study was repeated from 1986 to 1990 

and further population increases resulted (Kinnear et al. 1998).  

Despite fox control programs at Nangeen Hill, invading foxes continued to adversely impact 

resident P. l. lateralis by generating a state of fear within them (Kinnear et al. 2010; Pentland 2014). 

This in turn restricted P. l. lateralis foraging time and foraging range, which eventually resulted in 

overgrazing, resource depletion and soil degradation (Kinnear et al. 2010; Pentland 2014). In 

response, a predator-proof fence was installed around Nangeen Hill in 2013, and all predators 

removed from within the enclosure, which has led to an expansion in the resident P. l. lateralis 

foraging range (R. Boyland, WWF Australia, pers. comm.; Chauvin 2015).  

2.1.6.2 Predation by feral cats  

Feral cat predation has surpassed fox predation to become the greatest threat to Australian critical 

weight range mammals (Burbidge et al. 2014). Predation of allied rock-wallabies P. assimilis 

(Spencer 1991), P. xanthopus (Lapidge 2000) and P. lateralis MacDonnell Ranges race (Read et 

al. 2019; Ruykys 2011; Ward et al. 2011) by feral cats has been reported, but their impact on P. l. 

lateralis is poorly documented. A study of the diets of feral cats in the Northern Territory discovered 

P. l. lateralis remains in their stomach contents (Paltridge et al. 1997), and there have been similar 
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findings at Mt Caroline in the Avon Wheatbelt (Hegglun 2018; H. Crawford, pers. comm.). It could 

not be confirmed that the cats made the kills, however they have been frequently recorded intruding 

into P. l. lateralis refuges by camera traps (Pentland 2014).  

Long-term feral cat control at Kaalpi (Calvert Range, Little Sandy Desert) corresponding with 

increased resident P. l. lateralis numbers strongly suggests that feral cat predation is a restricting 

factor (Burbidge et al. 2014). The impact of feral cats on P. l. lateralis may be exacerbated through 

fox suppression, which reduces interference and dietary competition (mesopredator release) 

(Johnson 2006).  

2.1.6.3 Habitat degradation due to weed incursion 

Weeds have played a major role in the loss of Australia’s biodiversity due to their ability to invade 

ecosystems and out-compete their native species, thereby altering their species’ composition, 

function and structure (Yates and Hobbs 1997). The long-term impact of weed encroachment on 

P. l. lateralis habitat is poorly known, although a study at Nangeen Hill has shed some light 

(Pentland 2014). Nangeen Hill is one of several isolated pockets of P. l. lateralis habitat remaining 

after extensive clearing for agriculture in the Avon Wheatbelt. Fragmented habitats are vulnerable 

to weed incursion because of its increased exposure to dispersing weed seeds (Adair 1995), high 

edge-to-area ratio (Panetta and Hopkins 1991), and susceptibility to exogenous disturbances that 

promote weed establishment (Adair 1995), such as nutrient enrichment, grazing by introduced 

herbivores, soil disturbance, and secondary salinity (Yates and Hobbs 1997).  

Heavy overgrazing by resident P. l. lateralis within their restricted foraging range led to the incursion 

of weeds (Pentland 2014). *Arctotheca calendula and ice plant *Cleretum papulosum rapidly 

outcompeted native grasses within 25 m of the refuge at Nangeen Hill and changed the vegetation 

structure (Pentland 2014), reducing foraging resources available to P. l. lateralis (Pearson 2013).  
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Buffel grass *Cenchrus ciliaris is another weed with the potential to impact P. l. lateralis, given its 

documented ability to also out-compete grasses and promote very hot wildfires that can destroy 

key food resources for P. lateralis MacDonnell Ranges populations (Biosecurity Biosecurity SA 

2012; Read and Ward 2011). In addition to weeds, introduced herbivores also invade and adversely 

impact P. l. lateralis and their habitat (Pearson 2013). 

2.1.6.4 Dietary competition with introduced herbivores 

Introduced herbivores, including feral goats, feral camels Camelus dromedarius, European rabbits 

Oryctolagus cuniculus, and domestic sheep Ovis aries and cattle Bos taurus, have detrimentally 

impacted native flora and fauna across Australia. In particular, their foraging within Petrogale spp. 

habitat can promote weed incursions and also reduce food resources available to Petrogale spp. 

(Pearson 2013; Pearson et al. 2019). For example, feral goats in Kalbarri National Park caused 

vegetation communities to become dominated by plant species unpalatable to P. l. lateralis 

(Pearson 2013). This resulted in the P. l. lateralis population declining to near local extinction levels 

(Pearson 2013).  

Feral goats have a competitive advantage due to their adaptability to harsh environments, versatile 

foraging habits (Lu 1988) and high reproductive potential (Department of the Environment 2008). 

Further competitive advantage comes from their having a much larger home range (Creese et al. 

2019) and body size compared to P. l. lateralis, and the ability to feed while balancing on their hind 

legs, thereby accessing food at a greater range of heights from the ground (Dawson and Ellis 1979). 

A study in Cape Range National Park (Creese et al. 2019) suggested that exploitation and 

interference competition between feral goats and P. l. lateralis was occurring based on the 

significant dietary overlap recorded and an observation of goats disturbing natural P. l. lateralis 

activity. Other studies of feral goats and P. xanthopus in Queensland (Gordon et al. 1990) and New 
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South Wales (Dawson and Ellis 1979) also reported significant dietary overlap and competition 

across seasons, with Dawson and Ellis (1979) recording a peak in dietary overlap in the dry season.  

2.1.6.5 Dietary competition with native herbivores: western grey kangaroo 

Sympatric native herbivores, particularly macropods, can also be a source of competition for rock-

wallabies. Macropus fuliginosus are sympatric with P. l. lateralis across their range (Morris 2000; 

Palmer 2017b; Pentland 2014). Macropus fuliginosus are large macropods, weighing up to 72 kg 

(Leishman 2014a), widely distributed across Australia (Dawson 2012). While the species has 

suffered habitat loss to cropping and urbanisation in some areas, in other areas it has increased in 

density from the provision of watering points, establishment of improved pasture, and  

 

Figure 3: Distr ibut ion of Macropus ful iginosus ( IUCN Red List  2019) .  

Macropus ful iginosus have a widespread distribut ion, which spans the southern 

hal f  of Australia, including western New South Wales and southern central 

Queensland (Department of Parks and Wildl ife 2013) and includes areas subject  

to uni form or  winter  rainfall  (Caughley et al.  1987) . 
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suppression of dingoes Canis familiaris (Dawson 2012). The species occupies a broad range of 

disparate habitats, including forest, woodland, shrubland and heathland (Schmidt et al. 2010), and 

the density at which they occur is generally correlated with habitat heterogeneity (Coulson 1993). 

Heterogenous habitats are more likely to support their shelter and food requirements (Short et al. 

1983). 

Macropus fuliginosus are nocturnal foragers (Leishman 2014a); sheltering from the elements 

during the day, before moving to open, grassy areas to feed at night (Dawson 2012). They depend 

on crypsis in dense vegetation, clear lines of sight and superior speed to escape predators (Le Mar 

and Mcarthur 2005). The species is predominantly sedentary and has a foraging range of between 

33 and 70 ha (Arnold et al. 1992), with more mobile individuals also moving greater distances; up 

to 85 km (Priddel et al. 1988). 

Macropus fuliginosus have a specialised dentition for preferentially grazing grass, however they 

also consume browse and forbs (Barker 1987; Leishman 2014a). Their ability to survive on protein 

deficient grass and fibre rich browse has been attributed to their large size (Dawson 1989) and 

nitrogen recycling abilities (Hume 1999). Macropus fuliginosus diet consists of both monocot and 

dicot species (Halford et al. 1984; Norbury 1987; Wann and Bell 1997), with proportions of each 

group varying likely according to their relative abundance (Shepherd et al. 1997) across seasons 

and vegetation types (Table 1). In Victoria, grasses account for 75% of dietary intake when they 

dominate the vegetation. As abundance declines with changing seasonal conditions, M. fuliginosus 

accordingly switch their diets to incorporate considerably more browse and forbs (Table 1). 

Populations in New South Wales and Queensland exhibit similar dietary shifts (Table 1). 
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Table 1: Comparison of  plant  classes predominant ly consumed by 

Macropus ful iginosus across seasons and locat ions 

Location Vegetation type Season 
Plant class 

Reference 
Monocots Dicots 

WA: Harry Waring 
Marsupial Reserve 

Grass, sedge and shrub 
dominated associations 

All 
seasons 

  
(Algar 1986) 

WA: Whiteman 
Park  

Eucalyptus, Melaleuca and 
Banksia woodlands and 
forest 

All 
seasons 

  
(Wann and 
Bell 1997) 

WA: Perup Nature 
Reserve  

Eucalyptus open forest 
Autumn to 

Spring 
  

(Shepherd et 
al. 1997). 

NSW 

Mulga Acacia aneura 
woodland 

Spring   
(Wilson 1991) 

Arid rangelands 
Winter   

(Barker 1987) 
Summer   

QLD Arid rangelands 
Winter   

Summer   

VIC Mixed pasture Winter   (Norbury 
1987) Summer   

 

Dietary overlap between sympatric herbivores points to possible competition for food resources 

(Dawson and Ellis 1996), however it’s just one of a number of influential factors at play. There must 

also be spatial overlap in foraging patch use, and a limited availability of preferred food resources 

within the vegetation, for competition to occur (Creese et al. 2019; Wilson 1991). Macropus 

fuliginosus do not experience the same spatial constraints as P. l. lateralis, allowing them greater 

access to available food resources (Tuft et al. 2011a). As such, there is potential for interspecific 

spatial and dietary overlap, as well as exploitation and interference competition. 

Dietary and spatial overlap between M. fuliginosus and P. l. lateralis has not been investigated, 

despite their sharing of foraging habitat in the Avon Wheatbelt (Pentland 2014; Willers et al. 2011) 

and Paruna (Lin 2011; Palmer 2017a). A degree of dietary and spatial overlap is envisaged to 

occur, at least in the dry season, for several reasons.  
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First, comparison of their diets (Chauvin 2015; Wann and Bell 1997) reveals that their grass, forb 

and browse intakes (Table 2) follow similar temporal patterns, and include some congeneric plants. 

The plant functional groups consumed by P. l. lateralis and M. fuliginosus (Table 2) highlights 

possible dietary overlap. 

Table 2: Comparison of  plant  funct ional groups consumed by P. l .  lateralis  

and M. ful iginosus.  Data reviewed f rom various l i terature sources  (Bamford et  al.  

2009;  Barker  1987;  Chauvin 2015; Creese et  al .  2019) . 

Plant Functional Group 

P
. l

. l
at

er
al

is
 

M
. f

u
lig

in
o

su
s 

Grasses   

Forbs †   

Browse   

Sedges   

Ferns   

† Includes Plants with stellate trichomes (including Ptilotus, Solanum, Sida, and Abutilon spp.) 

Second, there is dietary and spatial overlap between P. l. lateralis in Cape Range National Park 

and euro Osphranter robustus erubescens; another large sympatric macropod (Creese et al. 2019; 

Leishman 2014b). Herbivores consistently consume a number of the same plant species and 

exploit the same foraging patches, across summer and winter (Creese et al. 2019). Based on this, 

and the fact that food resources are spatially limited due to the variable vegetation structure within 

gorges (dense on the floor to scattered on the walls and around refuges), interspecific dietary 

competition could be occurring between P. l. lateralis and O. r. erubescens (Creese et al. 2019). 

Several studies have documented dietary overlap between O. robustus and other Petrogale taxa: 

P. lateralis MacDonnell Ranges race (Capararo 1994; Geelen 1999), P. penicillata (Tuft 2005), and 

P. xanthopus (Dawson and Ellis 1979). Dietary overlap temporally varies; being higher in winter 

(45%) than summer (25%) between O. r. erubescens and P. lateralis MacDonnell Ranges in the 
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Northern Territory (Capararo 1994). By contrast, dietary overlap between O. r. robustus and P. 

xanthopus in New South Wales Dawson and Ellis (1979) peaks in the dry season when vegetation 

conditions are poorest (39%) rather than the wet season when vegetation is most abundant.  

Third, M. fuliginosus have dietary overlap with another sympatric small macropod; black-gloved 

wallaby Notamacropus irma(Wann and Bell 1997), as well as domestic sheep (Wilson 1991). A 

number of studies have reported dietary overlap between eastern grey kangaroo M. giganteus and 

sympatric marsupials: P. penicillata (Tuft 2005), red-bellied pademelon Thylogale billardierii (Le 

Mar and Mcarthur 2005), swamp wallaby Wallabia bicolor (Davis et al. 2008), common wombat 

Vombatus ursinus (Davis et al. 2008) and northern hairy-nosed wombat Lasiorhinus krefftii 

(Woolnough and Johnson 2000).  

2.2 Methods of assessing aspects informing dietary competition 

2.2.1 Foraging habitat use 

Scat counting can be an efficient, cost-effective and non-invasive method (Garrote et al. 2014; 

Johnson et al. 1987) for assessing foraging habitat use by macropods as they mostly defecate 

while feeding (Telfer et al. 2006). However, this method is limited in that it depends on all scats 

being detectable and identifiable. This can prove difficult when groundcover is high (Woolnough 

and Johnson 2000), and when sympatric species have similar scat morphologies (Davison et al. 

2002). In these circumstances, motion sensor camera trapping can be a suitable alternative (Turpin 

and Bamford 2015; Turpin et al. 2018). 

Motion sensor camera trapping is equally non-invasive and a particularly effective method for 

detecting cryptic species or those that occur in low numbers (Doody et al. 2012; Turpin and Bamford 

2015; Turpin et al. 2018). Although potentially more labour intensive than scat counting (Newey et 

al. 2015), camera trapping can collect a wider range of data pertaining to foraging activity (i.e. 
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temperature, time, weather and lunar phase: Reconyx 2011; Richardson et al. 2018), continuously 

over several months (Swann et al. 2004). Practical challenges associated with this technology can 

arise in the form of false positive images, devices re-setting themselves and difficulties extracting 

usable metadata (Newey et al. 2015). False negatives can also occur (Newey et al. 2015) when 

animals remain largely stationary, such as during intensive browsing sessions.  

2.2.2 Dietary analysis 

Several methods can be used to assess the botanical composition of herbivore diets, including scat 

analysis, stomach content analysis, mouth content analysis, stable isotope analysis, and direct 

observation of feeding. The strengths and limitations of each are discussed below and shown in 

Table 3. 

Scat analysis is the most commonly used method and involves examining the epidermal features 

of undigested plant fragments in scats. It requires minimal disturbance to animals, and can 

therefore be broadly applied, particularly for species of conservation significance, and those prone 

to severe stress and capture myopathy (Wann and Bell 1997). This method has a couple of 

limitations. First, it again depends on the identifiability of scats of various species (Dawson and Ellis 

1979). This can prove difficult when sympatric species have similar scat morphologies (Davison et 

al. 2002). Second, scat analysis relies on the assumption that epidermal tissues survive digestion 

(Dawson and Ellis 1979) and so the proportions of plant species found within pellets are equal to 

the proportions in which they were consumed (Storr 1961). The extent to which this holds true 

varies across plant functional groups, with the epidermis of browse (lignified), stellate plants 

(distinctive trichomes) and grass (silica bodies) being more resistant to digestive processes than 

that of forbs (Horsup and Marsh 1992), and this creates bias in estimated relative abundances of 

consumed plants (Creese et al. 2019).  
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Stomach content analysis is a similar method to scat analysis; examining the same features, 

although of less digested plant fragments, and so produces results that have less bias associated 

with the differential digestion rates of plant species (Davis et al. 2008; Sprent and McArthur 2002). 

The major limitation for this method is that it requires the death of the subject animal so is 

unacceptable for application to conservation significant species. Like scat analysis, it provides a 

snapshot of plant material consumed in the short term (24 to 48 hours prior to collection) (McMillan 

et al. 2010).  

Stable isotope analysis can be used to determine the short to long term diet of herbivores based 

on the ratios of stable isotopes of carbon and nitrogen (13C/12C and 15N/14N) in samples of faeces 

(e.g. Horsup and Marsh 1992), blood and hair (e.g. McMillan et al. 2010). Plant functional groups 

vary in their stable isotopic signatures, depending on their photosynthetic pathways (McMillan et 

al. 2010), and their individual contribution to a herbivore’s diet is indicated by the measured 

13C/12C value (Horsup and Marsh 1992). This method can also be affected by differential 

digestibility if scat samples are used, although results have less bias than those of scat and 

stomach content analysis because the epidermis is not required for determination of plant functional 

group (Horsup and Marsh 1992). 

Direct observation of feeding can be used in conjunction with the aforementioned methods to 

support findings (e.g. Creese et al. 2019; Horsup and Marsh 1992). This method is limited in that it 

only allows the observer to infer consumption of a particular plant functional group or species at 

the time of observation (McMillan et al. 2010). Furthermore, identification of different plant species 

while they are being eaten at night can prove difficult, with some, such as browse, being more 

easily identifiable than groundcover forbs and grasses (Horsup and Marsh 1992). 
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Table 3: Comparison of  the strengths of  aspects of diet  analysis methods 

 Method 

Aspect 
Scat 

analysis 
Stomach 
contents 
analysis 

Mouth 
contents 
analysis 

Stable 
isotope 
analysis 

Direct 
observation 
of feeding 

Precision of 
estimate      

Conservation 
significant fauna 
application 

     

Stress or 
capture 
myopathy prone 
fauna 
application 

 NA    

Highly digestible 
plant fragment 
detection 
capability 

   NA NA 

Time span      
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3.  RESEARCH PAP ER 

3.1. Abstract 

Overabundant western grey kangaroo Macropus fuliginosus are known to impact agriculture, but 

how are they impacting threatened fauna sharing their habitat? In Paruna Wildlife Sanctuary, 

southwest Western Australia, kangaroos are suspected of competing with the sympatric and 

endangered black-flanked rock-wallaby Petrogale lateralis lateralis, however there is no research 

to support this. If kangaroos are negatively impacting rock-wallabies, kangaroo densities may need 

to be managed to ameliorate competitive pressures on rock-wallabies. We investigated the 

potential for dietary competition between M. fuliginosus and P. l. lateralis by measuring the overlap 

in their diets and foraging patches, as well as food resource availability. A combination of scat 

analysis, motion sensor camera trapping and vegetation surveys were employed. Petrogale 

lateralis lateralis diets were dominated by forbs and overlapped with those of M. fuliginosus which 

featured mostly browse and forbs (Schoener index: 0.56). Some of their shared preferred food 

resources were spatially and/or temporally limited. Their foraging patches also overlapped (33.9%), 

however these macropod species predominantly used different areas of the outcrop. Evidence over 

the duration of the study indicates potential for low levels of dietary competition, however the 

availability of shared food resources and resource partitioning suggest that P. l. lateralis were not 

being adversely impacted. In terms of the threatening processes limiting P. l. lateralis recovery, 

predation has been ranked higher than competition, a finding that is likely supported by the present 

study. This will likely remain true even if M. fuliginosus densities increase in the future. 

Conservation actions should therefore continue to prioritise the mitigation of predation threats to P. 

l. lateralis populations. 



22 

3.2. Introduction 

Western grey kangaroo M. fuliginosus populations can reach high densities in woodlands and 

forests adjacent to pasture or crops (Coulson et al. 1999), especially following the suppression of 

dingos (Dawson 2012) and, to a lesser extent, foxes (which prey on young-at-heel: Arnold et al. 

1991; Banks 2001; Banks et al. 2000; Chang 2001). This can have adverse impacts on agriculture, 

particularly when M. fuliginosus compete with sheep for food (Wilson 1991). Overabundance of 

kangaroos can also be detrimental for the natural environment. For example, Neave and Tanton 

(1989) found that M. fuliginosus grazing reduced the height of vegetation in Tidbinbilla Nature 

Reserve (Australian Capital Territory) to the extent that it was no longer suitable habitat for certain 

birds and invertebrates. Their large body size (weighing up to 72 kg: Leishman 2014a) lowers their 

predation risk, and this combined with their broad diet of grasses, forbs, browse and sedges (Algar 

1986; Barker 1987; Norbury 1987; Shepherd et al. 1997; Wann and Bell 1997), gives M. fuliginosus 

a competitive advantage over smaller sympatric macropods (Tuft et al. 2011a), such as the 

endangered black-flanked rock-wallaby Petrogale lateralis lateralis (weighing up to 5 kg: Eldridge 

and Close 1995).  

Petrogale lateralis lateralis are a small to medium-sized macropod (up to 5 kg males, 3.8 kg 

females: Eldridge and Close 1995) occurring in areas of suitable rocky habitat across WA (Pearson 

2013). Populations of the sub-species have declined predominantly due to predation by foxes and 

feral cats, habitat degradation from weed incursion, and dietary competition from introduced 

herbivores like feral goats (Burbidge et al. 2014). However, additional dietary competition from 

native herbivores is suspected to also contribute. That being said, dietary competition can only 

occur if three aspects are observed: 1) dietary overlap, 2) spatial overlap in foraging patch use, and 

3) limited field availability of preferred food resources (Creese et al. 2019; Wilson 1991).  
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While several studies have examined the respective diets and foraging patterns of P. l. lateralis 

and M. fuliginosus across their ranges (Algar 1986; Arnold et al. 1992; Barker 1987; Chauvin 2015; 

Creese et al. 2019; Halford et al. 1984; Norbury 1987; Pentland 2014; Priddel et al. 1988; Shepherd 

et al. 1997; Wann and Bell 1997; Wilson 1991), no studies have investigated any of the aspects 

informing dietary competition between sympatric populations of these species across southern 

Western Australia. A comparison of studies undertaken in southern Western Australia shows that 

P. l. lateralis diets are similar to those of M. fuliginosus; featuring the same plant functional groups, 

some congeneric plants, and following similar temporal patterns in terms of proportions of groups 

consumed across seasons (Chauvin 2015; Pentland 2014; Wann and Bell 1997).  

Previous studies have reported dietary and spatial overlap between other sympatric macropods 

and P. l. lateralis or M. fuliginosus. Creese et al. (2019) found that P. l. lateralis and euro 

Osphranter robustus erubescens in Cape Range National Park consume some of the same plants 

and forage within the same patches. In light of food resources being spatially limited, the study 

suggested possible dietary competition between these two species (Creese et al. 2019). Other 

studies have found that M. fuliginosus consume a similar range of plants as black-gloved wallaby 

N. irma in Whiteman Park (Wann and Bell 1997) and N. irma and tammar wallaby  

Notamacropus eugenii in Perup Nature Reserve (Shepherd et al. 1997).  

Petrogale lateralis lateralis are crepuscular or nocturnal central place foragers (Sharp 2009), 

returning to a central rock refuge between foraging trips (Boyd et al. 2014) for protection from 

predators and thermal extremes (Pentland 2014). Their foraging behaviour is therefore inherently 

restricted and can be even further constrained by a perceived risk of predation (Pentland 2014). 

Macropus fuliginosus do not face these same spatial constraints and consequently have much 

larger home ranges (33 to 70 ha: Arnold et al. 1992). This offers them an added competitive 

advantage over P. l. lateralis, as they are able to forage further to obtain the food they require (Tuft 

et al. 2011a).  
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Paruna Wildlife Sanctuary (Paruna) in southwest Western Australia supports a population of 

translocated P. l. lateralis that are sympatric with M. fuliginosus. The conservation and 

management of this population is dependent on reducing potentially detrimental factors, including 

dietary competition with M. fuliginosus. This study investigated the potential for dietary competition 

between P. l. lateralis and M. fuliginosus by measuring dietary overlap, spatial overlap in foraging 

patch use, and vegetation availability. A combination of scat analysis, motion sensor camera 

trapping and vegetation surveys were used. This is the first study to have combined such methods 

to examine dietary competition.  We predicted that:  

1. Petrogale lateralis lateralis and M. fuliginosus will exhibit some dietary overlap. 

2. Petrogale lateralis lateralis and M. fuliginosus will exhibit some spatial overlap in their use of 

foraging patches. 

3. Petrogale lateralis lateralis will predominantly forage near refuges to minimise predation risk. 

3.3. Methods 

3.3.1 Study area 

Paruna Wildlife Sanctuary (31°40΄S, 116°8΄E) is located in the Avon Valley, ~45 km north-east of 

Perth in Western Australia (Figure 4). The 1,950 ha sanctuary is managed by the Australian Wildlife 

Conservancy and functions as a wildlife corridor between Avon Valley National Park and Walyunga 

National Park. Erosion of the valley slopes has resulted in shallow soils and many exposed 

underlying granite and dolerite dykes (Australian Wildlife Conservancy 1998). The sanctuary 

experiences warm, dry summers and cool, wet winters and receives an average rainfall of 655 mm 

(Bureau of Meteorology 2019).  
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Petrogale lateralis lateralis have been translocated to a rock outcrop within the sanctuary (the 

“release site”) and have subsequently colonised a second rock outcrop (the “new site”). Both sites 

provide rock refuges for P. l. lateralis within boulder piles over granite outcrops (Lin 2011), however 

those at the release site are more structurally complex; featuring more crevices, extensive multi-

entranced caves and overhangs (Pearson 2013). Vegetation transitions from closed heath and/or 

herblands on the outcrops to open eucalypt woodlands over shrublands on the slopes (Australian 

Wildlife Conservancy 1998).  

 

Figure 4 :  Map of  Paruna Wi ldl i fe Sanctuary outcrops and t ransects,  and 
locat ion wi thin Western Australia  

3.3.2 Vegetation availability 

Vegetation surveys were undertaken from September to October 2018 at both outcrops to compare 

the availability of potential food resources. Four transects (100 m each) were laid at each outcrop, 

beginning near rock refuges and extending upslope and downslope (Figure 4). Quadrats (5 x 5 m) 

were established at 20 m intervals along the linear transects (11 quadrats per transect for a total of 

44 quadrats); three quadrats were within 20 m of the refuge, four upslope and four downslope of 
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the refuge. Within quadrats, percentage cover of each plant species with foliage up to 1 m above 

ground level (and thereby accessible to P. l. lateralis) was recorded using a modified Braun-

Blanquet cover-abundance scale (Braun-Blanquet 1932). Plant species were classified into 

functional groups: browse (i.e. woody shrubs and trees), grass, forb, fern and sedge. Specimens 

were collected to create a plant reference library. Other observations recorded for quadrats include 

topography, vegetation type and density versus bare rock, canopy cover and nearby shelter points 

(boulder piles that provide temporary protection within the forging range: Tuft et al. 2011a). 

3.3.3 Plant reference library 

A plant reference library was created for each plant species recorded from the survey quadrats. A 

permanent slide of leaf and/or stem epidermis was created using a modified methodology from 

Chauvin (2015). Small sections of leaf and stem were placed in a beaker and boiled in 5 mL of 10% 

chromic acid (H2CrO4) and 5 mL of 10% nitric acid (HNO3) to digest away mesophyll. Once only 

epidermal fragments remained, residual acid was extracted from the beaker, before adding water 

with a few drops of concentrated ammonia. Solution was then again extracted, before adding 

Gentian Violet in 95% ethanol to soak for 30 min. Stained material was washed in water and 

dehydrated through a series of ethanol solutions (50%, 70% and 95%). Epidermal fragments were 

transferred to a microscope slide, soaked in xylene and sealed with a coverslip coated in Depex 

mounting solution. Photographs (at 100x, 200x and 400x optical magnifications) of each slide were 

taken to aid identification of epidermal fragments in scats. 

3.3.4 Scat analysis 

Scats for P. l. lateralis and M. fuliginosus were collected for diet analysis at each quadrat at the 

same time vegetation surveys were undertaken. The dissimilar size and shape of scats from each 

species made them distinguishable from each other; P. l. lateralis scats have a tapered cylindrical 
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shape (Tuft et al. 2011b), while M. fuliginosus scats are larger and round in shape. Scats were 

frozen in paper bags before being air dried for analysis. 

A total of 20 scats were processed for analysis; five from each species from each of the two 

transects at the release site outcrop (no P. l. lateralis scats could be found at the new site). For 

each scat, a permanent slide of epidermal fragments was created using a modified methodology 

from Chauvin (2015). Scats were broken up using a mortar and pestle before being transferred a 

grinder for 2 min. Samples were transferred into conical flasks with 25 mL of 30% hydrogen 

peroxide (H2O2), two drops of 5% sodium diphosphate (Na4P2O7) solution and two drops of 

concentrated ammonia (NH3), and heated for ~12 h at 65°C. Samples were then transferred into 

centrifuge tubes, centrifuged (3,000 rpm) for 10 min, and washed in ethanol (helped by further 

centrifuging) before being soaked in Gentian Violet in 95% ethanol for 30 min. Stained material was 

transferred to a 32 mm sieve and washed and dehydrated through a series of ethanol solutions 

(50%, 70% and 95%). A subsample of epidermal fragments from each sample was taken and 

spread evenly across a microscope slide, soaked in xylene and sealed with a coverslip coated in 

Depex mounting solution. 

Slides of epidermal fragments were analysed using a point quadrat sampling method at 100x 

optical magnification whereby, for each field of view, the fragments occurring under the cross-hairs 

of a 10x10 grid eyepiece graticule were identified and counted (Poole et al. 2014). This 

methodology accounts for the size of the fragment (which will be proportional to the number of 

times that fragment occurs under graticule cross-hairs) (Poole et al. 2014). To ensure even 

sampling intensity between samples, the field of view was moved across the microscope slide in a 

linear fashion until 200 fragment-graticule intersections had been recorded for each sample (Poole 

et al. 2014). Photographs of each field of view were taken to aid this process. Where possible, 

fragments were identified to species, genus or family level through cross-referencing with the key 

diagnostic characteristics of plant species in the reference collection. Where this wasn’t possible, 
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fragments were classed as unknown Poaceae, unknown monocot, unknown dicot or unknown 

fragment.  

3.3.5 Camera trapping 

Motion sensor camera traps (Reconyx Hyperfire HC500) were deployed to monitor all foraging 

activity within quadrats at both outcrops between September and December 2018. For each 

quadrat, a single camera was mounted to trees or metal stakes 0.3-0.5 m above ground level at a 

sufficient distance away to ensure the field of view included the entire quadrat. Settings were fixed 

to rapid fire (five photos after every trigger, with no delay) and camera maintenance (battery and 

memory card replacement) was undertaken every six weeks. Photos were processed in Windows 

Photo Viewer and ExifPro Image Viewer version 2.1 (Kowalski and Kowalski 2000), and the 

metadata of every fifth photo of each sequence (representing a single trigger) was exported. 

Sequential captures of the same species within 5 min were classified as a single capture event 

unless multiple individuals were visible in the same photo (classified as multiple capture events). 5 

min was chosen with the knowledge that kangaroos can linger for some time while foraging but 

also can move very quickly past cameras (Green-Barber and Old 2018). Camera trap photos 

capturing P. l. lateralis and M. fuliginosus consuming particular plant species were also used to 

support scat analysis. 

3.3.6 Data analysis 

Vegetation availability at the two outcrops was compared using non-metric multidimensional scaling 

(nMDS) comparing the percentage cover of each plant species at each outcrop with predictor 

variables outcrop (‘release’ and ‘new’ sites) and location (refuge, upslope and downslope), followed 

by one-way analysis of similarity (ANOSIM) and a similarity percentage (SIMPER) (PAST 3.0) 

(Hammer and Harper 2013). The SIMPER determined the contribution of each plant species to the 

differences found by the nMDS and ANOSIM.  
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Dietary compositions of P. l. lateralis and M. fuliginosus were compared using nMDS comparing 

the counts of epidermal fragments of each plant species in the scats of each macropod species 

and analysed using a two-way PERMANOVA with species and location as predictor variables. 

Dietary overlap between P. l. lateralis and M. fuliginosus was quantified using the Schoener index 

(Schoener 1968):  

    α = 1 – 0.5*∑ (│Pxi – Pyi│)    eq. 1 

where Pxi is the proportion of plant species i in the diet of P. l. lateralis and Pyi is the proportion of 

plant species i in the diet of M. fuliginosus. Values range from 0 (no overlap) to 1 (total overlap), 

with values >0.6 considered as indication of significant diet overlap (Creese et al. 2019; Wallace 

and Ramsey 1983). 

Dietary selectivity of P. l. lateralis and M. fuliginosus was quantified using Ivlev’s Selectivity Index 

(Lechowicz 1982): 

    Ei = (ri -pi) / (ri + pi)      eq. 2 

where ri is the proportion of plant species i in the diets of either P. l. lateralis or M. fuliginosus and 

pi  is the abundance of plant species i in the field. The Ei was rounded to -1, 0 or 1, with -1 signifying 

avoidance, 0 signifying use in proportion to availability and 1 signifying selection (Poole et al. 2014). 

Spatial overlap in foraging patch use between P. l. lateralis and M. fuliginosus was measured by 

adding the standardised proportions of photo captures of each species at different locations. The 

distribution of P. l. lateralis and M. fuliginosus foraging activity across the outcrops; represented as 

proportions of independent camera trap events (captures) of each species at different locations, 

was assessed using Pearson’s chi-square tests: 

    χ2 = ∑ (observed – expected)2     eq. 3
               expected 
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Expected values were calculated based on the assumption that there was no difference in the 

proportion of captures of each species by location. P. l. lateralis captures at the new site were 

excluded from all statistical analyses because only three captures of the same individual were 

recorded. 

Temporal overlap in foraging activity between P. l. lateralis and M. fuliginosus was measured using 

the timestamp record from photo captures in the Overlap package version 0.3.2 (Meredith and 

Ridout 2018). Coefficient of overlap values (Δ) range from 0 (no overlap) to 1 (total overlap). The 

Δ4 estimator was used because the sample size was greater than 75 (Meredith and Ridout 2018), 

and 95% confidence intervals were estimated from 10,000 smoothed bootstrap samples, after 

correcting for the bootstrap bias (Dawson et al. 2018). To determine the significance of the Δ value, 

a Mardia-Watson-Wheeler test (Batschelet 1981) was performed in the Circular package version 

0.4-93 (Lund et al. 2017). This test assumes no repeat data so captures recorded at identical times 

were adjusted by 0.86 seconds (adjusting by 0.00001 resulted in 0.86 s). All statistical tests of 

temporal patterns were performed in R version 1.1.442 (R Core Team 2012). In addition, we also 

examined a range of variables including whether or not a quadrat: occurred within 20 m of a refuge 

(large rock or boulder pile), had a dense understorey, and/or had any canopy cover. 

3.4. Results 

3.4.1 Vegetation availability 

A combined total of 101 plant species were recorded across the outcrops (release site = 67, new 

site = 93). Of these, 9 were only recorded at the release site and 35 were unique to the new site 

(Table 5). Vegetation availability was significantly different between outcrops (ANOSIM, R = 0.24, 

p = 0.0003) and also the location (refuge, upslope and downslope) on outcrops (ANOSIM, R = 

0.23, p = 0.0001; Figure 5).  
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(a)   Release Site 
  New Site 

(b)   Refuge 
  Upslope 
  Downslope 

Figure 5: Non-metr ic MDS ordination comparing vegetation avai labil i ty (a) at 

the outcrops and (b)  location in respect  to the refuge in Paruna Wi ldl i fe Sanctuary 

Browse species Trymalium odoratissimum odoratissimum and Darwinia citriodora contributed most 

of the difference in vegetation availability between outcrops and locations. Trymalium 

odoratissimum odoratissimum was present at both outcrops, mostly occurring downslope of the 

refuge (SIMPER, 26% relative availability downslope vs 7% upslope and 5% at the refuge) and 

was the most available species at the new site (15.5% relative availability). Darwinia citriodora was 

only present at the release site where it was the most available plant species (13.2% relative 

availability), mostly occurring near and upslope of the refuge (SIMPER, 11% relative availability 

near the refuge and 9% upslope, vs 1% downslope).  

In terms of plant functional groups, forbs were the most available at both outcrops, followed by 

browse, grasses, ferns and sedges. The new site had more forbs (55% vs 45% relative availability), 

grasses (18% vs 13% relative availability) and sedges (1% vs <1% relative availability), whereas 

the release site had more browse (34% vs 22% relative availability) and ferns (7% vs 4% relative 

availability).  
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3.4.2 Dietary compositions and selectivity 

Most (76%) of all plant fragments in scats could be identified to at least family level, with 10% being 

unknown Poaceae spp., 18% unknown monocots, 4% unknown dicots and 2% unknown fragments. 

Petrogale lateralis lateralis scats comprised a total of seven plant species and were dominated by 

monocots (65.6%), with dicots contributing 26.3% and pteridophytes 7.3% (Table 5). Forbs were 

the most observed (49.8% occurrence) plant functional group in P. l. lateralis scats (on account of 

B. sphaerocephala being classified as a forb), followed by grasses (12.8% occurrence), ferns (7.3% 

occurrence) and browse (3.1% occurrence). Petrogale lateralis lateralis selected for (Ei = 1) two 

plant species (pincushions Borya sphaerocephala and bellardia *Bellardia trixago), avoided one 

species (T. o. odoratissimum), and consumed four species in proportion to their availability (rock 

fern Cheilanthes austrotenuifolia, *E. longiflora (Figure 6), common sowthistle *Sonchus oleraceus 

and early hair grass *Aira praecox) (Table 5). Borya sphaerocephala was the most common plant 

species in P. l. lateralis scats (31.7% occurrence), followed by *B. trixago (15.6% occurrence), 

C. austrotenuifolia (7.3% occurrence) and *E. longiflora (7.0% occurrence). 
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Figure 6: Petrogale lateral is lateral is  herbivory of *Ehrharta longif lora 

Macropus fuliginosus scats consisted of a total of 13 plant species and featured marginally more 

dicots (47.8%) than monocots (42.2%), with pteridophytes contributing 7.4% (Table 5). In terms of 

plant functional groups in their scats, browse was the most common (22.9% occurrence), followed 

by forbs (12.5% occurrence), grasses (9.0% occurrence) and ferns (7.4% occurrence). Macropus 

fuliginosus selected for six species (*S. oleraceus Figure 7, yellow autumn lily Tricoryne elatior, 

powderbark wandoo Eucalyptus accedens, *B. trixago, B. sphaerocephala and morning iris 

Orthrosanthus laxus), and consumed seven species in proportion to their field availability 

T. o. odoratissimum (14.9% occurrence), C. austrotenuifolia (7.4% occurrence), *E. longiflora 

(4.0% occurrence; Figure 7), graceful honeymyrtle Melaleuca radula (1.7% occurrence), foxtail 

mulga grass Neurachne alopecuroidea (1.3% occurrence), zamia Macrozamia riedlei (0.6% 

occurrence) and snail hakea Hakea cristata (0.4% occurrence). *Sonchus oleraceus was the most 

common food plant species in M. fuliginosus scats (17% occurrence), followed by 

T. o. odoratissimum (14.9% occurrence), C. austrotenuifolia (7.4% occurrence) and T. elatior (6.0% 

occurrence). 
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Figure 7: Macropus ful iginosus herbivory of *Ehrharta longi flora ( left ) and 

*Sonchus oleraceus ( r ight) 

3.4.3 Dietary overlap 

There was some dietary overlap between P. l. lateralis and M. fuliginosus (Schoener index, α = 

0.56), with six plant species featuring in both of their diets: *B. trixago, B. sphaerocephala, 

C. austrotenuifolia, *E. longiflora, *S. oleraceus and T. o. odoratissimum (Table 5). Overall dietary 

compositions were, however, significantly different (PERMANOVA, F = 5.63, p = 0.001) (Figure 8). 

Borya sphaerocephala contributed most of the difference (SIMPER 27.4%), followed by 

*S. oleraceus (SIMPER 15.5%), T. o. odoratissimum (SIMPER 13.0%) and *B. trixago (SIMPER 

12.4%).  
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Figure 8: Non-metr ic MDS ordination comparing dietary composi t ions of  

Petrogale lateral is lateralis  and Macropus fuliginosus at Paruna Wildl ife 

Sanctuary 

3.4.4 Spatial overlap in foraging patch use  

A total of 115 P. l. lateralis (release site = 112, new site = 3) and 622 M. fuliginosus (release site = 

308, new site = 314) independent photo captures were recorded across a total of 128 trap nights. 

During this time, a total of three fox (new site only) and 34 feral cat (release site = 14, new site = 

20) independent photo captures were also recorded. At least three different feral cat individuals, 

including a kitten, were identified from photos. All P. l. lateralis captures at the new site were of the 

same individual and the low number of captures precluded the carrying out of statistical analyses 

for this outcrop.  

There was some spatial overlap in foraging patch use between P. l. lateralis and M. fuliginosus at 

the release site (33.9%; Figure 9 and Figure 10). Herbivore foraging activity was disproportionate 

(percentage of total captures for each species) with location (transect 1: χ22= = 53.11, p < 0.001 

and transect 2: χ22= 103.12, p < 0.001). Petrogale lateralis lateralis captures were mostly near the 

refuge (53% of captures of this species) or downslope of the refuge (33%), with very few captures 

upslope of the refuge (3%) (Table 4 and Figure 10). By contrast, M. fuliginosus captures were 

predominantly upslope of the refuge (47% of captures of this species), with fewer downslope of the 

P. l. lateralis 
M. fuliginosus 
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refuge (19%) or near the refuge (13%) (Table 4 and Figure 10). At the new site, M. fuliginosus 

captures were similarly fewest at the refuge (15%), but highest downslope of the refuge (36%) 

rather than upslope of the refuge (27%) (Table 4 and Figure 10). 

 

Figure 9: Petrogale lateral is lateral is  ( left )  and Macropus ful iginosus ( r ight)  

captured using the same foraging patch in Paruna Wi ldli fe Sanctuary 

In addition to spatial overlap, there was also temporal overlap in foraging activity between 

P. l. lateralis and M. fuliginosus, with both species foraging across the release site outcrop from 

dusk until dawn (Figure 11). However, time spent foraging and peak foraging times varied. 

Petrogale lateralis lateralis predominantly began foraging just before dusk (17:00 h) and ended 

mid-morning (09:00 h), peaking between 20:00-21:00 h and then again at midnight (00:00 h). By 

contrast, M. fuliginosus foraged throughout the day and night, peaking at 07:00 h, then between 

18:00-19:00 h, and again around midnight (00:00-01:00 h) (Figure 11).  
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Figure 10: Proport ion of  captures of Petrogale lateralis lateral is  and Macropus 

ful iginosus across the release si te outcrop in Paruna Wi ldli fe Sanctuary 

 

Figure 11:   Temporal  over lap in foraging act ivity between Petrogale lateralis 

lateralis  and Macropus ful iginosus across the release si te outcrop in Paruna 

Wi ldli fe Sanctuary 

Shaded area indicates temporal overlap. Value in the top left hand corner represents the proportion overlap in 

temporal activity (with the 95% confidence interval in brackets). 
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Table 4: Photo captures of Petrogale lateralis lateralis  and 

Macropus ful iginosus  across the outcrops in Paruna Wi ldli fe Sanctuary 

  Upslope Refuge Downslope  Chi-square 

  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Total χ2 p 
M

.  
fu

lig
in

os
us

 

RS 
T1 11 17 26 20 12 1 11 12 1 7 4 122 54.9 <0.001 

T2 30 62 5 22 15 0 0 7 43 2 0 186 250.5 <0.001 

NS 
T3 6 40 8 13 19 11 0 5 23 0 3 128 122.4 <0.001 

T4 6 6 20 6 5 5 28 21 30 21 38 186 84.2 <0.001 

P
. l

. l
at

er
al

is
 

RS 
T1 0 0 0 3 2 15 6 9 7 13 6 61 26.4 <0.001 

T2 0 0 1 0 1 35 0 6 5 3 0 51 52.8 <0.001 

NS 
T3 0 0 0 0 0 0 0 0 0 0 0 0 NA NA 

T4 0 0 0 0 0 3 0 0 0 0 0 3 NA NA 

 

RS = release site, NS = new site, Q = quadrat, T = transect. NA = data not suitable for analysis because only a single 

P. l  lateralis individual was captured at the new site. The darker coloured shading indicates higher numbers of 

captures.
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Table 5: Relat ive abundance of plant  species at the outcrops in Paruna 

Wi ldli fe Sanctuary compared to wi thin Petrogale lateralis lateralis  and Macropus 

ful iginosus scats 

Plant 
Relative 

availability (%) 
P. l. lateralis M. fuliginosus 

Class 
Functional group Family Species 

Release 
site 

New      
site 

Occurrence 
in scats    (%)

Ivlev’s 
Selectivity 
Index, E 

Occurrence 
in scats    (%) 

Ivlev’s 
Selectivity 
Index, E 

Monocot         

Forb Asparagaceae 
Dichopogon 
capillipes 

0.6 1.0 0.0 -1 0.0 -1 

Forb Asparagaceae 
Thysanotus 
manglesianus 

0.1 0.1 0.0 -1 0.0 -1 

Forb Boryaceae 
Borya 
sphaerocephala 

0.2 0.8 31.7 1 1.3 1 

Sedge Cyperaceae 
Lepidosperma sp. 
1 

0.0 0.0 0.0 -1 0.0 -1 

Sedge Cyperaceae 
Lepidosperma sp. 
2 

0.0 0.0 0.0 -1 0.0 -1 

Sedge Cyperaceae Schoenus nanus 0.0 0.8 0.0 -1 0.0 -1 
Forb Haemodoraceae Haemodorum sp. 0.2 0.2 0.0 -1 0.0 -1 
Forb Hemerocallidaceae Caesia micrantha 0.3 1.0 0.0 -1 0.0 -1 
Forb Hemerocallidaceae Tricoryne elatior  0.1 0.3 0.0 -1 6.0 1 

Forb Hypoxidaceae 
Pauridia 
occidentalis 

0.7 0.4 0.0 -1 0.0 -1 

Forb Iridaceae 
Orthrosanthus 
laxus 

0.0 0.1 0.0 -1 0.7 1 

Forb Iridaceae *Romulea rosea 3.2 3.9 0.0 -1 0.0 -1 
Forb Orchidaceae Caladenia flava 0.0 0.0 0.0 -1 0.0 -1 

Forb Orchidaceae 
Leptoceras 
menziesii 

0.0 0.0 0.0 -1 0.0 -1 

Forb Orchidaceae 
Prasophyllum 
macrostachyum 

0.0 0.0 0.0 -1 0.0 -1 

Forb Orchidaceae Prasophyllum sp. 0.0 0.0 0.0 -1 0.0 -1 
Forb Orchidaceae Pterostylis sp. 0.0 0.1 0.0 -1 0.0 -1 

Grass Poaceae *Aira cupaniana  0.0 0.8 0.0 -1 0.0 -1 
Grass Poaceae *Aira praecox  0.3 2.5 0.3 0 0.0 -1 
Grass Poaceae *Bellardia trixago 0.3 1.3 15.6 1 4.5 1 
Grass Poaceae *Briza maxima 0.4 0.4 0.0 -1 0.0 -1 
Grass Poaceae *Briza minor 1.9 2.8 0.0 -1 0.0 -1 
Grass Poaceae *Bromus diandrus 0.4 2.4 0.0 -1 0.0 -1 

Grass Poaceae 
*Ehrharta 
longiflora 

5.8 2.9 7.0† 0 4.0† 0 

Grass Poaceae 
Microlaena? 
stipoides 

0.0 0.5 0.0 -1 0.0 -1 

Grass Poaceae 
Neurachne 
alopecuroidea 

0.5 1.8 0.0 -1 1.3 0 

Grass Poaceae *Vulpia myuros 4.0 3.5 0.0 -1 0.0 -1 
  Unknown Poaceae   12.5  7.7  

Forb Restionaceae 
Desmocladus 
flexuosus  

0.0 0.1 0.0 -1 0.0 -1 

Forb Xanthorrhoeaceae 
Chamaescilla 
corymbosa  

0.0 0.2 0.0 -1 0.0 -1 

Browse Xanthorrhoeaceae 
Xanthorrhoea 
preissii 

0.8 0.0 0.0 -1 0.0 -1 
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Plant 
Relative 

availability (%) 
P. l. lateralis M. fuliginosus 

Class 
Functional group Family Species 

Release 
site 

New      
site 

Occurrence 
in scats    (%)

Ivlev’s 
Selectivity 
Index, E 

Occurrence 
in scats    (%) 

Ivlev’s 
Selectivity 
Index, E 

Browse Zamiaceae Macrozamia riedlei 1.5 0.1 0.0 -1 0.6 0 

  
Unknown 
monocots 

  14.1  21.2  

  Total monocots   65.6  42.2  
Dicot         

Forb Amaranthaceae 
Ptilotus 
drummondii 

0.0 0.1 0.0 -1 0.0 -1 

Forb Apiaceae 
Daucus 
glochidiatus 

3.5 3.9 0.0 -1 0.0 -1 

Forb Apiaceae 
Eryngium 
pinnatifidum 

0.0 0.3 0.0 -1 0.0 -1 

Forb Araliaceae 
Trachymene? 
pilosa 

0.0 0.2 0.0 -1 0.0 -1 

Forb Asteraceae 
*Arctotheca 
calendula  

0.4 1.4 0.0 -1 0.0 -1 

Forb Asteraceae 
Brachyscome 
pusilla  

0.0 0.3 0.0 -1 0.0 -1 

Forb Asteraceae 
*Carduus 
pycnocephalus 

0.5 0.4 0.0 -1 0.0 -1 

Forb Asteraceae 
Helichrysum? 
luteoalbum 

0.3 0.0 0.0 -1 0.0 -1 

Forb Asteraceae 
*Hypochaeris 
glabra 

4.6 4.4 0.0 -1 0.0 -1 

Forb Asteraceae 
*Hypochaeris 
radicata 

0.0 0.2 0.0 -1 0.0 -1 

Forb Asteraceae Plantago? debilis 0.0 0.7 0.0 -1 0.0 -1 
Forb Asteraceae Podolepis lessonii 0.3 0.5 0.0 -1 0.0 -1 

Forb Asteraceae 
Podotheca 
gnaphalioides 

0.0 0.1 0.0 -1 0.0 -1 

Forb Asteraceae 
*Sigesbeckia 
orientalis 

0.0 0.8 0.0 -1 0.0 -1 

Forb Asteraceae 
*Sonchus 
oleraceus 

4.7 3.1 2.5 0 17.0† 1 

Forb Asteraceae 
*Ursinia 
anthemoides 

1.3 2.4 0.0 -1 0.0 -1 

Forb Asteraceae 
Lagenophora 
huegelii 

0.5 0.9 0.0 -1 0.0 -1 

Forb Asteraceae Lawrencella rosea 0.0 0.2 0.0 -1 0.0 -1 
Forb Asteraceae Quinetia urvillei 0.5 2.3 0.0 -1 0.0 -1 

Forb Asteraceae 
Siloxerus 
humifusus 

0.0 0.4 0.0 -1 0.0 -1 

Forb Asteraceae Waitzia nitida 0.0 0.1 0.0 -1 0.0 -1 

Forb Asteraceae 
Unknown 
Asteraceae  

0.0 0.0 0.0 -1 0.0 -1 

Browse Casuarinaceae 
Allocasuarina 
huegeliana  

0.1 0.2 0.0 -1 0.0 -1 

Forb Caryophyllaceae *Silene gallica 0.2 0.2 0.0 -1 0.0 -1 
Forb Crassulaceae Crassula colorata  0.3 0.2 0.0 -1 0.0 -1 

Browse Dilleniaceae 
Hibbertia 
hypericoides  

0.0 0.2 0.0 -1 0.0 -1 

Browse Dilleniaceae Hibbertia lasiopus 1.1 1.7 0.0 -1 0.0 -1 

Forb Dioscoreaceae 
Dioscorea 
hastifolia 

7.6 1.5 0.0 -1 0.0 -1 

Forb Droseraceae Drosera bulbosa 0.8 0.5 0.0 -1 0.0 -1 
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Plant 
Relative 

availability (%) 
P. l. lateralis M. fuliginosus 

Class 
Functional group Family Species 

Release 
site 

New      
site 

Occurrence 
in scats    (%)

Ivlev’s 
Selectivity 
Index, E 

Occurrence 
in scats    (%) 

Ivlev’s 
Selectivity 
Index, E 

Forb Droseraceae 
Drosera 
glanduligera 

0.7 1.2 0.0 -1 0.0 -1 

Forb Droseraceae Drosera pallida  0.0 0.7 0.0 -1 0.0 -1 

Browse Ericaceae 
Astroloma 
drummondii 

0.0 0.1 0.0 -1 0.0 -1 

Browse Fabaceae Acacia pulchella 0.0 0.0 0.0 -1 0.0 -1 
Forb Fabaceae *Melilotus indicus 0.0 0.3 0.0 -1 0.0 -1 
Forb Fabaceae *Trifolium dubium 0.0 0.8 0.0 -1 0.0 -1 

Forb Fabaceae 
*Trifolium 
campestre 

0.2 0.5 0.0 -1 0.0 -1 

Forb Fabaceae 
*Trifolium 
subterraneum 

0.3 3.0 0.0 -1 0.0 -1 

Forb Gentianaceae 
Centaurium 
erythraea 

1.1 1.7 0.0 -1 0.0 -1 

Forb Gentianaceae *Cicendia filiformis 0.0 0.4 0.0 -1 0.0 -1 
Forb Geraniaceae Erodium cygnorum 0.1 0.0 0.0 -1 0.0 -1 

Forb Goodeniaceae 
Goodenia 
pulchella 

0.0 0.0 0.0 -1 0.0 -1 

Forb Lamiaceae *Stachys arvensis 1.5 1.6 0.0 -1 0.0 -1 
Forb Montiaceae Calandrinia sp. 0.4 1.9 0.0 -1 0.0 -1 
Forb Mulvaceae Thomasia sp. 0.0 0.0 0.0 -1 0.0 -1 

Browse Myrtaceae 
Corymbia 
calophylla 

0.1 0.2 0.0 -1 0.0 -1 

Browse Myrtaceae Darwinia citriodora 13.2 0.0 0.0 -1 0.0 -1 

Browse Myrtaceae 
Eucalyptus 
accedens 

0.0 0.4 0.0 -1 5.3 1 

Browse Myrtaceae 
Hypocalymma 
angustifolium 

1.1 0.8 0.0 -1 0.0 -1 

Browse Myrtaceae 
Leptospermum 
erubescens  

0.0 0.0 0.0 -1 0.0 -1 

Browse Myrtaceae Melaleuca radula 1.8 0.0 0.0 -1 1.7 0 

Forb Orobanchaceae 
Parentucellia 
latifolia 

0.5 1.1 0.0 -1 0.0 -1 

Forb Oxalidaceae Oxalis perennans 0.4 0.4 0.0 -1 0.0 -1 

Forb Papaveraceae 
*Fumaria 
capreolata 

0.8 0.0 0.0 -1 0.0 -1 

Browse Phyllanthaceae 
Phyllanthus 
calycinus 

2.6 2.2 0.0 -1 0.0 -1 

Forb Phyllanthaceae 
Poranthera 
microphylla 

0.0 0.2 0.0 -1 0.0 -1 

Forb Primulaceae 
*Lysimachia 
arvensis 

6.6 4.5 0.0 -1 0.0 -1 

Browse Proteaceae Hakea cristata 0.3 0.0 0.0 -1 0.4 0 

Browse Rhamnaceae 
Trymalium 
odoratissimum 
odoratissimum 

10.9 15.5 3.1 -1 14.9 0 

Forb Solanaceae *Solanum nigrum 0.0 0.0 0.0 -1 0.0 -1 

Browse Solanaceae 
Solanum 
lasiophyllum 

0.0 0.0 0.0 -1 0.0 -1 

Forb Stylidiaceae 
Levenhookia 
pusilla 

0.0 0.2 0.0 -1 0.0 -1 

Forb Stylidiaceae 
Stylidium 
androsaceum 

0.0 0.2 0.0 -1 0.0 -1 

Browse Thymelaeaceae Pimelea argentea 0.4 0.7 0.0 -1 0.0 -1 
Forb Urticaceae Parietaria debilis 0.7 0.1 0.0 -1 0.0 -1 
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Plant 
Relative 

availability (%) 
P. l. lateralis M. fuliginosus 

Class 
Functional group Family Species 

Release 
site 

New      
site 

Occurrence 
in scats    (%)

Ivlev’s 
Selectivity 
Index, E 

Occurrence 
in scats    (%) 

Ivlev’s 
Selectivity 
Index, E 

  Unidentified forb 1 0.3 0.8 0.0 -1 0.0 -1 
  Unidentified forb 2 0.0 0.2 0.0 -1 0.0 -1 
  Unidentified forb 3 0.0 0.0 0.0 -1 0.0 -1 
  Unidentified forb 4 0.0 0.2 0.0 -1 0.0 -1 
  Unidentified forb 5 0.0 0.2 0.0 -1 0.0 -1 
  Unknown dicots   5.2  3.5  
  Total dicots   26.3  47.8  

Pteridophyte         

Fern Pteridaceae 
Cheilanthes 
austrotenuifolia 

7.2 4.1 7.3 0 7.4 0 

Fern Aspleniaceae 
Pleurosorus 
rutifolius 

0.1 0.2 0.0 -1 0.0 -1 

  
Unknown 
fragments 

  0.9  2.7  

 

Functional group: browse = woody trees and shrubs, forb = non-woody herbaceous plants, grass = Poaceae family. †Camera 

trap captured a photo of this being consumed. Ivlev’s Selectivity Index: used relative abundance values at the release site only 

because no scats were found at the new site, -1 = avoidance, 0 = use in proportion to availability, 1 = selection (shaded). 
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3.5. Discussion 

Petrogale lateralis lateralis and M. fuliginosus diets and foraging patches in Paruna Wildlife Sanctuary 

overlapped, however also varied. While P. l. lateralis predominantly ate monocots, M. fuliginosus had a 

more diverse diet comprising similar proportions of monocots and dicots (slightly more dicots). Herbivores 

selected for two of the same plant species, both of which were limited spatially and/or temporally. Their 

foraging activity mostly occurred at different locations on the outcrop; P. l. lateralis near refuges and 

downslope of them, and M. fuliginosus upslope of refuges. These findings collectively suggest that low 

levels of dietary competition were occurring between P. l. lateralis and M. fuliginosus. 

3.5.1 Dietary overlap 

This study shows that there was some dietary overlap between P. l. lateralis and M. fuliginosus in Paruna 

Wildlife Sanctuary (prediction 1). Both macropod species consumed six of the same plant species 

including three forbs, a grass, browse and fern. The degree of dietary overlap in this study was comparable 

to that in most published studies (Table 6). The exceptions being the higher dietary overlap between 

P. l. lateralis and feral goats C. hircus (significant), and between M. fuliginosus and sympatric N.  irma and 

tammar wallaby N. eugenii (Table 6).  

In this study, P. l. lateralis predominantly consumed monocots. Chauvin (2015) reported similar findings 

for P. l. lateralis in the Avon Wheatbelt and Avon Valley National Park. By contrast, Creese et al. (2019) 

and Geelen (1999) found that dicots are mostly eaten by P. l. lateralis in Cape Range National Park and 

P. lateralis MacDonnell Ranges Race in South Australia respectively. In terms of plant functional groups, 

P. l. lateralis in Paruna mainly ate forbs (on account of B. sphaerocephala being classified as a forb). This 

finding aligns with that previously reported for other Petrogale taxa, however not this sub-species (Figure 

12). Petrogale lateralis lateralis diet seems to vary in line with plant functional group availability between 

locations and across seasons (Chauvin 2015; Pentland 2014; Tuft et al. 2011b). For example, while this 
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study recorded forbs being mainly eaten in Paruna in the cooler, wetter conditions of mid-spring when they 

were most abundant, Chauvin (2015) found that browse is mostly consumed in the neighbouring Avon 

Valley National Park in the drier conditions of late spring through summer when forbs, grass and fern 

abundance has declined (Figure 12). Several other Petrogale taxa demonstrate a similar temporal shift in 

diet (i.e. Capararo 1994; Copley and Robinson 1983; Dawson and Ellis 1979; Telfer and Bowman 2006; 

Tuft et al. 2011b). 

Despite some overlap, M. fuliginosus diets in this study differed considerably to those of P. l. lateralis, 

being more diverse (in terms of species richness) and comprising monocots and dicots in near equal 

proportions (dicots marginally more), and more browse than any other group. Shepherd et al. (1997) and 

Wann and Bell (1997) reported comparable findings in eucalypt forest/woodland. By contrast, Wilson 

(1991) and Algar (1986) found that dicots dominate M. fuliginosus diets in mulga Acacia aneura woodlands 

and grass, sedge and shrub associations respectively (Figure 13). In addition to vegetation type, temporal 

variation in plant functional group availability also seems to influence M. fuliginosus diet. For example, 

Barker (1987) and Norbury (1987) reported that M. fuliginosus diets comprise mostly monocots in winter, 

however transition to mainly dicots in summer. Macropus giganteus are also heavily reliant on grasses in 

their diets, however in all seasons (Figure 13).  
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Table 6: Comparison between dietary over lap resul ts of  this study at  Paruna 

Wi ldli fe Sanctuary wi th those of  publ ished studies for  a range of  macropod species  

Values from similar indices representing dietary overlap: (S) Schoener index (Schoener 1968) and (H) Horns index of niche 

overlap (Horn 1966). Shaded cells = significant dietary overlap recorded.  N.S = index value is not significant. †Data is the 

total of multiple seasons of sampling. 1The present study 2(Pilgonaman Gorge summer sampling: Creese et al. 2019) 3(Wann 

and Bell 1997) 4(Shepherd et al. 1997) 5(Algar 1986) 6(Davis et al. 2008) 7(Capararo 1994). 

 M. fuliginosus M. giganteus O. r. erubescens C. hircus 

P. l. lateralis 10.56 (S)  20.57 (S) 20.85 (S) 

P. lateralis  MacDonnell Ranges race   7N.S  

. irma 

30.88 (S)†  
40.33† (H) 

 
 

 

50.04 (H)    

N. eugenii 40.95 (H)†    

W. bicolor  60.61 (H)   
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                                            P. l. lateralis                            3P. lateralis      4P. xanthopus    5P. penicillata        

        Paruna            1Avon Valley        1Avon          2Cape Range    MacDonnell                                

       (Present           National Park     Wheatbelt      National Park        Ranges                                        

        (study)                                            Race    

Figure 12: Comparison between Petrogale lateral is lateral is  dietary composit ion 

resul ts of this study wi th those f rom other studies,  and other Petrogale taxa  

Cape Range National Park data is from Pilgonaman Gorge summer sampling. Avon Valley National Park and Avon Wheatbelt 

sedge data has been incorporated into forb data given no occurrence of Cyperaceae family. Petrogale xanthopus forb and 

browse data excludes round-leaved chenopods. Petrogale penicillata overall data is the mean of multiple seasons of sampling 

and sedge data has been incorporated into forb data given no occurrence of Cyperaceae family. 1(Chauvin 2015) 2(Creese et 

al. 2019) 3(Geelen 1999) 4(Dawson and Ellis 1979) 5(Tuft et al. 2011b). 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
F

ra
g

m
en

ts
 (%

) Grasses

Browse

Forbs

Ferns



47 

 

                  M. fuliginosus             M. giganteus 

           Paruna            1Whiteman         2Perup              3Harry             4Western           5Epping           6Wilsons           

          (Present               Park                Nature             Waring               NSW             Forrest          Promontory               

            study)                                       Reserve          Marsupial                                    National          National              

                                               Reserve                Park                Park  

                                                       QLD                 VIC 

Figure 13: Comparison between Macropus fuliginosus dietary composit ion resul ts of 

this study with those from other  studies,  and Macropus giganteus   

With the exception of Wilson (1991) and Algar (1986), all data is the total of multiple seasons of sampling. Wilsons Promontory 

National Park sedge data may also include other non-grass graminoid species including certain rushes, lilies and forbs. Sedges 

= Cyperaceae family. 1(Wann and Bell 1997) 2(Shepherd et al. 1997) 3(Algar 1986) 4(Wilson 1991) 5(Woolnough and Johnson 

2000) 6(Davis et al. 2008). 

3.5.2 Availability of preferred food resources 

While both macropod species consumed plant functional groups, to some extent, according to their 

availability, they also showed preference for particular plant species. Petrogale lateralis lateralis strongly 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
F

ra
g

m
e

nt
s 

(%
)

Grasses

Sedges

Browse

Forbs

Ferns



48 

selected for B. sphaerocephala and *B. trixago, with these two species making up almost half their diet 

(Table 2). Chauvin (2015) also found that P. l. lateralis in Avon Valley National Park and the Avon 

Wheatbelt select for B. sphaerocephala, with the latter population additionally selecting for C. 

austrotenuifolia (Chauvin 2015), which was eaten in proportion to its availability in this study. Both species 

are resurrection plants; capable of withstanding severe desiccation and rehydration (Hopper et al. 1997), 

and likely valuable food resources for P. l. lateralis. 

Macropus fuliginosus also selected for B. sphaerocephala and *B. trixago, however these species only 

made a small contribution to their diet (Table 2). Four other species were additionally selected for: 

E. accedens. O. laxus, *S. oleraceus and T. elatior. The latter species is also consumed by M. fuliginosus 

in Whiteman Park (Wann and Bell 1997).  

Of the six preferred food resources in Paruna, three were limited either spatially or temporally. Borya 

sphaerocephala was spatially limited, because it only grows in association with granite rock (Western 

Australian Herbarium 1998-). *Bellardia trixago and *S. oleraceus were temporally limited because they 

are annual weeds. To an extent, *B. trixago may also be spatially limited, being only recorded near 

exposed granite. By contrast, *S. oleraceus was ubiquitously distributed throughout the sanctuary and is 

a prolific weed across Western Australia (Western Australian Herbarium 1998-). It should also be noted 

that the abundance of B. sphaerocephala and *B. trixago may have been underestimated as plants were 

not flowering at the time of sampling and were therefore less detectable. 

3.5.3 The role of weeds in macropod diet 

Over a quarter of the plants eaten by P. l. lateralis and M. fuliginosus were weeds. Similar findings have 

been reported for these species (Chauvin 2015; Creese et al. 2019; Mayberry 2011; Pearson 2013; 

Pentland 2011; Wann and Bell 1997), as well as other macropod taxa: agile wallaby M. agilis (Grice 1996), 
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N. eugenii (McMillan et al. 2010), swamp wallaby Wallabia bicolor  (de Munk 1999) and M. giganteus 

(Claridge et al. 2016; de Munk 1999).  

*Ehrharta longiflora is widely consumed by P. l. lateralis according to its availability. In Paruna and Avon 

Valley National Park, which are relatively large and undisturbed reserves, it occurs at a low abundance 

and is eaten in correspondingly low amounts (Chauvin 2015). By contrast, in Nangeen Hill (Avon 

Wheatbelt), which is a much smaller reserve and more vulnerable to weed invasion, it is over twice as 

prevalent and is consumed in over four times the amount (Chauvin 2015). This suggests that *E. longiflora 

has likely replaced certain native diet items. Any weed control measures would need therefore need to be 

immediately followed by revegetation with native forage plants in order to prevent there being a lack of 

food resources for P. l. lateralis. 

Petrogale lateralis lateralis and M. fuliginosus may be contributing to the persistence and spread of existing 

weed populations across the sanctuary through several means. First, they may be dispersing viable weed 

seeds in their scats, as shown by other macropod species; M. giganteus Claridge et al. (2016) and M. agilis 

Grice (1996). Given the variable effect of gut passage on seed germination between herbivores (Westcott 

et al. 2008) though, the proportion of weed seeds ingested by P. l. lateralis and M. fuliginosus that remain 

viable after excretion is unknown. Petrogale lateralis lateralis may be transporting weed seeds to 

microsites on the outcrop, where the elevated nutrient and moisture levels facilitate germination (Brown 

and Archer 1988). However, their small population size likely precludes this from being a management 

concern. Macropus fuliginosus, on the other hand, are abundant in the sanctuary and could potentially be 

a more noteworthy vector for weed spread.  

Second, P. l. lateralis foraging may be limiting the recruitment (Allcock and Hik 2004; Young et al. 1995) 

or regeneration (Gardiner 1986) of potentially competitive native plant species (Tuft et al. 2011b). 

Overgrazing is known to cause soil disturbance and, together with nutrient additions from P. l. lateralis 

scats, can also facilitate weed encroachment (Hobbs and Atkins 1988), as previously reported by Pentland 
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(2014) at Nangeen Hill. However, this seems unlikely as P. l. lateralis foraging ranges in Paruna are not 

restricted like they were at Nangeen Hill.   

3.5.4 Spatial overlap in foraging patch use  

Our results show that there was some spatial overlap in P. l. lateralis and M. fuliginosus use of foraging 

patches (prediction 2), however species mostly foraged at different locations on the outcrop.  Petrogale 

lateralis lateralis (adults and young-at-heel) predominantly foraged near refuges (in accordance with 

prediction 3) but also regularly ventured considerable distances (≥100 m) downslope of their refuges to 

forage. A considerable time was devoted to foraging, with activity extending from dusk to mid-morning. 

These findings suggest that P. l. lateralis foraging behaviour in Paruna was not being constrained by a 

perceived risk of predation like that observed by Pentland (2014) at Nangeen Hill, despite predator (feral 

cat) presence. 

At least three feral cats were present on the outcrops, one of which moved between them. They visited 

several P. l. lateralis foraging patches, including one nearest a refuge containing a young-at-heel 

individual. At this age, P. l. lateralis are highly vulnerable to predation by feral cats (Hegglun 2018; H. 

Crawford, pers. comm.; Paltridge et al. 1997) and foxes (Kinnear et al. 1984; Pentland 2014). Pentland 

(2014) also observed feral cats intruding into refuges at Nangeen Hill. A single fox also roamed the new 

site and could to an extent potentially be contributing to the lower number of P. l. lateralis foraging on the 

outcrop compared to the release site.  

A combination of factors may be influencing P. l. lateralis foraging behaviour in Paruna. First, predator 

density may be sufficiently low enough (as a result of predator-proof fencing along the sanctuary’s southern 

boundary combined with fox control) to reduce predation fear in P. l. lateralis. Second, the dense T. o. 

odoratissimum cover and boulder piles downslope of refuges (shelter points: Tuft et al. 2011a) may be 

offering a degree of crypsis or temporary protection from predation, thereby facilitating foraging range 
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expansion. Tuft et al. (2011a) found this to be the case for P. penicillata. Third, both plant species P. l. 

lateralis selected for were most available downslope of refuges and the energy gained from acquiring 

these food resources may outweigh predation risk.  

In contrast to P. l. lateralis, M. fuliginosus predominantly foraged upslope of refuges but also sometimes 

ventured downslope to forage and occasionally foraged near refuges. Their greater use of available 

foraging patches across the outcrop is a function of their lower predation risk compared to P. l. lateralis 

(Tuft et al. 2011a). Rather than refuges, M. fuliginosus use crypsis in dense vegetation, clear lines of sight 

and superior speed to evade predators (Le Mar and Mcarthur 2005), with only young-at-heel vulnerable to 

predation (Arnold et al. 1991; Banks 2001; Banks et al. 2000; Chang 2001). Pentland (2014) also observed 

that M. fuliginosus sympatric with P. l. lateralis at Nangeen Hill only foraged off the outcrop in the 

surrounding woodland.  

Macropus fuliginosus preference for, and avoidance of, particular foraging patches suggests that they are 

spatially constrained within rocky habitat. The terrain upslope of refuges is the flattest and most accessible, 

whereas that near refuges is somewhat precarious (i.e. steep angled smooth rocks) and difficult to access 

by M. fuliginosus because they lack the specific morphological adaptations (i.e. a strong non-prehensile 

tail, large pads and short nails) required to scramble and leap (Barker 1990; Horsup 1986; Pentland 2014; 

Tyndale-Biscoe 2005). Their preference for foraging upslope may also be influenced by the fact that two 

of the plant species M. fuliginosus selected for, and three eaten in proportion to their availability,  were 

most available at these locations.  

3.5.5 Limitations of this study 

There may be errors and biases in the data resulting from the limitations of methods used. Although 

considered to provide an accurate estimation of diet, scat analysis method assumes that all plants have 

equally digestible epidermal tissues (Dawson and Ellis 1979). This is not the case, with some plants being 
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less digestible and therefore more easily identifiable (i.e. those with stellate trichomes such as browse 

species T. o. odoratissimum: Horsup and Marsh 1992), while others may be unidentifiable (forb species 

Dioscorea hastifolia and *Fumaria capreolata were captured being eaten by M. fuliginosus but not 

identified in their scats). This can result in the more easily identifiable plants being overestimated and 

grasses being underestimated (Creese et al. 2019).  

While grasses (Poaceae spp.) could be relatively easily identified based on the presence of silica bodies 

and elongated long-cells often with crenulated cell walls, and their cells running in rows parallel to venation 

(Kok and Van der Schijff 1973; Storr 1961), further identification to species level was difficult, likely 

because of their high proportion of digestible cellulose (Shipley 1999) and absence of other diagnostic 

features (Ellis et al. 1977). Seven Poaceae species were identified in vegetation surveys at the release 

site but only three (*A. praecox, *E. longiflora and N. alopecuroidea) were identified in the scats sampled.  

The method is further limited in that it does not account for the relatively long period between ingestion 

and excretion, and therefore potential for macropods to have sourced plants from outside the vegetation 

quadrats (foraging patches) surveyed (Norbury and Sanson 1992). This is more likely the case for 

M. fuliginosus because their foraging ranges are larger (Arnold et al. 1992) and not confined to areas near 

rock refuges (Creese et al. 2019). 

Camera trapping is limited in that it depends on movement to capture data. Intensive foraging activity 

where macropods remain largely stationary (i.e. browsing) may therefore not be detected by camera traps 

and potentially result in total foraging activity being underestimated. 

3.5.6 Future studies 

Despite both outcrops featuring each of the plant species consumed by P. l. lateralis, only a single 

individual was recorded at the new site. GPS collar tracking of two individuals by AWC in August 2019 (N. 

Palmer, AWC, pers. comm.) could shed some light on the situation. Tracking data could be combined with 
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camera trapping data collected in this study to verify the extent to which P. l. lateralis are using the new 

site and if they are moving between outcrops. Furthermore, it could confirm precisely when P. l. lateralis 

move away from their refuges to forage, and their maximum foraging ranges. 

Petrogale lateralis lateralis diets excluded browse plants with known high concentrations of plant 

secondary metabolites (i.e. Eucalyptus taxa). Plant secondary metabolites are a means of defence against 

herbivory (Bennett and Wallsgrove 1994); deterring herbivores when the metabolic costs of digesting them 

outweigh the energy gains (Dearing et al. 2005). Certain specialist browsers have physiologies capable of 

dealing with plant secondary metabolites (i.e. M. fuliginosus: Shepherd et al. 1997), however this may not 

be the case for P. l. lateralis (Tuft et al. 2011b). A nutrient analysis of the plants (including weeds) 

consumed by P. l. lateralis could confirm whether they are being selected for or against based on their 

plant secondary metabolite (i.e. tannins, essential oils, alkaloids: Rosenthal and Berenbaum 2012) and/or 

nutritional content (i.e. crude protein, nitrogen and fibre). 

3.5.7 Competition and conservation 

Sympatric macropods in this study had overlapping diets and, to a lesser extent, foraging patches. This 

combined with preferred food resources being spatially or temporally limited, indicates that a low level of 

dietary competition may be occurring between P. l. lateralis and M. fuliginosus. However, the current 

availability of shared food resources and degree of resource (foraging patches) partitioning occurring 

suggests that Paruna is able to support the grazing pressures of both herbivores (Woolnough and Johnson 

2000).  

In the event of a reduction in shared food resource availability, but not quality, P. l. lateralis could potentially 

have a competitive advantage over M. fuliginosus as their intake requirements are smaller and therefore 

more easily met (Illius and Gordon 1987; Tuft et al. 2011a). However, if shared food resource quality 

declines, M. fuliginosus are likely to have an advantage as they can digest poorer quality forage (Dawson 
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1989) and also forage further to fulfil their nutrient requirements (Tuft et al. 2011a). The reduced rainfall 

and increased temperatures, and consequently increased frequency and severity of droughts and 

bushfires, expected for southwest Western Australia as a result of climate change may contribute to this 

decline. Macropus fuliginosus may also compete with P. l. lateralis through interference competition; 

preventing them from accessing optimal foraging patches (Tuft et al. 2011a). In these circumstances, 

M  fuliginosus may adversely affect P. l. lateralis and consequently require proactive management 

(Woolnough and Johnson 2000).  

Rather than dietary competition, predation is likely the greatest threat to P. l. lateralis in Paruna. It was 

suspected to cause the population decline of almost fifty per cent between 2010 and 2014, after which an 

intensive predator control program was implemented. Poison baiting and trapping around the outcrops has 

now reduced predation pressure to the extent that P. l. lateralis recruitment has recommended, however 

recent annual capture-mark-recapture monitoring suggests that the population is still declining (Palmer 

2018).  

Although the lower number of captures may just be the result of individuals having dispersed to colonise 

other outcrops in the sanctuary, it might also be due to predation by feral cats for two main reasons. First, 

they have persisted in higher numbers on the outcrops compared to foxes, likely because they are less 

susceptible to baiting and trapping (Algar et al. 2007; Molsher 2001; Read and Ward 2011; Short et al. 

1997). Mesopredator release (Johnson 2006) may have also occurred, as fox suppression will have 

reduced interference and dietary competition. Second, feral cats prey on P. lateralis elsewhere (Hegglun 

2018; Read et al. 2019; H. Crawford, pers. comm.). They also continually invade P. l. lateralis foraging 

and shelter habitat (Pentland 2014). Their presence at the new site, combined with the lower quality shelter 

habitat (i.e. less structurally complex rock refuges) compared to the release site, may be responsible for 

the considerably lower use of the outcrop by P. l. lateralis.  
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Feral cats are notoriously difficult to control and will continue to incur into Paruna while it remains only 

partially protected by a predator-proof fence along its southern boundary. Extension of the fence to 

encompass the entire sanctuary would support complete predator eradication. In addition to the benefits 

this would bring resident P. l. lateralis, it will also improve the future success of supplementary 

translocations. Predator-proof exclosures at Nangeen Hill and in the Musgrave Ranges in South Australia 

have achieved excellent conservation outcomes for resident P. l. lateralis and P. lateralis MacDonnell 

Ranges race respectively (R. Boyland, WWF Australia, pers. comm.; Chauvin 2015; Muhic et al. 2012).  
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5.  APPENDIC ES 

Table A1:  Plant  reference l ibrary 

Monocots Dicots 

*Aira praecox (200x magnification) *Bellardia trixago (100x magnification) 

Borya sphaerocephala (400x magnification) 

 

 

 

 

 

 

Eucalyptus accedens (100x magnification) 
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*Ehrharta longiflora (200x magnification) 

(Chauvin 2015) 

Hakea cristata (200x magnification) 

Macrozamia riedlei (200x magnification) 

(Chauvin 2015) 

Melaleuca radula (200 magnification) 

Neurachne alopecuroidea (100x magnification) *Sonchus oleraceus (200x magnification) 

(Chauvin 2015) 



68 

Orthrosanthus laxus (200x magnification) Trymalium odoratissimum odoratissimum  

(200x magnification 

 

Tricoryne elatior (200x magnification)  

Pteridophyte 
 

 

Cheilanthes austrotenuifolia (200x magnification) (Chauvin 2015)  




