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ABSTRACT
The COllaborative Redundant Processing (CORP) algorithm is an
approach to prevent unauthorised modification of data in a decent-
ralised and distributed computing environment. Built on Ki-Ngā-
Kōpuku, a distributed and decentralised security model for Cloud
Computing, where redundant nodes are functionally identical, the
nodes collectively maintain consistency and integrity of processed
data. If a single node is compromised and acts maliciously to modify
data, other nodes detect the action. CORP extends the functionality
of Ki-Ngā-Kōpuku and is developed mainly for a Cloud Comput-
ing context, but the concept can be used in any distributed and
decentralised environment to provide consistency, integrity, and
availability.

CCS CONCEPTS
• Security and privacy→ Digital signatures; Distributed sys-
tems security; • Software and its engineering→ Cloud com-
puting.
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1 INTRODUCTION
In this paper is presented the COllaborative Redundant Processing
(CORP) algorithm that is built on Ki-Ngā-Kōpuku principles, a
decentralised and distributed software architecture for Cloud Com-
puting. Ki-Ngā-Kōpuku is designed to deliver a secured comput-
ing application framework for development by decentralising and
distributing application components across a server network. Ki-
Ngā-Kōpuku practically makes it difficult for an attacker to identify
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a specific target because application components are distributed
somewhat randomly (no specific or pre-defined pattern) and the
with a high level of redundancy, the application framework attains
a very high level of resilience and availability. Furthermore, Ki-
Ngā-Kōpuku provides no system core or centralised management
system [3]. Therefore, a Ki-Ngā-Kōpuku system consists of nodes
that host application components, that collectively define the scope
of the system. No single node is more capable than any other node,
no does any node have higher priority.

CORP addresses issues around system security and unauthorised
data modification [7] to provide data consistency and integrity. One
of the major aims in deploying security measures is to protect
data from being modified by unwanted parties [17], especially in
centralised Cloud Computing environments and in distributed and
decentralised computing. In the latter case, where more than one
server or node may process data, a mechanism to prevent unwanted
and unauthorised modification is required for the participating
nodes.

As an approach to prevent unauthorised modification of data
CORP takes advantage of highly redundant systems, employing
multiple nodes that carry out the same task. While processing trans-
actions, nodes determine collectively if processed data is consistent.
If a node gets compromised or acts in a malicious way to modify
data, other nodes detect the unusual behaviour.

The rest of the paper is structured as follows: Section 2 provides
a background for Ki-Ngā-Kōpuku, Section 3 summarises relevant
literature, Section 4 that defines the problem, Section 5 outlines the
solution to the problem and provides an illustrative example and
a logical model. Possible future enhancement of the algorithm is
discussed in Section 6.

2 BACKGROUND
While Cloud Computing is an accepted form for the distribution
of computing resources and services, the openness of the Cloud
architecture leaves many systems open to successful attack. This
is shown almost weekly from some very large scale thefts and
intrusions, through minute by minute attacks on systems. Tracking
and categorising attack vectors provides a realistic view of how and
where attacks emerge, highlighting the need for greater resilience
in systems architectures and removing the human element where
insider actions (whether by accident or malicious) lead to serious
data harm or loss).

Primary threat vectors to Cloud Computing appear as technolo-
gical factors (hardware and software) and human factors [2]. These
can be further broken down into the following categories:
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Technological factors
• Hardware: Computing services, internal infrastructure,
external network (mobile and fixed)

• Software: Local and Cloud platforms, network protocols,
virtualisation, software tools, web services, security sys-
tems

Human factors Trust, compliance, regulation, competence, spe-
cialisation, SLA misinterpretation, the social context.

From these, systems that provide security apparently have com-
mon issues: That exploits are more vulnerable to those that have
knowledge of the system architecture and its weaknesses, and that
systems typically provide identifiable targets. That is, the greatest
threat to most systems are internal actors (whether by accident
or malicious) and those people are able to exploit weaknesses in
the single point of failure. Therefore, to provide a solution to these
issues one needs to address both points effectively.

There are issues in Cloud Computing are not easily addressed, for
example multi-tenancy and specifically the common weakness of
all Cloud servers; shared technologies that enable successful Denial
of Service (DoS), cross VM cache side channel, hypervisor escape,
and hyper-jacking attacks [16]. In most cases, a successful attack
results in the loss of confidentiality, integrity, and/or availability.
Thus, the following terms are defined:
Vulnerability A weakness or flaw in a system that can be ex-

ploited in an attack, which is a specific event or series of
actions.

Threat An exploitation of any known vulnerability that can result
in serious loss of data and information.

Data breach Unauthorised access to systems and networks, such
that there is a loss of confidentiality of data within the system
(stored or in transit).

Data loss Deliberate or unintentional deletion or manipulation
of data such that it loses integrity or availability.

The means by which attacks may be successful include hijacking
user account details after obtaining user credentials and informa-
tion, for example via phishing, DoS, and Man-in-the-Middle attacks.
Most sophisticated attacks involve combinations of these methods.
These examples illustrate some of the many social engineering op-
portunities exploited by attackers. Technological weaknesses may
be exploited by identifying vulnerabilities in shared technologies,
that is, shared CPU cores, high level cache, storage devices, and
network interface cards in multi-tenancy environments. Since all
Cloud Computing services rely on hypervisors for virtualisation,
it is assumed that the hypervisor will provide sufficient isolation.
However, all hypervisors contain vulnerabilities (known and un-
known) and these provide pathways for attack vectors in exploit-
ation scenarios. For example, unauthorised access can be gained
to the hypervisor through the exploitation of code vulnerabilities
or configuration flaws. Once inside the network, the attacker can
gain control over the network and cloud delivery platform, even
giving access to the Virtual Machines (VMs) of other users. The
platform characteristics that enable Cloud Computing also provide
the opportunities for attackers to hijack user credentials, eavesdrop
on information, and control other users’ VMs.

It is not the purpose of Ki-Ngā-Kōpuku to provide a solution
to the human related factors, but to create a security system that

makes it very difficult for an attacker to successfully exploit a
cloud services platform. Ki-Ngā-Kōpuku does that by presenting
no single point of failure and is self-healing. The former is achieved
by applying two approaches: Eliminating the concept of a mono-
lithic software program, and breaking the program down into parts
or components, then ensuring a high level of redundancy of the
parts so that the program is never without some function when
required; the second approach is having no central core or adminis-
tration module, that is, to decentralise the software architecture and
distribute the system’s resources across a server network. These
approaches provide resilience under attack and ensure availability.
Not addressed specifically in this paper, the self-healing property is
provided through the use of drone nodes, which are nodes that have
no predefined functionality but exist to ensure rapid deployment in
the event of an attack. Therefore, this paper presents a solution to
the question of how Ki-Ngā-Kōpuku addresses data confidentiality
and integrity and shows how collaborative processing enables an
effective means for messaging between nodes.

CORP relates to Ki-Ngā-Kōpuku, so a brief description is provided
(Figure 1). Any application that is run on Ki-Ngā-Kōpuku is com-
ponentised, with program fragments inside node wrappers. A cloud
infrastructure is comprised of Cloud Instance of Operating Systems
(CIOS) that may be hosted on bare metal or hosted hypervisors and
that provide a virtualised environment. The decentralised approach
ensures that everything except a user interface exists within the
BEC. The types of CIOS are the Front-end CIOS (FEC) and Back-end
CIOS (BEC). The FEC provides interfaces for user interaction, ap-
plication programming interfaces, and data assembly to aggregate
data that comes from the Ki-Ngā-Kōpuku nodes. The FEC provides
primary and secondary functions and in any event, the functions
are triggered by user interactions via devices that may be local or
accessed via Internet services. Requests from the FEC are broad-
cast to the BEC, where they are received by relevant application
components and processed. At this stage, integrity verification is
required. The BEC aggregates node functions, and provides a sys-
tem interface to unicast messages and data to the originating FEC.
In some instances, secondary FEC requests may be divided into
smaller requests by the primary FEC. The divided requests are pro-
cessed individually and then recombined by the Data Assembler
before transmission back to the secondary FEC.

Some rules have been established to ensure Ki-Ngā-Kōpuku
achieves the required outcomes. The virtualised CIOS exist on Vir-
tual Machines (VM), which contain nodes. The number and distri-
bution of nodes is not fixed or preplanned, nor are the distribution
and number of components within each node. Thus, there must
always be a minimum number of component copies available, no
single node may contain all application components, no single VM
may contain all application components, a node may not contain an
application component, and a VM may not contain an application
component. Furthermore, the environment is dynamic, therefore
provided the rules are maintained, components may be delivered
to nodes at any time.

3 RELATED STUDY
In this section, prior research related to decentralisation and collab-
orative processing are presented. The research presents a mature
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Figure 1: Ki-Ngā-Kōpuku reference architecture

computing landscape, with a wide range of approaches and tech-
nologies that are designed to meet the requirements of specific
or niche problems. Collaborative computing environments have
emerged with the growth of decentralisation and the Internet of
Things (IoT), in which low powered edge computing devices rely
on other devices to share processing loads.

The concept of collaborative processing and related algorithms
cover aspects of data processing on hardware and software. For
example, the algorithm proposed by Pedrycz [12] explores the data
structure of a data site by comparing sites and to discover structural
commonalities or anomalies.While this approach provides evidence
of data variation and therefore, a probable attack has occurred, Li
et al. [11] discuss a host-based collaborative detection mechanism
for distributed computing to counter False Data Injection (FDI)
attacks.

In examples that demonstrate how a collaborative approach
between system nodes realise sophisticated algorithms, a collabor-
ative content dissemination method for multimedia Cloud is pro-
posed by Chunlin et al. [4] that aims to improve user multimedia
experience. Cuomo et al. [5] present an IoT based collaborative
reputation system that evaluates and classifies users’ behaviour us-
ing IoT systems. Also, collaborative processing is often encountered
in IoT and sensor networks that are developed to provide research
outcomes, such as the decentralised reactive clustering for collabor-
ative processing proposed by Xu and Qi [19] and within the context

of sensor networks, Xu and Qi [20] discuss collaborative processing
in a mobile agent based computing environment.

Fundamental issues exist at the manifest level of networks, which
means that collaborative systems may not access nodes effectively
or efficiently. Various solutions apply a statistical or probabilistic
approach to the management of node messaging. An approach may
be for each node to estimate in advance their energy requirements,
based on their local topology, by applying a learning algorithm
that uses kernel-linear least-squares regression estimators Predd
et al. [14]. A further problem in decentralised systems is complexity,
where the level of complex relationships between nodes increases
rapidly. Khalili et al. [8] address this issue by applying second order
statistical information in the complex domain and uses variations
the actual distribution of nodes, plus affine projection learning rules
within the nodes, to track variations in statistical information. Ku-
mar and Zaveri [9] present how to use clustering to make energy
use more efficient across a heterogeneous IoT environment. They
apply a three level approach in which there exists a cluster head
that coordinates nodes and allows the exchange of semantics. The
nodes do not communicate directly with each other but through this
top layer. This approach would not be effective in Ki-Ngā-Kōpuku
because Ki-Ngā-Kōpuku is more homogenous, each node is expec-
ted to communicate directly, and it is not an IoT sensor network.
The concept of a cluster head would make message processing less
efficient in Ki-Ngā-Kōpuku.
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The collaborative approach in CORP is enhanced by the decent-
ralisation and distribution of processes, as opposed to centralised
computing [18]. This approach offers ubiquity, ensures no single
point of failure, and provides a solution to a possible problem with
communication bottlenecks [6]. Existing solutions demonstrate
that decentralised control is suitable for dynamic and distributed
large-scale systems, for example Schlegel [15], and are sufficiently
robust [10].

4 PROBLEM DEFINITION

Communication NetworkCommunication Network

Node-BNode-B

Node-DNode-D

Node-ANode-A

Node-CNode-C

λ_1λ_1

λ_2λ_2

λ_1λ_1

λ_3λ_3

λ_1λ_1

λ_2λ_2

λ_2λ_2

λ_3λ_3

Figure 2: Ki-Ngā-Kōpuku transactional requirements

As previously described, any application running on Ki-Ngā-
Kōpuku is divided amongst the nodes on a CIOS. As a form of
decentralised computing, CORP works in a computing architecture
that has no core controller and therefore, single point of failure.
This is illustrated in Figure 2, as is the important point that com-
munications between nodes are negotiated on an almost ad hoc
basis because there is no prior knowledge of where application
components exist. This makes it difficult for an attacker to gain
knowledge of where and how to attack the system.

An Ki-Ngā-Kōpuku environment comprises Nn number of nodes
and an application can be divided into λn number of components.
There must be at least λn+1 copies of each component. Provided the
rules for Ki-Ngā-Kōpuku are not broken, there must be sufficient
number of nodes to contain and distribute the components. If an
application is divided into three components, λ1, λ2, λ3 and the
components are distributed to a more or less random number of
nodes, then the number of nodes must be greater than the total
number of components (Figure 2). For example, if an application
is made up of 3 components, there must be at least 4 nodes in
existence. This is the lower limit of the nodes, and there is no
theoretical upper limit. How new nodes are added to the scenario,
or how the components are distributed to a new node are out of
the scope of this paper, and thus not discussed.

The components are distributed such that no single node may
contain all the components, and there must be redundant copies of
each component. The components work collaboratively and when
a process is associated with a component, for example λ1, all the
nodes are available for processing. Consider the scenario in Figure 2,
a process associated with λ1 may take place in Node-A, Node-B,
and Node-D but not in Node-C (the last one does not contain λ1).
Thus it is required that all the nodes containing λ1 return the same
output, ensuring transactional integrity and data consistency.

5 PROBLEM SOLUTION
Traditionally, the most straightforward approach to validating data
output is by providing an encrypted hash output that may be com-
pared with other outputs that are reputed to be from the same
source, for example, CRC. Any variation in the checksums indicates
that the comparison file differs from the source because of file cor-
ruption or some other cause. CORP applies this principle to validate
transactions processed on nodes. The concept of CORP is that more
than one node will undertake the same transaction and that the
output from each must be the same. CORP defines the mechanism
for data integrity checks across all nodes. This identifies if any node
is compromised or attempts to maliciously modify a transaction to
produce different output.

Create checksum of processed 
data

Encrypt message with key 

Broadcast encrypted message

Receive encrypted message from 
other nodes

Successful decryption?

Y

END

N

Generate exception flag 
and multicast to all 

nodes except the sender 
node)

START

Create a standard message

Use checksum 
as key

Decrypt message using own key

Figure 3: CORP Algorithm

To verify data consistency and integrity, all nodes engaged with
the transaction initiate the CORP process. Figure 3 illustrates the
algorithm steps. The node first creates a checksum of the processed
data using a standard checksum generator algorithm (as there are
significant variations in security and efficiency, we assume the
choice of algorithm ought to be flexible). The node then creates a
standard pre-defined message and uses the checksum as the key
to encrypt the message. The encrypted message is then multicast
to all other nodes that also processed the transaction. At the same
time, the node receives an encrypted message sent from the other
nodes and attempts to decrypt the message using its own checksum
as a key. Provided data integrity is maintained, the nodes do not
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Figure 4: Collaborative Processing using CORP

need to share the key. Thus, successful decryption is achieved if
there has been no unauthorised data modification. If a message
cannot be decrypted, it would indicate a possible attempt to modify
data and the node would generate an exception flag as an alarm.
The exception flag is then multicast to all the nodes within Ki-Ngā-
Kōpuku, including the nodes not involved in the transaction.

If no exception flag is generated during the CORP process, then
no attempt of unauthorised data modification took place. Otherwise,
the decision of what to do with the suspected node needs to be
made. This is not addressed in this paper, as the mechanism that will
deals with a malicious node is out of the scope of CORP algorithm.

CORP is a technologically agnostic algorithm that can cope
with changing technological manifestations. It defines the steps
to identify unauthorised data modification in generic steps. For
example, data can be encrypted using any cryptographic approach.
In addition, while Though Figure 3 presents the checksum as a
key, the CORP algorithm is not constrained to use it. Alternatives
exist, depending on requirement, therefore Figure 4 illustrates the
ideal case in which there is no exception flag generated. In the case,
multiple nodes (Requestor, Processor, Key Sender, and Data Sender
nodes) are process a transaction. The Requestor node initiates a
process request, the Processing Nodes process the request and the
Key Sender and Data Sender nodes send key and data respectively.
From a client-server perspective, the Requestor node acts as the
client and the other nodes act collectively. Upon receiving a process
request from a Requestor (could an end-user or another system),
the Processing Nodes carry out the process and collectively select
one node as Key Sender and one node as Data Sender. Finally, the

Requestor receives the encrypted data from one node and the key
to decrypt the data from another node. The integrity is maintained
by using data and the key from different sources.

Referring to Figure 2, let us assume that the component λ1 in
involved in processing a transaction. Since Node-A, Node-B, and
Node-D contain λ1, these three nodes will complete the same pro-
cess. Once processing is done, the nodes will create a checksum of
the processed data. Since all the nodes are working on the same data
and carrying performing the same transaction, the created check-
sums must match. At this point, all the nodes encrypt a pre-defined
standard message by symmetric encryption, where the checksum is
the key. The encrypted message is multicast across the network by
each of the three nodes, Node-A, Node-B and Node-D and received
by their counterparts without sharing the key.

In the event of data corruption, if Node-A receives encrypted
messages from Node-B and Node-D, and if Node-A successfully
decrypts the message from Node-B, but the message from Node-
D cannot be decrypted. Then Node-A will suspect an attempt of
unauthorised data modification has taken place in Node-D and
generates an exception flag. Node-A multicasts the exception flag
to Node-B and Node-C. Thus, the process of CORP algorithm ends
with either of the two possible outcomes; exception flag or no
exception flag.

A logical model that expresses the algorithm illustrated in Fig-
ure 3 is presented here. The model assumes that the algorithm
completes successfully and that is, that there is no exception flag
as in Equation 1a, or there is a flag generated as in Equation 1b.
Furthermore, the following conditions are defined for the model:
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CORP = The Algorithm
Nn = Number of nodes
D = Successful decryption
Nn (D) = Successful decryption in node Nn
R = Exception Flag

∀Nn : D ⇒ R′ (1a)
∃Nn : D ′ ⇒ R (1b)

Equation 1a states that for all the nodes involved in the transac-
tion, if the message is decrypted successfully, then no exception flag
is generated. But if an exception flag exists for any node, then some
error in processing has occurred either accidentally or maliciously
and an exception flag is generated, Equation 1b. According to the
condition, even a single exception flag may mean some malicious
act, therefore data integrity is maintained if and only if there is no
failed decryption and no exception flag.

∃Nn (D) ⇔ ¬Nn (D
′)

⇔ R′ (2)

Thus, the algorithm is expressed by Equation 3.

CORP := ∀Nn (D) ⇒ R′ ⊕ ∃Nn : D ′ ⇒ R (3)

S0

t

S1p

q

S2r

p,q,r

Figure 5: CORP model NFA

The model is evaluated using NFA (Figure 5). The NFA has three
states s0, s1 and s2 and four input functions t , p, q, and r . The states
are:
s0 = nodes with no processing request initiated
s1 = processing request initiated, nodes create key and standard

message and encrypts the message with key
s2 = nodes broadcast and receive encrypted data, decrypts to

determine data integrity. This is the acceptance state from
which point further processing may carry on.

and the inputs are:

t = no change, this is the initial idle state with no request to
process data

p = processing request
q = key creation, encryption of data
r = broadcast, receive and decryption of data.

The NFA can be represented asM = (Q,Z ,R,q, F ) where:

M = the NFA
q = initial state s0
Q = states of the NFA s0, s1, s2
F = acceptance state s2
Z = input symbols t, r ,p,q
R = transition R : (Q × Z ) → Q

6 FURTHERWORK
At this stage, CORP is not fully optimised and there are some pro-
cessing overheads associated with CORP. For example, involving
all the nodes in processing will make the complexity of the al-
gorithm grow exponentially. To select a random number of nodes
for processing instead of involving all nodes, a sub-algorithm is
planned. Technological constraints and performance overheads re-
lated factors are also to be considered in future developments of
CORP.

7 CONCLUSION
CORP is a research in progress. The security model Ki-Ngā-Kōpuku
may incorporate CORP to add data security on top of its current
features. However, CORP is not constrained to be used only by Ki-
Ngā-Kōpuku and can be used in any distributed computing setting.
CORP introduces redundant processing which is a transactional
overhead, but the trade-off depends on the sensitivity of the data.
CORP may be a good fit in the contexts that deal with highly
sensitive data that requires security assurance.
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