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Acidic weathering of the sulfidic Upper Cretaceous Carlile and Pierre Shales in Nebraska has led to the
precipitation of the Al sulfate-hydroxide minerals aluminite, alunite, “basaluminite”/felsobanyaite (e.g.,), the
aluminum hydroxides gibbsite and bayerite, and the rare Al phosphate hydroxide vashegyite. Kaolinite has
also been produced as a result of this acidic weathering. These minerals do not appear as neoformed
constituents in any extant soils in the region, and their existence underscores the ability of pyrite oxidation to
produce major changes in mineralogy on a Holocene to Recent time scale. Jarosite, hydronium jarosite,
gypsum, halotrichite, and melanterite also appear as secondary minerals in the weathered shales. Acidic
weathering and the formation of new minerals is extrapedogenic because it occurs well below the limit of
modern soil sola. These processes also occur at the edges of major landscape elements and can be considered
to have a strong lateral component processes, making them “per latus” processes in our usage.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Accounts of natural acidic weathering resulting from pyrite
oxidation in sedimentary rocks are much fewer than those of acid
mine drainage (e.g., Nordstrom and Alpers, 1999; Blowes et al., 2004),
and in many places it has been overlooked as a potentially common
near-surface process. Acid-weathering Cretaceous shales, such as
those discussed in this study, are very widely distributed and crop out
extensively in the Western Interior of North America (e.g., Gautier,
1986; Arthur and Sageman, 1994). The weathering of these shales has
received very little attention (e.g., Eberlin, 1985), and the occurrence
of many of the resultant secondary minerals was essentially unknown
until now. We present evidence for the occurrence of natural acidic
weathering in two widespread, sulfide-bearing Cretaceous shales in
Nebraska, the Carlile Shale (Fig. 1a: sites 1 and 2) and the Pierre Shale
(Fig. 1a: site 3) has produced multiple new mineral phases that are
nothing less than exotic in the contexts of regional soil-related
weathering and the current state of scientific literature. These sites are
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broadly characteristic of weathering processes that must exist
wherever these and other Cretaceous shales are exposed in the
enclosing region, making our results widely applicable in the
understanding of underappreciated aspects of environmental miner-
alogy and chemistry.

We employ the term “extrapedogenic” in this study to emphasize
that the weathering we describe occurs below the level of the soil
solum. The effects of weathering at the sites we describe are also
concentrated at the edges of major geomorphic elements (valley walls
and major rivers) by groundwater discharge, evaporation, and
oxidation associated with proximity to the atmosphere. Therefore,
we also describe the weathering we observe as a per latus process, that
is, having a strong lateral component, in contrast to per ascensum
(operating vertically upward) or per descensum (operating vertically
downward) processes. Per latus weathering in the cases we describe
occurs at geomorphic edges exposing reactive bedrock and involves
the: (1) widespread, diffuse discharge of groundwater and, probably,
intermittent and more concentrated discharge; (2) evaporation and
oxidation near the interface between the lithosphere and the
atmosphere accumulation of secondary minerals along near-surface
fractures and joints; (3) formation of authigenic nodules near the
same surfaces; and (4) development of efflorescences at outcrop faces
on geomorphic edges. In total, per latus weathering contrasts with the
downward migration of a regional weathering front and progressive
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Fig. 1. Location of study sites in eastern Nebraska, USA (a) and their approximate stratigraphic positions, by number, as well as the position (x) of an acid rock drainage site described
by Joeckel et al. (2005) (b). Composite stratigraphic section of formations of Cretaceous System in Nebraska modified after Condra and Reed (1959) omits upper Pierre Shale.

in-situ alteration of bedrock by per descensum processes. Acknowl-
edgement of acidic rock weathering in the context of extrapedogenic
and per latus processes expands the overall paradigm for rock
weathering and mineral neoformation and transformation in a mid-
latitude, subhumid, continental climatic setting.

2. Materials and methods

Nodules and crusts of secondary minerals, alteration zones, and
weathered rock at three sites on naturally acid-weathering, pyrite-
bearing Cretaceous sedimentary rocks in Nebraska (Fig. 1) were
collected and stored in sealed plastic bags at room temperature. The
study sites and the materials collected from them are described in
detail in a forthcoming section.

Subsamples of materials collected at the study sites were
processed and analyzed by X-ray diffraction (XRD), within a month
after collection and within two hours after their removal from storage
bags. Prior to XRD analysis, subsamples were powdered using a
ceramic mortar; manual grinding was limited to less than one minute
to minimize its peak-broadening effect on X-ray diffractograms. To
obtain randomly oriented powder mounts, ground subsamples were
screened to minus 63 um, and the oversize fraction was rejected. A
Rigaku Mini-Flex™ X-ray diffractometer using CuKo radiation at
30 kV and 15 mA was employed for XRD analysis. Scans were made
from 2° to 90° 20 at a step time of 1° or 2° 20/min. Mineral
identification was facilitated by the search-match function in JADE™
release 8 software from Materials Data, Inc. (Livermore, CA), which
uses the Powder Diffraction Files or PDFs (International Centre for
Diffraction Data, 2001) as references. Repeated onscreen qualitative
comparisons of diffractograms and match lines were employed in
addition to peak-matching software. A Hitachi S-3000N scanning
electron microscope (SEM) was used to examine and image Pt-Pd
coated samples of secondary minerals and weathered host materials.
Many of these samples required multiple iterations of coating in order
to stabilize them and prevent excess charging under the electron
beam. The colors of mineral crusts and weathered materials are
expressed according to the Munsell Soil Color Charts (Munsell Color,
1998).

3. Results

All three study sites exhibit intense chemical weathering phe-
nomena relative to regional soils, and weathered shales at each site
produce pH values of 3-5 in 1:1 suspensions in deionized water. Also,
all three sites are located in extensive bedrock exposures along the
sides of major river valleys that include stratigraphic contacts that
serve as near-surface discontinuities affecting the movement of
groundwater. These discontinuities are also the prime loci for
weathering effects. Weathering and the formation of new minerals
at all three sites must be in large measure a geologically recent
phenomenon, since it is dependent on the existence of outcrops that
undergo varying degrees of active mass wasting.

Table 1

Minerals discussed in this study.
Mineral Formula
Alunogen? Aly(SO4)3 - 17H,0
Alunite™® KAl5(S04)-(0OH)g
Aluminite®© Al;(SO4)(OH),4 - 7H,0
Bayerite"® Al(OH)5
Copiapite? Fe?*Fe3*, (SO4) 6(OH) 5 - 20H,0
Fluorapatite™* Cas(PO,)sF
Felsébanyaite/“basaluminite”>¢ Al4(SO4)(OH)q - 5H,0
Gibbsite®* Al(OH)5
Gypsum™” CaS0, - 2H,0
Halotrichite®® Fe?*Al,(S04)4 - 22H,0
Hohmannite® Fe3*,(S04) » (OH) 5 - 7H,0
Hydronium jarosite™© (H30)Fe3(S04)2(OH)g
Hydroxylapatite™© Cas(P0O,);0H
Jarosite®® KFe>*5(S04),(0H)g

Melanterite®”
Meta-alunogen?®
Metahohmannite®
Vashegyite"*

Fe2*S0, - 7H,0
AlLy(SO4)s - 26H,0
Fe3,0(S04) 5 - 4H,0
Alg(PO4)s(OH); - 23H,0

@ Previously described from Nebraska.

b Identified from at least one site described in this study.

€ Not previously described from Nebraska.

4 Various databases (e.g., International Centre for Diffraction Data, 2001) still list
felsobanyaite and basaluminite as different minerals, but the latter is probably only a
microcrystalline variety of the former (Farkas and Pertlik, 1997), and the name
“fels6banyaite” has priority (Jambor et al., 1998).
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We emphasize the discovery of particular secondary minerals: (1)
the Al sulfate-hydroxide minerals aluminite, alunite, and “basalumi-
nite”/felsobanyaite (Table 1, Fig. 2); (2) the aluminum hydroxide
gibbsite, and probable bayerite as well, which co-occur with
secondary Al sulfate hydroxides; (3) the rare aluminum phosphate-
hydroxide vashegyite (Table 1, Fig. 3), which appears as secondary
coatings on phosphate nodules at two sites, and which has not
heretofore been described from an environment of acidic weathering
in sedimentary rocks; and (4) secondary kaolinite. The latter
occurrence is significant because the major Cretaceous marine shales
in the Western Interior of the USA are overwhelmingly smectitic,
containing abundant smectite and illite/smectite (e.g., Tourtelot et al.,
1960; Schultz, 1978), and we are unaware of any primary sedimen-
tary accumulation of kaolinite in any of them.

3.1. Site 1: East of the mouth of Bow Creek, Cedar County, Nebraska

Site 1 (~42° 45’ 56" N 97° 7' 59” W) is a high, north-facing natural
bluff along the Missouri River, east of the mouth of Bow Creek in Cedar
County, Nebraska (Figs. 1, 4, 5). It exposes the upper Carlile Shale and
part of the overlying Niobrara Formation, which are, in turn, overlain
by Late Pleistocene Peoria Loess and Holocene colluvium. Complex
slump-earthflows are common in the high bluffs along the banks of

the river. Fresh headscarps, headscarp pools, rotated blocks, hum-
mocky toeslopes with mudflows, and other features indicate that
mass-movement is an ongoing process. Groundwater seepage has
taken place at the contact between the Niobrara Formation and the
underlying Carlile Shale recently because seepage can be identified in
active mass wasting features in the same area. Likewise, meteoric
waters doubtless infiltrated fractures and former mass-wasting slip
planes, which now show evidence of weathering, just as they can be
seen to migrate through analogous features at the site today. Acidic
weathering probably had some effect on mass wasting at site 1
because of the changes it has produced in mineralogy and rock fabric
near the outcrop face.

A yellowish brown (10YR 5/6) and brownish yellow (10YR 6/6),
soft, earthy alteration zone in the uppermost Carlile Shale at the site
is rich in kaolinite (Figs. 4, 5). Approximately 20% (by volume) of
this zone is 5 to 40 mm, very soft, white (~5Y 8/1), irregular
nodules of secondary Al minerals (Fig. 3b). Gypsum crystals
constitute another ~10% of the alteration zone. This alteration
zone continues to the west and downslope, where the same very
soft, white nodules are also common in a 4 to 20 cm-thick zone that
lies between comparatively permeable colluvium containing chalky
limestone blocks from the Niobrara Formation and weathered
fragments of Carlile Shale, and the less-permeable, in-situ weathered

Fig. 2. SEM images of secondary minerals resulting from acidic weathering; a, alunite from soft nodules at site 3 (see Fig. 10b); b, jarosite from nodule in heavily weathered zone at
site 2; ¢, aluminite laths from soft white nodule in alteration zone (see Fig. 5b) at site 1; d, rosettelike aggregates of platy crystals, possibly gibbsite, from soft white nodule in
alteration zone (see Fig. 5b) at site 1; e, alteration zone at site 1 (see Fig. 5b), consisting of kaolinite- and hydrous iron oxide-bearing matrix (1), aluminite laths (2) and rosettelike
crystals (3); f, outer part of large nodule at site 1 (see Fig. 5¢) replaced by “basaluminite”/felsébanyaite (probably large platy crystals in image), gypsum (prismatic crystals) and

aluminite.
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Fig. 3. Vashegyite as product of acidic weathering environments; a, vashegyite crystals around weathered marine phosphate nodule in Pierre Shale at site 3; b, whorl-like grouping of
vashegyite crystals from around weathered marine phosphate nodule in subsidiary weathered zone (Fig. 4, 3b) Carlile Shale at site 1; ¢ and d, vashegyite crystals (v) underlain by
prismatic gypsum crystals (g) around weathered marine phosphate nodules in Carlile Shale at site 1; e, diffractogram of sample shown in “a”, indicating vashegyite (vas) and gypsum
(gyp); f, marine phosphate nodules from site 1 encased in white weathering rinds consisting of vashegyite and gypsum.

for details see photo on Fig. 5a

W—»

(O nodule (for details see photo
on Fig. 5¢)

Fig. 4. Lateral relationships of alteration zones along contact between weathered shales of Carlile Shale (Kc) overlain by Quaternary colluvium (Qc) (3a), and along fracture or slip plane (3b) at
site 1; part of figure is represented in photograph in Fig. 3a. Two inactive slump blocks (1, II) are visible, as are pebbly colluvium (1) and boulder colluvium (2) with fragments of Niobrara
Formation limestone (which, where in place upslope, overlies Carlile Shale); light gray (5Y 7/1) moderately to heavily weathered Carlile Shale (4); and weakly-weathered gray (5Y 5/1) shale
(5). Large crystals of secondary selenite are common in 4 and 5. Large nodule identified in diagram is “basaluminite”/felsébanyaite-aluminite-gypsum shown in Fig. 5¢; see Fig. 9 for symbol key.
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Fig. 5. Weathering of Carlile Shale at site 1; a, alteration zone (arrows) at top of Carlile Shale (Kc), overlain by Quaternary colluvium (Qc) (see Fig. 4); b, closeup view of same
alteration zone, containing soft, white nodules containing aluminite, gibbsite, and probable bayerite (see Fig. 6); c, large, white nodule in weathered Carlile Shale consisting of
“basaluminite”/fels6banyaite, aluminite, and gypsum, which have replaced Mg calcite, still visible in the core of the nodule; d, diffractogram of air-dried (ad) and glycolated (gly)
runs of <2 mm fraction of brown alteration zone shown in (a) and (b) above, indicating kaolinite (~7.2 A) produced by acidic weathering; e, SEM image of clay and hydrous iron

oxide-bearing matrix of same alteration zone.

Carlile Shale. The intact Carlile Shale here has been rotated slightly
downslope by successive slumps (Fig. 4). White nodules and alteration
features also appear deeper within the weathered Carlile Shale along a
few, very large, subhorizontal fractures attributable previous mass
movements. These small nodules are dominated by aluminite. X-ray
diffractometry indicates that they also contain gibbsite and probable
minor bayerite, as well as gypsum (Fig. 6). One diffractogram, for
example, shows a prominent ~2.22 A peak (Fig. 6a), which would be
characteristic of bayerite, and which is not overlapped by any XRD peaks
of aluminite, or for that matter gibbsite (cf. Rodgers et al., 1991). Peaks at
~2.05A and ~4.30-4.40 A in the same diffractogram (Fig. 6a) corre-
spond neither to aluminite nor to bayerite, and possibly represent peaks

of gibbsite, the other major peaks of which would be obscured by the
diffraction pattern of aluminite. Another sample yields a comparatively
definitive diffraction pattern for gibbsite (Fig. 6b).

The slightly to moderately weathered shale below and around
zones containing secondary minerals exhibits color changes
(bleaching to 5Y 7/1 light gray or 5Y 8/1 white, for example),
irregular 2.5 Y 6/8 olive yellow banding; discrete, large secondary
gypsum crystals and 5 to 20 mm-thick sheets or veins of fibrous
gypsum lining fractures (Fig. 2). It also shows coatings of pale yellow
(2.5Y 8/4 and 5Y 8/3), brownish yellow (10YR 7/6) and yellow
(10YR 6/6) jarosite and brownish yellow (10YR 6/6) hydrous iron
oxides along fractures.
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Fig. 6. Selected X-ray diffractograms of soft white nodules from site 1 (see Fig. 5); a, sample showing the dominance of aluminite (alm), the probably existence of bayerite (bay), and
the possible existence of gibbsite (gib); b, sample dominated by gibbsite (gib) and gypsum (gyp). Values of “d” in Angstréms.

A few, large, weathered nodules, as much as 40 cm in diameter,
appear in the weathered Carlile Shale below the main zone of
alteration (Fig. 5¢), and such nodules can also be found in debris that
has been moved downslope by mass wasting. These large nodules
consist of: (1) a thin (2-3 cm) cortex of earthy, poorly crystalline,
yellow (10YR 7/8) hydrous iron oxide and small gypsum crystals; (2) a
thick inner zone of very soft, earthy, finely crystalline, white (~N 8/0)
material identified by XRD as “basaluminite”/felsobanyaite, aluminite,
and gypsum; and (3) a core likewise containing “basaluminite”/
felsobanyaite, aluminite, and gypsum, but also containing irregular,
subrounded masses of slightly harder, dark grayish brown and
brownish yellow (10YR 4/2 and 6/8), fine-grained magnesium calcite.
It appears that these nodules originally consisted entirely of
magnesium calcite, and that this primary carbonate phase was
replaced by secondary “basaluminite”/felsébanyaite, aluminite, and
gypsum during surficial weathering (cf. Clayton, 1980).

In a subsidiary altered zone around a slip plane even deeper in the
weathered Carlile Shale (Figs. 4, 5a), primary, rounded, 2 to 6 cm

nodules of black (10YR 2/1) and dark grayish brown (10YR 4/2)
fluorapatite and hydroxylapatite have fracture fills and exterior
coatings of soft, white (~N 8/0) coatings consisting of gypsum and
the rare Al phosphate-hydroxide vashegyite. Vashegyite is detectable
in these nodules because of distinctive XRD peaks corresponding to
d=~11.1to 11.3 A (Fig. 3e), representing a 002 reflection (cf. Johan
et al,, 1983; Onac et al., 2006, Figs. 2). Most phosphatic nodules in the
weathered Carlile Shale are completely enclosed by coatings, and in
some of them the phosphatic part of the nodule has been almost
completely replaced, except for a few, engulfed, subangular fragments
in the center of the mass. In the latter cases, nodules consist
dominantly of secondary gypsum, with only minor vashegyite and
brownish hydronium jarosite. Under the SEM, vashegyite is most
abundant in the outermost zone of coatings around phosphate
nodules, and it is underlain by layers of microscopic, tabular and
prismatic crystals of gypsum (Fig. 3¢, d). Vashegyite crystals are very
small, ranging in length from 4 to 6 um and in width from 2 to 3 um,
and have aspect ratios (length:width) of 1.8 to 2.1. They are
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distinctively tabular, angularly lozenge-shaped, and flattened on
(001), with prominent {110] faces (cf. Johan et al., 1983; Anthony et
al.,, 2001-2005) (Fig. 3a-d). Very small crystals appear to be
characteristic both of archived type specimens of the mineral (Johan
et al., 1983) and of newly-discovered occurrences (Onac et al., 2006).
In keeping with its “phyllophosphate” or sheet phosphate structure
(sensu McConnell, 1974), crystals of vashegyite from site 1 appear in
“books” or bundles consisting of a many tens of crystals. These
bundles also form indistinct, whorl-like aggregates 13 to 18 um in
diameter, which curve around central voids 2 to 3 um in diameter
(Fig. 3b).

3.2. Site 2: Volcano Hill or “Ionia Volcano”, Dixon County, Nebraska

Site 2 (~42° 41’ 26" N, 96° 49’ 51” W) is a high, east-facing natural
cliff exposing the Carlile Shale overlain by Wisconsinan Peoria Loess
(Figs. 7, 8). This site, so named because the locals mistook effects from
the in-situ oxidation of iron sulfides as igneous activity (Threet, 1956;
Smith, 1978), is one of the earliest-documented geologic heritage sites
in the western USA, yet there is no comprehensive scientific account
of it. Groundwater seepage from the cliff face is evidenced by these
historical accounts. The highest (middle) part of the cliff face exhibits
a 220 cm-deep zone in the uppermost exposure of the Carlile Shale
(Figs. 7a; 8a-b). This zone consists of as much as 20% yellow (10YR 7/6
and 7/8) jarosite infillings and linings in vertical and horizontal
fractures, as well as less-common discoidal bedding-plane-parallel
nodules of soft jarosite approximately 1-6 cm in maximum diameter
(Fig. 8b). Shale in this zone is bleached to light gray (10YR 7/1) around
cores of gray (10YR6/1), and it is also stained yellow (10YR 7/6 and 7/
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Fig. 7. Weathering profiles in Carlile Shale at site 2; a, at middle (highest part) of
exposure; b, section downslope to north and downsection from “a”. See Fig. 9 for
symbol key.

8) around bedding planes in association with the accumulation of
jarosite. These features contrast starkly with the very dark gray (5Y 3/
1) to black (5Y 2.5/1) colors of relatively fresh, moist shale lower in
the outcrop. About 2% of the volume of the jarosite-enriched
weathering zone consists of large (1-20 cm) tabular pseudo-rhom-
bohedral crystals (sensu Jafarzadeh and Burnham, 1992) of secondary
selenite gypsum. Most of these crystals contain inclusions of
weathered shale and many of them exhibit twinning; some show
internal “ghost” crystal outlines under UV light. Microcrystalline
efflorescences of gypsum are common in the lower part of the
outcrop. Dark yellowish brown (10YR 4/4) ferric hydroxide stains are
also common on fracture surfaces. Downslope to the north, secondary
jarosite is less prominent, but still present, and gray shales have been
bleached to white (5Y 8/1) by weathering (Fig. 7b).

In very weakly weathered shale, below the heavily-weathered
zone of jarosite concentration, melanterite locally appears in
efflorescences as bundles of fine (<10 mm), bluish, hairlike, capillary
crystals near the surface of the outcrop along fractures and in recesses
(Fig. 7a). Serial visits indicate that it is a transient phase compared to
the persisting jarosite at the site, which appears in association with
more complete weathering of the shale host rock. Halotrichite is also
common locally as a very thin, white crust on the surface, also mostly
in the very weakly weathered lower part of the outcrop (Fig. 7a).

Deeper in the Carlile Shale is a thin bentonite (Fig. 8c) that has
been altered from the original smectite clay by acid weathering to
kaolinite (Fig. 8d). Discrete beds of smectite bentonite are widely
known to occur at this position within the Carlile Formation, and their
appearance is very characteristic and therefore easily recognizable in
the field (cf. Hattin, 1962).

3.3. Site 3: Harlan County Reservoir, Harlan County, Nebraska

Site 3 (~40° 4’ 26" N, 99° 21’ 29” W) is a series of low (8-10 m)
cliffs exposed along the shore of Harlan County Reservoir (Figs. 1, 9,
10), which have been subjected to regular slumping and erosion
since the lake was impounded over 50 years ago. These cliffs expose
the lower Pierre Shale, which is overlain by Late Pleistocene to
Holocene deposits of: (1) silty colluvium under a spur ridge
truncated by shoreline erosion and, laterally, (2) sandy to silty
alluvium under an eroded terrace of the Republican River. There are
at least five calcite- and magnesium-calcite-cemented bentonitic
beds within the exposed part of the Pierre Shale, and these beds
weather in slight relief (Fig. 9). Grayish to brownish, moderately
soft to hard, 2-5cm ovoid nodules or lag pebbles of marine
phosphate (fluorapatite) are associated with some of these beds
(Fig. 9) are undergoing weathering just as the host shale is. Acid
drainage in groundwater seepage was directly visible at site 3 prior
to the onset of long-term drought conditions ca. 1999, and again as
recently as July 2009. Visible seepage is currently concentrated near
the base of the cliff, although it could easily have occurred higher in
the face in the recent past.

The Pierre Shale is very strongly weathered near the top of the
outcrop and moderately to strongly weathered in a thick zone below,
but it is only weakly moderately weathered near the base of the cliff
line (Fig. 9). Its colors range from gray (2.5Y 5/1) where it is weakly
weathered, to pale yellow (e.g., 5Y 8/3) and white (5Y 8/1) where it is
strongly weathered (Fig. 9). The more heavily weathered parts of the
Pierre Shale weather into lenticular masses between subhorizontal
fracture planes that crosscut bedding (Fig. 10a). We speculate that the
subhorizontal fractures may be related to stress release near the face
of the outcrop, but they also have a clear relationship with
weathering, in that the shale around them is oxidized to very pale
brown (10YR 7/4) (Fig. 10a). The subhorizontal fractures also contain
discontinuous, very thin (~ 1 mm) sheets of selenite gypsum, and
surficial crusts of yellow (2.5Y 7/4) jarosite appear on the exposed
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Fig. 8. Weathering of Carlile Shale at site 2; a, jarosite-enriched, heavily weathered zone in weathered Carlile Shale (Kc) under Late Pleistocene Peoria Loess (PL); b; closeup view of
yellow jarosite nodules (j) and hydrous iron oxides in heavily weathered zone; c, white band of bentonite altered to kaolinite, appearing approximately 0.6 m below base of profile
shown in Fig. 7b (20 cm scale); d, diffractogram of white band shown in (c). indicating nearly pure kaolinite (kao), values of “d” in Angstréms.

faces of lenticular masses (Fig. 10a). Measured pH levels of weathered
shales at the site range from 3.6 to 3.7.

Reddish yellow (7.5YR 6/6) to strong brown (7.5YR 5/6) hydrous
iron oxide coatings, large sheets of centimeter-scale crystals of
secondary gypsum, and yellow (5Y 8/6 and 8/8) crusts consisting of
intergrown, flattened, and mammillate nodules of jarosite and
hydronium jarosite appear along joints (i.e., vertical to subvertical
fractures) in the shale. Discontinuous, horizontal sheets of prismatic
crystals of secondary gypsum, usually 10 mm or less in thickness, are
distributed throughout the upper, more heavily weathered, part of the
exposure. Similar, 5 to 12 mm-thick sheets of prismatic gypsum
crystals are common within and around the bentonitic layers. These
gypsum sheets are commonly bounded by yellow (5Y 8/6 and 8/8),

mammillate crusts of irregular, intergrown, flattened jarosite nodules
a few millimeters thick. More importantly, soft, white (~10YR 8/1),
spherical to ovoid, 5-40 mm nodules of alunite and “basaluminite”/
felsobanyaite appear within and around the thickest sheets of
secondary gypsum that are associated with bentonitic beds
(Figs. 10b, 11).

Vashegyite appears as dull, white powdery coatings with gypsum
on the outer surfaces of weathered phosphate nodules (Fig. 3f).
Vashegyite is readily distinguished in these samples by a distinctive
~11.17 A peak in the diffractogram (Fig. 3e) and by crystal form (cf.
Johan et al., 1983; Onac et al., 2006, Figs. 2, 4). The vashegyite crystals
from site 3 are tabular, angularly lozenge-shaped, and flattened on
(001), with prominent {110] faces (Johan et al., 1983; Anthony et al.,
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Fig. 9. Weathering in Pierre Shale at site 3.

2001-2005). Some of them show chevron-shaped “notches” parallel
to {110}, which are interpreted as growth faces identical to features
visible in the crystals figured by Onac et al. (2006), (Fig. 2d) from a
Romanian cave. Similar to the occurrence of the mineral at site 1,
vashegyite crystals from site 3 (Fig. 3a) range in length from
approximately 7 to 10 pm and in width from approximately 3 to
6 um, and they are approximately 1 pm in thickness (cf. Johan et al.,
1983 and Onac et al., 2006), and they have aspect ratios (length:
width) of approximately 1.4 to 2.5. Although no single crystal was
perfectly oriented for measurement, the angles between adjacent
{110} faces in the crystals from site 3 are approximately 30 to 35°, an
angular orientation roughly similar to that represented in one of the
forms illustrated by Johan et al. (1983), (Fig. 1). Vashegyite crystals
consist of conspicuous bundles of sheets (Fig. 3a), appearing at site 3
as stacks of perhaps 5 to 15 or more individual sheets, altogether
totaling 3 to 9um in thickness. XRD analyses indicate that the
interiors of the vashegyite-hosting nodules from site 3 also contain
secondary gypsum.

4. Discussion
4.1. Occurrence of secondary minerals in context

The Al-bearing minerals aluminite, alunite, bayerite, gibbsite, and
vashegyite have never been described from Nebraska (cf. Pabian,
1993) or, to our knowledge, from any of multiple nearby states in the
enclosing region of the USA. Joeckel et al. (2007), however, found
minor “basaluminite”/felsébanyaite at another acidic weathering site
in Nebraska, as did Tien (1968) in Kansas. Aluminite, alunite,
“basaluminite”/felsébanyaite, and gibbsite are moderately common
minerals worldwide in weathering and alteration environments, but
bayerite is very rare (Rodgers et al., 1989, 1991; Dani et al., 2001),
having been described from a very few low-temperature environ-
ments (e.g., Gedeon, 1956; Vernet, 1962; Naray-Szabo and Peter,
1967; Khorosheva, 1968; Wilmot and Young, 1985). Bayerite has been

found together with gibbsite in nodules produced by deep weathering
below the soil solum in one other occurrence, within karstic features
(Wilmot and Young, 1985). Alunite occurs in a variety of alteration
environments and forms across a very wide range of temperature, and
although it occurs in low-temperature, near-surface, meteoric-
weathering settings (Dill, 2001), accounts of such are comparatively
rare. Aluminite occurs generally in association with acid rock
weathering and the past or present percolation of groundwater, and
sometimes in karst settings (e.g., Martini et al., 1997; Polyak and
Provencio, 1998; De Putter et al., 2000). “Basaluminite”/felsébanyaite,
has been reported in clear association with such phenomena as past or
ongoing acid rock weathering, karstification, major unconformities
and hydrologic discontinuities, and the deeper percolation of
groundwater (e.g., Hollingsworth and Bannister, 1950; Milton et al.,
1955; Frondel, 1968; Tien, 1968; Mitchell, 1970; Gricius, 1971;
Clayton, 1980; De Putter et al., 2000). Gibbsite appears in many soil
and weathering environments, although typically in warmer and
wetter climates than that of the study area.

Vashegyite is a particularly rare mineral, yet it has been described
from environments as diverse as phosphate-bearing albitized pegma-
tites (Atencio and Coutinho, 2005), altered metamorphic rocks
(Clinton, 1929), fractured cherts (Hausen, 1962; Milton et al., 1982),
and altered phosphatic black shales (Van Tassel, 1985), but its most
well-documented occurrences are in association with the acid
leaching of bird or bat guano and the weathering of underlying
clays or volcanic rocks in caves and rookeries (Vennum et al., 1994;
Barczuk and Tatur, 2003; Onac et al., 2006). Thus, its occurrence in
weathering profiles at our sites 1 and 3 can be considered generally
similar to the last kind of occurrence, yet all but exceptional relative to
accounts in the published literature

Hydronium jarosite, jarosite, and gypsum (Table 1), in comparison
to some of the other minerals found in this study, are particularly
common as secondary minerals in acid-weathering environments;
halotrichite and melanterite are also commonly reported. Jarosite,
halotrichite, and melanterite as well have previously been described
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Fig. 10. Weathering of Pierre Shale at site 3; a, lenticular masses of gray (2.5Y 5/1),
moderately to heavily weathered shale several centimeters in length (1) surrounded by
very pale brown (10YR 7/4) oxidized shale (2), containing discontinuous, very thin
(~1mm) sheets of selenite gypsum, and with surficial crusts of yellow (2.5Y 7/4)
jarosite (j); scale in centimeters and inches; b, white alunite and “basaluminite”/
felsbbanyaite nodules in thick sheets of prismatic selenite gypsum above and below (1)
slightly resistant bentonite bed (2); scale in centimeters.

from Nebraska by Pabian (1993), but among these occurrences, only a
single occurrence of halotrichite has previously been described in any
detail (Joeckel et al., 2007).

There are significant differences between the suite of minerals
described in this study and that described previously from other acid
rock weathering sites on Cretaceous rocks in Nebraska. Joeckel et al.
(2005) found the hydrated aluminum sulfate alunogen, and probably
meta-alunogen as well (Table 1) from crusts/efflorescences at an acid
rock drainage site on the Cretaceous Dakota Formation (Fig. 1b), but
these minerals could not be identified in any mode of occurrence at
the sites described in the present study. Aluminite, alunite, “basalu-
minite”/felsobanyaite, bayerite, gibbsite (and vashegyite as well), in
comparison, were completely absent at the Dakota Formation
localities described by Joeckel et al. (2005), whether in surface
features, along fractures in weathered bedrock, or within the rock
mass itself. A variety of hydrated iron sulfates described by Joeckel et
al. (2005) were also absent at the sites discussed in the present paper.
The iron sulfates hydronium jarosite and jarosite, which are nearly
ubiquitous in acid sulfate soils and naturally-weathered sulfidic rocks,
could be identified at all of the present study sites, but minerals of the
jarosite subgroup were conspicuously absent in the mineral efflor-
escences and in fractures in the weathered Dakota Formation rocks
studied by Joeckel et al. (2005). These mineralogical differences exist
in conjunction with two obvious differences in site characteristics.
First, the hydrated Fe and Al sulfates minerals described from the

Dakota Formation sites by Joeckel et al. (2005) occurred in surface
crusts and efflorescences exclusively, whereas most of those de-
scribed in the present study appear in or along joints or fractures, in
discrete alteration zones, or as nodules within the rock mass. Second,
the localities described by Joeckel et al. (2005) were roadcuts rather
than natural exposures, and weathering processes had been at work
there for mere decades, whereas the localities described in the present
paper are natural exposures that must have been undergoing
weathering at or near the land surface for centuries to millennia,
after the Late Pleistocene.

4.2. Weathering processes and secondary mineral assemblages

The association of acid weathering following the oxidation of
pyrite, percolation or discharge of groundwater, and the formation of
secondary Al minerals, typically at or around a geologic contact,
unconformity or geohydrologic discontinuity, is a documented, even if
neither fully realized nor appreciated, geological theme (e.g., Ross et
al., 1968; Sunderman and Beck, 1969; Clayton, 1980; De Putter et al.,
2000).

The neoformed aluminous minerals identified in this study must
have formed after from the release of Al by acid weathering
solutions. Hydrous phyllosilicates in the host shales are the only
significant aluminum-bearing minerals in the host shales, therefore
they must be the source of Al The reaction of acid sulfate solutions
with hydrous phyllosilicates, particularly clay minerals, has been
identified by several authors as the source of Al for the formation of
minerals such as “basaluminite”/felsébanyaite and alunite in soils
and other weathering environments where pyrite oxidation has
occurred (Keller et al., 1967; Frondel, 1968; Adams and Hajek, 1978;
Clayton, 1980; Khoury, 1987; Hassan and Baioumy, 2007). Further-
more, laboratory experiments by Shamshuddin et al. (1995) readily
demonstrated that both jarosite and alunite could be precipitated
from incubated samples of acid sulfate soil, that is, oxidized sulfidic
material, when they were treated with NaCl and KCI solutions.
Similarly, laboratory studies by Adams and Hajek (1978) showed
that alunite will form after “basaluminite”/felsébanyaite if the
ambient sulfate-bearing solutions contain K*, which could, in a
natural setting like those described herein, be liberated by the
breakdown of hydrous phyllosilicates such as illite or illite/smectite,
common clay-fraction constituent in sedimentary rocks (Keller et al.,
1967; Hassan and Baioumy, 2007), and specifically in Cretaceous
shales in the western interior of USA (e.g., Tourtelot et al., 1960;
Schultz, 1978). Aluminite formation in low-temperature settings has
also been attributed to the natural reaction of acidic sulfate solutions
with clays, particularly kaolinite (e.g., Polyak and Provencio, 1998).
Ross et al. (1968) suggested that aluminite could be the antecedent
of alunite in weathering sedimentary rocks at or near the land
surface, but they did not substantiate this comment. Gibbsite can
also have precipitated directly from acidic sulfate solutions under
certain conditions. Adams and Hajek (1978), for example, found that
gibbsite will directly precipitate, together with alunite and “basa-
luminite”/felsébanyaite, from sulfate solutions if the ratio SO3~/AI>™
is low and OH™/AI** is high. These observations suggest that the
molar ratios of weathering solutions may have slightly differed at
site 1, where gibbsite has been identified, relative to the other sites,
where no gibbsite was found. Given that Al was released into
migrating sulfate solutions by acid weathering, vashegyite at sites 1
and 3 must originate from the localized reaction of such solutions
with fluorapatite and hydroxylapatite in primary sedimentary
nodules.

Our documentation of the abnormal occurrence of kaolinite as a
weathering product in otherwise smectitic sedimentary rocks is of
equal importance to the aforementioned assemblage of sulfates,
hydroxide, and phosphate minerals. In this respect, silicate weather-
ing in zones of acid weathering has far exceeded the intensity of
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Fig. 11. Selected X-ray diffractograms of soft white nodules from site 3 (see Fig. 10b); a, sample showing the dominance of “basaluminite”/felsébanyaite (bas); b, sample dominated

by alunite (aln). Values of “d” in Angstréms.

weathering processes in any extant soils in the overall study area. As
apparently out of place as this intense localized weathering is in the
context of much weaker regional regimes of pedogenic weathering,
there are several precedents in the published literature for the
occurrence for the aluminum-bearing minerals in bedrock weathering
environments.

Documented occurrences of secondary aluminous minerals in
association with low-temperature acidic weathering in sedimentary
rocks typically involve both a pyrite-bearing source rock that
weathers to create acidic sulfate solutions and a carbonate host
rock, or some other source or carbonate such as authigenic nodules,
that reacted with migrating acidic sulfate solutions so as to elevate
solution pH and prompt the precipitation of aluminous minerals (e.g.,

Clayton, 1980; Wilmot and Young, 1985; Ambers and Murray, 1995).
Our results differ from typical examples of this association (e.g.,
Wilmot and Young, 1985; Ambers and Murray, 1995) in that: (1) the
occurrences of aluminous minerals at site 1 are either directly below
in-situ limestone, in direct association with limestone-derived
calcareous colluvium, or around magnesium carbonate nodules (cf.
Clayton, 1980), rather than within karst depressions or atop a
limestone; and (2) there are no limestones at sites 2 and 3, although
the bentonites hosting secondary aluminous minerals at site 3 contain
calcite and magnesium calcite. Nonetheless, there are still identifiable
carbonate phases at sites 1 and 3 with which acidic solutions could
react, and concentrations of secondary aluminous minerals tend to
occur in very close proximity to these phases.
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5. Conclusions

5.1. Products of acidic weathering in reactive shales and
their implications

Acid weathering from the oxidation of pyrite has led to the
chemical attack of hydrous phyllosilicates and phosphates in host
rocks to produce the Al-bearing secondary minerals described herein
(Fig. 12a); weathering at site 1 has even produced aluminum
hydroxides (gibbsite and, probably bayerite as well), which are
usually thought of as end-members in a generalized long-term
weathering sequences of terrestrial silicate mineral assemblages.
Abnormally abundant kaolinite in the altered zone at site 1 also
indicates the weathering of hydrous phyllosilicates in the host shales.
In contrast, kaolinite produced exclusively by in-situ by weathering is
either very rare or, more likely, completely non-existent in any known
surface soil in the enclosing region.

The results presented herein refute the widely-held, but largely
unarticulated, presumption that rock weathering of any kind in the
subhumid, mid-latitude, continental-climate plains interior of the
USA is inconsequential and does not lead to major mineralogical
changes. In the widespread, reactive, sulfidic Cretaceous epeiric-
marine shales that underlie much of the interior of North America
(Gautier, 1986; Arthur and Sageman, 1994), in glacial tills and other
sediments derived from them, or in soils developed on any of these
materials, some degree of acidic weathering is likely to be common
(cf. Pawluk and Dudas, 1978; Mermut et al., 1985; Mermut and
Arshad, 1987; Ross et al., 1988), therefore geologists and soil scientists
should be aware of the phenomenon.

This study also leads to more specific conclusions about acidic
weathering regimes and mineral assemblages. Minerals such as
alunogen and meta-alunogen, as well as certain hydrated iron-
bearing sulfate minerals (e.g., copiapite, hohmannite, and metahoh-
mannite) probably are more likely to appear in settings where
pyrite oxidation is in its early stages and can proceed rapidly, such
as manmade acid rock drainage settings such as mines and roadcuts
(cf. Joeckel et al., 2005). Alunite, aluminite, and some of the other
minerals associated with them appear to reflect longer-term
weathering in natural environments under the present climatic
regime in the study area. The differential occurrence of aluminum-
bearing secondary minerals in other settings (e.g., Hall et al., 2003;
Buckby et al., 2003) lends general support the notion that different
minerals (e.g., alunogen vs. alunite) tend to form in different

environments of weathering (e.g., surface efflorescences produced
rapidly by surface evaporation vs. crystallization within fractures or
a rock mass). Similarly, compared to other sites in Nebraska
described by Joeckel et al. (2005) and Joeckel et al. (2007), the
surface efflorescences/crusts of the Fe-bearing sulfates melanterite
and halotrichite described in the weakly weathered part of the
Carlile Shale at site 2 represent an precursor stage of natural
weathering relative to the overlying, more heavily weathered zone
that is enriched in jarosite, but which lacks melanterite and
halotrichite.

The kind of weathering that we describe leads also to the
concentration, storage, and potential release of acidity, metals
(particularly Al), and other potentially problematic elements (e.g.,
As, Mo, Se, and U” see Tourtelot et al., 1960), as well as dramatic
changes in the minerals that exist near-surface settings that will
come into contact with ground and surface waters. Thus, the
potential for widespread acidic weathering of pyrite-bearing
Cretaceous sedimentary rocks, whether by per latus or per
descensum processes, bears myriad potential effects that are
associated with the formation of diverse new minerals. Such
weathering can change bulk rock chemical and physical properties;
influence the evolution of soils, surface waters, and ground waters;
impact local environmental chemistry and microbial diversity; and
affect road building, mass movement remediation, and waste
disposal (e.g., Ivarson et al., 1979; Eberlin, 1985; Mermut and
Arshad, 1987; Michel and van Everdingen, 1987; De Putter et al.,
2000; Jambor et al.,, 2000; Daniels and Orndroff, 2003; Hammar-
strom et al., 2003; Fanning et al., 2004; Joeckel et al., 2005;
Darmody et al., 2007; Ji et al., 2007; Shand and Degens, 2008; Long
et al., 2009). In the case of the American Great Plains, and large
parts of adjacent regions, these aspects need to be considered as a
matter of course for the first time.

The discovery of comparatively unique (in a regional context)
products of natural acidic weathering also prompt a re-evaluation of
existing paradigms for rock weathering relative to climatic conditions.
The full range of mineral transformations and mineral neoformation
through acid weathering in the study region is unknown, and without
doubt includes a diversity of additional mineral phases whose
occurrences will shed additional light on these processes. Additional
studies will be needed to fully understand the production of
secondary minerals in acidic weathering environments along major
drainages and their environmental effects, including the long-term
evolution of groundwater chemistry.
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5.2. Concepts of extrapedogenic and per latus processes

The phenomena we have described are only loosely connected
with local land-surface and pedogenic (sensu stricto) processes. They
occur phenomenologically outside of association with any extant soil
solum, making them “extrapedogenic” (Fig. 12b), even though overall
the soil solum and whole regolith need to be considered as interacting
parts of a larger natural system (e.g., Tandarich et al., 1994). Unlike
more widely-appreciated forms of rock weathering, pyrite oxidation
at our sites has not produced a continuous and uniform blanket of
material under the modern land surface. Rather, its strongest effects
appear to be limited to valley walls (Fig. 12b), and secondary minerals
are concentrated at outcrop faces. The main valley-side sites of acidic
weathering that we describe stand out as geographically-limited foci
of comparatively intense geochemical change at the edges of major
geomorphic features (i.e., the upland-valley transition). Such a setting
effectively represents an “edge effect” reminiscent of both natural and
manmade phenomena described at various scales in soil landscapes,
primarily with respect to the concentration of iron oxides and
hydrous oxides (Daniels and Gamble, 1967; Daniels et al., 1975;
Hayes and Vepraskas, 2000; Phillips, 2000; Vaughan et al., 2008)
(Fig. 12b).

A concept of per latus processes (Fig. 12b), as opposed to per
descensum and per ascensum ones, should be espoused in order to
achieve a fuller understanding of the soil-regolith-groundwater
system (cf. Schoeneberger and Wysocki, 2005), particularly in cases
of acid-weathering bedrock. The concept of per latus weathering
enriches the entrenched and potentially misleading image of
weathering as a largely vadose phenomenon involving mostly per
descensum processes operating in a coherent continuum from the land
surface downward.
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