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Abstract

Context Community composition, environmental
variation, and spatial structuring can influence ecosys-
tem functioning, and ecosystem service delivery.
While the role of space in regulating ecosystem
functioning is well recognised in theory, it is rarely
considered explicitly in empirical studies.

Objectives We evaluated the role of spatial structur-
ing within and between regions in explaining the
functioning of 36 reference and human-impacted
streams.

Methods We gathered information on regional and
local environmental variables, communities
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users.
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(taxonomy and traits), and used variance partitioning
analysis to explain seven indicators of ecosystem
functioning.

Results Variation in functional indicators was
explained not only by environmental variables and
community composition, but also by geographic
position, with sometimes high joint variation among
the explanatory factors. This suggests spatial structur-
ing in ecosystem functioning beyond that
attributable to species sorting along environmental
gradients. Spatial structuring at the within-region scale
potentially arose from movements of species and
materials among habitat patches. Spatial structuring at
the between-region scale was more pervasive, occur-
ring both in analyses of individual ecosystem pro-
cesses and of the full functional matrix, and is likely to
partly reflect phenotypic variation in the traits of
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functionally important species. Characterising com-
munities by their traits rather than taxonomy did not
increase the total variation explained, but did allow for
a better discrimination of the role of space.

Conclusions These results demonstrate the value of
accounting for the role of spatial structuring to
increase explanatory power in studies of ecosystem
processes, and underpin more robust management of
the ecosystem services supported by those processes.

Keywords Spatial structuring - Community
ecology - Ecosystem processes - Species traits -
Variance partitioning

Introduction

Biological processes that regulate the retention and
flux of energy and nutrients are central to the
functioning of ecosystems, and the services ecosys-
tems provide society (Truchy et al. 2015). Ecosystem
functioning can be defined as “the joint effects of all
processes [fluxes of energy and matter] that sustain an
ecosystem” (Naeem and Wright 2003) over time and
space through biological activities. Concern that
environmental degradation is compromising impor-
tant ecosystem processes and the services they support
has stimulated research into the factors regulating
ecosystem functioning along both natural and anthro-
pogenic gradients (Von Schiller et al. 2008; Frainer
et al. 2017). Usually, functioning is quantified as one
or more ecosystem-level process rates, such as
primary production or litter decomposition (Gessner
and Chauvet 2002; Srivastava and Vellend 2005), with
variation in these processes often explained by abiotic
(e.g. temperature, moisture, soil chemistry) and biotic
(e.g. community composition, biodiversity) variables,
all quantified at local scales. In contrast, although well
recognised in theory, the role of spatial structure,
arising from the spatial distribution of key species or
habitats (Schmitz 2010), the movements of organisms
among habitat patches (Loreau et al. 2005), or larger
scale variation in species phenotypes (Ashton et al.
2000), as a regulator of ecosystem functioning at local
scales is rarely considered explicitly in empirical
studies (Pringle et al. 2010). This is a key shortcoming,
given the extent to which human activities are
currently altering the distribution of species and
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linkages between habitats and ecosystems at multiple
spatial scales (Heffernan et al. 2014).

Multiple forms of structuring in the spatial distri-
bution of species and habitats, species characteristics,
and behaviours have the potential to influence ecosys-
tem functioning at local scales. Firstly, species and the
processes they regulate are often sorted at local scales
along gradients in key environmental factors, which
both influence the suitability of habitat patches for
different species and regulate organism activity rates
(Leibold et al. 2004; Venail et al. 2010). For example,
the key ecosystem process of litter decomposition
often varies along gradients in pH, since low pH not
only reduces diversity of decomposer organisms, but
also suppresses the activity of key fungi that drive the
enzymatic hydrolysis of leaf litter (McKie et al. 2006).
Secondly, as posited by meta-ecosystem theory, the
movements of species, nutrients, and materials among
habitat patches might also impose spatial structure on
ecosystem functioning (Loreau et al. 2005). For
instance, source-sink dynamics underpinning “mass-
effects” in organism movements might contribute to
maintenance of ecosystem functioning in a local
“sink™ habitat patch through ongoing immigration of
essential species for particular ecosystem processes.
Similarly, transfers of nutrients and energy across
habitat boundaries or within ecological networks can
result in spatial subsidization of ecosystem processes
in recipient ecosystem, as seen in the patchy subsi-
dization of terrestrial food webs by the emerging adult
stages of aquatic insects (Burdon and Harding 2008;
Carlson et al. 2016). Thirdly, the model of “self-
organized systems” posits that organization in the
spatial distribution of keystone or foundational species
arising from interspecific interactions can also drive
predictable spatial structuring in ecosystem function-
ing (Schmitz 2010; Dong and Fisher 2019). This is
seen in African savannah habitats, where the evenly
spaced distribution of termite mounds creates a spatial
matrix in soil humidity, aeration, and nutrient content,
which are all enhanced in the vicinity of termite
mounds, and which in turn promote predictable struc-
turing in biodiversity and productivity of both plants
and invertebrates (Pringle et al. 2010). Finally,
variation in species phenotypes might drive substan-
tial spatiotemporal variability in the importance of
particular species and communities for ecosystem
functioning (Lecerf and Chauvet 2008; Des Roches
et al. 2018). Latitudinal variation in intraspecific body
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size (Ashton et al. 2000; McKie and Cranston 2005) is
particularly likely to alter the importance of particular
species for functioning over large scales, given the
importance of biomass as a key driver of ecosystem
processes (Brown et al. 2004; Hildrew et al. 2007;
Perkins et al. 2010).

In practice, most studies investigating spatial
variation in ecosystem functioning evaluate the joint
variation of ecosystem processes and biodiversity
along easily quantified environmental gradients in, for
example, nutrients, temperature and habitat structures
(Young and Collier 2009; Frainer et al. 2017).
Accordingly, the environmental sorting model is, by
default, the dominant paradigm through which spatial
structuring in ecosystem functioning is understood. In
contrast, isolating how spatial patterns in functioning
are shaped by biotic interactions, meta-ecosystem
processes, and phenotypical variation in species
behaviour is a major practical challenge. Such efforts
are most likely to occur in studies focused on small
scale impacts of key species and interactions, move-
ments of organisms and materials, and intraspecific
variability in traits (Pringle et al. 2010; Logue et al.
2011). However, even where more detailed investiga-
tions into the particular mechanisms underlying spa-
tial structuring of ecosystem functioning are not
logistically feasible, as is often the case in routine
biomonitoring, quantification of the portion of varia-
tion attributable to spatial structuring might still yield
insights relevant for management. For example,
management that targets the impacts of an anthro-
pogenic stressor on local-scale ecosystem functioning
might only be partially effective if a significant portion
of variation in functioning is attributable to the
interactions and movements of organisms and mate-
rials among habitat patches, and/or phenotypic vari-
ation in species phenotypes. In such cases, further
research into the mechanisms underpinning spatial
structuring, and the interplay between spatial struc-
turing and environmental and biotic variation at local
scales, is needed to underpin the development of more
efficient management.

Here we ask how much of the variability in
ecosystem functioning among 36 boreal streams
distributed across three regions in Sweden can be
attributed to their spatial location (i.e. geographic
position) relative to environmental characteristics and
community composition. The three regions spanned a
distance of 770 km between the southernmost

(boreonemoural ecoregion, mean annual temperature
6.6 °C) and the northernmost (in the middle boreal
ecoregion, mean annual temperature 1.5 °C) sites. We
further evaluate whether spatial structuring occurs
predominantly within or between regions. Our study
systems ranged from forested reference sites to
streams strongly impacted by human activities, allow-
ing an assessment of the importance of spatial
structuring when environmental parameters vary
under anthropogenic influence. We used variance
partitioning analysis to assess how much variation in a
matrix of seven functional metrics was explained by
the unique and joint effects of (i) environmental
variables and (ii) the community composition of four
organism groups (invertebrates, diatoms, macro-
phytes, and fish), as well as geographic position of
the streams, which were used to evaluate the role of
spatial structuring separated into (iii) within- and (iv)
between-region spatial components. We conducted
additional analyses where key organism groups were
scored according to their functional traits rather than
taxonomic identities. Such traits represent the pheno-
typic attributes of an organism that regulate its
responses to environmental factors (e.g. thermal
tolerances, life history strategies) and its influences
on ecosystem processes (e.g. feeding rates, feeding
mode) (Naeem and Wright 2003; Violle et al. 2007,
Truchy et al. 2015). According to Grime’s mass-ratio
hypothesis (Grimes et al. 1998), ecosystem function-
ing is likely to vary according to the dominant traits in
an assemblage, and as such characterisation of species
according to their traits is posited to increase explana-
tory power in studies relating communities and
ecosystem functioning (Enquist et al. 2015; Gagic
et al. 2015). We assessed the following general
hypotheses.

(1) The unique and shared effects of environmental
and community composition variables together
explain more variation in ecosystem functioning
than geographic position, reflecting the sorting
of species according to environmental charac-
teristics, and the role of environment and
community characteristics in regulating ecosys-
tem processes.

(2) Additionally, some variation in ecosystem func-
tioning is also attributable to geographic posi-
tion, reflecting the potential for spatial
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structuring to arise from mechanisms other than
species sorting along environmental gradients.

(3) We expect strong spatial structuring at the
between region scale, due to the likelihood that
differences in species phenotypes across regions
alter the impacts of communities on function-
ing. We further expect that spatial structuring of
ecosystem functioning occurs within-regions,
due to the potential for both meta-ecosystem and
self-organisation mechanisms to influence func-
tioning at this scale.

(4) The use of species traits will increase explana-
tory power, compared to the characterisation of
communities by their taxonomic identities
alone, in line with Grime’s hypothesis that the
effects of biota on functioning are driven by the
dominant traits in the community.

Methods
Study sites

We quantified biodiversity, ecosystem functioning
and environmental variables in 36 streams across three
distinct regions in Sweden (Appendix 1, Fig. S1.1)
using identical protocols across all regions and stream
reaches. Within each region, we sampled 2nd-3rd
order stream reaches that drain forested ‘reference’
catchments, as well as streams that are more heavily
impacted by human activities. This design insured
inclusion of strong environmental gradients within and
among regions (Appendix S1, Fig. S1.1). The major
anthropogenic pressure in each region varied, with
agriculture, hydropower, and forestry activities dom-
inating in the southern, central, and northern regions,
respectively.

Ecosystem functioning

We quantified a set of seven indicators of ecosystem
functioning using well-defined and recognised meth-
ods (Lamberti and Resh 1983; Benfield 1996; Gessner
2005; Dietrich et al. 2013) (see Appendix S2 for
detailed descriptions). Five were direct measures of
basal ecosystem processes in freshwater food webs:
(1) the biomass accrual of primary producers in algal
biofilms, (2) the decomposition of terrestrial detritus
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by the full decomposer assemblage and (3) by
microbial decomposers only, and (4) the biomass
accrual of aquatic fungi on litter in the presence and
(5) absence of invertebrate detritivores (i.e. coarse Vvs.
fine meshed litterbags). We quantified two further
variables to capture the functioning of additional food
web compartments: (6) the biomass accrual of an
aquatic bryophyte (Fontinalis dalecarlica), as a
macrophyte “phytometer”, and a measure of (7) fine
particulate organic matter (FPOM) deposition (Ap-
pendix S2). Each indicator captures distinct aspects of
stream food webs that can be differently affected by
local and regional scale community and environmen-
tal variation. For instance, decomposition of terrestrial
detritus and algal productivity are regulated not only
by community composition and stream flow charac-
teristics at local scale, but also potentially by subsidies
of nutrients and other materials (including leaf litter)
from surrounding catchments (McKie et al. 2008; Von
Schiller et al. 2008). These processes may be
additionally influenced by the presence of barriers
(e.g. dams) which might hinder the free movement of
key organisms contributing directly to the process
itself (e.g. detritivores or algal species) or impacting
those organisms (e.g. predators).

Biotic sampling and environmental predictors

Primary producers (benthic diatoms and macrophytes)
and consumers (benthic invertebrates and fish) were
sampled once in each stream reach following Euro-
pean/Swedish standard methods (Naturvardsverket
2003, 2010) (see Appendix S3 for a detailed descrip-
tion of the sampling methods). We also compiled a
comprehensive dataset on potential environmental
drivers of community composition and stream ecosys-
tem functioning, including catchment land use (a
strong driver of local habitat conditions), and stream
physical and chemical variables quantified during our
field study at each stream reach (Fig. 1; see Appendix
S1, Table S1.1 for a detailed list of the parameters
included in the study).

Species traits

Trait information was retrieved for two taxonomic
groups: fish traits were extracted from the “Freshwa-
terecology.info” database (Schmidt-Kloiber and Her-
ing 2015), while invertebrate traits came from Tachet
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}—» MEM
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Fig. 1 Conceptual figure summarizing the types of explanatory
variables (boxes) that were included in our analyses to explain
variation in ecosystem functioning (the response depicted as a
circle). Ecosystem functioning of 36 streams was assessed by
measuring seven different ecosystem processes. Environmental
variables consisted of properties quantified at each sampled
stream reach (e.g. water chemistry) together with information on
catchment land use, which strongly impacts local environmental
conditions. Community composition encompassed data on
benthic diatoms, macrophytes, macroinvertebrates and fish,

et al. (2010). For both groups, we focused on traits that
are closest in their definition to true functional effect
traits (Truchy et al. 2015) (Appendix S2, Table S2.1),
i.e. most likely to be correlated with the effects of
organisms on ecosystem processes (Hooper et al.
2002; Lavorel and Garnier 2002; Naeem and Wright
2003). We compiled a set of traits that represents not
only the likely direct influences of organisms on our
functional measures (e.g. feeding preferences, body
size), but also habitat-use and phenological traits
regulating where and when different species are likely
to be most active in their influences on function
(Frainer et al. 2014) (Appendix S2, Table S2.1).
Additionally, we quantified the body lengths of litter-
consuming invertebrates (a functional guild known as
“shredders”) found colonising our litter bags to the

represented either as species abundances or functional traits in
our different analyses. Environmental and community variables
were collapsed to fewer dimensions (principal component (PC))
through principal component analysis (PCA). Space was
accounted for using the geographical coordinates of the
sampling sites and the regions to which the site belong to (3
distinct regions were included in the study). Spatial scales were
represented as Moran’s eigenvector maps (MEM). Significant
PC and MEM were selected with a forward selection procedure
before being used in the variance partitioning analysis

nearest mm, and converted these length measures into
biomass estimates, based on formulae from Meyer
(1989).

Data analyses

All analyses were performed in the R environment (R
Core Team 2018).

We used Moran’s Eigenvector Maps (MEM) to
model spatial structuring of our ecosystem functioning
data (Borcard and Legendre 2002; Legendre and
Legendre 2012). Our spatial model consisted of two
components (Fig. 1): (i) a B-component, representing
region identity using a dummy variable, and (ii) a
W-component, consisting of MEM describing the
spatial structuring among streams within a region,
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based on Euclidean distances (i.e. geographical dis-
tances). Euclidean distances were the most appropriate
to represent our study design, which comprised
streams situated in three distinct regions that were
not strongly connected hydrologically (i.e. no sam-
pling station was situated downstream of another).
MEM analyses produce a set of orthogonal spatial
variables derived from the geographical coordinates of
the study sites (Dray et al. 2006). The approach used
here was a sophisticated version of the MEM analysis
using the function “create. MEM.model” developed
by Declerck et al. (2011), for which we specified the
site coordinates and the region. The within-region
spatial structures in the dataset were taken into account
using this approach, as the sites in the other two
regions get zero values when the spatial structure
within a given region is considered (Declerck et al.
2011). This analysis results in a staggered matrix of
MEM eigenvectors. We then selected the significant
MEM with a forward selection procedure (Blanchet
et al. 2008) (function “forward.sel” in the R package
packfor (Dray et al. 2013).

To account for environmental variation and com-
munity effects on ecosystem functioning, environ-
mental and community variables (i.e. abundances or
traits) were first collapsed to fewer dimensions using
principal component analysis (PCA) in which the
variables were centred and standardised, using the R
package ade4 (Dray and Dufour 2007) (Fig. 1). The
species abundance matrices were Hellinger-trans-
formed prior to running the PCA (Legendre and
Gallagher 2001) while the trait matrices for fish and
invertebrates were represented by community
weighted means (CWM) calculated as:
Z;’:l relative abundance; X trait; (for a species i,
Lavorel et al. (2008)). Therefore, final matrices of
environmental and community variables consisted of
site scores along principal components (PC) that were
also selected using a forward selection procedure
(Fig. 1). This procedure ensured that all explanatory
variables were given equal weights in our variance
paritioning analyses (see below).

We used variance partitioning (VP) analyses to
separate variation in ecosystem functioning explained
by spatial structuring at the between- and within-
region scales (B- and W-components), from that
explained by our environment (E) and community
composition (C; as abundances or traits) matrices. The
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VP method allows partitioning the variation
attributable purely to single sets of variables from
the shared variation of two or more sets of variables
(Borcard and Legendre 2002). We used the function
“varpart” from the R package vegan (Oksanen et al.
2015).

We conducted four types of variance partitioning
analysis, denoted hereafter as VP sets 1-4. In sets 1-2,
we systematically assessed variation in the entire
functional matrix when accounting for all organism
groups together (VP1), followed by analyses for each
functional indicator separately (VP2), since different
indicators may vary in the degree to which they are
regulated by environmental, biotic and spatial factors:

e VPI1: a single analysis that partitioned spatial
variation associated with the between- (B), within-
region (W) scales from that associated with the
abiotic environment (E) and community composi-
tion (C.), on the complete ecosystem functioning
matrix (i.e. including all seven functional indica-
tors), and conducted using community data for all
four biological groups combined. The variables in
the ecosystem functioning matrix were standard-
ized to mean = 0 and SD = 1 prior to analysis.

e VP2: comprised seven analyses that were identical
to the VPI1 analyses, except they were conducted
for each functional indicator separately rather than
the complete functional matrix. As only one
response variable was analysed at a time, no
standardization was applied in these analyses.

In sets 34, we analysed variation in the entire
functional matrix, but with each organism group fitted
separately, since particular organism groups might differ
in their importance for combined functioning (VP3). We
further evaluated the explanatory power of species traits
as a substitute for taxonomic identities in the community
matrices for two organism groups (VP4). In all these
analyses, variables in the ecosystem functioning matrix
were standardized to mean =0 and SD = 1.

e VP3: comprised four analyses identical to that of
VP1, except that they were conducted for each
biological group (i.e. diatoms, macrophytes,
macroinvertebrates and fish) separately.

e VP4: comprised two analyses that were identical to
VP3 analyses, except that community composition
was quantified on the basis of species traits (C,)
rather than species abundances, separately for the
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two biological indicators for which adequate trait
information was available, viz. fish and inverte-
brate traits.

We tested for the significance of our global models
that include the explanatory variables selected with the
forward selection procedure; and then tested for the
significance of the unique fractions B, W, C and E
using the function “rda” from the package vegan
(Oksanen et al. 2015). It is not possible to test the
significance of shared variation.

Results

VP1: importance of spatial scales for stream
ecosystem functioning

In our partitioning of the entire functional matrix and
including information on all organism groups, spatial
structuring at two spatial scales (B- and W-compo-
nents), communities and environment together
explained 52% of the total variation (P < 0.001).
The within-region spatial component, community
composition, as well as environment explained sig-
nificant unique fractions of variation (Fig. 2), while
18% of the variation in ecosystem functioning was
explained jointly between community composition
and environment.

VP2: partitioning the individual functional
indicators

When analysing each functional indicator separately,
no significant variation was explained for either
bryophyte biomass accrual or FPOM dynamics. For
the remaining five functional indicators, the total
amount of variation explained was high, ranging from
47% (fungal biomass accrual in coarse mesh bags) to
83% (algae biomass accrual) (Table S4.1).

Unique fractions of variation were explained by the
between-region spatial component for algal biomass
accrual and litter decomposition, and by community
composition for all processes (Table S4.1). Unique
fractions of variation explained by the environment
were only significant for litter decomposition
(Table S4.1). Variation explained jointly by commu-
nity composition and environment ranged from 25%
(fungal biomass accrual in fine mesh bags) to 48%

(litter decomposition in fine mesh bags). Variation
explained jointly by the within-region component and
community composition was as high as 17% for fungal
biomass accrual in coarse mesh bags (Table S4.1).
Finally, the shared fraction explained by the between-
region spatial component, community composition
and environment was high for algal biomass accrual
(38%).

VP3: importance of different organism groups
for stream ecosystem functioning

When fitting the four community groups separately, the
total variation in ecosystem functioning explained by
the predictor matrices ranged from 44% (diatoms) to
54% (fish) (Table S4.2; Fig. 3a, c; all P < 0.001). The
unique fractions explained by the predictors were all
significant when fitting diatom and fish abundances as
community matrices (Table S4.2; Fig. 3c). The
between-region spatial component was not significant
when fitting macrophyte and invertebrate communities
(Table S4.2; Fig. 3a). The within-region spatial com-
ponent was significant or nearly so in all analyses. The
between- and within-region spatial components have
shared effects with community composition in the
diatom analysis only (Table S4.2). The joint variations
associated with the spatial scales (B or W) were always
small (ranging from 0.9% to 5%, Table S4.2;
Fig. 3a, c), regardless of which taxonomic group was
fitted as the community matrix. However, the joint
variation explained by the community matrices and the
environment was always higher (ranging from 8%
when fitting macrophytes to 18% when fitting inver-
tebrates, Table S4.2; Fig. 3a, c), regardless of which
taxonomic group was fitted as the community matrix.

VP4: incorporating species traits

Traits of invertebrates and fish combined with spatial
scales and environment explained 38% to 41%,
respectively, of variation in ecosystem functioning
(Fig. 3b, d). Unique fractions were associated not only
with spatial scales and environment, but also with the
composition of species traits for fish only (Fig. 3d).
Variation explained jointly by the species traits and
environment matrices was 15% when fitted with
invertebrate traits (Fig. 3b). The other joint fractions
explained were either marginal (ranging from 0.1 to
4%) or not testable (negative R?).
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Community
R2=0.13

P < 0.001

Fig. 2 Venn diagram showing variation in ecosystem func-
tioning in 36 streams explained by four sets of explanatory
variables: between- (B; in magenta) and within- (W; in blue)
region spatial components, community composition (C; in
yellow) and environment (E; in green) and their joint effects (the
overlapping parts of the circles represented as N). The four
community groups are fitted together. Sets of explanatory
variables that do not significantly explain any important fraction
of variation in ecosystem functioning (P > 0.05 or adjusted

Discussion

In line with our hypotheses, variation in our matrix of
multiple functional indicators was explained not only
by environmental variables and community composi-
tion, but also by the geographic position of our study
reaches. This indicates significant spatial structuring in
ecosystem functioning, beyond that attributable to the
sorting of species and the processes they regulate along
environmental gradients. Spatial structuring of ecosys-
tem functioning was found at the between-region scale,
suggesting local ecosystem functioning was structured
by larger scale spatial variation likely to reflect
differences in the phenotypes of functionally important
species. Additionally, significant spatial structuring
was often apparent within regions, potentially arising
from the connectivity of species and materials among
habitat patches and/or associated with self-organisa-
tion of particular key species. Overall, the proportion
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not explained by the variance partitioning analysis is reported in
the right hand corner. The size of the circles is proportional to
the effects of the set of explanatory variables, the bigger the
circle the greater the importance of this set of explanatory
variables in explaining variation in ecosystem functioning.
(Color figure online)

of variation in ecosystem functioning explained by our
environmental and community matrices did not exceed
that explained purely by spatial structuring, and the
joint variation among these factors was sometimes
high (up to 48%). Finally, contrary to our expectations,
the use of traits rather than taxonomic identities did not
improve the amount of variation explained. Neverthe-
less, the use of traits did allow better discrimination of
the role of space.

Environment and community composition explain
greater amounts of variation in ecosystem
functioning

Our variance partitioning based on matrices of envi-
ronment, community composition, and spatial scales
(both between- and within-regions) was able to
explain a relatively high proportion (52%) of total
variation in ecosystem functioning, compared with
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Fig. 3 Venn diagrams showing variation in ecosystem func-
tioning in 36 streams explained by four sets of explanatory
variables: between- (B; in magenta) and within- (W; in blue)
region spatial components, environment (E; in green), and
community composition (in yellow) of either invertebrates (I; a,
b) or fish (F; ¢, d), and their joint effects (the overlapping parts
of the circles represented as N). Community composition was
fitted as either species abundances (I, or F;; a, ¢) or species traits
(I; or Fi; b, d). Sets of explanatory variables that do not
significantly explain any important fraction of variation in

most studies partitioning the influence of space and
environment on community composition (Gronroos
et al. 2013; Heino et al. 2015). Moreover, unique
environmental effects were often significant, support-
ing the idea that stream ecosystems and their commu-
nities are generally under strong abiotic control (Reice
1994; Johnson et al. 2004), as found in variance

ecosystem functioning (P > 0.05 or adjusted R? < 0.05) are
coloured in grey tones. For each testable fraction, an adjusted R*
is givenand P < 0.05 are indicated in regular font while P < 0.1
are in italics. The residual variation that was not explained by
the variance partitioning analysis is reported in the right hand
corner. The size of the circles is proportional to the effects of the
set of explanatory variables, the bigger the circle the greater
the importance of this set of explanatory variables in explaining
variation in ecosystem functioning. (Color figure online)

partitioning analyses of community composition (e.g.
Pinel-Alloul et al. 1995; Go6the et al. 2013; Gronroos
et al. 2013). However, the shared variation between
the environmental and community matrices were
sometimes as high as 48% in our study. This suggests
that environmental effects on functioning are often
mediated through effects on community composition
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(Jonsson 2006; O’Connor and Donohue 2013; Torn-
roos et al. 2015), such that not only species and
communities but also the processes they regulate
frequently sort along environmental gradients. This
indicates that intermediary impacts of environmental
variation on ecosystem processes via biotic interac-
tions, behaviour, and trait expression are at least as
important as those reflecting direct abiotic control
(McKie et al. 2009; Brose and Hillebrand 2016).

Spatial structuring of ecosystem functioning occur
between- and within-regions

Our analyses were able to partition variation associ-
ated with spatial structuring at two scales, but we are
not able to definitively isolate the underlying causal
processes. Spatial structuring at the between-region
scale occurred in analyses focussing on specific
organism groups (e.g. diatoms, fish), and was the only
unique fraction of spatial structuring detected in
analyses of each individual functional indicator
(VP2). This structuring is most likely to arise from
variation in characteristics of the local stream envi-
ronments and species phenotypes that were (i) not
well-represented in our sampling scheme and/or (ii)
strongly confounded with the larger between-region
scale, and thus was captured by our spatial compo-
nents rather than environmental or community matri-
ces (e.g. different vegetation zones in a single region
(Ahti et al. 1968)). The degree of variability in
environmental variables is subject to large scale
gradients (e.g. latitudinal gradients in diel light and
temperature regimes, or in timing of inputs of
resources such as leaf litter), and can differ strongly
among regions as a result of shifting precipitation,
vegetation, land cover and/or geology (Ahti et al.
1968; Hillebrand 2004; Sponseller et al. 2014). Our
environmental data comprised a comprehensive set of
variables routinely measured in studies of stream
ecosystem functioning, but mostly quantified as mean
values derived from a limited number of sampling
events, and it is thus likely that we missed much of this
variability. Large scale environmental variation also
drives divergence in species phenotypes (McKie and
Cranston 2005; Boyero et al. 2017). For example, our
northern sites experience 2 h less of complete night
time darkness in early September than the southern-
most sites (Raab and Vedin 1995), a difference which
might have implications for the phenotypes
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and activity patterns of primary producers, con-
sumers, and the processes they mediate. Notably,
many of the traits that have been identified as most
useful for characterising linkages between biodiver-
sity and ecosystem functioning in ecological net-
works—such as growth rates, body size and resource
use rates (Brose and Hillebrand 2016)—are also
highly plastic, and particularly subject to regional
variation in thermal regimes and composition of the
resource base. Fortunately, many of these relation-
ships are also highly predictable (Ashton et al. 2000;
McKie and Cranston 2005; Boyero et al. 2017),
highlighting the potential of developing more finely
tuned and spatially explicit trait classification schemes
that embed relationships between important spatial
and environmental attributes (e.g. latitude, degree
days, nutrient concentrations) and values for traits
such as body size and growth rates.

The unique fraction of spatial structuring within-
regions was only significant in analyses that parti-
tioned variation in all functional indicators, such as the
analysis including all organism groups (VP1), and
those focussing on diatom communities (VP3) and fish
and invertebrate species traits (VP4). These tests are
imperfect assessments of the true importance of spatial
structuring at a given scale, since they do not account
for shared fractions of variation. Nevertheless, these
results do indicate that spatial structuring is most
likely to emerge at smaller, within-region scales when
multiple ecosystem processes, potentially regulated by
multiple flows of organisms, nutrients and energy
within and across habitat boundaries, are considered
simultaneously. This potentially reflects the role of
meta-ecosystem  processes, including mass-ef-
fects governing flows of organisms and materials
(nutrients, carbon, etc.), which are more likely to have
influenced spatial structuring within- than between-
regions, owing to greater spatial proximity and
potential connectedness of sites at this scale (Leibold
et al. 2004; Cottenie 2005; Logue et al. 2011). It is less
likely that spatial structure arising from self-organi-
sation of keystone or foundational species underpins
within-region spatial variation in our study, since our
studied processes are not clearly dependent on such
species, and environmental heterogeneity among our
study reaches was likely too great to have favoured
self-organisation arising from intraspecific interac-
tions (e.g., Cornacchia et al. 2018; Widenfalk et al.
2018). It is also possible that spatial structuring within
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regions might arise from variation in species pheno-
types occurring over smaller spatial scales (Des
Roches et al. 2018). Notably, within-region spatial
structuring was never significant in analyses focusing
on each functional indicator separately (VP2), which
were instead generally characterised by a very large
joint variation between community and environment.
This suggests that species-sorting along environmen-
tal gradients is a more important driver of individual
ecosystem processes (e.g. litter decomposition, bio-
mass accrual of individual organism groups), depen-
dent on a narrower range of organisms and specific
nutrients.

All ecosystem processes are not structured
by space, environment and community in the same
way

Interestingly, in our analyses that partitioned variation
in each of our functional indicators separately, we
were only able to explain variation in leaf decompo-
sition (58—63% of total variation explained), and the
biomass accrual of algae and fungi (up to 83% of
variation explained). These represent true ecosystem-
level processes regulated by several organisms groups
that largely operate at the same local scales over which
we quantified community composition and most of
our environmental variables. Despite the differences
in our capacity to explain variation in all of our
indicators separately, inclusion of all functional indi-
cators in the combined ecosystem functioning matrix
increased the total variation explained, and was
necessary for detecting spatial structuring in function-
ing at the within-region scale, suggesting that all
indicators together better characterised the ecosystem
functioning and spatial connectivity of the whole
ecosystem.

Influence of taxonomic groups and species traits
on global ecosystem functioning

We observed differences in the importance of different
components of the biota in our analyses fitting each of
the taxonomic groups separately. Macrophyte com-
munity composition had the largest unique effect
(12%) on overall ecosystem functioning, which might
reflect knock-on effects of the multiple influences of
macrophyte beds on local environments (e.g. reduc-
tions in flow and light, changed nutrient status, and

increased habitat surface area (van Donk et al. 1993;
Jeppesen et al. 1998)), on other co-occurring taxo-
nomic groups (Johnson and Hering 2010) and ulti-
mately on ecosystem functioning. Diatoms,
invertebrates and fish (7%) also had significant unique
effects on functioning, which might reflect direct
bottom-up (e.g. algae as resource subsidy for leaf-
consuming detritivores) or top-down (e.g. trait-medi-
ated effects of fish on consumer behaviour) control on
processes within the food web (Raffaelli et al. 2002;
Gessner et al. 2010; Kéfi et al. 2012).

Against our expectations, the total variation
explained in our analyses did not increase when
species were characterised by their traits rather than
taxonomic identities for both invertebrates and fish,
contradicting the idea that species traits rather than
taxonomic identities better capture the key attributes
of biota regulating ecosystem functioning (Lavorel
and Garnier 2002; Enquist et al. 2015). However, most
species trait databases, including those used here,
suffer from two main shortcomings when used to
predict ecosystem functioning. Firstly, trait alloca-
tions based on these databases may have limited
capacity to capture the breadth of spatial-temporal
variability in species phenotypes (i.e. intraspecific
variation). For example, although our organism groups
were all sampled at the same time of year, species were
not necessarily at an identical developmental stage in
all regions, as suggested by differences in biomass of
some of our detritivore taxa (Appendix S2,
Table S2.2). Such systematic differences in the body
size of key consumers among regions are likely to be
further associated with differences in their feeding
behaviours (Layer et al. 2013; Frainer and McKie
2015). Secondly, information on true functional effect
traits (e.g. resource acquisition rates) is often limited
in large-scale databases (Truchy et al. 2015), which
are instead biased towards traits regulating species
responses to environmental variation (e.g., environ-
mental tolerances) that are likely to predict function-
ing only indirectly. Nevertheless, the use of traits did
have value in our analyses by reducing complexity in
the data set, whereby information on many species is
reduced to information on a lower number of traits,
which might explain why the role of spatial structuring
was more discriminated in our analyses of all ecosys-
tem processes combined.
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Conclusion

Field studies are often able to explain a substantial
portion of variation in ecosystem functioning based on
information on abiotic and biotic parameters, quanti-
fied at local scales, alone (Dangles et al. 2004; Young
and Collier 2009; Frainer et al. 2014; Frainer and
McKie 2015). However the proportion of unexplained
variation is often very high, especially at larger (e.g.
whole catchment, regional or continental) scales
(McKie and Malmgqvist 2009; Woodward et al. 2012;
Dirzo et al. 2014). Significantly, these are the scales
where many vital ecosystem services arise (e.g. water
purification and nutrient cycling services), derived
from multiple ecosystem processes and organism
groups that link across habitat boundaries within
larger scale spatial networks (Truchy et al. 2015;
Brose and Hillebrand 2016). Overall, our results reveal
the extent to which this variation might be attributed to
spatial structuring, and highlight the need for more
research on the mechanisms underpinning such struc-
turing to support improved management of ecosystem
functioning and services. Indeed, the approaches
needed to improve delivery of a set of ecosystem
functions and services are likely to differ substantially
according to how they are structured spatially. This
might range from a focus on improving local-scale
environmental conditions when species sorting is the
dominant mechanism regulating variation in function-
ing, to a focus on improving conditions for the
particular key stone or foundational species that drive
significant organisation in ecosystem functioning
(Pringle et al. 2010). However, in many cases it is
likely that key linkages in flows of organisms and
materials among habitat patches and between ecosys-
tem types will be needed to achieve the greatest
improvements in ecosystem functioning and service
delivery.
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Appendix S1

Study sites and their environmental parameters

Study sites

We quantified biodiversity, ecosystem functioning and environmental characteristics in 36 streams
across three distinct regions in Sweden . In each region, we sampled reaches situated on 10-16 second
or third order streams, which ranged from well-forested reference streams to streams heavily impacted
by human activities (Table S1.1), to ensure inclusion of strong environmental gradients in our
analyses. Sampling in the southern region centred on catchments in the agricultural plains of the
province of Ostergdtland, which ultimately drain into the Baltic Sea to the East, and was conducted in
August-December 2012 (Figure S1.1; Table S1.1). The central and northern regions were sampled in
August-November 2013, in the Klardlven and Krycklan-Vindelédlven river catchments respectively
(Figure S1.1; Table S1.1).

stry gradient
16 streams

1,

Hydropower dam gradient
10 streams

Agriculture gradient
10 streams




Figure S1.1 Location of the 36 streams across Sweden sampled in the provinces of Ostergétland
(filled circles), Varmland (filled triangles) and Vasterbotten (filled squares) and representing three
environmental gradients. The forestry gradient comprised 16 streams while the hydropower dam and
agriculture gradients each consisted of 10 streams. The different environmental gradients were situated
in regions where the pressure of interest was pre-dominated. Polygons represent the main Swedish
catchments according to the Swedish Meteorological and Hydrological Institute (SMHI). In both
regions of Virmland and Visterbotten, some sites were geographically so close to each other that their
symbols overlap on the map.

Quantifying environmental variables

Two types of environmental predictors were included in the study, namely (i) catchment-level and (ii)
local stream variables (Figure S1.2). Both were quantified simultaneously with biological sampling.
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Figure S1.2 Measured catchment parameters (in upper case) and their large-scale (catchment) and
local-scale (in-stream) outcomes (in lower case). Arrows represent the relationship between a
catchment parameter and its implication at the large-scale. For instance, intensive agricultural
practices increase the soil disturbance, the leaching of fertilisers, pesticides and herbicides through the
network of ditches. Ditches affect the hydrology of the system by draining the water of the
surroundings while dams modify the hydrology by retaining water in reservoirs and controlling floods
for example. Lands covered with forest (greater tree volume and stand age) are characterised by a less



disturbed soil that is able to retain nutrients. Then, each of the measured catchment parameter
influences directly or indirectly all the in-stream parameters.

1) Catchment parameters

Catchment land use information (comprising percent agricultural land and coniferous forest, spatial
location of clear-cuts) were obtained using the Swedish Landcover Map (2004) along with the
Swedish Forestry Agency’s clear-cut records since 2001. Stand age and tree volume information were
also retrieved from the SLU Forest Map (Department of Forest Resource Management, Swedish
University of Agricultural Sciences). Ditches were hand-digitalised based on a Digital Elevation
Model (DEM, 2m grid, Lantméteriet, 2011) using the Hillshade tool (ArcGIS, ESRI ArcMap, 10.2)
and setting the sun angle at 90° and an altitude of 20 m a.s.l.. The cumulative length of ditches in the
catchment was then divided by the stream length in order to quantify the extent of ditching within a
catchment. The deviation in discharge attributable to river regulation, the volume of water regulated
and proportion of runoff stored in upstream magazines were all obtained from the Swedish HYPE
(HYdrological Predictions for the Environment) model, available from the Swedish Meteorogolical
and Hydrological Institute (SMHI, http://vattenwebb.smbhi.se/). We further applied the Dundee
Hydrological Regime Assessment Method (DHRAM, (Black et al. 2005)) onto discharge data for the
year of sampling and one year prior to sampling (from SMHI), generating 19 parameters
characterising the extent of alterations to the hydrological regimes of the waterbody (Table S1.1).

2) Local stream variables

Stream temperatures were recorded continuously during the study periods using button data loggers
SL5x (Signatrol, Tewkesbury, UK). Flow velocity (MiniAir 20 with a Mini sensor 22m 5m.s™,
Schiltknecht, Gossau, Switzerland) and water depth were measured every sampling occasion. Stream
width, slope and canopy cover (canopy analyser LI-CORE® LAI-2000, Lincoln, Nebraska, USA)
were also recorded. Turbidity, pH, dissolved oxygen saturation (HDO) and conductivity were assessed
in situ every third week using a MANTA multiparameter water quality probe (Eureka Environmental
Engineering, Austin, Texas, USA). Water samples were taken twice (in August and in November) and
analysed for alkalinity, nutrients (total nitrogen, ammonium, nitrites and nitrates, total phosphorus, and
orthophosphate), at the Department of Aquatic Sciences and Assessment, SLU using SWEDAC
accredited methods (Folster e al. 2014). Total organic carbon concentration (TOC) and dissolved
organic carbon concentration (DOC) were analysed with a Shimadzu TOC-VCPH carbon analyser.
DOC was filtered through 0.45 pg cellulose acetate filters and the absorbance was measured at 254 nm
(Perkin-Elmer Lambda 40) in a 5 cm cuvette.


http://vattenwebb.smhi.se/

Table S1.1. Characteristics of the studied streams. Streams were sampled in three distinct regions of Sweden, encompassing each a dominant anthropogenic
pressure (agriculture, forestry management or hydropower). Physical (including slope, water depth, stream width, temperature and flow) and chemical
(alkalinity, pH, conductivity, TOC, turbidity, nutrients and oxygen saturation, among others) characteristics, measured at the sampling location (local scale; in
blue) or at the catchment scales (regional scale; in black) are reported'. The Dundee Hydrological Regime Assessment Method (DHRAM, (Black e al. 2005))
generated 19 parameters characterising the extent of alterations to the hydrological regimes (e.g. 1d min, 30d max or duration of low pulses; in italics).

Stream name Catchment Location Slope (°) Water depth (cm) Width (m) Flow (m/s) %Agriculture land %Clearcuts %Coniferous Stand age (years) Tree volume (m3fo/ha) Ditching V regulated (Mm*‘)
Silveran Emén 57°43'N, 15°22'E 2,18 2455 5,50 0,51 7,79 11,52 60,66 48,0627441 171,6624451 2,46 0,00
Bulsjoan Motala strém  57°51'N, 15°21'E 1,31 18,55 15,44 0,29 17,65 11,01 48,56 47,1713982 169,4484711 2,39 23,90
Borkhultsén Soderkdpingsén 58°16'N, 16°11'E - 0,87 37,15 535 0,28 1648 11,21 41,60 47,1109276 155,824173 5,04 0,00

E Kisadn Motala strom  57°58'N, 15°36'E 1,75 28,35 6,62 0,23 744 14,11 52,65 48,656086 175,0560913 2,73 0,00
£ |Pinnarpsbicken Motala strom  57°58'N, 15°30'E 2,62 15,83 8,82 0,35 12,39 13,35 52,21 38,765152 132,780304 291 0,00
E Storan nedre delar Storan 58°08'N, 16°12'E 1,75 28,15 11,01 0,38 11,44 12,11 46,56 48,3952217 153,6428528 346 14,30
Etn Flemmabicken Motala strom  58°31'N, 15°33'E 3,49 13,05 3,86 0,10 20,86 8,95 46,97 40,2294426 125,6291122 4,02 0,00
Borrumsbécken Coastal 58°20'N, 16°37E 3,06 15,90 3,76 0,34 11,93 12,29 60,04 52,5987396 130,1325378 2,59 0,00
Kapellan Motala strém  58°23'N, 15°29'E 2,18 22,10 9,20 0,46 41,04 9,65 31,84 40,4689407 144,9109497 2,65 0,00
Vadsbicken Coastal 58°35'N, 16°23'E 0,87 16,40 3,30 0,18 70,50 391 17,51 474972725 130,1004639 3,40 0,00
Hynnan Gota dlv 60°54'N, 12°28'E 1,75 2144 9,12 0,42 0,03 20,88 34,03 60,7375412 83,4036331 1,00 0,00
Vijan Gota dlv 59°59'N, 13°22'E 2,18 21,40 12,00 0,08 0,00 12,32 68,54 55,7713203 183,9199371 1,48 0,00
5 |Gotén Gota dlv 60°12'N, 13°31'E 1,75 20,88 7,66 0,15 0,00 11,24 65,19 53,7552948 134,2993774 1,18 0,00
= |Likan Gota dlv 60°40'N, 13°02'E 044 26,24 997 0,53 0,00 29,80 47,80 64,6940765 93435112 0,97 0,00
% Acksjodlven Gota dlv 60°07'N, 13°35'E 1,31 23,76 5,86 0,20 0,00 11,67 65,34 54,0216942 166,3370819 1,84 3,60
= |Lettan Gota dlv 60°45'N, 12°43'E 1,31 16,64 6,42 0,18 0,16 17,75 41,56 56,9729538 122,3674011 1,42 190,50
é‘ Hagilven Gota dlv 59°59'N, 13°42'E 087 45,60 583 0,64 0,15 11,02 60,92 50,7843628 167,7662048 2,59 25,80
& |Halgan Gota dlv 60°35'N, 13°21'E 044 18,76 13,35 0,24 0,00 15,15 31,15 62,733223 90,30056 1,14 16,70
Tasan Gota dlv 60°51'N, 12°51'E 1,75 16,28 18,70 0,21 0,05 12,04 42,75 68,7648544 87,8171463 1,09 141,30
Orén Gota dlv 60°52'N, 12°50E 1,31 16,60 6,98 0,23 0,00 9,74 44,57 68425354 97,2809753 0,99 28,00
Stortjarnbacken Umeidlven  64°14'N, 19°47E 1,75 25,64 0,32 0,25 0,00 436 77,28 87,0976715 172,7565002 242 0,00
Féagelvinbdcken Umeidlven  64°10N, 19°26'E 1,31 20,16 0,66 0,42 2,55 041 65,38 69,970459 121,9825439 0,70 0,00
Stormyrbacken Umedlven  64°15'N, 19°47E 1,75 26,68 1,08 0,31 0,00 2,34 69,09 744313202 134,7668152 2,13 0,00
Kamplidenbécken Umedlven  64°17N, 19°54E 2,18 17,40 0,60 0,22 0,00 3,60 63,96 70,9387741 147,6938782 2,02 0,00
€ |Hjuksvallbicken Umeidlven  64°06'N, 20°03'E 1,75 16,48 1,50 0,26 0,00 2049 64,90 80,5819168 149,0672607 1,73 0,00
E Klappmyrbécken Umedlven  64°17'N, 19°54E 044 19,38 1,26 0,16 0,00 3,61 64,41 66,7414474 133,3684845 2,62 0,00
Eﬂ Brattmyrlidenbécken Umedlven  64°16'N, 19°57E 044 42,60 0,72 0,13 0,00 7,04 71,79 62 111,4444427 2,27 0,00
5 |Renbergsbicken Umeidlven  64°15'N, 19°49E 1,75 18,08 2,84 0,27 0,00 13,23 53,15 74,875 101,1875 1,86 0,00
E Svartbdcken Umedlven  64°16'N, 19°57E 044 2728 1,90 0,39 0,00 10,61 71,89 63,711441 119,5259247 2,56 0,00
£ [Krycklan Umedlven  64°15'N, 19°50E 1,31 17,72 5,72 0,35 0,00 12,27 53,73 63,1277275 114,6869888 1,36 0,00
E Bergmyrbécken Umeidlven  64°14'N, 19°43'E 2,18 31,92 1,47 0,39 0,00 5,89 59,33 58,3334961 106,7478943 2,66 0,00
= [Bastumyrbicken Umedlven  64°11'N, 19°51'E 2,18 20,32 1,90 0,28 0,53 17,75 52,67 60,7334518 114,0999222 247 0,00
Kvarnbicken Umedlven  64°07N, 19°11'E 0,87 17,52 248 0,34 0,07 16,70 62,32 63,2695236 113,3261261 437 0,00
Vistra Nybyggsbacken =~ Umedlven — 64°11'N, 19°54E 2,62 24,00 1,47 0,35 0,00 14,59 51,19 56,7056808 92,1049347 2,69 0,00
Kluddbécken Umedlven  64°12'N, 19°53E 2,62 20,96 191 0,44 0,53 9,55 30,74 56,5665817 105,3886032 2,82 0,00
Krickmyrbacken Umedlven  64°15'N, 19°40E 1,75 15,56 1,13 0,32 0,00 51,27 50,95 36,6247215 54,3210297 3,70 0,00




Table S1.1 continues

Stream name V deviation (%) Water stored (%) I1d min 1d max 3d min 3d max 7d min 7d max 30d min 30d max 90d min 90d max date min date max nb hi pulses nb lo pulses duration hi pulses
Borkhultsén 0,00 0,00 0,34 1,6 0,34 1,58 0,34 1,57 0,36 144 0,41 1,11 263 194,5 2 2,5 45,75
Borrumsbécken 0,00 0,00 0,01 2,74 0,01 24 0,01 1,62 0,01 0,78 0,04 0,44 300,5 208 10,5 5 9,01
Bulsjoan 73,59 28,26 1,16 9,6 1,17 9,11 1,18 8,64 143 7,28 2,03 5,05 295 53,5 9,5 55 948

?-; Flemmabéacken 0,00 0,00 0,01 1,05 0,01 0,9 0,01 0,65 0,02 0,33 0,03 0,22 299 208 8,5 6,5 10,81
= |Kapellin 0,00 0,00 0,34 1,6 0,34 1,58 0,34 1,57 0,36 144 041 1,11 263 1945 2 2,5 45,75
;:; Kisaan 0,00 0,00 04 455 041 453 041 445 045 3,66 0,64 245 302 60,5 3 2 33,25
< |Pinnarpsbacken 0,00 0,00 0,05 2,54 0,05 1,95 0,06 1,54 0,07 1,04 0,13 0,61 298 130,5 11 6 845
Silverdn 0,00 0,00 0,13 2,93 0,13 2,88 0,14 2,72 0,17 1,91 04 1,03 209,5 1435 6 35 15,5
Storan nedre delar 76,87 72,77 0,98 445 0,99 442 1 437 1,09 4,08 1,37 3,14 302 2155 3 2,5 37,63
Vadsbécken 0,00 0,00 0,02 5,86 0,02 4,65 0,02 2,34 0,02 1,22 0,06 0,75 302 207 11 5 8,49
Bastumyrbécken 0,00 0,00 0,04 2,04 0,04 1,9 0,04 1.8 0,05 141 0,12 0,64 58 1335 11 6 8,12
Bergmyrbicken 0,00 0,00 0,01 047 0,01 045 0,01 041 0,01 0,28 0,01 0,13 58,5 135 9,5 6 9,24
£ |Brattmyrlidenbécken 0,00 0,00 0,02 1,96 0,02 1,81 0,02 1,73 0,03 1,12 0,05 0,52 58,5 1375 75 45 11,69
g Fégelvinbdcken 0,00 0,00 0,08 1,79 0,08 1,77 0,09 1,7 0,11 1,29 0,14 0,69 170 135,5 2,5 5 143
§= Hjuksvallbdcken 0,00 0,00 0,04 3,05 0,04 2,84 0,04 2,57 0,05 1,99 0,06 0,92 265,5 131 9 7 991
= |Kamplidenbéicken 0,00 0,00 0,04 3,02 0,04 2,36 0,04 2,76 0,04 1,3 0,08 0,34 147 137,5 6 12,74
“a‘ Kluddbacken 0,00 0,00 0,15 9,39 0,16 9,01 0,16 8,26 0,19 591 0,38 2,81 58,5 134 7 5 12,39
& |Klippmyrbicken 0,00 0,00 0,04 3,02 0,04 2,36 0,04 2,76 0,04 1,3 0,08 0,34 147 137,5 7 6 12,74
Krickmyrbacken 0,00 0,00 0,04 1,38 0,04 1,81 0,04 1,67 0,05 1,22 0,09 0,59 58,5 134 7 4 12,44
Krycklan 0,00 0,00 0,03 2,65 0,04 2,57 0,04 241 0,04 1,58 0,07 0,74 58,5 134,5 5 11,02
Kvarnbédcken 0,00 0,00 0,03 2,32 0,04 2,72 0,04 243 0,04 1,74 0,1 0,8 58,5 133,5 9,5 5 942
Renbergsbiacken 0,00 0,00 0,03 2,65 0,04 2,57 0,04 241 0,04 1,58 0,07 0,74 58,5 134,5 8 5 11,02
Stormyrbacken 0,00 0,00 0,01 0,36 0,01 0,33 0,01 0,75 0,01 0,53 0,03 0,24 58,5 1345 10,5 55 8,36
Stortjirnbécken 0,00 0,00 0 04 0,01 0,39 0,01 0,35 0,01 0,24 0,01 0,11 58,5 135 7 7,5 12,63
£ |Svartbacken 0,00 0,00 0,02 1,96 0,02 1,81 0,02 1,73 0,03 1,12 0,05 0,52 58,5 137,5 7,5 45 11,69
qé Vistra Nybyggsbicken 0,00 0,00 0,02 1,61 0,02 1,53 0,02 1,39 0,03 0,95 0,06 0,44 58,5 135 8 6,5 11,13
gﬂ Acksjodlven 58,50 41,60 0,05 1,63 0,05 1,58 0,05 14 0,06 0,88 0,12 0,62 2275 209 55 1,5 1546
S |Gotén 0,00 0,00 0,07 45 0,07 424 0,08 345 0,09 1,74 0,26 0,95 164,5 209 7 4 12,8
i Hagélven 125,40 116,10 0,11 342 0,11 331 0,12 3,06 0,12 2,02 0,29 1,38 224 208 7,5 2,5 11,53
£ |Halgdn 93,80 70,20 0,14 2,72 0,15 2,62 0,17 2,28 0,29 14 0,38 1,21 183,5 303,5 7,5 1 10,47
g Hynnan 0,00 0,00 0,13 7,87 0,13 6,99 0,13 6,36 0,16 3,7 0,6 2,1 162 213 14 35 6,38
= |Lettan 205,60 218,25 0,3 6,5 0,3 6,1 0,31 5,6 042 444 0,78 3,39 216,5 341 7,5 4 11,92
Likan 0,00 0,00 0,08 5,05 0,08 4,71 0,09 444 0,11 241 0,39 14 164,5 1745 9 35 9,58
Tasan 291,20 111,38 0,58 1335 059 12,65 0,61 10,49 1,15 84 2,11 6,77 194 302,5 8,5 2,5 11,94
Vijan 0,00 0,00 0,04 4,11 0,04 385 0,04 3,13 0,06 1,63 0,22 0,83 164,5 208 10,5 4 8,61
Orén 108,60 77,80 0,2 3,28 0,2 3,11 0,23 2,83 041 2,25 0,58 1,72 198 346 7,5 3,5 11,61




Table S1.1 continues

Stream name duration lo pulses rate increase rate decrease nb rises Alkalinity pH Conductivity TOC TN  NO,"NO,” NH,” TP PO, Turbidity Temperature HDO saturation Pesticide use
Borkhultsan 35,67 0,02 -0,01 27 0,63 7,51 10,30 8,00 409,00 11,50 9,00 11,00 1,50 19,13 15,76 102,01 very low
Borrumsbicken 17,96 0,13 -0,04 2,5 147 729 20,34 18,70 1805,50 945,50 71,00 146,50 108,00 44787 12,21 88,93 low
Bulsjoan 17,27 0,38 -0,11 9 0,44 7,11 943 10,90 574,00 80,00 52,50 10,00 3,00 5,34 14,04 93,31 very low

E Flemmabécken 14,12 0,03 -0,01 1 0,76 747 15,63 37,10 1840,00 352,50 42,50 141,00 60,00 144,23 12,19 88,85 very low
= |Kapellin 35,67 0,02 -0,01 27 254 748 30,70 16,20 2137,00 1383,50 71,00 166,50 122,00 258,72 13,51 76,72 low
£ |Kisadn 45,75 0,06 -0,03 23 0,66 7,38 10,95 9,75 432,00 5,00 10,00 9,50 3,00 3,54 15,60 91,50 very low
Eﬁe Pinnarpsbicken 15 0,12 -0,03 5 0,55 749 11,02 11,40 693,50 210,00 3,50 13,00 4,00 64,82 13,09 100,33 very low
Silveran 25,79 0,09 -0,04 5 0,23 6,93 592 13,25 500,00 45,00 450 10,00 3,50 31,64 12,45 97,06 very low
Storan nedre delar 42,5 0,1 -0,03 20 0,74 731 12,35 12,55 831,50 171,50 33,50 49,00 19,50 58,29 13,76 93,51 very low
Vadsbicken 18,13 0,32 -0,07 0,5 306 756 53,75 19,55 222550 1078,00 110,50 342,00 256,50 611,99 12,71 77,12 medium
Bastumyrbicken 15,38 0,13 -0,03 0 0,17 6,226 36,96 2747 289,00 16,50 325 1850 800 596,99 8,12 97,99 -
Bergmyrbécken 1543 0,02 -0,01 3 0,13 6,17 28,36 23,67 267,00 2,75 3,75 11,50 450  6421,75 8,18 95,29 -
£ |Brattmyrlidenbécken 21,75 0,07 -0,02 1,5 0,10 6,15 28,27 21,58 269,50 5,00 325 16,00 7,00 19,52 744 89,27 -
g Féagelvinbacken 18,6 0,02 -0,01 12,5 0,06 5,54 29,12 31,72 592,50 21,00 21,50 34,00 850 606,22 9,05 89,90 -
En Hjuksvallbacken 12,43 0,15 -0,04 0,5 0,11 6,19 34,11 26,07 528,50 128,50 500 26,00 6,50 77,02 8,91 94,79 -
= |Kamplidenbécken 16,69 0,09 -0,03 1 0,12 585 33,17 31,07 471,00 9,50 11,50 31,00 13,00 162,06 7,28 89,43 -
E Kluddbécken 18,42 0,36 -0,1 2,5 0,06 5,40 27,24 41,89 397,00 2,00 6,00 2450 6,50 231,83 841 96,95 -
& |Klippmyrbicken 16,69 0,09 -0,03 1 0,11 5,60 31,35 33,46 487,00 6,50 450 30,00 10,00 27231 729 83,99 -
Krickmyrbécken 23,17 0,07 -0,02 2 0,06 5,94 28,38 28,54 530,50 5,00 8,50 31,00 800 118,11 8,38 94,88 -
___|Krycklan 20,5 0,08 -0,03 1,5 0,14 6,55 30,22 13,39 269,00 7,00 375 950 250 8,85 9,40 94,13 -
Kvarnbicken 19,83 0,15 -0,03 0,5 009 6,19 28,75 27,82 621,50 47,50 1500 44,00 6,50 111,86 9,04 96,06 -
Renbergsbicken 20,5 0,08 -0,03 1,5 0,13 6,32 29,95 18,34 304,00 5,00 425 19,00 3,00 83,59 8,96 93,77 -
Stormyrbécken 18,73 0,04 -0,01 3 0,07 548 2746 3448 375,50 8,00 7,00 2500 11,00 25,55 7,61 88,18 -
Stortjarnbacken 12,7 0,01 0 2 0,12 5,89 30,99 27,04 367,50 12,00 8,50 3800 13,50 92,19 7,78 92,97 -
£ [Svartbdcken 21,75 0,07 -0,02 1.5 0,14 6,14 30,09 21,78 274,50 5,50 2,75 11,00 4,00 31,92 7,80 97,98 -
E Vistra Nybyggsbicken 13,9 0,07 -0,02 1 0,18 6,20 30,38 29,02 255,00 7,50 2,50 14,00 4,50 429 7,68 94,73 -
gﬂ Acksjodlven 52,25 0,04 -0,02 14 0,12 6,65 29,09 12,05 338,00 23,50 700 7,00 250 4,62 12,14 93,87 -
S |Gotan 19,23 0,15 -0,06 5 0,15 6,74 32,25 10,10 293,50 29,00 6,00 6,50 3,50 72,44 7,40 97,50 -
i Hagilven 32,92 0,14 -0,05 21,5 020 7,04 37,78 5,70 272,00 73,00 700 400 1,50 0,93 11,00 9747 -
£ |Halgan 91,5 0,05 -0,03 29,5 0,10 6,77 22,04 790 234,50 12,00 600 550 1,50 0,24 10,66 94,03 -
E Hynnan 23,55 0,44 -0,14 2,5 0,13 6,63 27,62 12,10 320,50 16,00 450 8,00 2,00 9,04 7,51 94,84 -
= |Lettan 19,7 0,2 -0,09 67,5 0,13 6,48 26,66 740 293,00 62,00 11,00 9,00 3,00 10,45 7,11 96,45 -
Likan 223 0,27 -0,09 3 0,23 6,94 28,81 9,40 243,50 0,50 225 700 3,00 18,05 7,72 97,00 -
Tésan 32,5 04 -0,24 109,5 0,21 6,58 32,92 4,75 174,00 17,50 750 7,00 250 6,60 7,58 22,34 -
Vijan 17,58 0,23 -0,07 2 0,16 6,60 32,16 10,45 329,00 13,00 550 800 2,00 2,96 10,69 86,83 -
Orén 29,33 0,12 -0,07 93 0,08 623 18,16 8,55 215,50 4,00 4,00 6,00 3,00 46,74 6,18 92,12 -

! Tree volume: the volume of forest standing stock, including bark but excluding branches and roots, Ditching: meters of diches in the catchment per meter of stream in the same catchment; V
regulated: volume of water stored in the reservoir and available for regulation; V deviation: the average volume deviated between the current flow regime and the natural flow regime based on
daily averages, Water stored: percentage of annual runoff that can be stored in the reservoir; TOC: total organic carbon; TN: total nitrogen; TP: total phosphorus;, HDO saturation: saturation
level of dissolved oxygen in the water
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Appendix S2

Sampling methods to quantify ecosystem functioning

Quantifying ecosystem processes

To quantify algal biomass accrual, four pairs of tiles (25 X 25cm, Seramiksan) were attached at the
stream bottom (unglazed surface uppermost) and left from beginning to end of August (30 days in
total) to allow sufficient time for algal colonisation and growth. In order to assess invertebrate grazing
pressure, the edges of one tile of each pair were coated with a 5-mm wide layer of petroleum jelly
while the other tile was left as a control (Lamberti & Resh 1983). We assessed algal biomass accrual
using a BenthoTorch (bbe Moldaenke Gmbh, Kiel-Kronshagen, Germany) which measures the
fluorescence of chlorophyll a and converts it to an estimate of chlorophyll biomass (Kahlert & McKie
2014). The measured values were standardised to chlorophyll @ mg.m?.degree-day™ to factor out
potential influences of temperature on algal biomass accrual.

To assess litter decomposition, 5.0 = 0.1 g of air-dried arboreal Betula spp. leaves were enclosed in
mesh bags, which were then deployed in the stream channels. The litter was collected from sites
outside of our sampling regions, from trees near Uppsala and Umea (59°48'42.1"N 17°39'47.1"E and
63°49'57.5"N 20°17'44.5"E, respectively). Half the bags were constructed from a coarse mesh (10
mm), allowing colonisation by both invertebrates and microbes. The remainder half was made with
fine mesh (0.5 mm) which excludes invertebrates, and allowed for the quantification of microbial-
mediated decomposition. Five replicates of each mesh type were attached to the stream bottom for 40
days. After retrieval, leaves were cleaned under tap water and six 12-mm diameter leaf discs were cut
from six different leaves in order to assess for biomass accrual of aquatic fungi. The remaining leaves
were oven-dried for 48 hours at 110°C and then ashed at 550°C for four hours to get ash free dry mass
(AFDM). Leaf mass loss was corrected for leaching losses (determined with a 24h laboratory trial) and
temperature, and the breakdown rate coefficient k 4calculated for each litterbag using the negative
exponential decay model (Benfield 1996).

Fungal biomass was estimated as ergosterol, a component of eumycotic cell walls (Gessner 2005).
Briefly, using alkaline methanol, ergosterol was extracted from freeze-dried leaf material and
subsequently purified by solid-phase extraction (Sep-Pak® Vac RC tC18 500 mg sorbent; Waters,
Milford, USA). The ergosterol concentration was quantified by high-performance liquid
chromatography (HPLC; 1200 Series, Agilent Technologies, Santa Clara, USA) at a wavelength of
282 nm. Ergosterol concentrations were finally converted to fungal biomass assuming an average
mycelia concentration of 5.5 mg ergosterol.g”' fungal dry weight (Gessner & Chauvet 1993). The
fungal biomass accruals were then standardised to pg.g”'.degree day™', based on the assumption that no
fungi colonisation happened prior to the immersion in stream water (Krauss, Sridhar & Bérlocher
2005).



Suspended FPOM was sampled by filling a 1 L water bottle at the water surface. Water bottles were
frozen and later filtered through a 0.063 mm sieve to capture FPOM. To assess short-term particle
deposition rates, 16 X16 cm Astroturf mats (Wolters et al. 2004) were attached at the stream bottom to
trap transported FPOM. After three days, the mats were retrieved and frozen. Mats were later thawed
and cleaned in a tray and filtered through a 0.063 mm sieve. For both suspended and deposited FPOM,
retained material was oven-dried for 24 h at 60°C, weighed to the nearest 0.01 mg and ashed at 550°C
for 4 h in order to assess the fraction of inorganic particles in our FPOM samples. We then calculated
the ratio between suspended and deposited of organic particles as a proxy for FPOM dynamics.

Fontinalis dalecarlica is a widespread bryophyte in Sweden and was selected to be a phytometer
(Dietrich, Nilsson & Jansson 2013; Dietrich, Nilsson & Jansson 2015). Two reference sites, flowing
through undisturbed forests and where F. dalecarlica was abundant, were selected from outside our
sampled regions (forestry gradient: 63°53'2.0"N 20°18'19.8"E; hydropower and agriculture gradients:
59°4020.7"N 15°56'2.8"E). The green tips of the bryophytes, representing the sprouts of the year,
were cut and enclosed in fine mesh bag (6.0 + 0.1g). Five replicate bags were deployed in the 36
streams for 83 £ 1 days in the agricultural region and for 97 = 2 days for the two remaining regions,
considered as cooler. Back in the laboratory, samples were washed under tap water, weighed to the
nearest 0.01g, oven-dried at 60°C for 48h and weighed again. Initial dry weights were back calculated
using a linear regression made from extra samples. The biomass accrual of F. dalecarlica was then
calculated as a dry weight difference corrected for temperature and exposure days.

Functional traits

Trait categories were extracted from Schmidt-Kloiber and Hering (2015) for fish and Tachet et al.
(Tachet et al. 2010) for invertebrates. We focused on traits which are closest in their definition to true
functional effect traits (Truchy et al. 2015) (Table S2.1), i.e. most likely to be correlated with the
effects of organisms on ecosystem processes (Hooper et al. 2002; Lavorel & Garnier 2002; Naeem &
Wright 2003).

Fish traits were binary coded representing a presence/absence of the trait (Schmidt-Kloiber & Hering
2015). Invertebrates traits were fuzzy coded from 0 (no affinity with to the category) to a maximum
value of 3 or 5 (high affinity), allowing species to have more than one trait state simultaneously
(Tachet et al. 2010). We then calculated trait scores weighted individually for each species.

We found that dry biomass of our detritivore species was usually the highest in the northern
region (forestry) and the lowest in the southern region (agriculture; Table S2.2), supporting the
idea of a latitudinal variation in intraspecific body size (Ashton, Tracy & de Queiroz 2000). These
results also highlight the limited capacity of large-scale trait database to capture spatiotemporal
variability in species phenotypes.



Table S2.1. Trait categories extracted from Schmidt-Kloiber and Hering (2015) for fish and Tachet et
al. (2010) for invertebrates. A brief description of the states of the traits is included along with their
implication for the studied ecosystem processes. All traits were quantitative and the score taken by a
given trait state ranges from 0 to 10.

Implication for ecosystem
functioning
Big individuals are more likely to

Organism group Trait categories Trait states

(1) L <20 cm; (2) 20-39 cmy;

Body length (3)L> 39 cm perform better, having a greater impact
R on ecosystem processes.
esource
consumption (1) invertivorous; (2) piscivorous; Invertivorous and omnivorous are the
Diet (3) phytophagous; (4) omnivorous; fish that would affect most strongly the
(5) carnivorous; (6) other studied processes.
Fish — ; — - -
s Reproduction (1) phytophilic; (2) lithophilic; Reflects the potential for both trophic
phabi tat (3) phyto-lithophilic; and non-trophic interactions in the
(4) psammophilic; (5) other different habitats.
Habitat use Benthivorous fish are more likely to
Feeding . ) affect processes occurring in the
habitat (1) benthivorous; (2) water column stream bed, where most of our
ecosystem processes were quantified.
(1) L<0.25 cm; (2) 0.25-0.5 cm;  Big individuals are more likely to
Maximum size (3) 0.5-1 cm; (4) 1-2 cm; perform better their function e.g.
(5) 2-4 cm; (6) 4-8 cm; breaking up leaf litter than smaller
Resource (7) L>8cm individuals.
consumption absorber; eposit-feeder; escribes both the feeding mode an
t 1) absorber; (2) d it-feed Describes both the feedi de and
. .. (3) shredder; (4) scraper; the degree of dietary flexibility,
Feeding habits (5) filter-feeder; (6) piercer; influencing in return specific
) (7) predator; (8) parasite ecosystem functions
Macroinvertebrates Reflects the relative abundances of
(1) flags/boulders/cobbles/ pebbles; ;zf)?;Ztss?;tstirflfeéirr]ciso222stgse (or
Substrate  (2) gravel; (3) sand; (4) silt; . S p )
’ . . functional indicators) act —and if a
preference (5) macrophyte; (6) twigs/roots; . o
. . L process like decomposition occurs
(7) organic detritus/litter; (8) mud . i
. across multiple habitats, then a
Habitat use diversity of preferences is good.
t . . .
\(/jeligfiltly (1) null; (2) slow; (3) medium; Relates to microhabitat preferences,
preferendum (4) fast which are likely to dictate conditions
) ) ) under which species operate the most
pH (1) pH <4; (2) 4-4.5; (3) 4.5-5; efficiently.

preferendum (4) 5-5.5; (5) 5.5-6; pH > 6

Table S2.2 Mean biomass + SE of detritivore species according to the dominant anthropogenic
pressure. Only species that were common between all the studied sites are shown.

Forestry

Hydropower

Agriculture

Amphinemura spp.
Leuctra spp.
Limnephilidae
Nemoura spp.

Protonemura meyeri

3.6.10% + 6.24.10°
5.6.10%+2.70.107
3.6.10° + 8.20.10*
2.2.10°+9.31.10°
8.3.10*+1.20.10*

2.5.10%+£1.33.10°
5.5.104+2.74.10°
2.6.10° +7.00.10*
3.2.10° +3.10.10*
54.104+4.52.10°

1.8.10%+2.68.107
4.1.10%+2.65.10°
1.5.10° +5.50.107
4.2.10% +1.00.103
7.7.10% £ 5.56.107
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Appendix S3

Sampling methods of the organism groups

Primary producers (benthic diatoms and macrophytes) and consumers (benthic invertebrates and fish)
were sampled in each stream reach.

Benthic diatoms were collected according to the European/Swedish standard method (SS-EN 14407;
CEN 2004) by scraping biofilm from the upper surface of five cobbles, which were then pooled. The
samples were stored in light-blocking bottles and preserved with Lugol’s iodine solution before
identification and counting.

Macrophytes were sampled following the Swedish EPA’s protocol (Naturvardsverket 2003). For each
stream, depending on the stream width, six to 10 transects were chosen to sample in total 100 quadrats.
Along each transect, 25 x 25 cm quadrats were placed side by side from one bank to the other. In each
quadrat the presence of bryophytes and vascular plant species were recorded using an aquascope.
Relative frequencies of species in the quadrats were then calculated.

The benthic invertebrate community was assessed following the European and Swedish standard
methods (SS-EN 10870:2012; (Naturvardsverket 2010)). In brief, five samples were taken using
standardised kick sampling with a hand net (0.5-mm mesh size). Each sample was taken by disturbing
the bottom substratum for 60s along a 1 m long stretch. Samples were preserved in 70% ethanol in the
field and processed in the laboratory by sorting against a white background. Invertebrates were
identified to the lowest taxonomic unit possible, generally to species level, and counted using
dissecting and light microscopes.

Finally, the fish communities were electro-fished following the European standard method (SS-EN
14011: 2006). Briefly, sampling was performed once during September-October. At each site, a 20-50
m long representative stretch of reach was electro-fished (total sampled area depended on stream
width, longer reaches were sampled in smaller streams) using a bank-based generator operated by a
two-crew team using a single handheld anode. The number of successive removals at each site varied
between one and three. Fish were identified to species and counted. Species densities (number of
individuals.m™) were estimated accounting for the probability of catch at each site.
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Appendix S4

Partitioning the indivicual functional factors

Table S4.1. Results from the variance partitioning of different ecosystem processes (VP-II) in 36
streams explained by four sets of explanatory variables: between- (B) and within- (W) region spatial
components, community composition (Cc, all four community groups) and environment (E), and their
joint effects (represented as N). The global model corresponds to B + (W) + C. + E depending whether
W was selected by the forward selection procedure or not, potentially leading to empty cells. For each
fraction, an adjusted R? is given and when testable the associated p-value is indicated. P-values smaller

than 0.05 are in bold and when 0.05 <P < 0.10, figures are in italics.

Algal biomass Litter decomposition Litter decomposition Fungi biomass Fungi biomass
accrual (coarse bags) (fine bags) accrual (coarse bags) accrual (fine bags)
R? P R? P R? P R? P R? P
B 0.03 0.03 0.05 0.046 0.04 0.04 -0.02 -0.01
w -0.01
C. 0.12 0.005 0.15 0.017 0.06 0.067 0.36 0.006 0.32 0.003
E -0.01 0.10 0.038 0.11 0.023 0.03 -0.04
WNB 0.001
BNC, -0.03 0.04 0.04 -0.009 0.09
W N Ce 0.17
WNE -0.008
BNE 0.01 -0.05 -0.05 0.02 0.0001
C.NE 0.34 0.29 0.48 -0.007 0.25
WNBNE 0.0001
WNBNC, 0.001
BNC.NE 0.38 0.005 -0.05 -0.01 -0.10
WNC.NE -0.06
WNBNC.NE -0.004
Global model 0.83 <0.001 0.58 0.002 0.63 <0.001 0.47 0.007 0.51 0.031
Residuals 0.17 0.42 0.37 0.53 0.49




Table S4.2. Results from the variance partitioning of ecosystem functioning in 36 streams explained

by four sets of explanatory variables: between regions (B), within regions (W), community

composition (C) and environment (E) and their joint effects (represented as N). The community

groups were fitted separately. For each fraction, an adjusted R? is given and when testable the

associated p-value is indicated. P-values smaller than 0.05 are in bold and when 0.05 <P < 0.10,

figures are in italics.

Benthic diatoms Macrophytes
R? P R? P

w 0.02 0.041 0.01
B 0.03 0.042 0.02 0.075
C. 0.07 0.010 0.12 0.001
E 0.14 <0.001 0.19 <0.001
WNB -0.009 -0.001
BN C. 0.009 0.02
WwnNC 0.03 0.05
WNE -0.02 -0.03
BNE -0.03 0.02
C.NE 0.13 0.08
WNBNE 0.01 -0.0002
WnNBNC. 0.002 -0.006
BNC.NE 0.06 0.014
WNCNE -0.003 0.004
WNBNC.NE -0.005 0.004
Global model 045 <0.001 0.50 <0.001
Residuals 0.56 0.50
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