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ABSTRACT 

SALAHUDDIN, TOOBA, Masters : June : 2019, Masters of Science in Computing 

Title: Neuropathy Classification of Corneal Nerve Images Using Artificial Intelligence 

Supervisor of Thesis: Sumaya AlMaadeed. 

Nerve variations in the human cornea have been associated with alterations in 

the neuropathy state of a patient suffering from chronic diseases. For some diseases, 

such as diabetes, detection of neuropathy prior to visible symptoms is important, 

whereas for others, such as multiple sclerosis, early prediction of disease worsening is 

crucial. As current methods fail to provide early diagnosis of neuropathy, in vivo 

corneal confocal microscopy enables very early insight into the nerve damage by 

illuminating and magnifying the human cornea. This non-invasive method captures a 

sequence of images from the corneal sub-basal nerve plexus. Current practices of 

manual nerve tracing and classification impede the advancement of medical research in 

this domain. Since corneal nerve analysis for neuropathy is in its initial stages, there is 

a dire need for process automation. 

To address this limitation, we seek to automate the two stages of this process: 

nerve segmentation and neuropathy classification of images. For nerve segmentation, 

we compare the performance of two existing solutions on multiple datasets to select the 

appropriate method and proceed to the classification stage. Consequently, we approach 

neuropathy classification of the images through artificial intelligence using Adaptive 

Neuro-Fuzzy Inference System, Support Vector Machines, Naïve Bayes and k-nearest 

neighbors. We further compare the performance of machine learning classifiers with 

deep learning. We ascertained that nerve segmentation using convolutional neural 



  

iv 

 

networks provided a significant improvement in sensitivity and false negative rate by 

at least 5% over the state-of-the-art software. For classification, ANFIS yielded the best 

classification accuracy of 93.7% compared to other classifiers. Furthermore, for this 

problem, machine learning approaches performed better in terms of classification 

accuracy than deep learning.  
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CHAPTER 1: INTRODUCTION 

 

Neuropathy is a long-term complication of various chronic diseases such as 

diabetes, multiple sclerosis, stroke, Parkinson’s disease, human immunodeficiency 

virus etc. Early detection of neuropathy is crucial for prolonging the quality of life in 

diabetic patients. In fact, current state-of-the-art methods fail to diagnose neuropathy at 

an early stage. Fortunately, imaging of corneal nerves through corneal confocal 

microscopy provides a way for analyzing subclinical neuropathy. However, the 

establishment of this method as a biomarker for neuropathy detection is hindered by 

tedious manual analysis.  

1.1. Neuropathy 

Neuropathy (axonal degeneration) is a painful neurological disorder 

distinguished by nerve malfunction. It may be a result of inflammatory diseases, 

surgical interventions, genetic disorders or infections, amongst other possible causes. 

Peripheral neuropathy is distinguished by numbness in the limbs and is the most 

prevalent complication of diabetes. Other visible effects of neuropathy include foot 

ulceration [1]. One of the earliest hidden symptoms of neuropathy is small fiber nerve 

damage and is apparent in a very early stage prior to the occurrence of visible symptoms 

[2]. On the other hand, visible symptoms of neuropathy occur only when the damage 

has reached the long nerve fibers. Therefore, accurate and timely diagnosis of 

neuropathy is necessary for prognosis, early recognition of subclinical neuropathy, 

monitoring disease maturity, classifying disease severity and suggesting relevant 

therapy plans [3]. 
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1.2. Current Methods for Detection of Neuropathy 

Current gold standards for evaluating nerve damage are through the established 

methods of quantitative sensory testing (QST), electrophysiology, nerve conduction 

studies (NCS) and skin biopsy [4]. QST determines the pain sensation through 

pinpricks, and exposure to warm and cold temperatures. Since the perception of pain 

varies from person to person, this method is prone to subjectivity in terms of quantifying 

neuropathy. Moreover, QST is limited in its usage as it is more applicable for detecting 

long nerve fiber damage [4] since loss of pain sensation is apparent only after long 

nerve fiber loss. Autonomic sensory testing is another method to assess autonomic 

neuropathy, but it is also reported to be inconvenient and inaccurate [5]. It consists of a 

tilt-table test, whereby the subject is made to lie on a flat table and then the table is 

tilted. The tilting of the table is supposed to induce fear of falling in the person which 

should increase his heart rate and breathing rate, implying the presence of autonomic 

senses. If the autonomic senses of the person have stopped working, then the person 

will not feel anything, and his breathing rate and pulse will not be affected. However, 

a person can practice staying calm in such a situation, which will also not affect his 

heart and breathing rate, thus making the technique unsuitable for accurate results. 

Moreover, the method will only detect long nerve fiber damage since loss of autonomic 

senses is only apparent when damage has reached long nerve fibers. 

Nerve conduction studies use the passing of electric signals from one point to 

another in the nerve to be tested. If the signal successfully reaches the second point in 

the nerve it implies that the nerve is not damaged. This method requires expert skill for 

valid analysis and is only able to detect long nerve damage since small nerves are 

microscopic and cannot be seen by the naked eye to test the presence of electrical 

signals at a point. While skin biopsy can detect intra epidermal small nerve fiber loss 



  

3 

 

and provides an objective assessment, it is an invasive and costly technique and cannot 

be conducted repeatedly [4], [6]. Moreover, it is time consuming and requires a person 

with considerable skill and expertise to conduct the test [6]. Fig. 1 summarizes the 

current methods for detecting neuropathy. 

 

 

Figure 1. Current methods for detecting neuropathy 

 

1.3. Corneal Confocal Microscopy 

Recently, in vivo corneal confocal microscopy (CCM) has appeared as an 

indispensable tool in clinical trials for preliminary diagnosis of symptomatic 

neuropathy. It also provides the opportunity to monitor disease progression and 

evaluate the effectiveness of newly proposed treatments [7]. Small fiber nerves are 

present in the human cornea and corneal transparency allows for an in-depth 

observation through a microscope. Corneal nerve mages can be obtained using a corneal 

confocal microscope, shown in Fig. 2, for corneal morphological analysis in about 10 

minutes in a non-invasive manner [5]. CCM images reveal a detailed and magnified 
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structure of layers of the densely innervated cornea of the human eye. These images are 

captured using varying depths from the corneal surface. The images that display the 

subbasal nerve plexus are captured at a focal depth of about 40μm from the corneal 

surface [8]. This section lies between the epithelium and Bowman’s layer. Fig. 3 shows 

the five layers of the cornea. 

 

 

Figure 2. Corneal Confocal Microscope. (The Rostock corneal module is pointed to by 

the arrow) 

 

The utility of CCM images in clinical practice is multifold. Minor changes in 

the corneal nerve architecture indicating an initial stage of neuropathy can be 

discovered by examining these images. This allows for an early diagnosis of neuropathy 

in patients suffering from certain chronic diseases, whereas visible symptoms become 

apparent much later. Studies have shown evidences of small nerve fiber loss in the 

cornea of patients identified with diabetes [5], [9], Parkinson’s disease [10], [11], 

multiple sclerosis [12], stroke [9], HIV [13] etc. CCM images can also be used to 

rapidly quantify the severity level of different types of neuropathies. Moreover, they 

can also be helpful in defining new treatments by direct observation of their effect on 



  

5 

 

the nervous system.  

 

 

Figure 3. The 5 layers of the cornea 

 

1.4. Limitations 

CCM image analysis, being a promising tool, poses certain limitations in terms 

of its clinical applications and adaptations. In a recent article [14], Lagali strongly 

emphasizes on the need for the automation of corneal image segmentation, tracing, 

quantification and classification using artificial intelligence techniques. He also 

outlines the limitations as follows. Current limitations of CCM include (a) the tedious 

process of manual nerve tracing by clinicians for nerve parameter quantification and 

(b) manual classification of images to define the extent of nerve deficit. Rapid, accurate, 

objective and automated quantification of CCM nerve images through the application 

of image processing techniques is quiet a challenging task and currently in its early 

stages. Commonly used tools for CCM parameter quantification include CCMetrics, 

ACCMetrics and ImageJ. An obvious limitation of the former software is that they 

require manual tracing of nerves for measuring the parameters. ACCmetrics (MA 
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Dabbah, Imaging Science and Biomedical Engineering, Manchester, UK) 

automatically traces the nerves but is claimed by the doctors as inaccurate [15]–[17]. 

The latter (ImageJ) is a software for neurite tracing adapted for corneal nerve tracing 

(available at http://www.imagescience.org/meijering/software/neuronj/). This software 

requires human aid in tracing the nerves and then calculates the required parameters. 

Furthermore, most of the time, the problem of detecting nerve damage in CCM images 

remains a manual practice by visual observation.  

1.5. Problem Statement 

Based on the above limitations, the need for a complete solution to detect 

neuropathy becomes inevitable. An ideal solution would automatically and intelligently 

classify raw CCM images based on their neuropathy severity. This may require the 

process of nerve segmentation as well. Therefore, the problem statement for this thesis 

is the development of an artificial intelligence model to predict neuropathy in CCM 

images. 

1.6. Research Questions 

In this thesis, we attempt to answer the following research questions: 

RQ1: Do convolutional neural networks (CNNs) provide a better automated nerve 

segmentation solution as compared to the state-of-the-art ACCMetrics? 

RQ2: What kind of features define neuropathy in CCM images? 

RQ3: What kind of machine learning approach would best classify CCM images? 

RQ4: For this problem, is transfer learning using pre-trained CNNs a better approach 

as compared to machine learning? 

1.7. Research Objectives 

The research objectives for this thesis are as follows: 

• To automate the process of neuropathy detection in corneal images 

• To determine whether CNNs would provide an improved segmentation of 
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corneal nerve images when compared to existing solutions  

• To explore the potential of machine learning algorithms for neuropathy 

classification of corneal images 

• To investigate whether machine learning would be better suited for neuropathy 

classification of corneal images as compared to deep learning 

 

1.8. Solution Overview 

We attempt to tackle the problem of neuropathy classification of corneal images 

with the aim of providing an automated solution for the concerned medical experts. For 

nerve segmentation, we compare two state-of-the-art approaches and determine which 

of them is more suited for the task. For classification, we solve the problem using two 

approaches. The first approach is to extract features from segmented images and then 

use the feature set to classify the images using machine learning techniques. Fig. 4 

illustrates the process of the first approach. We explore the potential of four machine 

learning classifiers for this purpose. The second approach is to classify raw images 

using deep learning, more specifically, a pretrained CNN. In this approach, the nerve 

segmentation step is eliminated. Fig. 5 illustrates the process of the second approach. 

In the discussion, we compare the results obtained using the two approaches. 

 

 

Figure 4. First approach 

 

Nerve 

segmentation 

Feature 

Extraction 

Classification 

using machine 

learning 
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Figure 5. Second approach 

 

 

The following chapter gives a background on the machine learning algorithms used in 

this study. Chapter 3 describes the methodology and experimental procedures for nerve 

segmentation and neuropathy classification. This is followed by results and discussion 

in Chapter 4. Finally, Chapter 5 concludes the research and provides some future 

directions for improvement and continuation of the study. 

  

Classification 

using CNN 
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CHAPTER 2: BACKGROUND AND RELATED WORK 

 

2.1. Background 

 This section covers some background information on the four machine learning 

techniques used in this research. An overview of the CNN used for image segmentation 

is also presented. Further, the pre-trained deep learning model used for the second 

approach to the solution is briefly explained. 

 2.1.1. Adaptive Nero-Fuzzy Inference System 

Neuro-fuzzy systems refer to a subdivision of soft computing which synergizes 

the strength of artificial neural networks and fuzzy logic. Consequently, a robust 

framework is formed which is effectively used for solving machine learning problems. 

A popular implementation of Sugeno-based neuro-fuzzy systems is adaptive neuro-

fuzzy inference systems (ANFIS) [18].  

The ANFIS architecture comprises of five layers. In the first layer, the 

membership functions specify the membership degree of each input variable. These 

membership functions are formulated during the training phase. Using these 

membership functions, ANFIS creates a fuzzy inference system (FIS) which map the 

inputs to their corresponding outputs. The inferences from the rule base are used in the 

second and fourth layer to adjust the firing strength of each rule. The fourth layer 

generates the outputs using a linear polynomial equation. The last layer concatenates 

all outputs into a single output. 

A two-pass learning algorithm is implemented during the learning stage [19]. 

The forward pass consists of updating the parameters using least squares estimation to 

produce the output. During the backward pass, error is computed across all layers and 

parameter values are updated accordingly using gradient descent algorithm. 

The ANFIS network builds a FIS from the three input features, mapping them 
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to the output using the membership functions. The membership functions use the hybrid 

learning technique for parameter tuning. Hence, the FIS is trained on the randomly 

selected training data. The architecture of the ANFIS network is displayed in Fig. 6. 

The figure shows only four layers because the second and third layers are displayed as 

one, namely the rule layer.  

 

 

Figure 6. Architecture of ANFIS 

 

2.1.2. Support Vector Machines 

SVMs were originally introduced by Cortes & Vapnik [20] in 1995. They are 

known as universal learners because they usually perform well in most classification 

problems. SVM aims to create an optimal hyperplane with maximum margin, that 

separates the two classes of data. The points present nearest to the hyperplane are 

termed as support vectors, and they determine the position of the hyperplane. Consider 

a set of 𝑛 training samples, 𝑥1, … , 𝑥𝑛, each having a label from a set or 𝑟 labels, 𝑌 =

𝑦1, … , 𝑦𝑟. The SVM classifier creates a classifier of the form: 

𝑦(𝑥) = 𝑠𝑖𝑔𝑛[∑ 𝛼𝑖𝑦𝑖𝜓(𝑥, 𝑥𝑖) + 𝑏𝑛
𝑖=1 ],                                 (1) 

Where 𝛼𝑖 belongs to a set of real constants, 𝑏 is the bias and 𝜓 is a kernel function. 
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Commonly used kernel functions are: linear 𝑥𝑖
𝑇𝑥, polynomial with degree d 

(𝑥𝑖
𝑇𝑥 + 1)𝑑, and radial basis function exp(−|𝑥 − 𝑥𝑖|2

2/𝜎2). 

The lines that separate the data are defined by: 

𝜔𝑇𝜑(𝑥𝑖) + 𝑏 ≥ 1, for 𝑦𝑖 = 1                                           (2) 

𝜔𝑇𝜑(𝑥𝑖) + 𝑏 ≤ −1, for 𝑦𝑖 = −1                                        (3) 

This is equivalent to the non-linear function: 

𝑦𝑖[𝜔
𝑇𝜑(𝑥𝑖) + 𝑏] ≥ 1, for 𝑖 = 1,… , 𝑛                                  (4) 

This maps the input data to a high dimensional space and finds the hyperplane that 

perfectly separates the classes. 

2.1.3. Naïve Bayes 

Naïve Bayes is a simple probabilistic classification algorithm that classifies 

samples according to the likelihood of occurrence [21]. It assumes that features are 

independent given the class. During training, probabilities are calculated for each 

feature value given a class label. These probabilities are used to predict the label of a 

test sample. 

Consider a feature vector, 𝑿 = (𝑋1, … , 𝑋𝑛), where each feature value is taken 

from a distribution 𝐷𝑖. The set omega contains all feature vectors: Ω = 𝐷1 ×…×𝐷𝑛. 

Let 𝐶 be the class label of an example.  

The class posterior probabilities given a feature vector can be defined as a 

discriminant function: 𝑓𝑖
∗(𝒙) = 𝑃(𝐶 = 𝑖|𝑿 = 𝒙). This can be rewritten after applying 

Bayes rule: P(C = i|𝐗 = 𝐱) =
P(𝐗=𝐱|C=i)P(C=i)

P(𝐗=𝐱)
 . Here, P(𝐗 = 𝐱) is the same for all 

classes and can be eliminated. Thus, Bayes discriminant functions can be written as the 

following: 𝑓𝑖
∗(𝒙) = 𝑃(𝑿 = 𝒙|𝐶 = 𝑖)𝑃(𝐶 = 𝑖), where P(𝐗 = 𝐱|C = i) is termed as the 

class-conditional probability distribution. 

Finally, the Bayes classifier can be defined as: 
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ℎ∗(𝒙) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑃(𝑿 = 𝒙|𝐶 = 𝑖)𝑃(𝐶 = 𝑖)                            (5) 

ℎ∗(𝒙) finds the maximum a posteriori probability for any example x. Extending (5) to 

simplified naïve Bayes assumption that features are independent given class, we get the 

following form: 

𝑓𝑖
𝑁𝐵(𝒙) = ∏𝑗=1

𝑛 𝑃(𝑋𝑗 = 𝑥𝑗|𝐶 = 𝑖)𝑃(𝐶 = 𝑖)                           (6) 

2.1.4. K-Nearest Neighbor 

One of the classical and simplest nonparametric classification algorithms is the 

k-nearest neighbor (KNN) classifier, which classifies new examples based on nearest 

sample observation. It is based on the assumption that when feature vectors for training 

data points are projected into a subspace, any new data point can be classified based on 

its proximity to its k nearest neighbors [22]. 

Consider a set of 𝑛 training samples, 𝑥1, … , 𝑥𝑛, each having a label from a set 

or 𝑟 labels, 𝑌 = 𝑦1, … , 𝑦𝑟, and 𝑚 features. The feature vector for 𝑥𝑖 is represented as 

𝑥𝑖𝑚, … , 𝑥𝑛𝑚. A new sample 𝑠 is assigned label 𝑦𝑖 if a majority of 𝑘 nearest neighbors 

of 𝑠 possess the label 𝑦𝑖.  

Nearness can be measured using any of the several distance measures. The most 

common ones are Euclidean distance (L2 norm), Manhattan distance (L1 norm) or Max 

norm. 

The Euclidean distance between two samples 𝑥𝑎 and 𝑥𝑏 is defined as: 

𝐷(𝑥𝑎, 𝑥𝑏) = √(𝑥𝑎1 − 𝑥𝑏1)2 +⋯+ (𝑥𝑎𝑚 − 𝑥𝑏𝑚)2                       (7) 

The number of nearest neighbors in the neighborhood, 𝑘, is usually tuned as a 

hyperparameter. Empirically, as 𝑘 increases, the accuracy of the prediction decreases. 

Fig. 7 presents a feature space with positive and negative labels and a test point where 

𝑘 = 3. Based on majority voting, the test point will be classified as negative.  

Several variations of KNN exist in the literature. Weighted KNN adds weight 
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to the vote of each label in the neighborhood based on its distance from the test sample 

[23]. Epsilon-ball KNN is a method that selects neighbors within a distance from the 

test sample. 

 

 

Figure 7. KNN with 𝑘 = 3 

  

2.1.5. U-Net 

In 2016, Ronneberger et al. [24] proposed an extended fully connected 

convolutional network called U-Net intended to segment biomedical images. The 

network utilizes a novel training strategy based on the efficient use of data 

augmentation through elastic deformations. In other words, the learning process does 

not require a magnanimous amount of training samples to produce a good output. In 

addition to using the training data efficiently, it offers two more modifications. First, 

the network consists of an up-sampling stage and a down-sampling stage. During the 

up-sampling stage, a number of feature channels are created which help in transferring 

context information to the high-resolution layers. Instead of incorporating fully 

connected layers, the network uses an overlap tile strategy for predicting the pixels in 

the border region. The overlap tile strategy mirrors the pixels in the border region to 

provide more context information. Second, they introduce the application of weighted 
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loss for separating connected structures. 

The U-Net architecture, shown in Fig. 8, contains a total of 23 convolutional 

layers. It is composed of three parts: a contractive path (down-sampling), a bottleneck 

and an expansive path (up-sampling). The network consists of ten consecutive sets of 

the following: two 3×3 convolution layers each followed by a rectified linear unit 

(ReLU). The first four sets comprise the contractive path, and each set is followed by a 

max pooling operation. The number of feature channels are doubled after each max 

pooling operation. The part between the contractive and expansive is the bottleneck 

which consists of two convolution layers and a dropout. The next four sets comprise 

the expansive path. The process mentioned in the contractive path is mirrored in the 

expansive path. The convolution layers are preceded by a deconvolution layer with 

stride 2 and concatenation with the corresponding cropped feature maps from the layers 

in the contracting path. The last layer is a 1×1 convolution layer. 

 

 

Figure 8. The U-Net architecture [24] 
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2.1.6. GoogleNet 

GoogleNet is a deep convolutional neural network trained on images from a 

subset of the ImageNet database, which contains about 1.2 million images. The network 

is trained to distinguish between 1000 classes. The network is composed of 22 layers 

and is shown in Fig. 9. The input size to the network is 224×224×3 image. The network 

uses a number of Inception modules, which is a set of 1×1, 3×3 and 5×5 convolutions, 

and 3×3 max pooling. Each of the convolutional layers in the Inception module are 

followed by a ReLU non-linearity function. To combat overfitting, a number of 1×1 

convolutions and average pooling are used. The 1×1 convolutional unit reduces the 

number of computations and reduces the dimensionality of the network in a non-linear 

way. The network forces dropout in the initial layers and towards the end before the 

fully connected layer. The fully connected layer is fed to a 1000-way softmax for 

classification. 
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Figure 9. GoogLeNet architecture* 

*Network flow is top-down.  

 



  

17 

 

2.2. Image Processing Techniques for Segmentation of Curvilinear Structures 

As CCM is progressing towards establishing itself as a biomarker for detection 

of preliminary neuropathy, the need for systems facilitating completely automatic 

image analysis, neuropathy severity prediction and disease prediction is becoming 

inevitable. The establishment and recognition of new and reliable standards for nerve 

measurements can be achieved through correct segmentation and quantification of 

nerves in reasonable time. We found that the problem of nerve segmentation in corneal 

images holds a resemblance to vessel segmentation in fundus images, vascular 

structures in angiographic images, vein segmentation in leaf images, and fingerprint 

segmentation in fingerprint images. All of these problems mentioned fall under the 

category of identification of curvilinear structures. Consequently, techniques proposed 

for one of these problems can be exploited to resolve another. In the following 

subsections we review the existing literature on image processing techniques, mainly 

for corneal nerve segmentation and retinal vessel segmentation. 

2.2.1. Region of Interest Expansion 

A study of related literature has revealed many research groups that have been 

developing successful methods for automating the segmentation of corneal subbasal 

images. Ruggeri et al. [25] proposed a nerve recognition and tracing method for corneal 

images. Their algorithm was a modification of the one originally devised for vessel 

segmentation in retinal images [26]. The images first undergo a denoising process to 

enhance image contrast. This is followed by a nerve tracking process based on region 

growing. It involves extraction of seed points from the image using a uniformly spaced 

grid of 10 pixels. The expansion of the region of interest (ROI) is carried out by 

matching neighboring pixels according to a preset pixel intensity similarity threshold. 

On the encounter of a nerve intersection, a technique called bubble analysis is applied. 

The bubble analysis algorithm identifies nerve pixels occurring in the path of concentric 
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circles drawn from the point of intersection. The next step is to classify pixels as 

belonging to the nerve or the background, using fuzzy c-mean clustering. There is a 

possibility of termination of the nerve tracking process resulting in discontinuous nerve 

segments. This issue is addressed by a nerve continuity algorithm which connects 

disjoint nerve segments. In order to assess the performance of the algorithm, 12 images 

from the subbasal nerve plexus of the cornea, obtained via a slit-lamp scanning CCM, 

were segmented using the proposed algorithm. The segmentation algorithm showed the 

tendency of generating false positives due to the presence of cells in the image 

background. However, this problem may have risen only because the images were 

obtained via slit-lamp CCM. Images using the state-of-the-art laser scanning CCM 

eliminate much of the image artifacts and is capable of producing images with better 

resolution. The time required for the segmentation of each image was approximately 4 

- 5 minutes. Scarpa et al. [27] used a similar algorithm but introduced the use of a Gabor 

filter prior to the nerve tracking procedure. They evaluated the algorithm on a set of 90 

images taken from the corneas of control subjects and patients. The technique 

succeeded in correct identification of more than 80% of the nerve length as compared 

to manual segmentation. Poletti and Ruggeri [28] further improved the nerve tracking 

algorithm presented in [25] by identifying seed points through multiple orientations of 

lines. Thereafter, nerves were segmented from the background by connected seed points 

identified from Dijkstra’s shortest path algorithm. The proposed algorithm was tested 

on a set of 30 CCM images. Single image processing time was reduced from 4 minutes 

to 25 seconds. 
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2.2.2. Gabor Wavelets 

A significant contribution in this domain is by Dabbah et al. [16]. Their 

proposition of a dual model algorithm for nerve fiber detection was a revolutionary 

attempt to address the problem. Their dual model consists of Gabor wavelet filter and 

Gaussian envelope. They enhanced the nerve fibers in the image through the use of 2D 

Gabor wavelet filters for nerve identification and applied a Gaussian filter for 

background noise removal. The process of nerve fiber orientation estimation involved 

calculating distance through least mean squares (LMS) algorithm. This is followed by 

passing the image through a low pass Gaussian filter which results in diminishing the 

texture present in the background. They presented a comparative analysis of the Gabor 

method and a previously implemented Linop method (linear operator for detecting 

asbestos fibers in mammograms [29]), on a small dataset of 12 images. Results showed 

an improved performance by the Gabor method and a lower estimated error rate (EER) 

[30]. However, experiments conducted on such a small dataset fail to generalize the 

performance of the algorithm on large scale. 

2.2.3. Morphological Operations 

Recently, Al-Fahdawi et al. [31] designed a complete automatic system for 

nerve quantification based on morphological operations. The first part is nerve contrast 

enhancement which uses a combination of coherence and Gaussian filters for 

background noise reduction. Then, morphological operations of dilation, erosion, 

opening and closing are applied to remove stray and unwanted segments from the nerve 

structure. This is followed by edge detection using Canny edge detector for identifying 

the nerve fibers in the image. Their choice of edge detection is based on the fact that 

Canny edge detector is known for accurate filtering of multiple responses from a single 

edge. The work also presents a new algorithm for appropriate linking of gaps in the 

fibers. The technique is as follows. The image is converted to its skeleton and endpoints 
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of each segment are identified and marked with a binary circle. Based on the distance 

between two disconnected endpoints, a straight line connects two disjoint endpoints. 

Finally, the image is thinned again, which results in shrinking the circles to a line. The 

segmented binary image is then used to extract clinical features namely, nerve 

tortuosity, length, density and thickness. The performance of the proposed system was 

evaluated on two datasets, having 498 and 919 images respectively, captured from a 

laser CCM. Single image processing time is approximately 7 seconds. They used non-

conventional evaluation metrics of structural similarity index (SSIM), variation of 

information (VOI) and probability random index (PRI). These metrics have not been 

used elsewhere to evaluate nerve segmentation, and their method lacks a comparison 

with other methods in the literature. 

2.2.4. Pixel Classification using Machine Learning 

Pixel classification for CCM images has also been approached through 

supervised machine learning techniques. In this method, each pixel is considered a 

sample with the corresponding label of nerve/non-nerve (for nerve images) or 

vessel/non-vessel (for retinal images), and a feature vector extracted using pixel-based 

information. Thus, this becomes a simple binary classification problem. A multiscale 

enhancement of the dual model in [16] is presented in [15], which classifies pixels as 

nerve or non-nerve by training neural network or random forest classifiers. The 

evaluation of the trained model resulted in the best sensitivity and specificity at an EER 

of 15.44%. Guimaraes et al. [32] proposed a nerve segmentation system which involved 

morphological operations and machine learning for nerve classification. First, they used 

top-hat filtering for enhancing the image contrast, computed by subtracting the 

morphological opening of the image from the image itself. This is followed a nerve 

enhancement procedure using log-Gabor filters. Then, nerve segmentation is carried 
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out through hysteresis thresholding. This results in a number of candidate nerve 

segments which may be true positives or false positives. To differentiate between them, 

they trained a Support Vector Machine with radial basis kernel function. They tested 

the efficiency of their approach by classifying pixels of 246 CCM images using Support 

Vector Machine (SVM), achieving an average sensitivity of 88%. 

For retinal fundus scans, Rani et al. [33] proposed a retinal vessel segmentation 

approach using matched filter designs. They selected the green channel of the images 

for the segmentation process. Image preprocessing stage includes the application of 

contrast limited adaptive histogram equalization on the images. They applied a 

Gaussian based matched filter for the detection of vessel structures in the image. This 

results in the extraction of non-vessel structures as well, which is handled by the 

following steps. Using pixel-based features from each connected component, SVM and 

Tree-bagger is applied to classify components as vessels or not vessels. They reported 

an accuracy of 95% on the STARE database and 94% on the DRIVE database. 

2.2.5. Hessian Matrix-based Approach 

Jerman et al. [34] proposed a novel enhancement filter for segmenting vascular 

structures that occur in angiographic images. The multiscale enhancement function is 

derived from a Hessian matrix filter and can be adapted for both 3D and 2D images. 

The resultant function yields a uniform response to varying contrast values of the 

image. Hessian eigenvalues are defined for bright structures appearing on dark 

background. The Jerman enhancement function is a ratio of eigenvalues with response 

values ranging from 0 to 1. The enhancement filter was evaluated on 3D and 2D images 

of lung, cerebral and retinal vasculatures and demonstrated consistent results. The 

results were highly comparable results to other functions proposed in the literature. 
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2.2.6. Pixel Classification using Convolutional Neural Networks 

There has been a plethora of studies in the literature that use CNNs for image 

segmentation. Fu et al. [35] used deep learning architecture for retinal vessel 

segmentation. They proposed a fully connected CNN for learning the vessel features 

followed by a fully connected conditional random field for converting the coarse 

probability map to binary. They related the curvilinear segments detection problem to 

a boundary detection problem and used a holistically nested edge detection (HED) 

technique proposed elsewhere [36] and based their implementation on this HED. Their 

deep learning architecture consists of 5 stages where each stage consists of several 

convolutional and ReLU layers. The last convolutional layer in each stage is linked to 

the side output layers. Two datasets were used for evaluation of the proposed technique. 

They achieved sensitivity of 73% and 71% on the DRIVE and STARE datasets 

respectively. They showed that although their method did not produce extraordinary 

results when compared with other techniques, they did succeed in reducing the false 

positive in the optic disc and pathological regions. 

The concept of using U-Net [24] for corneal nerve segmentation was introduced 

by Colonna et al. [37]. U-net is a convolutional neural network intentionally designed 

for segmentation of biomedical images [24]. It has successfully been applied for 

segmentation of brain tumors in MRI scans [38], generating synthetic images by 

mapping retinal vessel trees to retinal fundus scans [39], cell membrane segmentation 

in electron microscopy images [36], and many others. Colonna et al. [37] trained a U-

Net based CNN on CCM nerve images obtained from healthy and diabetic patients. In 

the preprocessing stage, the images were cropped of 10 pixels from the edges and 

resized to the input size required by U-Net using a bicubic transformation. The training 

was performed on 8909 images, out of which 30% was used for validation only. The 

network was trained for 6 epochs. Instead of using manual tracings for ground truth, 
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they obtained segmented images by applying a previously proposed algorithm for 

segmentation. They evaluated the trained model on 30 test images and compared 

against manual tracings. In order to allow for slight shifts in the nerve position, a 

tolerance of 3 pixels was allowed. Results revealed a sensitivity of 97% and a false 

detection rate of 18%. However, since the number of test images is so small, the ability 

of the model to generalize cannot be determined. 

Moreover, Son et al. [40] employed U-Net as part of a generative adversarial 

network (GAN) to segment vessels from retinal fundoscopy images. In order to get 

sharp segmented structures, they experimented with various discriminators. They were 

able to reduce false positives but with some trade-off in the number of false negatives. 

They reported a precision and recall of 91% on DRIVE and STARE datasets. 

Maninis et al. [41] also provide a solution to the problem of retinal image 

segmentation using CNN. They improvise a CNN architecture by combining the 

architectures of VGG-18 and Inception V3. The fully connected layers towards the end 

of the VGG-18 architecture were removed and specialized convolutional layers to the 

end of each stage were added. The final result is formed by adding another 

convolutional layer to the end of the model. 

2.3. Classification Techniques for Retinal and Corneal Images 

Recently, convolutional neural networks have gained distinguished popularity 

among data scientists and it has been proven to solve a multitude of image-based 

problems including segmentation, localization and classification. Specially with the 

introduction of the concept of transfer learning using pretrained networks, such as 

GoogleNet [42], AlexNet [43] etc, the requirement of a large amount of data to train 

the neural network ceases to be necessary. For this reason, pretrained CNNs have 

become the quintessence of deep learning. To the extent of our knowledge, not much 
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work has been done on neuropathy classification of corneal images. Therefore, since 

the corneal nerve images hold an apparent visual and conceptual similarity to the retinal 

images obtained using fundoscopy, the following subsections explore the literature for 

retinopathy classification techniques applied on retinal fundus scans, in addition to the 

scarce literature on classification of corneal nerve images. Several approaches have 

been proposed in the literature for classification of retinal images using transfer learning 

and fine-tuning pretrained CNNs. Others have tackled the problem using custom-

designed deep learning models. 

2.3.1. Transfer Learning and Parameter Tuning 

Research work in the literature shows many evidences of successful usage of 

pretrained models using transfer learning and fine tuning. The use of pretrained CNNs 

have become widespread due to their ease of use. Moreover, they do not require 

millions of training samples to produce a well-trained model, which is the case for 

networks trained with random initialization. 

Gulshan et al. [44] used transfer learning for a detailed and multi-aspect 

classification of retinal images obtained from fundus photography. They classified 

images as (a) having referable diabetic retinopathy (mydriatic, non-mydriatic or both), 

(b) into subtypes of diabetic retinopathy (moderate or worse only, severe or worse only, 

diabetic macular edema only) and (c) as gradable or non-gradable. Training was 

conducted on the pretrained model of Inception-v3 architecture. They fine-tuned an 

Inception V3 model and retrained it on retinal scans using the initial weights provided 

by the pretrained model. For an assessment of their approach, they conducted tests on 

2 datasets and reported a sensitivity of approximately 90% for each classification type. 

Similarly, Choi et al. [45] employed transfer learning and fine-tuned VGG-19 and 

Alexnet architectures for classifying normal retinal images and 9 types of retinal 
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pathologies. Their 10-class classification resulted in an accuracy of 58%. They 

compared this approach with commonly used machine learning classifiers (SVM, 

Random Forest, ANN, etc.) and found that these approaches were outperformed by 

CNN transfer learning method. Moreover, even with deep learning, when moving from 

binary to multiclass classification, the accuracy decreases as the number of classes 

increases.  

Lam et al. [46] attempted to perform multiclass classification of the severity 

levels of retinopathy from retina fundus scans. They evaluated the usage of different 

optimizers, learning rates, gradient update policies and dropout levels for fine tuning 

pretrained Googlenet and Alexnet architectures. Experiments were conducted on the 

publicly available Kaggle dataset of 35000 retinal images categorized into varying 

levels of retinopathy (class labels: normal, mild, moderate, severe, end stage), and on 

the Messidor dataset (class labels: normal, mild, moderate, severe). They reported the 

best accuracy of 74% on Messidor dataset obtained when augmented dataset was fed to 

the model for training. On the Kaggle dataset, they scored an accuracy of 84%. 

Burlina et al. [47] employed pretrained Overfeat for extracting features from 

retinal fundus scans classification. Overfeat [48] is a pretrained model, similar to 

GoogleNet, trained on images from ImageNet. It implements a multiscale and sliding 

window approach inside a convolutional network and applies the concept of combining 

multiple localized predictions instead of focusing on the background. The problem is 

classified as four stages of retinopathy. They subdivided the problem into multiple 

binary classifications: stage 1,2 vs 3,4; stage 1,2 vs 3; stage 1 vs 3; stage 1 vs 3,4. 

Features extracted from Overfeat were fed into a linear SVM for classification. For all 

stages, an accuracy of greater than 90% was achieved. Continuing their experiments, 

Burlina et al. [49] compared the previous approach with AlexNet trained from scratch. 



  

26 

 

Experimental results on the AREDS fundus image data showed that the Alexnet model 

(accuracy 91%) outperformed Overfeat (accuracy 84%). The reason for discrepancy in 

reporting the accuracy measures for Overfeat in [47] and [49] is not mentioned. 

However, this might be because the latter experiments conducted evaluations using 

cross validation. 

Poplin et al. [50] trained an Inception-v3 for prediction of cardiovascular risk 

factors from retinal fundus images. They trained a binary classification model for 

predicting the risk factors of smoking status or gender, another classification model for 

predicting major adverse cardiovascular event (MACE) and a regression model for 

predicting age, body mass index (BMI), systolic blood pressure (SBP), diastolic blood 

pressure (DBP) and HbA1c. the results were compared against the accuracy of a 

random classifier. For HbA1c, BMI and DBP, the model prediction was almost similar 

to that of a random classifier. However, for age and SBP, the trained model’s 

predictions were reported as 78% and 72% respectively and showed much improvement 

against random classification. They reported an area under the curve (AUC) of 97% 

and 70% for gender and MACE classifications. These results were reported using the 

UK Biobank dataset. 

2.3.2. Combination of Pretrained Models and Ensembles 

Ting et al. [51] adapted the VGG network and trained eight different CNNs for 

different kinds of outputs contributing to the final score. Three ensembles of two CNNs 

each was used for classification of retinal images into (a) retinopathy severity levels, 

(b) AMD scores, and (c) glaucoma levels. The two networks are trained using original 

images and contrast-normalized images respectively. The final score for each category 

is the average of the scores from their respective pair of classifiers. Two more CNNs 

are used for determining whether the score is ungradable of nonretinal. The final scores 
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from each category formulate the decision for referable diagnosis. 

Abramoff et al. [52] presented an automated device for detection of diabetic 

retinopathy (DR). They developed a CNN architecture inspired by AlexNet and VGG 

networks. Their classifier produced outputs indicating: (a) presence of diabetic 

retinopathy, (b) presence of referable DR, (c) vision threatening DR, and (d) quality of 

image or examination. Image augmentation included rotational, spatial and scale 

augmentations. The output from the CNN produces a probability implying that whether 

a detection is an abnormality. These probabilities form a feature vector which is 

supplied to two fusion algorithms. The two algorithms predict whether the image 

represents referable DR or vision threatening DR respectively. The system was 

evaluated on the Messidor-2 dataset for retinal fundus images. A sensitivity of 96% was 

reported for the first output, and 100% for the rest. 

2.3.3. Modification of Available Neural Networks 

Colonna et al. [37] proposed the idea of neuropathy classification of CCM nerve 

images using a CNN inspired from U-Net in addition to nerve segmentation. The 

existing U-net architecture was modified for image-based classification as normal or 

neuropathy. The features extracted from the lower layers of U-Net were fed to a 

convolution layer, followed by max pooling and fully connected layers for final 

classification. They trained this modified network on 5000 images, using 30% of it as 

validation. The network was trained with a batch size of 256 images for 15 epochs with 

shuffling enabled before every epoch. The optimization method was set to stochastic 

gradient descent with L2 regularization and a learning rate of 0.01. The performance of 

the trained model was evaluated by predicting labels on 100 unseen images. They 

succeeded in classifying with an accuracy of 83%. However, further insight on the 

evaluation results is not provided. 
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Takahashi et al. [53] performed a thorough study on two types of classifications 

for retinal images. The first is a 3-class classification for the grades of retinopathy 

(simple diabetic retinopathy; pre-proliferative diabetic retinopathy; proliferative 

diabetic retinopathy) using a modified version of the GoogleNet architecture. The top 

five layers of GoogleNet were removed and some parameters were fine-tuned. The 

network was trained on more than 9000 images. An accuracy of 81% was scored for 

the prediction of retinopathy grade. They trained another model using the same network 

design and trained it on images from patients with follow-ups to predict their prognosis. 

The prognoses consisted of multistage outputs. The first output was to predict whether 

a treatment was required and if required then whether it has to be in the current visit or 

the next. The second output predicted one of the three possible treatments. The third 

output was to determine the visual acuity of the image as stable, improved or worsened. 

They achieved an accuracy of 96% with a low false negative rate which implied few 

mispredictions when the treatment was not required but the network predicted 

otherwise. 

2.3.4. Custom Designed Convolutional Neural Networks 

Tan et al. [54] introduced the idea of detection of age-related macular 

degeneration on retinal images using deep learning. Their CNN architecture consisted 

of 14 layers including 7 convolution layers, 4 max pooling and 3 fully connected layers. 

They trained the model using blind and 10-fold cross validation on private dataset. Prior 

to training, data augmentation was performed by rotation. For optimization, the Adam 

optimizer was used. They achieved a sensitivity of 93% and a specificity of 88% for 

blind cross validation and an average of 96% sensitivity and 94% specificity for 10-

fold cross validation on the AREDS dataset. 

Gargeya and Leng [55] designed a convolutional neural network based on the 
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principles of deep residual learning for the classification of retinal color fundus images 

into normal or retinopathy. During data preprocessing, image brightness levels were 

adjusted, and data augmentation was applied to allow rotation invariant predictions. 

The CNN network was designed such that each convolutional layer combined the 

output from itself and previous layers. The authors give an abstract understanding of 

the network and do not provide the details. A visual heatmap was also developed to 

visualize the severe retinopathy regions in the images. The CNN was used to construct 

a feature vector of 1024 features from each image, which was combined with the meta-

data features and then fed to a decision tree classifier for final prediction. Experiments 

were conducted using 5-fold cross validation. A sensitivity of 93% and a specificity of 

87% was achieved on the Messidor-2 dataset. Compared with other approaches, a very 

high specificity was achieved using this method. 

2.3.5. Machine Learning 

Silva et al. [56] approached neuropathy classification of corneal images using 

SVM classifiers. They extracted a vector of 61 texture-based features from the images 

which was reduced to 6 features after applying principal component analysis (PCA). 

SVM was used to classify images as (a) with or without neuropathy, and (b) mild or 

moderate neuropathy. Using 10-fold cross-validation an accuracy of 73.5% was 

achieved for the first classification and 79.3% for the second classification on the 

dataset used in [57]. Although the total number of images is large (631 images), these 

images were acquired from 20 subjects only, so the dataset lacks image diversity from 

multiple patients. Moreover, the acquired images are overlapping, which results in the 

same corneal region appearing in multiple images, contributing to the high value of 

accuracy. 

Existing research shows that segmentation of curvilinear structures has been 
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approached in many ways. This has been experimented extensively on corneal nerve 

images, retinal fundus scans, leaf images and other similar images. Table 1 and Table 

2 summarize the segmentation techniques for curvilinear structures and classification 

techniques for retinal and nerve images respectively, that were presented in this 

research. To the best of our knowledge, neuropathy classification of corneal nerve 

images has not been approached by the research community except for two pilot studies 

[37], [56]. In [37], the authors do not give a detailed insight and discussion into the 

neuropathy classification results reported in their article. Moreover, the type of 

classification conducted is binary (healthy/pathological). In [56], the dataset contains 

largely overlapping images from a small number of patients, resulting in a lot of 

repetitive images. Therefore, the evaluation does not give us a clear indication of 

whether the classification model will generalize well. Thus, research in this area 

provides a lot of room for investigation on the idea of classification, extending the 

classification to multiclass, and exploring the potential of other machine learning 

algorithms to solve this problem. 

 

Table 1. Summary of Segmentation Techniques for Curvilinear Structures 

Method Classification        Related Literature 

Region of Interest 

Expansion 

• Poletti and Ruggeri [28]: Seed point extraction, fuzzy c-

means clustering and nerve continuity algorithm, tested 

on 12 images, resulted in a large number of false 

positives; 

• Scarpa et al. [27]: Based on [24], introduced the use of a 

Gabor filters. Tested on 90 images. Correct 
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Method Classification        Related Literature 

 identification of more than 80% of the nerve length; 

• Ruggeri et al. [25]: Improvement on [25] by identifying 

seed points through multiple orientations of lines, 

segmentation of nerves by connected seed points using 

Dijkstra’s algorithm for finding shortest path 

Gabor Wavelets • Dabbah et al. [15]: Proposition of a dual model 

consisting of Gabor wavelet filter and Gaussian 

envelope 

Morphological 

Operations 

• Al-Fahdawi et al. [30]: Nerve contrast enhancement 

using coherence and Gaussian filters, morphological 

operations of dilation, erosion, opening and closing are 

applied to remove stray and unwanted segments, edge 

detection using Canny edge detector, new method for 

linking gaps in the nerves 

Pixel Classification 

using Machine 

Learning 

• Rani et al. [32]: Retinal vessel segmentation using 

Gaussian based matched filter designs, selection of the 

green channel of the images application of contrast 

limited adaptive histogram equalization, using pixel-

based features from each connected component; 

• Guimaraes et al. [31]: Top-hat filtering for enhancing the 

image contrast, nerve enhancement procedure using log-

Gabor filters, nerve segmentation is carried out through 
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Method Classification        Related Literature 

hysteresis thresholding, pixel classification using SVM 

with RBF kernel; 

• Dabbah et al. [14]: A multiscale enhancement of the dual 

model in [16], classification of pixels as nerve/non-nerve 

by training NN or RF classifiers 

Hessian matrix-based 

approach 

• Jerman et al. [33]: Segmentation of vascular structures 

in angiographic images, a multiscale enhancement 

function is derived from a Hessian matrix filter 

Pixel Classification 

using CNN 

• Fu et al. [34]: A fully connected CNN for retinal vessel 

segmentation using HED technique proposed in [36];  

• Colonna et al. [36]: Corneal nerve segmentation using 

U-Net based CNN, Tested on 30 images, achieved a 

sensitivity of 97% and FDR of 18%; 

• Son et al. [39]: Employed U-Net as part of a GAN for 

retinal vessel segmentation; 

• Maninis et al. [40]: Retinal image segmentation by 

combining the CNN architectures of VGG-18 and 

Inception V3. 
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Table 2. Summary of Classification Techniques for Curvilinear Structures 

Method Classification Related Literature 

Transfer Learning 

and Parameter 

Tuning 

• Gulshan et al. [44]: Inception V3 architecture, 3 types of 

classification: images as (a) having referable diabetic 

retinopathy (mydriatic, non-mydriatic or both) or not, (b) 

subtypes of diabetic retinopathy (moderate or worse 

only, severe or worse only, diabetic macular edema 

only) and (c) as gradable or non-gradable;  

• Choi et al. [45]: VGG-19 and Alexnet architectures for 

classification of normal retinal images and 9 types of 

retinal pathologies (10-class classification); 

• Lam et al. [46]: Multiclass classification of the severity 

levels of retinopathy from retina fundus scans using 

GoogleNet and AlexNet; 

 • Burlina et al. [49]: Pretrained model, Overfeat, for 

retinal image classification and compared the results 

with AlexNet trained from scratch. 

Combination of 

Pretrained Models 

and Ensembles 

• Ting et al. [51]: Adapted the VGG network and trained 

8 CNNs for different kinds of outputs contributing to the 

final score. Three ensembles of two CNNs each was 

used for classification of retinal images into (a) 

retinopathy severity levels, (b) AMD scores, and (c) 

glaucoma levels; 

• Abramoff et al. [52]: An automated device for detection 
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Method Classification Related Literature 

of diabetic retinopathy (DR) inspired by AlexNet and 

VGG networks, the classifier produced outputs 

indicating: (a) presence of diabetic retinopathy, (b) 

presence of referable DR, (c) vision threatening DR, and 

(d) quality of image or examination. 

Modification of 

available neural 

networks 

• Colonna et al. [37]: Binary classification of CCM nerve 

images (healthy/pathological) using U-Net; 

• Takahashi et al. [53]: Modified version of the GoogleNet 

architecture, (a) 3-class classification for grades of 

retinopathy and (b) multistage classification of patients 

with follow-ups to predict their prognosis. 

Custom-designed 

Convolutional Neural 

Networks 

• Tan et al. [54]: CNN architecture for retinal image 

classification, consisted of 14 layers including 7 

convolution layers, 4 max pooling and 3 fully connected 

layers; 

• Gargeya and Leng [55]: A CNN based on the principles 

of deep residual learning for binary classification of 

retinal images, the CNN produced a feature vector of 

1024 features from each image, which was combined 

with the meta-data features and then fed to a decision 

tree classifier for final prediction. 

 

 

  



  

35 

 

CHAPTER 3: METHODOLOGY 

 

We approach the classification of corneal nerve images using two different 

methods. The first method involves three steps: nerve segmentation, feature extraction 

and classification. The second method uses convolutional neural networks to classify 

raw images. Both of these methods are described in the following subsections. 

3.1. Image Acquisition 

We evaluated our techniques on two patient datasets provided by the medical 

research team at Hamad Medical Center (HMC), Qatar. The first dataset (named as 

DPN1) consists of confocal images of the subbasal nerve plexus from subjects 

diagnosed with type 1 diabetes. The second dataset (named as MSN1) consists of 

confocal images of the subbasal nerve plexus from subjects diagnosed with Multiple 

Sclerosis (MS). Images were captured by separate ophthalmologists for diabetes and 

MS. In addition to this, corneal images of healthy control subjects were also provided.  

All images provided by HMC were acquired using laser scanning Heidelberg 

Retinal Tomograph (HRT-III) equipped with the Rostock Cornea Module (Heidelberg 

Engineering GmbH, Heidelberg, Germany). The helium neon diode laser source of this 

device uses a 670-nm red wavelength which does not pose any significant for ocular 

safety. Its 63× objective lens has a numerical aperture of 0:9 (Olympus, Tokyo, Japan) 

and covers a field of 400×400 𝜇𝑚2. A focal depth of 40-60𝜇𝑚 was used to capture 

images from the subbasal nerve plexus layer of the cornea. Each of the obtained images 

has a size of 384×384 pixels and is saved in bitmap format. An anesthetizing gel was 

applied to the subject’s cornea before bringing it in contact with the microscope lens. 

Fig. 10 shows a magnified representation of the subbasal nerve plexus of the human 

cornea and indicates the central region as well as the inferior whorl region. A number 
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of non-overlapping images were captured from the central region of the cornea of each 

subject. 3 – 4 high clarity images were selected per eye. 

 

 

 

Additionally, another dataset was used for comparative analysis [57] (named as 

DPN2). Images were captured in a similar manner using the same model of the 

microscope. The subjects are healthy controls and diabetic patients. The image capture 

process was carried out in the University of Coimbra, Portugal. However, the images 

are not limited to the central region of the cornea and contain overlapping regions of 

the subbasal nerve plexus. Table 3 summarizes the subjects’ details for each dataset. 

 

 

 

 

 

 

Figure 10. A magnified representation of the subbasal nerve plexus of the human 

cornea.  
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Table 3. Subject Details for Each Dataset 

  DPN1 MSN1 DPN2 

  controls patients controls patients controls patients 

Number(m/f) 21(10/9) 93(49/44) 0 51(16/35) 8 12 

Age (years) 38.6(+/- 

10.16) 

47.5(+/- 

16.27) N/A 

37.05 (+/- 

9.59) 

54 

(+/-7) 

58  

(+/-10) 

 

We have used the following naming notation to refer to the datasets in the 

experiments: 

• DPN1: Images from controls and patients with diabetic peripheral neuropathy, 

provided by HMC (for segmentation and classification) 

• MSN1: Images from patients having neuropathy due to Multiple Sclerosis, 

provided by HMC (for segmentation) 

• DPN2: Images from controls and patients with diabetic peripheral neuropathy 

[57] (for segmentation and classification) 

The number of images for the datasets considered for the classification problem are 

tabulated in Table 4. Images in MSN1 were not used for classification due to the fact 

that neuropathy culminates in different forms given different diseases and cannot be 

generalized. Since the appearance of diabetic neuropathy in the cornea has been well 

established in the corneal nerves by multiple studies we have trained and tested the 

classification model on diabetic images only. 
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Table 4. Actual Classification of Images in Each Dataset 

 
Healthy At-risk Neuropathy Definite Neuropathy Total 

DPN1 449 107 86 642 

DPN2 48 28 25 101 

 

3.2. Ground Truth Annotation 

The images in DPN1 and MSN1 were manually traced by human experts at 

HMC. These tracings are used as ground truth for nerve segmentation. Using a 

proprietary, custom-built software, CCMetrics [15], the images in DPN1 are quantified 

for nerve loss. Based on the nerve fiber loss computed by the software, subject history 

as well as the doctors’ experience in the field, the images were classified manually into 

three groups:  

1. ‘Healthy’, indicating the status of images from the control subjects and some 

patients with less progression in the disease. 

2. ‘At-risk neuropathy’, indicating an early stage of neuropathy. 

3. ‘Definite neuropathy’, indicating a later stage of neuropathy. 

The images in DPN2 were also manually traced and the tracings were used for 

comparing automated nerve segmentation. As stated earlier, DPN2 does not follow the 

same image capture protocol as DPN1 and MSN1 with regards to defining the image 

capture region of the cornea. Secondly, the neuropathy criteria defined for the central 

region of the cornea does not apply to the overall cornea. Therefore, for a fair 

comparison, only few representative images that belong to the central region of the 

cornea were selected from DPN2 for neuropathy classification. Furthermore, the 

neuropathy stages defined for diabetes do not apply to MS. Thus, MSN1 was eliminated 

from the neuropathy classification experiments. 
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3.3. Nerve Segmentation Using Convolutional Neural Networks 

As mentioned in section 2, segmentation of curvilinear structures has been 

approached through many techniques. However, many studies excluded images with 

artefacts [57], the most challenging one being the lens glare. In this study, we include 

images with lens glare in the background and show that convolutional neural networks 

have the capability to segment the nerves while effectively ignoring the lens glare. U-

Net has been widely used in the literature for segmentation of medical images.  

We trained a U-Net based CNN on a selection of our images and then used the 

trained model to predict the nerve pixels in the rest of the images. For the training 

process, images were carefully selected so as to train the model on all kinds of variations 

of corneal nerve images. The training images include images having any of the 

following artefacts: light reflection, structures other than nerves, pressure lines, 

background texture and faded nerves.  The segmented images then undergo some post 

processing which includes binarization and skeletonization. 

3.4. Feature Extraction 

The final segmented images are used to extract features for machine learning 

classification. Research shows that the most important feature which corelates highly 

with diabetic neuropathy is Corneal Nerve Fiber Length (CNFL) [58]. CNFL is defined 

as the total nerve length in the image. Thus, we extract CNFL (referred as NFL in 

Section 4.2) from each image as a summation of all nerve pixels in the segmented 

image. The appearance of nerves differs in different sections of the image as neuropathy 

progresses and nerve damage is not necessarily present in all parts of the image. 

Therefore, intra-segment CNFL (referred as ISNFL in Section 4.2) would be a good set 

of features to extract. We split the image into 4 equal segments and calculate CNFL for 

each. Finally, we have a set of 5 features representing each image. Fig. 11 shows an 

example of how the images are sliced into segments. 
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Figure 11. Image slicing example. (a) segmented image, (b) image slices to extract 

intra-segment CNFL. 

 

3.5. Neuropathy Classification using Machine Learning 

The feature set extracted from the previous step is used to classify the images 

into three classes; normal, at-risk neuropathy, or definite neuropathy. Adaptive Neuro-

fuzzy Inference System (ANFIS) was chosen as the algorithm for classification due to 

the following two reasons. It combines neural networks and fuzzy logic and it can 

produce continuous output. The benefit of getting a continuous output is that it can be 

either converted to crisp by setting a threshold, or it can used as is to predict a severity 

measure. Furthermore, the classification is also performed using SVM, NB and KNN 

classifiers. 

3.6. Hierarchical ANFIS Classification Model 

There are two most common multiclass models for classification: one-versus-

one (OVO; also called all-versus-all) and one-versus-all (OVA). We use one OVA and 

one AVA classifier to construct a multiclass model for ANFIS. 

Our problem is multiclass with 3 classes: normal (0), at-risk neuropathy (1), 

definite neuropathy (2). The ANFIS classification model consists of implementation of 

               

  (a)      (b) 
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two binary classifiers. The first classifier (C1) is trained to differentiate normal (0) from 

abnormal (1,2) samples (OVA). The second classifier (C2) is trained to classify 

between at-risk (1) and definite (2) neuropathy (OVO). For both classifiers, cut-off 

points are determined using the validation sets. Fig. 12 shows the hierarchical ANFIS 

classification process for training and validation. 

Data samples are split into four partitions: one for training (T1), two for 

validation (V1, V2) and one for testing (T2). An initial fuzzy inference system (INFIS) 

is created using T1 and then supplied to ANFIS for training. Upon completion of the 

training, an output FIS is generated which can be (a) used for prediction or/and (b) used 

as an INFIS to retrain ANFIS. Using OUTFIS, output values are predicted on V1 and 

the cutoff point that gives the best accuracy is determined. To find the best cutoff point, 

a grid search method is used. Accuracy measures are calculated using an increment of 

0.1 from 0 to 1 where (0) and (1) are the class labels. The cutoff point that gives the 

best accuracy is considered as the best cutoff point for this trained model. The next step 

is to retrain the ANFIS either using the same INFIS as before or the new FIS generated. 

This decision is made based on whether the accuracy has improved or not. The whole 

process is repeated 𝑛 times. Once the maximum iterations are complete, either the best 

FIS can be used as the final prediction model or the FIS can be retrained on T1+V1. 

The set V2 is used to evaluate both of these models. One that gives a better accuracy 

among the two, using the cutoff point for the best model, is taken as the final model. 

This process is done for both classifiers, C1 and C2. 
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Figure 12 Hierarchical ANFIS classification model 

  

During the testing phase, the class of an unseen sample is predicted first using 

C1. If the prediction is normal, this is considered as the final prediction, else C2 predicts 

its final class. Fig. 13 shows the prediction process using hierarchical ANFIS classifier. 
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Figure 13. Hierarchical ANFIS prediction workflow 

  

3.7. Neuropathy Classification using Transfer Learning 

The classification of images is also conducted using deep neural networks. In 

this method, the feature extraction step is not required as raw images are fed to the 

network for classification. The literature review (Section 2.3) shows an extensive use 

of transfer learning approaches for classification of retinal fundus scans. In this 

research, GoogleNet is fine-tuned on the corneal nerves images to give the best 

performance. GoogleNet is a pretrained network on ImageNet which contains millions 

of images of everyday items classified into a thousand classes. The weights from the 

training on ImageNet are used as initial weights when the network is retrained on the 

corneal images. Additionally, optimizers, learning rate, momentum, batch size and 

epochs are fine-tuned to create the best classification model.  

3.8. Experimental Procedures for Segmentation 

 In this section we describe the experimental procedure for CCM image 

segmentation including preprocessing, selection of training images, model training 

details and post-processing procedure.  

 

 

C1 
  prediction 

C2 

0 

1 or 2 

0 

~0 
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3.8.1. Preprocessing and Selection of Training Images 

The training images and their corresponding ground truth images (384×384) are 

resized to 256×256 pixels. A bicubic resizing operation resulted in the distortion of 

nerves in the binary ground truth images therefore a center crop was preferred for 

resizing to the required dimensions. However, for testing, the trained model accepts 

other sizes, therefore the images are segmented without any resizing. The output is a 

256×256 image. 

Instead of random selection, a careful selection of training images is carried out 

which includes images with different characteristics to increase the learned model’s 

ability of classifying all kinds of corneal images correctly. Images are hand-picked from 

subsets DPN1 and MSN1 that represent the artefacts from the available data. Some of 

the selected images for training are displayed in Fig. 14. 
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Figure 14. Images with artefacts selected for training. (a) images with structures from 

neighboring layers, (b) images with a pressure line, (c) images with nerves and overall 

glare, (d) images with nerves and no glare, (e) image containing partially faded nerves 

without glare, (f) image with background texture and glare streaks, (g) image with no 

nerves and center glare, (h) image with very few nerves and center glare. 

 

3.8.2. Training 

The U-Net based CNN is trained on the training images for 50 epochs using 

random initialization of weights. Learning rate is set to 0.0001 with Adam optimization 

and the loss function of binary cross entropy is used. The training time on an Intel Core 

i3-6100 Processor was approximately 30 hours. Implementation was done in python 

using the Scikit-Learn [59] and Tensorflow package [60] with the Keras wrapper. Table 

5 provides a model summary of the network. 

 

 

    

(a)        (b)                      (c)        (d) 

    

 (e)   (f)             (g)       (h) 
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Table 5. Model Summary of the U-Net Based CNN 

Layer (type) Output Shape Param # Connected to 

input_1 (InputLayer) (None, 256, 256, 1) 0 
 

conv2d_1 (Conv2D) (None, 256, 256, 64) 640 input_1[0][0] 

conv2d_2 (Conv2D) (None, 256, 256, 64) 36928 conv2d_1[0][0] 

max_pooling2d_1 

(MaxPooling2D) 

(None, 128, 128, 64) 0 conv2d_2[0][0] 

conv2d_3 (Conv2D) (None, 128, 128, 128 73856 max_pooling2d_1[0][0] 

conv2d_4 (Conv2D) (None, 128, 128, 128 147584 conv2d_3[0][0] 

max_pooling2d_2 

(MaxPooling2D) 

(None, 64, 64, 128) 0 conv2d_4[0][0] 

conv2d_5 (Conv2D) (None, 64, 64, 256) 295168 max_pooling2d_2[0][0] 

conv2d_6 (Conv2D) (None, 64, 64, 256) 590080 conv2d_5[0][0] 

max_pooling2d_3 

(MaxPooling2D) 

(None, 32, 32, 256) 0 conv2d_6[0][0] 

conv2d_7 (Conv2D) (None, 32, 32, 512) 1180160 max_pooling2d_3[0][0] 

conv2d_8 (Conv2D) (None, 32, 32, 512) 2359808 conv2d_7[0][0] 

dropout_1 (Dropout) (None, 32, 32, 512) 0 conv2d_8[0][0] 

max_pooling2d_4 

(MaxPooling2D) 

(None, 16, 16, 512) 0 dropout_1[0][0] 

conv2d_9 (Conv2D) (None, 16, 16, 1024) 4719616 max_pooling2d_4[0][0] 

conv2d_10 (Conv2D) (None, 16, 16, 1024) 9438208 conv2d_9[0][0] 

dropout_2 (Dropout) (None, 16, 16, 1024) 0 conv2d_10[0][0] 

up_sampling2d_1 

(UpSampling2D) 

(None, 32, 32, 1024) 0 dropout_2[0][0] 

conv2d_11 (Conv2D) (None, 32, 32, 512) 2097664 up_sampling2d_1[0][0] 

concatenate_1 

(Concatenate) 

(None, 32, 32, 1024) 0 dropout_1[0][0] 

   
conv2d_11[0][0] 
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Layer (type) Output Shape Param # Connected to 

conv2d_12 (Conv2D) (None, 32, 32, 512) 4719104 concatenate_1[0][0] 

conv2d_13 (Conv2D) (None, 32, 32, 512) 2359808 conv2d_12[0][0] 

up_sampling2d_2 

(UpSampling2D) 

(None, 64, 64, 512) 0 conv2d_13[0][0] 

conv2d_14 (Conv2D) (None, 64, 64, 256) 524544 up_sampling2d_2[0][0] 

concatenate_2 

(Concatenate) 

(None, 64, 64, 512) 0 conv2d_6[0][0] 

   
conv2d_14[0][0] 

conv2d_15 (Conv2D) (None, 64, 64, 256) 1179904 concatenate_2[0][0] 

conv2d_16 (Conv2D) (None, 64, 64, 256) 590080 conv2d_15[0][0] 

up_sampling2d_3 

(UpSampling2D) 

(None, 128, 128, 256 0 conv2d_16[0][0] 

conv2d_17 (Conv2D) (None, 128, 128, 128 131200 up_sampling2d_3[0][0] 

concatenate_3 

(Concatenate) 

(None, 128, 128, 256 0 conv2d_4[0][0] 

   
conv2d_17[0][0] 

conv2d_18 (Conv2D) (None, 128, 128, 128 295040 concatenate_3[0][0] 

conv2d_19 (Conv2D) (None, 128, 128, 128 147584 conv2d_18[0][0] 

up_sampling2d_4 

(UpSampling2D) 

(None, 256, 256, 128 0 conv2d_19[0][0] 

conv2d_20 (Conv2D) (None, 256, 256, 64) 32832 up_sampling2d_4[0][0] 

concatenate_4 

(Concatenate) 

(None, 256, 256, 128 0 conv2d_2[0][0] 

   
conv2d_20[0][0] 

conv2d_21 (Conv2D) (None, 256, 256, 64) 73792 concatenate_4[0][0] 

conv2d_22 (Conv2D) (None, 256, 256, 64) 36928 conv2d_21[0][0] 

conv2d_23 (Conv2D) (None, 256, 256, 2) 1154 conv2d_22[0][0] 
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Layer (type) Output Shape Param # Connected to 

conv2d_24 (Conv2D) (None, 256, 256, 1) 3 conv2d_23[0][0] 

 

3.8.3. Postprocessing 

The output images were low contrast. They were enhanced using logarithmic 

correction. The input gray level image undergoes pixelwise transformation according 

to the equation: 

𝑂 = 𝑐 ∗ 𝑙𝑜𝑔(1 + 𝐼),                                                (8) 

where 𝑐 is a constant and 𝑙 is the pixel value to be transformed. The logarithmic 

transformation is performed after scaling the image in the range [0, 1]. The corrected 

images were saved in the bitmap format. This is followed by binarization and 

skeletonization so that each nerve is one pixel wide only. The final segmented image is 

a binary image of size 256×256 pixels where each nerve pixel is represented by a value 

of ‘1’ and each non-nerve pixel is represented by a value of ‘0’. Fig. 15 shows the 

postprocessing pipeline using example images. 

 

 

Figure 15. The postprocessing pipeline. (a) the U-Net output image after logarithmic 

correction, (b) binary image after thresholding, (c) final segmented image after 

skeletonization. 

  

         

(a)   (b)        (c) 
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3.9. Experimental Procedures for Classification 

3.9.1. Preprocessing 

The data was first normalized according to absolute normalization where each 

feature value is divided by its maximum feature value. Consequently, all feature values 

are in the range (0,1). This is followed by partitioning the data into subsets for training 

and testing. Samples are split into training and testing based on statistical similarity. 

This is important so that both the sets have the same distribution, and to achieve 

unbiased results. To achieve statistical similarity between the subsets, samples are 

shuffled and split into the required partition for each subset. Then, five standard 

statistical measures, namely, mean, median, standard deviation, fifth percentile and 

twenty-fifth percentile, are calculated for each feature in each set. A similarity 

comparison is performed to determine whether at least 3 of statistical measures for all 

subsets are similar within a fixed threshold. If this is not the case, then the samples are 

shuffled again, and the process is repeated. 

3.9.2. Experimental Setup 

For ANFIS, the two classifiers (C1 and C2, section 3.6) were trained for 20 

epochs using a step size of 0.1 and a step increase size of 1.01. The maximum number 

of iterations for each classifier was empirically set to 10.  

For SVM, three kernel functions were used for training: polynomial, gaussian 

(radial basis function) and linear. 

For KNN, the discrete values of k were used from 1 to 10, and Euclidean 

distance was used for comparing the distances between data points. 

For NB, default values were used. 

  



  

50 

 

3.10. Evaluation Metrics 

 In this section, we define the evaluation metrics used for segmentation and 

classification. 

3.10.1. Sensitivity 

Sensitivity (aka true positive rate or recall) measures the rate of actual positives 

over all predicted values that are actually positive. In other words, this measure gives 

an estimate of the proportion of actual positives that the classifier was able to recall. It 

is given by the formula: 

 𝑅 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  

For nerve segmentation, the true positives are the pixels that are correctly 

classified as nerve pixels, while the false negatives are the pixels that actually depicted 

nerves but were missed by the classifier. For neuropathy classification, recall is 

calculated for each class separately. For instance, for the healthy class, true positives 

are those images which are correctly classified as healthy, while the false negatives are 

the images which were misclassified as not healthy. 

3.10.2. Specificity 

 Specificity is also called true negative rate. It is the ratio of true negatives over 

all negative predictions by the classifier. The higher the specificity, the better it is. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

3.10.3. Precision 

Precision is a measure that calculates the rate of actual positives out of those 

that are predicted by the classifier as positive. It is given by the formula: 

𝑃 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

For nerve segmentation, false positives refer to those pixels that are misclassified 

as nerve pixels. For neuropathy classification, false positives for class ‘healthy’ are the 
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images that are wrongly classified as healthy. A higher precision value determines a 

good performance. 

3.10.4. Accuracy 

Accuracy is the rate of total correct predictions by the classifier, given by the 

formula: 

𝐴 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡𝑠
 

3.10.5. False Negative Rate 

The false negative rate (FNR), also called the miss rate, is the rate of false 

negatives over the total actual positives. In nerve segmentation, it can be interpreted as 

the rate of nerve pixels misclassified as non-nerve. A low FNR is preferable. 

𝐹𝑁𝑅 =
𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

3.10.6. False Positive Rate 

The false positive rate (FPR) determines the ratio of false positives over all 

actual negatives. In nerve segmentation, it can be interpreted as the rate of predicted 

non-nerve pixels misclassified as nerve pixels. A low FPR is better. 

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

3.10.7. False Detection Rate 

The false detection rate (FDR) is the rate of false positives over all predicted 

positive. In the context of nerve segmentation, it determines the rate of pixels 

misclassified as nerve pixels out of all the pixels predicted as nerves. A low FDR is 

considered better. 

𝐹𝐷𝑅 =
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

3.10.8. Macro-F1 

Macro F-measure is the harmonic mean of precision and recall, given by the 
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formula: 

     𝐹 = 2.
𝑃∗𝑅

𝑃+𝑅
 

In multiclass problems, precision, recall and macro-F1 are calculated for each 

class separately. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

This section provides the results from our experiments on nerve segmentation 

and neuropathy classification in Sections 4.1 and 4.2 respectively. Towards the end of 

the classification results, we also present an analysis of training time, prediction time 

and model size. 

4.1. Nerve Segmentation 

 The nerve segmentation outputs obtained from U-net and ACCMetrics were 

compared against manual tracings by experts. Since manual tracing can sometimes 

waver from the nerve, a tolerance of 3 pixels was allowed for evaluation. The results 

for all the datasets are displayed in Table 6 in terms of average scores. In the context of 

nerve segmentation in corneal images, accuracy is not a very representative metric, as 

the majority of the pixels in the image belong to the background (non-nerve), whereas 

only a few belong to the foreground (nerves). Thus, more than 95% of the pixels are 

correctly classified because they belong to the background. Therefore, the accuracy for 

both methods is almost the same.  

Sensitivity, however, is one of the excellent measures to evaluate nerve 

segmentation. As defined in Section 3.10.1, it is a measure of how many nerve pixels 

have been recovered. For all datasets, sensitivity of nerve pixels for U-net is 

significantly higher than ACCMetrics. This is a notable improvement. Similarly, the 

FNR for U-net is also lower than that for ACCMetrics. 

Since U-net has been able to provide consistently good results (a) on the images 

that were captured by another ophthalmologist (DPN2, MSN1), (b) on the images from 

patients other than diabetes (MSN1), and (c) on the images that belong to several 

regions of the subbasal nerve plexus (DPN2), we can extrapolate that the U-net trained 

model has been able to generalize well. 
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Table 6. Segmentation Results 

 

DPN1 (n=578) MSN1 (n=260) DPN2 (n=736) 

 

U-net ACCmetrics U-net ACCmetrics U-net ACCmetrics 

Accuracy 99.7% 99.4% 99.7% 99.6% 99.7% 99.7% 

Sensitivity 85.1% 70.0% 80.1% 74.8% 90.2% 84.7% 

Specificity 100% 100% 100% 100% 100% 100% 

Precision 99.5% 99.3% 100% 99.6% 99.8% 99.7% 

FNR 15.0% 30.1% 19.9% 25.2% 9.9% 15.3% 

FPR 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

FDR 0.5% 0.7% 0.0% 0.4% 0.2% 0.3% 

 

A visual example of how U-net has performed in comparison with manual 

tracing and ACCMetrics is shown in Figs. 16(a-d) and 17(a-d). In Fig. 16(b), two 

partially faded nerves have been missed by the human expert, and some portion of it 

was identified by ACCMetrics (Fig. 16(c)). However, U-net was able to recover all the 

nerves visible in the original image (Fig. 16(d)), thus increasing the recognition rate of 

true positives. 

 

 

Figure 16. Increase in true positives using U-net (a) Original CCM image from DPN2, 

(b) manual tracing (red), (c) ACCMetrics output (cyan), (d) U-net output (yellow) 

    

(a)             (b)   (c)          (d) 
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In Fig. 17 (a), an example of the severe case of neuropathy is shown, where very 

few or no nerves are present. Due to the scarcity of nerves in the image, background 

texture or lens glare becomes more visible, and thus some part of the background 

texture has been wrongly classified as nerve pixels by ACCMetrics, as illustrated in 

Fig. 17(c). On the other hand, U-net significantly reduces the number of false positives 

(Fig. 17(d)). 

 

 

Figure 17. Reducing false positives through U-net (a) original CCM image from DPN1, 

(b) manual tracing (red), (c) ACCMetrics output (cyan), (d) U-net output (yellow) 

 

Therefore, we have shown, using evaluation measures and examples, that CNN 

provides a better solution for nerve segmentation than ACCmetrics (RQ1). 

4.2. Neuropathy Classification 

 In the following subsections, we present the classification results from machine 

learning (ANFIS, SVM, KNN, NB) and deep learning (GoogleNet transfer learning). 

4.2.1. ANFIS 

The results using multiclass ANFIS are displayed in Table 7. The validation 

accuracy of C1 and C2 are recorded for images in DPN1 only, because the training was 

performed on a subset of DPN1.  

    

(a)            (b)   (c)          (d) 
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Table 7. ANFIS Classification Results 

  DPN1 DPN2 

features NFL NFL+ISNFL NFL NFL+ISNFL 

validation accuracy C1 
91.6% 

96.8% N/A N/A 

validation accuracy C2 74.1% 88.9% N/A N/A 

test accuracy 92.1% 93.7% 87.1% 77.2% 

precision (0) 93.7% 97.7% 90.6% 83.6% 

precision (1) 85.7% 70.6% 100.0% 58.1% 

precision (2) 88.0% 95.5% 75.8% 77.8% 

recall (0) 98.9% 95.6% 100.0% 95.8% 

recall (1) 40.0% 80.0% 53.6% 64.3% 

recall (2) 100.0% 95.5% 100.0% 56.0% 

macro-f1 (0) 96.2% 96.6% 95.0% 89.3% 

macro-f1 (1) 54.5% 75.0% 0.0% 61.0% 

macro-f1 (2) 93.6% 95.5% 86.2% 65.1% 

 

Observations and Discussions 

• The best test accuracy provided by the ANFIS model on the DPN1 test set is 

93.7%. 

• The validation and test accuracy measures are close, implying that the model 

does not overfit. 

• The use of four intra-segment nerve fiber length features improved the 

validation accuracies as well as the overall accuracy in DPN1. 

• The use of four intra-segment nerve fiber length features also resulted in an 
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increase in precision for class 0 and 2, recall for class 1, and macro-f1 for all 

classes in DPN1. 

• Using the trained model to predict DPN2, the accuracy dropped significantly. 

This can be expected because the image capture criteria differed from the 

standard established by experts at HMC. Moreover, the image quality may also 

be a contributing factor. 

 

4.2.2. SVM 

The classification results using three SVM kernel functions are presented in 

Table 8. This is followed by detailed classification results for the best performing kernel 

function in Table 9. 

 

Table 8. SVM Classification Results 

  DPN1 

Features NFL NFL+ISNFL 

kernel: linear 
87.4% 

89.0% 

kernel: polynomial 90.6% 90.6% 

kernel: gaussian 88.2% 89.8% 
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Table 9. SVM Classification Results for the Polynomial Kernel 

  DPN1 DPN2 

features NFL NFL+ISNFL NFL NFL+ISNFL 

test accuracy 
90.6% 

90.6% 88.1% 89.1% 

precision (0) 95.5% 96.6% 93.9% 95.7% 

precision (1) 58.8% 58.8% 78.6% 81.5% 

precision (2) 95.2% 90.9% 87.5% 85.2% 

recall (0) 94.4% 94.4% 95.8% 93.8% 

recall (1) 66.7% 66.7% 78.6% 78.6% 

recall (2) 90.9% 90.9% 84.0% 92.0% 

macro-f1 (0) 95.0% 95.5% 94.8% 94.7% 

macro-f1 (1) 62.5% 62.5% 78.6% 80.0% 

macro-f1 (2) 93.0% 90.9% 85.7% 88.5% 

 

Observations and Discussions 

• The highest accuracy achieved by SVM is 90.55%. 

• The polynomial kernel function performed better than gaussian and linear 

functions, although the results of linear and gaussian are also close to those of 

polynomial. 

• The addition of intra-segment features did not cause any improvement in the 

results for DPN1. However, the results in DPN2 are slightly better when intra-

segment features were used. 

• The precision and recall of the healthy and definite neuropathy classes are 

higher but are lower for the at-risk class. 

• The results are consistent across the two datasets, implying that the model was 
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able to generalize. 

 

4.2.3. KNN 

The classification results using KNN for all values of k from 1 to 10 are 

presented in Table 10. The last row gives an average of the accuracy over all values of 

k to evaluate the potential of KNN for this problem. Figs. 18(a,b) show the effect of the 

values of k on accuracy when tested on the two datasets. 

 

Table 10. KNN Classification Results 

  DPN1 DPN2 

features NFL NFL+ISNFL NFL NFL+ISNFL 

k=1 
83.5% 

85.8% 87.1% 79.2% 

k=2 89.8% 89.8% 85.2% 81.2% 

k=3 86.6% 87.4% 86.1% 86.1% 

k=4 86.6% 88.2% 85.2% 85.2% 

k=5 86.6% 88.2% 84.2% 87.1% 

k=6 90.6% 89.0% 84.2% 87.1% 

k=7 87.4% 87.4% 84.2% 87.1% 

k=8 88.2% 89.0% 85.2% 88.1% 

k=9 89.8% 89.0% 85.2% 88.1% 

k=10 90.6% 89.0% 85.2% 89.1% 

Average 88.0% 88.3% 85.2% 85.8% 
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Figure 18. Effect of the value of k on accuracy 

 

Observations and Discussions 

• The highest test accuracy using KNN is 90.5%. 

• The results are consistent across different datasets, implying that the model was 

able to generalize. 

• Overall, the inclusion of intra-segment features showed a marginal 

improvement in the accuracy. 

• The value of k that provided the least accuracy is observed to be 1. This result 

is consistent across the two datasets. 

 

 

 

 

 

 

 

 

(a)           (b) 
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4.2.4. Naïve Bayes 

The classification results using Naïve Bayes are presented in Table 11. 

 

Table 11. Naïve Bayes Classification Results 

  DPN1 DPN2 

features NFL NFL+ISNFL NFL NFL+ISNFL 

test accuracy 91.3% 85.0% 89.1% 88.1% 

precision (0) 95.5% 98.7% 95.8% 95.7% 

precision (1) 62.5% 42.9% 79.3% 78.6% 

precision (2) 95.5% 90.9% 87.5% 85.2% 

recall (0) 94.4% 84.4% 95.8% 91.7% 

recall (1) 66.7% 80.0% 82.1% 78.6% 

recall (2) 95.5% 90.9% 84.0% 92.0% 

macro-f1 (0) 95.0% 91.0% 95.8% 93.6% 

macro-f1 (1) 64.5% 55.8% 80.7% 78.6% 

macro-f1 (2) 95.5% 90.9% 85.7% 88.5% 

 

Observations and Discussions 

• The best accuracy obtained using NB is 91.34%. 

• Precision and recall of the healthy and definite neuropathy classes are high, but 

the same measures for the middle class are lower. 

• The results of adding the intra-segment features in NB present a paradox as 

compared to the results from previously mentioned classifiers. Adding the intra-

segment features impacted the overall accuracy negatively. This result is 

consistent across the two datasets. 
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4.2.5. GoogleNet 

The results of GoogleNet parameter tuning are shown in Fig. 19. 

 

 

Figure 19. GoogleNet tuning graphs. (a) tuning using the RMSProp solver, (b) tuning 

using the SGDM solver. 

 

Observations and Discussions 

• For both solvers, a mini batch size less than 6 reduced the accuracy. This is 

logical, since smaller batches are not very representative of the data and larger 

batch sizes are better. 

• The best learning rates for RMSProp and SGDM are 2x10-4 and 1x10-4 

     

(a)        (b) 
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respectively. For both solvers, a learning rate greater than 3x10-4 reduces the 

accuracy. 

• For SGDM solver, accuracy declines with momentum. The best accuracy is at 

a value of 0.9 for the momentum. 

• The best accuracy achieved using GoogleNet transfer learning is 85%. 

 

4.2.6. Machine Learning and Deep Learning Results Comparison 

We compared the best accuracy results obtained from all classifiers and the 

baseline accuracy obtained using a random classifier. We define a random classifier as 

a classifier that predicts the maximum class. Results from all classifiers and baseline on 

the two datasets are tabulated in Table 12 and illustrated graphically in Figure 20. 

 

Table 12. All Classification Results (Test Accuracy) 

 
Baseline ANFIS NB SVM KNN GoogleNet 

DPN1 70.86% 93.70% 91.34% 91.34% 90.55% 85.83% 

DPN2 47.52% 87.12% 89.10% 89.10% 89.11% 81.89% 
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Figure 20. Classification Results from All Techniques 

 

Thus, we arrive at the following conclusions regarding our research questions. 

The highest classification accuracy was achieved by ANFIS at 93% and the lowest 

performance was observed by GoogleNet. The precision of the middle class (at-risk 

neuropathy) was the most difficult for classifiers to understand. The use of intra-

segment features resulted in marginal improvement in the overall accuracy (RQ2). 

After an evaluation of five learners, we can observe that ANFIS has shown the highest 

accuracy (RQ3).  Moreover, for this problem, simple machine learning proved to be a 

better approach than CNNs (RQ4). 

The results of this study cannot be compared with the results from the two 

similar studies [37], [56] found in the literature due to several reasons. First of all, the 

protocol for setting the ground truth was different; previous studies have classified 

based on the neuropathy classification done using the existing methods for detecting 

neuropathy. On the other hand, our ground truth classification is based on the visual 

information from the images themselves. Secondly, the image capture protocol is 

different. Our machine learning models are trained on images captured strictly from the 



  

65 

 

central region of the cornea, whereas the images in previous studies included images 

from the inferior whorl as well. Thirdly, our images are strictly nonoverlapping; the 

images in the previous studies do not imply this condition. Although their results cannot 

be compared, we have used their dataset and handpicked some images that satisfy our 

image criteria for classification. In this way we attempted to provide a fair comparison 

on different datasets, instead of comparing our results with their published results. 

 

4.2.7. Training and Prediction Time Analysis 

The complete training and prediction times for each technique were measured 

on DPN1. The approximate elapsed times on a CPU are displayed in Table 13. It can 

be seen that GoogleNet requires the most time for training as well as prediction when 

compared to the others. This is because deep neural networks in general require a lot of 

time to learn from the data, and build complex models to predict on. On the other hand, 

other learners do not have intensive computation during the prediction. 

 

Table 13. Training and Prediction Times* 

 

ANFIS SVM NB KNN GoogleNet 

Training time 78s 1.8s 0.198s 0.095s 10 minutes 

Testing time 0.005s 0.065s 0.048s 0.051s 7.1s 

*Training and prediction times are calculated for the whole test set 

 

4.2.8. Model Size Analysis 

Although disk size is a trivial issue in the current time when terabytes of storage 

and gigabytes of disk space is available for processing on computers, an analysis of the 

size of the trained model is generally important when it is to be deployed on the relevant 
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hardware device which has limited capacity. In this problem, the deployment of the 

model on the corneal confocal microscope can help the doctors to achieve at an 

automated classification result immediately after image capture, or even while scanning 

the cornea. Although this feature is not implemented in the current study, we present 

an analysis of the model sizes of all the classifiers used (Table 14). Apparently, the 

GoogleNet model requires the most space as compared to machine learning approaches, 

however, it must be noted that we used unsegmented images for GoogleNet. On the 

other hand, the machine learning approaches required segmentation through a CNN 

before classification, which is again a deep convolutional neural network requiring 

more than 30MB. Therefore, the approaches presented here are more suited for an 

offline processing of images. 

 

Table 14. Model Sizes 

 

ANFIS SVM NB KNN GoogleNet 

Model Size 70KB 21KB 23KB 53KB 22MB 

 

4.2.9. Statistical Significance 

 One of the methods for performing statistical agreement analysis is by 

calculating the interrater reliability using the kappa statistic. As stated by Landis & 

Koch [61], values of Kappa less than zero show poor agreement, and the strength of 

agreement increases as the value of kappa reaches 1.0. A substantial level of agreement 

is shown by values ranging between 0.61 and 0.80, and values ranging from 0.81 to 1 

show almost perfect agreement.  

We calculated the kappa score between ground truth and the output from each 

of the machine learning models and their corresponding p-values. Results show that the 
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outputs from all models are statistically significant (p<0.0001). The kappa value shows 

an almost perfect agreement of the ground truth with the ANFIS output and substantial 

agreement with SVM, KNN and NB. These results were computed using the IBM SPSS 

software. 

 

Table 15. Kappa Statistics and p-values 

 
GT  * ANFIS GT  * SVM GT  * NB  GT  * KNN 

kappa 0.864 0.796 0.709 0.776 

p-value 0.000 0.000 0.000 0.000 
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CHAPTER 5: CONCLUSION 

 

This thesis research focuses on evaluating the potential of various machine 

learning algorithms for neuropathy classification of CCM images. In addition, we 

investigate whether deep neural networks are suitable for this problem. Moreover, we 

compare a state-of-the-art approach for nerve segmentation of CCM images with a 

recently proposed approach in the literature using CNN.  

The experiments for nerve segmentation were performed on three datasets using 

ACCmetrics and a U-net based CNN. The results using CNN showed a significantly 

high sensitivity and precision and low FNR and FDR when compared with the results 

from ACCMetrics. These results were consistent across the three datasets. 

We conducted experiments for classification on images from two datasets. 

Overall, we observed that (1) the results greatly improved over baseline (random 

classifier), and that (2) machine learning algorithms provided better results than deep 

learning. However, we cannot yet conclude that machine learning algorithms 

outperform the deep learning approach, as further experiments on more data must be 

conducted to establish such a claim. Furthermore, the use of intra-segment features 

showed an improvement in the classification accuracy for ANFIS, a decline in the 

classification accuracy for NB, and no significant effect for other learners. We believe 

that this hypothesis will hold true for other learners as well once the medical experts 

add further dimensions to their definition of neuropathy in the images.  

In our experiments, we achieved the best accuracy at 93.7% using the ANFIS 

classifier. We further observed that, in all experiments, the classification of the middle 

class (at-risk neuropathy) was the most difficult for all classifiers to perform resulting 

in a consistently lower recall for class 1 (at-risk). In general, most of the 
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misclassifications occurred between class 0 and 1 (healthy and at-risk), and class 1 and 

2 (at-risk and definite). Misclassifications between class 0 and 2 (healthy and definite) 

were negligible. Additionally, our results are statistically significant (p<0.0001) and the 

kappa scores indicate a substantial agreement between the ground truth and predicted 

outputs. 

 

5.1. Future Research Directions 

 There are many directions that this research could take in the future contributing 

to the benefit of the general community and adding useful insights on neuropathy for 

the scientific community. We list some of them below: 

1. In this study, we focused on image-based neuropathy classification. We plan to 

extend this research to patient-based classification through machine learning 

and deep learning techniques. The goal will be to test the effectiveness of 

different approaches in risk-stratifying patients based on their CCM result and 

creating a heat map visualization of areas depicting neuropathy. This involves 

analyzing a vast amount of CCM images from different conditions, generating 

ground truth data for nerves and Langerhans cells to facilitate accurate analysis. 

2. Currently, we have considered images from diabetic patients only, since the 

appearance of diabetic neuropathy in the human cornea is a well-established 

fact and reported by many studies. What remains to be explored is whether 

different diseases affect the cornea differently in terms of neurodegeneration. 

For this purpose, we plan to apply artificial intelligence techniques to 

understand what nerve loss looks like in various disease conditions and its 

relationship to clinical outcomes. 

3. The experiments and results conducted in this study apply only to CCM images 

captured from the central region of the cornea. We intend to include the use of 
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inferior whorl images to define the relationship between percent change at 

baseline versus follow-up and quantify the risk of disease progression. 

4. As the study will proceed, more factors will arise that define the neuropathy 

condition. Our future studies will determine enhanced features from CCM 

images that are essential for identifying the neuropathy condition. We will also 

attempt to quantify nerve clustering, tissue reflection, presence of Langerhan 

cells in CCM images. 

5. In this research we relied on identifying neuropathy through images and 

neglected the patient history. A robust and reliable system in the future will 

include information from the images as well as patient’s clinical history. We 

will also determine which features from the patient history are of relevance. 

6. Lastly, a very important aspect of the study would be to investigate and seek to 

establish the relationship between the different modalities that reflect the 

neuropathy condition of a patient with respect to a disease. These modalities 

include CCM images, corpus callosum in the brain MRI scans and the cross-

sectional retina captured in OCT scans. 
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