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ABSTRACT 

DESOUKI,MOHAMED,D.,Masters:June:[2019:]

Masters of Science in Mechanical Engineering 

Title: Numerical Simulation of Dynamic Response for Misalignment in Coupled Shafts 

Supervisor of Thesis: Sadok, Sassi. 

Preceded by unbalance, misalignment is the second most common fault in 

rotating machinery. The impact of misalignment fault on equipment can be severe and 

may considerably shorten the machine’s lifetime. This dissertation discusses the 

unbalance, parallel and angular misalignment forces on rotative machines’ vibration 

spectra. Numerical simulation model development is used to obtain the time and 

frequency responses of the rotor-coupling-bearing system. The parallel and angular 

misalignment response are synchronized with the 1X amplitude of the unbalance 

displacement. Moreover, the parallel misalignment fault magnifies the 2X amplitude 

while the angular misalignment response is captured at 2X and 4X amplitudes of the 

displacement response. Effects of changing the model’s rotational speed, misalignment 

level, and coupling type are examined for both parallel and angular misalignments.  
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CHAPTER 1: INTRODUCTION 

 

Rotating machines are available in most of the industrial fields nowadays. They 

are available in almost all dimensions: from the gyroscopic level, like tuition bench-

scale machines, up to the mega level like power plants. As industrial technology is 

growing, the need for higher speed and powerful equipment became an essential factor 

to cope up with the fast world transformations. Therefore, the rotor-dynamic filed had 

gained huge attention in recent years. One of the most important parts of any rotating 

machine is the coupling. Couplings are defined as the connecting elements between 

different shafts. A second purpose of using couplings are their ability to compensate for 

misalignment in the dynamic system. There are numerous types of couplings available 

today in the market which can be classified by more than one categorization as the 

method it accommodates misalignment. Misalignment can be defined as the rotation of 

the coupled shafts when the rotational axes of the shafts are not collinear. Increasing 

efforts to explain the misalignment behavior in the rotor-dynamic lead to the less usage 

of experimental approach in favor of the numerical simulation approach. The 

experimental methods include vibration analysis, temperature capturing, torque and 

motor current consumption while the simulation methods include structural analysis, 

finite element analysis, and mathematical derivations. Among all, the vibration 

spectrum is the most widely accepted method to capture misalignment fault. This study 

contributes to the state of art by developing a numerical program capable of evaluating 

the vibration response of misaligned shafts which is independent of the force derivation 

method. In other words, a numerical model is a simple tool which can be used with any 

other misalignment forces derivations (linear or nonlinear). In this chapter, types of 

couplings, misalignment faults and thesis objectives and outline will be discussed.  
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1.1.Types of couplings 

 

There are numerous types of mechanical couplings classified based on the 

method of power transmission and the method of accounting for misalignment. The 

mechanical couplings are divided into two major types, depending on the ability of the 

coupling to perform any elastic behavior on the shafts. These two types are rigid and 

flexible couplings. The selection of the suitable shaft coupling type depends on 

numerous factors. In case some of these factors interact with each other (which is 

usually the case) decision should be made by prioritizing these factors. The main factors 

are: a) Torque limit of the system, b) Misalignment introduced in the system and its 

type, c) Torsional vibration dampening required in the coupling, d) Torsional stiffness 

required in the coupling, e) stresses on the supporting bearings by couplings (reactive) 

in case of misalignment, f) coupling maintainability and life period, g) coupling 

performance compared to its cost (Mancuso, Zilberman, Corcoran, & D’Ercole, 1994). 

 

1.1.1. Rigid couplings 

Rigid couplings are couplings that do not perform any (sometimes negligible 

effect) elastic behavior on the shafts. The coupling is connected to the shaft using a key 

or compression effect. Generally, rigid couplings are used when the misalignment of 

the shaft is precisely small as the increase in the misalignment will affect the coupling 

performance and its effective life. In other words, whenever the two shafts are expected 

to be near coaxial case, rigid couplings can be used. The critical disadvantages of a rigid 

coupling are: a) it doesn’t account for shafts misalignment, b) it creates large bending 

stress on the shafts and bearings in case misalignment existed, c) it transmits the shock 

and impact loads. The main types of rigid couplings are:  
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• Flange Coupling. 

• Sleeve or Muff Coupling. 

• Clamp Coupling. 

• Hirth coupling and other types. 

 

1.1.1.1.Flange coupling 

In this type of couplings, the rotating shafts are connected to flanges (one fixed 

to the end of the driving shaft and the other one joined to the end of the driven shaft by 

means of keys usually), and these two flanges are bolted together with a ring of bolts 

on a circle called bolt circle. Sometimes, the flanges are provided with spigot and recess 

to be located. Figure 1 illustrates the flange coupling assembly. 

 

 

 Figure 1: Flange coupling assembly. 

 

As the figure shows, the two half couplings are bolted together (using six 

equiangular spaced bolts) for a given flange thickness. The number of bolts depends on 

the standard which has been followed (normally related to the shaft diameter). The two 

shafts are inserted in the coupling hubs of diameter D (each of the same width) and 
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locked with keys. The flange diameter is proportional to the shaft diameter as per 

engineering institutes. The power generated by the driving shaft is transferred to the 

driven shaft by force (load) on the bolts. Therefore, the most critical elements in the 

flange coupling are the bolts which have two general cases. The first case is when there 

is a clearance between the bolts and the flange holes. In this case, the distributed force 

generated from the applied torque on the flange will be transferred in a friction force 

(normal force from flanges on bolts) between the bolt and flange holes. The second case 

is when there is no clearance between the bolts and the flange holes. In this case, the 

failure is most likely to occur due to the shearing of bolts across the flanges mating 

surface (FESSLER, 2013). 

 

1.1.1.2.Sleeve or muff coupling 

In this type of couplings, the two rotating shafts are connected to one sleeve by 

means of keys or compression.  The sleeve is basically a pipe which has a keyway on 

the internal surface (and sometimes keyway is not required). The sleeve coupling can 

be of different shapes as the well-known box coupling. Figure 2 illustrates the Sleeve 

coupling assembly. 

 

 

Figure 2: Sleeve coupling assembly. 
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The sleeve usually has a keyway on its bore to be of the same type and 

dimension of the keyway on the shafts.  The bore size is of a high tolerance to allow 

the shaft to be fitted smoothly in case of a key to be used. The sleeve diameter is 

proportional to the shaft diameter as per standards. Usually, threaded holes are in the 

sleeve to allow for locking of coupling position. In case of not using a keyway, an 

interference fit is taking place between the shafts and the sleeve. In other words, the 

sleeve is pressed against the shaft and usually shrink fit process is followed. Shrink fit 

is (based on metals thermal expansion principle) to heat the sleeve to a certain 

temperature in special oven until it expands and then to place it in the proper location 

on shafts while cooling down. The power transmission from the drive shaft to the driven 

shaft depends on whether a key is used, or interference fit is used as a coupling element. 

In case of the interference fit, the stress will be generated on the sleeve bore in the radial 

and hoop directions (due to the high frictional force). In case of usage of a key to couple 

the shaft to the sleeve, the force will be applied on the sleeve’s keyway side as the shaft 

rotates.  

 

1.1.1.3.Clamp coupling 

Clamp coupling is a muff coupling in two parts connected by bolts (split sleeve). 

The shafts are connected to the coupling by means of keys or sometimes compression 

type clamp is used. Clamp couplings are mainly used when the application requires no 

disturbance to the shafts’ positions while installing and removing the coupling. Figure 

3 illustrates the clamp coupling assembly. 
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Figure 3: Clamp coupling assembly.  

 

As shown, the two parts of the clamp are connected using bolts. A number of 

bolts, clamp diameter, and clamp length is related to the shaft diameter as per standards. 

The power transmission from the driver to the driven shafts depends on whether a key 

is used, or interference fit is used as a coupling element. In both cases, the forces and 

stresses introduced in the coupling and key are the same as explained for the sleeve 

couplings.  

 

1.1.1.4.Other types 

There are other coupling types and some of them are been used in industry while 

others are still under research development. One coupling type is Hirth coupling in 

which the rotating shafts are connected together by means of tapered teeth flanges that 

mesh together at the shafts end surface. As the power is transmitted from one shaft to 

the other by the meshed teeth, the material used for this type of coupling is usually of 

high toughness. Another coupling type which had been used in industry is a 

compression coupling. This coupling has a similar working principle as the clamp 

coupling but with two differences. First, the coupling consists of one part (not two parts 

as clamp coupling) to which a tightening bolt is connected (whenever bolts are 
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tightened, the clamping force is increased and hence increasing friction force).  Second, 

a metallic wedge is inserted between the coupling sleeve and the shaft which the power 

is transmitted through. 

 

1.1.2. Flexible couplings 

Flexible couplings are couplings which perform an elastic behavior on the 

shafts. These couplings are mainly used to transfer power from one shaft to another 

when misalignment is presented. Flexible couplings can be considered as a securing 

element for the shafts beside its original function. It secures the shafts against any 

undesired or expected misalignment, shock loads or vibrations. It is a fact that not all 

misalignments can be maintained using flexible couplings. Depending on the type of 

the coupling which will be used in the system, the related axial, parallel (vertical or 

horizontal), angular misalignments could be sustained. A combination of different types 

of misalignments could occur in practice which will change the rating of the coupling 

for misalignments (Ming Xu & Marangoni, 2007). Flexible couplings can be classified 

into three types based on the flexibility source in the coupling as per various references 

in the machine's element field:  

• Couplings with kinematic flexibility. 

o Cross sliding coupling. 

o Universal Joint. 

o Gear or toothed coupling. 

o Chain coupling and other types. 

• Couplings with resilient members. 

o Elastomers. 

o Metallic membranes. 

• Magnetic coupling. 
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1.1.2.1.Couplings with kinematic flexibility. 

Kinematic flexible couplings are couplings that possess flexibility due to 

kinematic pairs inserted in the system. Kinematic pairs can provide an axial, parallel or 

angular flexibility. Depending on the coupling’s degree of freedom and design 

parameters, the coupling sustains different types of misalignments. In most of the cases, 

kinematic flexibility couplings require the provision of lubrication in the system. 

 

1.1.2.1.1. Cross sliding coupling 

As the name of these types of couplings states, couplings of this type have 

sliding members which are sliding perpendicular to each other. The sliding motion of 

the coupling members provides parallel flexibility to the shaft’s rotation. Oldham 

coupling is the most well-known coupling of this type. In this type of coupling, the 

rotating shafts are connected to two discs (one fixed to the driving shaft and the other 

one fixed to the driven shaft). The two discs connected to the shafts are then connected 

to each other by means of the third disc which can slide vertically in one side and 

horizontally on the other side. Figure 4 illustrates the Oldham coupling assembly. 

 

 

Figure 4: Oldham coupling assembly. 
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As shown, the middle disc is connected to the shafts’ discs by means of groove 

and tongue. The middle disc tongue on one side is perpendicular to the tongue on the 

other side. Once the coupling is compacted, the middle disc will have the same 

rotational speed as the shafts’ discs, but its center of rotation is a circular orbit around 

the midpoint between the driver and driven shafts. Oldham couplings are used when 

angular misalignment doesn’t exist in the system (or exists in a small range) as it can 

accommodate for large parallel (radial) misalignment but not angular. Power is 

transferred from the driving shaft to the driven shaft by applying the torque first to the 

driver shaft key (as discussed in rigid couplings) and then to the middle disc of the 

coupling. The middle floating disc contact with the other two discs has two 

arrangement. It can be connected with clearance or with no clearance. In case there is 

no clearance, the total torque load generated by the driver shaft is acting on the middle 

disc tongue. The tongue will have the maximum load on the edges (as one edge is driven 

by the driver shaft and the other is driving the driven shaft) and minimum in the middle. 

As the load is minimum on the middle, sometimes the discs are hollow. In the other 

case where the clearance exists between the contacting tongues and grooves, a higher 

safety factor should be considered. It is significant to note that due to the eccentric 

rotation of the middle disc, a centrifugal force is resulting in a bending moment on 

shafts (therefore, the weight of the floating member should be kept as light as possible). 

There are many types other than Oldham couplings that have cross sliding 

members to provide some parallel flexibility to the shaft. American flexible coupling is 

a coupling of similar kinematics as Oldham coupling but the main difference is its 

shape. American flexible coupling has half square recess on each half of the shafts’ 

discs. The third disc (floating disc) is of a square cross-section which is sliding at the 

shaft discs edges to provide parallel flexibility to the shafts (FESSLER, 2013).  
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1.1.2.1.2. Universal joint 

The universal joint is also known as hook’s joint, Cardan joint and U-joint. In 

this type of couplings, the rotating shafts are connected to each other by a special kind 

of pin – cross pin (or sometimes two pins are used). Each shaft is connected to a sleeve 

of a solid hinge shape. Figure 5 illustrates the universal joint assembly. 

 

 

Figure 5: Universal joint coupling assembly.  

 

As illustrated in the figure, the two hinges are connected to the rigid cross pin. 

This arrangement allows the shafts to have large angular flexibility (up to 45 degrees). 

The main drawback using this type of couplings that it could not be used in the 

applications where the constant speed of the shafts is required. In each quarter cycle of 

the driving shaft, the driven shaft angular position lacks behind the driver shaft (lower 

velocity) and then it speeds up to catch the driver shaft angular position by the end of 

the quarter cycle (higher velocity). In other words, the single U joint is classified to be 

a non-constant velocity joint as the driven shaft doesn’t have the same speed of the 

drive shaft where the drive shaft has a constant velocity, and the driven shaft has an 

alternating velocity. To overcome the shafts velocity problem, double U joint can be 

used in a certain arrangement to have a constant velocity shaft. 
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1.1.2.1.3. Gear or toothed coupling 

In this type of couplings, the rotating shafts are connected to with a geared hub 

taking advantage of gears flexibility.  Figure 6 illustrates the gear coupling assembly. 

 

 

Figure 6: Gear coupling assembly.  

 

As shown in the figure, sleeve with teethed bores is connected to the two shafts’ 

hubs. The flexibility member in this coupling is the tooth design and the amount of 

backlash introduced in the design. Increasing the backlash to a certain level increases 

the angular flexibility as well. Gear couplings allow for axial flexibility as the sleeve is 

designed to accommodate some axial movement of the shafts.  

 

1.1.2.1.4. Chain coupling and other types 

There are various other types of couplings that exert flexibility to the shafts by 

inserting kinematic pairs. Chain coupling is coupling with a similar working idea to the 

gear coupling but with a chain-sprocket been used as the flexibility pair instead of gears. 

Figure 7 illustrates the chain coupling assembly. 
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Figure 7: Chain coupling assembly.  

 

As shown in the figure, each shaft is connected to a hub with sprockets on its 

external surface (usually connected by a key). Chains are connected to the sprockets 

and then covered by a grooved split sleeve which is usually connected by bolts. In some 

applications, a Nylon chain is used in order to introduce damping in the system.  

Another type of kinematic flexibility coupling is Schmidt coupling that is designed to 

account for large radial misalignments. Figure 8 illustrates the Schmidt coupling 

assembly which consists of three discs connected in series by means of links. 

 

 

Figure 8: Schmidt coupling assembly plain and section. 
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1.1.2.2.Couplings with resilient members 

Resilient member flexible couplings are couplings that possess flexibility due 

to a resilient member inserted in its system. The resilient member can provide an axial, 

parallel or angular flexibility. The major advantage of this type of coupling compared 

to other types is its shock loads absorbability. This type of flexible couplings requires 

no provision of lubrication in the system. 

 

1.1.2.2.1. Elastomer members 

 In this type of couplings, the shafts are connected by a system of elements 

including an elastomer. The most widely used elastomer is rubber. They can be of any 

shape such as ring, bush, spider or sometimes more complex shapes. Elastomers can be 

used in many designs to be affected by shear force, compression force or both. Shock 

loads are absorbed by the inserted elastomer element. There are many types of 

elastomer couplings such as pin bush coupling, Jaw coupling, tyre coupling, and other 

types. Jaw coupling is one of the elastomeric couplings that is widely used in medium 

duty power transmission systems. This coupling consists of two metallic hubs 

(connected to the shafts by means of a key) and an elastomeric member called a spider. 

Figure 9 illustrates the jaw coupling assembly. 

 

 

Figure 9: Jaw coupling assembly (FESSLER, 2013).  
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As shown, the spider element can have a different number of lobes to 

accommodate a different type of applications with its misalignment and vibration. One 

important notice about jaw coupling that in case a straight compression spider element 

fails, then the hubs will continue transmitting the torque till the next maintenance 

period. If the shear spider is used, then in case of its failure there will be no torque 

transmission by the hubs.  

 

1.1.2.2.2. Metallic membrane  

These types of couplings are a metallic coupling that possesses flexibility by 

using it in a thin (membrane) form. There are many types of metallic membranes used 

in these couplings such as spring grid, disc, and diaphragm. Figure 10 illustrates the 

metallic spring and spiral coupling assemblies. 

 

  

Figure 10: Metallic membrane couplings, a) spring coupling and b) spiral coupling. 

 

As shown, the metallic spring coupling consists of two hubs slotted in a specific 

manner to allow the insertion of the spring through them.  The spiral coupling is 

basically a pipe which has some material removal in a specific shape to give flexibility. 
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These types of couplings transmit high power rates compared to other resilience 

couplings due to the strength of the flexing membranes. Failure of this type of couplings 

is due to either excessive angular or radial misalignment or excessive torque.  

 

1.1.2.3. Magnetic coupling 

Magnetic coupling is a type of coupling where there is no physical contact 

between the driver and driven shafts; rather it is using the magnetic field to couple the 

shafts together. This type of coupling eliminates many mechanical failures such as 

mechanical seal failure, wearing of coupling elements and maintenance difficulties. 

Magnetic couplings allow for large parallel misalignment of shafts. Some of the 

difficulties using this type of coupling that it requires soft start, can’t handle high torque 

applications and its large diameter. Figure 11 illustrates the magnetic coupling 

assembly. 

 

 

Figure 11: Magnetic coupling assembly. 

  

As shown in the figure, the coupling is connected to the shafts by means of key 

or screws. The two magnetic flanges can be parallel to each other or to form a hub- 
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sleeve arrangement as shown. A series of magnets are located to the surface of each 

flange to allow for torque transfer between shafts. The clearance between the two 

flanges and the size of the flanges depend on the required torque transmission of the 

coupling (Engineer, Division, Corporation, Misalignment, & Misalignment, n.d.). 
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1.2. Misalignment in rotating shafts 

 

Alignment is said to be the geometrically perfect combination of the rotating 

parts as described by the German engineers’ society. However perfect alignment can’t 

be achieved in practical situations. This is a result of the misalignment causes which 

can occur during operation. Misalignment is the condition at which the two coupled 

rotating drive and driven shafts don’t rotate on the same centerline. Misalignment is the 

second most common fault in rotating machines after mass unbalance (“Shaft 

Alignment Handbook by John Piotrowski [Books and Reports],” 2005). In the current 

time, 60 to 70 percent of the failure of the rotating machine is because of misalignment 

faults. Moreover, misalignment fault leads to forces and moments development in the 

rotating system. Over the span of the last decade, misalignment detection techniques 

had developed due to technological improvements. However, modern technological 

tools availability is not the only factor needed to thoroughly understand misalignment 

behavior; it is also required to have a detailed mechanism to describe the misalignment 

phenomena. There are many experimental methods of predicting misalignment fault in 

the research state of the art such as motor current signals, torque signals, acoustics and 

vibration signals. The vibration-based diagnostic is the most common technique as its 

signals are of great mechanical information and more convenient to collect (Elbhbah & 

Sinha, 2013). Vibration response of the rotor-coupling-bearing system under 

misalignment fault had not yet been fully developed. Generally, a typical misalignment 

response can be considered to be a multiple of the shaft rotating speed especially the 

excessive 2X RPM amplitude. Recently, the numerical modeling of the misalignment 

fault had been increased such as mathematical derivation-based method, component 

mode method and finite element analysis method (Vermolen, 2005). Types, causes, and 

effects of misalignment will be discussed in this chapter.  
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1.2.1. Types of misalignment  

There are two basic types of shafts misalignment in rotodynamic, namely 

parallel and angular misalignments. The misalignment in the industry is of a combined 

type of parallel and angular in both vertical and horizontal directions. Figure 12 shows 

the different types of misalignment.  

 

 

Figure 12: Types of misalignment, a) parallel, b) angular and c) combined. 

 

As it is shown, parallel misalignment is when the axes of rotation are not colinear and 

does not intersect with each other. The parallel misalignment can be in both vertical 

and horizontal directions. On the other hand, angular misalignment is when the axes of 

rotation are not colinear and intersect each other.  The combined misalignment is the 

existence of parallel and angular misalignments simultaneously.  In the case of parallel 

misalignment, the vibration spectrum amplitudes are excessive in the radial direction 

(vertically and horizontally). Whereas, in the case of angular misalignment, the 

vibration spectrum amplitudes are excessive in the axial direction as well as the radial 

direction. It is predicted that in case of combined misalignment, the vibration 

amplitudes will be more than for any of the two types. Usually, the misalignment of the 

rotating shafts affects the system’s balance and the vibration spectrum diagnosis (“Shaft 

Alignment Handbook by John Piotrowski [Books and Reports],” 2005).  
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1.2.2. Causes and effects of misalignment  

There are many sources of misalignment in rotating machines. The major causes 

of shafts misalignment are installation errors, foundation settling or soft foot, lack of 

preventive maintenance and thermal expansion. Installation errors can be at the 

bearings (inner bearing to the shaft or outer bearing to the casing), improper welding of 

machine parts or at the coupling location. Likewise, foundation settling can be due to 

the age of the machine or the bad compaction of building ground. Furthermore, lack of 

preventive maintenance can always threaten the alignment of the shaft as it needs to be 

checked periodically. Thermal expansion is usually a common problem for the long 

shafts under the sunlight due to the seasonal temperature changes (“Shaft Alignment 

Handbook by John Piotrowski [Books and Reports],” 2005). 

The important effects of shafts misalignment in rotating machines are 

equipment failure, energy loss, increased vibration, excessive heat, and noise. Firstly, 

when the machine is rotating under excessive misalignment, it will generate loads that 

can damage the equipment such as mechanical seal, coupling, and bearings. Secondly, 

when the machine is rotating under misalignment, the friction force at the bearings will 

increase which results in wasted energy and less efficient system. Thirdly, under high 

misalignment fault, the vibration response of all other machine faults will be hidden 

which leads to machine unreliability. Finally, as the machine heat increases, it will 

increase casing temperature and result in high lubrication oil discharge which can lead 

to increased oil replacement frequency (“Shaft Alignment Handbook by John 

Piotrowski [Books and Reports],” 2005).  

Forces and moments due to misalignment of rotating machines depends on the 

type of coupling used in the system. If a rigid coupling is used, then the loads will be 

maximum on the system while flexible couplings compensate for part of these loads. 
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The machine shafts are at risk of damage or bowing due to the coupling restoring 

moment under misalignment condition.   
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1.3.Objectives and thesis outline 

 

The objective of this thesis is to develop a numerical model capable to define 

parallel and angular misalignment faults and unbalanced rotating machine systems. 

This will be carried out by firstly, studying one type of flexible coupling (spiral) to 

predict its stiffnesses using (ABAQUS). Secondly, conducting an experimental work 

namely modal analysis to predict the coupling damping coefficients. Finally, to build-

up a numerical simulation program to evaluate the time and frequency vibration 

response of the system using (MATLAB). 

The report outline starts with chapter 1 - introduction about the types of 

couplings and misalignment faults. Then in chapter 2 – literature review for previous 

studies in this regard is studied by showing the numerical simulation models and 

experimental work done along with their vibration analysis. And then a discussion 

about the existing mathematical modeling of parallel and angular misalignment forces 

is presented. Chapter 3 discusses the model used in the current study and the 

mathematical derivation of the forces and moments exerted on the system due to 

misalignment. After that chapter 4 previews, the results of each type of misalignment 

and discusses its effect on the model. Finally, chapter 5 highlights the conclusions and 

future work of this study.  
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CHAPTER 2: LITERATURE REVIEW 

 

Modeling of a rotor-coupling-bearing system (rigid or flexible) has gained an 

increasing interest in the past few years. Accurate modeling of the rotor-bearing-

coupling system and its components is an indispensable factor in predicting the system 

dynamics (Chatelet, D’Ambrosio, & Jacquet-Richardet, 2005). Although the coupling 

misalignment is a common fault in rotating machines, the coupling misalignment forces 

and moments ambiguity hindered the growth of research in this field. Vibration 

response of misaligned coupled shafts had been studied through both experimental and 

numerical approaches. In this chapter, the experimental and numerical studies of the 

misalignment fault (both parallel and angular misalignments) were discussed. The 

vibration response of various models was investigated in order to relate it to the study 

results. Finally, the forces and moments in the rotor-coupling-bearing system due to 

misalignment fault were presented.  
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2.1. Vibration response of experimental and numerical simulation of the rotor-

coupling-bearing system  

 

The vibration spectrum of rotating machines was examined in some researches 

experimentally and numerically, but the results found were not always consistent. It is 

generally accepted for parallel misalignment to be the main source of 2X amplitude 

increase in the vibration spectrum. The 1X RPM was related to the parallel and angular 

misalignment in some studies, but on the contrary, it was not affected by misalignment 

in other studies. The effect of increasing rotational speed of system on the vibration 

spectrum was examined and found to affect the part of the spectrum amplitudes for 

parallel and angular misalignment. In addition, the angular misalignment was 

synchronized with 4X peaks and sometimes with even multiples of the RPM. Not only 

the low-frequency vibration spectrum was affected but the high-frequency spectrum 

also. The type of flexible coupling was found to affect the vibration spectrum.  

 

2.1.1. Importance of flexible coupling modeling and its effect on vibration response 

Most of the researchers had based their numerical coupling modeling 

publications work on the fundamental models which were enunciated by Kramer in 

1993 (Krämer, 2013) and Nelson and Crandall in 1992 (Sekhar & Prabhu, 1995). 

Kramer suggested two different models for the coupling. The first model of Kramer 

considered the coupling as a rigid element (in the radial direction) with mass and inertia 

located at the nearest beam element node (i.e., 1 and 2). In this model, the shafts had 

been considered as a beam element (each of 8 DOF). The coupling modeling 

constrained the translational motion in i and j directions (hence ui = uj and vi = vj). In 

other words, the shafts had been connected axially by the flexible coupling. The below 

figure illustrates Kramer’s first model of a coupling: 
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Figure 13: (a) Mechanical system of two shafts connected by a coupling, (b) Kramer’s 

first model of the system (Krämer, 2013). 

 

The governing equation of motion of Kramer’s first coupling model is given as 

follows: 

𝑀𝑐 {
𝑞𝑖̈
𝑞𝑗̈
} + 𝛺 𝐺𝑐 {

𝑞𝑖̇
𝑞𝑗̇
} =  𝑓𝑒𝑥𝑡 + 𝑓𝑐𝑜𝑛      Equation 1 

Where 𝑀𝑐  is the mass matrix of components, 𝑞𝑖̈ and 𝑞𝑗̈ are the acceleration at nodes i 

and j, 𝛺 is the shaft speed, 𝑞𝑖̇ and 𝑞𝑗̇ are the velocity at nodes i and j, 𝐺𝑐 is the gyroscopic 

matrix of components and 𝑓𝑒𝑥𝑡 , 𝑓𝑐𝑜𝑛 are the external forces and connecting forces 

vectors, respectively. Kramer’s second model considered rotational stiffness Kr and 

rotational damping Cr while the restrictions on the first model is still present (constraint 

on the i and j translational movement). As the flexible coupling is represented by a 

flexible element with the mass distributed to the nearest nodes (i.e. i and j), the total 

degrees of freedom for this system is 8. Kramer’s second model is illustrated below: 
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Figure 14: Kramer's second model of flexible coupling (Krämer, 2013). 

 

The governing equation of motion of Kramer’s second coupling model is given as 

follows: 

𝑀𝑎 {
𝑞𝑖̈
𝑞𝑗̈
} + (𝛺 𝐺𝑎 + 𝐶𝑎) {

𝑞𝑖̇
𝑞𝑗̇
} + 𝐾𝑎 {

𝑞𝑖
𝑞𝑗
} =  𝑓𝑒𝑥𝑡 + 𝑓𝑐𝑜𝑛   Equation 2 

Where 𝐶𝑎 is the coupling damping matrix and 𝐾𝑎 is the coupling stiffness matrix. The 

coupling mass, damping, gyroscopic and stiffness matrices for Kramer’s second model 

is given in appendix 1.             

Nelson and Crandall’s first coupling model considered the flexible coupling as 

an elastic component with isotropic translational and rotational stiffnesses KT and KR, 

respectively. The coupling model didn’t include inertia and mass effect. This model 

also has 8 degrees of freedom (4 translational and 4 rotational). The governing equation 

of motion of Nelson and Crandall’s first coupling model is given as follows: 

𝐾𝑐 {
𝑞𝑖
𝑞𝑗
} =  𝑓𝑒𝑥𝑡 + 𝑓𝑐𝑜𝑛        Equation 3 

The second coupling model by Nelson and Crandall is similar to their first 

model but incorporating the translational and rotational damping in the system CT and 

CR, respectively. Moreover, the inertia effect had been added in this model as two rigid 

components. The governing equation of motion of Nelson and Crandall’s second 

coupling model is given as follows:   
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𝑀𝑎 {
𝑞𝑖̈
𝑞𝑗̈
} + (𝛺 𝐺𝑎 + 𝐶𝑎) {

𝑞𝑖̇
𝑞𝑗̇
} + 𝐾𝑎 {

𝑞𝑖
𝑞𝑗
} =  𝑓𝑒𝑥𝑡 + 𝑓𝑐𝑜𝑛   Equation 4 

The 1st and 2nd coupling models of Nelson and Crandall are illustrated in figure 15: 

 

 

Figure 15: Nelson and Crandall’s Flexible Coupling models (a) with stiffness, (b) with 

stiffness, damping, and inertia (Sekhar & Prabhu, 1995). 

 

The coupling stiffness and damping matrices of Nelson and Crandall’s models 

are given in appendix 2 (both included translational terms compared to Kramer’s 

matrices) while the mass and gyroscopic matrices are the same as Kramer’s model. 

Experimental work was done by Tadeo et al. aimed to compare the magnitudes of the 

frequency response functions (FRF) of Kramer, Nelson, and Crandall coupling models 

(Tadeo, Cavalca, & Brennan, 2011). The system used in this experiment is a rotor-

bearing-coupling and pedestal system with four hydrodynamic bearings, neoprene 

coupling (to isolate the motor vibrations) and Vulkan Tormin L-3R coupling (high 

torsional stiffness and flexible in bending). Finite element model of the system is shown 

in figure 16. 
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Figure 16: Finite element model of the rotor system used by Tadeo et al. (Tadeo et al., 

2011). 

 

The rotor system was modeled by 11 nodes and 17 elements (all the elements and nodes 

were kept the same with all models while changing the coupling model to follow one 

of the four tested models). Tadeo et al. defined an objective function of the magnitudes 

of the FRF to evaluate each model. The objective function is defined as the weighted 

squared differences between the experimental FRF and the numerical FRF. The test 

was done with shaft rotational speed of 420 RPM, and magnitudes of frequency 

response functions were obtained at nodes 3,5,6,8 and 9 in the vertical direction as it 

had shown better coherence than the horizontal direction. It was found that the second 

Nelson-Crandall’s model is the most accurate model based on the objective function 

results in table 1.  

 

Table 1 

 The objective function of the FRF for the four models studied  

 1st 

Kramer 

2nd 

Kramer 

1st Nelson-

Crandall 

2nd Nelson- 

Crandall 

Objective function 225.88 46.02 54.86 38.6 

Iterations 64 5 26 8 
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Tadeo et al. had revealed another work to enrich the content of flexible coupling 

modeling. The same four models (1st and 2nd Kramer and 1st and 2nd Nelson and 

Crandall) were compared to the traditional modeling of coupling as a rigid disk. The 

main force of the shaft’s vibration was considered to be the residual unbalance. The 

study considered bending vibrations only in the rotor-bearing-coupling system. One 

coordinate system XYZ was used to define inertia of the system while another 

coordinate system xyz was fixed to the shaft to describe the system’s equation of 

motion. The equation of motion for the rigid disk and the shaft were obtained by 

applying the Lagrange equation as done by Lalanne (Lalanné, 1991). It was found that 

the first natural frequency depends on the model type while the second natural 

frequency is not model dependent. The same behavior was recorded for the third (model 

dependent) and fourth (model independent) natural frequencies. This is because the 

systems modal shape as the first and third natural frequencies are mainly due to the 

deformations in the coupling while the second and fourth natural frequencies are mainly 

due to other system components. This study concluded that the coupling type in a 

rotating system affects the vibration amplitudes and natural frequencies (Tadeo & 

Cavalca, 2005). 

Ronak and Anand studied the effect of the couplings types on the vibration 

analysis by modeling 3D model for the rotor-bearing system and obtain its modal 

analysis then determining the vibration trends experimentally using machinery fault 

simulator (Walden, 2000). These analyses were done for three types of couplings which 

were rigid coupling (machined set screw coupling), elastomeric coupling (3-jaw 

coupling) and flexible coupling (spiral coupling). The figure illustrates the rotor-

bearing 3D model. The three coupling types were tested in the 3D model to obtain each 

natural system frequency. The natural frequency of the machined set screw coupling 
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system was found to be 20.428 Hz, the natural frequency of the 3-jaw coupling system 

was found to be 17.381 Hz, and the natural frequency of the spiral coupling system was 

found to be 8.0428 Hz. Moreover, experimental acceleration spectrum concluded that 

the coupling potential to compensate for misalignment is in order of – as expected – 

spiral coupling, 3-jaw coupling and then machined set screw coupling as expected.  

 

2.1.2. Vibration response of parallel and angular misaligned coupled shafts  

A model for the rotor-bearing system was developed using higher order finite 

elements with displacement and its first three derivatives (slope, bending moment and 

shear force). The model was constructed of elements with eight degrees of freedom at 

each node. The derived reaction forces and moments were introduced in the model to 

evaluate the imbalance response for two harmonics as will be discussed in section 2.2. 

Figure 17 shows the theoretical model used in their paper with its mode shapes. 

 

 

Figure 17: Rotor-coupling-bearing system used by Sekhar and Prabhu with its mode 

shapes (Sekhar & Prabhu, 1995).  

 

The model consisted of four bearings (two inner and two outer bearings), two rotors 

and a diaphragm coupling. The outer bearing stiffness and damping were considered to 
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be 108 N/m and 0.5 × 103 N.s/m, respectively while the inner bearing stiffness and 

damping were considered to be 107 N/m and 1 × 103 N.s/m, respectively. The discs 

imbalance was considered to be 0.01 mm eccentricity. The parallel misalignment in the 

system was 0.5842 mm in the x-direction and -0.7874 mm in the y-direction while the 

angular misalignment was considered to be 0.2 degrees. Based on the mentioned 

conditions, the first two harmonics response with parallel and angular misalignment 

was obtained as in figure 18. 

 

 

Figure 18: Imbalance response with parallel misalignment of (0.5842, -0.7874) mm. a) 

1X amplitude and b) 2X amplitude, and angular misalignment of 0.2 degrees. c) 1X 

amplitude and d) 2X amplitude. Solid line – without misalignment and dashed line – 

with misalignment (Sekhar & Prabhu, 1995).  

 

It can be noticed that the 1X RPM amplitude had increased with the increase of 

rotational up to a certain speed and then started decreasing again while the 2X RPM 

amplitude had two peaks for both parallel and angular misalignment. In addition, the 

1X RPM amplitude had not affected due to the parallel and angular misalignment. On 
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the other hand, the 2X RPM amplitude had increased significantly at 2400 RPM. In 

addition, the vibration response of the system was examined while changing the parallel 

misalignment values from 0-2.03 mm and the angular misalignment form 0-6 degrees. 

It was found that the first vibration response 1X was not affected by misalignment 

introduction in the rotor-bearing- coupling system except when it is running with the 

RPM responsible for the peak on the previous graph while the second vibration 

response 2X illustrates clearly the misalignment effect on the system’s response in all 

RPM values. Figure 19 summarizes the effect of each type of misalignment on the rotor-

coupling-bearing system response. The angular misalignment was converted to 

millimeters by using the center of articulation. 

 

 

Figure 19: Vibration response with misalignment a) and b) with parallel misalignment, 

c) and d) with angular misalignment. Solid line – 1X response and dashed line – 2X 

response (Sekhar & Prabhu, 1995).  

 

A theoretical model of the rotor-coupling-motor system was developed by Xu 

and Marangoni to describe the vibration response of the angular misaligned and 
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imbalanced system. Component synthesis method was used to describe the model by 

dividing it into three components (rotor, flexible coupling, and motor). In order to solve 

the model and compare the vibration results to experimental outcomes, necessary 

assumptions were made such as only angular misalignment was considered, angular 

velocity of the motor was constant while the torque was changing with misalignment, 

damping and friction were neglected, gyroscopic effect was neglected and finally the 

ball bearing was treated as rigid support as its stiffness was much higher than the 

flexible coupling’s stiffness (Xu & Marangoni, 1994). Flexible coupling force and 

torque were derived (as will be discussed in section 2.2) for two situations namely, 

coupling loads due to misalignment only and coupling loads due to misalignment and 

unbalance. ANSYS was used to model the system components and to calculate the 

system’s natural frequency. The equations of motion of the system were obtained using 

component mode synthesis program (CMSP). The frequencies due to shaft angular 

misalignment were estimated numerically and experimentally to result in even multiple 

frequencies of the motor speed with an error of 0.1542%. 

Zhao et al. publication discussed the meshing forces in misaligned spline 

coupling and its vibration response. The spline meshing force in x and y directions was 

proved to be formed of the single spline transmission force due to applied torque and 

the dynamic force due to vibration displacement. Several factors affecting the single 

spline meshing force were examined including dynamic vibration misalignment in x 

and y directions.  Numerical simulation considered a spline coupling with 14 splines, 

alignment meshing distance (AMD) of 3.375 mm, the width of 100 mm, spline 

thickness of 16 mm and radius of 69.5 mm. A model of 14 nodes (with four degrees of 

freedom at each node, two translational and two rotational) was examined in the paper.  

Spline misalignment was increased from zero to 0.4 mm and then 0.8 mm in the positive 
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x-direction while the spline misalignment angle was 45 degrees anticlockwise at a 

rotating speed of 5000 rpm (Zhao, Liu, & Chen, 2008). Figure 20 shows the vibration 

spectrum at the coupling location for the rotating rotor-spline coupling system in the x-

direction. 

 

Figure 20: Vibration response in the x-direction of the rotor-spline coupling system. a) 

response of the aligned system, b) response of 0.4 mm misaligned coupling at 

misalignment angle of 45 degrees and c) response of 0.8 mm misaligned coupling at 

misalignment angle of 45 degrees (Zhao et al., 2008). 

 

It can be noticed that the 1X rotating speed was the main response frequency at the 

aligned system situation. When the misalignment was introduced, 1X and 2X were the 

main frequencies of the response with the 2X rotating speed increasing rapidly when 

the static misalignment increased. It is also noticed that the 1X RPM had decreased and 

then increased again while increasing the misalignment.  

Parallel misalignment effect was studied by Hariharan and Srinivasan through 

a model of misalignment in pin coupling. Finite element method was used (ANSYS) 

and compared to an experimental test which was done using motor-rotor system. The 
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pin coupling was modeled as cast-iron flanges and natural rubber bushes. The natural 

rubber material properties were considered as a linear model for the initial stage 

(Poisson ratio of 0.49) and then it was considered as nonlinear material with Mooney 

Rivlin model for natural rubber. Vibration spectrum was obtained from both model and 

experiment for various shaft speeds (500, 1000, 1500 and 2000 RPM) without 

introducing misalignment in the system to formulate the baseline response. Then the 

vibration spectrum was obtained experimentally and numerically as well while 

introducing 0.2mm parallel misalignment in the system for the same shaft speeds. Both 

measured and model results showed that parallel misalignment could be categorized by 

twice the shaft rotating speed 2X (Hariharan & Srinivasan, 2009). 

In a recent study, Sawalhi et al. compared the numerical and experimental 

vibration spectrum for the rotor-coupling-bearing system under parallel misalignment 

fault. The model was considered to be FE beams with 18 elements. Motor, coupling, 

inner bearing, outer bearing, rotor, and pedestal were modeled. Each element beam had 

five degrees of freedom (two translational in X and Y directions and three rotational in 

X, Y and Z directions) except for the pedestal which was considered to be rigid against 

rotation. The total DOF of the system was calculated to be 84. Moreover, an 

experimental procedure was done in the research to estimate the coupling stiffness as a 

function of rotational angle. It was done to predict two types of couplings bending 

stiffnesses, namely 3-jaw coupling and spiral coupling. Bending stiffness 3-jaw and 

spiral couplings were found to be 179,236 N/m and 119259 N/m, respectively. 

Furthermore, simulation and experimental vibration spectrum were obtained for the 3-

jaw coupling. Experimentally, a 29 Hz shaft speed for the aligned and misaligned shaft-

system was considered (misaligned at 0.635mm or 25 mils) while in simulation 40 Hz 

shaft speed for the aligned and misaligned shaft-system was considered (misaligned 
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shaft (0.889 mm or 35 mils). Simulation results were obtained using variable step solver 

on the system’s equation of motion. Residual unbalance effect was noticed in the 1X 

component in all misalignment levels. It was noticed that parallel misalignment affected 

both low and high-frequency orders. Experimentally, the main low frequency affected 

orders were 6X, 9X, 10X and in simulation showed similar orders (Sawalhi, 

Ganeriwala, & Tóth, 2019). 

 A study by Tuckmantel and Cavalca aimed to compare forces and moments on 

disc coupling of the rotor-bearing-coupling system under angular misalignment for two 

models. The first model was a linear bending model of the disc introduced by Sekhar 

and Prabhu while the second model was FEM using ABAQUS introduced by 

Tuckmantel. The model used in this study consisted of two shafts, two rigid discs, four 

journal bearings and Vulkan Tormin coupling (disc coupling). The forces and moments 

from Sekhar and Prabhu model were assumed to be the summation of the 1X to 4X 

harmonics (Tuckmantel & Cavalca, 2019). The displacement spectrum of Tuckmantel 

model at the coupling in vertical and horizontal directions with the rotational speed of 

12.05Hz (one-fourth of the natural frequency of the system) is shown in figure 21. 

 

 

Figure 21: Displacement spectrum of Tuckmantel model at the coupling with 12.05Hz. 

a) horizontal and b) Vertical (Tuckmantel & Cavalca, 2019). 

 



  

36 

 

It was noticed that the angular misalignment response was synchronized with the 1X 

and 4X peaks with the existence of the 2X and 3X in very small values. For Sekhar and 

Prabhu model, the coupling displacement response in the horizontal and vertical 

directions was also obtained at 12.05 Hz rotational speed as shown in figure 22. 

 

  

Figure 22: Displacement spectrum of Sekhar and Prabhu model at the coupling with 

the rotational speed of 12.05Hz a)horizontal and b) Vertical (Tuckmantel & Cavalca, 

2019).  

 

It can be noticed that the angular misalignment response was synchronized with the 1X, 

2X, 3X and 4X with maximum amplitude at 4X. Moreover, the amplitudes resulted 

from the mathematical linear bending model of Sekhar and Prabhu (in range of 20 to 

100 µm) was higher than the amplitudes obtained from FEM of Tuckmantel (in range 

of 1 to 4 µm) which could be a result of the summation assumption of the first four 

harmonics in the mathematical model. 

Another recent study on the vibration response of rigid coupling parallel 

misalignment in a rotor-bearing-coupling system with the aluminum shaft was done 

experimentally and through simulation by Hujare and Karnik (Hujare & Karnik, 2018). 

The experimental setup used for this research was machinery fault simulator (MFS) 
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with FFT analyzer while the simulation was done using ANSYS software with beam 

elements for the response function and force model developed by A.W.Lees 

(Lees.A.W., 2007). The experimental results of the vibration amplitude with changing 

the parallel misalignment value (at 1800 RPM) and with changing the rotational speed 

for various misalignment values are shown in figure 23. 

 

 

Figure 23: Experimental results for Hujare and Karnik study, a) Amplitude Vs. parallel 

misalignment at 1800 RPM, b) 1X vibration response against RPM, c) 2X vibration 

response against RPM and d) 3X vibration response against RPM (Hujare & Karnik, 

2018). 

 

It can be noticed that the 1X and 2X acceleration responses were dominant than other 

vibration harmonics at all parallel misalignment levels. The 3X to 6X acceleration 

amplitudes were constant with the change in parallel misalignment value. Moreover, 



  

38 

 

the 1X amplitude had shown an increasing trend with the increase of rotational speed 

at all misalignment levels while the 2X and 3X had increased up to a peak value at 2000 

RPM and 1400 RPM respectively and then decreased. The simulation results of the 

vibration amplitude with changing the parallel misalignment value (at 1800 RPM) and 

with changing the rotational speed for various misalignment values are shown below. 

 

 

Figure 24: Simulation results for Hujare and Karnik study, a) Amplitude Vs. parallel 

misalignment at 1800 RPM, b) 1X vibration response against RPM, c) 2X vibration 

response against RPM and d) 3X vibration response against RPM (Hujare & Karnik, 

2018). 

 

Simulation results showed that the 2X acceleration responses were dominant than other 

vibration harmonics at all parallel misalignment levels. The rest of the acceleration 

amplitudes were constant with the change in parallel misalignment value. Moreover, 
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the 2X response had increased up to a peak value at 2100 RPM and then decreased for 

the rest of the values while the 1X and 3X amplitudes had shown not changed 

significantly with the change of the RPM. 

Another numerical simulation model was developed by Wang and Gong to 

study the parallel and angular misalignment dynamics of the rotor-bearing-coupling 

system. FEM was used to model a system consisting of two shafts, four bearings, three 

disks and a coupling connecting the rotating shafts with 6 DOF. The parallel and 

angular misalignment forces were derived mathematically as it will be explained in 

section 2.2. (H. Wang & Gong, 2019). The displacement response of parallel 

misalignment of 1 mm at 3800 rotational speed in horizontal and vertical directions are 

shown in figure 25.  

 

 

Figure 25: Displacement response of 1 mm parallel misalignment at 3800 RPM, a) time 

response in the horizontal direction, b) frequency response in the horizontal direction 

c) time response in the vertical direction and d) frequency response in the vertical 

direction (H. Wang & Gong, 2019). 
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It can be noticed that the time response is periodic with the response in the vertical 

direction in a positive range. In spectrum graphs, the 1X and 2X were clear with higher 

amplitudes in the horizontal direction. Moreover, parallel misalignment orbit was found 

to be a triangular shape. The displacement response of angular misalignment of 5 

degrees at 6400 RPM in horizontal and vertical directions are shown in figure 26.  

  

 

Figure 26: Displacement response of 5 degrees angular misalignment at 6400 RPM, a) 

time response in the horizontal direction, b) frequency response in the horizontal 

direction c) time response in the vertical direction and d) frequency response in the 

vertical direction (H. Wang & Gong, 2019). 

 

It can be noticed that the time response is periodic with the response in the vertical 

direction in a positive range. In spectrum graphs, the 1X and 2X were clear with higher 

amplitudes in the horizontal direction. The 2X was dominant in the vertical direction. 

Moreover, angular misalignment orbit was found to be like moon shape. 
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2.1.3. Vibration and torque signals of parallel and angular misaligned coupled shafts  

The misalignment was detected experimentally using vibration spectrum as well 

as torque spectrum by Sekhar and Reddy. Rotor-bearing set-up used in that experiment 

consisted of a motor (0-5000 rpm), rotor shafts (Steel material), four ball bearings (with 

the stiffness of 8 × 107 N/m), disk, two couplings, pedestal, accelerometer, and torque 

sensor as it is illustrated in figure 27.  

 

 

Figure 27: Schematic diagram of the rotor-bearing system used by Sekhar and Reddy 

(Chandra Sekhar Reddy & Sekhar, 2015). 

 

Parallel and angular misalignments were introduced in the rotor-bearing system by 

means of shims. The examined parallel misalignment values were 0, 150, 250, 400, 550 

µm while the angular misalignment values were 0.001, 0.022, 0.034, 0.048 radians with 

a rotating speed of 20, 25, 40 Hz. The obtained vibration acceleration and reaction 

torque in the time domain were analyzed using both Fourier transform. It was observed 

in the FFT result plots for the case of parallel misalignment 250 µm at 20 Hz rotational 

speed that the 2X vibration component increased which was evident in the torque 

spectrum as well but not as significant as the vibration response in figure 28.  
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Figure 28: Accelerometer and torque sensors responses for the case of parallel 

misalignment 250 µm at 20 Hz rotational speed. 1) vibration and 2) torque. a) time 

domain and b) frequency domain (Chandra Sekhar Reddy & Sekhar, 2015). 

 

The amplitude of the frequency response of both acceleration and torque with the 

increase in the parallel misalignment level was found to be increasing for both 1X and 

2X RPM.  

 

 

Figure 29: Parallel misalignment effect on 1X and 2X amplitudes of signals at 20 Hz 

rotational speed (a) FFT acceleration and (b) FFT torque (Chandra Sekhar Reddy & 

Sekhar, 2015). 

 

Analyzing the angular misalignment FTT results, a similar trend of the 1X and 2X 

increased harmonics was noticed. However, it was observed that the torque spectrum 
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is clearer in amplitude than the acceleration spectrum which was not consistent. The 

angular misalignment spectrum for acceleration and torque is shown in figure 30 for 

the case of 0.022 radians angular misalignment at 20 Hz shaft rotational speed.  

 

 

Figure 30: Accelerometer and torque sensors responses for the case of angular 

misalignment 0.022 radians at 20 Hz rotational speed. 1) vibration and 2) torque. a) 

time domain and b) frequency domain (Chandra Sekhar Reddy & Sekhar, 2015). 

 

The torque signals were better monotonic than the acceleration signals in case of 

angular misalignment. The amplitude of the frequency response of both acceleration 

and torque with the increase in the angular misalignment level was found to be 

increasing for both 1X and 2X RPM. 

 

Figure 31: Angular misalignment effect on 1X and 2X amplitudes of signals at 20 Hz 

rotational speed (a) FFT acceleration and (b) FFT torque (Chandra Sekhar Reddy & 

Sekhar, 2015). 
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2.2. Unbalance and misalignment forces  

 

Mechanical unbalance is the most common fault in rotating machinery as it 

can’t be avoided in the majority of equipment. The existence of unbalance can also be 

due to the appearance of some other faults such as misalignment, looseness and 

fractured parts. Therefore, unbalance reaction forces on rotating machines shafts had 

been developed to be as below which was considered in various researches such as 

Sawalhi et al. and Xu and Marangoni.  

𝐹 =  𝑚 𝑒 𝜔2  𝑠𝑖𝑛(𝜔 𝑡)         Equation 5 

Where 𝑚 is the mass of the rotor-bearing-coupling system. 𝑒 is the eccentricity of the 

rotor-bearing-coupling system. 𝜔 is the rotational speed of the shafts and 𝑡 is the time.  

On the other hand, the misalignment forces and moments on the shafts of the 

rotating machine had not yet fully understood. Gibbons studied the coupling forces and 

moments for four different types of couplings after noticing that replacing gear coupling 

with a diaphragm coupling in a steam turbine cooling pump had reduced the parallel 

misalignment moment from 7120 N.m to 192 N.m and reduced the vibration level from 

5 mils to 1 mil. The four types of couplings used in that study were gear coupling, multi-

disk diaphragm coupling, disk coupling and diaphragm coupling with contoured 

thickness. The reaction forces and bending moments due to parallel misalignment were 

derived for the four couplings (Engineer et al., n.d.). Figure 32 explains the forces and 

moments in coupled shafts due to parallel misalignment using a flexible coupling.  
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Figure 32: Forces and moments in coupled shafts due to parallel misalignment using 

flexible coupling as per Gibbons (Engineer et al., n.d.) 

 

The forces and moments of parallel misalignment were defined as follows.  

{
  
 

  
 
𝑀𝑋1 = 𝑇𝑞 𝑠𝑖𝑛𝜃1 +𝐾𝑏Φ1  ,                       𝑀𝑋2 =  𝑇𝑞 𝑠𝑖𝑛𝜃2 − 𝐾𝑏𝛷2 ,

𝑀𝑌1 =  𝑇𝑞 𝑠𝑖𝑛𝛷1 − 𝐾𝑏𝜃1,                         𝑀𝑌2 =  𝑇𝑞 𝑠𝑖𝑛𝛷2 − 𝐾𝑏𝜃2,

𝑀𝑍1 =  𝑇𝑞 ,                                                      𝑀𝑍2 =  −𝑇𝑞 ,

 𝐹𝑋1 = (−𝑀𝑌1 −𝑀𝑌2) 𝑍3⁄ ,                 𝐹𝑌1 = (𝑀𝑋1 +𝑀𝑋2) 𝑍3⁄ ,
   𝐹𝑋2 = −𝐹𝑋1,                                                 𝐹𝑌2 =  −𝐹𝑌1,

𝐹𝑍1 =  𝐾𝑎  𝛥𝑍 + 𝐾𝑎  (𝛥𝑍)
3 ,                                    𝐹𝑍2 =  −𝐹𝑍1           }

  
 

  
 

  Equation 6 

Where X1, Y1, Z1 are the coordinates for the first shaft, X2, Y2, Z2 are the coordinates 

for the second shaft. Z3 is the distance between the two coupled systems centers of 

articulation. 𝑇𝑞 is the torque applied at shaft 1. M is the moment exerted by the coupling 

on the system. F is the force exerted by the coupling on the system. 𝜃1 𝑎𝑛𝑑 𝜃2 are the 

angles between the Z3 and the first and second shafts’ displacements in the x-direction, 

respectively. 𝛷1𝑎𝑛𝑑 𝛷2 are the angles between the Z3 and the first and second shafts’ 

displacements in the y-direction, respectively. 

In a continuation to the identification of the reaction forces and bending 

moments, Sekhar and Prabhu derived the reaction forces and bending moments due to 
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angular misalignment using the same procedure which had been used in various works. 

The forces and moments of angular misalignment were defined as follows. 

 

 

Figure 33: Forces and moments in coupled shafts due to angular misalignment as per 

Sekhar and Prabhu (Sekhar & Prabhu, 1995). 

 

The forces and moments of angular misalignment were defined as follows.  

{
  
 

  
 

𝑀𝑋1 =  0 .0   ,                       𝑀𝑋2 =  −𝐾𝑏𝜃 ,
𝑀𝑌1 =  0 .0,                           𝑀𝑌2 = 𝑇𝑞𝑠𝑖𝑛𝜃,

 𝑀𝑍1 =  𝑇𝑞 𝑐𝑜𝑠𝜃⁄ ,                 𝑀𝑍2 =  −𝑇𝑞 ,        

 𝐹𝑋1 =  (−𝑀𝑌1 −𝑀𝑌2) 𝑍3⁄ ,                𝐹𝑌1 =  (𝑀𝑋1 +𝑀𝑋2) 𝑍3⁄ ,
   𝐹𝑋2 = −𝐹𝑋1,                        𝐹𝑌2 =  −𝐹𝑌1         

𝐹𝑍1 =  (𝐾𝑎  Δ𝑍 + 𝐾𝑎  (Δ𝑍)
3) 𝑐𝑜𝑠𝜃⁄  , 𝐹𝑍2 =  −𝐹𝑍1                          }

  
 

  
 

  Equation 7 

Parallel misalignment forces were derived in numerous ways. Sawalhi et al. 

defined parallel misalignment forces based on variable coupling stiffness with 

rotational angle. Parallel misalignment forces on the rotor were given as follows.  

{
𝐹𝑒 = 𝐾

𝑐(𝛼)𝑑𝑐 + 𝐹𝑚

𝐹𝑚 = 𝐾𝐴
𝑐(𝛼) {

0
𝑑0𝐵

} + 𝐾𝐵
𝑐(𝛼) {

𝑑0𝐵
0
}
}      Equation 8 

Where 𝐹𝑒 is the excitation force. 𝐹𝑚 is the misalignment force. 𝐾𝐴
𝑐(𝛼) and 𝐾𝐵

𝑐(𝛼) are the top 

and bottom halves of the stiffness matix for coupling. α is the angle of rotation. 𝑑0𝐵 is the 

misalignment vector at the coupling (Sawalhi et al., 2019). 
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Moreover, another study on the parallel and angular misalignment forces was 

done by Wang and Jiang in their study of the misalignment effect on a dual-rotor 

system. Figure 34 shows the misaligned duel-rotor system and its misalignment fault 

schematic.   

 

 

Figure 34: Parallel and angular misalignment forces as per Wang and Jiang study. a) 

misaligned duel-rotor system and b) misalignment fault schematic (N. Wang & Jiang, 

2018). 

 

The rotating shafts had a geometric center O and dynamic center P due to the relative 

motion of the shafts. The parallel and angular misalignment forces were derived as in 

appendix 3 and found to be as follows.  

{
𝐹𝑥 =  𝑚𝑜 𝜔

2(∆𝑦 + ∆𝐿 tan(
∆𝛼

2
))sin2ωt

𝐹𝑦 = 𝑚𝑜 𝜔
2(∆𝑦 + ∆𝐿 𝑡𝑎𝑛(

∆𝛼

2
))𝑐𝑜𝑠2𝜔𝑡

}     Equation 9 

Where ∆ 𝐸 is the combined misalignment amount, ∆𝑦 is the parallel misalignment 

distance, α is the angular misalignment angle. 𝑚𝑜 is the mass of the coupling. 𝜔 is the 

rotational speed.  
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Angular misalignment forces of coupled shafts were also derived by Xu and 

Marangoni using the fact that the misaligned shafts attain a universal joint pattern. It 

was assumed that the two shafts were angularly misaligned by an angle α and that they 

were connected by a flexible coupling. This angular misalignment mathematical 

derivation was used later in other researches such as Wang and Gong study.  Figure 35 

shows the schematic diagram of the misaligned shafts and its torque components.  

 

 

Figure 35: Angular misalignment forces as per Xu and Marangoni. A) misalignment 

schematic and b) torque components (Xu & Marangoni, 1994). 

 

The angular misalignment forces derivation is given in Appendix 4 and the obtained 

results were as following.  

F =  ∑ 𝐹2𝑛𝑠𝑖𝑛2𝑛Ω𝑡
∞
𝑛=1                          Equation 10 

where       𝐹2𝑛 = [0 , . . . , 𝐸2𝑛 , 𝐺2𝑛 ]
𝑇    

𝐸2𝑛 = (−1)𝑛+1 𝐽𝑅 Ω
2 𝐵2𝑛 𝑡𝑎𝑛𝛼𝑐𝑜𝑠𝛽  and  𝐺2𝑛 = (−1)

𝑛+1 𝐽𝑅 Ω
2 𝐵2𝑛 𝑡𝑎𝑛𝛼𝑠𝑖𝑛𝛽 

𝐾𝑏 is the bending stiffness, 𝐽𝑅 is the polar moment of inertia, Ω is the rotational speed, 

𝛼 is the misalignment angle with the axial direction, 𝛽 is the misalignment angle with 

the radial direction and 𝐵2𝑛 is an even multiple of the rotational speed.  
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2.3. Modeling techniques of the rotor-coupling-bearing system 

 

As it had been illustrated in section 2.1 that there are various types of modeling 

techniques of the rotor-coupling-bearing system. FEA method is the most widely used 

method to model the system’s components and derive the EOM and then the numerical 

solving method was used to obtain the system’s response. The system of EOM was 

solved by various methods such as Newmark-Beta stepping integration, direct stiffness 

method and self-built programs using Matlab and FORTAN. Moreover, the component 

mode synthesis method is also another technique to model the system which had been 

also well established. The FEA modeling techniques used included nodes, beam 

elements, 3D modeling and higher order elements (displacement, slope, bending 

moments, shear force). The system’s DOF throughout the literature was varying 

significantly depending on the modeling elements type and its quantity. Most of the 

publications didn’t elaborate on the number of elements used in the modeling process 

but the number of DOF at each node was well presented. Firstly, the shafts of the 

rotating system were usually modeled as a beam element with different number of DOF 

at each node. As the bending vibration was usually the targeted study outcome, the 

translational and rotational radial degrees of freedom was always incorporated in the 

mass, stiffness and damping matrices while the axial DOF was incorporated with 

dissimilar degrees. In some cases, the mass of the shafts was ignored as they were 

assumed to be very small compared to discs mass. Secondly, the discs were usually 

modeled as rigid with mass and inertia matrices derived using Lagrange equations. In 

some models, the discs gyroscopic matrix was introduced as well. Thirdly, in case of 

ball bearings, translational viscous damping and stiffness were used at the bearing node 

while the influence of rotation, bending moments and oil film were ignored. In other 
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cases, the bearings were modeled as Hertzian contact stiffness force formula. On the 

other hand, in case of journal bearings, hydrodynamic linear forces were defined as the 

first order Taylor series of the journal bearing which was derived by numerical 

integration of oil film's Reynolds equation in axial and circumferential directions. In 

some studies, the bearings were simplified by a string element to support the system. 

The system’s damping matrix was developed by modal analysis or as a ratio of the 

stiffness and mass matrices. Fourthly, coupling modeling was done in many ways using 

FEA or by deriving the forces and moments due to misalignment at the coupling 

location and introducing it to the system’s excitation forces. The general model to 

represent the coupling forces and moments established by Gibbons was of 2 nodes with 

6 DOF at each node (3 translational and 3 rotational). Finally, the system’s pedestals 

were usually ignored and not included in the system as they considered to be rigid and 

the systems boundary conditions were applied at the bearings locations.  Table 2 

illustrates the modeling method of each system component and its nodes DOF.  

 

Table 2 

Summary of modeling techniques for each system component 

Bibliography Modeling 

# Year  

Authors’ 

Name 

Shaft nodes Coupling nodes Bearing node Discs nodes 

1 1976 Gibbons 2 nodes - 6 

DOF (3T,3R) 

2 nodes - 6 DOF 

(3T,3R) 

Not included Not included 

2 1994 Xu and 

Marngoni 

FEA: 11 nodes 

– 6 DOF 

FEA: 14 nodes – 

6 DOF  

 

Rigid support Not included 
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3 1995 Sekhar 

and 

Prabhu 

Beam element 

of 2 nodes – 4 

DOF 

(displacement, 

slope, bending 

moments, shear 

force) 

Forces and 

moments in 

diaphragm 

coupling were 

introduced as 

excitation forces 

Translational 

viscous 

damping and 

stiffness - 2 

DOF (2T) in 

bending 

Rigid disk of 

mass, gyroscopic 

matrices - 4 DOF 

(displacement, 

slope) in bending 

4 2000 Ronak and 

Anand 

3D FE model  3D FE model  Not included 3D FE model  

5 2005 Tadeo and 

Cavalca 

Beam element 

of 2 nodes - 

mass, stiffness, 

gyroscopic - 4 

DOF (2T,2R) 

in bending 

2 nodes of mass, 

stiffness, 

damping - 4 DOF 

(2T,2R) in 

bending 

Translational 

viscous 

damping and 

stiffness - 2 

DOF (2T) in 

bending. 

Rigid disk of 

mass, gyroscopic 

matrices - 6 DOF 

(3T,3R) 

6 2008 Zhao et al. Beam elements 

- 4 DOF 

(2T,2R) 

Forces were 

introduced as 

excitation forces. 

Linear springs 

supporting the 

system 

Not included 

7 2009 Hariharan 

and 

Srinivasan 

3D FE model 3D FE model 3D FE model 

and boundary 

conditions 

Not included 

8 2018 Hujare 

and 

Karnik 

3D FE model 

and no 

damping 

introduced. 

3D FE model and 

forces due to 

parallel 

misalignment  

3D FE model 

and BCs with 

no damping  

Not included 
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9 2018 Wang and 

Jiang 

The system 

was divided 

into lumped 

masses and 

stiffnesses with 

2 DOF at each 

segment (x, y) 

Included as 

excitation forces 

due to 

misalignment 

Hertzian contact 

stiffness force  

and relative 

bearing cage 

displacement 

stiffness and 

damping 

Rigid disk of 

mass – 2 DOF in 

x and y directions 

10 2019 Sawalhi et 

al. 

Beam element 

– 5 DOF 

(2T,3R)  

Included as 

excitation forces 

due to unbalance 

and misalignment 

Stiffness and 

damping- 2 

DOF in x and y 

directions 

Not included 

11 2019 Tuckmantl 

and 

Cavalca 

Beam elements 

- 4DOF 

(2T,2R) in 

bending 

3D FE model was 

developed to 

evaluate the 

stiffness 

Numerical 

integration of 

oil film's 

Reynolds 

equation 

Rigid disk of 

mass, gyroscopic 

- 4 DOF (2T,2R) 

12 2019 Wang & 

Gong 

Beam elements 

with 6 DOF at 

each node 

Included as 

excitation forces 

due to unbalance 

and misalignment  

String element 

to support the 

system 

Rigid disk of 

mass and inertia 

 

In the current study, the rotor-coupling bearing system was modeled as two 

nodes of mass, stiffness and damping of 6 DOF at each node (3 translational and 3 

rotational) to capture the effect of the radial, axial and angular system parameters on 

the vibration response. The shafts were modeled of radial, axial and torsional stiffness 

and lumped masses. The mass and inertia matrices were constructed to be diagonal as 

the misalignment was assumed to be caused equally by each node of the system. This 
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modeling method simplifies the needed matrices calculations. The system’s stiffness 

behavior was linear for all its components as the geometry and material were having 

linear properties. In addition, viscous damping modeling was followed for simplicity. 

The coupling was modeled as an elastic element of mass, damping, and stiffness in 

axial, radial and rotational directions. The discs were assumed to cause a certain level 

of eccentricity at each node in the excitation force vector. Finally, pedestals were 

ignored in the current study and the system was assumed to be rigidly supported at the 

bearing locations.  
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CHAPTER 3: MODELING OF ROTOR-COUPLING-BEARING SYSTEM 

 

The system under observation was modeled using Lagrange energy method. 

The system was divided into two elements of mass, stiffness and damping matrices with 

12 DOF. The two shafts were modeled as measured from the machinery fault simulator 

in Qatar University. The shafts material was AISI-1045 steel – cold drawn and the two 

shafts were not identical in length. Moreover, shaft 1 – longer - is the driven side shaft 

and shaft two – shorter – is the motor side shaft. Shaft 2 keyway was neglected in the 

current study to simplify the simulation analysis. Figure 36 illustrates the two 

subsystems with the center of gravity of each system representing the simulation node.   

 

 

Figure 36: 3D model and dimensions of spiral coupling – shafts system in millimeters. 

 

In this chapter, modeling of the rotor-coupling-bearing system using Lagrange energy 

method will be done, and then the unbalance and misalignment forces will be derived. 

Moreover, the determination of two flexible couplings stiffness will be done using 

Solidworks for modeling and Abaqus for FEA. To integrate all the system components’ 

parameters in the stiffness, damping and mass matrices, determination of two flexible 

couplings damping coefficients will be done using the logarithmic decrement method. 

Bearings and shaft stiffness and damping will be discussed, and the system of equations 

will be solved numerically using Matlab.  
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3.1. Modeling of the rotor-coupling-bearing system using Lagrange energy method 

 

The system under observation was divided into two elements of mass, stiffness 

and damping matrices of 12 DOF. Figure 37 illustrates the modeled two half’s coupling 

masses and the set of stiffness and damping. 

 

 

Figure 37: Model of coupling, shafts, and bearings. 

 

The system is of 12 degrees of freedom (DOF) with six DOF for each mass as below: 

{𝑥} =  

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑋1
𝑋2
𝑌1
𝑌2
𝑍1
𝑍2
𝜃1
𝜃2
𝛽1
𝛽2
𝛼1
𝛼2}
 
 
 
 
 
 

 
 
 
 
 
 

 

Where: 

 

𝑋1 is the displacement in the radial horizontal direction for mass 1 

𝑋2 is the displacement in the radial horizontal direction for mass 2 

𝑌1 is the displacement in the radial vertical direction for mass 1 

𝑌2 is the displacement in the radial vertical direction for mass 2 

𝑍1 is the displacement in the axial direction for mass 1 

𝑍2 is the displacement in the axial direction for mass 2 

𝜃1 is the rotation around Z-axis for mass 1 

𝜃2 is the rotation around Z-axis for mass 2 

𝛽1 is the rotation around X-axis for mass 1 

𝛽2 is the rotation around X-axis for mass 2 

𝛼1 is the rotation around Y-axis for mass 1 

𝛼2 is the rotation around Y-axis for mass 2 
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Using Lagrange energy method  

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇𝑖
) +

𝜕𝑉

𝜕𝑞𝑖
+ 

𝜕𝐷

𝜕𝑞̇𝑖
= 𝐹𝑖     Equation 11 

Where: 𝑇 is the Kinetic energy of the system. 

𝑉 is the Potential energy of the system. 

𝐷 is the Dissipation energy of the system. 

𝐹 is the external force vector acting on the system. 

𝑞 is the independent generalized displacement vector. 

𝑡 is the time. 

 

The kinetic energy equation is developed as follows:  

𝑇 =
1

2
𝑚1𝑋1̇

2
+
1

2
𝑚2𝑋2̇

2
+
1

2
𝑚1𝑌1̇

2
+
1

2
𝑚2𝑌2̇

2
+
1

2
𝑚1𝑍1̇

2
+
1

2
𝑚2𝑍2̇

2
+
1

2
𝐼𝑧1𝜃̇1

2
+

1

2
𝐼𝑧2𝜃̇2

2
+
1

2
𝐼𝑥1𝛽̇1

2
+
1

2
𝐼𝑥2𝛽̇2

2
+
1

2
𝐼𝑦1𝛼̇1

2 +
1

2
𝐼𝑦2𝛼̇2

2    Equation 12 

The potential energy equation is developed as follows: 

𝑉 =
1

2
(𝐾𝐵1𝑥 ∕∕ 𝐾𝑆1𝑥)𝑋1

2 +
1

2
(𝐾𝐵1𝑦 ∕∕ 𝐾𝑆1𝑦)𝑌1

2 +
1

2
(𝐾𝐵2𝑥 ∕∕ 𝐾𝑆2𝑥)𝑋2

2 +

1

2
(𝐾𝐵2𝑦 ∕∕ 𝐾𝑆2𝑦)𝑌2

2 +
1

2
𝐾𝐶𝑥(𝑋1 − 𝑋2)

2 +
1

2
𝐾𝐶𝑦(𝑌1 − 𝑌2)

2 +
1

2
𝐾𝐶𝑧(𝑍1 − 𝑍2)

2 +

1

2
𝐾𝐶𝑇𝑥(𝛽1 − 𝛽2)

2 +
1

2
𝐾𝐶𝑇𝑦(𝛼1 − 𝛼2)

2 +
1

2
𝐾𝐶𝑇𝑧(𝜃1 − 𝜃2)

2 +
1

2
𝐾𝑆1𝑧𝑍1

2 +

1

2
𝐾𝑆2𝑧𝑍2

2 +
1

2
𝐾𝑆1𝑇𝑧𝜃1

2 +
1

2
𝐾𝑆2𝑇𝑧𝜃2

2
     Equation 13 

The dissipation energy equation is given as follows. 

𝐷 =
1

2
𝐶𝐵1𝑥𝑋̇1

2
+
1

2
𝐶𝐵1𝑦𝑌̇1

2
+
1

2
𝐶𝐵2𝑥𝑋̇2

2
+
1

2
𝐶𝐵2𝑦𝑌̇2

2
+ 

1

2
 𝐶𝐶𝑥(𝑋1̇ − 𝑋2̇)

2
+

1

2
 𝐶𝐶𝑦(𝑌1̇ − 𝑌2̇)

2 + 
1

2
 𝐶𝐶𝑧(𝑍1̇ − 𝑍2̇)

2     Equation 14 

The mass, stiffness and damping matrices were derived as per Appendix 5 and found 

to be as follows.  
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The mass matrix [M] is given as below.     Equation 15 

𝑚1 0 0 0 0 0 0 0 0 0 0 0 

0 𝑚2  0 0 0 0 0 0 0 0 0 0 

0 0 𝑚1 0 0 0 0 0 0 0 0 0 

0 0 0 𝑚2 0 0 0 0 0 0 0 0 

0 0 0 0 𝑚1 0 0 0 0 0 0 0 

0 0 0 0 0 𝑚2 0 0 0 0 0 0 

0 0 0 0 0 0 𝐼𝑧1 0 0 0 0 0 

0 0 0 0 0 0 0 𝐼𝑧2 0 0 0 0 

0 0 0 0 0 0 0 0 𝐼𝑥1 0 0 0 

0 0 0 0 0 0 0 0 0 𝐼𝑥2 0 0 

0 0 0 0 0 0 0 0 0 0 𝐼𝑦1 0 

0 0 0 0 0 0 0 0 0 0 0 𝐼𝑦2 

 

 

The stiffness matrix [K] is given as below.    Equation 16 

𝐾𝐵𝑆1𝑥
+ 𝐾𝐶𝑥 

−𝐾𝐶𝑥 0 0 0 0 0 0 0 0 0 0 

−𝐾𝐶𝑥 𝐾𝐵𝑆2𝑥
+ 𝐾𝐶𝑥 

0 0 0 0 0 0 0 0 0 0 

0 0 𝐾𝐵𝑆1𝑦
+ 𝐾𝐶𝑦 

−𝐾𝐶𝑦 0 0 0 0 0 0 0 0 

0 0 −𝐾𝐶𝑦 𝐾𝐵𝑆2𝑦
+ 𝐾𝐶𝑦 

0 0 0 0 0 0 0 0 

0 0 0 0 𝐾𝐶𝑧
+ 𝐾𝑆1𝑧 

−𝐾𝐶𝑧 0 0 0 0 0 0 

0 0 0 0 −𝐾𝐶𝑧 𝐾𝐶𝑧
+ 𝐾𝑆2𝑧 

0 0 0 0 0 0 

0 0 0 0 0 0 𝐾𝐶𝑇𝑧
+ 𝐾𝑆1𝑇𝑧 

−𝐾𝐶𝑇𝑧 0 0 0 0 

0 0 0 0 0 0 −𝐾𝐶𝑇𝑧 𝐾𝐶𝑇𝑧
+ 𝐾𝑆2𝑇𝑧 

0 0 0 0 

0 0 0 0 0 0 0 0 𝐾𝐶𝑇𝑥 −𝐾𝐶𝑇𝑥 0 0 

0 0 0 0 0 0 0 0 −𝐾𝐶𝑇𝑥 𝐾𝐶𝑇𝑥 0 0 

0 0 0 0 0 0 0 0 0 0 𝐾𝐶𝑇𝑦 −𝐾𝐶𝑇𝑦 

0 0 0 0 0 0 0 0 0 0 −𝐾𝐶𝑇𝑦 𝐾𝐶𝑇𝑦 
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The damping matrix [D] is given as below.     Equation 17  

𝐶𝐵1𝑥
+ 𝐶𝐶𝑥 

−𝐶𝐶𝑥 0 0 0 0 0 0 0 0 0 0 

−𝐶𝐶𝑥 𝐶𝐵2𝑥
+ 𝐶𝐶𝑥 

0 0 0 0 0 0 0 0 0 0 

0 0 𝐶𝐵1𝑦
+ 𝐶𝐶𝑦 

−𝐶𝐶𝑦 0 0 0 0 0 0 0 0 

0 0 −𝐶𝐶𝑦 𝐶𝐵2𝑦
+ 𝐶𝐶𝑦 

0 0 0 0 0 0 0 0 

0 0 0 0 𝐶𝐶𝑧 −𝐶𝐶𝑧 0 0 0 0 0 0 

0 0 0 0 −𝐶𝐶𝑧 𝐶𝐶𝑧 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

 Assumptions made to model the rotor-coupling-bearing system are given 

hereafter: 

• The two shafts were connected to the coupling by interference fit and no keys 

were introduced in the system.  

• The bearings used in the current system does not impose any stiffness or 

damping in the axial direction. 

• The discs of the system are responsible for unbalance (introduced into the 

system as eccentricity in the excitation force equation).  

• The coupling stiffness is independent of the rotational angle.  

• The stiffness and damping coefficient of the coupling can be fully described by 

three directions of which two are radial and one axial.  

• Unbalance and misalignment are the only two excitation forces exist in the 

system. 
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3.2. Modeling of unbalance and misalignment forces 

 

The unbalance force in the coupling can be defined to be the dynamic 

eccentricity of the system at the two parts of the coupling. The imbalance force in the 

radial direction is defined as follows.  

{
 
 
 

 
 
 
𝐹𝑥1 = 𝑚1 𝑒1 𝜔

2  sin(𝜔 𝑡)

𝐹𝑥2 = 𝑚2 𝑒2 𝜔
2  𝑠𝑖𝑛(𝜔 𝑡)

𝐹𝑦1 = 𝑚1 𝑒1 𝜔
2  cos(𝜔 𝑡)

𝐹𝑦2 = 𝑚2 𝑒2 𝜔
2  cos(𝜔 𝑡)

𝐹𝜃1 = 𝐼𝑧1  
𝑒1

𝑟
 𝜔2  𝑠𝑖𝑛(𝜔 𝑡)

𝐹𝜃2 = 𝐼𝑧2  
𝑒2

𝑟
 𝜔2  𝑠𝑖𝑛(𝜔 𝑡)}

 
 
 

 
 
 

       Equation 18 

Where 𝑚1 is the mass of subsystem 1 of the rotor-bearing-coupling system. 

 𝑚2 is the mass of subsystem 2 of the rotor-bearing-coupling system. 

 𝑒1 is the eccentricity of subsystem 1 of the rotor-bearing-coupling system. 

𝑒2 is the eccentricity of subsystem 2 of the rotor-bearing-coupling system. 

𝜔 is the rotational speed of the shafts. 

 𝑡 is the time 

r is the radius of the coupling. 

The misalignment forces between two coupled shafts had been modeled using 

mathematical formulation. Figure 38 shows the general arrangement of the parallel and 

angular misaligned coupled shafts.  

 

 

Figure 38: Misalignment modeling between coupling subsystem 1 and 2. 
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The total misalignment ∆E can be defined as the summation of parallel misalignment 

∆y and angular misalignment α where O1 and O2 are the center of articulation for 

subsystem 1 and 2: 

∆𝐸 =  ∆𝑦 + ∆𝐿 tan(𝛼)       Equation 19 

For parallel misalignment, the forces were derived in continuation to Wang and 

Jiang methodology. The relative motion diagram of coupling subsystems under parallel 

misalignment fault is given in figure 39.  

 

 

Figure 39: Relative motion diagram of coupling subsystems under parallel 

misalignment fault. 

 

The coupling dynamic center P can be defined as: 

𝑥 =  𝑂1𝑃 sin 𝜃 =  ∆𝐸 sin 𝜃 cos 𝜃 =  ∆𝐸 sin(𝜔𝑡) cos(𝜔𝑡)   

𝑦 =  𝑂1𝑃 cos 𝜃 =  ∆𝐸 cos 𝜃 cos 𝜃 =  ∆𝐸 cos(𝜔𝑡) cos(𝜔𝑡)   

The deformation of the coupling is 𝑂1𝑃 where the deformations of the shafts caused by 

subsystem can be defined as 
𝑂1𝑃

2
.  
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Deformation in the radial direction is  𝑑 =
𝑂1𝑃

2
= 

∆ 𝐸

2
𝑐𝑜𝑠 (𝜔𝑡) 

The force acting on the coupling is then defined as follows.  

F = K d = K  
∆ 𝑦

2
 cos (𝜔t)       Equation 20 

Equation 20 can be decomposed to in 𝑋1 and 𝑌1 directions to estimate the forces in 

radial direction at part 1 of the coupling 𝐹𝑋1 , 𝐹𝑌1as following.  

𝐹𝑋1 = 𝐹 𝑠𝑖𝑛(𝜔𝑡) = 𝐾𝑥  
∆𝑦

2
𝑐𝑜𝑠(𝜔𝑡) 𝑠𝑖𝑛 (𝜔𝑡)    Equation 21 

Using half trigonometric angle identity sin 2𝜃 = 2𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 in equation 21, the 

parallel misalignment force in 𝑋1-direction can be rewritten as: 

 𝐹𝑋1 = 𝐾𝑥
∆𝑦

4
𝑠𝑖𝑛(2𝜔𝑡)       Equation 22 

And similarly, for the parallel misalignment force in  𝑌1-direction. 

 𝐹𝑌1 = 𝐹 𝑐𝑜𝑠(𝜔𝑡) = 𝐾𝑦  
∆𝑦

2
 𝑐𝑜𝑠(𝜔𝑡) 𝑐𝑜𝑠 (𝜔𝑡)   Equation 23 

Using double angle trigonometric identity 𝑐𝑜𝑠2𝜃 =  
1+𝑐𝑜𝑠2𝜃

2
 in equation 23, the 

parallel misalignment force in  𝑌1-direction can be rewritten as: 

 𝐹𝑌1 = 𝐾𝑦  
∆𝑦

2
 (
1+𝑐𝑜𝑠 (2𝜔𝑡)

2
)       Equation 24 

And finally, for the parallel misalignment forces in 𝑋2 𝑎𝑛𝑑  𝑌2 directions are: 

𝐹𝑋2 = −𝐹𝑋1       Equation 25 

𝐹𝑌2 = −𝐹𝑌1       Equation 26 

For angular misalignment, the forces were derived in continuation to Wang and 

Gong methodology. The torque decomposition schematic of coupling subsystems under 

parallel misalignment fault is given in figure 40. 
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Figure 40: torque decomposition schematic for coupled shafts under angular 

misalignment fault.  

 

The torque due to angular misalignment can be decomposed to 𝑇𝑍 and 𝑇𝑆 as follows: 

𝑇𝑍 = 𝑇 cos 𝛼        Equation 27 

𝑇𝑆 = 𝑇 sin 𝛼       Equation 28 

As mentioned by Xu and Marangoni, the relative velocity ratio between two misaligned 

shafts can be expressed as: 

𝜔2

𝜔1
= 

4 cos𝛼

3+cos2𝛼

1+
1−𝑐𝑜𝑠𝛼

3+cos 2𝛼
cos 2𝜔𝑡

     Equation 29 

Equation 29 can be differentiated to obtain angular misalignment in 𝜃̈2 as following. 

𝜃̈ =  
−(8𝜔2 sin 2𝜔𝑡 cos 𝛼(cos𝛼−1)

(
cos2𝜔𝑡 (cos𝛼−1)

(2 𝑐𝑜𝑠2𝛼+2)−1
)2(2 𝑐𝑜𝑠2𝛼+2)2

     Equation 30 

And finally, the torque due to angular misalignment can be obtained using Newton's 

second law as follows.  

𝑇𝑍 = 𝐼𝑍𝜃̈ =
−𝐼𝑍(8𝜔

2 sin(2𝜔𝑡) cos(𝛼)(cos(𝛼)−1)

(
cos(2𝜔𝑡) (cos(𝛼)−1)

(2 𝑐𝑜𝑠2(𝛼)+2)−1
)2(2 𝑐𝑜𝑠2(𝛼)+2)2

    Equation 31 
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3.3. Determination of flexible coupling stiffness 

 

Using Solidworks software, a 3D model was developed of the two spiral 

couplings. The coupling type used in this study is Ruland PCR24 - 10 - 10 – A which 

stands for “A” is Aluminum coupling, “PCR” is clamp type relief, “24” is 24/16 outer 

diameter in inches (38.1 mm) and “10” is 10/16 both bores in inches (15.875 mm) as 

per the supplier catalog (Forsthoffer, 2017). It should be noticed that the two spiral 

couplings used are similar in all aspects except for length, spiral grooves degree and a 

slight change in radius. The white coupling grooves are of 380 degrees while the black 

coupling grooves are of 525 degrees. Figure 41 illustrates the dimensions of the two 

spiral couplings – which had been named as white and black couplings due to its coating 

color.   

 

 

Figure 41: Dimensions of the two spiral couplings in millimeters. a) white and b)black. 

 

The manufacturer properties of the white spiral coupling are listed below in 

table 3. 
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Table 3 

Mechanical properties for white spiral coupling  

Mechanical Property Commercial values by the supplier 

Material  Aluminum 7075- T651 Extruded and Drawn  

Mass without bolts 130 g  

Static torque  10.73 N.m  

Torsional stiffness 0.38 Deg/N.m 

Parallel misalignment  0.762 mm 

Moment of inertia 2.9937 × 10 -5 Kg.m2 

 

To evaluate the SolidWorks model of the couplings, a comparison of the mass 

and the moment of inertia in z-direction was made with the supplier values. It was found 

that the modeled mass of the white coupling is 134 g which represents 3% error. 

Moreover, it was found that the modeled moment of inertia in the z-direction is 2.8185 

× 10 -5 Kg.m2 which represents a 5.8% error. It should be noted that the black coupling 

does not have a manual as it is an old version. The actual mass was measured to be 120 

g while the modeled mass was 122 g which represents 1.67% error. The analysis 

mentioned in this section will illustrate the determination of white coupling stiffness 

procedure. 

In order to determine the spiral coupling stiffness, Abaqus software was used to 

apply a static load in one direction (at one end of the coupling while fixing the other 

end) and to measure the static deflection in the same direction. Prior to starting of 

Abaqus analysis, modeling requirements were introduced to the software as follows: 

• Geometry (part): spiral coupling was imported from Solidworks software. 

• Material (property): material properties for spiral coupling Aluminum 7075-
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T651 was used: 

o Density (general): 2810 kg/m3. 

o Elastic modulus (Mechanical): 72,000 MPa. 

o Poisson ratio (Mechanical): 0.33.  

• Simulation (step): linear geometry model with a time period of 4 seconds and 

increment size of 1 second.  

• Connections(interaction): connect the surface of the applied load to the center 

point to allow for point load application on that surface.  

• Load: a uniform force applied in the three directions (x, y, and z) separately as 

well as a uniform moment about each of the three axes. 

• Mesh: Tetrahedral element mesh was used due to the complexity of the spiral 

coupling geometry.  

With the intention to determine the best mesh size for the spiral coupling, a 

series of compression simulation was done with a 100 N load applied at one end of the 

coupling while the other end was fixed. The mesh size was changed from 6 to 1.5 to 

visualize the effect of the mesh size on the compression deflection (the minimum mesh 

size was chosen to be 1.5 as the mesh size of 1 couldn’t be simulated due to the huge 

time needed). Table 4 shows the mesh convergence analysis and simulation time. 
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Table 4 

 Mesh size analysis and simulation time 

Mesh size Deformation at Point Load (mm) Relative Error % Time (s) 

6 0.46160 ----- 33 

5 0.50246 8.13 36 

4 0.55800 9.95 40 

3 0.57836 3.52 45 

2 0.58787 1.62 103 

1.5 0.59261 0.80 224 

 

As it can be noticed that the relative error of the mesh size had been reduced to less 

than 2 % with a mesh size of 2 which was the optimum mesh size by the auto-meshing 

function in Abaqus. Moreover, figure 42 visualizes the mesh size behavior of the spiral 

coupling geometry. 

 

 

Figure 42: Mesh size behavior of the spiral coupling geometry. 

 

Applying a load of 100 N in the axial direction for both compression and tension 

load conditions, figure 43 visualizes the deflection in the z-direction at the final step 

corresponding to the full load.  
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Figure 43: Spiral coupling tension and compression FEA deflection in the z-direction 

 

The stiffness of the coupling was determined by correlating the applied uniform load in 

the z-direction to the deflection in the same direction.  Figure 44 shows the stiffness of 

the spiral coupling in tension and compression.  

 

 

Figure 44: Stiffness of spiral coupling in tension and compression (z-direction) for the 

four steps. 

 

From the graph’s slope, it can be noticed that the stiffness in the positive and negative 

z-direction are the same and equals 171.92 KN/m.  
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Applying a load of 100 N in the positive and negative radial direction, figure 45 

visualizes the deflection in the x-direction at the final step corresponding to the full 

load.  

 

 

Figure 45: Spiral coupling FEA deflection in the positive and negative x-direction. 

 

The stiffness of the coupling was determined by correlating the applied uniform load in 

the x-direction to the deflection in the same direction.  Figure 46 shows the stiffness of 

the spiral coupling in the positive and negative x-direction. 

 

 

Figure 46: Stiffness of spiral coupling in positive and negative x-direction for the four 

steps. 
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From the graph’s slope, it can be noticed that the stiffness in positive and negative x-

directions are the same in and equals 16.066 KN/m. 

Applying a load of 100 N in the positive and negative radial direction, figure 47 

visualizes the deflection in the y-direction at the final step corresponding to the full 

load.  

 

 

Figure 47: Spiral coupling FEA deflection in the positive and negative y-direction. 

 

The stiffness of the coupling was determined by correlating the applied uniform load in 

the y-direction to the deflection in the same direction.  Figure 48 shows the stiffness of 

the spiral coupling in the positive and negative y-direction. 
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Figure 48: Stiffness of spiral coupling in the positive and negative y-direction for the 

four steps. 

 

From the graph’s slope, it can be noticed that the stiffness in positive and negative y-

directions are the same in and equals 16.122 KN/m. 

Applying a couple load of 100 N at any opposite positions of one end of the 

spiral coupling while fixing the other end, it would result in a moment load of 3810 

N.mm. Figure 49 visualizes the angular deflection around the z-axis in both directions 

(clockwise and counter-clockwise) at the final step corresponding to the full load. 

 

 

Figure 49: Spiral coupling FEA angular deflection in clockwise and counterclockwise 

around the z-axis. 
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The stiffness of the coupling was determined by correlating the applied uniform load to 

the angular deflection in the same direction.  Figure 50 shows the stiffness of the spiral 

coupling around the z-axis. 

 

 

Figure 50: Angular stiffness of spiral coupling clockwise and counter-clockwise around 

z-axis for the four steps. 

 

From the graph’s slope, the spiral coupling angular stiffness around the z-axis in 

positive and negative directions are the same and equals 328.711 N.mm/rad. 

Applying a load of 100 N at 90,270 positions of one end of the spiral coupling 

while fixing the other end, it would result in a moment load of 5715 N.mm. Figure 51 

visualizes the angular deflection around the x-axis in both directions (clockwise and 

counter-clockwise) at the final step corresponding to the full load. 
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Figure 51: Spiral coupling FEA angular deflection in clockwise and counterclockwise 

around the x-axis. 

 

The stiffness of the coupling was determined by correlating the applied uniform load 

around the x-axis to the angular deflection in the same direction.  Figure 52 shows the 

stiffness of the spiral coupling around the x-axis. 

 

 

Figure 52: Angular stiffness of spiral coupling clockwise and counter-clockwise around 

x-axis for the four steps. 

 

From the graph’s slope, the spiral coupling angular stiffness around x-axis in positive 

and negative directions are the same and equals 13.999 N.mm/rad. 
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Applying a load of 100 N at 0,180 positions of one end of the spiral coupling 

while fixing the other end, it would result in a moment load of 5715 N.mm. Figure 53 

visualizes the angular deflection around the y-axis in both directions (clockwise and 

counter-clockwise) at the final step corresponding to the full load. 

 

 

Figure 53: Spiral coupling FEA angular deflection in clockwise and counterclockwise 

around the y-axis. 

 

The stiffness of the coupling was determined by correlating the applied uniform load 

around the y-axis to the angular deflection in the same direction.  Figure 54 shows the 

stiffness of the spiral coupling around the y-axis. 

 

 



  

74 

 

 

Figure 54: Angular stiffness of spiral coupling clockwise and counter-clockwise around 

y-axis for the four steps. 

 

From the graph’s slope, the spiral coupling angular stiffness around y-axis in positive 

and negative directions are the same and equals 13.928 N.mm/rad. 
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3.4. Determination of flexible coupling damping coefficients 

 

An experimental method was used to estimate the coupling damping in the three 

translational directions X, Y, and Z. Logarithmic decrement method is usually used to 

measure the under-damped systems damping coefficient (Büchholdt, 2012). Figure 55 

shows the motion of a damped system:  

 

 

Figure 55: Motion of a damped system (Büchholdt, 2012). 

 

Equation 32 was used to estimate the damping coefficient by knowing the exponent of 

the systems damped motion. 

𝐶 = 2𝜁√𝐾𝑚       Equation 32 

Where ζ is the damping ratio of the coupling, k and m are the stiffness (in the desired 

direction) and mass of the coupling.  

Impact test for spiral couplings was done using PCB PIZOTRONICS tools 

(hammer and accelerometer) and BETAVIB data acquisition unit. The first step was to 

set the hammer and accelerometer sensitivity based on their model 2.25 mv/N and 10.2 

mv/(m/s2), respectively. After fixing the coupling, the accelerometer was in the 

direction of interest. Fifty impacts were applied in the direction understudy to result in 

averaged time-response of the coupling. In this section, the determination of white 

spiral coupling was shown. Figure 56 shows the experimental tools used.  
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Figure 56: PCB PIZOTRONICS tools and BETAVIB data acquisition used for 

coupling damping experiment. 

 

Figures 57, 58 and 59 show the experimental logarithmic decrement result of the modal 

analysis for X, Y and Z directions. 

 

 

Figure 57: Coupling Impact Test Response in X-direction. 

 

Figure 58: Coupling Impact Test Response in Y-direction. 
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Figure 59: Coupling Impact Test Response in Z-direction. 

 

It should be noted that the first 0.01 (s) of the coupling impact test response was not 

included as it is of a high amplitude due to the impact. Moreover, the exponential 

decrement equation in the Z direction was found to be more monotonic. The exponents 

of the exponential decrement equation were found to be -13.15, -12.57 and -21.73in the 

X, Y and Z directions, respectively. Consecutively, the damping coefficients of the 

coupling in X, Y and Z directions were found to be 3.42 (N.s/m), 3.27 (N.s/m) and 5.65 

(N.s/m), respectively.  
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3.5. Bearings and shaft stiffness and damping 

 

The bearing stiffness and damping values were taken from the Qatar university 

student’s thesis to be 6.56 × 108 N/m radial stiffness and 1.8 × 103 N.s/m damping 

coefficient in the radial direction.  

The shafts stiffness in radial and axial directions was estimated using laws of 

solid mechanics. The shafts material was AISI-1045 cold drawn steel with an elastic 

modulus (E) of 205,000 N/mm2 and Shear modulus (G) of 79,457 N/mm2. 

For Shaft 1: 

𝑘𝑟𝑎𝑑𝑖𝑎𝑙 = 
3

4

𝜋 𝑟4𝐸

𝐿1
3 = 

3

4

𝜋 (7.55)4(205 × 103)

1073
= 1,281.15 𝑁/𝑚𝑚  

𝑘𝑎𝑥𝑖𝑎𝑙 = 
𝐴𝐸

𝐿1
= 
𝜋 𝑟2𝐸

𝐿1
= 
𝜋 (7.55)2(205 × 103)

107
= 343,094.58 𝑁/𝑚𝑚  

𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 
𝐽 𝐺

𝐿1
= 
𝜋 𝑟4𝐺

2 𝐿1
= 
𝜋 (7.55)4(79457)

2 (107)
= 3,790,147.13 𝑁.𝑚𝑚/𝑟𝑎𝑑 

For Shaft 2: 

𝑘𝑟𝑎𝑑𝑖𝑎𝑙 = 
3

4

𝜋 𝑟4𝐸

𝐿2
3 = 

3

4

𝜋 (7.55)4(205 × 103)

603
= 7,266.06 𝑁/𝑚𝑚  

𝑘𝑎𝑥𝑖𝑎𝑙 = 
𝐴𝐸

𝐿2
= 
𝜋 𝑟2𝐸

𝐿2
= 
𝜋 (7.55)2(205 × 103)

60
= 611,852 𝑁/𝑚𝑚  

𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 
𝐽 𝐺

𝐿2
= 
𝜋 𝑟4𝐺

2 𝐿2
= 
𝜋 (7.55)4(79457)

2 (60)
= 6,759,095.72 𝑁.𝑚𝑚/𝑟𝑎𝑑 

Where r is the radius of both shafts; A is the area of the shaft cross section. J is the polar 

moment of inertia. L1 and L2 are the length of shaft 1 and shaft 2, respectively.  
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3.6. Numerical solving of rotor-coupling bearing system equations of motion 

 

The system of the equation of motion matrixes as derived in section 3.1 was 

solved numerically using Matlab software. The software program was divided into 

subprograms to allow for easy control of the simulation parameter. The numerical 

solver strategy was to use the Matlab built-in Simulink tool to solve the system of 

equations of motion of the rotor-coupling-bearing system in a matrices form. The 

simulation parameters such as simulation time and simulation step were chosen to 

provide a suitable time range stepping for the system to be solved. Moreover, the 

sampling frequency was chosen to be around 50 times larger than the system’s running 

frequency to produce accurate response except when the natural frequency test was 

examined. Figure 60 shows a summary of the programming software functionality and 

the full program is provided in Appendix 6.  

 

 

Figure 60: Summary of numerical solver programming software functionality. 
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Moreover, Table 5 summarizes all the rotor-coupling-bearing system 

parameters required for the numerical solver using the white coupling.  

 

Table 5 

Summary of the white coupling-rotor-bearing system parameters 

Parameter  Value unit Parameter Value unit 

 0.21745 Kg  6.12×108 N/m 

 0.15138 Kg  3790.15 N.m/rad 

 2.33×10-4 Kg.m2  6759.10 N.m/rad 

 4.90×10-5 Kg.m2  16066 N/m 

 
2.33×10-4 Kg.m2  16122 N/m 

 
4.88×10-5 Kg.m2  171920 N/m 

 1.84×10-5 Kg.m2  13.999 N.m/rad 

 1.66×10-5 Kg.m2  13.928 N.m/rad 

 6.56×108 N/m  328.711 N.m/rad 

 6.56×108 N/m  1.8×103 N.s/m 

 6.56×108 N/m  1.8×103 N.s/m 

 6.56×108 N/m  1.8×103 N.s/m 

 1.28×106 N/m  1.8×103 N.s/m 

 1.28×106 N/m  3.42 N.s/m 

 3.43×108 N/m  3.27 N.s/m 

 7.27×106 N/m  5.65 N.s/m 

 7.27×106 N/m    
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In addition, table 6 summarizes black coupling parameters required for the numerical 

solver.  

 

Table 6 

Summary of the black coupling parameters 

Parameter  Value  Parameter Value  

 0.21247 Kg  6422.6 N/m 

 0.1464 Kg  6472.4 N/m 

 2.24×10-4 Kg.m2  52315 N/m 

 4.68×10-5 Kg.m2  6.577 N.m/rad 

 2.24×10-4 Kg.m2  6.506 N.m/rad 

 4.66×10-5 Kg.m2  125.923 N.m/rad 

 1.74×10-5 Kg.m2  1.62024 N.s/m 

 1.55×10-5 Kg.m2  1.59528 N.s/m 

    1.39776 N.s/m 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

In this chapter, the rotor-coupling-bearing system simulation results will be 

presented and discussed. The white spiral coupling was used in the simulation to 

examine the model’s response due to unbalance and misalignment forces. The 

simulation time was chosen to be 1 second divided to 1-millisecond intervals which are 

equivalent to 50 times the 1X frequency. The scale of the vibration spectrum was 

truncated at 100 Hz as the low-frequency range is of interest. The study of vibration 

analysis of the rotor-coupling-bearing system included a) the effect of the parallel and 

angular misalignment in time domain and vibration spectrum, b) the effect of increasing 

the parallel and angular misalignment levels in time domain and vibration spectrum, c) 

the effect of changing the RPM for parallel and angular misaligned systems in time 

domain and vibration spectrum and finally d) the effect of changing the flexible 

coupling type on both time domain and vibration spectrum.  
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4.1. The natural frequency of the system 

 

The natural frequency of the rotor-coupling-bearing system was estimated in 

the excited degrees of freedom which are 𝑋1, 𝑋2, 𝑌1, 𝑌2, 𝜃1 and 𝜃2. Table 7 shows the 

natural frequency of the rotor-coupling-bearing system in the radial and angular 

directions. 

 

Table 7 

The natural frequency of the rotor-coupling-bearing system in the radial and angular 

directions 

DOF 𝑿𝟏 𝑿𝟐 𝒀𝟏 𝒀𝟐 𝜽𝟏 𝜽𝟐 

Natural frequency (Hz) 8750.3 10535 8750.3 10535 2384.5 3302.3 

 

Generally, the natural frequencies of the system were found to be high due to the 

inclusion of the shafts’ stiffness (Metal) in the stiffness matrix. Therefore, the rotor-

coupling-bearing system operation RPM in the range of 1200 to 3000 RPM won’t 

induce any resonance in the system.  It should be noted that the natural frequency in 

𝑋1 𝑎𝑛𝑑 𝑌1 directions are the same and this is since the stiffness of bearings are dominant 

in the radial direction. The same explanation applies for the natural frequencies in 

𝑋2 𝑎𝑛𝑑 𝑌2 directions. In 𝜃1 𝑎𝑛𝑑 𝜃2 directions, the bearings didn’t imply any stiffness 

on the system as mentioned in the model assumptions which lead to the changes in the 

natural frequencies.  
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4.2. Vibration response of the unbalanced rotor-coupling-bearing system  

 

The unbalance forces effect on the rotor-coupling-bearing system response was 

investigated in radial and angular directions.  

 

4.2.1. Unbalanced response of the system in a radial direction 

The unbalanced response of the system in a radial direction (𝑋1, 𝑋2, 𝑌1, 𝑌2) was 

obtained with a rotating speed of 1200 RPM equivalent to 20 Hz at the 1X frequency. 

Eccentricity of 1 mm was introduced to the system in both radial directions (vertical 

and horizontal). Figures 61 and 62 present the time and frequency domains response of 

the unbalanced system in a radial direction. 

 

 

Figure 61: Time and frequency domains response of the unbalanced system in the x-

direction. 
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Figure 62: Time and frequency domains response of the unbalanced system in the y-

direction. 

 

It was found that the displacement response in time and frequency domains for 

radial direction at node 1 is almost constant which means that the displacement response 

of 𝑋1 𝑎𝑛𝑑 𝑌1 directions are similar. And same applies for the displacement response at 

node 2. This was expected as the coupling, bearings and shafts stiffness and damping 

in the model were independent of the rotational angle and the values in the vertical and 

horizontal directions were found to be very close to each other as per section 3.3 and 

3.4. The displacement time response in 𝑋- direction was found to represent a sine wave 

while the response in 𝑌- direction represented a cosine wave. The displacement time 

response amplitudes in 𝑋1 𝑎𝑛𝑑 𝑌1  directions were found be 5.214 × 10-3 (µm) and 

5.265× 10-3 (µm), respectively. Likewise, displacement time response amplitudes in 

𝑋2 𝑎𝑛𝑑 𝑌2  directions were found to be 3.597× 10-3 (µm) and 3.633× 10-3 (µm), 

respectively. Moreover, the displacement spectrum in the radial direction was found to 

be synchronized with 1X RPM amplitude as expected. The displacement spectrum 

amplitudes in 𝑋1 𝑎𝑛𝑑 𝑌1 directions were found to be 5.218× 10-3 (µm) and 5.223× 10-3 
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(µm), respectively. Likewise, displacement spectrum amplitudes in 𝑋2 𝑎𝑛𝑑 𝑌2 

directions were found to be 3.600× 10-3 (µm) and 3.604× 10-3 (µm), respectively. It can 

be noticed that the vibrations at node 1 is higher than node 2 which is expected as the 

subsystem 1 is of higher mass than subsystem 2 (as per unbalance force formula).  There 

is a slight change between the amplitudes in the time and frequency domains. This is 

mainly due to the error associated in transforming the FFT built-in function results to 

the desired scale in Matlab.  

 

4.2.2. The unbalanced response of the system in the angular direction 

The unbalanced response of the system in an angular direction (𝜃1, 𝜃2) was 

obtained with a rotating speed of 1200 RPM equivalent to 20 Hz at the 1X frequency. 

Eccentricity of 1 mm was introduced to the system. Figure 63 shows the time and 

frequency domains response of the unbalanced system in angular direction. 

 

 

Figure 63: Time and frequency domains response of the unbalanced system in angular 

direction. 
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It was found that angle time response in angular direction was found to represent 

a sine wave as per the excitation force. The angle time response amplitudes in 

𝜃1 𝑎𝑛𝑑 𝜃2  directions were found to be 1.114× 10-4 (degrees) and 0.605× 10-4 (degrees), 

respectively. Moreover, the angle spectrum amplitudes in 𝜃1 𝑎𝑛𝑑 𝜃2  directions were 

found be 1.1051× 10-4 (degrees) and 0.602× 10-4 (degrees), respectively. There is a 

slight change between the amplitudes in the time and frequency domains as explained 

in section 4.2.1. 
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4.3. Vibration response of unbalance and parallel misalignment faults in the rotor-

coupling-bearing system in the radial direction 

 

The response of the system in the radial direction (𝑋1, 𝑋2, 𝑌1, 𝑌2) was obtained 

after adding a parallel misalignment to the unbalanced system with a rotating speed of 

1200 RPM. Eccentricity of 1 mm was introduced to the system in both radial directions 

(vertical and horizontal) and parallel misalignment distance of 1mm. Figures 64 and 65 

present the time and frequency domains response of the unbalance and parallel 

misalignment fault of the system in the radial direction. 

 

 

Figure 64: Time and frequency domains response of unbalance and parallel 

misalignment fault  in x-direction. 
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Figure 65: Time and frequency domains response of the unbalance and parallel 

misalignment fault  in y-direction. 

 

It was found that the displacement response in time and frequency domains for radial 

direction at node 1 is almost constant which means that the displacement response of 

𝑋1 𝑎𝑛𝑑 𝑌1 directions are similar. And same applies for the displacement response at 

node 2. The same explanation as in section 4.2.1 applies here. The displacement time 

response in 𝑋 𝑎𝑛𝑑 𝑌 directions were found to be as a combination of sine and cosine 

waves. The displacement time response positive amplitudes in 𝑋1 𝑎𝑛𝑑 𝑋2  directions 

were found be 10.027 × 10-3 (µm) and 8.724 × 10-3 (µm), respectively. Likewise, 

displacement time response positive amplitudes in 𝑌1 𝑎𝑛𝑑 𝑌2  directions were found to 

be 17.721 × 10-3 (µm) and 0.248 × 10-3 (µm), respectively. As the figures imply, the 

time response is more complicated than the unbalanced system and need to be analyzed 

in the frequency domain. Moreover, the displacement spectrum in the radial direction 

was found to be synchronized with 1X and 2X RPM amplitudes. Table 8 shows the 

displacement spectrum of unbalance and parallel misalignment in the radial direction. 
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Table 8 

Displacement spectrum of unbalance and parallel misalignment in radial direction 

Amplitude 𝑿𝟏 𝑿𝟐 𝒀𝟏 𝒀𝟐 

1X RPM (µm) 5.226× 10-3 3.592× 10-3 5.240× 10-3 3.587× 10-3 

2XRPM (µm) 6.084× 10-3 6.041× 10-3 6.115× 10-3 6.066× 10-3 

 

As it can be noticed that the 1X RPM values in the radial direction didn’t change 

significantly due to the parallel misalignment. On the other hand, the parallel 

misalignment fault was clearly synchronized with the 2X RPM as it was generally 

accepted by many researchers in chapter 2. The amplitudes of 2X RPM are almost 

constant in all directions which could be due to the similar model properties in those 

directions.  
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4.4. Vibration response of unbalance and angular misalignment faults in the rotor-

coupling-bearing system in the angular direction 

 

The response of the system in the angular direction (𝜃1, 𝜃2) was obtained after 

adding an angular misalignment to the unbalanced system with a rotating speed of 1200 

RPM. Eccentricity of 1 mm was introduced to the system and angular misalignment of 

1 degree. Figure 66 presents the time and frequency domains response of the unbalance 

and angular misalignment fault of the system in angular direction. 

 

 

Figure 66: Time and frequency domains response of unbalance and angular 

misalignment fault. 

 

The angular time response in 𝜃1 𝑎𝑛𝑑 𝜃2 directions were found to be of the complicated 

signal. The angular time response positive amplitudes in 𝜃1 𝑎𝑛𝑑 𝜃2   directions were 

found be 1.3 × 10-3 (degrees) and 0.664× 10-4 (degrees), respectively. It is noticed that 

the time domain response in angular direction had increased due to misalignment 

compared to the unbalanced system.  Moreover, the angular spectrum was found to be 
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synchronized with 1X, 2X and 4X RPM amplitudes. Table 9 shows the angular 

spectrum of the unbalance and misaligned system. 

 

Table 9 

Angular spectrum of unbalanced and misaligned system 

Amplitude 𝜽𝟏 𝜽𝟐 

1X RPM (degree) 0.1× 10-3 0.0595× 10-3 

2XRPM (degree) 1.2× 10-3 0.5847× 10-3 

4XRPM (degree) 0.2× 10-3 0.1051× 10-3 

 

As it can be noticed that the 1X RPM values in the angular direction didn’t change 

significantly due to the angular misalignment. In contrast, the angular misalignment 

fault was clearly synchronized with the 2X and 4X RPM as it was generally accepted 

by many researchers in chapter 2. Unlike parallel misalignment, the amplitudes of 2X 

and 4X RPM were higher in node 1 due to the higher moment of inertia as described 

earlier in section 4.2.1. 
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4.5. Effect of changing misalignment level on the rotor-coupling-bearing system 

 

The effect of changing the misalignment level on the system was investigated 

on both parallel and angular misalignments.  

 

4.5.1. Effect of changing parallel misalignment distance  

The effect of changing parallel misalignment on the rotor-coupling-bearing 

system was visualized by changing the parallel misalignment distance from 0.2 mm to 

1.2 mm with a step of 0.2 mm while the rotational speed was constant at 1200 RPM. 

Figure 67 illustrates the effect of changing parallel misalignment on the model. 

 

 

Figure 67: Effect of parallel misalignment level on vibration response. 

 

It can be noticed that the 1 X RPM amplitudes were constant in the radial direction with 

higher amplitudes at node 1. Moreover, the 2X RPM amplitudes were increasing 

linearly with the increase of parallel misalignment distance. This is due to the linear 

parallel misalignment force introduced to the system. As noticed in section 4.3 that the 

2 X parallel misalignment vibrations are the same in the radial direction for nodes 1 and 
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2.  

4.5.2. Effect of changing angular misalignment degree  

The effect of changing angular misalignment on the rotor-coupling-bearing 

system was visualized by changing the angular misalignment degree from 0.2 degrees 

to 1.2 degrees with a step of 0.2 degrees while the rotational speed was constant at 1200 

RPM. Figure 68 illustrates the effect of changing parallel misalignment on the model.  

 

 

Figure 68: Effect of angular misalignment level on vibration response. 

 

It can be noticed that the 1 X RPM amplitudes were constant in the angular direction. 

Moreover, the 2X and 4X RPM amplitudes were increasing with the increase of angular 

misalignment degree. This is due to the non-linear angular misalignment force 

introduced to the system. As noticed in section 4.4 that the 2X and 4X angular 

misalignment vibrations were higher in node 1 than node 2 which resulted from the 

higher moment of inertia of subsystem 1 as per equation 30. The 2X RPM showed a 

rapid increase in the amplitude compared to 4X RPM.  
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 4.6. Effect of changing rotational speed on the rotor-coupling-bearing system 

 

The effect of changing rotational speed on the system was investigated on both 

parallel and angular misalignments. 

 

4.6.1. Effect of changing rotational speed on an unbalanced and parallelly misaligned 

system 

The effect of changing rotational speed on the rotor-coupling-bearing system 

under parallel misalignment fault was visualized by changing the rotational speed from 

1200 RPM to 2700 RPM with a step of 300 RPM while the parallel misalignment 

distance was constant at 1 mm. Figure 69 illustrates the effect of the rotational speed 

on the unbalanced and parallelly misaligned system.  

 

 

Figure 69: Effect of rotational speed on the vibration response of the unbalanced and 

parallelly misaligned system. 
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increase in rotational speed. This is mainly due to the unbalanced force acting on the 

system as explained in section 4.3. Moreover, the increase of 1X response is more rapid 

at node 1 (𝑋1 𝑎𝑛𝑑 𝑌1) than node 2. This can be justified, as the system in node 1 is more 

flexible than node 2. In addition, the 2X RPM amplitudes were constant with the change 

in RPM which was expected as the parallel misalignment force model depends on the 

stiffness of the system not the rotational speed.   

 

4.6.2. Effect of changing rotational speed on unbalanced and angularly misaligned 

system 

The effect of changing rotational speed on the rotor-coupling-bearing system 

under angular misalignment fault was visualized by changing the rotational speed from 

1200 RPM to 2700 RPM with a step of 300 RPM while the angular misalignment was 

constant at 1 degree. Figure 70 illustrates the effect of the rotational speed on the 

unbalanced and angularly misaligned system.  

 

 

Figure 70: Effect of rotational speed on the vibration response of the unbalanced and 

angularly misaligned system. 
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It can be noticed that the 1 RPM amplitudes in angular direction were increasing with 

the increase in rotational speed. This is mainly due to the unbalanced force acting on 

the system as explained in section 4.4. In addition, the 2X and 4X RPM amplitudes 

were also increasing when RPM was increased which was expected as the angular 

misalignment force model depends on the rotational speed.  Moreover, the 2X and 4X 

RPM amplitudes are more rapid at node 1 (𝜃1) than node 2 (𝜃2) which can be justified, 

as the system in node 1 is more flexible than node 2. The 2X RPM showed a rapid 

increase in the amplitude compared to 4X RPM. 
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4.7. Effect of changing flexible coupling type on vibration response 

 

The effect of changing flexible coupling type on the system was investigated on 

both parallel and angular misalignments. 

 

4.7.1. Effect of changing flexible coupling type on unbalanced and parallelly 

misaligned system 

The effect of changing flexible coupling type on the model under unbalance and parallel 

misalignment faults was examined at a rotational speed of 1200 RPM parallel 

misalignment distance of 1 mm. Figures 71 and 72 show the effect of coupling type on 

the unbalanced and parallelly misaligned system. 

 

 

Figure 71: Effect of changing coupling type on unbalanced and parallelly misaligned 

system in the x-direction. 
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Figure 72: Effect of changing coupling type on the unbalanced and parallelly 

misaligned system in the y-direction. 

 

In time response graphs, it was found that the amplitudes are higher for the white 

coupling (stiffer) which is due to the ability of the black coupling (more flexible) to 

absorb vibrations in the radial direction. Table 10 shows the displacement spectrum of 

unbalance and parallel misalignment in the radial direction for the two couplings. 

 

Table 10 

Amplitudes of vibration spectrum for white and black couplings 

Coupling  Amplitude 𝑿𝟏 𝑿𝟐 𝒀𝟏 𝒀𝟐 

White 

1X RPM (µm) 5.226× 10-3 3.592× 10-3 5.240× 10-3 3.587× 10-3 

2X RPM (µm) 6.084× 10-3 6.041× 10-3 6.115× 10-3 6.066× 10-3 

Black 

1X RPM (µm) 5.102× 10-3 3.478× 10-3 5.110× 10-3 3.478× 10-3 

2X RPM (µm) 2.428× 10-3 2.418× 10-3 2.453× 10-3 2.437× 10-3 
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It can be noticed that the 1X RPM amplitudes were higher in white coupling by around 

2.4% only which is due to the difference in the system’s masses in the unbalance force 

formulas. On the other hand, the 2X RPM amplitudes were higher in white coupling by 

around 60% which can be justified as the difference in the two couplings stiffness.  

 

4.7.2. Effect of changing flexible coupling type on unbalanced and angularly 

misaligned system 

The effect of changing flexible coupling type on the model under unbalance and 

angular misalignment faults was examined at a rotational speed of 1200 RPM angular 

misalignment of 1 degree. Figure73 shows the effect of coupling type on the unbalanced 

and angularly misaligned system.  

 

 

Figure 73: Effect of changing coupling type on unbalanced and angularly misaligned 

system in the y-direction. 

 

It can be noticed that changing the coupling type didn’t affect the vibration spectrum 

significantly. It was expected that the black coupling will absorb more vibrations and 
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result in fewer vibration amplitudes. However, the small values of the moment of inertia 

of the two couplings and the minor difference between them had led to not visualizing 

the effect of coupling change. In other words, the chosen two coupling types don’t have 

large enough angular stiffness variances to examine the amplitudes variations.  
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4.8. Validation of numerical modeling method 

 

In order to verify the current modeling method, the current model was compared 

to a recent study - Wang and Gong numerical simulation model under parallel 

misalignment fault. This model was chosen as the authors provided sufficient data to 

compare the displacement responses at the coupling location in both directions 

(vertically and horizontally). However, the parameters which were not provided by the 

authors were assumed to have reasonable values. The numerical simulation solver was 

used to be 12 DOF with 2 nodes. Figure 74 illustrates the simulated model of Wang and 

Gong.  

 

 

Figure 74: Physical model of Wang and Gong.  

 

Prior to comparing the two models, necessary assumptions were made to allow the 

implementation of the model with the provided data.  

• The system was divided into two subsystems of mass, stiffness, and damping 

with 12 DOF.  

• Coupling mass was neglected as it wasn’t mentioned by the author. 

• Coupling stiffness in axial direction was assumed to be 10 times higher than 
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bending stiffness and coupling angular stiffness was assumed to be 1/1000 of 

the radial stiffness. These are the same ratios obtained in the current study for a 

flexible coupling.  

• Coupling damping was set to zero as the authors didn’t introduce it. 

• The disks masses were added to the rotor mass at the center of gravity of each 

node and assumed to cause unbalance of 0.001 mm.  

• Bearings equivalent stiffness in x and y directions at each node were added for 

a given direction (x and y). 

The provided data by Wang and Gong are given in table 11.  

 

Table 11 

Numerical model data of Wang and Gong  

Rotor 1 

Diameter 

(m) 

Length 

(m) 

M1 

(kg) 

0.03 0.88 24.8 

Rotor 2 

Diameter 

(m) 

Length 

(m) 

M2 

(kg) 

0.04 0.4 5.92 

Disks 

𝐼𝑧1  

(Kg/m2) 

𝐼𝑥1  

(Kg/m2) 

𝐼𝑦1  

(Kg/m2) 

0.5 0.025 0.025 

Bearings 

𝐾𝐵1𝑥 , 𝐾𝐵2𝑥  

(N/m) 

𝐾𝐵1𝑦, 𝐾𝐵2𝑦  

(N/m) 

𝐶𝐵1𝑥−𝑦, 𝐶𝐵2𝑥−𝑦   

(N.m/s) 

7.50 × 106 5.00 × 107 2000 

Rotor and disks material properties 

Youngs Modulus  

(N/m2) 
Poisson ratio 

Density 

(Kg/m3) 

2.1E+11 0.3 7800 

Coupling bending stiffness 

 (N/m) 

1 × 105 
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It should be noted that authors considered that the bearings were assumed to be string 

elements connected to ground in the vertical direction. Therefore, the stiffness of the 

bearing in the vertical direction was higher than its stiffness in the horizontal direction. 

Based on the given data, the radial stiffness of the two shafts was estimated to be 

3.67×104 N/m and 1.24×106 N/m for shafts 1 and 2, respectively. The axial stiffness of 

the two shafts was estimated to be 1.69×108 N/m and 6.59×108 N/m for shafts 1 and 2, 

respectively. The angular stiffness of the two shafts was estimated to be 7.30 ×103 N.m 

and 5.07×104 N.m for shafts 1 and 2, respectively. Table 12 summarizes the numerical 

model input data of Wang and Gong system.  
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Table 12 

Summary of the numerical model input data for Wang and Gong system 

Parameter  Value unit Parameter Value unit 

 24.8 Kg  6.59×108 N/m 

 5.92 Kg  7.30 ×103 N.m/rad 

 0.05 Kg.m2  5.07×104 N.m/rad 

 0.025 Kg.m2  1 × 105 N/m 

 
0.05 Kg.m2  1 × 105 N/m 

 
0.025 Kg.m2  1 × 106 N/m 

 0.1 Kg.m2  1 × 102 N.m/rad 

 0.05 Kg.m2  1 × 102 N.m/rad 

 15 × 106 N/m  1 × 103 N.m/rad 

 10 × 107 N/m  4000 N.s/m 

 15 × 106 N/m  4000 N.s/m 

 10 × 107 N/m  4000 N.s/m 

 3.67×104 N/m  4000 N.s/m 

 3.67×104 N/m  0 N.s/m 

 1.69×108 N/m  0 N.s/m 

 1.24×106 N/m  0 N.s/m 

 1.24×106 N/m    

 

As the mentioned paper presented the radial vibrations of the rotating system at 

coupling node 1 in vertical and horizontal directions, the response of the system in the 

radial direction was obtained with parallel misalignment and unbalance faults at the 
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same rotating speed of 3800 RPM. Eccentricity of 0.001 mm and parallel misalignment 

of 1 mm was introduced to the system in both radial directions (vertical and horizontal). 

Figure 75 presents the time and frequency domains response of the unbalance and 

parallel misalignment faults of the system in the radial direction. 

 

 

Figure 75: Response of unbalance and parallel misalignment faults in Wang and Gong 

system. 

 

It can be noticed that both models had similar behavior as the vibrations at 1X and 2X 

amplitudes were present with horizontal vibrations higher than vertical vibrations 

which was expected as the bearings were supported to the ground in the vertical 

direction. As it was illustrated in previous sections that the parallel misalignment fault 

was synchronized with the 2X amplitudes of the vibration spectrum. Table 13 presents 

the 2X amplitudes of the current model and Wang and Gong’s model.  
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Table 13 

Comparison of the current model with Wang and Gong’s model 

Model  Amplitude Horizontal Direction Vertical Direction 

Current Model 2X RPM (µm) 2.53 0.63 

Wang and Gong 2X RPM (µm) 2 0.4 

 

As the vibration amplitudes depend on the models’ stiffness, the current model 2X 

amplitudes were matching with the 2X amplitudes in Wang and Gong model to a certain 

degree. The variation of the 2X amplitudes between the two models can be justified by 

the assumptions highlighted in table 11 for the coupling mass, damping and stiffness in 

some directions as those data were not provided by Wang and Gong paper.  
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK  

 

Numerical modeling of the rotor-coupling-bearing system under unbalance and 

misalignment faults was developed in this investigation, using the Lagrange method. 

Unbalance, parallel and angular misalignment forces were used as the excitation forces 

in the model. The geometrical model was developed using Solidworks and then was 

imported to Abaqus to estimate the stiffness of the chosen flexible coupling in this study 

(spiral coupling). The damping coefficients of the spiral coupling were experimentally 

derived using Logarithmic decrement method (impact test). The numerical simulation 

solver was built using Matlab to evaluate the time and frequency vibration responses of 

the model. It was found that the natural frequencies of the model were high enough to 

avoid any resonance during the analysis on a rotational speed of 1200-2700 RPM.  

For parallel misalignment, it was found to be synchronized with the 2X RPM 

rotational speed. The vibrations in the radial direction were found to be constant in x 

and y directions as the model were independent of the rotational angle and the 

parameters in the vertical and horizontal directions were found to be very close to each 

other.  Moreover, the vibrations of the two subsystems (node 1 and 2) were found to be 

similar due to the similar stiffnesses of the two subsystems. By changing the 

misalignment level on the model while keeping all other parameters constant, the 2X 

RPM was found to be increasing linearly as it was expected beforehand from the linear 

model and the linear parallel misalignment force equation. In addition, it was found that 

the parallel misalignment vibrations (2X RPM) were independent of the system’s 

rotational speed. Finally, the effect of changing the coupling type by changing the used 

coupling (white spiral coupling) to a slightly more flexible one (black spiral coupling) 

was found to rapidly decrease the vibrations on the system.   
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For angular misalignment, it was found to be synchronized with the 2X and 4X 

RPM rotational speeds. The amplitudes of 2XRPM and 4X RPM were higher in node 

1 than node 2 due to the higher moment of inertia in subsystem 1. By changing the 

misalignment level on the model while keeping all other parameters constant, the 2X 

and 4X RPM were found to be increasing non-linearly as per the nonlinear angular 

misalignment force equation. The 2X RPM showed a rapid increase in the amplitude 

compared to 4X RPM. In addition, it was found that the rotational speed affects the 

angular misalignment spectrum 2X and 4X RPM and make their amplitudes increase 

in a non-linear way. Finally, the effect of changing the coupling type to a slightly 

different coupling (more flexible coupling) was not visible in the angular direction due 

to the negligible variance in the moment of inertia for the two couplings.  

The future work for this study is to update the parallel and angular misalignment 

forces to visualize the 3X and 5X RPM in the vibration spectrum. The unbalance 

response was evident in the 1X RPM spectrum, but some researcher has shown that the 

1X RPM is originating from misalignment as well which will require more research. 

Moreover, the stiffness matrix was assumed to be constant (independent of rotational 

angle) which might not be applicable for all flexible couplings. Therefore, the 

development of the variable parameter stiffness matrix is helpful to visualize the 

vibration spectrum around 360 degrees. In addition, updating of the Matlab program 

will be required in case the type of coupling will contain resilient member such as 

rubber.  It is also necessary to examine a different type of flexible couplings to predict 

the coupling types effect on the angular misalignment spectrum.  
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APPENDIX 1: MASS, DAMPING, GYROSCOPIC AND STIFFNESS MATRICES 

FOR KRAMER’S MODEL 

 

[ Mc ] = 

[
 
 
 
 
 
 
 
 
𝒎𝒊 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝒎𝒊 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝒎𝒊 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝑰𝒎𝒊 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝒎𝒋 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝒎𝒋 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝑰𝒎𝒋 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝑰𝒎𝒋]
 
 
 
 
 
 
 
 

    

 [ Kc ] = 

[
 
 
 
 
 
 
 
 
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝒌𝑹 Ω𝑪𝑹 𝟎 𝟎 −𝒌𝑹 −Ω𝑪𝑹
𝟎 𝟎 −Ω𝑪𝑹 𝒌𝑹 𝟎 𝟎 Ω𝑪𝑹 −𝒌𝑹
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 −𝒌𝑹 −Ω𝑪𝑹 𝟎 𝟎 𝒌𝑹 Ω𝑪𝑹
𝟎 𝟎 Ω𝑪𝑹 −𝒌𝑹 𝟎 𝟎 −Ω𝑪𝑹 𝒌𝑹 ]

 
 
 
 
 
 
 
 

 

[ Cc ] = 

[
 
 
 
 
 
 
 
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝑪𝑹 𝟎 𝟎 𝟎 −𝑪𝑹 𝟎
𝟎 𝟎 𝟎 𝑪𝑹 𝟎 𝟎 𝟎 −𝑪𝑹
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 −𝑪𝑹 𝟎 𝟎 𝟎 𝑪𝑹 𝟎
𝟎 𝟎 𝟎 −𝑪𝑹 𝟎 𝟎 𝟎 𝑪𝑹 ]

 
 
 
 
 
 
 

       

 [ Gc ] = 

[
 
 
 
 
 
 
 
 
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 −𝑰𝒑𝒎𝒊 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝑰𝒑𝒎𝒊 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 −𝑰𝒑𝒎𝒋
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝑰𝒑𝒎𝒋 𝟎 ]

 
 
 
 
 
 
 
 

 

Where Im and Ipm are the mass moments of inertia and polar moment of inertia, 

respectively.  
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APPENDIX 2:  DAMPING AND STIFFNESS MATRICES FOR NELSON AND 

CRANDALL’S FLEXIBLE COUPLING MODELS 

 

[ Kc ] = 

[
 
 
 
 
 
 
 
𝑲𝑻 𝟎 𝟎 𝟎 −𝑲𝑻 𝟎 𝟎 𝟎
𝟎 𝑲𝑻 𝟎 𝟎 𝟎 −𝑲𝑻 𝟎 𝟎
𝟎 𝟎 𝑲𝑹 𝟎 𝟎 𝟎 −𝑲𝑹 𝟎
𝟎 𝟎 𝟎 𝑲𝑹 𝟎 𝟎 𝟎 −𝑲𝑹

−𝑲𝑻 𝟎 𝟎 𝟎 𝑲𝑻 𝟎 𝟎 𝟎
𝟎 −𝑲𝑻 𝟎 𝟎 𝟎 𝑲𝑻 𝟎 𝟎
𝟎 𝟎 −𝑲𝑹 𝟎 𝟎 𝟎 𝑲𝑹 𝟎
𝟎 𝟎 𝟎 −𝑲𝑹 𝟎 𝟎 𝟎 𝑲𝑹 ]

 
 
 
 
 
 
 

  

 

[ Cc ] = 

[
 
 
 
 
 
 
 
𝑪𝑻 𝟎 𝟎 𝟎 −𝑪𝑻 𝟎 𝟎 𝟎
𝟎 𝑪𝑻 𝟎 𝟎 𝟎 −𝑪𝑻 𝟎 𝟎
𝟎 𝟎 𝑪𝑹 𝟎 𝟎 𝟎 −𝑪𝑹 𝟎
𝟎 𝟎 𝟎 𝑪𝑹 𝟎 𝟎 𝟎 −𝑪𝑹
−𝑪𝑻 𝟎 𝟎 𝟎 𝑪𝑻 𝟎 𝟎 𝟎
𝟎 −𝑪𝑻 𝟎 𝟎 𝟎 𝑪𝑻 𝟎 𝟎
𝟎 𝟎 −𝑪𝑹 𝟎 𝟎 𝟎 𝑪𝑹 𝟎
𝟎 𝟎 𝟎 −𝑪𝑹 𝟎 𝟎 𝟎 𝑪𝑹 ]
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APPENDIX 3: DERIVATION OF PARALLEL AND ANGULAR 

MISALIGNMENT FORCES AS PER WANG AND JIANG 

 

Misalignment in the dual-rotor system and its misalignment fault schematic is shown 

below.  

 

 

 

The rotating shafts had a geometric center O and dynamic center P due to the relative 

motion of the shafts. The dynamic center coordinates can be given by. 

𝑥 =  ∆ 𝐸 sin 𝜃 cos 𝜃 =  
1

2
(∆𝑦 + ∆𝐿 tan(

∆𝛼

2
))sin2θ 

𝑦 =  ∆ 𝐸 cos 𝜃 cos 𝜃 −
1

2
∆𝐸 =   

1

2
(∆𝑦 + ∆𝐿 tan(

∆𝛼

2
))cos2θ 

Then, the linear velocity of P can be expressed as below.  

𝑣𝑃 = √(
𝑑𝑥

𝑑𝑡
)
2

+ (
𝑑𝑦

𝑑𝑡
)
22

= 𝜔1 . (∆𝑦 + ∆𝐿 . tan (
∆𝛼

2
)) 

Noting that 𝜔𝑃 = 
𝑣𝑃

∆𝐸/2
= 2𝜔1 
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Now the acceleration of point P can be given as. 

𝑎𝑃 = √(
𝑑2𝑥

𝑑𝑡2
)

2

+ (
𝑑2𝑦

𝑑𝑡2
)

2
2

= −2𝜔1
2 . (∆𝑦 + ∆𝐿 . tan (

∆𝛼

2
)) 

 

 

The parallel and angular misalignment forces can be obtained using newtons second 

law of motion.   

𝐹𝑥 = 𝑚𝑜 𝜔
2(∆𝑦 + ∆𝐿 tan(

∆𝛼

2
))sin2ωt 

𝐹𝑦 = 𝑚𝑜 𝜔
2(∆𝑦 + ∆𝐿 𝑡𝑎𝑛(

∆𝛼

2
))𝑐𝑜𝑠2𝜔𝑡     

 

Where ∆ 𝐸 is the combined misalignment amount, ∆𝑦 is the parallel misalignment distance, α 

is the angular misalignment angle. 𝑚𝑜 is the mass of the coupling. 𝜔 is the rotational speed.  
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APPENDIX 4: DERIVATION OF ANGULAR MISALIGNMENT FORCES BY XU 

AND MARANGONI 

 

The angular misalignment torque vector can be decomposed as below. 

 

𝑇𝑥 = 𝑇 cos 𝛼   and  𝑇𝑠 = 𝑇 sin 𝛼 

The torque in the YZ plane can be further decomposed as. 

𝑇𝑦 = 𝑇 sin 𝛼 cos 𝛽   and 𝑇𝑧 = 𝑇 sin 𝛼 sin 𝛽 

Euler’s equation of motion can then be applied in the x, y, and z-direction as follows.  

𝑇𝑥 = 𝐼𝑥   𝜔𝑥̇ +  𝜔𝑦 𝜔𝑧 (𝐼𝑧 − 𝐼𝑦) 

𝑇𝑦 = 𝐼𝑦   𝜔𝑦̇ +  𝜔𝑧 𝜔𝑥 (𝐼𝑥 − 𝐼𝑧) 

𝑇𝑧 = 𝐼𝑧   𝜔𝑧̇ +  𝜔𝑥 𝜔𝑦 (𝐼𝑦 − 𝐼𝑥) 

Euler’s equation of motion can be further reduced as the angular motion is only in x-

direction.  

𝑇 cos𝛼 =  𝐼𝑅 𝜖𝑅 

Given that the acceleration of angularly misaligned shafts. 

𝜖𝑅 /𝜔𝑀
2  = 𝐵2 sin 2𝜃𝑀 − 𝐵4 sin 4𝜃𝑀+ . . . . . +(−1)

𝑛+1𝐵2𝑛 sin 2𝑛𝜃𝑀+ . . . . . .   
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Substituting it into Euler’s equation result in the following.  

𝑇 =  (𝐼𝑅 𝛺
2 / cos 𝛼)(∑(−1)𝑛+1𝐵2𝑛 sin 2𝑛𝛺𝑡) 

∞

𝑛=1

 

Where 𝑇𝑦 = ∑ 𝐸2𝑛 sin 2𝑛𝛺𝑡 ,       
∞
𝑛=1 𝑇𝑧 = ∑ 𝐺2𝑛 sin 2𝑛𝛺𝑡 

∞
𝑛=1  

And 𝐸2𝑛 = (−1)
𝑛+1 𝐼𝑅   𝛺

2𝐵2𝑛 tan𝛼 cos 𝛽 ,   𝐺2𝑛 = (−1)
𝑛+1 𝐼𝑅   𝛺

2𝐵2𝑛 tan𝛼 sin 𝛽      

 

Where 𝐾𝑏 is the bending stiffness, 𝐽𝑅 is the polar moment of inertia, Ω is the rotational 

speed, 𝛼 is the misalignment angle with the axial direction, 𝛽 is the misalignment angle 

with the radial direction and 𝐵2𝑛 is an even multiple of the rotational speed, 𝜖𝑅  is the 

angular acceleration. 
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APPENDIX 5: MODELING OF ROTOR-COUPLING-BEARING SYSTEM USING 

LAGRANGE ENERGY METHOD 

 

The system under observation is modeled of two half’s coupling masses and a set of 

stiffness and damping as illustrated in the figure:  

 

 

The system is of 12 degrees of freedom (DOF) with six DOF for each mass as below: 

{𝑥} =  

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑋1
𝑋2
𝑌1
𝑌2
𝑍1
𝑍2
𝜃1
𝜃2
𝛽1
𝛽2
𝛼1
𝛼2}
 
 
 
 
 
 

 
 
 
 
 
 

    ; Where        

𝑋1  𝑖𝑠 𝑎 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 1 
𝑋2 𝑖𝑠 𝑎 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 2  
𝑌1  𝑖𝑠 𝑎 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 1  
𝑌2  𝑖𝑠 𝑎 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 2  
𝑍1  𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑎𝑥𝑖𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 1
𝑍2  𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑎𝑥𝑖𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 2
𝜃1 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑍 − 𝑎𝑥𝑒𝑠 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 1
𝜃2 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑍 − 𝑎𝑥𝑒𝑠 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 2
𝛽1  𝑖𝑠 𝑡ℎ𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑋 − 𝑎𝑥𝑒𝑠 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 1
𝛽2  𝑖𝑠 𝑡ℎ𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑋 − 𝑎𝑥𝑒𝑠 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 2
𝛼1 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑌 − 𝑎𝑥𝑒𝑠 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 1
𝛼2 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑌 − 𝑎𝑥𝑒𝑠 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 2
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Using Lagrange energy method  

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝑞̇𝑖
+
𝜕𝑉

𝜕𝑞𝑖
+ 
𝜕𝐷

𝜕𝑞̇𝑖
= 𝐹𝑖 

 

Where              

𝑇  𝑖𝑠 𝑡ℎ𝑒 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚                     
𝑉 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚                 
𝐷 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚                  
𝐹 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚      
𝑞 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡  
𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒                                                                         

 

 

 

The kinetic energy equation is: 

𝑇 =
1

2
𝑚1𝑋1̇

2
+
1

2
𝑚2𝑋2̇

2
+
1

2
𝑚1𝑌1̇

2
+
1

2
𝑚2𝑌2̇

2
+
1

2
𝐼𝑧1𝜃̇1

2
+
1

2
𝐼𝑧2𝜃̇2

2
+
1

2
𝐼𝑥1𝛽̇1

2

+
1

2
𝐼𝑥2𝛽̇2

2
+
1

2
𝐼𝑦1𝛼̇1

2 +
1

2
𝐼𝑦2𝛼̇2

2 

 
 
The potential energy equation is: 

𝑉 =
1

2
(𝐾𝐵1𝑥 ∕∕ 𝐾𝑆1𝑥)𝑋1

2 +
1

2
(𝐾𝐵1𝑦 ∕∕ 𝐾𝑆1𝑦)𝑌1

2 +
1

2
(𝐾𝐵2𝑥 ∕∕ 𝐾𝑆2𝑥)𝑋2

2

+
1

2
(𝐾𝐵2𝑦 ∕∕ 𝐾𝑆2𝑦)𝑌2

2 +
1

2
𝐾𝐶𝑥(𝑋1 − 𝑋2)

2 +
1

2
𝐾𝐶𝑦(𝑌1 − 𝑌2)

2

+
1

2
𝐾𝐶𝑧(𝑍1 − 𝑍2)

2 +
1

2
𝐾𝐶𝑇𝑥(𝛽1 − 𝛽2)

2 +
1

2
𝐾𝐶𝑇𝑦(𝛼1 − 𝛼2)

2

+
1

2
𝐾𝐶𝑇𝑧(𝜃1 − 𝜃2)

2 +
1

2
𝐾𝑆1𝑧𝑍1

2 +
1

2
𝐾𝑆2𝑧𝑍2

2 +
1

2
𝐾𝑆1𝑇𝑧𝜃1

2

+
1

2
𝐾𝑆2𝑇𝑧𝜃2

2 

 
 
The dissipation energy equation is: 

𝐷 =
1

2
𝐶𝐵1𝑥𝑋̇1

2
+
1

2
𝐶𝐵1𝑦𝑌̇1

2
+
1

2
𝐶𝐵2𝑥𝑋̇2

2
+
1

2
𝐶𝐵2𝑦𝑌̇2

2
+ 
1

2
 𝐶𝐶𝑥(𝑋1̇ − 𝑋2̇)

2

+
1

2
 𝐶𝐶𝑦(𝑌1̇ − 𝑌2̇)

2 + 
1

2
 𝐶𝐶𝑧(𝑍1̇ − 𝑍2̇)

2 
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Differentiating kinetic energy equation with respect to 𝑋̇1 and then with respect to t: 

𝜕𝑇

𝜕𝑋̇1
= 𝑚1 𝑋̇1   𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝑋̇1
= 𝑚1 𝑋̈1 

 

Differentiating kinetic energy equation with respect to 𝑋̇2 and then with respect to t: 

𝜕𝑇

𝜕𝑋̇2
= 𝑚2 𝑋̇2   𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝑋̇2
= 𝑚2 𝑋̈2 

 

Differentiating kinetic energy equation with respect to 𝑌̇1 and then with respect to t: 

𝜕𝑇

𝜕𝑌̇1
= 𝑚1 𝑌̇1   𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝑌̇1
= 𝑚1 𝑌̈1 

 

Differentiating kinetic energy equation with respect to 𝑌̇2 and then with respect to t: 

𝜕𝑇

𝜕𝑌̇2
= 𝑚2 𝑌̇2   𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝑌̇2
= 𝑚2 𝑌̈2 

 

Differentiating kinetic energy equation with respect to 𝑍̇1 and then with respect to t: 

𝜕𝑇

𝜕𝑍̇1
= 𝑚1 𝑍̇1   𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝑍̇1
= 𝑚1 𝑍̈1 

Differentiating kinetic energy equation with respect to 𝑍̇2 and then with respect to t: 

𝜕𝑇

𝜕𝑍̇2
= 𝑚2 𝑍̇2   𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝑍̇2
= 𝑚2 𝑍̈2 

 

Differentiating kinetic energy equation with respect to 𝜃̇1 and then with respect to t: 

𝜕𝑇

𝜕𝜃̇1
= 𝐼𝑧1 𝜃̇1   𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝜃̇1
= 𝐼𝑧1 𝜃̈1 

 

Differentiating kinetic energy equation with respect to 𝜃̇2 and then with respect to t: 

𝜕𝑇

𝜕𝜃̇2
= 𝐼𝑧2 𝜃̇2 𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝜃̇2
= 𝐼𝑧2 𝜃̈2 

 

Differentiating kinetic energy equation with respect to 𝛽̇1 and then with respect to t: 
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𝜕𝑇

𝜕𝛽̇1
= 𝐼𝑥1 𝛽̇1   𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝛽̇1
= 𝐼𝑥1 𝛽̈1 

 

Differentiating kinetic energy equation with respect to 𝛽̇2 and then with respect to t: 

𝜕𝑇

𝜕𝛽̇2
=  𝐼𝑥2 𝛽̇2   𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝛽̇2
=  𝐼𝑥2 𝛽̈2 

 

Differentiating kinetic energy equation with respect to 𝛼̇1 and then with respect to t: 

𝜕𝑇

𝜕𝛼̇1
= 𝐼𝑦1 𝛼̇1   𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝛼̇1
= 𝐼𝑦1 𝛼̈1 

 

Differentiating kinetic energy equation with respect to 𝛼̇2 and then with respect to t: 

𝜕𝑇

𝜕𝛼̇2
= 𝐼𝑦2 𝛼̇2   𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝛼̇2
= 𝐼𝑦2 𝛼̈1 
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Differentiating the potential energy equation with respect to X1: 

𝜕𝑉

𝜕𝑋1
= 𝐾𝐵𝑆1𝑥𝑋1 + 𝐾𝐶𝑥(𝑋1 − 𝑋2) 

 
And then, 

𝐾11 =
𝜕

𝜕𝑋1

𝜕𝑉

𝜕𝑋1
= 𝐾𝐵𝑆1𝑥 + 𝐾𝐶𝑥 = (𝐾𝐵1𝑥 ∕∕ 𝐾𝑆1𝑥) + 𝐾𝐶𝑥 

𝐾21 = 𝐾12 =
𝜕

𝜕𝑋2

𝜕𝑉

𝜕𝑋1
= −𝐾𝐶𝑥 

 

𝐾31 = 𝐾13 =
𝜕

𝜕𝑌1

𝜕𝑉

𝜕𝑋1
= 0 

 

𝐾41 = 𝐾14 =
𝜕

𝜕𝑌2

𝜕𝑉

𝜕𝑋1
= 0 

 

𝐾51 = 𝐾15 =
𝜕

𝜕𝑍1

𝜕𝑉

𝜕𝑋1
= 0 

 

𝐾61 = 𝐾16 =
𝜕

𝜕𝑍2

𝜕𝑉

𝜕𝑋1
= 0 

 

𝐾71 = 𝐾17 =
𝜕

𝜕𝜃1

𝜕𝑉

𝜕𝑋1
= 0 

 

𝐾81 = 𝐾18 =
𝜕

𝜕𝜃2

𝜕𝑉

𝜕𝑋1
= 0 

 

𝐾91 = 𝐾19 =
𝜕

𝜕𝛽1

𝜕𝑉

𝜕𝑋1
= 0 

 

𝐾10−1 = 𝐾1−10 =
𝜕

𝜕𝛽2

𝜕𝑉

𝜕𝑋1
= 0 

 

𝐾11−1 = 𝐾1−11 =
𝜕

𝜕𝛼1

𝜕𝑉

𝜕𝑋1
= 0 

 

𝐾12−1 = 𝐾1−12 =
𝜕

𝜕𝛼2

𝜕𝑉

𝜕𝑋1
= 0 
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Differentiating the potential energy equation with respect to X2: 

𝜕𝑉

𝜕𝑋2
= 𝐾𝐵𝑆2𝑥𝑋2 − 𝐾𝐶𝑥(𝑋1 − 𝑋2) 

 
And then, 

𝐾12 = 𝐾21 =
𝜕

𝜕𝑋1

𝜕𝑉

𝜕𝑋2
= −𝐾𝐶𝑥 

 

𝐾22 =
𝜕

𝜕𝑋2

𝜕𝑉

𝜕𝑋2
= 𝐾𝐵𝑆2𝑥 + 𝐾𝐶𝑥 = (𝐾𝐵2𝑥 ∕∕ 𝐾𝑆2𝑥) + 𝐾𝐶𝑥 

 

𝐾32 = 𝐾23 =
𝜕

𝑌1

𝜕

𝜕𝑋2
= 0 

 

𝐾42 = 𝐾24 =
𝜕

𝜕𝑌2

𝜕𝑉

𝜕𝑋2
= 0 

 

𝐾52 = 𝐾25 =
𝜕

𝜕𝑍1

𝜕𝑉

𝜕𝑋2
= 0 

 

𝐾62 = 𝐾26 =
𝜕

𝜕𝑍2

𝜕𝑉

𝜕𝑋2
= 0 

 

𝐾72 = 𝐾27 =
𝜕

𝜕𝜃1

𝜕𝑉

𝜕𝑋2
= 0 

 

𝐾82 = 𝐾28 =
𝜕

𝜕𝜃2

𝜕𝑉

𝜕𝑋2
= 0 

 

𝐾92 = 𝐾29 =
𝜕

𝜕𝛽1

𝜕𝑉

𝜕𝑋2
= 0 

 

𝐾10−2 = 𝐾2−10 =
𝜕

𝜕𝛽2

𝜕𝑉

𝜕𝑋2
= 0 

 

𝐾11−2 = 𝐾2−11 =
𝜕

𝜕𝛼1

𝜕𝑉

𝜕𝑋2
= 0 

 

𝐾12−2 = 𝐾2−12 =
𝜕

𝜕𝛼2

𝜕𝑉

𝜕𝑋2
= 0 
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Differentiating the potential energy equation with respect to Y1: 

𝜕𝑉

𝜕𝑌1
= 𝐾𝐵𝑆1𝑦𝑌1 + 𝐾𝐶𝑦(𝑌1 − 𝑌2) 

 
And then, 

𝐾13 = 𝐾31 =
𝜕

𝜕𝑋1

𝜕𝑉

𝜕𝑌1
= 0 

 

𝐾23 = 𝐾32 =
𝜕

𝜕𝑋2

𝜕𝑉

𝜕𝑌1
= 0 

 

𝐾33 =
𝜕

𝜕𝑌1

𝜕𝑉

𝜕𝑌1
= 𝐾𝐵𝑆1𝑦 + 𝐾𝐶𝑦 = (𝐾𝐵1𝑦 ∕∕ 𝐾𝑆1𝑦) + 𝐾𝐶𝑦 

 

𝐾43 = 𝐾34 =
𝜕

𝜕𝑌2

𝜕𝑉

𝜕𝑌1
= −𝐾𝐶𝑦 

 

𝐾53 = 𝐾35 =
𝜕

𝜕𝑍1

𝜕𝑉

𝜕𝑌1
= 0 

 

𝐾63 = 𝐾36 =
𝜕

𝜕𝑍2

𝜕𝑉

𝜕𝑌1
= 0 

 

𝐾73 = 𝐾37 =
𝜕

𝜕𝜃1

𝜕𝑉

𝜕𝑌1
= 0 

 

𝐾83 = 𝐾38 =
𝜕

𝜕𝜃2

𝜕𝑉

𝜕𝑌1
= 0 

 

𝐾93 = 𝐾39 =
𝜕

𝜕𝛽1

𝜕𝑉

𝜕𝑌1
= 0 

 

𝐾10−3 = 𝐾3−10 =
𝜕

𝜕𝛽2

𝜕𝑉

𝜕𝑌1
= 0 

 

𝐾11−3 = 𝐾3−11 =
𝜕

𝜕𝛼1

𝜕𝑉

𝜕𝑌1
= 0 

 

𝐾12−3 = 𝐾3−12 =
𝜕

𝜕𝛼2

𝜕𝑉

𝜕𝑌1
= 0 
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Differentiating the potential energy equation with respect to Y2: 

𝜕𝑉

𝜕𝑌2
= 𝐾𝐵𝑆2𝑦𝑌2 − 𝐾𝐶𝑦(𝑌1 − 𝑌2) 

 
And then, 

𝐾14 = 𝐾41 =
𝜕

𝜕𝑋1

𝜕𝑉

𝜕𝑌2
= 0 

 

𝐾24 = 𝐾42 =
𝜕

𝜕𝑋2

𝜕𝑉

𝜕𝑌2
= 0 

 

𝐾34 = 𝐾43 =
𝜕

𝜕𝑌1

𝜕𝑉

𝜕𝑌2
= −𝐾𝐶𝑦 

 

𝐾44 =
𝜕

𝜕𝑌2

𝜕𝑉

𝜕𝑌2
= 𝐾𝐵𝑆2𝑦 + 𝐾𝐶𝑦 = (𝐾𝐵2𝑦 ∕∕ 𝐾𝑆2𝑦) + 𝐾𝐶𝑦 

 

𝐾54 = 𝐾45 =
𝜕

𝜕𝑍1

𝜕𝑉

𝜕𝑌2
= 0 

 

𝐾64 = 𝐾46 =
𝜕

𝜕𝑍2

𝜕𝑉

𝜕𝑌2
= 0 

 

𝐾74 = 𝐾47 =
𝜕

𝜕𝜃1

𝜕𝑉

𝜕𝑌2
= 0 

 

𝐾84 = 𝐾48 =
𝜕

𝜕𝜃2

𝜕𝑉

𝜕𝑌2
= 0 

 

𝐾94 = 𝐾49 =
𝜕

𝜕𝛽1

𝜕𝑉

𝜕𝑌2
= 0 

 

𝐾10−4 = 𝐾4−10 =
𝜕

𝜕𝛽2

𝜕𝑉

𝜕𝑌2
= 0 

 

𝐾11−4 = 𝐾4−11 =
𝜕

𝜕𝛼1

𝜕𝑉

𝜕𝑌2
= 0 

 

𝐾12−4 = 𝐾4−12 =
𝜕

𝜕𝛼2

𝜕𝑉

𝜕𝑌2
= 0 
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Differentiating the potential energy equation with respect to Z1: 

𝜕𝑉

𝜕𝑍1
= 𝐾𝐶𝑧(𝑍1 − 𝑍2) + 𝐾𝑆1𝑧𝑍1 

 
And then, 

𝐾15 = 𝐾51 =
𝜕

𝜕𝑥1

𝜕𝑉

𝜕𝑍1
= 0 

 

𝐾25 = 𝐾52 =
𝜕

𝜕𝑋2

𝜕𝑉

𝜕𝑍1
= 0 

 

𝐾35 = 𝐾53 =
𝜕

𝜕𝑌1

𝜕𝑉

𝜕𝑍1
= 0 

 

𝐾45 = 𝐾54 =
𝜕

𝜕𝑌2

𝜕𝑉

𝜕𝑍1
= 0 

 

𝐾55 =
𝜕

𝜕𝑍1

𝜕𝑉

𝜕𝑍1
= 𝐾𝐶𝑧 + 𝐾𝑆1𝑧 

 

𝐾65 = 𝐾56 =
𝜕

𝜕𝑍2

𝜕𝑉

𝜕𝑍1
= −𝐾𝐶𝑧 

 

𝐾75 = 𝐾57 =
𝜕

𝜕𝜃1

𝜕𝑉

𝜕𝑍1
= 0 

 

𝐾85 = 𝐾58 =
𝜕

𝜕𝜃2

𝜕𝑉

𝜕𝑍1
= 0 

 

𝐾95 = 𝐾59 =
𝜕

𝜕𝛽1

𝜕𝑉

𝜕𝑍1
= 0 

 

𝐾10−5 = 𝐾5−10 =
𝜕

𝜕𝛽2

𝜕𝑉

𝜕𝑍1
= 0 

 

𝐾11−5 = 𝐾5−11 =
𝜕

𝜕𝛼1

𝜕𝑉

𝜕𝑍1
= 0 

 

𝐾12−5 = 𝐾5−12 =
𝜕

𝜕𝛼2

𝜕𝑉

𝜕𝑍1
= 0 
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Differentiating the potential energy equation with respect to Z2: 

𝜕𝑉

𝜕𝑍2
= −𝐾𝐶𝑧(𝑍1 − 𝑍2) + 𝐾𝑆2𝑧𝑍2 

 
And then, 

𝐾16 = 𝐾61 =
𝜕

𝜕𝑥1

𝜕𝑉

𝜕𝑍2
= 0 

 

𝐾26 = 𝐾62 =
𝜕

𝜕𝑋2

𝜕𝑉

𝜕𝑍2
= 0 

 

𝐾36 = 𝐾63 =
𝜕

𝜕𝑌1

𝜕𝑉

𝜕𝑍2
= 0 

 

𝐾46 = 𝐾64 =
𝜕

𝜕𝑌2

𝜕𝑉

𝜕𝑍2
= 0 

 

𝐾56 = 𝐾65 =
𝜕

𝜕𝑍1

𝜕𝑉

𝜕𝑍2
= −𝐾𝐶𝑧 

 

𝐾66 =
𝜕

𝜕𝑍2

𝜕𝑉

𝜕𝑍2
= 𝐾𝐶𝑧 + 𝐾𝑆2𝑧 

 

𝐾76 = 𝐾67 =
𝜕

𝜕𝜃1

𝜕𝑉

𝜕𝑍2
= 0 

 

𝐾86 = 𝐾68 =
𝜕

𝜕𝜃2

𝜕𝑉

𝜕𝑍2
= 0 

 

𝐾96 = 𝐾69 =
𝜕

𝜕𝛽1

𝜕𝑉

𝜕𝑍2
= 0 

 

𝐾10−6 = 𝐾6−10 =
𝜕

𝜕𝛽2

𝜕𝑉

𝜕𝑍2
= 0 

 

𝐾11−6 = 𝐾6−11 =
𝜕

𝜕𝛼1

𝜕𝑉

𝜕𝑍2
= 0 

 

𝐾12−6 = 𝐾6−12 =
𝜕

𝜕𝛼2

𝜕𝑉

𝜕𝑍2
= 0 
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Differentiating the potential energy equation with respect to θ1: 

𝜕𝑉

𝜕𝜃1
= 𝐾𝐶𝑇𝑧(𝜃1 − 𝜃2) + 𝐾𝑆1𝑇𝑧𝜃1 

 
And then, 

𝐾17 = 𝐾71 =
𝜕

𝜕𝑋1

𝜕𝑉

𝜕𝜃1
= 0 

 

𝐾27 = 𝐾72 =
𝜕

𝜕𝑋2

𝜕𝑉

𝜕𝜃1
= 0 

 

𝐾37 = 𝐾73 =
𝜕

𝜕𝑌1

𝜕𝑉

𝜕𝜃1
= 0 

 

𝐾47 = 𝐾74 =
𝜕

𝜕𝑌2

𝜕𝑉

𝜕𝜃1
= 0 

 

𝐾57 = 𝐾75 =
𝜕

𝜕𝑍1

𝜕𝑉

𝜕𝜃1
= 0 

 

𝐾67 = 𝐾76 =
𝜕

𝜕𝑍2

𝜕𝑉

𝜕𝜃1
= 0 

 

𝐾77 =
𝜕

𝜕𝜃1

𝜕𝑉

𝜕𝜃1
= 𝐾𝐶𝑇𝑧 + 𝐾𝑆1𝑇𝑧 

 

𝐾87 = 𝐾78 =
𝜕

𝜕𝜃2

𝜕𝑉

𝜕𝜃1
= −𝐾𝐶𝑇𝑧 

 

𝐾97 = 𝐾79 =
𝜕

𝜕𝛽1

𝜕𝑉

𝜕𝜃1
= 0 

 

𝐾10−7 = 𝐾7−10 =
𝜕

𝜕𝛽2

𝜕𝑉

𝜕𝜃1
= 0 

 

𝐾11−7 = 𝐾7−11 =
𝜕

𝜕𝛼1

𝜕𝑉

𝜕𝜃1
= 0 

 

𝐾12−7 = 𝐾7−12 =
𝜕

𝜕𝛼2

𝜕𝑉

𝜕𝜃1
= 0 
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Differentiating the potential energy equation with respect to θ2: 

𝜕𝑉

𝜕𝜃2
= −𝐾𝐶𝑇𝑧(𝜃1 − 𝜃2) + 𝐾𝑆2𝑇𝑧𝜃2 

 
And then, 

𝐾18 = 𝐾81 =
𝜕

𝜕𝑋1

𝜕𝑉

𝜕𝜃2
= 0 

 

𝐾28 = 𝐾82 =
𝜕

𝜕𝑋2

𝜕𝑉

𝜕𝜃2
= 0 

 

𝐾38 = 𝐾83 =
𝜕

𝜕𝑌1

𝜕𝑉

𝜕𝜃2
= 0 

 

𝐾48 = 𝐾84 =
𝜕

𝜕𝑌2

𝜕𝑉

𝜕𝜃2
= 0 

 

𝐾58 = 𝐾85 =
𝜕

𝜕𝑍1

𝜕𝑉

𝜕𝜃2
= 0 

 

𝐾68 = 𝐾86 =
𝜕

𝜕𝑍2

𝜕𝑉

𝜕𝜃2
= 0 

 

𝐾78 = 𝐾87 =
𝜕

𝜕𝜃1

𝜕𝑉

𝜕𝜃2
= −𝐾𝐶𝑇𝑧 

 

𝐾88 =
𝜕

𝜕𝜃2

𝜕𝑉

𝜕𝜃2
= 𝐾𝐶𝑇𝑧 + 𝐾𝑆2𝑇𝑧 

 

𝐾98 = 𝐾89 =
𝜕

𝜕𝛽1

𝜕𝑉

𝜕𝜃2
= 0 

 

𝐾10−8 = 𝐾8−10 =
𝜕

𝜕𝛽2

𝜕𝑉

𝜕𝜃2
= 0 

 

𝐾11−8 = 𝐾8−11 =
𝜕

𝜕𝛼1

𝜕𝑉

𝜕𝜃2
= 0 

 

𝐾12−8 = 𝐾8−12 =
𝜕

𝜕𝛼2

𝜕𝑉

𝜕𝜃2
= 0 
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Differentiating the potential energy equation with respect to 𝛽 1: 

𝜕𝑉

𝜕𝛽1
= 𝐾𝐶𝑇𝑥(𝛽1 − 𝛽2) 

 
And then, 

𝐾19 = 𝐾91 =
𝜕

𝜕𝑋1

𝜕𝑉

𝜕𝛽1
= 0 

 

𝐾29 = 𝐾92 =
𝜕

𝜕𝑋2

𝜕𝑉

𝜕𝛽1
= 0 

 

𝐾39 = 𝐾93 =
𝜕

𝜕𝑌1

𝜕𝑉

𝜕𝛽1
= 0 

 

𝐾49 = 𝐾94 =
𝜕

𝜕𝑌2

𝜕𝑉

𝜕𝛽1
= 0 

 

𝐾59 = 𝐾95 =
𝜕

𝜕𝑍1

𝜕𝑉

𝜕𝛽1
= 0 

 

𝐾69 = 𝐾96 =
𝜕

𝜕𝑍2

𝜕𝑉

𝜕𝛽1
= 0 

 

𝐾79 = 𝐾97 =
𝜕

𝜕𝜃1

𝜕𝑉

𝜕𝛽1
= 0 

 

𝐾89 = 𝐾98 =
𝜕

𝜕𝜃2

𝜕𝑉

𝜕𝛽1
= 0 

 

𝐾99 =
𝜕

𝜕𝛽1

𝜕𝑉

𝜕𝛽1
= 𝐾𝐶𝑇𝑥 

 

𝐾10−9 = 𝐾9−10 =
𝜕

𝜕𝛽2

𝜕𝑉

𝜕𝛽1
= −𝐾𝐶𝑇𝑥 

 

𝐾11−9 = 𝐾9−11 =
𝜕

𝜕𝛼1

𝜕𝑉

𝜕𝛽1
= 0 

 

𝐾12−9 = 𝐾9−12 =
𝜕

𝜕𝛼2

𝜕𝑉

𝜕𝛽1
= 0 
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Differentiating the potential energy equation with respect to 𝛽 2: 

𝜕𝑉

𝜕𝛽2
= −𝐾𝐶𝑇𝑥(𝛽1 − 𝛽2) 

 
And then, 

𝐾1−10 = 𝐾10−1 =
𝜕

𝜕𝑋1

𝜕𝑉

𝜕𝛽2
= 0 

 

𝐾2−10 = 𝐾10−2 =
𝜕

𝜕𝑋2

𝜕𝑉

𝜕𝛽2
= 0 

 

𝐾3−10 = 𝐾10−3 =
𝜕

𝜕𝑌1

𝜕𝑉

𝜕𝛽2
= 0 

 

𝐾4−10 = 𝐾10−4 =
𝜕

𝜕𝑌2

𝜕𝑉

𝜕𝛽2
= 0 

 

𝐾5−10 = 𝐾10−5 =
𝜕

𝜕𝑍1

𝜕𝑉

𝜕𝛽2
= 0 

 

𝐾6−10 = 𝐾10−6 =
𝜕

𝜕𝑍2

𝜕𝑉

𝜕𝛽2
= 0 

 

𝐾7−10 = 𝐾10−7 =
𝜕

𝜕𝜃1

𝜕𝑉

𝜕𝛽2
= 0 

 

𝐾8−10 = 𝐾10−8 =
𝜕

𝜕𝜃2

𝜕𝑉

𝜕𝛽2
= 0 

 

𝐾9−10 = 𝐾10−9 =
𝜕

𝜕𝛽1

𝜕𝑉

𝜕𝛽2
= −𝐾𝐶𝑇𝑥 

 

𝐾10−10 = 𝐾10−10 =
𝜕

𝜕𝛽2

𝜕𝑉

𝜕𝛽2
= 𝐾𝐶𝑇𝑥 

 

𝐾11−10 = 𝐾10−11 =
𝜕

𝜕𝛼1

𝜕𝑉

𝜕𝛽2
= 0 

 

𝐾12−10 = 𝐾10−12 =
𝜕

𝜕𝛼2

𝜕𝑉

𝜕𝛽2
= 0 
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Differentiating the potential energy equation with respect to 𝛼1: 

𝜕𝑉

𝜕𝛼1
= 𝐾𝐶𝑇𝑦(𝛼1 − 𝛼2) 

 
And then, 

𝐾1−11 = 𝐾11−1 =
𝜕

𝜕𝑋1

𝜕𝑉

𝜕𝛼1
= 0 

 

𝐾2−11 = 𝐾11−2 =
𝜕

𝜕𝑋2

𝜕𝑉

𝜕𝛼1
= 0 

 

𝐾3−11 = 𝐾11−3 =
𝜕

𝜕𝑌1

𝜕𝑉

𝜕𝛼1
= 0 

 

𝐾4−11 = 𝐾11−4 =
𝜕

𝜕𝑌2

𝜕𝑉

𝜕𝛼1
= 0 

 

𝐾5−11 = 𝐾11−5 =
𝜕

𝜕𝑍1

𝜕𝑉

𝜕𝛼1
= 0 

 

𝐾6−11 = 𝐾11−6 =
𝜕

𝜕𝑍2

𝜕𝑉

𝜕𝛼1
= 0 

 

𝐾7−11 = 𝐾11−7 =
𝜕

𝜕𝜃1

𝜕𝑉

𝜕𝛼1
= 0 

 

𝐾8−11 = 𝐾11−8 =
𝜕

𝜕𝜃2

𝜕𝑉

𝜕𝛼1
= 0 

 

𝐾9−11 = 𝐾11−9 =
𝜕

𝜕𝛽1

𝜕𝑉

𝜕𝛼1
= 0 

 

𝐾10−11 = 𝐾11−10 =
𝜕

𝜕𝛽2

𝜕𝑉

𝜕𝛼1
= 0 

 

𝐾11−11 =
𝜕

𝜕𝛼1

𝜕𝑉

𝜕𝛼1
= 𝐾𝐶𝑇𝑦 

 

𝐾12−11 = 𝐾11−12 =
𝜕

𝜕𝛼2

𝜕𝑉

𝜕𝛼1
= −𝐾𝐶𝑇𝑦 
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Differentiating the potential energy equation with respect to 𝛼2: 

𝜕𝑉

𝜕𝛼2
= −𝐾𝐶𝑇𝑦(𝛼1 − 𝛼2) 

 
And then, 

𝐾1−12 = 𝐾12−1 =
𝜕

𝜕𝑋1

𝜕𝑉

𝜕𝛼2
= 0 

 

𝐾2−12 = 𝐾12−2 =
𝜕

𝜕𝑋2

𝜕𝑉

𝜕𝛼2
= 0 

 

𝐾3−12 = 𝐾12−3 =
𝜕

𝜕𝑌1

𝜕𝑉

𝜕𝛼2
= 0 

 

𝐾4−12 = 𝐾12−4 =
𝜕

𝜕𝑌2

𝜕𝑉

𝜕𝛼2
= 0 

 

𝐾5−12 = 𝐾12−5 =
𝜕

𝜕𝑍1

𝜕𝑉

𝜕𝛼2
= 0 

 

𝐾6−12 = 𝐾12−6 =
𝜕

𝜕𝑍2

𝜕𝑉

𝜕𝛼2
= 0 

 

𝐾7−12 = 𝐾12−7 =
𝜕

𝜕𝜃1

𝜕𝑉

𝜕𝛼2
= 0 

 

𝐾8−12 = 𝐾12−8 =
𝜕

𝜕𝜃2

𝜕𝑉

𝜕𝛼2
= 0 

 

𝐾9−12 = 𝐾12−9 =
𝜕

𝜕𝛽1

𝜕𝑉

𝜕𝛼2
= 0 

 

𝐾10−12 = 𝐾12−10 =
𝜕

𝜕𝛽2

𝜕𝑉

𝜕𝛼2
= 0 

 

𝐾11−12 = 𝐾12−11 =
𝜕

𝜕𝛼1

𝜕𝑉

𝜕𝛼2
= −𝐾𝐶𝑇𝑦 

 

𝐾12−12 =
𝜕

𝜕𝛼2

𝜕𝑉

𝜕𝛼2
= 𝐾𝐶𝑇𝑦 
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Differentiating the dissipation equation with respect to 𝑋̇1: 

𝜕𝐷

𝜕𝑋̇1
= 𝐶𝐵1𝑥𝑋̇1 + 𝐶𝐶𝑥(𝑋̇1 − 𝑋̇2) 

 
And then, 

𝐶11 =
𝜕

𝜕𝑋̇1

𝜕𝐷

𝜕𝑋̇1
=  𝐶𝐵1𝑥 + 𝐶𝐶𝑥 

 

𝐶21 = 𝐶12 =
𝜕

𝜕𝑋̇2

𝜕𝐷

𝜕𝑋̇1
= − 𝐶𝐶𝑥 

 

𝐶31 = 𝐶13 =
𝜕

𝜕𝑌̇1

𝜕𝐷

𝜕𝑋̇1
= 0 

 

𝐶41 = 𝐶14 =
𝜕

𝜕𝑌̇2

𝜕𝐷

𝜕𝑋̇1
= 0 

 

𝐶51 = 𝐶15 =
𝜕

𝜕𝑍̇1

𝜕𝐷

𝜕 𝑋̇1
= 0 

 

𝐶61 = 𝐶16 =
𝜕

𝜕𝑍̇2

𝜕𝐷

𝜕𝑋̇1
= 0 

 

𝐶71 = 𝐶17 =
𝜕

𝜕𝜃̇1

𝜕𝐷

𝜕𝑋̇1
= 0 

 

𝐶81 = 𝐶18 =
𝜕

𝜕𝜃̇2

𝜕𝐷

𝜕𝑋̇1
= 0 

 

𝐶91 = 𝐶19 =
𝜕

𝜕𝛽̇1

𝜕𝐷

𝜕𝑋̇1
= 0 

 

𝐶10−1 = 𝐶1−10 =
𝜕

𝜕𝛽̇2

𝜕𝐷

𝜕𝑋̇1
= 0 

 

𝐶11−1 = 𝐶1−11 =
𝜕

𝜕𝛼̇1

𝜕𝐷

𝜕𝑋̇1
= 0 

 

𝐶12−1 = 𝐶1−12 =
𝜕

𝜕𝛼̇2

𝜕𝐷

𝜕𝑋̇1
= 0 
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Differentiating the dissipation equation with respect to 𝑋̇2: 

𝜕𝐷

𝜕𝑋̇2
= 𝐶𝐵2𝑥𝑋̇2 − 𝐶𝐶𝑥(𝑋̇1 − 𝑋̇2) 

 
And then, 

𝐶12 = 𝐶21 =
𝜕

𝜕𝑋̇1

𝜕𝐷

𝜕𝑋̇2
= −𝐶𝐶𝑥 

 

𝐶22 =
𝜕

𝜕𝑋̇2

𝜕𝐷

𝜕𝑋̇2
= 𝐶𝐵2𝑥 + 𝐶𝐶𝑥 

 

𝐶32 = 𝐶23 =
𝜕

𝑌̇1

𝜕𝐷

𝜕𝑋̇2
= 0 

 

𝐶42 = 𝐶24 =
𝜕

𝜕𝑌̇2

𝜕𝐷

𝜕𝑋̇2
= 0 

 

𝐶52 = 𝐶25 =
𝜕

𝜕𝑍̇1

𝜕𝐷

𝜕𝑋̇2
= 0 

 

𝐶62 = 𝐶26 =
𝜕

𝜕𝑍̇2

𝜕𝐷

𝜕𝑋̇2
= 0 

 

𝐶72 = 𝐶27 =
𝜕

𝜕𝜃̇1

𝜕𝐷

𝜕𝑋̇2
= 0 

 

𝐶82 = 𝐶28 =
𝜕

𝜕𝜃̇2

𝜕𝐷

𝜕𝑋̇2
= 0 

 

𝐶92 = 𝐶29 =
𝜕

𝜕𝛽̇1

𝜕𝐷

𝜕𝑋̇2
= 0 

 

𝐶10−2 = 𝐶2−10 =
𝜕

𝜕𝛽̇2

𝜕𝐷

𝜕𝑋̇2
= 0 

 

𝐶11−2 = 𝐶2−11 =
𝜕

𝜕𝛼̇1

𝜕𝐷

𝜕𝑋̇2
= 0 

 

𝐶12−2 = 𝐶2−12 =
𝜕

𝜕𝛼̇2

𝜕𝐷

𝜕𝑋̇2
= 0 
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Differentiating the dissipation equation with respect to 𝑌̇1: 

𝜕𝐷

𝜕𝑌1
= 𝐶𝐵1𝑦𝑌̇1 + 𝐶𝐶𝑦(𝑌̇1 − 𝑌̇2) 

 
And then, 

𝐶13 = 𝐶31 =
𝜕

𝜕𝑋̇1

𝜕𝐷

𝜕𝑌̇1
= 0 

 

𝐶23 = 𝐶32 =
𝜕

𝜕𝑋̇2

𝜕𝐷

𝜕𝑌̇1
= 0 

 

𝐶33 =
𝜕

𝜕𝑌̇1

𝜕𝐷

𝜕𝑌̇1
= 𝐶𝐵1𝑦 + 𝐶𝐶𝑦 

 

𝐶43 = 𝐶34 =
𝜕

𝜕𝑌̇2

𝜕𝐷

𝜕𝑌̇1
= −𝐶𝐶𝑦 

 

𝐶53 = 𝐶35 =
𝜕

𝜕𝑍̇1

𝜕𝐷

𝜕𝑌̇1
= 0 

 

𝐶63 = 𝐶36 =
𝜕

𝜕𝑍̇2

𝜕𝐷

𝜕𝑌̇1
= 0 

 

𝐶73 = 𝐶37 =
𝜕

𝜕𝜃̇1

𝜕𝐷

𝜕𝑌̇1
= 0 

 

𝐶83 = 𝐶38 =
𝜕

𝜕𝜃̇2

𝜕𝐷

𝜕𝑌̇1
= 0 

 

𝐶93 = 𝐶39 =
𝜕

𝜕𝛽̇1

𝜕𝐷

𝜕𝑌̇1
= 0 

 

𝐶10−3 = 𝐶3−10 =
𝜕

𝜕𝛽̇2

𝜕𝐷

𝜕𝑌̇1
= 0 

 

𝐶11−3 = 𝐶3−11 =
𝜕

𝜕𝛼̇1

𝜕𝐷

𝜕𝑌̇1
= 0 

 

𝐶12−3 = 𝐶3−12 =
𝜕

𝜕𝛼̇2

𝜕𝐷

𝜕𝑌̇1
= 0 
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Differentiating the dissipation equation with respect to 𝑌̇2: 

𝜕𝑉

𝜕𝑌2
= 𝐶𝐵2𝑦𝑌̇2 − 𝐶𝐶𝑦(𝑌̇1 − 𝑌̇2) 

 
And then, 

𝐶14 = 𝐶41 =
𝜕

𝜕𝑋̇1

𝜕𝐷

𝜕𝑌̇2
= 0 

 

𝐶24 = 𝐶42 =
𝜕

𝜕𝑋̇2

𝜕𝐷

𝜕𝑌̇2
= 0 

 

𝐶34 = 𝐶43 =
𝜕

𝜕𝑌̇1

𝜕𝐷

𝜕𝑌̇2
= −𝐶𝐶𝑦 

 

𝐶44 =
𝜕

𝜕𝑌̇2

𝜕𝐷

𝜕𝑌̇2
= 𝐶𝐵2𝑦 + 𝐶𝐶𝑦 

 

𝐶54 = 𝐶45 =
𝜕

𝜕𝑍̇1

𝜕𝐷

𝜕𝑌̇2
= 0 

 

𝐶64 = 𝐶46 =
𝜕

𝜕𝑍̇2

𝜕𝐷

𝜕𝑌̇2
= 0 

 

𝐶74 = 𝐶47 =
𝜕

𝜕𝜃̇1

𝜕𝐷

𝜕𝑌̇2
= 0 

 

𝐶84 = 𝐶48 =
𝜕

𝜕𝜃̇2

𝜕𝐷

𝜕𝑌̇2
= 0 

 

𝐶94 = 𝐶49 =
𝜕

𝜕𝛽̇1

𝜕𝐷

𝜕𝑌̇2
= 0 

 

𝐶10−4 = 𝐶4−10 =
𝜕

𝜕𝛽̇2

𝜕𝐷

𝜕𝑌̇2
= 0 

 

𝐶11−4 = 𝐶4−11 =
𝜕

𝜕𝛼̇1

𝜕𝐷

𝜕𝑌̇2
= 0 

 

𝐶12−4 = 𝐶4−12 =
𝜕

𝜕𝛼̇2

𝜕𝐷

𝜕𝑌̇2
= 0 
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Differentiating the dissipation equation with respect to 𝑍̇1: 

𝜕𝐷

𝜕𝑍̇1
= 𝐶𝐶𝑧(𝑍̇1 − 𝑍̇2) 

 
And then, 

𝐶15 = 𝐶51 =
𝜕

𝜕𝑋̇1

𝜕𝐷

𝜕𝑍̇1
= 0 

 

𝐶25 = 𝐶52 =
𝜕

𝜕𝑋̇2

𝜕𝐷

𝜕𝑍̇1
= 0 

 

𝐶35 = 𝐶53 =
𝜕

𝜕𝑌̇1

𝜕𝐷

𝜕𝑍̇1
= 0 

 

𝐶45 = 𝐶54 =
𝜕

𝜕𝑌̇2

𝜕𝐷

𝜕𝑍̇1
= 0 

 

𝐶55 =
𝜕

𝜕𝑍̇1

𝜕𝐷

𝜕𝑍̇1
= 𝐶𝐶𝑧 

 

𝐶65 = 𝐶56 =
𝜕

𝜕𝑍̇2

𝜕𝐷

𝜕𝑍̇1
= −𝐶𝐶𝑧 

 

𝐶75 = 𝐶57 =
𝜕

𝜕𝜃̇1

𝜕𝐷

𝜕𝑍̇1
= 0 

 

𝐶85 = 𝐶58 =
𝜕

𝜕𝜃̇2

𝜕𝐷

𝜕𝑍̇1
= 0 

 

𝐶95 = 𝐶59 =
𝜕

𝜕𝛽̇1

𝜕𝐷

𝜕𝑍̇1
= 0 

 

𝐶10−5 = 𝐶5−10 =
𝜕

𝜕𝛽̇2

𝜕𝐷

𝜕𝑍̇1
= 0 

 

𝐶11−5 = 𝐶5−11 =
𝜕

𝜕𝛼̇1

𝜕𝐷

𝜕𝑍̇1
= 0 

 

𝐶12−5 = 𝐶5−12 =
𝜕

𝜕𝛼̇2

𝜕𝐷

𝜕𝑍̇1
= 0 
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Differentiating the dissipation equation with respect to 𝑍̇2: 

𝜕𝐷

𝜕𝑍̇2
= −𝐶𝐶𝑧(𝑍̇1 − 𝑍̇2) 

 
And then, 

𝐶16 = 𝐶61 =
𝜕

𝜕𝑋̇1

𝜕𝐷

𝜕𝑍̇2
= 0 

 

𝐶26 = 𝐶62 =
𝜕

𝜕𝑋̇2

𝜕𝐷

𝜕𝑍̇2
= 0 

 

𝐶36 = 𝐶63 =
𝜕

𝜕𝑌̇1

𝜕𝐷

𝜕𝑍̇2
= 0 

 

𝐶46 = 𝐶64 =
𝜕

𝜕𝑌̇2

𝜕𝐷

𝜕𝑍̇2
= 0 

 

𝐶56 = 𝐶65 =
𝜕

𝜕𝑍̇1

𝜕𝐷

𝜕𝑍̇2
= −𝐶𝐶𝑧 

 

𝐶66 =
𝜕

𝜕𝑍̇2

𝜕𝐷

𝜕𝑍̇2
= 𝐶𝐶𝑧 

 

𝐶76 = 𝐶67 =
𝜕

𝜕𝜃̇1

𝜕𝐷

𝜕𝑍̇2
= 0 

 

𝐶86 = 𝐶68 =
𝜕

𝜕𝜃̇2

𝜕𝐷

𝜕𝑍̇2
= 0 

 

𝐶96 = 𝐶69 =
𝜕

𝜕𝛽̇1

𝜕𝐷

𝜕𝑍̇2
= 0 

 

𝐶10−6 = 𝐶6−10 =
𝜕

𝜕𝛽̇2

𝜕𝐷

𝜕𝑍̇2
= 0 

 

𝐶11−6 = 𝐶6−11 =
𝜕

𝜕𝛼̇1

𝜕𝐷

𝜕𝑍̇2
= 0 

 

𝐶12−6 = 𝐶6−12 =
𝜕

𝜕𝛼̇2

𝜕𝐷

𝜕𝑍̇2
= 0 
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Differentiating the dissipation equation with respect to 𝜃̇1: 

𝜕𝐷

𝜕𝜃̇1
= 0 

 

Differentiating the dissipation equation with respect to 𝜃̇2: 

𝜕𝐷

𝜕𝜃̇2
= 0 

 
 

Differentiating the dissipation equation with respect to 𝛽̇1: 

𝜕𝐷

𝜕𝛽̇1
= 0 

 

Differentiating the dissipation equation with respect to 𝛽̇2: 

𝜕𝐷

𝜕𝛽̇2
= 0 

 
Differentiating the dissipation equation with respect to 𝛼̇1: 

𝜕𝐷

𝜕𝛼̇1
= 0 

 

Differentiating the dissipation equation with respect to 𝛼̇2: 

𝜕𝐷

𝜕𝛼̇2
= 0 

 

The mass matrix [M] is: 

 

 

𝑚1 0 0 0 0 0 0 0 0 0 0 0 

0 𝑚2  0 0 0 0 0 0 0 0 0 0 

0 0 𝑚1 0 0 0 0 0 0 0 0 0 

0 0 0 𝑚2 0 0 0 0 0 0 0 0 

0 0 0 0 𝑚1 0 0 0 0 0 0 0 

0 0 0 0 0 𝑚2 0 0 0 0 0 0 

0 0 0 0 0 0 𝐼𝑧1 0 0 0 0 0 

0 0 0 0 0 0 0 𝐼𝑧2 0 0 0 0 

0 0 0 0 0 0 0 0 𝐼𝑥1 0 0 0 

0 0 0 0 0 0 0 0 0 𝐼𝑥2 0 0 

0 0 0 0 0 0 0 0 0 0 𝐼𝑦1 0 
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0 0 0 0 0 0 0 0 0 0 0 𝐼𝑦2 

 

 
 

The stiffness matrix [K] is: 

 
𝐾𝐵𝑆1𝑥
+ 𝐾𝐶𝑥 

−𝐾𝐶𝑥 0 0 0 0 0 0 0 0 0 0 

−𝐾𝐶𝑥 𝐾𝐵𝑆2𝑥
+ 𝐾𝐶𝑥 

0 0 0 0 0 0 0 0 0 0 

0 0 𝐾𝐵𝑆1𝑦
+ 𝐾𝐶𝑦 

−𝐾𝐶𝑦 0 0 0 0 0 0 0 0 

0 0 −𝐾𝐶𝑦 𝐾𝐵𝑆2𝑦
+ 𝐾𝐶𝑦 

0 0 0 0 0 0 0 0 

0 0 0 0 𝐾𝐶𝑧
+ 𝐾𝑆1𝑧 

−𝐾𝐶𝑧 0 0 0 0 0 0 

0 0 0 0 −𝐾𝐶𝑧 𝐾𝐶𝑧
+ 𝐾𝑆2𝑧 

0 0 0 0 0 0 

0 0 0 0 0 0 𝐾𝐶𝑇𝑧
+ 𝐾𝑆1𝑇𝑧 

−𝐾𝐶𝑇𝑧 0 0 0 0 

0 0 0 0 0 0 −𝐾𝐶𝑇𝑧 𝐾𝐶𝑇𝑧
+ 𝐾𝑆2𝑇𝑧 

0 0 0 0 

0 0 0 0 0 0 0 0 𝐾𝐶𝑇𝑥 −𝐾𝐶𝑇𝑥 0 0 

0 0 0 0 0 0 0 0 −𝐾𝐶𝑇𝑥 𝐾𝐶𝑇𝑥 0 0 

0 0 0 0 0 0 0 0 0 0 𝐾𝐶𝑇𝑦 −𝐾𝐶𝑇𝑦 

0 0 0 0 0 0 0 0 0 0 −𝐾𝐶𝑇𝑦 𝐾𝐶𝑇𝑦 

 

 

The damping matrix [D] is: 

 

𝐶𝐵1𝑥
+ 𝐶𝐶𝑥 

−𝐶𝐶𝑥 0 0 0 0 0 0 0 0 0 0 

−𝐶𝐶𝑥 𝐶𝐵2𝑥
+ 𝐶𝐶𝑥 

0 0 0 0 0 0 0 0 0 0 

0 0 𝐶𝐵1𝑦
+ 𝐶𝐶𝑦 

−𝐶𝐶𝑦 0 0 0 0 0 0 0 0 

0 0 −𝐶𝐶𝑦 𝐶𝐵2𝑦
+ 𝐶𝐶𝑦 

0 0 0 0 0 0 0 0 

0 0 0 0 𝐶𝐶𝑧 −𝐶𝐶𝑧 0 0 0 0 0 0 

0 0 0 0 −𝐶𝐶𝑧 𝐶𝐶𝑧 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 
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APPENDIX 6: NUMERICAL SOLVING CODE USING MATALB 

 

Main program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                   Bism Allah Alrahman Alrahim             %%%                              

%%%           %%% 
%%%                                                               %%%                                 

%%%           %%% 
%%%           NUMERICAL  SIMULATION  OF  DYNAMIC  RESPONSE     %%%                             

%%%            %%% 
%%%              OF  A  Rotor-Coupling-Bearing System             %%%                               

%%%           %%% 
%%%                                                               %%%                                   

%%%           %%% 
%%%                         Doha, June,2019                       %%%                     

%%%           %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
close all 
clear all 
clc 

  
disp(' ') 
disp(' ') 
disp('===============================================================

====') 
disp('======        NUMERICAL SIMULATION OF DYNAMIC RESPONSE       

======') 
disp('======           OF  A ROTOR-COUPLING-BEARING SYSTEM         

======') 
disp('===============================================================

====') 
disp('===============================================================

====') 
disp(' ') 
disp(' ') 
disp(' ') 
disp('  >>     Execution of the Main Program')  

  
Program_1_Data 

  
Program_2_SimulationData 

  
Program_3_Forces 

  
Program_4_GoSimulation 

  
Program_5_FastFourierTransform 

  
Program_6_NaturalFrequency 
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Program_7_PlotGraphs 

 

Program_1_Data 

%% ===================================================================== %% 
disp(' ') 
disp('  >>     Execution of Program_1 : Data')  

  

  
%% ===================================================================== %% 
global KB1X KB1Y KB2X KB2Y KS1X KS1Y KS1Z KS2X KS2Y KS2Z KS1T KS2T  
global KCX KCY KCZ KCTX KCTY KCTZ 
global CB1X CB1Y CB2X CB2Y 
global CCX CCY CCZ  
global e1 e2 w RPM FREQ 
global m1 m2 Ix1 Iy1 Iz1 Ix2 Iy2 Iz2  

  
%% ===================================================================== %% 
%%=======     Rotor-Coupling-Bearing System GENERAL DATA ================== 
%%========================================================================= 

  
e1   = 0.001;           %Eccentricity of Shaft 1 in (m) 
e2   = 0.001;           %Eccentricity of Shaft 2 in (m) 
FREQ = 20;              %Frequency of the system in (Hz) 
RPM  = FREQ * 60;       %Rotational speed of the system in (RPM) 
w    = 2*pi*FREQ;       %Rotational speed of the system in (rad/s)  
delL = 0.0301;          %Flexible distance in the coupling in(m) 
dely = 0.001;           %parallel misalignment distance in(m) 
dela = 1;               %Angular misalignment in (Degrees) 

radius = 0.0381;        %radius of coupling in (m) 

  
m1   = 0.21745;         %Mass of the Subsystem 1 in (Kg) 
m2   = 0.15138;         %Mass of the Subsystem 2 in (Kg) 
Iz1  = 1.8350E-5;       %Moment of inertia of Subsystem 1 around Z-axis 

(Axial direction)  in (Kg.m2) 
Iz2  = 1.6463E-5;       %Moment of inertia of Subsystem 2 around Z-axis 

(Axial direction)  in (Kg.m2) 
Ix1  = 2.3309E-4;       %Moment of inertia of Subsystem 1 around x-axis 

(Radial direction) in (Kg.m2) 
Ix2  = 4.9009E-5;       %Moment of inertia of Subsystem 2 around x-axis 

(Radial direction) in (Kg.m2) 
Iy1  = 2.3284E-4;       %Moment of inertia of Subsystem 1 around y-axis 

(Radial direction) in (Kg.m2) 
Iy2  = 4.8755E-5;       %Moment of inertia of Subsystem 2 around y-axis 

(Radial direction) in (Kg.m2) 

  
KB1X = 6.56E8;          %Stiffness coefficient of bearing 1 in x-axis 

direction in (N/m)  
KB1Y = 6.56E8;          %Stiffness coefficient of bearing 1 in y-axis 

direction in (N/m) 
KB2X = 6.56E8;          %Stiffness coefficient of bearing 2 in x-axis 

direction in (N/m) 
KB2Y = 6.56E8;          %Stiffness coefficient of bearing 2 in y-axis 

direction in (N/m) 
KS1X = 1.28115E6;       %Stiffness coefficient of shaft 1 in x-axis 

direction in (N/m) 
KS1Y = 1.28115E6;       %Stiffness coefficient of shaft 1 in y-axis 

direction in (N/m) 
KS1Z = 3.4309458E8;     %Stiffness coefficient of shaft 1 in z-axis 

direction in (N/m) 
KS2X = 7.26606E6;       %Stiffness coefficient of shaft 2 in x-axis 

direction in (N/m) 
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KS2Y = 7.26606E6;       %Stiffness coefficient of shaft 2 in y-axis 

direction in (N/m) 
KS2Z = 6.11852E8;       %Stiffness coefficient of shaft 2 in z-axis 

direction in (N/m) 
KS1T = 3790.15;         %Angular stiffness of shaft 1 in torsional direction 

in (N.m/rad) 
KS2T = 6759.10;         %Angular stiffness of shaft 2 in torsional direction 

in (N.m/rad) 
KCX  = 16066;           %Stiffness coefficient of coupling in x-direction in 

(N/m) 
KCY  = 16122;           %Stiffness coefficient of coupling in y-direction in 

(N/m) 
KCZ  = 171920;          %Stiffness coefficient of coupling in z-direction in 

(N/m) 
KCTX = 13.999;          %Angular stiffness of coupling about x-direction in 

(N.m/rad) 
KCTY = 13.928;          %Angular stiffness of coupling about y-direction in 

(N.m/rad) 
KCTZ = 328.711;         %Angular stiffness of coupling about z-direction in 

(N.m/rad) 

  
CB1X = 1.8E3;           %Damping coefficient of bearing 1 in x-direction in 

(N.s/m) 
CB1Y = 1.8E3;           %Damping coefficient of bearing 1 in y-direction in 

(N.s/m) 
CB2X = 1.8E3;           %Damping coefficient of bearing 2 in x-direction in 

(N.s/m) 
CB2Y = 1.8E3;           %Damping coefficient of bearing 2 in y-direction in 

(N.s/m) 
CCX  = 3.42;            %Damping coefficient of coupling  in x-direction in 

(N.s/m) 
CCY  = 3.27;            %Damping coefficient of coupling  in y-direction in 

(N.s/m) 
CCZ  = 5.65;            %Damping coefficient of coupling  in z-direction in 

(N.s/m) 

  

 

Program_2_SimulationData 

  
%% ===================================================================== %% 
disp(' ') 
disp('  >>     Execution of Program_2 : Simulation Data'  )  

  
%% ===================================================================== %% 

  
global MaxSimTime  DeltaSimTime  SimTime  NSimTimeSteps 

  

  
%% ===================================================================== %% 
%==                         Simulation Parameters                       ==% 
%=========================================================================% 

  
MaxSimTime    = 1;                             % Maximum Simulation Time in     

(s) 
DeltaSimTime  = 0.001;                       % Increment of Simlation Time 

in (s) 
SimTime       = 0:DeltaSimTime:MaxSimTime;     % Simulation Time Vector in      

(s) 
NSimTimeSteps = length(SimTime);               % Number of Simulation Steps 

(Units) 
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Program_3_Forces 

 %% ===================================================================== %% 
disp(' ') 
disp('  >>     Execution of the program_3 : Forces' )  

  

  
%% ===================================================================== %% 

  
global F1  F2  F3  F4  F5  F6  F7  F8  F9 F10  F11  F12 

  
%% ===================================================================== %% 
   F1  = zeros(1,NSimTimeSteps);            %Create empty array for force - 

X1     - in (N) 
   F2  = zeros(1,NSimTimeSteps);            %Create empty array for force - 

X2     - in (N) 
   F3  = zeros(1,NSimTimeSteps);            %Create empty array for force - 

Y1     - in (N) 
   F4  = zeros(1,NSimTimeSteps);            %Create empty array for force - 

Y2     - in (N) 
   F5  = zeros(1,NSimTimeSteps);            %Create empty array for force - 

Z1     - in (N) 
   F6  = zeros(1,NSimTimeSteps);            %Create empty array for force - 

Z2     - in (N) 
   F7  = zeros(1,NSimTimeSteps);            %Create empty array for force - 

THETA1 - in (N.m) 
   F8  = zeros(1,NSimTimeSteps);            %Create empty array for force - 

THETA2 - in (N.m) 
   F9  = zeros(1,NSimTimeSteps);            %Create empty array for force - 

BETA1  - in (N.m) 
   F10 = zeros(1,NSimTimeSteps);            %Create empty array for force - 

BETA2  - in (N.m) 
   F11 = zeros(1,NSimTimeSteps);            %Create empty array for force - 

ALPHA1 - in (N.m) 
   F12 = zeros(1,NSimTimeSteps);            %Create empty array for force - 

ALPHA2 - in (N.m) 

    
 %===============================================% 
 %==              Force Vector                 ==% 
 %===============================================% 

  
 for i = 1:NSimTimeSteps, 
     F1(i) = m1*e1*w^2*sin(w*SimTime(i))+ KCX * (dely/4)*sin(2*w*SimTime(i)) 

;      %Force array - X1 - in (N)  
     F2(i) = m2*e2*w^2*sin(w*SimTime(i))- KCX * (dely/4)*sin(2*w*SimTime(i)) 

;      %Force array - X2 - in (N) 
     F3(i) = m1*e1*w^2*cos(w*SimTime(i))+ KCY * 

(dely/4)*(1+cos(2*w*SimTime(i)));   %Force array - Y1 - in (N) 
     F4(i) = m2*e2*w^2*cos(w*SimTime(i))- KCY * 

(dely/4)*(1+cos(2*w*SimTime(i)));   %Force array - Y2 - in (N) 
     F7(i) = Iz1*e1/radius*w^2*sin(w*SimTime(i))+Iz1*-

((8*w^2*sin(2*SimTime(i)*w)*cos(dela)*(cos(dela) - 

1))/(((cos(2*SimTime(i)*w)*(cos(dela) - 1))/(2*cos(dela)^2 + 2) - 

1)^2*(2*cos(dela)^2 + 2)^2)); 
     F8(i) = Iz2*e2/radius*w^2*sin(w*SimTime(i))-Iz2*-

((8*w^2*sin(2*SimTime(i)*w)*cos(dela)*(cos(dela) - 

1))/(((cos(2*SimTime(i)*w)*(cos(dela) - 1))/(2*cos(dela)^2 + 2) - 

1)^2*(2*cos(dela)^2 + 2)^2)); 
end 
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Program_4_GoSimulation 

 %% ===================================================================== %% 
disp(' ') 
disp('  >>     Execution of program_4 : Go Simulation ')  

  
%% ===================================================================== %% 

  
global Time 
global X1 X2 Y1 Y2 Z1 Z2 THETA1 BETA1 ALPHA1 THETA2 BETA2 ALPHA2 
global X1_dot X2_dot Y1_dot Y2_dot Z1_dot Z2_dot THETA1_dot BETA1_dot 

ALPHA1_dot THETA2_dot BETA2_dot ALPHA2_dot 
global X1_Ddot X2_Ddot Y1_Ddot Y2_Ddot Z1_Ddot Z2_Ddot THETA1_Ddot 

BETA1_Ddot ALPHA1_Ddot THETA2_Ddot BETA2_Ddot ALPHA2_Ddot 

  
global Displ_X1          Veloc_X1         Accel_X1 
global Displ_X2          Veloc_X2         Accel_X2 
global Displ_Y1          Veloc_Y1         Accel_Y1 
global Displ_Y2          Veloc_Y2         Accel_Y2 
global Displ_Z1          Veloc_Z1         Accel_Z1 
global Displ_Z2          Veloc_Z2         Accel_Z2 
global Displ_THETA1      Veloc_THETA1     Accel_THETA1 
global Displ_THETA2      Veloc_THETA2     Accel_THETA2 
global Displ_BETA1       Veloc_BETA1      Accel_BETA1 
global Displ_BETA2       Veloc_BETA2      Accel_BETA2 
global Displ_ALPHA1      Veloc_ALPHA1     Accel_ALPHA1 
global Displ_ALPHA2      Veloc_ALPHA2     Accel_ALPHA2 

  
%% ===================================================================== %% 
%==                        Initial Conditions                           ==% 
%=========================================================================% 
X1_0         = 0;       %Create zero intial condition for displacement - X1 

- in (m) 
X2_0         = 0;       %Create zero intial condition for displacement - X2 

- in (m) 
Y1_0         = 0;       %Create zero intial condition for displacement - Y1 

- in (m) 
Y2_0         = 0;       %Create zero intial condition for displacement - Y2 

- in (m) 
Z1_0         = 0;       %Create zero intial condition for displacement - Z1 

- in (m) 
Z2_0         = 0;       %Create zero intial condition for displacement - Z2 

- in (m) 
THETA1_0     = 0;       %Create zero intial condition for angle - THETA1  - 

in (rad) 
THETA2_0     = 0;       %Create zero intial condition for angle - THETA2  - 

in (rad) 
BETA1_0      = 0;       %Create zero intial condition for angle - BETA1   - 

in (rad) 
BETA2_0      = 0;       %Create zero intial condition for angle - BETA2   - 

in (rad) 
ALPHA1_0     = 0;       %Create zero intial condition for angle - ALPHA1  - 

in (rad) 
ALPHA2_0     = 0;       %Create zero intial condition for angle - ALPHA2  - 

in (rad) 
X1_dot_0     = 0;       %Create zero intial condition for velocity - X1   - 

in (m/s) 
X2_dot_0     = 0;       %Create zero intial condition for velocity - X1   - 

in (m/s) 
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Y1_dot_0     = 0;       %Create zero intial condition for velocity - X1   - 

in (m/s) 
Y2_dot_0     = 0;       %Create zero intial condition for velocity - X1   - 

in (m/s) 
Z1_dot_0     = 0;       %Create zero intial condition for velocity - X1   - 

in (m/s) 
Z2_dot_0     = 0;       %Create zero intial condition for velocity - X1   - 

in (m/s) 
THETA1_dot_0 = 0;       %Create zero intial condition for angular velocity - 

THETA1 - in (rad/s) 
THETA2_dot_0 = 0;       %Create zero intial condition for angular velocity - 

THETA2 - in (rad/s) 
BETA1_dot_0  = 0;       %Create zero intial condition for angular velocity - 

BETA1  - in (rad/s) 
BETA2_dot_0  = 0;       %Create zero intial condition for angular velocity - 

BETA2  - in (rad/s) 
ALPHA1_dot_0 = 0;       %Create zero intial condition for angular velocity - 

ALPHA1 - in (rad/s) 
ALPHA2_dot_0 = 0;       %Create zero intial condition for angular velocity - 

ALPHA2 - in (rad/s) 

  
%% ===================================================================== %% 
%==              Starting of the For-Loop Calculation                   ==% 
%=========================================================================% 

  
h1 = waitbar(0,'Please wait...Calculation in Progress !'); 
for i = 1:NSimTimeSteps, 

                                 
waitbar(i/NSimTimeSteps,h1) 
%% ===================================================================== %% 
%==                           Mass Matrix                               ==% 
%=========================================================================% 

    

      
          Mass(1,1)  = m1; 
          Mass(1,2)  = 0; 
          Mass(1,3)  = 0; 
          Mass(1,4)  = 0; 
          Mass(1,5)  = 0; 
          Mass(1,6)  = 0; 
          Mass(1,7)  = 0; 
          Mass(1,8)  = 0; 
          Mass(1,9)  = 0; 
          Mass(1,10) = 0; 
          Mass(1,11) = 0; 
          Mass(1,12) = 0; 

           
          Mass(2,1)  = 0; 
          Mass(2,2)  = m2; 
          Mass(2,3)  = 0; 
          Mass(2,4)  = 0; 
          Mass(2,5)  = 0; 
          Mass(2,6)  = 0; 
          Mass(2,7)  = 0; 
          Mass(2,8)  = 0; 
          Mass(2,9)  = 0; 
          Mass(2,10) = 0; 
          Mass(2,11) = 0; 
          Mass(2,12) = 0; 

           
          Mass(3,1)  = 0; 
          Mass(3,2)  = 0; 
          Mass(3,3)  = m1; 
          Mass(3,4)  = 0; 
          Mass(3,5)  = 0; 
          Mass(3,6)  = 0; 
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          Mass(3,7)  = 0; 
          Mass(3,8)  = 0; 
          Mass(3,9)  = 0; 
          Mass(3,10) = 0; 
          Mass(3,11) = 0; 
          Mass(3,12) = 0; 

           
          Mass(4,1)  = 0; 
          Mass(4,2)  = 0; 
          Mass(4,3)  = 0; 
          Mass(4,4)  = m2; 
          Mass(4,5)  = 0; 
          Mass(4,6)  = 0; 
          Mass(4,7)  = 0; 
          Mass(4,8)  = 0; 
          Mass(4,9)  = 0; 
          Mass(4,10) = 0; 
          Mass(4,11) = 0; 
          Mass(4,12) = 0; 

           
          Mass(5,1)  = 0; 
          Mass(5,2)  = 0; 
          Mass(5,3)  = 0; 
          Mass(5,4)  = 0; 
          Mass(5,5)  = m1; 
          Mass(5,6)  = 0; 
          Mass(5,7)  = 0; 
          Mass(5,8)  = 0; 
          Mass(5,9)  = 0; 
          Mass(5,10) = 0; 
          Mass(5,11) = 0; 
          Mass(5,12) = 0; 

           
          Mass(6,1)  = 0; 
          Mass(6,2)  = 0; 
          Mass(6,3)  = 0; 
          Mass(6,4)  = 0; 
          Mass(6,5)  = 0; 
          Mass(6,6)  = m2; 
          Mass(6,7)  = 0; 
          Mass(6,8)  = 0; 
          Mass(6,9)  = 0; 
          Mass(6,10) = 0; 
          Mass(6,11) = 0; 
          Mass(6,12) = 0; 

           
          Mass(7,1)  = 0; 
          Mass(7,2)  = 0; 
          Mass(7,3)  = 0; 
          Mass(7,4)  = 0; 
          Mass(7,5)  = 0; 
          Mass(7,6)  = 0; 
          Mass(7,7)  = Iz1; 
          Mass(7,8)  = 0; 
          Mass(7,9)  = 0; 
          Mass(7,10) = 0; 
          Mass(7,11) = 0; 
          Mass(7,12) = 0; 

           
          Mass(8,1)  = 0; 
          Mass(8,2)  = 0; 
          Mass(8,3)  = 0; 
          Mass(8,4)  = 0; 
          Mass(8,5)  = 0; 
          Mass(8,6)  = 0; 
          Mass(8,7)  = 0; 
          Mass(8,8)  = Iz2; 
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          Mass(8,9)  = 0; 
          Mass(8,10) = 0; 
          Mass(8,11) = 0; 
          Mass(8,12) = 0; 

           
          Mass(9,1)  = 0; 
          Mass(9,2)  = 0; 
          Mass(9,3)  = 0; 
          Mass(9,4)  = 0; 
          Mass(9,5)  = 0; 
          Mass(9,6)  = 0; 
          Mass(9,7)  = 0; 
          Mass(9,8)  = 0; 
          Mass(9,9)  = Ix1;     
          Mass(9,10) = 0; 
          Mass(9,11) = 0; 
          Mass(9,12) = 0; 

           
          Mass(10,1)  = 0; 
          Mass(10,2)  = 0; 
          Mass(10,3)  = 0; 
          Mass(10,4)  = 0; 
          Mass(10,5)  = 0; 
          Mass(10,6)  = 0; 
          Mass(10,7)  = 0; 
          Mass(10,8)  = 0; 
          Mass(10,9)  = 0;     
          Mass(10,10) = Ix2; 
          Mass(10,11) = 0; 
          Mass(10,12) = 0; 

           
          Mass(11,1)  = 0; 
          Mass(11,2)  = 0; 
          Mass(11,3)  = 0; 
          Mass(11,4)  = 0; 
          Mass(11,5)  = 0; 
          Mass(11,6)  = 0; 
          Mass(11,7)  = 0; 
          Mass(11,8)  = 0; 
          Mass(11,9)  = 0;     
          Mass(11,10) = 0; 
          Mass(11,11) = Iy1; 
          Mass(11,12) = 0; 

           
          Mass(12,1)  = 0; 
          Mass(12,2)  = 0; 
          Mass(12,3)  = 0; 
          Mass(12,4)  = 0; 
          Mass(12,5)  = 0; 
          Mass(12,6)  = 0; 
          Mass(12,7)  = 0; 
          Mass(12,8)  = 0; 
          Mass(12,9)  = 0;     
          Mass(12,10) = 0; 
          Mass(12,11) = 0; 
          Mass(12,12) = Iy2; 

           
     INVMM = inv(Mass);                                 %Creating mass 

inverse matrix 

  
%% ===================================================================== %% 
%==                        Stiffness Matrix                             ==% 
%=========================================================================% 

  
          Stiff(1,1)  = KB1X + KCX + KS1X; 
          Stiff(1,2)  = -KCX; 
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          Stiff(1,3)  = 0; 
          Stiff(1,4)  = 0; 
          Stiff(1,5)  = 0; 
          Stiff(1,6)  = 0; 
          Stiff(1,7)  = 0; 
          Stiff(1,8)  = 0; 
          Stiff(1,9)  = 0; 
          Stiff(1,10) = 0; 
          Stiff(1,11) = 0; 
          Stiff(1,12) = 0; 

  
          Stiff(2,1)  = -KCX; 
          Stiff(2,2)  = KB2X + KCX + KS2X; 
          Stiff(2,3)  = 0; 
          Stiff(2,4)  = 0; 
          Stiff(2,5)  = 0; 
          Stiff(2,6)  = 0; 
          Stiff(2,7)  = 0; 
          Stiff(2,8)  = 0; 
          Stiff(2,9)  = 0; 
          Stiff(2,10) = 0; 
          Stiff(2,11) = 0; 
          Stiff(2,12) = 0; 

           
          Stiff(3,1)  = 0; 
          Stiff(3,2)  = 0; 
          Stiff(3,3)  = KB1Y + KCY + KS1Y; 
          Stiff(3,4)  = -KCY; 
          Stiff(3,5)  = 0; 
          Stiff(3,6)  = 0; 
          Stiff(3,7)  = 0; 
          Stiff(3,8)  = 0; 
          Stiff(3,9)  = 0; 
          Stiff(3,10) = 0; 
          Stiff(3,11) = 0; 
          Stiff(3,12) = 0; 

           
          Stiff(4,1)  = 0; 
          Stiff(4,2)  = 0; 
          Stiff(4,3)  = -KCY; 
          Stiff(4,4)  = KB2Y + KCY + KS2Y; 
          Stiff(4,5)  = 0; 
          Stiff(4,6)  = 0; 
          Stiff(4,7)  = 0; 
          Stiff(4,8)  = 0; 
          Stiff(4,9)  = 0; 
          Stiff(4,10) = 0; 
          Stiff(4,11) = 0; 
          Stiff(4,12) = 0; 

           
          Stiff(5,1)  = 0; 
          Stiff(5,2)  = 0; 
          Stiff(5,3)  = 0; 
          Stiff(5,4)  = 0; 
          Stiff(5,5)  = KCZ + KS1Z; 
          Stiff(5,6)  = -KCZ; 
          Stiff(5,7)  = 0; 
          Stiff(5,8)  = 0; 
          Stiff(5,9)  = 0; 
          Stiff(5,10) = 0; 
          Stiff(5,11) = 0; 
          Stiff(5,12) = 0; 

           
          Stiff(6,1)  = 0; 
          Stiff(6,2)  = 0; 
          Stiff(6,3)  = 0; 
          Stiff(6,4)  = 0; 
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          Stiff(6,5)  = -KCZ; 
          Stiff(6,6)  = KCZ + KS2Z; 
          Stiff(6,7)  = 0; 
          Stiff(6,8)  = 0; 
          Stiff(6,9)  = 0; 
          Stiff(6,10) = 0; 
          Stiff(6,11) = 0; 
          Stiff(6,12) = 0; 

           
          Stiff(7,1)  = 0; 
          Stiff(7,2)  = 0; 
          Stiff(7,3)  = 0; 
          Stiff(7,4)  = 0; 
          Stiff(7,5)  = 0; 
          Stiff(7,6)  = 0; 
          Stiff(7,7)  = KCTZ + KS1T; 
          Stiff(7,8)  = -KCTZ; 
          Stiff(7,9)  = 0; 
          Stiff(7,10) = 0; 
          Stiff(7,11) = 0; 
          Stiff(7,12) = 0; 

           
          Stiff(8,1)  = 0; 
          Stiff(8,2)  = 0; 
          Stiff(8,3)  = 0; 
          Stiff(8,4)  = 0; 
          Stiff(8,5)  = 0; 
          Stiff(8,6)  = 0; 
          Stiff(8,7)  = -KCTZ; 
          Stiff(8,8)  = KCTZ + KS2T; 
          Stiff(8,9)  = 0; 
          Stiff(8,10) = 0; 
          Stiff(8,11) = 0; 
          Stiff(8,12) = 0; 

           
          Stiff(9,1)  = 0; 
          Stiff(9,2)  = 0; 
          Stiff(9,3)  = 0; 
          Stiff(9,4)  = 0; 
          Stiff(9,5)  = 0; 
          Stiff(9,6)  = 0; 
          Stiff(9,7)  = 0; 
          Stiff(9,8)  = 0; 
          Stiff(9,9)  = KCTX; 
          Stiff(9,10) = -KCTX; 
          Stiff(9,11) = 0; 
          Stiff(9,12) = 0; 

           
          Stiff(10,1)  = 0; 
          Stiff(10,2)  = 0; 
          Stiff(10,3)  = 0; 
          Stiff(10,4)  = 0; 
          Stiff(10,5)  = 0; 
          Stiff(10,6)  = 0; 
          Stiff(10,7)  = 0; 
          Stiff(10,8)  = 0; 
          Stiff(10,9)  = -KCTX; 
          Stiff(10,10) = KCTX; 
          Stiff(10,11) = 0; 
          Stiff(10,12) = 0; 

           
          Stiff(11,1)  = 0; 
          Stiff(11,2)  = 0; 
          Stiff(11,3)  = 0; 
          Stiff(11,4)  = 0; 
          Stiff(11,5)  = 0; 
          Stiff(11,6)  = 0; 
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          Stiff(11,7)  = 0; 
          Stiff(11,8)  = 0; 
          Stiff(11,9)  = 0; 
          Stiff(11,10) = 0; 
          Stiff(11,11) = KCTY; 
          Stiff(11,12) = -KCTY; 

           
          Stiff(12,1)  = 0; 
          Stiff(12,2)  = 0; 
          Stiff(12,3)  = 0; 
          Stiff(12,4)  = 0; 
          Stiff(12,5)  = 0; 
          Stiff(12,6)  = 0; 
          Stiff(12,7)  = 0; 
          Stiff(12,8)  = 0; 
          Stiff(12,9)  = 0; 
          Stiff(12,10) = 0; 
          Stiff(12,11) = -KCTY; 
          Stiff(12,12) = KCTY; 
%% ===================================================================== %% 
%==                          Damping Matrix                             ==% 
%=========================================================================% 

          
          Damp(1,1)  = CB1X + CCX; 
          Damp(1,2)  = -CCX; 
          Damp(1,3)  = 0; 
          Damp(1,4)  = 0; 
          Damp(1,5)  = 0; 
          Damp(1,6)  = 0; 
          Damp(1,7)  = 0; 
          Damp(1,8)  = 0; 
          Damp(1,9)  = 0; 
          Damp(1,10) = 0; 
          Damp(1,11) = 0; 
          Damp(1,12) = 0; 

           
          Damp(2,1)  = -CCX; 
          Damp(2,2)  = CB2X + CCX; 
          Damp(2,3)  = 0; 
          Damp(2,4)  = 0; 
          Damp(2,5)  = 0; 
          Damp(2,6)  = 0; 
          Damp(2,7)  = 0; 
          Damp(2,8)  = 0; 
          Damp(2,9)  = 0; 
          Damp(2,10) = 0; 
          Damp(2,11) = 0; 
          Damp(2,12) = 0; 

           
          Damp(3,1)  = 0; 
          Damp(3,2)  = 0; 
          Damp(3,3)  = CB1Y + CCY; 
          Damp(3,4)  = -CCY; 
          Damp(3,5)  = 0; 
          Damp(3,6)  = 0; 
          Damp(3,7)  = 0; 
          Damp(3,8)  = 0; 
          Damp(3,9)  = 0; 
          Damp(3,10) = 0; 
          Damp(3,11) = 0; 
          Damp(3,12) = 0; 

           
          Damp(4,1)  = 0; 
          Damp(4,2)  = 0; 
          Damp(4,3)  = -CCY; 
          Damp(4,4)  = CB2Y + CCY; 
          Damp(4,5)  = 0; 
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          Damp(4,6)  = 0; 
          Damp(4,7)  = 0; 
          Damp(4,8)  = 0; 
          Damp(4,9)  = 0; 
          Damp(4,10) = 0; 
          Damp(4,11) = 0; 
          Damp(4,12) = 0; 

           
          Damp(5,1)  = 0; 
          Damp(5,2)  = 0; 
          Damp(5,3)  = 0; 
          Damp(5,4)  = 0; 
          Damp(5,5)  = CCZ; 
          Damp(5,6)  = -CCZ; 
          Damp(5,7)  = 0; 
          Damp(5,8)  = 0; 
          Damp(5,9)  = 0; 
          Damp(5,10) = 0; 
          Damp(5,11) = 0; 
          Damp(5,12) = 0; 

           
          Damp(6,1)  = 0; 
          Damp(6,2)  = 0; 
          Damp(6,3)  = 0; 
          Damp(6,4)  = 0; 
          Damp(6,5)  = -CCZ; 
          Damp(6,6)  = CCZ; 
          Damp(6,7)  = 0; 
          Damp(6,8)  = 0; 
          Damp(6,9)  = 0; 
          Damp(6,10) = 0; 
          Damp(6,11) = 0; 
          Damp(6,12) = 0; 

           
          Damp(7,1)  = 0; 
          Damp(7,2)  = 0; 
          Damp(7,3)  = 0; 
          Damp(7,4)  = 0; 
          Damp(7,5)  = 0; 
          Damp(7,6)  = 0; 
          Damp(7,7)  = 0; 
          Damp(7,8)  = 0; 
          Damp(7,9)  = 0; 
          Damp(7,10) = 0; 
          Damp(7,11) = 0; 
          Damp(7,12) = 0; 

           
          Damp(8,1)  = 0; 
          Damp(8,2)  = 0; 
          Damp(8,3)  = 0; 
          Damp(8,4)  = 0; 
          Damp(8,5)  = 0; 
          Damp(8,6)  = 0; 
          Damp(8,7)  = 0; 
          Damp(8,8)  = 0; 
          Damp(8,9)  = 0; 
          Damp(8,10) = 0; 
          Damp(8,11) = 0; 
          Damp(8,12) = 0; 

           
          Damp(9,1)  = 0; 
          Damp(9,2)  = 0; 
          Damp(9,3)  = 0; 
          Damp(9,4)  = 0; 
          Damp(9,5)  = 0; 
          Damp(9,6)  = 0; 
          Damp(9,7)  = 0; 
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          Damp(9,8)  = 0; 
          Damp(9,9)  = 0; 
          Damp(9,10) = 0; 
          Damp(9,11) = 0; 
          Damp(9,12) = 0; 

           
          Damp(10,1)  = 0; 
          Damp(10,2)  = 0; 
          Damp(10,3)  = 0; 
          Damp(10,4)  = 0; 
          Damp(10,5)  = 0; 
          Damp(10,6)  = 0; 
          Damp(10,7)  = 0; 
          Damp(10,8)  = 0; 
          Damp(10,9)  = 0; 
          Damp(10,10) = 0; 
          Damp(10,11) = 0; 
          Damp(10,12) = 0; 

           
          Damp(11,1)  = 0; 
          Damp(11,2)  = 0; 
          Damp(11,3)  = 0; 
          Damp(11,4)  = 0; 
          Damp(11,5)  = 0; 
          Damp(11,6)  = 0; 
          Damp(11,7)  = 0; 
          Damp(11,8)  = 0; 
          Damp(11,9)  = 0; 
          Damp(11,10) = 0; 
          Damp(11,11) = 0; 
          Damp(11,12) = 0; 

           
          Damp(12,1)  = 0; 
          Damp(12,2)  = 0; 
          Damp(12,3)  = 0; 
          Damp(12,4)  = 0; 
          Damp(12,5)  = 0; 
          Damp(12,6)  = 0; 
          Damp(12,7)  = 0; 
          Damp(12,8)  = 0; 
          Damp(12,9)  = 0; 
          Damp(12,10) = 0; 
          Damp(12,11) = 0; 
          Damp(12,12) = 0; 

           
%% ===================================================================== %% 
%==                     Launching  SIMULATION                           ==% 
%=========================================================================% 

        

  
   %options = simset('MaxStep',DeltaSimTime/5); 
   options = simset('MaxStep',1e-5); 

    
 %===============================================% 
 %==              Force Matrix                 ==% 
 %===============================================% 

  
   ST  = SimTime';                  %Transpose of time array to create 

vector 

  
   FF1  = F1';                      %Transpose of force in X1     array to 

create vector in (N) 
   FF2  = F2';                      %Transpose of force in X2     array to 

create vector in (N) 
   FF3  = F3';                      %Transpose of force in Y1     array to 

create vector in (N) 
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   FF4  = F4';                      %Transpose of force in Y2     array to 

create vector in (N) 
   FF5  = F5';                      %Transpose of force in Z1     array to 

create vector in (N) 
   FF6  = F6';                      %Transpose of force in Z2     array to 

create vector in (N) 
   FF7  = F7';                      %Transpose of force in THETA1 array to 

create vector in (N.m) 
   FF8  = F8';                      %Transpose of force in THETA2 array to 

create vector in (N.m) 
   FF9  = F9';                      %Transpose of force in BETA1  array to 

create vector in (N.m) 
   FF10  = F10';                    %Transpose of force in BETA2  array to 

create vector in (N.m) 
   FF11  = F11';                    %Transpose of force in ALPHA1 array to 

create vector in (N.m) 
   FF12  = F12';                    %Transpose of force in ALPHA2 array to 

create vector in (N.m) 

    

    
TStartSim = SimTime(i);                 %Setting simulation starting time 
TFinalSim = TStartSim + DeltaSimTime;   %Setting simulation final    time 

    

  
sim('Rotor_Coupling_Bearing_System_12DOF',[TStartSim TFinalSim],options);   

%Starting simulation in Simulink 

  
    %================== LOADING OF THE RESULTS  ==========================% 

  
     load X_File.mat                                            %Saving 

displacement results in X.mat file  
     load V_File.mat                                            %Saving 

Velocity     results in V.mat file  
     load A_File.mat                                            %Saving 

Acceleration results in A.mat file  

  
     Vect01 = X_Variable'; 
     Vect02 = V_Variable'; 
     Vect03 = A_Variable'; 

  
     Time  = Vect01(:,1);  %-------------------------% Time Vector 
     Nmax  = length(Time); %-------------------------% length of the vector 

  

  
     X1       = Vect01(:, 2); %--------> Displacements and Angles <-------% 
     X2       = Vect01(:, 3);  
     Y1       = Vect01(:, 4);  
     Y2       = Vect01(:, 5);  
     Z1       = Vect01(:, 6);      
     Z2       = Vect01(:, 7);            
     THETA1   = Vect01(:, 8);  
     THETA2   = Vect01(:, 9);      
     BETA1    = Vect01(:,10);      
     BETA2    = Vect01(:,11);  
     ALPHA1   = Vect01(:,12);      
     ALPHA2   = Vect01(:,13); 

  

              
     X1_dot      = Vect02(:, 2);  %-------------> Velocities <------------% 
     X2_dot      = Vect02(:, 3);  
     Y1_dot      = Vect02(:, 4);  
     Y2_dot      = Vect02(:, 5);  
     Z1_dot      = Vect02(:, 6);      
     Z2_dot      = Vect02(:, 7);            
     THETA1_dot  = Vect02(:, 8);  
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     THETA2_dot  = Vect02(:, 9);      
     BETA1_dot   = Vect02(:,10);      
     BETA2_dot   = Vect02(:,11);  
     ALPHA1_dot  = Vect02(:,12);      
     ALPHA2_dot  = Vect02(:,13); 

     

                 
     X1_Ddot       = Vect03(:, 2);   %----------> Accelerations <---------% 
     X2_Ddot       = Vect03(:, 3);  
     Y1_Ddot       = Vect03(:, 4);  
     Y2_Ddot       = Vect03(:, 5);  
     Z1_Ddot       = Vect03(:, 6);      
     Z2_Ddot       = Vect03(:, 7);            
     THETA1_Ddot   = Vect03(:, 8);  
     THETA2_Ddot   = Vect03(:, 9);      
     BETA1_Ddot    = Vect03(:,10);    
     BETA2_Ddot    = Vect03(:,11);  
     ALPHA1_Ddot   = Vect03(:,12);      
     ALPHA2_Ddot   = Vect03(:,13); 

      
     %======== Up-Dating of the initial conditions for next step =========% 

  

  

      
     X1_0            = X1(length(X1));                   
     X1_dot_0        = X1_dot(length(X1_dot)); 

  
     X2_0            = X2(length(X2));              
     X2_dot_0        = X2_dot(length(X2_dot)); 

  
     Y1_0            = Y1(length(Y1));                
     Y1_dot_0        = Y1_dot(length(Y1_dot)); 

  
     Y2_0            = Y2(length(Y2)); 
     Y2_dot_0        = Y2_dot(length(Y2_dot)); 

  
     Z1_0            = Z1(length(Z1)); 
     Z1_dot_0        = Z1_dot(length(Z1_dot)); 

  
     Z2_0            = Z2(length(Z2)); 
     Z2_dot_0        = Z2_dot(length(Z2_dot)); 

  
     THETA1_0        = THETA1(length(THETA1)); 
     THETA1_dot_0    = THETA1_dot(length(THETA1_dot)); 

  
     THETA2_0        = THETA2(length(THETA2)); 
     THETA2_dot_0    = THETA2_dot(length(THETA2_dot)); 

  
     BETA1_0         = BETA1(length(BETA1)); 
     BETA1_dot_0     = BETA1_dot(length(BETA1_dot));  

      
     BETA2_0         = BETA2(length(BETA2)); 
     BETA2_dot_0     = BETA2_dot(length(BETA2_dot)); 

  
     ALPHA1_0        = ALPHA1(length(ALPHA1)); 
     ALPHA1_dot_0    = ALPHA1_dot(length(ALPHA1_dot)); 

  
     ALPHA2_0        = ALPHA2(length(ALPHA2)); 
     ALPHA2_dot_0    = ALPHA2_dot(length(ALPHA2_dot));  

      
     %======== Building of the Data Output Arrays =========% 

  
     Displ_X1(i)    = X1(length(X1));                 
     Veloc_X1(i)    = X1_dot(length(X1_Ddot)); 
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     Accel_X1(i)    = X1_Ddot(length(X1_Ddot)); 

  
     Displ_X2(i)    = X2(length(X2));              
     Veloc_X2(i)    = X2_dot(length(X2_dot)); 
     Accel_X2(i)    = X2_Ddot(length(X2_Ddot)); 

  
     Displ_Y1(i)    = Y1(length(Y1));                
     Veloc_Y1(i)    = Y1_dot(length(Y1_dot)); 
     Accel_Y1(i)    = Y1_Ddot(length(Y1_Ddot)); 

  
     Displ_Y2(i)    = Y2(length(Y2)); 
     Veloc_Y2(i)    = Y2_dot(length(Y2_dot)); 
     Accel_Y2(i)    = Y2_Ddot(length(Y2_Ddot)); 

  
     Displ_Z1(i)    = Z1(length(Z1)); 
     Veloc_Z1(i)    = Z1_dot(length(Z1_dot)); 
     Accel_Z1(i)    = Z1_Ddot(length(Z1_Ddot)); 

  
     Displ_Z2(i)    = Z2(length(Z2)); 
     Veloc_Z2(i)    = Z2_dot(length(Z2_dot)); 
     Accel_Z2(i)    = Z2_Ddot(length(Z2_Ddot)); 

  
     Displ_THETA1(i)   = THETA1(length(THETA1)); 
     Veloc_THETA1(i)   = THETA1_dot(length(THETA1_dot)); 
     Accel_THETA1(i)   = THETA1_Ddot(length(THETA1_Ddot)); 

  
     Displ_THETA2(i)   = THETA2(length(THETA2)); 
     Veloc_THETA2(i)   = THETA2_dot(length(THETA2_dot)); 
     Accel_THETA2(i)   = THETA2_Ddot(length(THETA2_Ddot)); 

  
     Displ_BETA1(i)   = BETA1(length(BETA1)); 
     Veloc_BETA1(i)   = BETA1_dot(length(BETA1_dot)); 
     Accel_BETA1(i)   = BETA1_Ddot(length(BETA1_Ddot)); 

      
     Displ_BETA2(i)   = BETA2(length(BETA2)); 
     Veloc_BETA2(i)   = BETA2_dot(length(BETA2_dot)); 
     Accel_BETA2(i)   = BETA2_Ddot(length(BETA2_Ddot)); 

      
     Displ_ALPHA1(i)   = ALPHA1(length(ALPHA1)); 
     Veloc_ALPHA1(i)   = ALPHA1_dot(length(ALPHA1_dot)); 
     Accel_ALPHA1(i)   = ALPHA1_Ddot(length(ALPHA1_Ddot)); 

      
     Displ_ALPHA2(i)   = ALPHA2(length(ALPHA2)); 
     Veloc_ALPHA2(i)   = ALPHA2_dot(length(ALPHA2_dot)); 
     Accel_ALPHA2(i)   = ALPHA2_Ddot(length(ALPHA2_Ddot)); 

      
 end 
close(h1) 
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Program_5_FastFourierTransform 

 %% ================================================================= %% 
disp(' ') 
disp('  >>     Execution of program_5 : Fast Fourier Transform')  

  
%% ===================================================================== %% 
global f 
global P1X1 P1X2 P1Y1 P1Y2 P1Z1 P1Z2 P1THETA1 P1BETA1 P1ALPHA1 P1THETA2 

P1BETA2 P1ALPHA2 
global P1X1_dot P1X2_dot P1Y1_dot P1Y2_dot P1Z1_dot P1Z2_dot P1THETA1_dot 

P1BETA1_dot P1ALPHA1_dot P1THETA2_dot P1BETA2_dot P1ALPHA2_dot 
global P1X1_Ddot P1X2_Ddot P1Y1_Ddot P1Y2_Ddot P1Z1_Ddot P1Z2_Ddot 

P1THETA1_Ddot P1BETA1_Ddot P1ALPHA1_Ddot P1THETA2_Ddot P1BETA2_Ddot 

P1ALPHA2_Ddot 

  
%% ================================================================= %% 

  
Fs = 1/DeltaSimTime;        % Sampling frequency in (Hz) 
t = SimTime;                % Time vector        in ( s) 
L = length(t);              % Signal length 
f = Fs*(0:(L/2))/L;         % Frequency rang    (x-axis) 

  
%FFT for Displacement  

  
FX1 = fft(Displ_X1);                                %FFT for Displacement     

in X1 direction 
P2X1 = abs(FX1/L);                                  %Taking absolute value 

of the FFT /length 
P1X1 = P2X1(1:L/2+1);                               %Considering half  the 

frequency spectrum 
P1X1(2:end-1) = 2*P1X1(2:end-1);                    %Magnifying   amplitude 

to original value in (m) 

  
FX2 = fft(Displ_X2);                                %FFT for Displacement     

in X2 direction 
P2X2 = abs(FX2/L);                                  %Taking absolute value 

of the FFT /length 
P1X2 = P2X2(1:L/2+1);                               %Considering half  the 

frequency spectrum 
P1X2(2:end-1) = 2*P1X2(2:end-1);                    %Magnifying   amplitude 

to original value in (m) 

  
FY1 = fft(Displ_Y1);                                %FFT for Displacement     

in Y1 direction 
P2Y1 = abs(FY1/L);                                  %Taking absolute value 

of the FFT /length 
P1Y1 = P2Y1(1:L/2+1);                               %Considering half  the 

frequency spectrum 
P1Y1(2:end-1) = 2*P1Y1(2:end-1);                    %Magnifying   amplitude 

to original value in (m) 

  
FY2 = fft(Displ_Y2);                                %FFT for Displacement     

in Y2 direction 
P2Y2 = abs(FY2/L);                                  %Taking absolute value 

of the FFT /length 
P1Y2 = P2Y2(1:L/2+1);                               %Considering half  the 

frequency spectrum 
P1Y2(2:end-1) = 2*P1Y2(2:end-1);                    %Magnifying   amplitude 

to original value in (m) 
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FZ1 = fft(Displ_Z1);                                %FFT for Displacement     

in Z1 direction 
P2Z1 = abs(FZ1/L);                                  %Taking absolute value 

of the FFT /length 
P1Z1 = P2Z1(1:L/2+1);                               %Considering half  the 

frequency spectrum 
P1Z1(2:end-1) = 2*P1Z1(2:end-1);                    %Magnifying   amplitude 

to original value in (m) 

  
FZ2 = fft(Displ_Z2);                                %FFT for Displacement     

in Z2 direction 
P2Z2 = abs(FZ2/L);                                  %Taking absolute value 

of the FFT /length 
P1Z2 = P2Z2(1:L/2+1);                               %Considering half  the 

frequency spectrum 
P1Z2(2:end-1) = 2*P1Z2(2:end-1);                    %Magnifying   amplitude 

to original value in (m) 

  
FTHETA1 = fft(Displ_THETA1*180/pi);                 %FFT for Displacement in 

THETA1 direction 
P2THETA1 = abs(FTHETA1/L);                          %Taking absolute value 

of the FFT /length 
P1THETA1 = P2THETA1(1:L/2+1);                       %Considering half  the 

frequency spectrum 
P1THETA1(2:end-1) = 2*P1THETA1(2:end-1);            %Magnifying   amplitude 

to original value in (degrees) 

  
FTHETA2 = fft(Displ_THETA2*180/pi);                 %FFT for Displacement in 

THETA2 direction 
P2THETA2 = abs(FTHETA2/L);                          %Taking absolute value 

of the FFT /length 
P1THETA2 = P2THETA2(1:L/2+1);                       %Considering half  the 

frequency spectrum 
P1THETA2(2:end-1) = 2*P1THETA2(2:end-1);            %Magnifying   amplitude 

to original value in (degrees) 

  
FBETA1 = fft(Displ_BETA1*180/pi);                   %FFT for Displacement in 

BETA1  direction 
P2BETA1 = abs(FBETA1/L);                            %Taking absolute value 

of the FFT /length 
P1BETA1 = P2BETA1(1:L/2+1);                         %Considering half  the 

frequency spectrum 
P1BETA1(2:end-1) = 2*P1BETA1(2:end-1);              %Magnifying   amplitude 

to original value in (degrees) 

  
FBETA2 = fft(Displ_BETA2*180/pi);                   %FFT for Displacement in 

BETA2  direction 
P2BETA2 = abs(FBETA2/L);                            %Taking absolute value 

of the FFT /length 
P1BETA2 = P2BETA2(1:L/2+1);                         %Considering half  the 

frequency spectrum 
P1BETA2(2:end-1) = 2*P1BETA2(2:end-1);              %Magnifying   amplitude 

to original value in (degrees) 

  
FALPHA1 = fft(Displ_ALPHA1*180/pi);                 %FFT for Displacement in 

ALPHA1 direction 
P2ALPHA1 = abs(FALPHA1/L);                          %Taking absolute value 

of the FFT /length 
P1ALPHA1 = P2ALPHA1(1:L/2+1);                       %Considering half  the 

frequency spectrum 
P1ALPHA1(2:end-1) = 2*P1ALPHA1(2:end-1);            %Magnifying   amplitude 

to original value in (degrees) 

  
FALPHA2 = fft(Displ_ALPHA2*180/pi);                 %FFT for Displacement in 

ALPHA2 direction 
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P2ALPHA2 = abs(FALPHA2/L);                          %Taking absolute value 

of the FFT /length 
P1ALPHA2 = P2ALPHA2(1:L/2+1);                       %Considering half  the 

frequency spectrum 
P1ALPHA2(2:end-1) = 2*P1ALPHA2(2:end-1);            %Magnifying   amplitude 

to original value in (degrees) 

  
% FFT for Velocity  

  
FX1_dot = fft(Veloc_X1);                            %FFT for Velocity         

in X1 direction 
P2X1_dot = abs(FX1_dot/L);                          %Taking absolute value 

of the FFT /length 
P1X1_dot = P2X1_dot(1:L/2+1);                       %Considering half  the 

frequency spectrum 
P1X1_dot(2:end-1) = 2*P1X1_dot(2:end-1);            %Magnifying   amplitude 

to original value in (m/s) 

  
FX2_dot = fft(Veloc_X2);                            %FFT for Velocity         

in X2 direction 
P2X2_dot = abs(FX2_dot/L);                          %Taking absolute value 

of the FFT /length 
P1X2_dot = P2X2_dot(1:L/2+1);                       %Considering half  the 

frequency spectrum 
P1X2_dot(2:end-1) = 2*P1X2_dot(2:end-1);            %Magnifying   amplitude 

to original value in (m/s) 

     
FY1_dot = fft(Veloc_Y1);                            %FFT for Velocity         

in Y1 direction 
P2Y1_dot = abs(FY1_dot/L);                          %Taking absolute value 

of the FFT /length 
P1Y1_dot = P2Y1_dot(1:L/2+1);                       %Considering half  the 

frequency spectrum 
P1Y1_dot(2:end-1) = 2*P1Y1_dot(2:end-1);            %Magnifying   amplitude 

to original value in (m/s) 

  
FY2_dot = fft(Veloc_Y2);                            %FFT for Velocity         

in Y2 direction 
P2Y2_dot = abs(FY2_dot/L);                          %Taking absolute value 

of the FFT /length 
P1Y2_dot = P2Y2_dot(1:L/2+1);                       %Considering half  the 

frequency spectrum 
P1Y2_dot(2:end-1) = 2*P1Y2_dot(2:end-1);            %Magnifying   amplitude 

to original value in (m/s) 

  
FZ1_dot = fft(Veloc_Z1);                            %FFT for Velocity         

in Z1 direction 
P2Z1_dot = abs(FZ1_dot/L);                          %Taking absolute value 

of the FFT /length 
P1Z1_dot = P2Z1_dot(1:L/2+1);                       %Considering half  the 

frequency spectrum 
P1Z1_dot(2:end-1) = 2*P1Z1_dot(2:end-1);            %Magnifying   amplitude 

to original value in (m/s) 

  
FZ2_dot = fft(Veloc_Z2);                            %FFT for Velocity         

in Z2 direction 
P2Z2_dot = abs(FZ2_dot/L);                          %Taking absolute value 

of the FFT /length 
P1Z2_dot = P2Z2_dot(1:L/2+1);                       %Considering half  the 

frequency spectrum 
P1Z2_dot(2:end-1) = 2*P1Z2_dot(2:end-1);            %Magnifying   amplitude 

to original value in (m/s) 

  
FTHETA1_dot = fft(Veloc_THETA1*180/pi);             %FFT for Velocity     in 

THETA1 direction 
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P2THETA1_dot = abs(FTHETA1_dot/L);                  %Taking absolute value 

of the FFT /length 
P1THETA1_dot = P2THETA1_dot(1:L/2+1);               %Considering half  the 

frequency spectrum 
P1THETA1_dot(2:end-1) = 2*P1THETA1_dot(2:end-1);    %Magnifying   amplitude 

to original value in (degree/s) 

  
FTHETA2_dot = fft(Veloc_THETA2*180/pi);             %FFT for Velocity     in 

THETA2 direction 
P2THETA2_dot = abs(FTHETA2_dot/L);                  %Taking absolute value 

of the FFT /length 
P1THETA2_dot = P2THETA2_dot(1:L/2+1);               %Considering half  the 

frequency spectrum 
P1THETA2_dot(2:end-1) = 2*P1THETA2_dot(2:end-1);    %Magnifying   amplitude 

to original value in (degree/s) 

  
FBETA1_dot = fft(Veloc_BETA1*180/pi);               %FFT for Velocity     in 

BETA1  direction 
P2BETA1_dot = abs(FBETA1_dot/L);                    %Taking absolute value 

of the FFT /length 
P1BETA1_dot = P2BETA1_dot(1:L/2+1);                 %Considering half  the 

frequency spectrum 
P1BETA1_dot(2:end-1) = 2*P1BETA1_dot(2:end-1);      %Magnifying   amplitude 

to original value in (degree/s) 

  
FBETA2_dot = fft(Veloc_BETA2*180/pi);               %FFT for Velocity     in 

BETA2  direction 
P2BETA2_dot = abs(FBETA2_dot/L);                    %Taking absolute value 

of the FFT /length 
P1BETA2_dot = P2BETA2_dot(1:L/2+1);                 %Considering half  the 

frequency spectrum 
P1BETA2_dot(2:end-1) = 2*P1BETA2_dot(2:end-1);      %Magnifying   amplitude 

to original value in (degree/s) 

  
FALPHA1_dot = fft(Veloc_ALPHA1*180/pi);             %FFT for Velocity     in 

ALPHA1 direction 
P2ALPHA1_dot = abs(FALPHA1_dot/L);                  %Taking absolute value 

of the FFT /length 
P1ALPHA1_dot = P2ALPHA1_dot(1:L/2+1);               %Considering half  the 

frequency spectrum 
P1ALPHA1_dot(2:end-1) = 2*P1ALPHA1_dot(2:end-1);    %Magnifying   amplitude 

to original value in (degree/s) 

     
FALPHA2_dot = fft(Veloc_ALPHA2*180/pi);              %FFT for Velocity     

in ALPHA2 direction 
P2ALPHA2_dot = abs(FALPHA2_dot/L);                  %Taking absolute value 

of the FFT /length 
P1ALPHA2_dot = P2ALPHA2_dot(1:L/2+1);               %Considering half  the 

frequency spectrum 
P1ALPHA2_dot(2:end-1) = 2*P1ALPHA2_dot(2:end-1);    %Magnifying   amplitude 

to original value in (degree/s) 

  

  
%FFT for Acceleration  

  
FX1_Ddot = fft(Accel_X1);                           %FFT for Acceleration     

in X1 direction 
P2X1_Ddot = abs(FX1_Ddot/L);                        %Taking absolute value 

of the FFT /length 
P1X1_Ddot = P2X1_Ddot(1:L/2+1);                     %Considering half  the 

frequency spectrum 
P1X1_Ddot(2:end-1) = 2*P1X1_Ddot(2:end-1);          %Magnifying   amplitude 

to original value in (m/s2) 

  
FX2_Ddot = fft(Accel_X2);                           %FFT for Acceleration     

in X2 direction 
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P2X2_Ddot = abs(FX2_Ddot/L);                        %Taking absolute value 

of the FFT /length 
P1X2_Ddot = P2X2_Ddot(1:L/2+1);                     %Considering half  the 

frequency spectrum 
P1X2_Ddot(2:end-1) = 2*P1X2_Ddot(2:end-1);          %Magnifying   amplitude 

to original value in (m/s2) 

  
FY1_Ddot = fft(Accel_Y1);                           %FFT for Acceleration     

in Y1 direction 
P2Y1_Ddot = abs(FY1_Ddot/L);                        %Taking absolute value 

of the FFT /length 
P1Y1_Ddot = P2Y1_Ddot(1:L/2+1);                     %Considering half  the 

frequency spectrum in (m/s2) 
P1Y1_Ddot(2:end-1) = 2*P1Y1_Ddot(2:end-1);          %Magnifying   amplitude 

to original value 

  
FY2_Ddot = fft(Accel_Y2);                           %FFT for Acceleration     

in Y2 direction 
P2Y2_Ddot = abs(FY2_Ddot/L);                        %Taking absolute value 

of the FFT /length 
P1Y2_Ddot = P2Y2_Ddot(1:L/2+1);                     %Considering half  the 

frequency spectrum 
P1Y2_Ddot(2:end-1) = 2*P1Y2_Ddot(2:end-1);          %Magnifying   amplitude 

to original value in (m/s2) 

  
FZ1_Ddot = fft(Accel_Z1);                           %FFT for Acceleration     

in Z1 direction 
P2Z1_Ddot = abs(FZ1_Ddot/L);                        %Taking absolute value 

of the FFT /length 
P1Z1_Ddot = P2Z1_Ddot(1:L/2+1);                     %Considering half  the 

frequency spectrum 
P1Z1_Ddot(2:end-1) = 2*P1Z1_Ddot(2:end-1);          %Magnifying   amplitude 

to original value in (m/s2) 

  
FZ2_Ddot = fft(Accel_Z2);                           %FFT for Acceleration     

in Z2 direction 
P2Z2_Ddot = abs(FZ2_Ddot/L);                        %Taking absolute value 

of the FFT /length 
P1Z2_Ddot = P2Z2_Ddot(1:L/2+1);                     %Considering half  the 

frequency spectrum 
P1Z2_Ddot(2:end-1) = 2*P1Z2_Ddot(2:end-1);          %Magnifying   amplitude 

to original value in (m/s2) 

  
FTHETA1_Ddot = fft(Accel_THETA1*180/pi);            %FFT for Acceleration in 

THETA1 direction 
P2THETA1_Ddot = abs(FTHETA1_Ddot/L);                %Taking absolute value 

of the FFT /length 
P1THETA1_Ddot = P2THETA1_Ddot(1:L/2+1);             %Considering half  the 

frequency spectrum 
P1THETA1_Ddot(2:end-1) = 2*P1THETA1_Ddot(2:end-1);  %Magnifying   amplitude 

to original value in (degree/s2) 

  
FTHETA2_Ddot = fft(Accel_THETA2*180/pi);            %FFT for Acceleration in 

THETA2 direction 
P2THETA2_Ddot = abs(FTHETA2_Ddot/L);                %Taking absolute value 

of the FFT /length 
P1THETA2_Ddot = P2THETA2_Ddot(1:L/2+1);             %Considering half  the 

frequency spectrum 
P1THETA2_Ddot(2:end-1) = 2*P1THETA2_Ddot(2:end-1);  %Magnifying   amplitude 

to original value in (degree/s2) 

  
FBETA1_Ddot = fft(Accel_BETA1*180/pi);              %FFT for Acceleration in 

BETA1  direction 
P2BETA1_Ddot = abs(FBETA1_Ddot/L);                  %Taking absolute value 

of the FFT /length 
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P1BETA1_Ddot = P2BETA1_Ddot(1:L/2+1);               %Considering half  the 

frequency spectrum 
P1BETA1_Ddot(2:end-1) = 2*P1BETA1_Ddot(2:end-1);    %Magnifying   amplitude 

to original value in (degree/s2) 

  
FBETA2_Ddot = fft(Accel_BETA2*180/pi);              %FFT for Acceleration in 

BETA2  direction 
P2BETA2_Ddot = abs(FBETA2_Ddot/L);                  %Taking absolute value 

of the FFT /length 
P1BETA2_Ddot = P2BETA2_Ddot(1:L/2+1);               %Considering half  the 

frequency spectrum 
P1BETA2_Ddot(2:end-1) = 2*P1BETA2_Ddot(2:end-1);    %Magnifying   amplitude 

to original value in (degree/s2) 

  
FALPHA1_Ddot = fft(Accel_ALPHA1*180/pi);            %FFT for Acceleration in 

ALPHA1 direction 
P2ALPHA1_Ddot = abs(FALPHA1_Ddot/L);                %Taking absolute value 

of the FFT /length 
P1ALPHA1_Ddot = P2ALPHA1_Ddot(1:L/2+1);             %Considering half  the 

frequency spectrum 
P1ALPHA1_Ddot(2:end-1) = 2*P1ALPHA1_Ddot(2:end-1);  %Magnifying   amplitude 

to original value in (degree/s2) 

  
FALPHA2_Ddot = fft(Accel_ALPHA2*180/pi);            %FFT for Acceleration in 

ALPHA2 direction 
P2ALPHA2_Ddot = abs(FALPHA2_Ddot/L);                %Taking absolute value 

of the FFT /length 
P1ALPHA2_Ddot = P2ALPHA2_Ddot(1:L/2+1);             %Considering half  the 

frequency spectrum 
P1ALPHA2_Ddot(2:end-1) = 2*P1ALPHA2_Ddot(2:end-1);  %Magnifying   amplitude 

to original value in (degree/s2) 

 

 

Program_6_NaturalFrequency 

 %% ================================================================= %% 
disp(' ') 
disp('  >>     Execution of program_6 : Go Simulation')  

  
%% ================================================================= %% 
global FreqX1 FreqX2 FreqY1 FreqY2 FreqZ1 FreqZ2  
global FreqTHETA1 FreqTHETA2 FreqBETA1 FreqBETA2 FreqALPHA1 FreqALPHA2 

  
%% ================================================================= %% 

  
FreqX1         = 1/(2*pi)*sqrt(Stiff(1,1)/Mass(1,1));       %Natural 

Frequency     of X1 in (Hz) 
FreqX2         = 1/(2*pi)*sqrt(Stiff(2,2)/Mass(2,2));       %Natural 

Frequency     of X2 in (Hz) 
FreqY1         = 1/(2*pi)*sqrt(Stiff(3,3)/Mass(3,3));       %Natural 

Frequency     of Y1 in (Hz) 
FreqY2         = 1/(2*pi)*sqrt(Stiff(4,4)/Mass(4,4));       %Natural 

Frequency     of Y2 in (Hz) 
FreqZ1         = 1/(2*pi)*sqrt(Stiff(5,5)/Mass(5,5));       %Natural 

Frequency     of Z1 in (Hz) 
FreqZ2         = 1/(2*pi)*sqrt(Stiff(6,6)/Mass(6,6));       %Natural 

Frequency     of Z2 in (Hz) 
FreqTHETA1     = 1/(2*pi)*sqrt(Stiff(7,7)/Mass(7,7));       %Natural 

Frequency of THETA1 in (Hz) 
FreqTHETA2     = 1/(2*pi)*sqrt(Stiff(8,8)/Mass(8,8));       %Natural 

Frequency of THETA2 in (Hz) 
FreqBETA1      = 1/(2*pi)*sqrt(Stiff(9,9)/Mass(9,9));       %Natural 

Frequency  of BETA1 in (Hz) 
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FreqBETA2  = 1/(2*pi)*sqrt(Stiff(10,10)/Mass(10,10));       %Natural 

Frequency  of BETA2 in (Hz) 
FreqALPHA1 = 1/(2*pi)*sqrt(Stiff(11,11)/Mass(11,11));       %Natural 

Frequency of ALPHA1 in (Hz) 
FreqALPHA2 = 1/(2*pi)*sqrt(Stiff(12,12)/Mass(12,12));       %Natural 

Frequency of ALPHA2 in (Hz) 

Program_7_PlotGraphs 

%% ================================================================= 

%% 
disp(' ') 
disp('  >>     Execution of program_ 7 : Plot Graphs')  

  
%% 

===================================================================== 

%% 
%==                        GRAPHICS  Printing                           

==% 
%====================================================================

=====% 

  

  
     figure(1) 
     subplot(6,2,1), plot(SimTime,Displ_X1,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Displacement [ m 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Displacement Time Response of X1') 

  
     subplot(6,2,3), plot(SimTime,Displ_X2,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Displacement [ m 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Displacement Time Response of X2') 

      
     subplot(6,2,5), plot(SimTime,Displ_Y1,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Displacement [ m 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Displacement Time Response of Y1') 

      
     subplot(6,2,7),plot(SimTime,Displ_Y2,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Displacement [ m 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Displacement Time Response of Y2') 

      
     subplot(6,2,9),plot(SimTime,Displ_Z1,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Displacement [ m 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Displacement Time Response of Z1') 

      
     subplot(6,2,11),plot(SimTime,Displ_Z2,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Displacement [ m 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Displacement Time Response of Z2') 
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     subplot(6,2,2), plot(f,P1X1,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Displacement [ m 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of X1') 

      
     subplot(6,2,4), plot(f,P1X2,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Displacement [ m 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of X2') 

      
     subplot(6,2,6), plot(f,P1Y1,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Displacement [ m 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of Y1') 

      
     subplot(6,2,8), plot(f,P1Y2,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Displacement [ m 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of Y2') 

      

      
     subplot(6,2,10),plot(f,P1Z1,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Displacement [ m 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of Z1') 

      
     subplot(6,2,12),plot(f,P1Z2,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Displacement [ m 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of Z2') 

      

      

      
     figure(2) 
     subplot(6,2,1),plot(SimTime,Displ_THETA1*180/pi,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Angle [ degrees 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Displacement Time Response of THETA1') 

  
     subplot(6,2,3),plot(SimTime,Displ_THETA2*180/pi,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Angle [ degrees 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Displacement Time Response of THETA2') 

      
     subplot(6,2,5),plot(SimTime,Displ_BETA1*180/pi,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
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     ylabel('Angle [ degrees 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Displacement Time Response of BETA1') 

      
     subplot(6,2,7),plot(SimTime,Displ_BETA2*180/pi,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Angle [ degrees 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Displacement Time Response of BETA2') 

      
     subplot(6,2,9),plot(SimTime,Displ_ALPHA1*180/pi,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Angle [ degrees 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Displacement Time Response of ALPHA1') 

      
     subplot(6,2,11),plot(SimTime,Displ_ALPHA2*180/pi,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Angle [ degrees 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Displacement Time Response of ALPHA2') 

      
     subplot(6,2,2),plot(f,P1THETA1,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Angle [ degrees 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of THETA1') 

      
     subplot(6,2,4),plot(f,P1THETA2,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Angle [ degrees 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of THETA2') 

      
     subplot(6,2,6),plot(f,P1BETA1,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Angle [ degrees 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of BETA1') 

      
     subplot(6,2,8),plot(f,P1BETA2,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Angle [ degrees 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of BETA2') 

      
     subplot(6,2,10),plot(f,P1ALPHA1,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Angle [ degrees 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of ALPHA1') 

      
     subplot(6,2,12),plot(f,P1ALPHA2,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Angle [ degrees 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of ALPHA2')      
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     figure(3) 
     subplot(6,2,1),plot(SimTime,Veloc_X1*180/pi,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Velocity [ m/s 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Velocity Time Response of X1') 

  
     subplot(6,2,3), plot(SimTime,Veloc_X2,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Velocity [ m/s 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Velocity Time Response of X2') 

      
     subplot(6,2,5), plot(SimTime,Veloc_Y1,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Velocity [ m/s 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Velocity Time Response of Y1') 

      
     subplot(6,2,7), plot(SimTime,Veloc_Y2,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Velocity [ m/s 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Velocity Time Response of Y2') 

      
     subplot(6,2,9),plot(SimTime,Veloc_Z1,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Velocity [ m/s 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Velocity Time Response of Z1') 

      
     subplot(6,2,11),plot(SimTime,Veloc_Z2,'r','LineWidth',1)  
     xlabel('Time [ Seconds 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Velocity [ m/s 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Velocity Time Response of Z2') 

      
     subplot(6,2,2),plot(f,P1X1_dot,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Velocity [ m/s 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of X1') 

     

      
     subplot(6,2,4),plot(f,P1X2_dot,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Velocity [ m/s 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of X2') 

       

      
     subplot(6,2,6), plot(f,P1Y1_dot,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
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     ylabel('Velocity [ m/s 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
     title('Frequency Response of Y1') 

      

      
     subplot(6,2,8), plot(f,P1Y2_dot,'r','LineWidth',1)  
     xlabel('Frequency [ Hz 

]','FontName','Arial','Fontsize',10,'FontWeight','Bold') 
     ylabel('Velocity [ m/s 

]','FontName','Arial','Fontsize',5,'FontWeight','Bold') 
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