U N I V E R S I T Y O F C O P E N H A G E N FA C U L T Y O F S C I E N C E

Department of Plant and Environmental Sciences

Plant and Environmental Sciences **The hidden half of the plants for 'deep-rooted' organic agriculture challenges?**

- methods, being "in the dark"!

Eusun Han Changzhou, October 28

Outline

- Background
- Precrop effects
- Plant deep • How to promote plant deep roots?
- Future research
- Conclusions

Plants eat air

Plants eat air

Definition of organic agriculture

rather than the use of inputs with adverse effects. Organic "Organic Agriculture is a **production system** that sustains the **health of soils**, **ecosystems** and **people**. It relies on ecological processes, biodiversity and cycles adapted to local conditions, Agriculture combines tradition, innovation and science to benefit the shared environment and promote fair relationships and a good quality of life for all involved."

7 Source: <http://www.ifoam.bio/en/organic-landmarks/definition-organic-agriculture>

Function of organic agriculture

Function of organic agriculture

History of organic research

Background

Trend of organic research

Background

Trend of organic research

Background

Trend of organic research

Organic agriculture and precrop effects

"In relation to nutrient management, we have to consider that in contrast to conventional agriculture management in organic agriculture has to deal with scarcity of nutrients." (Köpke 1995)

15 Source: IOL

Biological N fixation

"In relation to nutrient management, we have to consider that in contrast to conventional agriculture management in organic agriculture has to deal with scarcity of nutrients." (Köpke 1995)

Source: Han & Li, in Prep 16

Scale of precrop effects

"In relation to nutrient management, we have to consider that in contrast to conventional agriculture management in organic agriculture has to deal with scarcity of nutrients." (Köpke 1995)

Scale of precrop effects

"In relation to nutrient management, we have to consider that in contrast to conventional agriculture management in organic agriculture has to deal with scarcity of nutrients." (Köpke 1995) **Precrop effects**

Importance of subsoil

Below 20-30 cm of soil depth (Kuhlmann et al. 1991; Guo et al. 2014)

N uptake: 47-82 % (Kuhlmann et al. 1989)

P uptake: 37-85 % (Kuhlmann and Baumgärtel 1991)

K uptake: 52 % (Kuhlmann et al. 1985)

Source: Eusun Han

How to promote deep roots in arable land?

Utilization of soil structure

Identification of deep-rooting crops

£

Soil biopores

Mechanical resistance as phosphorus is more likely. Plants such as phonons of the leaf water potential was unaffected was unaffected water potential was unaffected was unaffected was unaffected was unaffected was unaffec

Figure 2. All Source: Atwell (1988)

The length and volume of cortical cells were

young wheat plants (adapted from Masle & Passioura 1987).

Mechanical resistance

1.50 Mg m⁻³ 1.77 Mg m⁻³

Source: Stirzaker et al. (1996)

Mechanical resistance

Source: Stirzaker et al. (1996)

Preferential pathways

"The round voids in the soil formed by biological activity" (Kautz 2015)

Biopores

Source: Eusun Han

Biopore-associatad root growth in arable subsoil as affected by crop sequence

Preferential pathways

"The round voids in the soil formed by biological activity" (Kautz 2015)

Biopores

Source: Eusun Han

Research design provement **Project structure**

DFG-FOR 1320 (2009-2012)

Crop sequence and nutrient acquisition from the subsoil

DFG-PAK 888 (2014-present)

Biopores as hotspots for nutrient acquisition from the subsoil

Biopore genesis Root growth Shoot growth

Biopore utilization Drilosphere property Anecic earthworm

26

Optimization of research methods Investigation on relevant factors Suggestion on future research (2012-2015)

Bioportion in a final root growth in a final root growth in a final root subsoil as a final root sequence

Campus Klein-Altendorf Research design **Central Field Trial (CeFiT)**

Campus Klein-Altendorf in Rheinbach

1900

Deep loess soil (WRB: Haplic Luvisol) Mean air temperature: 9.4o Annual precipitation: 603 mm

Biopore-associatad root growth in arable subsoil as affected by crop sequence

Trial A (2007-2013) Trial B (2009-2015) Trial C (2012-present)

NH

27

- **• Biopore genesis under perennial fodder cropping**
- Root morphology as affected by soil biopore systems
- **• Biopore-root-shoot relationship**

Biopore-associatad root growth in arable subsoil as affected by crop sequence

Biopore genesis under perennial fodder cropping

Han, E., Kautz, T., Perkons, U., Lüsebrink, M., Pude, R., & Köpke, U. (2015). Quantification of soil biopore density after perennial fodder cropping. Plant and Soil, 394(1-2), 73–85.

Biopore-associatad root growth in arable subsoil as affected by crop sequence 30

Biopore genesis

1, 2 and 3 years of fodder cropping with;

Lucerne (Luzerne) Chicory (Wegwarte) Tall fescue (Rohrschwingel)

Source: Wikipedia

Universität Bonn Universität Bonn

Findings

Biopore genesis

Source: Eusun Han

Biopore genesis

Source: Eusun Han

Biopore genesis and the Biopore genesis of the set of the

National
FLA Source: John Kirkegaard^{nable}

Biopore genesis

Biopore density (BPD; mean \pm one SE) of all size classes (BP_{tot}: >2 mm), coarse-sized (BP_{cor}: >5 mm) and medium-sized (BP_{med}: 2-5 mm) affected by fodder crops (A: lucerne, chicory and tall fescue). Small letters indicate significant differences between the treatments within BP class (Tukey's HSD, *P*≤0.05). Differences are not significant without indication.

Source: Han et al. (2015a)

Biopore-associatad root growth in arable subsoil as affected by crop sequence

Biopore genesis

Biopore density (BPD; mean \pm one SE) of all size classes (BP_{tot}: >2 mm), coarse-sized (BP_{cor}: >5 mm) and medium-sized (BP_{med}: 2-5 mm) affected by fodder crops (A: lucerne, chicory and tall fescue) and cropping duration (B: 1, 2 and 3 years). Small letters indicate significant differences between the treatments within BP class (Tukey's HSD, *P*≤0.05). Differences are not significant without indication.

Source: Han et al. (2015a)

Biopore-associatad root growth in arable subsoil as affected by crop sequence

Biopore-root-shoot relationship

Han, E., Kautz, T., Perkons, U., Uteau, D., Peth, S., Huang, N., Horn, R., & Köpke, U. (2015). Root growth dynamics inside and outside of soil biopores as affected by crop sequence determined with the profile wall method. Biology and Fertility of Soils, 51, 847–856.

Biopore-root-shoot

Tall fescue (Fes) Tall fescue (Fes)

Source: Wikipedia

Biopore-associatad root growth in arable subsoil as affected by crop sequence

Biopore-root-shoot

Preparation of the profile wall

Source: Eusun Han

Biopore-associatad root growth in arable subsoil as affected by crop sequence

Biopore-root-shoot

Recording the Root Length Unit (1 RLU=5 mm)

Source: Eusun Han

Biopore-root-shoot

Recording the Root Length Unit (1 RLU=5 mm)

Source: Eusun Han

Root length (km m⁻²) of SW outside BP (A; RL_{bk}) and inside BP (B; RL_{bp}) beneath 45 cm of soil depth affected by crop sequence (Chi-Chi-SW and Fes-Fes-SW) and growth stage (tillering, booting, anthesis and milk) in 2012. Small letters indicate significant differences between crop sequence within growth stage (pair-wise t-test, *P*≤0.05).

Root length (km m⁻²) of SW outside BP (A; RL_{bk}) and inside BP (B; RL_{bp}) beneath 45 cm of soil depth affected by crop sequence (Chi-Chi-SW and Fes-Fes-SW) and growth stage (tillering, booting, anthesis and milk) in 2012. Small letters indicate significant differences between crop sequence within growth stage (pair-wise t-test, *P*≤0.05).

Root length (km m⁻²) of SW outside BP (A; RL_{bk}) and inside BP (B; RL_{bp}) beneath 45 cm of soil depth affected by crop sequence (Chi-Chi-SW and Fes-Fes-SW) and growth stage (tillering, booting, anthesis and milk) in 2012. Small letters indicate significant differences between crop sequence within growth stage (pair-wise t-test, *P*≤0.05).

Biopore-root-shoot

Chi-Chi-SW **Fes-Fes-SW**

Root length (km m⁻²) of SW outside BP (A; RL_{bk}) and inside BP (B; RL_{bp}) beneath 45 cm of soil depth affected by crop sequence (Chi-Chi-SW and Fes-Fes-SW) and growth stage (tillering, booting, anthesis and milk) in 2012. Small letters indicate significant differences between crop sequence within growth stage (pair-wise t-test, *P*≤0.05).

Biopore-root-shoot

Shoot biomass (A; t ha-1), N (B; kg ha-1), P (C) and K uptake (D) of spring wheat affected by crop sequence (Chi-Chi-SW and Fes-Fes-SW) and growth stage (tillering, booting, anthesis and milk) in 2012.

Source: Han et al. (2015b)

Biopore-associatad root growth in arable subsoil as affected by crop sequence

Biopore-root-shoot

Shoot biomass (A; t ha-1), N (B; kg ha-1), P (C) and K uptake (D) of spring wheat affected by crop sequence (Chi-Chi-SW and Fes-Fes-SW) and growth stage (tillering, booting, anthesis and milk) in 2012.

Source: Han et al. (2015b)

Biopore-associatad root growth in arable subsoil as affected by crop sequence

How to promote deep roots in arable land?

Utilization of soil structure

Identification of deep-rooting crops

DeepFrontier

Department of Plant and Environmental Sciences, University of Copenhagen

Down to 5 m

DeepRootLab

Topsoil Subsoil

Source: ICROFS 53

Minirhizotron method

Biopore genesis to biopore utilization

Quantification of plant resource uptake

62

Quantification of plant resource uptake

Research must go on.

74)
M

What about Asian deep roots?

65

Organic agriculture and deep roots

Köpke, U., **Han, E. et al.** (2015). Optimising cropping techniques for nutrient and environmental management in Organic Agriculture. Sustainable Agriculture Research, 4(3), 15–11.

Role of deep roots in organic agriculture

"Organic Agriculture is designed to derive large parts of nutrients from the solid phase."

Diversification of cropping system

- Enhanced access to the subsoil
- Improved nutrient status of **drilosphere**

U N I V E R S I T Y O F C O P E N H A G E N FA C U L T Y O F S C I E N C E

Department of Plant and Environmental Sciences

Root science as part of crop science Acknowledgements

The first farm
 $I E \cap \overline{A} M A$ The first farm IFOAM Asia

Plant and Environmental Sciences
and

and,

UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE

Department of Plant and Environmental Sciences

Root science as part of crop science Acknowledgements

The first farm
 $I E \cap \overline{A} M A$ The first farm IFOAM Asia

Plant and Environmental Sciences
and and,

Dr. Zejiang Zhou

- root science vs. shoot science "We should cherish and grow young organic leaders." |

U N I V E R S I T Y O F C O P E N H A G E N FA C U L T Y O F S C I E N C E

Department of Plant and Environmental Sciences

