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Abstract  

Usage of computer vision (CV) as Process Analytical Technology tool in drying of apple slices was 

tested. Samples were subjected to various anti-browning treatments at sub- and atmospheric pressures, 

and dried at 60°C up to a moisture content (dry basis) of 0.18 g/g. CV-based prediction models of 

changes in moisture content (wet basis) were developed and promising results were obtained (R2P > 

0.99, RMSEP = 0.01÷0.06 and BIASP < 0.06 in absolute value), regardless of the anti-browning 

treatment. 
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1. Introduction 

Consumers in developed countries are becoming more critical and demanding in their food 

choices (Grunert et al., 2005); they expect high-quality foods produced sustainably and 

preferably regionally. In addition, European policy pushes towards the sustainable development 

of the food sector through mid- and long-term goals. Up to the year 2050, food industry will 

face three important challenges: (i) to meet the global food demand generated by a growing 

population (ii) to increase the sustainability of the food sector and (iii) to meet consumer 

expectations of quality and safety. 

Processing methods that enhance food stability and retain food quality have an enormous 

impact in globalized market through the reduction of food losses and processing, storage, 

transportation and distribution costs (Moscetti et al. 2017). In this context, food drying plays a 

major role because it is successfully used to reduce storage and shipping costs by enabling 

storage at room temperature, reducing weight and packaging volume. Despite these advantages, 

drying is one of the most energy-intensive processes in the food industry; in fact, it potentially 

significantly contributes to climate change as most dryers use fossil fuels (Moscetti et al., 

2018a). Moreover, drying usually requires long process cycle times and may negatively affect 

physicochemical and sensorial characteristics of the final product (Raponi et al., 2017; Ratti, 

2001). In order to alleviate drying drawbacks, several studies were carried out over the years 

with the aim of increasing the process efficiency through development and optimization of (i) 

heat recovery systems (Barbosa de Lima et al., 2015; Kemp, 2005), (ii) pre-processing methods 

of raw material to be dried (Lukinac, 2013) and (iii) real-time monitoring and control systems 

of process parameters affecting quality of the end-product (Sturm et al. 2014; Winiczenko et 

al., 2018). 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Organic Eprints

https://core.ac.uk/display/267805477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Proceedings of Eurodrying’2019 
Torino, Italy, July 10-12, 2019 

Among emerging drying techniques, smart drying is one of the recent and most promising 

one (Moscetti et al., 2018a). It enables to proactively monitor quality changes in product as 

well as dryer operating conditions, through an interdisciplinary approach which involves 

various scientific sectors, such as chemometrics (Pomerantsev and Ye, 2012), artificial 

intelligence (Sun et al., 2018), biomimetics (e.g. electronic nose, tongue and mucosa) and 

computer vision (Martynenko, 2006; Sturm et al., 2014) as well as single-point spectroscopy 

and hyper/multi-spectral imaging (Moscetti et al., 2018a). 

Apple is the fourth most consumed commercial fruit worldwide (Aghilinategh et al., 2015) 

and due to the modern lifestyle, dried apple exhibits a growing trend in consumption as snacks, 

chips or integral breakfasts (Vega-Gàlvez et al., 2012). However, hot-air drying of apple may 

result in discolouration due to browning reactions (Sturm et al., 2012). Thus, pre-treatment of 

raw material is strictly recommended in order to produce a high-quality end-product. However, 

pre-treatment may affect drying kinetics and subsequently impact the modeling of thin-layer 

behaviour of product, which is fundamental in deciding the ideal drying conditions (i.e. 

equipment design, optimization and product quality improvement). 

The objective of this study was to evaluate both feasibility and robustness of computer vision 

as Process Analytical Technology tool for modeling the drying kinetics of apple slices through 

the linear relationship between the changes in the relative area shrinkage and the moisture 

content of product during the process. In addition, samples were also subjected to various anti-

browning treatments (i.e. dipping or vacuum impregnation in solution with anti-browning 

agents), which are mandatory for obtaining high-quality dried apple slices, with the aim of 

evaluating their possible effect on the drying kinetics. 

 

2. Material and methods 

Sound apples (Malus domestica Borkh var. Gala) at the same ripening stage were washed, 

peeled, decored and cut into slices of 5-mm thick and 23-mm diameter. Samples were (i) dipped 

in trehalose 4% w/v (TR); trehalose 4% w/v + ascorbic acid 1% w/v (TR+AA); and water as 

control (CNT) at atmospheric and subatmospheric pressure (i.e. vacuum impregnation, VI); and 

then (ii) dried at 60°C up to a final MCdb of 0.18 g/gDW. Ascorbic acid was selected due to its 

well-known inhibition effect towards polyphenol oxidase (Albanese et al., 2007; El-Shimi, 

1993). Trehalose is a natural disaccharide, generally recognised as safe (Megarry et al., 2011), 

used as a food ingredient and pharmaceutical excipient. It acts as an edible coating with ability 

to preserve colour and aroma of the dried fruits as well as reduce non-enzymatic browning 

occurrence (Aktas et al., 2007; Albanese et al., 2007). Finally, subatmospheric pressure (i.e. 

VI) was tested because of its potential in stabilizing functional properties of food and its higher 

capability of embedding fruit and vegetable tissues with solutes when compared with 

conventional dipping (Neri et al., 2016). 

The relative humidity of the drying process was not controlled but measured. Treatments 

were carried out at 20°C for a dipping time of 5.25 min, with a sample/solution ratio of 1:5 

(w/w); specifically VI treatment consisted of a 0.25 min vacuum time and a 5 min post-vacuum 

time, and was achieved using a 5-L vacuum chamber connected to a vacuum pump mod. N 

840.3 FT.18 (KNF, USA). Drying was performed using a hot-air dryer mod. Biosec (Tauro 

Essicatori, Italy) which was ad-hoc modified to embed a digital balance mod. HT1500 (NHU, 

Germany), a camera mod. EOS 400D (CANON, Japan) and a 4200K illuminant source. The 

drying setup was controlled using a single-board computer mod. Raspberry Pi B+ (Raspberry 

Foundation, UK) in combination with a self-made Jupyter Notebook (Project Jupyter, USA), 

which allowed (i) to collect data at constant time intervals (i.e. image and weight of samples 

every 5 min and 4 sec, respectively) and (ii) to extract morphological feature of samples from 

each raw image (i.e. surface area of samples). The ‘relative area shrinkage’ was calculated 

according to Eq. 1: 
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where Sb corresponds to the ‘relative area shrinkage’, St represents the ‘surface area’ in 

pixels at the drying time ‘t’, and S0 corresponds to the ‘surface area’ in pixels of the fresh 

sample. The R software v3.4.1 was used to develop linear prediction models able to relate the 

changes in MCwb of apple slices to the changes in relative area shrinkage during drying. Model 

performances were evaluated in terms of Root Mean Square Error (RMSE), BIAS and 

coefficient of determination (R2) of calibration (C) and prediction (P). 

 

3. Results and discussion  

Changes in quality attributes of horticultural products during drying are successfully 

measurable based on their variations in spatial distribution data (i.e. size and shape 

information), which can be analysed through a computer vision system (Moscetti et al., 2018b). 

Consequently, we explored the possibilities offered by image analysis for quantifying the 

moisture content of apple slices as a function of change in the relative area shrinkage (Sb) of 

product during drying. As found in literature (Aghbashlo et al., 2016), the wet-basis moisture 

content (MCwb) was successfully predicted using spatial information only. Thus, the additional 

value of the present work lays in the fact that these results underline the possibility of 

developing a forecast model for prediction of the drying time required by the product to reach 

a specific moisture content based on the past and present spatial data. 

Figure 1 shows results from the regression model for the TR+AA dipping treatment (no VI), 

which was selected as example treatment. For all models, a BIAS issue was evident during the 

second falling rate drying period, i.e. when MCwb dropped below 0.1 g/gFW. 

 
 
Fig. 1. Linear regression plot (a) and first-order plot (b) of measured and predicted MCwb values for 

the TR+AA dipping treatment performed at atmospheric pressure. 

In general, Table 1 shows excellent results in terms of prediction capability, regardless of 

the anti-browning pre-treatments used. Results show a RMSEP ranging from 0.011 to 0.058 

g/gFW, a BIASP lower than 0.06 in absolute value, and a R2P always higher than 0.99. In 

addition, considering that the relative humidity (R.H.) of process was not controlled, it is 

possible to assert that all models were insensitive to the R.H. of the drying chamber. 

Specifically, it is important to highlight that models computed using spatial data from 

samples subjected to VI had lower predicting performances and, were less robust. This is 

probably because apple is a highly porous product and VI may alter both porosity and texture 

(a) (b)

R2 = 0.997

RMSE = 0.022

BIAS = 0.004



Proceedings of Eurodrying’2019 
Torino, Italy, July 10-12, 2019 

in a non-systematic way (Martínez‐Monzó et al., 2008). However, further research would be 

necessary for verification. 

Table 1. Summary of performance metrics of the linear regression models. 

Dipping solution 
  

VIa 
  RMSEb   BIASc   R2d 

    C P  C P  C P 

CNTe  No  0.009 0.019  -2.98 10-17 -0.008  0.998 0.993 

TRf  No  0.014 0.017  -1.15 10-17  0.007  0.997 0.996 

TR+AAg  No  0.008 0.022  1.59 10-17  0.004  0.999 0.997 

CNT  Yes  0.008 0.058  -1.79 10-17 -0.055  0.999 0.999 

TR  Yes  0.010 0.051  -2.64 10-17 -0.049  0.998 0.999 

TR+AA   Yes   0.005 0.011  1.33 10-17 -0.041  1.000 0.999 
aVI: Vacuum Impregnation (Yes and No stay for sub-atmospheric and atmospheric pressure, 

respectively). 
bRMSE: Root Mean Squared Error of calibration (C) and prediction (P). 
cBIAS: tendency of the measurement process to over- or under-estimate the real moisture content. 
dR2: coefficient of determination of calibration (C) and prediction (P). 
eCNT: control (i.e. water dipping solution). 
fTR: trehalose 4% w/v aqueous dipping solution. 
gTR+AA: trehalose 4% w/v + ascorbic acid 1% w/v aqueous dipping solution. 

 

4. Conclusions 

In this study the feasibility of using computer vision technology as smart-drying technology, 

to proactively and non-destructively detect and monitor physicochemical changes (i.e. moisture 

content) in organic apple slices (Malus domestica Borkh var. Gala) during hot-air drying at 

60°C was investigated. The work represents a preliminary study for the development of large-

scale CV-based smart drying systems. 

On the basis of the results obtained, it is possible to assert that an in-line CV system 

embedded into a hot-air-drying unit allows to precisely measure the area of shrinkage of apple 

slices, and then to predict changes in MCwb of product through the linear relationship between 

the two parameters. VI treatment negatively affected the BIAS of the prediction model. The 

practical implication of this study is that modelling the data acquired during drying through 

computer vision can provide useful information concerning the physicochemical changes of 

product. Thus, the proposed approach lays the foundations for a more efficient smart dryer that 

can be designed, and its process optimized for drying of apple slices, reducing the human error, 

production cycle time, analytical time and costs. 
 

5. List of Acronyms and Abbreviations 

AA Ascorbic acid 

BIAS Tendency of the measurement process to over- or under-estimate the real value 

CNT Control (i.e. water dipping solution) 

CV Computer Vision 

C Calibration 

DW Dry weight 

FW Fresh weight 

MCdb Dry basis moisture content 

MCwb Wet basis moisture content 

P Prediction 

PAT Process Analytical Technology 
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R2 Coefficient of determination 

RMSE Root Mean Squared Error 

S0 Surface area in pixels of the fresh sample 

Sb Relative area shrinkage 

St Surface area in pixels at the drying time ‘t’ 

TR Trehalose 

VI Vacuum Impregnation 
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