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Abstract

Low Computational Cost Machine Learning:
Random Projections and Polynomial Kernels

by Daniel López Sánchez

According to recent reports, over the course of 2018, the volume of data generated,
captured and replicated globally was 33 Zettabytes (ZB), and it is expected to reach
175 ZB by the year 2025. Managing this impressive increase in the volume and
variety of data represents a great challenge, but also provides organizations with a
precious opportunity to support their decision-making processes with insights and
knowledge extracted from massive collections of data and to automate tasks leading
to important savings. In this context, the field of machine learning has attracted a
notable level of attention, and recent breakthroughs in the area have enabled the cre-
ation of predictive models of unprecedented accuracy. However, with the emergence
of new computational paradigms, the field is now faced with the challenge of creating
more efficient models, capable of running on low computational power environments
while maintaining a high level of accuracy. This thesis focuses on the design and
evaluation of new algorithms for the generation of useful data representations, with
special attention to the scalability and efficiency of the proposed solutions. In par-
ticular, the proposed methods make an intensive use of randomization in order to
map data samples to the feature spaces of polynomial kernels and then condensate
the useful information present in those feature spaces into a more compact represen-
tation. The resulting algorithmic designs are easy to implement and require little
computational power to run. As a consequence, they are perfectly suited for appli-
cations in environments where computational resources are scarce and data needs to
be analyzed with little delay. The two major contributions of this thesis are: (1) we
present and evaluate efficient and data-independent algorithms that perform Ran-
dom Projections from the feature spaces of polynomial kernels of different degrees
and (2) we demonstrate how these techniques can be used to accelerate machine
learning tasks where polynomial interaction features are used, focusing particularly
on bilinear models in deep learning.
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Chapter 1

Introduction

Although discrepancies exist in the estimates, all sources agree that Big Data1 keeps
getting bigger year after year. As of 2018, the global Datasphere, which consists of all
data created, captured, and replicated in any given year, was estimated to comprise
a total of 33 Zettabytes (ZB). Furthermore, forecasts indicate that it will grow to
175 ZB by the year 2025 [85]. In addition to this impressive growth, the Big Data
phenomenon has permeated the most diverse spheres of our lives. For instance, a
recent report highlighted that, every minute of the day, Internet users post 473,400
tweets, request 1,389 Uber rides, conduct 3,877,140 Google searches, upload 400
hours of video to Youtube, and originate 6,940 Tinder matches [34]. These examples
illustrate how the Big Data phenomenon has not only grown steadily, but has come
to play a key role in most aspects of human activity. On top of the data generated
by the direct interaction of humans with digital systems, a significant fraction of
today’s information flow is due to the billions of Internet of Things (IoT) devices
connected to the network. In fact, these devices are expected to generate over 90 ZB
of information in 2025 [85].

This tremendous growth in the volume and variety of data poses a critical chal-
lenge for companies, organizations and governments across the globe, but also repre-
sents a great opportunity for them to find value in their data. An effective strategy
for data collection, storage, and analysis is a crucial tool that supports organizations
in their decision-making processes, enabling them to reduce costs, identify consumer
needs, improve their services, and reach new markets. In addition, the abundance of
data has enabled scientists to create increasingly complex predictive models which
are capable of automatizing a wide range of tasks, matching and often surpassing
human performance.

In this context, it is easy to understand why the extraction of knowledge from
raw data has become a topic of broad and current interest, as scientists are striving
to discover new and better methods to analyze large volumes of information. At the
core of this technological revolution lies the machine learning field, in which recent

1According to Gartner’s IT Glossary, Big Data consist of “high-volume, high-velocity and/or high-
variety information assets that demand cost-effective, innovative forms of information processing
that enable enhanced insight, decision making, and process automation.”
URL: https://www.gartner.com/it-glossary/big-data (Date accessed: 25/04/2019).

https://www.gartner.com/it-glossary/big-data
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breakthroughs have made predictive models more powerful than ever. Particularly,
the ever-growing volume of data, together with the advances in the design of algo-
rithms and the use of specialized hardware, have led to the flourishing of predictive
models of unprecedented accuracy, such as those from the deep learning paradigm.
In fact, most of the digital services that we use on a daily basis rely on some sort
of machine learning model and, as we have seen, service providers often need to
handle thousands of requests per second. It is therefore no wonder that, among the
challenges currently faced by the machine learning community, the scalability and
efficiency of algorithms play a crucial role in the technological revolution of Big Data.
In addition, the emergence and popularization of new computation paradigms, such
as the Internet of Things, have also driven the interest of scientists towards ma-
chine learning models capable of running in environments with little computational
resources while maintaining low inference times and high accuracy rates.

This thesis focuses on the design and evaluation of new algorithms for the gen-
eration of useful data representations, paying special attention to the scalability and
efficiency of the proposed solutions. Hence, the proposed methods make intensive
use of randomization to map data samples to a richer representation with greater
discriminative information. Then, this information is condensed to provide a useful
and more compact representation. The resulting algorithmic designs are easy to im-
plement and require little computational resources to run. As a consequence, they
are perfectly suited for application in environments where computational resources
are scarce and data needs to be analyzed in real time or with little delay.

Before delving into the proposed algorithms, we first introduce the fundamental
concepts required to understand both Random Projections and kernel functions, and
review the latest advances that bridge these two fields. The main contributions of
this thesis are presented in Chapters 3, 4 and 5, which introduce novel algorithmic
designs to capture the discriminative information of certain kernel functions in a low
dimensional representation. Particularly:

• In Chapter 3 we present an efficient method to approximate Random Projec-
tions from the feature space of the homogeneous polynomial kernel of degree
two. Thanks to the properties of Random Projections, the resulting data rep-
resentations approximately preserve the structure of data in the kernel feature
space. In turn, this enables us to solve learning problems efficiently by train-
ing fast linear methods on the generated representations, while obtaining a
boost in accuracy thanks to the discriminative information extracted from the
kernel feature space. As opposed to existing kernelized Random Projection
approaches, our method is data-independent, meaning that it requires no prior
knowledge about the distribution of the data samples that will be transformed
at test time. Our experiments focus on the preservation of pairwise distances
from the kernel feature space and the classification accuracy of linear models
trained on the output representations, evidencing that the proposed method
outperforms existing approaches in most cases, while being notably faster.
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• Chapter 4 builds upon the ideas presented in the previous chapters. It further
aims to improve the generality, efficiency, and effectiveness of the proposed
solutions. Particularly, a novel method is introduced which is capable of ap-
proximating Random Projections from the feature spaces of polynomial kernels
of arbitrary degree. In addition, a new approach to generate the projection vec-
tors in the kernel feature space allows us to reduce the computational cost of
the algorithm while improving its performance. The exhaustive experimental
results presented in this chapter support our claim that the proposed method
is capable of efficiently capturing the structure of data in the feature spaces of
polynomial kernels.

• Finally, in Chapter 5 we explore the connection between the kernelized vari-
ant of Random Projection presented in Chapter 4 and the popular bilinear
Convolutional Neural Network (CNN) architecture, which leverages the bilin-
ear pooling operation. While bilinear CNNs are among the most popular and
effective methods for fine-grained image recognition, the dimensionality of the
resulting descriptors is a major drawback of these models. Chapter 5 introduces
a novel method to efficiently reduce the dimension of bilinear pooling descrip-
tors by approximating their Random Projection. Conveniently, this is achieved
without ever computing the high-dimensional descriptors explicitly. Our ex-
perimental results evidence that this approach outperforms existing compact
bilinear pooling algorithms while running faster on low computational power
devices, where efficient extensions of bilinear pooling are most useful.

Chapter 6 closes this thesis by summarizing the major contributions and insights
derived from the results presented in the previous chapters.
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Chapter 2

Background

This chapter introduces the fundamental concepts and techniques that will be relevant
in the chapters that follow. First, we describe Random Projection, an efficient and
very popular method for dimensionality reduction that guarantees a low distortion
in the distances among data samples. Secondly, we list some relevant properties of
kernel functions, with special attention to polynomial kernels. A connection is then
drawn between Random Projection and kernel functions through a review of the ex-
isting methods to perform Random Projections from kernel feature spaces. Lastly, we
discuss bilinear pooling, a technique designed to improve the performance of convolu-
tional neural networks in fine-grained recognition tasks. As we will see, this technique
is closely related to the homogeneous polynomial kernel of degree two. This connec-
tion will later enable us to adapt the methods introduced in the chapters that follow,
making bilinear pooling more efficient.

2.1 The Random Projection algorithm

Random Projection (RP) [98] is a simple yet effective and widely used linear dimen-
sionality reduction technique. Just like any other linear dimensionality reduction
method, Random Projection reduces the dimension of samples by applying a linear
transformation to input data, so each output component is computed as a linear
combination of the original features. However, the main difference with alternative
methods is that Random Projection generates the projection matrix from a ran-
dom distribution. Therefore, as opposed to other approaches where training data is
required to select an appropriate projection matrix, Random Projection is a data-
independent method, since no knowledge about the distribution of data is required
to generate the projection matrix. Surprisingly, if an appropriate distribution is used
to generate the entries of the projection matrix, the structure of data in the high
dimensional input feature space will be mostly preserved after the projection1.

1In this document, the term “projection” is used generically to denote a linear transformation
between Euclidean spaces.
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In spite of its simplicity, Random Projection has strong theoretical founda-
tions. The main theoretical result that underpins Random Projection is the John-
son–Lindenstrauss (JL) lemma [54], which states that a set of N points in a high-
dimensional space can be embedded into a space of much lower dimension in such
a way that distances between the points are nearly preserved. Formally, for any
0 < ε < 1 and x1,x2, . . . ,xN ∈ Rd there is a linear map f : Rd → Rk for
k = O(ε−2 log(N)) such that:

(1− ε)||xi − xj ||2 ≤ ||f(xi)− f(xj)||2 ≤ (1 + ε)||xi − xj ||2, (2.1)

for all i, j = 1, . . . , N . Furthermore, it can be found in randomized polynomial time2.

... ...

Figure 2.1: Schematic view of Random Projection. A dataset with N samples and d features,
represented as the input matrixX ∈ RN×d, is multiplied by a d×k projection matrixR, yielding

N samples of dimension k, represented as the output matrix X ′ ∈ RN×k [2].

The original variants of this algorithm performed a projection onto a random k-
dimensional subspace, so the map f(·) took the form of a projection onto k random
orthonormal vectors [41]. In later versions, the mapping of samples from Rd to Rk is
done by means of a d × k projection matrix whose entries are independently drawn
from a standard normal distribution [52, 8]. Once the d × k matrix R has been
populated, an arbitrary set of N points represented as an N × d matrix X can be
projected from Rd to Rk as follows (see Figure 2.1):

X ′ =
1√
k
XR , where X ′ ∈ RN×k. (2.2)

However, more recent studies have shown that the projection matrix can also be
drawn from much simpler distributions. In particular, Achlioptas showed that if the
projection matrix is drawn from the distribution displayed in (2.3) with sparsity term
s = 1 or s = 3, then the JL-lemma will be satisfied [2].

Rij =
√
s


1 with prob. 1/2s

0 with prob. 1− 1/s

−1 with prob. 1/2s

. (2.3)

Conveniently, using the distribution proposed by Achlioptas reduces the computa-
tional cost of the projection. If the multiplication by

√
s present in (2.3) is delayed,

2A particularly simple constructive proof of this lemma was introduced in [33].
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the computation of the projection reduces to aggregate evaluation (i.e., summa-
tions and subtractions but no multiplications), which can be efficiently performed
in database environments using standard SQL primitives. In addition, the sparsity
term s enables further storage and computational savings. For instance, when using
s = 3 only 1/3 of the entries of the projection matrix are nonzero. Moreover, it has
been shown that using greater sparsity levels in (2.3) is possible with little loss in
the preservation of distances. Particularly, in [70] the authors recommended using
s =
√
d, leading to a potential

√
d-fold speedup.

Achlioptas also proved that, as long as the entries of the projection matrix are
independent and identically distributed (i.i.d.) random variables with zero mean and
unit variance, pairwise distances will be preserved in expectation3 [2]. Moreover,
analogous results to the JL-lemma can be derived for projection matrices whose
entries are independently drawn from any distribution symmetric about the origin
with bounded moments [8], or any distribution with zero mean, unit variance and
subgaussian tail [75]. This suggest that the phenomenon described by the JL-lemma
is rather robust, as a wide range of distributions can lead to approximate pairwise
distance preservation [8]. In fact, the most crucial element which is present in all
these variants of Random Projection is that the entries of the projection matrix must
be selected independently.

For most distributions of the projection matrix, the proof of the JL-lemma fol-
lows a similar line of reasoning. First, one proves that the squared length of an
arbitrary vector is preserved in expectation after the projection. Proof continues
by showing that the squared length after the projection has a low variance, so with
high probability the squared length of the vector will not get distorted by more
than (1 ± ε) by the projection. Then, the trivial union bound guarantees that, for
k = O(ε−2 log(N)), the probability that the projection matrix produces a relative
distortion greater than (1±ε) for any pair among the N samples is lower than 1− 1

N .
Therefore, by generating and evaluating O(N) projection matrices, one can raise the
probability of success to the desired constant, leading to the claimed randomized
polynomial time [33].

Another important aspect of Random Projections is whether they are able to pre-
serve inner products as well. In this regard, guarantees for dot product preservation
have been historically looser, and some authors suggested that dot products may not
be preserved when the angle between the input vectors is obtuse [89]. More recent
studies have improved those guarantees, clarifying how relative distortion bounds
on dot products under Random Projections depend on the angles between the in-
put vectors, and that in the worst case (when vectors are perpendicular) no relative
distortion guarantees are available [56]. Aside from these difficulties in terms of the

3It should be noted that, while using i.i.d. random variables with zero mean and unit variance
as the entries of the projection matrix guarantees that the pairwise distances will be preserved
in expectation, using different distributions can result in different average errors and error tail
bounds [70, 8].
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theoretical guarantees, Random Projections have been successfully used in practice
with a variety of algorithms that heavily rely on dot products [56, 40, 10].

In general, Random Projection is commonly regarded as an efficient, versatile,
and simple dimensionality reduction method which approximately preserves the
structure of data in the high dimensional space. As such, it has been applied to
a variety of machine learning problems, ranging from people counting in images [39],
to efficient high dimensional data clustering [19] among many others (for instance
see [32, 55, 15, 47]).

2.2 Kernel functions and the kernel trick

Before delving into the specific properties of the polynomial kernel, we present some
general ideas about kernel functions, kernel methods and the so-called kernel trick.
Formally, a function K : Rd × Rd → R is called a kernel function4 [76, 46] on Rd if
there is a Hilbert space H and a possibly non-linear map φ : Rd → H such that for
any x,y ∈ Rd:

K(x,y) = 〈φ(x), φ(y)〉H. (2.4)

Intuitively, this means that the kernel function evaluates an inner product of the
input samples after mapping them to a different feature space. In the literature, φ(·)
and H are commonly referred to as the feature map and feature space of the kernel.
Figure 2.2 illustrates the relationship between the kernel function, the feature map
and the feature space. It is important to note that φ(·) and H need not be unique.
That is, for a given kernel function, there might be various valid feature maps with
their associated feature spaces.

Figure 2.2: Provided thatK : Rd×Rd → R is a kernel function, the above diagram commutes.
That is, all directed paths with the same start and endpoints lead to the same result. This
illustrates how a kernel function provides a way to compute inner products in its associated

feature space without explicitly operating in it.

An immediate consequence of the definition of kernel functions and the symmetry
of the inner product is the symmetry of kernel functions:

K(x,y) = K(y,x). (2.5)
4Kernel functions can be defined on more general input spaces than Rd, but this definition suffices

for the purposes of this thesis.
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However, it must be noted that not all symmetric functions from Rd × Rd to R are
kernel functions. In this regard, Mercer [76] showed that a symmetric function is
a kernel if and only if it is positive definite. In particular, a symmetric function
K : Rd × Rd → R is positive definite and therefore a kernel on Rd if and only if
for any finite set of data samples x(1), . . . ,x(N) ∈ Rd and any set of real numbers
λ1, . . . , λN it satisfies the following inequality:

N∑
i=1

N∑
j=1

λiλjK(x(i),x(j)) ≥ 0. (2.6)

Conveniently, this means that if K is a positive definite function, then (2.4) holds for
some feature space H and feature map φ(·), even if we ignore their form. However,
in order to prove that a given function is a valid kernel, it is sometimes easier to give
an explicit feature map for it, or to show that the function itself is a combination of
known kernels following some rules [46, 31].

One interesting property of kernel functions is that they can be used to compute
Euclidean distances between data samples in the feature space [86], without explicitly
evaluating the feature map. This property will be of great help in the following
chapters to efficiently assess the distance preservation properties of the proposed
algorithms. Formally, due to the linearity of the inner product and the definition of
kernel functions:

||φ(x)− φ(y)||2 = 〈φ(x)− φ(y), φ(x)− φ(y)〉
= 〈φ(x), φ(x)〉+ 〈φ(y), φ(y)〉 − 2〈φ(x), φ(y)〉
= K(x,x) +K(y,y)− 2K(x,y).

(2.7)

In addition to their importance in the mathematical literature, kernel functions
have received a lot of attention from the machine learning community, mainly because
they are closely related to some forms of non-linear classification. Specifically, a wide
range of non-linear classifiers can be characterized by the following decision function:

h(x) = 〈φ(x),w〉+ b, (2.8)

where w is the weight vector, b is the intercept or bias, and φ(·) is a non-linear feature
map for some kernel function K(·, ·). Intuitively, the idea behind these classification
methods is that a non-linearly separable problem in the input feature space might
become more linearly separable after data samples are mapped to the feature space of
some kernel by the non-linear feature map φ(·) (see Figure 2.3). However, explicitly
evaluating the inner product 〈φ(x),w〉 can be computationally prohibitive, as φ(x)

is usually very high dimensional, and infinite dimensional in some cases. To address
this issue, a common approach [13, 30, 87] is to restrict the weight vector w to be:

w =

N∑
i=1

αiφ(x(i)) for some α1, . . . , αN ∈ R, (2.9)
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where {x(1), . . . ,x(N)} are the training samples of the classification problem. Con-
veniently, theoretical results ensure that, under fairly benign conditions, the optimal
weight vector admits a representation of this form [7]. In addition, this restriction
enables us to rewrite the decision function of the classifiers avoiding any explicit
evaluation of φ(·), using the kernel function instead:

h(x) = 〈φ(x),w〉+ b =

〈
φ(x),

N∑
i=1

αiφ(x(i))

〉
+ b =

N∑
i=1

αiK(x,x(i)) + b. (2.10)

This way of using kernel functions to work in the feature space without explicitly
evaluating φ(·) is often referred to as the kernel trick.

Figure 2.3: The core assumption made by kernelized classifiers is that, after being trans-
formed by the feature map φ(·), classification problems may become more linearly solvable.

While very popular, the kernel trick approach fails to scale to large data scenarios.
In particular, note that in order to avoid the explicit use of φ(·) when evaluating
the decision function in (2.10), we have introduced N calls of the kernel function5.
Assuming that the kernel function can be evaluated in O(d) time for d-dimensional
samples, the complete inference time of such classifiers can be up to O(Nd), while
linear classifiers offer inference times of O(d).

Scalability issues derived from the use of the kernel trick also arise in the training
phase. For instance, the training time of kernelized classifiers such as kernelized
support vector machines grows at least like N2, and in some cases comes close to
N3, where N is the number of training samples [14]. Conversely, efficient algorithms
exist for training linear classifiers in linear time [53, 12, 109]. This lack of scalability
of algorithms using the kernel trick has even been referred to as the curse of support
[58], and has motivated researchers to develop more efficient ways of exploiting the
discriminative power of kernels, as we will see in Section 2.4.

5Usually, this problem is mitigated because an important fraction of α1, . . . , αN are equal to
zero [14]. However, this depends on the particular problem at hand, and the number of non-zero
alphas often grows linearly in the size of the training set [90].



Chapter 2. Background 11

2.3 Polynomial kernels

Polynomial kernels are a popular family of non-stationary kernels [46], with a great
discriminative power and wide applicability [21, 106, 24]. Formally, polynomial ker-
nels are those of the form:

K(x,y) = (〈x,y〉+ c)g, (2.11)

where the hyperparameters g and c are referred to as the polynomial degree and
the constant term. When c is set to a value greater than zero, the result is an
inhomogeneous polynomial kernel. If instead the constant term c is set to zero, we
obtain an homogeneous polynomial kernel:

K(x,y) = 〈x,y〉g. (2.12)

Intuitively, homogeneous polynomial kernels compute the inner product6 in the fea-
ture space spanned by all degree-g monomials on the input features [49]. Conversely,
when using an inhomogeneous polynomial kernel (i.e., c > 0) all monomials up to
degree g are included in the feature space of the kernel.

As opposed to other popular kernel functions, polynomial kernels have finite di-
mensional feature spaces, and their associated feature maps can be easily determined
once g and c are fixed. For instance, we can find an explicit feature map for the ho-
mogeneous polynomial kernel of degree two by analyzing the kernel function value:

K(x,y) = 〈x,y〉2 =

(
d∑
i=1

xiyi

)2

=
d∑
i=1

(xi)
2(yi)

2 +
d−1∑
i=1

d∑
j=i+1

(
√

2xixj)(
√

2yiyj).

(2.13)

Then, it is clear that the following mapping of dimension d + (d2 − d)/2 is a valid
feature map for the degree two homogeneous polynomial kernel [88]:

φ(x) = (x2
1, . . . ,x

2
d,
√

2x1x2, . . . ,
√

2x1xd,√
2x2x3, . . . ,

√
2x2xd, . . . , . . . ,

√
2xd−1xd).

(2.14)

The properties of this feature map will be exploited in Chapter 3. However, it
must be noted that the feature map given above is not the only one possible. In fact,
an alternative feature map can be given for homogeneous polynomial kernels using

6From this point we focus on polynomial kernels, whose feature spaces are finite-dimensional
Euclidean spaces. Thus, 〈·, ·〉 shall henceforth denote the standard inner product (i.e., the dot
product).
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the Kronecker product [96, 82]. In particular, this feature map φ : Rd → Rdg is:

φ(x) = x⊗ x · · · ⊗ x︸ ︷︷ ︸
g times

=

g⊗
i=1

x, (2.15)

where ⊗ denotes the Kronecker product and g is the polynomial degree of the kernel.
Again, the validity of this feature map for homogeneous polynomial kernels can be
proved by analyzing the expression of the kernel itself. For instance, for g = 2 we
have:

K(x,y) = 〈x,y〉2 =

(
d∑
i=1

xiyi

)2

=

d∑
i=1

d∑
j=1

xiyixjyj

=

d∑
i=1

d∑
j=1

xixj · yiyj = 〈x⊗ x,y ⊗ y〉 = 〈φ(x), φ(y)〉,

(2.16)

which means that (2.15) with g = 2 is a valid feature map for the degree two
homogeneous polynomial kernel7. The algorithms presented in Chapters 4 and 5 will
take advantage of this feature map based on the Kronecker product.

Figure 2.4: In the case of polynomial kernels, the feature space H is larger than the set of
all φ(x) such that x ∈ Rd [48].

Another relevant property of polynomial kernels is that the feature space H is
larger than the set of all φ(x) (see Figure 2.4). For instance, if the input space is R2

and we consider the degree two homogeneous polynomial kernel with feature map
φ(x) = x ⊗ x = (x1x1,x1x2,x2x1,x2x2), then one can choose (−1, 1,−1,−1) ∈ H
but there is no x ∈ R2 such that φ(x) = (−1, 1,−1,−1). This illustrates that,
while the kernel function provides us with a certain degree of access to the feature
space, some regions of it are not directly reachable through the feature map. As a
consequence, adapting existing algorithms to work with kernel functions is generally
not as simple as naively replacing the inner products present in their formulation
by kernel evaluations. This will become abundantly clear throughout the following
chapters.

As mentioned before, the intuition behind the polynomial kernel family is that
it is often useful to construct new features as the product of the original ones. The
polynomial degree g in (2.12) determines the order of monomials composing the

7The proof for polynomial degrees greater than two is analogous.
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Example of φ(x) ∈ H for the
homogeneous polynomial kernel

of degree two

w for a linear classifier trained
directly on the feature space:
h(x) = tanh(〈φ(x),w〉+ b)

Figure 2.5: Visualization of a 14× 14 digit from MNIST in the feature space of the homoge-
neous polynomial kernel of degree two, and the weights learned by a simple gradient descent
linear classifier on that feature space. Positive weights are depicted in red and negative weights

in blue. The classifier was trained to detect the digit “3”.

feature map. To provide some intuition on the nature of homogeneous polynomial
kernels, we can generate the explicit feature-space representation for a number of
14 × 14 resized images from the MNIST digits dataset8. Particularly, here we use
the feature map given in (2.15), but rearrange the features to ease visualization.
Then, a simple gradient-descent linear classifier is trained on them to distinguish the
category “3” from all the others:

h(x) = tanh(〈φ(x),w〉+ b). (2.17)

Figure 2.5 shows one of those samples in the kernel feature space and the weight
vector learned by the linear classifier. As we can see, the classifier appears to be
using different “templates” to emit a prediction, depending on the presence/absence
of pixel intensity in the different regions of the original digit image. This illustrates
how linear classifiers can benefit from polynomial features, as they make it possible
for the model to account for more complex interactions between the original features.

Since the feature spaces of polynomial kernels are finite dimensional, some studies
have explored the possibility of explicitly operating in them [21], relying on the
sparsity of data samples to reduce computation and storage costs. Unfortunately,
the dimension of mapped samples φ(x) ∈ H grows exponentially with the polynomial
degree. As a consequence, any algorithm that explicitly operates in the feature space
of polynomial kernels will rapidly become intractable as the original dimension of
samples d or the polynomial degree g grow.

8http://yann.lecun.com/exdb/mnist/ (Date accessed: 10/12/2018).

http://yann.lecun.com/exdb/mnist/
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Figure 2.6: Schematic view of a Random Projection from the feature space of a kernel. If
data is linearly separable in the feature space, an explicit Random Projection from it would

approximatively preserve separability [11, 9].

2.4 Random Projections from kernel feature spaces

As we have seen, classifiers using the kernel trick [13, 30] achieve a higher discrim-
inative power by implicitly working in the feature space. However, the use of the
kernel trick compromises the scalability of the resulting classifiers both it terms of
their training and inference times [109, 14]. This has motivated researchers to de-
sign new methods to combine the discriminative power of kernel functions with the
efficiency of linear classifiers. A common approach is to design a feature-mapping
algorithm which somehow captures the structure of data in the feature space of some
kernel, while generating a relatively low-dimensional output representation [110, 5,
82, 69, 58, 97, 103]. This data representation capturing the information present in
the kernel feature space is used to train efficient linear classifiers, which approximate
the performance of their kernelized counterparts. Similarly, these feature-mapping
algorithms can be used in other tasks in addition to classification, as many other
problems may benefit from their kernel approximation properties. When designing
such algorithms, the following features are desirable:

• Efficiency: The feature-mapping methods must be efficient, since otherwise the
scalability of subsequent algorithms applied on the generated representations
(e.g., linear classifiers) would be lost.

• Data-independence: Ideally, these algorithms should not require access to train-
ing data, or any other information about the distribution of the data samples
that will be processed at test time. This makes feature-mapping methods suit-
able for online-learning scenarios and other applications where training data is
not available.

• Kernel-independence: While some feature approximation methods focus on an
specific kernel function or family of functions to achieve the aforementioned
efficiency and data-independence, it its desirable for these methods to be com-
patible with any kernel function.

Since the goal of these feature-mapping algorithms is to preserve the properties
of data in a very high dimensional space (the kernel feature space) while moving to
a low-dimensional representation, a natural option to consider is the use of Random
Projections. In some of the earlier works on this topic [11, 9], the authors noted that
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if a classification problem is linearly separable by a large margin in the kernel fea-
ture space, then a Random Projection from it down to a low-dimensional space will
approximately preserve separability (see Figure 2.6). This suggests that, given a clas-
sification problem with data samples {x(1), . . . ,x(N)}, one might avoid using an inef-
ficient kernelized classifier by first mapping samples to the kernel feature space and
then performing a Random Projection: {(1/

√
k)φ(x(1))R, . . . , (1/

√
k)φ(x(N))R}, to

finally train a linear classifier on the resulting low-dimensional representation. Un-
fortunately, this approach is in most cases infeasible due to the high-dimensional
nature of the representation generated by the feature map φ(·). To avoid this issue,
the authors of [11, 9] studied different mappings which avoid any explicit evaluation
of φ(·) and approximately preserve separability by using the kernel function and ac-
cess to a number of unlabeled training data samples. Their work also addressed the
question of whether mappings that approximately preserve linear separability from
kernel feature spaces down to low-dimensional spaces can be achieved using only
black-box access to the kernel function. Unfortunately, their results were negative,
and the authors proved that this is not possible in general for an arbitrary black-box
kernel, unless access to the distribution of data via a number of unlabeled data sam-
ples is also allowed. However, they left the question open of whether such methods
could be developed for specific kernel functions such as the polynomial kernel.

More recently Alavi et al. [5, 110] proposed Kernelized Gaussian Random Pro-
jection (KG-RP), a general method to perform Random Projections from arbitrary
kernel feature spaces. Their findings did not contradict the result described in the
previous paragraph since the method they proposed required access to a number of
unlabeled training samples in order to work. Interestingly, their algorithm was based
on a technique developed to solve a different problem, namely the Kulis-Grauman
approach [65]. This technique, originally developed to perform a kernelized variant
of Locally Sensitive Hashing, can be used to generate a set of nearly Gaussian vectors
in an arbitrary kernel feature space, without any evaluation of the feature map φ(·).
Despite its success, the method has a limitation inherent to its core idea: the ap-
proximately Gaussian hyperplanes in the kernel feature space are built as a weighted
sum of a subset of the database items, thus making the method data-dependent.
Formally, let zt be the sum of a set S of t mapped training samples:

zt =
1

t

∑
i∈S

φ(x(i)). (2.18)

Then, the central limit theorem (CLT) guarantees that, for a sufficiently large t, the
vector z̃t =

√
t(zt − µ) will be distributed according to the multivariate Gaussian

N (0,Σ) [110]. Therefore, applying a whitening transform, z̃tΣ
− 1

2 will be distributed
according to N (0, I). The mean and covariance matrix need to be approximated
from training data by selecting a set of p data samples where t < p. For details
about how these computations are performed via the kernel function, see [66].

The contribution of Alavi et al. in [5, 110] demonstrated that, with minimal mod-
ifications, the Kulis-Grauman approach can be used to perform Random Projections
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from the feature spaces of arbitrary kernels. In particular, their method defines each
output component of the projection as:

〈φ(x), z̃tΣ
− 1

2 〉, (2.19)

which for sufficiently large t and p corresponds to a valid Gaussian Random Pro-
jection, since z̃tΣ

− 1
2 converges in distribution to N (0, I). Again, the evaluation of

(2.19) is performed in practice without any explicit evaluation of the feature map, via
the kernel function. However, because we are using database items to generate the
projection vectors, this is a data-dependent approach. As a consequence, the qual-
ity of the embeddings it produces depends on the number of available training data
samples and their variability. In addition, most of the computational efficiency of
the original Random Projection method is lost in this version. For example, whereas
the training phase in the original method only involves populating a projection ma-
trix from a random distribution, the training phase in this kernelized variant entails
expensive computations over training samples (see Section 4.3.4 for more details).

In this context, where existing kernelized variants of Random Projection are data-
dependent and computationally demanding, this thesis focuses on the development
of new data-independent and efficient methods to perform Random Projections from
kernel feature spaces. Following the insights provided in [11, 9], we will focus on
an specific kernel family, namely that of polynomial kernels, to preserve the data-
independence of the original Random Projection algorithm.

2.5 Bilinear convolutional neural networks

As we have seen, performing Random Projections from the feature spaces of kernels
has recently emerged as a promising alternative to the poorly scalable kernelized clas-
sifiers and the attempts to explicitly work in the feature spaces. To further motivate
the importance of developing new methods to perform these Random Projections in
an efficient and data-independent manner, and particularly considering the case of
polynomial kernels, we analyze bilinear Convolutional Neural Networks (CNN) [71].
Interestingly, these deep learning models are intimately related to polynomial ker-
nels. In Chapter 5, we will delve deeper into how Random Projection algorithms for
polynomial kernels can be adapted to make bilinear models more efficient. In the
remainder of this section we present the general properties of bilinear CNNs, and
briefly discuss their connection to polynomial kernels.

In essence, bilinear pooling is a method designed to boost the accuracy of clas-
sification models in fine-grained visual recognition tasks [26, 37, 95, 6, 91]. CNNs
using this technique are sometimes referred to as bilinear CNNs [71]. The bilinear
pooling operation itself generates an orderless9 global descriptor of an image by pass-
ing it through two different CNNs and then combining the feature maps generated

9An orderless descriptor is an image descriptor that combines the local features extracted from
an image without considering the order of the locations at which the features were extracted.
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...
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Figure 2.7: Structure of a typical bilinear CNN model for image classification. Images go
through two different CNNs. The resulting feature maps are combined using the outer product
at each location, and pooling is subsequently applied to form the final bilinear descriptor.

A linear classifier such as a softmax layer is applied at the end to emit the predictions.

by the two models (see Figure 2.7). Particularly, the features extracted by each of
the two CNNs are combined by applying the outer product at each location. The
resulting local descriptors are then pooled, typically with sum pooling, to obtain the
final descriptor. The intuition behind this approach is that the outer product helps
the model to capture pairwise feature interactions in a location-invariant manner,
which in turn improves its performance in fine-grained recognition tasks. The bilin-
ear pooling operation can be formalized as follows. Let I represent an input image
and CNNA, CNNB be the chosen CNNs. The bilinear descriptor is then computed
as follows:

Φ(I) =
∑
l∈L

CNNA(I, l)⊗ CNNB(I, l), (2.20)

where CNNA(I, l) and CNNB(I, l) denote the descriptors extracted from image I at
location l by CNNs A and B respectively, L is the set of valid locations and ⊗ denotes
the Kronecker product10. The final descriptor is usually normalized by first applying
an element-wise signed square root operation (i.e., x→ sgn(x)

√
|x|), followed by L2

normalization.

While notably successful, bilinear CNNs are too computationally demanding for
some applications. On the one hand, images have to be processed by two indepen-
dent CNN models, which is expensive both in terms of memory and computational
resources. On the other hand, the use of the outer/Kronecker product to combine
the features extracted by the two CNNs results in descriptors of very high dimension.
The first problem is often times addressed by making CNNA and CNNB be the same
network, so only one forward pass is required in practice [71]. For the second issue,
recent studies have suggested using various algorithms to condense the discriminative

10Here, the Kronecker product is used instead of the outer product to characterize bilinear pooling
with the goal of easing the intended analogy with polynomial kernels. Nevertheless, these two
operations are in this case equivalent as long as their output is reshaped to have one dimension.
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information of the bilinear descriptor into a low-dimensional representation [43].

To draw the analogy between bilinear pooling and polynomial kernels, we need
to focus on the scenario where CNNA and CNNB are the same network. If this is
the case, the bilinear descriptor of image I becomes the summation of CNN(I, l)⊗
CNN(I, l) over all locations l ∈ L. As seen in Section 2.3, the mapping defined as
φ(·) : x → x ⊗ x is a valid feature map for the degree-two homogeneous polyno-
mial kernel. Therefore, the bilinear pooling operation is basically mapping the local
descriptors extracted by the CNN to the feature space of the degree-two homoge-
neous polynomial kernel, and then summing all of them together. This connection
to polynomial kernels will be exploited in Chapter 5 to efficiently approximate a
Random Projection of the bilinear descriptor without even having to generate it ex-
plicitly. By performing the Random Projection from the kernel feature space in an
implicit manner, we will avoid the problems pointed out by Gao et al. [43], who
first discussed the possibility of using the Random Projection method to reduce the
dimensionality of bilinear descriptors.
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Chapter 3

Random Projections from the
Feature Space of the Degree-Two
Homogeneous Polynomial Kernel

Performing a Random Projection from the feature space associated to a kernel func-
tion may be useful for two main reasons: (1) As a consequence of the Johnson-
Lindenstrauss lemma, the resulting low-dimensional representation will preserve most
of the structure of data in the kernel feature space and (2) an efficient linear classifier
trained on the projected data might approximate the accuracy of its non-linear coun-
terparts. In this chapter, we present a novel method to approximate Random Projec-
tions from the feature space of the homogeneous polynomial kernel of degree two. As
opposed to other kernelized Random Projection approaches, our method focuses on
a specific kernel family to preserve the beneficial properties of the original Random
Projection algorithm, namely its data independence and efficiency. Our experimental
results evidence that the proposed method efficiently approximates a Random Projec-
tion from the kernel feature space, preserving pairwise distances and enabling a boost
in linear classification accuracies.

The contents of this chapter have been adapted from the journal paper: Daniel López-
Sánchez, Juan Manuel Corchado and Angélica González Arrieta. “Data-independent
Random Projections from the feature-map of the Homogeneous Polynomial Kernel
of degree two”. In: Information Sciences 436-437C (2018), pp. 214-226.

3.1 Introduction

In this chapter, we present a novel method to efficiently approximate Random Pro-
jections from the feature space of the homogeneous polynomial kernel of degree two.
By focusing on a specific kernel function, our method overcomes the limitations of
previous kernelization attempts of Random Projection, which fail to preserve the
data-independence and efficiency of the original algorithm. In addition, our method
is compatible with the database-friendly distribution proposed by Achlioptas. Our

https://www.sciencedirect.com/science/article/pii/S0031320318301675
https://www.sciencedirect.com/science/article/pii/S0031320318301675
https://www.sciencedirect.com/science/article/pii/S0031320318301675
https://www.sciencedirect.com/science/article/pii/S0031320318301675
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experimental results evidence that, by using our method, one can efficiently gen-
erate a low-dimensional representation of samples that captures the structure of
data in the feature space of the degree-2 homogeneous polynomial kernel, approxi-
mately preserving the pairwise distances between samples in that space. Because of
the data-independent nature of the proposed method, it can be applied in online-
learning scenarios [38] where no data samples are initially available. In addition, this
representation can be used to train efficient linear classifiers that approximate the
accuracy of their non-linear counterparts.

Intuitively, we propose replacing the dot products that take place during the
matrix multiplication in Random Projection, which correspond to the projection
of samples in the data matrix X onto the columns of the projection matrix R, by
evaluations of the kernel function. By so doing, the columns of the projection matrix
and the data samples will be mapped by φ(·), so the projection will in fact take place
in the kernel feature space. Formally, each output component will be computed as:

X ′nc =
1√
k
K(rownX, colcR) =

1√
k
〈φ (rownX) , φ(colcR)〉 , (3.1)

where X ∈ RN×d, R ∈ Rd×k and X ′ ∈ RN×k. However, this is not equivalent
to explicitly mapping the data points to the kernel feature space by means of the
feature map φ : Rd → H and then performing a classic Random Projection. This
is because we cannot guarantee that the distribution of the projection vectors in R
will be preserved by the feature map φ(·). Therefore, our goal will be to define the
projection matrix R in such a way that when its columns are mapped by φ(·) to
the implicit, high-dimensional kernel feature space, the result will be a set of valid
Random Projection vectors. In this regard, focusing on a specific kernel function will
enable us to analyze how its specific feature map affects the columns of the projection
matrix.

The rest of this chapter is structured as follows. Section 3.2 provides a brief
review of related work. Section 3.3 describes the proposed approach and how it man-
ages to efficiently approximate a Random Projection from the feature space of the
homogeneous polynomial kernel of degree two. In Section 3.4, we present empirical
evidence that our method approximates a Random Projection from the feature space
of the degree-2 homogeneous polynomial kernel, so the pairwise distances between
points in the feature space are approximately preserved in the resulting representa-
tion. Additional experimental results regarding the suitability of our method for the
task of classification are reported in Section 3.5. Finally, Section 3.6 summarizes the
conclusions and future research lines.

3.2 Related work

In the previous chapter, we saw that the feature space of the degree-2 homogeneous
polynomial kernel consists of all the possible second order monomials of the original
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features of a sample. For instance, in a text-processing problem where the features of
samples represent the number of occurrences of a word in a document, the features
in the kernel feature space correspond to co-occurrences of pairs of words, which
may be more informative than individual frequencies. This explains why numerous
machine learning problems are more easily solved in the feature space of polynomial
kernels [64, 23, 107, 106].

Similarly, the suitability polynomial kernels for various classification tasks is sup-
ported by the results presented in [21]. In this work, the authors analyzed the ef-
fectiveness of the polynomial kernel of degree two in the context of Support Vector
Machine (SVM) classification. Specifically, they apply fast linear-SVM classification
methods to data samples explicitly transformed by the feature map associated to the
polynomial kernel of degree two. Their results evidence that, using this approach,
it is possible to achieve accuracy rates close to those achieved when using highly
non-linear kernels (e.g., radial basis kernels) for various datasets. However, explic-
itly evaluating the feature maps of polynomial kernels is highly inconvenient due to
the size of the resulting representations, except for some special cases such as when
the original features exhibit a high level of sparsity. To evidence that explicitly map-
ping data samples to the feature space is in general an impractical approach, the
experiments of this chapter evaluate the performance and efficiency of our method
as compared to a classic Random Projection [3] from the explicitly computed feature
space.

As discussed in the previous chapter, the Kulis-Grauman approach [66] was re-
cently adopted to perform a kernelized version of Random Projection in the context of
image classification [5]. Although this version is compatible with any kernel function,
it loses much of the computational efficiency and conceptual simplicity of Random
Projection. In addition, it requires access to a number of unlabeled training data
samples, as opposed to the classic Random Projection algorithm in which the projec-
tion matrix is completely data-independent and no training stage is required beyond
the random initialization of its entries. Later on, this kernelized version of Random
Projection was extended and applied to the problem of image clustering [110]. The
authors proposed three versions of the algorithm: Kernelized Gaussian Random Pro-
jection (KG-RP), Kernelized Orthonormal Random Projection (KORP), and Kernel
Principal Component Analysis Random Projection (KPCA-RP). These three ver-
sions mainly differ in the manner in which the projection vectors are generated in
the kernel feature space, but the mentioned limitations apply to the three of them.
Our experimental results suggest that our method outperforms that of [5] in terms
of distance preservation while having a much lower computational cost.

3.3 Proposed method

Given a set of N data samples from Rd represented as a N × d matrix X, the goal
of our method is to map them to the high-dimensional, implicit feature space H of
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the degree-2 homogeneous polynomial kernel and then perform a Random Projection
from H down to Rk so the output samples are represented as a N × k matrix X ′.
In addition, these operations should be performed implicitly via the kernel function,
avoiding any explicit evaluation of the feature map φ(·). As mentioned before, seeking
to make (3.1) approximate a valid Random Projection in the kernel feature space,
we will define an appropriate distribution for the projection matrix R by analyzing
the properties of the specific kernel function we have chosen. In particular, as seen
in Section 2.3 the degree-2 homogeneous polynomial kernel is:

K(x,y) = 〈x,y〉2 with x,y ∈ Rd, (3.2)

and the following mapping with d + (d2 − d)/2 features represents a valid feature
map for it (for example see [88]):

φ(x) = (x2
1, . . . ,x

2
d,
√

2x1x2, . . . ,
√

2x1xd,√
2x2x3, . . . ,

√
2x2xd, . . . , . . . ,

√
2xd−1xd).

(3.3)

Since the form of a finite-dimensional feature map associated to the kernel is
known, one might consider performing a standard Random Projection from this rep-
resentation. Following this approach, data samples would be transformed by φ(·)
and then projected to a low-dimensional space with a classic Random Projection. In
fact, if the sparse distribution proposed by Achlioptas was used [3, 70], the projection
matrix R might be efficiently stored using a sparse matrix implementation. How-
ever, explicitly computing φ(x) might be a very expensive and almost intractable
task. This is mainly due to the fact that the dimension of φ(x) is O(d2). As a con-
sequence, trying to explicitly transform a set of samples with φ(·) requires intensive
computations and a significant storage capacity, especially if data samples are dense
and sparse matrix routines cannot be used, which is often the case. For instance, we
will see that storing the explicit form of φ(x) for 200 samples from a dataset of color
images of size 96 × 96 would require more than 284 Gigabytes of memory, which
is far beyond the current capacity of most devices’ main memory. Nevertheless, in
Section 3.4 we empirically compare this approach to our proposed method both in
terms of performance and efficiency. Henceforth, we will refer to the explicit trans-
formation of data samples by φ(·) followed by the application of a classic Random
Projection as the explicit approach.

Turning back to our implicit approach, having found a valid feature map for the
studied kernel enables us to define a distribution for the columns of the projection
matrix such that, when transformed by φ(·), their features follow a valid Random
Projection distribution, at least when analyzed individually. In this manner, we
might be able to perform the Random Projection via the kernel function, thus avoid-
ing any explicit evaluation of φ(·). Particularly, we will consider what happens if we
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populate the entries of the projection matrix R according to the following distribu-
tion, where s controls the sparsity level:

Rij =

√
s

4
√

2


1 with prob. 1/2s

0 with prob. 1− 1/s

−1 with prob. 1/2s

. (3.4)

Let r = (r1, . . . , rd) ∈ Rd be any of the columns of R. Then, consider the
distribution of the entries of φ(r) (i.e., one of the projection vectors onto which data
samples will be projected). When analyzing its entries individually, we observe that
two different distributions emerge:

φ(r) = ( r21, . . . , r
2
d︸ ︷︷ ︸

distribution A

,
√

2r1r2, . . . ,
√

2r1rd,
√

2r2r3, . . . ,
√

2r2rd, . . . ,
√

2rd−1rd︸ ︷︷ ︸
distribution B

), (3.5)

where distributions A and B are:

A :=
s√
2

{
1 with prob. 1

s

0 with prob. 1− 1
s

, B :=
√
s2


1 with prob. 1

2s2

0 with prob. 1− 1
s2

−1 with prob. 1
2s2

. (3.6)

On the one hand, distribution B matches the sparse distribution originally pro-
posed by Achlioptas [3] and later generalized1 by Li et al. [70]. On the other hand, A
is not a valid Random Projection distribution, and does not even have a zero mean.
Luckily, only the first d entries of φ(r) follow distribution A, whereas the total num-
ber of features in φ(r) is d + (d2 − d)/2. Therefore, the percentage of components
of φ(r) that follow distribution A tends to zero as d grows, so we might expect the
negative impact of these incorrectly distributed entries of the projection vectors to
be small in practice, especially for large values of d.

The experimental results reported in Section 3.4 show that pairwise distances
between data points in H are approximately preserved in the reduced representation
generated by using (3.1) with the entries of R populated according to (3.4). How-
ever, if we compare the distance distortion induced by our method to the distortion
induced by the explicit mapping of points to H and its reduction to Rk by means of
a classic Random Projection (i.e., the explicit approach), we see that the former is
slightly higher. To explain this difference, we must consider the requirements that
the projection matrix must satisfy in order to have a valid Random Projection. As
discussed in Section 2.1, a common requirement among the different variants of Ran-
dom Projection is that the entries of the projection matrix must be independently
selected. Thus far, we have focused on analyzing the distribution of the entries of
the projection vectors in the feature space individually, so we have not considered

1Remember that Achlioptas used s = 1, 3. However, later studies showed that greater sparsity
levels could be used with little loss in performance [70]. See Section 2.1 for more details.
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the possible dependence among them. Unfortunately, the entries of our implicit
projection vectors do not satisfy the independence condition. Consider for example
the entries

√
2r1r2,

√
2r2r3 and

√
2r1r3 of φ(r), when the sparsity hyperparameter

is s = 1. Once the sign of the first two entries is known, the sign of the third is
completely determined, which evidences that they are not statistically independent.
To provide additional insight into the nature of this dependence, we can explicitly
generate a number of projection vectors and use some empirical dependence mea-
sures. Figure 3.1 shows the correlation matrices of 500 projection vectors generated
by a) directly sampling from Achlioptas’ distribution in the feature space and b)
computing φ(r) with r ∈ Rd drawn from (3.4). As we can see, except from some
random noise, the entries of the projection vectors generated by either method seem
to be uncorrelated. However, we know that in the case of φ(r) the entries are not
independent. This means that the dependence among the entries is more subtle than
a mere linear correlation. Therefore, to properly visualize this dependence, we need
to use a measure capable of detecting non-linear dependence. To this end, we apply
the distance correlation2 measure. Figure 3.2 shows the distance correlation matrices
for the two types of projection vectors described before. Looking at Figure 3.2.b, we
can see that distance correlation successfully reveals the structure of the dependence
among the entries of φ(r). Logically, the dependence mainly exists among pairs of
features in φ(r) which have factors in common (see Figure 3.3). This lack of indepen-
dence in the entries of the projection vectors causes the mentioned deviation in the
distance preservation capabilities with respect to the explicit approach. In the next
section we study an alternative way of building the projection vectors to overcome
this problem.

3.3.1 Projection vectors and the Central Limit Theorem

This section presents an alternative approach to construct the projection matrix in
the implicit feature space of the degree-2 homogeneous polynomial kernel. Most of
the entries of this implicit projection matrix will be nearly independent variables
drawn from a normal distribution with zero mean and unit variance, which is one
of the valid Random Projection distributions (see Section 2.2). To populate this
implicit matrix and perform the projection in the implicit feature space without any
explicit evaluation of φ(·), our method relies both on the properties of kernels and
the Central Limit Theorem [57].

First, we populate t projection matrices each of dimension d×k. We will refer to
the i-th projection matrix as R(i). After this, an arbitrary set of N points represented
as an N × d matrix X can be implicitly mapped from Rd to H and then projected

2Distance correlation is a statistical measure of dependence between random variables. As
opposed to Pearson’s correlation coefficient, distance correlation takes a value of zero if and only if
the variables are statistically independent, as it is capable of detecting non-linear relations [93].
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15-dimensional vector φ(r) with
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i=1 φ(r(i)) with
Achlioptas’ distribution r drawn from (3.4) r(1), . . . , r(t) i.i.d. from (3.9)

Figure 3.1: Correlation matrices computed over 500 15-dimensional samples generated by
different methods (d = 5, t = 30, s = 3).
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Achlioptas’ distribution r drawn from (3.4) r(1), . . . , r(t) i.i.d. from (3.9)

Figure 3.2: Distance correlation matrices [93] computed over 500 15-dimensional samples
generated by different methods (d = 5, t = 30, s = 3).
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Figure 3.3: Distance correlation [93] computed over 1000 15-dimensional vectors of the form
φ(r), with r ∈ R5 drawn from (3.4). The dependence detected by the distance correlation

measure can be explained by the number of shared factors among feature pairs.
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down to Rk as follows:

X ′nc =
1√
k

t∑
i=1

K
(
rownX, colcR(i)

)
. (3.7)

To show that (3.7) approximates a valid Random Projection by reducing the afore-
mentioned dependence in the entries of the implicit projection vectors, we begin by
applying the main property of kernel functions, K(x,y) = 〈φ(x), φ(y)〉, to reveal
the computations that take place in the feature space. Then, we use the linearity
of the inner product to rewrite the equation as a single inner product and use the
summation notation to simplify the formula:

X ′nc =
1√
k

t∑
i=1

K
(
rownX, colcR(i)

)
=

1√
k

t∑
i=1

〈
φ (rownX) , φ

(
colcR(i)

)〉
=

1√
k

〈
φ (rownX) ,

t∑
i=1

φ
(
colcR(i)

)〉
. (3.8)

The above equations show that (3.7) corresponds to the mapping of the N -th row
of X to the kernel feature space and its projection (dot product) onto a vector of
the form

∑t
i=1 φ

(
colcR(i)

)
. Therefore, in order for (3.7) to compute a valid Random

Projection from the kernel feature space,
∑t

i=1 φ
(
colcR(i)

)
should follow one of the

valid Random Projection distributions (see Section 2.4). In this case, we will use
the Central Limit Theorem to ensure that most of the entries of the projection
vectors of the form

∑t
i=1 φ

(
colcR(i)

)
follow a normal distribution with zero mean

and unit variance. To this extent, we define the following distribution to populate
the projection matrices R(1), . . . , R(t):

R
(·)
ij =

√
s

4
√

2t


1 with prob. 1/2s

0 with prob. 1− 1/s

−1 with prob. 1/2s

. (3.9)

We can again analyze the distribution of entries in the columns of the projection
matrices after they are mapped to the feature space. Let r = (r1, . . . , rd) ∈ Rd be a
column of any of the t projection matrices populated according to (3.9). One more
time, two distributions emerge when we analyze the entries of φ(r) individually:

φ(r) = ( r21, . . . , r
2
d︸ ︷︷ ︸

distribution A

,
√

2r1r2, . . . ,
√

2r1rd,
√

2r2r3, . . . ,
√

2r2rd, . . . ,
√

2rd−1rd︸ ︷︷ ︸
distribution B

),

(3.10)
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where distributions A and B are:

A :=
s√
2t

{
1 with prob. 1

s

0 with prob. 1− 1
s

, B :=
s√
t


1 with prob. 1

2s2

0 with prob. 1− 1
s2

−1 with prob. 1
2s2

. (3.11)

Considering B as a discrete random variable, we can determine its mean and variance
as follows:

µ = E[B] =
∑
b

b · P (b) =
s√
t
· 1

2s2
− s√

t
· 1

2s2
= 0, (3.12)

σ2 = E[(B − µ)2] =
∑
b

(b− µ)2 · P (b) =
s2

t
· 1

2s2
+
s2

t
· 1

2s2
=

1

t
, (3.13)

where
∑

b denotes the sum over all possible values of B and P (b) is the probability
of the specific value b in the random distribution of B. Given that the entries of∑t

i=1 φ
(
colcR(i)

)
are the sum of t independent and identically distributed random

variables, and that entries following distribution B have zero mean and 1/t variance,
we can apply the Central Limit Theorem (CLT) [57] to ensure that, except for the
first d coordinates, the entries of

∑t
i=1 φ

(
colcR(i)

)
will follow a standard normal

distribution for a sufficiently large t.

Interestingly, as a side effect of the CLT, the statistical dependence among the
entries of

∑t
i=1 φ

(
colcR(i)

)
becomes smaller as we increase t, which was our goal

from the beginning. In the next chapter, we will delve deeper into the reason why
this happens, but for now we will rely on empirical evidence. Figures 3.1.c and 3.2.c
show the result of explicitly generating 500 vectors of the form

∑t
i=1 φ(r(i)) with

r(1), . . . , r(t) ∈ Rd populated according to (3.9) and then computing the correlation
and distance correlation matrices for them. As expected, almost no statistical de-
pendence is detected among the entries of the projection vectors when this approach
is used, neither by the correlation coefficient nor by the distance correlation measure.
This supports our claim that this approach based on the CLT is capable of reducing
the dependence among the entries of the implicit projection vectors.

Again, we face the problem that the first d entries of the projection vectors
will not follow the desired distribution. Moreover, since the first d components of
φ
(
colcR(i)

)
follow distribution A and therefore are never negative, the first d entries

of
∑t

i=1 φ
(
colcR(i)

)
will grow larger as t increases, having a negative impact in the

distance preservation capabilities of our method. To solve this problem, we force
t to be an even number and multiply half of the terms in the summation of (3.7)
by minus one. By doing so, the first d elements of the projection vectors will at
least exhibit a zero mean, and the distribution of the remaining entries will not be
modified due to de symmetry about zero of distribution B.

Since by the CLT most of the entries in
∑t

i=1 φ
(
colcR(i)

)
are distributed accord-

ing to N (0, 1), and the dependence among these entries is reduced as t increases, we
can expect (3.7) to approximate a valid Random Projection from the kernel feature
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space for a sufficiently large t. Note that, due to the fact that the first d features in∑t
i=1 φ

(
colcR(i)

)
do not follow a valid Random Projection distribution, we cannot

ensure that the JL-lemma will be satisfied. However, as we have seen in the previous
section, the percentage of entries in the projection vectors that follow distribution
A tends to zero as d grows larger. In fact, our experimental results evidence that
the effect of these features is indeed negligible, as in all cases our method was able
to induce an average distortion in samples as low as that of the explicit approach
by setting a large enough t. Also, Section 3.4.4 reports on the results of statistical
tests which ensure that, for a sufficiently large t, there is no statistically significant
difference between the distance preservation capabilities of the proposed approach
and a classic Random Projection from the explicitly-computed kernel feature space.
The effect of choosing different values of t for the proposed method is empirically
studied in Section 3.4.

Finally, note that the distribution proposed in this section to populate the pro-
jection matrices is conveniently a generalization of the one proposed in the previous
section. When t is set to one (that is, when only one projection matrix is used) the
distribution proposed in (3.9) is the same as in (3.4). Henceforth, we will refer to
our method as Degree-2 Polynomial-Kernel Random Projection3 (D2PK-RP), indi-
cating in each case the selected value for t. When t = 1, data is simply transformed
by using (3.1) with the entries of R populated according to (3.4) (i.e., the method
described in the previous section). When t ≥ 2, we transform data samples following
the procedure described in this section, which is summarized in Algorithm 1.

Algorithm 1 Degree-2 Polynomial-Kernel Random Projection (D2PK-RP)

Require: A set of points {x1, . . . ,xN} from Rd , the number of projection matrices t which
must be an even number, the sparsity level s and the desired output dimension k.

Ensure: Returns a set of output samples {x′1, . . . ,x′N} in Rk such that pairwise distances
between these samples are approximately equal to those of input data samples mapped
to the feature space of the homogeneous polynomial kernel of degree two.

1: Generate t projection matrices R(1), . . . , R(t) ∈ Rd×k,
with entries {

√
s

4√2t
, 0,−

√
s

4√2t
} w.p. { 1

2s , 1−
1
s ,

1
2s}

2: for n = 1, . . . , N do . Iterate over samples
3: x′n ← (0, . . . , 0) ∈ Rk . Initialize output vector with zeros
4: for c = 1, . . . , k do . Iterate over output dimensions
5: for i = 1, . . . , t/2 do . Iterate to apply CLT (3.7)
6: x′n[c]← x′n[c] + 〈xn, colcR(i)〉2

7: for i = t/2 + 1, . . . , t do . Flip the sign of half of the terms
8: x′n[c]← x′n[c]− 〈xn, colcR(i)〉2

9: x′n ← 1√
k
· x′n . Final scaling

10: return {x′1, . . . ,x′N}

3In the original publication [73], the proposed method was simply referred to as Polynomial
Random Projection (P-RP). The change in the name here is to disambiguate with other methods
described in the following chapters.
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3.3.2 Computational complexity of the proposed approach

The original Random projection algorithm has a remarkably low computational com-
plexity: the training step (i.e., populating the projection matrix R) takesO(dk) time,
and projecting a N × d data matrix X to Rk can be done at the cost of O(Ndk)

time [10]. In the proposed variation of the algorithm, the training step consists in
populating t projection matrices, thus having a complexity of O(tdk). Given that the
polynomial kernel can be computed in O(d), the complexity of projecting the N × d
data matrix X to k dimensions by means of (3.7) is of order O(Ntdk). However,
since t is a hyperparameter whose value does not depend on the input data, it can
be considered as a constant. By doing this, the complexities of the training and test
phases turn out to be the same as in the original RP algorithm. This indicates that
the scalability of D2PK-RP in the number of training samples and their dimension
is the same as that of the original RP method.

However, it must be noted that the value of the hyperparameter t has a direct im-
pact in the efficiency of D2PK-RP. Since t controls the number of projection matrices
used, increasing t results in higher computational and storage costs. An alternative
way of reducing computational costs would be re-using some of the random vectors
for various output components, and in fact this idea will be applied in the following
chapters.

3.4 Experimental results on distance preservation

The proposed technique seeks to implicitly map data samples from Rd to H and
then project them to Rk in such a way that pairwise distances between samples in H
are preserved in the resulting representation. To evaluate the distance preservation
properties of the different approaches, we compare the squared Euclidean distance
between two dimensionality-reduced data samples to their squared Euclidean dis-
tance in the kernel feature space. To do so, we use the following measure. Let x

and y be a couple of samples from Rd and let x′,y′ be their representation in Rk,
generated by some degree-2 homogeneous polynomial kernel approximation method,
then:

distortionx,y =
abs( ||x′ − y′||2 − ||φ(x)− φ(y)||2 )

||φ(x)− φ(y)||2
. (3.14)

This measure can be easily interpreted. For example, if distortionx,y = 0.12 we
can conclude that the distance between both samples in H suffered a 12% distortion
(increase or decrease) in the resulting representation. Note that ||φ(x)− φ(y)||2 can
be calculated without any explicit evaluation of φ(·), via the kernel function (see
Section 2.2):

||φ(x)− φ(y)||2 = K(x,x) +K(y,y)− 2K(x,y). (3.15)
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To measure the distortion induced by a given method while reducing a set of N
samples, the average distortion among all the

(
N
2

)
possible pairs of different samples

is computed. We shall use this average distortion measure to compare the differ-
ent approaches discussed in this chapter. Experiments were carried out using three
datasets from different domains, namely artificial vision and speech recognition. To-
gether with D2PK-RP, we also evaluated the effectiveness of alternative methods
such as the explicit approach (see Section 3.3) and Kernelized Gaussian Random
Projection (KG-RP) [110].

Regarding the parametrization of KG-RP, the hyperparameter p controls the
number of samples used to estimate the distribution of data in the kernel feature
space, and must be set manually. By its nature, increasing its value will likely cause
the performance of the algorithm to improve at the expense of longer running times.
The authors of this method suggest using p = O(

√
N) to achieve a good balance

between efficiency and performance [66, 110], where N is the number of training
samples. We followed this recommendation in our experiments and evaluated KG-
RP with p = 3

√
N, 6

√
N, and 9

√
N . In addition, we used KG-RP with t = 10 in

all the experiments. Regarding the sparsity level for the vectors in D2PK-RP, for
simplicity we used s = 1 in all cases. To support our claims about the scalability
of the proposed method, each distance distortion result reported in this section is
provided along with the corresponding training/embedding times4.

3.4.1 Experiments on CIFAR-10

The CIFAR-10 dataset [63] consists of 60000 color images of size 32×32, distributed
among 10 different categories (see Figure 3.4). The train/test split is usually ar-
ranged with 50000/10000 images respectively. Given that the images are of size
32× 32 with three channels, the sample dimension d is 3072. Therefore, the dimen-
sionality of the feature space for the homogeneous polynomial kernel of degree two
is 4,720,128. In this case, the explicit approach (i.e., the explicit mapping of the
samples by means of φ(·) and their reduction with a classic Random Projection) is
still tractable. However, it is extremely demanding both in terms of computational
power and memory. For example, storing 200 samples from H as a matrix of 32-bit
floats requires approximately 3.5 Gigabytes of memory.

To compare the different approaches, 200 samples were selected at random from
the whole dataset. Then, the samples were transformed by means of the different
methods discussed in this chapter and the average pairwise distance distortion was
measured. Figure 3.5.a shows the average distortion induced by the different methods
as the resulting dimension k grows.

4In the experiments, KG-RP training was performed by invoking the original Matlab implemen-
tation from Python. Slightly better training times might be achieved by entirely porting the Matlab
implementation to Python, to avoid overheads.
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Figure 3.4: Some random examples from the different categories of CIFAR-10.

Figure 3.5: a) Average distortion induced on CIFAR10 samples by using different methods
as the resulting dimension grows. b) Effect of different values for the hyperparameter t on

CIFAR10 samples transformed by D2PK-RP. The resulting dimension was fixed to 160.

As we can se in Figure 3.5.a, the method proposed in Section 3.3 (i.e., D2PK-RP
with t = 1) provides a reasonably low distortion given its simplicity. However, as ex-
plained before, a significant difference exits between the effectiveness of this method
and the explicit approach. On the other hand, the method proposed in Section 3.3.1
to overcome that limitation (i.e., D2PK-RP with t > 1) shows a rapid decrease in the
induced distortion as the hyperparameter t grows. Table 3.1 compiles the resulting
average distortions obtained using different methods and various values of k and t.
To mitigate the stochastic nature of the evaluated methods, each experiment was
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Table 3.1: Average pairwise distance distortion induced by different methods and hyperparame-
ters on 200 samples from CIFAR10. Training/embedding times are also provided.

Method k=40 k=80 k=120 k=160

φ(·) +RP
0.177± 0.007
7433.7/4837.7 ms

0.122± 0.003
9974.4/5263.4 ms

0.103± 0.004
18288.6/6142.6 ms

0.090± 0.003
36351.8/9226.9 ms

D2PK-RP (t=1) 0.386± 0.040
3.6/0.41 ms

0.277± 0.022
5.6/0.61 ms

0.239± 0.035
10.6/0.81 ms

0.239± 0.033
16.6/0.95 ms

D2PK-RP (t=2) 0.294± 0.025
2.14/0.81 ms

0.212± 0.018
5.05/1.29 ms

0.170± 0.009
6.85/1.36 ms

0.147± 0.006
12.5/1.66 ms

D2PK-RP (t=10) 0.204± 0.008
11.6/3.58 ms

0.145± 0.007
28.7/3.66 ms

0.119± 0.006
38.9/7.8 ms

0.101± 0.005
47.4/8.11 ms

D2PK-RP (t=30) 0.188± 0.016
35.2/9.9 ms

0.132± 0.005
70.0/16.9 ms

0.109± 0.004
116.8/18.5 ms

0.091± 0.002
148.7/23.4 ms

KG-RP (p=669) 0.438± 0.027
3311.0/5.02 ms

0.431± 0.030
3344.5/5.44 ms

0.430± 0.019
3430.0/6.59 ms

0.424± 0.010
3527.6/6.86 ms

KG-RP (p=1338) 0.357± 0.019
13473.4/9.38 ms

0.348± 0.024
13634/9.41 ms

0.335± 0.020
13878.2/11.61 ms

0.339± 0.013
14156.4/11.83 ms

KG-RP (p=2007) 0.323± 0.027
31532.1/15.52 ms

0.305± 0.018
32111.9/15.63 ms

0.292± 0.014
32607.4/16.31 ms

0.291± 0.015
33442.0/18.0 ms

performed ten times. The average result and the standard deviation are reported.
Regarding the ruining times, D2PK-RP is by far the fastest alternative, especially
considering training times, which in the case of D2PK-RP are solely due to the ini-
tialization of the random matrices. As expected, the explicit approach reports the
longest running times due to the expensive explicit evaluation of the kernel feature
map.

Finally, we analyze the effect of the hyperparameter t on the average distortion
induced by D2PK-RP. To this extent, the dimension of the resulting space k was
fixed to 160 and the average distortion was evaluated for t = 2, 4, 6, . . . , 200. The
results were compared to the average distortion induced by the explicit approach,
also with k = 160. This comparison is shown in Figure 3.5.b. The results suggest
that using values of t greater than 100 will ensure a performance of D2PK-RP nearly
equivalent to that of the explicit approach. In addition, it is even possible to obtain
a close approximation to this performance with much lower values of t.

3.4.2 Experiments on ISOLET

The ISOLET Spoken Letter Database consists of letters from the English alphabet
pronounced by native speakers under controlled conditions, with two realizations
of each letter by a total of 150 subjects. The dataset contains a total of 7,800
samples, each corresponding to the features extracted from the pronunciation of a
letter. For more details about the feature extraction process, see [36]. Since each
sample consist of 617 features, the dimensionality of the associated implicit feature
space H is 190,653. Hence, the storage of 200 samples from H as a matrix of 32-bit
floats requires approximately 145.5 Megabytes of memory.

To compare the different approaches, 200 samples were selected at random from
the whole dataset. Then, the samples were processed by means of the different
methods compared in this chapter and the average pairwise distance distortion was
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Figure 3.6: a) Average distortion induced on ISOLET samples by using different methods
as the resulting dimension grows. b) Effect of different values for the hyperparameter t on

ISOLET samples transformed by D2PK-RP. The resulting dimension was fixed to 160.

Table 3.2: Average pairwise distance distortion induced by different methods and hyperparame-
ters on 200 samples from ISOLET. Training/embedding times are also provided.

Method k=40 k=80 k=120 k=160

φ(·) +RP
0.174± 0.004
226.6/665.3 ms

0.123± 0.007
428.2/692.6 ms

0.102± 0.005
594.1/723.5 ms

0.089± 0.008
881.6/732.1 ms

D2PK-RP (t=1) 0.361± 0.086
0.9/0.09 ms

0.245± 0.041
1.4/0.14 ms

0.215± 0.028
1.8/0.19 ms

0.179± 0.038
2.7/0.25 ms

D2PK-RP (t=2) 0.279± 0.022
0.3/0.17 ms

0.192± 0.017
0.6/0.34 ms

0.155± 0.008
1.2/0.4 ms

0.139± 0.019
1.6/0.57 ms

D2PK-RP (t=10) 0.196± 0.010
2.2/0.84 ms

0.139± 0.009
5.2/1.4 ms

0.114± 0.007
9.3/1.96ms

0.100± 0.007
9.7/2.59 ms

D2PK-RP (t=30) 0.181± 0.008
7.1/2.48 ms

0.132± 0.009
16.8/4.0 ms

0.107± 0.004
27.0/6.09 ms

0.092± 0.003
31.5/4.86 ms

KG-RP (p=234) 0.344± 0.026
448.7/0.8 ms

0.349± 0.028
454.8/0.86 ms

0.348± 0.017
482.6/0.96 ms

0.335± 0.02
492.9/1.25 ms

KG-RP (p=468) 0.283± 0.029
1668.9/1.45 ms

0.250± 0.017
1768.5/2.05 ms

0.257± 0.018
1845.9/2.13 ms

0.269± 0.02
1896.1/2.82 ms

KG-RP (p=702) 0.243± 0.025
3588.1/2.49 ms

0.222± 0.019
3730.68/2.56 ms

0.219± 0.017
3820.1/3.33 ms

0.204± 0.022
4012.4/3.41 ms

measured. Figure 3.6.a shows the average distortion induced by the different methods
as the resulting dimension k grows.

Table 3.2 compiles the resulting average distortions obtained using different meth-
ods and various values of k and t. Each experiment was performed ten times, so the
average result and standard deviation of those ten runs are reported. To analyze the
effect of the hyperparameter t on the average distortion induced by D2PK-RP, the
dimension of the resulting space k was fixed to 160 and the average distortion was
evaluated for a wide range of values of t. The results were compared to the average
distortion induced by the explicit approach also with k = 160, and are shown in
Figure 3.6.b.
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Figure 3.7: a) Average distortion induced on 500 STL-10 samples by using different methods
as the resulting dimension grows. b) Effect of different values for the hyperparameter t on

STL-10 samples transformed by D2PK-RP. The resulting dimension was fixed to 160.

Table 3.3: Average pairwise distance distortion induced by different methods and hyper-
parameters on 500 samples from STL-10. Training/embedding times are also provided.

Method k=40 k=80 k=120 k=160

D2PK-RP (t=1) 0.360± 0.086
38.9/7.65 ms

0.254± 0.041
63.6/10.88 ms

0.215± 0.028
88.6/10.76 ms

0.179± 0.038
118.08/15.69 ms

D2PK-RP (t=2) 0.279± 0.022
21.58/13.09 ms

0.192± 0.017
51.7/22.05 ms

0.155± 0.008
68.09/23.2 ms

0.139± 0.019
89.75/32.11 ms

D2PK-RP (t=10) 0.196± 0.010
113.33/53.71 ms

0.139± 0.009
222.9/92.04 ms

0.114± 0.007
330.2/123.96 ms

0.100± 0.007
434.1/174.08 ms

D2PK-RP (t=30) 0.181± 0.008
316.2/183.58 ms

0.132± 0.009
654.5/304.2 ms

0.107± 0.004
968.8/396.21 ms

0.092± 0.003
1295.6/487.22 ms

KG-RP (p=948) 0.559± 0.025
6934.6/215.1 ms

0.546± 0.018
6976.3/220.8 ms

0.544± 0.018
7123.3/224.5 ms

0.541± 0.004
7277.3/225.8 ms

KG-RP (p=1896) 0.495± 0.024
29368.1/439.7 ms

0.485± 0.010
29545/444.6 ms

0.479± 0.013
29956.4/449.0 ms

0.482± 0.008
30524.9/454.9 ms

KG-RP (p=2844) 0.469± 0.020
69502.2/634.3 ms

0.452± 0.017
70184.2/643.5 ms

0.445± 0.011
71195.8/644.2 ms

0.434± 0.012
72354.2/647.9 ms

3.4.3 Experiments on STL-10

The STL-10 dataset [28], inspired by the CIFAR-10 dataset, is another very popu-
lar benchmark for image categorization. The two major differences with respect to
CIFAR-10 are the much lower number of labeled images per class and the size of
the images. The dataset consists of 500/800 train/test images per class, and 100,000
additional unlabeled images for unsupervised learning. Each image is of size 96×96
with three color channels, so each sample contains 27,648 features. The dimension-
ality of the implicit feature space H is then 382,219,776. Consequently, storing 200
samples fromH as a matrix of 32-bit floats requires approximately 284.7 Gigabytes of
memory, which is far beyond the current capacity of personal computers and a chal-
lenging volume even for high-end computing systems. This illustrates how rapidly
the explicit approach becomes intractable when the dimensionality of data samples
grows, as working with this sample size renders the explicit approach intractable.
However, we could still measure the effectiveness of the remaining methods. To com-
pare the different approaches, 500 samples were selected at random from the whole
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dataset. Then, the samples were reduced by means of the different methods discussed
in this chapter and the average pairwise distance distortion was measured. Figure
3.7.a shows the average distortion induced by different methods as the resulting di-
mension k grows. Table 3.3 compiles the resulting average distortions obtained using
different methods and various values of k and t. Again, each experiment was per-
formed ten times, so the average result and standard deviation are reported. Figure
3.7.b analyzes the effect of the hyperparameter t on the average distortion induced
by D2PK-RP (with k = 160).

3.4.4 Friedman test and post-hoc tests

This section reports on the results of statistical tests supporting our claim that
the proposed method approximates a Random Projection from the feature space of
the degree-2 homogeneous polynomial kernel. We applied the Friedman method5

with post-hoc tests as described in [45, 44]. For all tests, the performance measure
used was 1− avg. distortion. Intuitively, higher values of this performance measure
correspond to small induced distortions in pairwise distances.

First of all, we analyzed whether a significant difference existed in the perfor-
mance of the compared methods over the different datasets evaluated. Under the
null-hypothesis, the Friedman test states that all the algorithms are equivalent, so
a rejection of this hypothesis implies the existence of differences among the perfor-
mances of the different methods. Using the Friedman statistic over the performance
results previously reported in this section resulted in a value of 80.805 (distributed
according to chi-square with 7 degrees of freedom) and a corresponding p-value of
4.325 × 10−11. As a consequence, we can reject the null-hypothesis and conclude
that significant differences exist between the performances of the compared meth-
ods. Hence, a post-hoc statistical analysis must be performed. We selected the best
performing method, namely φ(·) + RP (i.e., the explicit approach), as the control.
Then, the Bonferroni-Dunn, Holm and Hochbergs tests [45] were used to find whether
the control method presented statistically significant differences when compared to
the remaining approaches in terms of performance. The adjusted p-values for these
tests are reported in Table 3.4, stressing in bold those methods that were worse than
the control considering a level of significance α = 0.05.

As we can see, while KG-RP and D2PK-RP with t ≤ 2 perform worse that
the control approach, no significant differences were detected by the tests when
comparing the distance preservation performance of our method using t ≥ 10 and
the explicit approach φ(·)+RP (with a level of significance α = 0.05). This supports
our claim that, when a big enough value is selected for t, our method approximates a
Random Projection from the feature space of the degree-2 homogeneous polynomial
kernel.

5Particularly, we used the CONTROLTEST package developed at the University of Granada.
URL: https://sci2s.ugr.es/sicidm (Date accessed: 15/09/2018).

https://sci2s.ugr.es/sicidm
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Table 3.4: Adjusted p-values for the comparison of the control algorithm (φ(·) + RP ) with the
remaining algorithms (Bonferroni-Dunn, Holm and Hochberg tests).

Algorithm unadjusted p pBonf pHolm pHoch

KG-RP (p=3 ·
√
N) 4.62394×10−12 3.23676 ×10−11 3.23676 ×10−11 3.23676×10−11

KG-RP (p=6 ·
√
N) 5.43308 ×10−9 3.80316 ×10−8 3.25985×10−8 3.25985×10−5

KG-RP (p=9 ·
√
N) 3.06125 ×10−6 2.142877 ×10−5 1.53062 ×10−5 1.53062 ×10−5

D2PK-RP (t=1) 6.79534 ×10−6 4.75674 ×10−5 2.71813 ×10−5 2.71813 ×10−5

D2PK-RP (t=2) 0.00204 0.014328 0.00614 0.00614
D2PK-RP (t=10) 0.04550 0.31850 0.09100 0.09100
D2PK-RP (t=30) 0.31731 2.22117 0.31731 0.31731

3.5 Experimental results on classification accuracy

Although Radial Basis Function (RBF) is the most widely used type of kernel in
the context of Support Vector Machine (SVM) classification, it suffers from some
limitations. Mainly, the implicit feature map φRBF (·) associated to the RBF kernel
is infinite dimensional, which enforces the application of the kernel trick to train
RBF-SVMs. As a result, RBF-SVMs are inefficient and poorly scalable as compared
to their linear counterparts [109].

As an alternative, Chang et al. [21] proposed mapping the data samples by the
feature transformation associated to the polynomial kernel of degree two as a prior
step to fast linear-SVM classification. Their experimental results evidence that, using
this method on some datasets, one may achieve accuracy rates close to those of highly
non-linear kernels. Unfortunately, as we have mentioned before, the dimensionality
of H grows rapidly as the original dimension of samples increases. Therefore, the
method proposed in [21] is not convenient when training samples have a significant
number of features and those features are not sparse.

Conversely, the method proposed in this chapter can be used to efficiently con-
dense the structure of a dataset in H to a low-dimensional representation of the
samples. This representation can be used to train efficient linear classifiers that ob-
tain accuracy rates almost as good as those trained on samples explicitly mapped
by means of the embedding φ : Rd → H. To support our claim, we reproduced the
experimental protocol developed in [21]. The accuracies obtained by using D2PK-
RP as a feature extractor prior to linear classification6 were compared to the results
presented by Chang et al. Table 3.6 compiles the experimental results obtained on
various datasets by various dimensionality reduction and classification methods7. For
details on the characteristics of the different datasets refer to Table 3.5.

These results evidence that the proposed method can be used as a previous step to
linear classification, boosting the capabilities of linear classifiers and approximating,
in some cases, the performance attained by highly non-linear classification methods.
Interestingly, the effect of increasing the hyperparameter t of D2PK-RP has a more

6We used the linear SVM implementation provided by LIBSVM [35]
7Note that the results concerning L-SVM, RBF-SVM and φ(·) + L-SVM where directly taken

from [21], where the authors used the feature map for the polynomial kernelK(x,y) = (γ〈x,y〉+1)2,
setting γ to the appropriate value on each dataset.
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Table 3.5: Feature number, kernel feature space size, training sample number and test sample
number of the datasets used in Section 3.5.

Dataset sample dim. d size of H # train # test

ijcnn1 22 253 49,990 91,701
MNIST38 784 307,720 11,982 1,984
covtype 54 1,485 464,809 116,203
webspam 254 32,385 280,000 70,000

Table 3.6: Classification accuracy on various datasets obtained by using: a linear SVM over
the original features, a Gaussian-kernel SVM, a linear SVM over the embedding defined by the
polynomial kernel of degree two, a linear SVM trained on D2PK-RP features and a linear SVM

trained on KG-RP features.

IJCNN MNIST38 covtype webspam
Methods param. acc. param. acc. param. acc. param. acc.

raw features
Linear SVM C=32 92.21% C=0.03125 96.82% C=0.0625 76.35% C=32 93.15%

raw features
RBF-SVM C=32 98.69% C=2 99.70% C=32 96.08% C=8 99.20%

φ(·) : Rd → H
Linear SVM

C=0.125 97.84% C=2 99.29% C=2 80.09% C=8 98.44%

D2PK-RP (t=1)
Linear SVM

C=4
k=250

97.24%
±0.05

C=4
k=2000

98.63%
±0.17

C=0.1
k=500

79.77%
±0.04

C=0.05
k=2000

97.77%
±0.14

D2PK-RP (t=2)
Linear SVM

C=4
k=250

97.29%
±0.08

C=4
k=2000

98.80%
±0.19

C=0.1
k=500

79.72%
±0.01

C=0.05
k=2000

97.56%
±0.13

D2PK-RP (t=10)
Linear SVM

C=4
k=250

97.31%
±0.07

C=4
k=2000

98.90%
±0.2

C=0.1
k=500

79.72%
±0.03

C=0.05
k=2000

97.60%
±0.06

D2PK-RP (t=20)
Linear SVM

C=4
k=250

97.32%
±0.09

C=4
k=2000

98.94%
±0.24

C=0.1
k=500

79.73%
±0.01

C=0.05
k=2000

97.65%
±0.14

D2PK-RP (t=30)
Linear SVM

C=4
k=250

97.33%
±0.06

C=4
k=2000

98.95%
±0.2

C=0.1
k=500

79.73%
±0.02

C=0.05
k=2000

97.66%
±0.09

KG-RP (p=9
√
N)

Linear SVM
C=4
k=250

97.36%
±0.10

C=0.5
k=2000

98.68%
±0.07

C=0.1
k=500

79.43%
±0.10

C=0.05
k=2000

97.76%
±0.04

subtle effect in the classification accuracy than it had in the results concerning dis-
tance preservation in the previous section. Conveniently, high accuracy rates can
be achieved using very small values of t. In fact, no significant accuracy improve-
ments where registered using t > 20. Moreover, the best results with D2PK-RP for
webspam and covtype datasets were achieved by using t = 1. In addition, we can
see that KG-RP achieved similar or slightly lower accuracies than our method on all
datasets.

3.6 Conclusions and future work

In this chapter, a novel non-linear dimensionality reduction method has been pre-
sented. The proposed algorithm makes it possible to implicitly approximate a Ran-
dom Projection from the feature space associated to the polynomial kernel of degree
two to an Euclidean space of the desired dimension. This projection is conveniently
performed without any explicit evaluation of the feature map φ : Rd → H. As op-
posed to previous techniques to perform Random Projections from kernel feature
spaces [5, 110], our method preserves the data-independence and efficiency proper-
ties of the original Random Projection algorithm. In fact, the training stage only
involves the population of a number of random matrices, thus preserving much of
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the simplicity of the original Random Projection method. Moreover, the proposed
method is compatible with the database-friendly distribution proposed by Achlioptas
[2], thus allowing its implementation in terms of aggregate evaluation. This can be
achieved by delaying the floating-point multiplication present in (3.9).

Our experimental results show that the proposed method approximates the dis-
tance preservation properties of Random Projection, so the generated representations
approximately preserve the pairwise distances between samples in the kernel feature
space. Because of the data-independent nature of the proposed method, it could be
applied in online-learning scenarios [38], where no data samples are initially avail-
able. In addition, the method proposed in this chapter can be used to train efficient
linear classifiers that approximate the performance of their kernelized counterparts.

The major shortcoming of the proposed method is that it was designed to work
solely with a specific kernel function. In this regard, the efficiency and data-indepen-
dence of our method was achieved at the expense of generality, as this method is only
compatible with the homogeneous polynomial kernel of degree two. Nevertheless, the
wide applicability and popularity of this kernel function [21, 64, 23, 107, 106] justifies
this design decision. We also believe that it would be possible to develop similar
methods for other specific kernel functions, but this possibility will be examined in
future work. In addition, the suitability of the proposed method for other machine
learning tasks (e.g., regression, clustering and document retrieval) could be evaluated.
Finally, we believe a similar approach to the one proposed in this chapter could be
used to develop a data-independent form of kernelized Locality-Sensitive Hashing
(LSH) [66] with the polynomial kernel, as this task is also based on the projection
of samples onto random vectors in the kernel feature space.
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Chapter 4

Random Projections from the
Feature Spaces of
Arbitrary-Degree Polynomial
Kernels

The results presented in the previous chapter have shown that it is possible to ap-
proximate a Random Projection from the feature space of the degree-two homoge-
neous polynomial kernel in a relatively efficient and data-independent manner. In
the following pages, we build upon the ideas of Chapter 3 to improve the generality,
efficiency and effectiveness of our kernelized Random Projection approach. Partic-
ularly, we introduce a novel method to efficiently perform Random Projections from
the feature spaces of homogeneous polynomial kernels of arbitrary degree. Extensive
experimental results evidence that this new algorithm outperforms alternative ap-
proaches in terms of distance preservation, while being more efficient. Furthermore,
results show that the proposed method can be applied to boost the accuracy of linear
classifiers, approximating in some cases the effectiveness of kernelized classifiers.

The contents of this chapter have been adapted from the journal paper: Daniel
López-Sánchez, Angélica González Arrieta and Juan M. Corchado. “Data indepen-
dent Random Projections from the feature-space of the Homogeneous Polynomial
Kernel”. In: Pattern Recognition (2018).

4.1 Introduction

As evidenced by the results presented in the previous chapter, it is possible to approx-
imate a Random Projection from the feature space of the degree-two homogeneous
polynomial kernel by carefully choosing the distribution of the projection matrix and
applying the Central Limit Theorem in conjunction with the properties of kernels.
Focusing on a specific kernel function with fixed hyperparameters allowed us to con-
sider a concrete feature map and analyze its effect on the entries of the projection

https://www.sciencedirect.com/science/article/pii/S0031320318301675
https://www.sciencedirect.com/science/article/pii/S0031320318301675
https://www.sciencedirect.com/science/article/pii/S0031320318301675
https://www.sciencedirect.com/science/article/pii/S0031320318301675
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matrix when inner products in the Random Projection algorithm were replaced by
kernel function evaluations. While being reasonably effective, this approach pre-
sented some limitations. The fist and most obvious drawback was that, by design,
our method was constrained to only work with the degree two homogeneous poly-
nomial kernel. In addition, the fact that the projection vectors were the result of
transforming low-dimensional vectors with the kernel feature map caused the theo-
retically unpleasant problem of having two different distributions for the entries of
the projection vectors in the kernel feature space, one of which was not even a valid
Random Projection distribution. Fortunately, the number of entries of the projec-
tion vectors following that invalid distribution was small, and some algorithmic tricks
together with the application of the Central Limit Theorem enabled our method to
approximate the performance of a true Random Projection from the kernel feature
space. Nevertheless, improvements are still possible in terms of the effectiveness,
efficiency and generality of the algorithm.

In this chapter, we propose an improved method to efficiently perform Random
Projections from the feature spaces of homogeneous polynomial kernels of arbitrary
degree. Again, focusing on the family of homogeneous polynomial kernels allows us
to preserve the data-independence and efficiency of the original Random Projection
method. However, by introducing a new manner of generating the projection vec-
tors, we manage to extend our method to polynomial degrees greater than two. In
addition, this new method is compatible with both the Gaussian distribution [8] and
the database-friendly distribution proposed by Achlioptas [3] for the projection vec-
tors. Our experimental results evidence that this improved algorithm outperforms
alternative approaches in terms of pairwise distance preservation, while requiring sig-
nificantly less computational resources. We also present results evidencing that the
generated feature representations can be used to achieve a higher linear classification
accuracy, approximating the effectiveness of nonlinear classifiers in some datasets.

The rest of this chapter is structured as follows. Section 4.2 reviews some of
the most relevant works that have studied the possible kernelization of the Random
Projection algorithm. Section 4.3 introduces our proposed algorithm and analyzes
its compatibility with the database-friendly distribution proposed by Achlioptas.
This section also contains a detailed analysis of the computational complexity of
our algorithm and other alternative approaches. Section 4.4 presents the results of
extensive experiments, which evidence the properties of our kernelized variant of
Random Projection. Finally, in Section 4.5 we present the conclusions of this work
and propose some promising future lines of research.

4.2 Related work

As discussed in Section 2.4, the problem of developing a kernelized variant of the
Random Projection algorithm has already been addressed in the literature. The
interest in such kernelized algorithms is motivated by two main reasons:
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1. A kernelized variant of the Random Projection algorithm would provide a tool
to generate low dimensional representations where relative distances between
data points would be approximately equal to those in the kernel feature space.
This could have numerous applications in machine learning tasks such as clus-
tering and information retrieval.

2. While theoretical guarantees for the preservation of inner products under Ran-
dom Projections have been historically looser that those regarding Euclidean
distances, improved bounds on the preservation of dot products have been re-
cently proved [56]. This gives support to the idea that an efficient technique
which performs a Random Projection from a kernel feature space could be used
as a representation-generator prior to a linear classifier, which would benefit
from the non-linearity of the feature space and approximate the accuracy of
non-linear classifiers while being significantly more efficient [109].

Motivated by these possibilities, the authors of [11, 9] analyzed whether it would
be possible to formulate an algorithm capable of performing a Random Projection
from the feature space of an arbitrary kernel function, by just having black-box
access to the kernel function but no unlabeled training samples (i.e., without access
to the distribution of input data). Unfortunately, their results were negative, and the
authors proved that this is not possible for an arbitrary black-box kernel. However,
they left the question open of whether such methods could be developed for specific
kernel functions such as the polynomial kernel.

Years later, Alavi et al. [5, 110] proposed a general method to perform Random
Projections from arbitrary kernel feature spaces, named Kernelized Gaussian Ran-
dom Projection (KG-RP). Their findings did not contradict the result described in
the previous paragraph since the method they proposed required access to a number
of unlabeled training samples to work. As a consequence, KG-RP is a data-dependent
method, and the quality of the embeddings it produces depends on the amount of
training samples available and their variability. In addition, most of the computa-
tional efficiency of the original Random Projection method is lost in this version, as
we will see in Section 4.3.4.

Following a diametrically opposite approach, Chang et al. [21] proposed explicitly
computing the feature map of low-rank polynomial kernels to train efficient linear
classifiers. They exploited the fact that, as opposed to other popular kernel functions,
the feature spaces associated to polynomial kernels are known and of finite dimension.
They also took advantage of the sparse nature of some datasets to reduce the time and
storage requirements of explicitly computing the mapped data samples. Although
their results evidenced the potential of polynomial kernels, this approach is generally
too demanding in terms of storage and computation. This is especially true when
working with polynomial degrees greater than two, as in the case of polynomial
kernels the dimension of the feature space grows exponentially with the degree.

The results presented in Chapter 3 have shown that, rather than explicitly com-
puting the feature space of a polynomial kernel, it is possible to implicitly perform
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a Random Projection from it. Particularly, a data-independent algorithm named
D2PK-RP was introduced to approximate Random Projections from the feature
space of the degree-two homogeneous polynomial kernel. Unfortunately, the applica-
bility of this method is limited by its exclusive compatibility with the second degree
homogeneous polynomial kernel. In addition, it requires populating a number of
complete projection matrices, thus incurring in significant computational overheads.
Hence, there is much room for improvement in the generality and efficiency of this
method.

Finally, it is worth noticing that, during the past decade, a lot of effort has
been put into designing methods to efficiently approximate dot products in different
kernels’ feature spaces [97, 84, 82]. Formally, given a kernel function K(·, ·), the goal
of such methods is to find an approximated feature map h(·) such that:

K(x,y) = 〈φ(x), φ(y)〉H ≈ 〈h(x), h(y)〉Rk , (4.1)

where h(·) can be computed efficiently and the feature space it generates is sufficiently
low-dimensional or sparse [97]. Note that these methods are designed to approximate
dot products between samples rather than Euclidean distances (i.e., they are not
directly related to Random Projections or the JL-lemma). Nevertheless, we selected
one of the most popular and generally applicable methods of this class, namely the
Nyström method [103], and included it in our comparisons.

4.3 Proposed method

In this section, we introduce the proposed method and provide a simple algorithmic
description to ease its implementation. Afterwards, the compatibility of our tech-
nique with the database-friendly distribution proposed by Achlioptas [2] is explored.
We also analyze the possibility of using our method with inhomogeneous polynomial
kernels. Finally, the computational complexity of our algorithm in both train and
test phases is analyzed and compared to alternative approaches.

As mentioned before, our method is specifically designed to efficiently perform
Random Projections from the feature spaces of homogeneous polynomial kernels.
We focused on this family of kernel functions due to their simplicity, proven power
[21] and special properties, which will allow us to perform the Random Projection
efficiently and without any knowledge of the distribution of the data to be projected.
As discussed in Section 2.3, homogeneous polynomial kernels are those of the form:

K(x,y) = 〈x,y〉g with x,y ∈ Rd. (4.2)
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In addition, the following mapping from Rd to Rdg represents a valid feature map
for the homogeneous polynomial kernel of degree g:

φ(x) = x⊗ x · · · ⊗ x︸ ︷︷ ︸
g times

=

g⊗
i=1

x, (4.3)

where ⊗ denotes the Kronecker product.

4.3.1 Random Projection for homogeneous polynomial kernels

Our goal is to perform a Random Projection from the kernel feature space onto a
lower-dimensional Euclidean space Rk, while avoiding any explicit computation of
the feature map φ(·). In this regard, each output component must be generated as
the inner product between the mapped data point and a random vector whose entries
are independently drawn from a valid Random Projection distribution. It must be
emphasized that, in some cases, the entries of a random vector might follow a valid
Random projection distribution when analyzed individually. However, if they are
not mutually independent, the result of using such vectors to project data samples
will not be a valid Random Projection, so the Johnson-Lindesstrauss lemma will not
be applicable to guarantee the preservation of pairwise distances after the projection.

Before introducing our algorithm, let us present a fundamental property of ho-
mogeneous polynomial kernels. Let x and r1, . . . , rg be arbitrary vectors in Rd, then
it holds that:

g∏
j=1

〈x, rj〉Rd = 〈φ(x),
⊗g

j=1 rj〉H, (4.4)

where φ : x→
⊗g

i=1 x is the feature map given in (4.3) for the degree-g homogeneous
polynomial kernel, and H is its associated feature space. To prove this, it suffices
to rewrite the product of inner products in the left-hand side of the equation as a
product of summations. Then, rearranging we arrive at the desired expression. For
instance, let x,y, z be three arbitray vectors in Rd, then for g = 2 we have:

〈x,y〉〈x, z〉 =

(
d∑
i=1

xiyi

) d∑
j=1

xjzj


=

d∑
i=1

d∑
j=1

xixjyizj

= 〈x⊗ x,y ⊗ z〉 = 〈φ(x),y ⊗ z〉H .

(4.5)

The proof for g > 2 is analogous.
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At this point, one might attempt to use (4.4) to perform a Random Projection
in the feature space of the homogeneous polynomial kernel without explicitly oper-
ating in it. To do this, the first step would be to select a distribution for r1, . . . , rg
such that the projection vector in the feature space,

⊗g
j=1 rj , follows a valid Ran-

dom Projection distribution. For instance, if r1, . . . , rg are independently drawn
from Nd(0, I), the individual entries of

⊗g
j=1 rj will be the product of independent

standard normal variables and thus follow a symmetric distribution with zero mean
and unit variance1 (the normal product distribution [100, 102], in particular). As
mentioned before, as long as the entries of the projection vectors are i.i.d. with
zero mean and unit variance, pairwise distances will be preserved in expectation [3].
When analyzed individually, the entries of

⊗g
j=1 rj exhibit the desired zero mean

and unit variance. However, due to the manner in which they are computed, they
are not mutually independent. Particularly, one can see that each entry in

⊗g
j=1 rj

is the product of g independent factors, but also that each individual factor appears
in multiple entries of

⊗g
j=1 rj . Moreover, this dependence in the entries of vectors of

the form
⊗g

j=1 rj will appear regardless of the selected distribution for r1, . . . , rg. As
a consequence, (4.4) cannot be directly used to perform a valid Random Projection
from the kernel feature space.

To provide insight into the dependence of the entries in
⊗g

j=1 rj , we explicitly
generated a number of such projection vectors. To keep the computations tractable,
we considered a polynomial degree of two (g = 2) and an input feature space of
dimension 5 (r1, r2 ∼ N5(0, I)). Hence, the dimension of the vectors generated in
this manner was 25. For comparison, we also generated a set of projection vectors
by directly sampling from N25(0, I). Figures 4.1.a and 4.1.b show the correlation
matrices for the vectors generated by either method. Interestingly, correlation ma-
trices of both sets of vectors look quite similar. This suggest that the dependence
among the entries of vectors of the form

⊗g
j=1 rj is not a mere linear correlation.

To actually visualize this phenomenon, we need to use a more sophisticated measure
of statistical dependence, namely the distance correlation [93]. Figures 4.2.a and
4.2.b show the distance correlation matrices for the projection vectors generated by
directly sampling from N25(0, I) and evaluating

⊗g
j=1 rj respectively. In this case,

the matrix corresponding to the vectors generated by using
⊗g

j=1 rj shows a clear
deviation from the identity matrix. This indicates that, as expected, a certain de-
gree of dependence exists among entries. The structure of this dependence is further
explored in Figure 4.3.

To overcome the problem of dependence among the entries of the projection
vectors in the kernel feature space, we propose applying the Central Limit Theorem
(CLT) [57]. This classical result states that the sum of independent random variables
with finite, non-null variance is approximately distributed according to a normal
distribution. In particular, consider the multidimensional version of the Central
Limit Theorem [17] which can be formulated in the following manner: Let x1, . . . ,xt

1This comes from the fact that if A and B are two independent random variables, then their prod-
uct has expectation E[AB] = E[A]E[B], and variance Var[AB] = Var[A]Var[B] + Var[A](E[B])2 +
Var[B](E[A])2 [77, 18].



Chapter 4. RPs from the Feature Spaces of Arbitrary-Degree PKs 45

a) b) c)

0

1

1

0

1

1

0

1

1

N25(0, I) r1 ⊗ r2 with
∑t−1

i=0(r2i+1 ⊗ r2i+2) with
r1, r2 i.i.d. from N5(0, I) r1, . . . , r2t i.i.d. from N5(0, I)

Figure 4.1: Correlation matrices computed over 500 25-dimensional samples generated by
different methods (d = 5, g = 2, t = 30).
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Figure 4.2: Distance correlation matrices [93] computed over 500 25-dimensional samples
generated by different methods (d = 5, g = 2, t = 30).
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be t i.i.d. random vectors drawn from a distribution with zero means and finite
covariance matrix Σ. Then, the sum of these vectors scaled by 1/

√
t converges in

distribution to a multivariate normal distribution with zero means and Σ covariance,
as t goes to infinity:

x1 + · · ·+ xt√
t

D→ N (0,Σ). (4.6)

To exploit this classical theorem, our method generates the projection vectors as
the scaled sum of t vectors of the form

⊗g
j=1 rj :

t−1∑
i=0

 1√
t

g⊗
j=1

rgi+j

 where r1, . . . , rgt are gt i.i.d. vectors from Nd(0, I). (4.7)

Since the vectors inside the summation of (4.7) are i.i.d. with zero means, the
multidimensional CLT applies and we can guarantee that, as t goes to infinity, the
generated projection vectors converge in distribution to N (0,Σ). Note that this is
true regardless of the previously discussed dependence among the entries in vectors
of the form

⊗g
j=1 rj , since the multidimensional CLT requires the independence

of the summed random vectors but not among the entries that form each vector.
Furthermore, taking a closer look at the entries of vectors of the form

⊗g
j=1 rj with

rj ∼ Nd(0, I), we can see that they have an identity covariance matrix2. Therefore,
by the multivariate CLT, the projection vectors generated according to (4.7) converge
in distribution to a multivariate normal with zero means and identity covariance as
t goes to infinity:

t−1∑
i=0

 1√
t

g⊗
j=1

rgi+j

 D→ Ndg(0, I), (4.8)

given that r1, . . . , rgt are gt i.i.d. vectors from Nd(0, I).

Note that, conveniently, variables following a multivariate normal distribution
with diagonal covariance matrix are mutually independent [50]. Hence, by using
projection vectors generated as described in (4.7) with a sufficiently large value for
t, we are fulfilling the necessary conditions to obtain a valid Gaussian Random Pro-
jection [8]. To empirically assess the independence of the entries of the projection
vectors generated by (4.7), we explicitly generated a number of them (note that the
final version of the algorithm will never compute these vectors explicitly). Figures
4.1.c and 4.2.c show the correlation and distance correlation matrices of the generated
vectors. As desired, the distance correlation matrix approximates the identity except

2This is because the entries in vectors of the form
⊗g

j=1 rj are the product of g factors and,
conveniently, any pair of entries from

⊗g
j=1 rj shares at most g − 1 factors. Since the differing

factors randomly flip the sign of the shared ones, vectors of the form
⊗g

j=1 rj will have an identity
covariance matrix as long as the entries of r1, . . . , rg ∈ Rd are i.i.d. from a distribution with zero
mean and unit variance.
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for some random noise. This indicates that applying the CLT effectively mitigated
the dependence among the entries of the projection vectors3.

At this point, we can present how our proposed method computes each compo-
nent of the k-dimensional output representation for a given data point x ∈ Rd. For
computational reasons, instead of creating gtk unique random vectors, our method
generates a set of p vectors and uses random subsets sampled from it for each out-
put component. Of course, this breaks the theoretical requirement of independence
among the entries of the projection matrix in Random Projection. However, we
found that this relaxation produces good results in practice while enabling impor-
tant computational savings. Formally, let S be a set of p i.i.d. random vectors
drawn from Nd(0, I). Then, for each output component we form Sc = {r1, . . . , rgt},
a subset of gt vectors chosen at random from S (i.e., Sc ⊂ S)4. Afterwards, the c-th
component in the output representation of x is computed as follows:

fc(x) =

〈
φ(x),

t−1∑
i=0

 1√
t

g⊗
j=1

rgi+j

〉
H

, (4.9)

which, for a sufficiently large t, corresponds to the projection of the mapped data
point φ(x) onto a random vector following a multivariate normal distribution with
zero means and identity covariance. Conveniently, (4.9) can be rewritten to avoid
any explicit evaluation of the feature map or the Kronecker product:

fc(x) =

〈
φ(x),

t−1∑
i=0

 1√
t

g⊗
j=1

rgi+j

〉
H

=
t−1∑
i=0

 1√
t

〈
φ(x),

g⊗
j=1

rgi+j

〉
H



=
t−1∑
i=0

 1√
t

g∏
j=1

〈x, rgi+j〉

 . (4.10)

Then, the output representation for sample x is formed by concatenating the k
components and multiplying them by the corresponding scaling factor (see [2]):

f(x) =
1√
k

(f1(x), . . . , fk(x)) . (4.11)

3It should be noted that our experiment with the distance correlation measure only assessed
the pairwise independence among the entries of vectors, rather than the stronger condition of
mutual independence. However, the latter is theoretically guaranteed for a sufficiently large t by
the convergence to a multivariate normal with identity covariance.

4In practice, in order to save storage resources, the subsets S1, . . . , Sk store the indexes to the
selected vectors from S, rather than duplicated copies of them. See Appendix A for a low level,
efficient specification of the algorithm.
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In practice, the most effective strategy to transform a sample involves pre-
computing the inner products of that sample with the p random vectors in S. By so
doing, (4.10) can be evaluated without any further dot product evaluation (i.e., with
a computational complexity independent of d). The steps required to transform
a number of samples with the proposed method are summarized in Algorithm 2.
Henceforth, we will refer to the proposed method as Polynomial Kernel Random
Projection5 (PK-RP). Note that, for the sake of clarity, Algorithm 2 does not in-
clude the computational trick we just described, as it is rather a high level descrip-
tion of our method than a pseudo-code specification. See Appendix A for a more
implementation-oriented description of this algorithm.

Algorithm 2 Polynomial Kernel Random Projection (PK-RP)

Require: A set of points {x1, . . . ,xN} from Rd , the desired degree g for the polynomial
kernel, the total number p of random vectors generated, the number of vectors t summed
for the CLT and the desired output dimension k.

Ensure: Returns a set of output samples {x′1, . . . ,x′N} in Rk such that pairwise distances
between these samples are approximately equal to those of input data samples mapped
to the feature space of the homogeneous polynomial kernel of degree g.

1: S ← {r1, . . . , rp} where r1, . . . , rp ∼ Nd(0, I) . Generate p random vectors
2: Sample S to form S1, . . . , Sk ⊂ S, each of size gt . Form S1, . . . , Sk ⊂ S
3: for n = 1, . . . , N do . Iterate over samples
4: x′n ← (0, . . . , 0) ∈ Rk . Initialize output vector with zeros
5: for c = 1, . . . , k do . Iterate over output dimensions
6: for i = 0, . . . , t− 1 do . Iterate to apply CLT
7: temp← 1√

t
. Initialize temp. variable to hold the product

8: for j = 1, . . . , g do . Iterate over the polynomial degree
9: temp← temp · 〈xn, Sc[gi+ j]〉 . Product of inner products (4.10)

10: x′n[c]← x′n[c] + temp . Summation for CLT (4.10)
11: x′n ← 1√

k
· x′n . Final scaling

12: return {x′1, . . . ,x′N}

4.3.2 Compatibility with sparse Random Projection distributions

Thus far, we have assumed that the random vectors used in our method have to
be drawn from a standard normal distribution. However, as mentioned before, the
projection vectors used in the classic Random Projection algorithm can be drawn
from the much simpler distribution proposed by Achlioptas (s = 1, 3) [2, 70]:

Rij =
√
s


1 with prob. 1/2s

0 with prob. 1− 1/s

−1 with prob. 1/2s

. (4.12)

5In the original publication [72], the proposed method was simply referred to as Kernelized
Random Projection (KRP). The change in the name is to disambiguate with the other methods
described in this thesis.
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Surprisingly, the method presented in the previous section is directly compatible
with the sparse distribution proposed by Achlioptas [2]. Let us consider (4.4) again:
we want to analyze the distribution of projection vectors of the form

⊗g
j=1 rj when

the random vectors r1, . . . , rg ∈ Rd used in this equation are drawn from the distri-
bution defined in (4.12). It is clear that the entries of

⊗g
j=1 rj are the product of

g independent and discrete random variables drawn from (4.12). As a consequence,
the marginal distribution of those entries can be determined using the properties
of discrete random variables. Particularly, given g independent and identically dis-
tributed random variables V1, . . . , Vg with support V (i.e., the set of realizations that
have a strictly positive probability of being observed), the distribution of the product
V1 · · ·Vg can be computed as follows:

P (V1 · · ·Vg = c) =
∑

v1,...,vg∈V
s.t. v1···vg=c

P (V1 = v1) · · ·P (Vg = vg). (4.13)

Looking at (4.12) we can see that, in our case, the support is V = {−1, 0, 1},
with associated probabilities 1

2s , 1 −
1
s and 1

2s . Applying (4.13) we get that, when
analyzed individually, the entries of

⊗g
j=1 rj are distributed according to:

√
sg


1 with prob. 1/2sg

0 with prob. 1− 1/sg

−1 with prob. 1/2sg

, (4.14)

which is a valid sparse Random Projection distribution6 [2, 70]. However, just like
when we used the normal distribution, the entries in

⊗g
j=1 rj are not independent

from each other. Fortunately, as the above distribution has zero mean and unit
variance, the multidimensional CLT can be applied just like in the Gaussian case.
Particularly, since vectors of the form

⊗g
j=1 rj with the entries of r1, . . . , rg indepen-

dently drawn according to (4.12) have zero mean and identity covariance matrix, the
scaled sum of such vectors converges in distribution to Ndg(0, I) by virtue of the mul-
tidimensional CLT. As a consequence, the method proposed in the previous section
is directly compatible with the discrete distribution proposed by Achlioptas. In fact,
one might draw the random vectors of (4.10) from Achliptas’ distribution and the
result would still approximate a valid Gaussian Random Projection [8] from the fea-
ture space for a sufficiently large t. This claim is also supported by the experimental
results presented in Section 4.4.

To use this sparse variant of the random vectors with our method, it suffices to
modify step 1 of Algorithm 2. Instead of generating the random vectors in S by
sampling Nd(0, I), they can be populated following the sparse distribution described

6To see this, simply substitute s by sg in (4.12).
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in (4.12). Formally, step 1 of Algorithm 2 becomes:

S ← {r1, . . . , rp}, where the entries of r1, . . . , rp ∈ Rd are i.i.d. from:

Pr(x) =


1/2s , x =

√
s

1− 1/s , x = 0

1/2s , x = −
√
s

, (4.15)

where the hyperparameter s controls the sparsity level of the vectors. Conveniently,
the subsequent steps of the algorithm remain exactly the same. Also note that, apart
from the sparseness of the vectors, a major advantage of Achlioptas’ distribution is
the fact that the projection of samples onto the random vectors (Algorithm 2, step 9)
can be implemented solely in terms of aggregate evaluation (i.e., summations and sub-
tractions) by delaying the multiplication by

√
s present in Achlioptas’ distribution.

This implementation trick can be an advantage in structured database environments,
as the projections can be implemented with standard SQL primitives.

4.3.3 Extension to inhomogeneous polynomial kernels

Thus far, we have focused solely on the family of homogeneous polynomial kernels.
However, in some cases it might be useful to consider inhomogeneous polynomial
kernels. As seen before, inhomogeneous polynomial kernels are those of the form:

K(x,y) = (〈x,y〉+ c)g, with c > 0. (4.16)

Using c > 0 basically includes lower-degree polynomial interactions of the original
features in the kernel feature space, which might be beneficial in some applications.

As noted by Pham et al. [82], once a method to approximate homogeneous
polynomial kernels is available, it can be easily extended to work with inhomogeneous
polynomial kernels. Specifically, this is possible thanks to the following property of
polynomial kernels7:〈

φ(x‖
√
c), φ(y‖

√
c)
〉

=
〈
x‖
√
c,y‖

√
c
〉g

= (〈x,y〉+ c)g, (4.17)

where φ(x) =
⊗g

i=1 x is the feature map of the homogeneous polynomial kernel
of degree g, and the operator ‖ denotes feature concatenation. In essence, this
means that x → φ(x‖

√
c) is a valid feature map for the inhomogeneous polynomial

kernel of constant c and degree g. Conveniently, φ(·) itself is the feature map of
the homogeneous polynomial kernel. Therefore, by applying our kernelized Random
Projection method on x‖

√
c we can approximate a Random Projection of φ(x‖

√
c),

and in turn a Random Projection of the mapping of x into the feature space of the
inhomogeneous polynomial kernel with constant c and degree g.

7The first equality simply applies the definition of the homogeneous polynomial kernel and its
feature map φ(·). The second one uses the definition of the dot product and the fact that both
x‖
√
c and y‖

√
c have

√
c as their last feature.
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4.3.4 Computational complexity analysis

This section compares the computational complexities of the different methods con-
sidered in this chapter both in training and test phases. First, we analyze the com-
putational complexity of the KG-RP method. Most of the computations involved
in this method correspond to the calculations performed by the Kulis-Grauman ap-
proach [65]. However, the computational complexities reported vary slightly due
to the different optimizations applied. Let us analyze step by step the computa-
tions performed by taking the pseudo-code implementation presented in [110] as the
reference. In the training stage we have to:

1. Compute the p × p kernel Gram matrix KS among the p selected training
points. Assuming the kernel computation takes O(d) for samples in Rd, this
step requires O(dp2) time.

2. Compute K−1/2S by means of eigendecomposition, which requires O(p3) time.

3. Form the weight vector for each output component w1, . . . ,wk. Since each
vector is computed as wi =

√
p−1
t K

−1/2
S eS , and eS is a p-dimensional column

vector, this step has a complexity of O(kp2).

By combining the different steps, the total complexity of training KG-RP is O(dp2 +

p3 + kp2). Note that, in the case of KG-RP, p is a hyperparameter which controls
the number of training samples used to estimate the mean and covariance matrix of
data in the kernel feature space. The authors suggested the heuristic rule of setting
p = O(

√
N), whereN is the number of available training samples. Regarding the test

phase, the following computations must be performed to transform a single sample:

1. Compute the kernel Gram matrix K between the test sample and the p points
in S. Assuming the kernel computation takes O(d) for samples in Rd, this step
requires O(pd) operations.

2. Generate the final representation of the test sample as KW , where W =

[w1, . . . ,wk]. This can be done at the cost of O(pk) time.

Therefore, transforming a single test sample with KG-RP is O(pd+ pk).

Now we analyze the proposed algorithm, PK-RP. The computations needed to
initialize/train the algorithm (steps 1-2 of Algorithm 2) are the following:

1. The set S is populated with p random vectors drawn from Nd(0, I) (or alter-
nativelly using Achlioptas’ distribution as described in Section 4.3.2), where d
is the dimension of data samples. This can be done in O(pd) time.

2. The set S is sampled at random to form S1, . . . , Sk ⊂ S, each with cardinality
gt. This takes O(gtk) time, where gt < p.

This shows that the training stage of the proposed method has a computational
complexity of O(pd + gtk). To transform a test sample, each output component is
computed by using (4.9) or equivalently, executing steps 3-12 of Algorithm 2. In any
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case, this computation requires a time of O(gtkd). As mentioned before, this com-
plexity can be reduced by pre-computing the inner products between the test sample
and the p vectors in S. By so doing, the computational complexity of transforming a
sample by means of the proposed method ends up being O(pd+gtk). It is also worth
comparing the complexity of our method with that of D2PK-RP, presented in [73].
As explained in the previous chapter, D2PK-RP uses a number t of d × k projec-
tion matrices. From the analysis presented in the previous chapter, populating the
projection matrices for D2PK-RP takes O(dtk) time, and transforming one sample
requires O(dtk) operations. As evidenced by our experimental results, this multiple
projection matrix approach is relatively inefficient, often leading to computing times
one order of magnitude higher than those of PK-RP, while exhibiting an equal or
worse performance. Also note that the complexity of D2PK-RP is independent of
the polynomial degree g, because this method is only compatible with g = 2.

Finally, the Nyström method works by generating a low-rank approximation of
the kernel matrix by sampling a number of columns [103]. Although some alternative
sampling methods have been studied, the original method, where a fixed random
distribution is used to select the columns from the kernel matrix, continues being
one of the most widely used approaches [67]. For our analysis and experiments, we
focus on the standard Nyström algorithm as implemented in [80]. The computations
involved in training this algorithm are the following:

1. Compute the k × k reduced kernel Gram matrix W among the samples corre-
sponding to the k selected columns from the full kernel matrix. Assuming the
kernel computation takes O(d) for samples in Rd, this step takes O(k2d).

2. Compute W−
1
2 by means of Singular Value Decomposition, which requires

O(k3) time.

In summary, the training stage of Nyström requieres a time of O(dk2 + k3). The
following operations are performed in the test phase to transform each data sample:

1. Compute the kernel Gram matrixK between the test sample and the k samples
selected during training. Assuming the kernel computation takes O(d) for
samples in Rd, this step requires O(dk) operations.

2. Generate the output representation for the test sample as KW−
1
2 . Since W−

1
2

is of size k × k, this can be done in O(k2) time.

From the combination of these complexities we obtain that transforming a test sample
by means of the Nyström method has as a time complexity of O(dk + k2).

Our analysis shows that the proposed algorithm exhibits a better computational
complexity than the alternative methods. Concerning the training phase, the time
required by KG-RP increases as the cube of p, and also requires p2 evaluations of
the kernel function. Similarly, Nyström’s training time grows as the cube of k, and
involves k2 kernel evaluations. For its part, our proposed method has a training
time which grows linearly with respect to p and k. In addition, thanks to its data-
independent nature, it requires no evaluations of the kernel function at training time.
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Table 4.1: Computational complexities of different methods, and meaning of the variables.
(*) Complexity obtained by pre-computing inner products between test samples and the p random

vectors in S.

Method Train Transform

PK-RP O(pd+ gtk) O(dgtk)
PK-RP* O(pd+ gtk) O(pd+ gtk)

KG-RP [5] O(p2d+ p3 + kp2) O(pd+ pk)
Nyström [103] O(dk2 + k3) O(kd+ k2)
D2PK-RP [73] O(dtk) O(dtk)
φ(·)+RP O(dgk) O(dgk)

Variable Meaning

d input sample dimension
k output sample dimension
g polynomial kernel degree

t (D2PK-RP) number of projection matrices (CLT)
t (PK-RP) number of summations to form each projection vector (CLT)
p (KG-RP) number of training samples used
p (PK-RP) number of random vectors used

Our method is also very competitive in terms of testing-time complexity. Provided
that gt < p, the complexity of our method is lower than that of KG-RP.

The train and test computational complexities of the different methods analyzed
in this section are summarized in Table 4.1.

4.4 Experimental results

This section presents extensive experimental results validating the ability of the
proposed method to (1) generate a low-dimensional representation where the dis-
tances between points are approximately equal to distances in the feature space of
homogeneous polynomial kernels; and (2) boost the accuracy of linear classifiers by
generating a data representation where they can approximate the accuracy of their
non-linear counterparts.

The methods evaluated are D2PK-RP (see Chapter 3), PK-RP, KG-RP [5], and
the Nyström method [103]. We also compare these methods with the explicit ap-
proach φ(·) +RP , which involves explicitly transforming data with the feature map
φ(·) followed by a classic Random Projection. Of course, this approach is highly
inefficient, but we use it to measure how well D2PK-RP, KG-RP and PK-RP ap-
proximate a Random Projection from the kernel feature space.

To evaluate the first property (i.e., the pairwise distance preservation), we com-
pare the squared Euclidean distance between two transformed data samples to their
squared Euclidean distance in the kernel feature space. Formally, let x,y be a cou-
ple of data samples from Rd and let f(x), f(y) be their k-dimensional representation
generated by any of the methods evaluated in this section, then:

distortionx,y =
abs( ||f(x)− f(y)||2 − ||φ(x)− φ(y)||2 )

||φ(x)− φ(y)||2
. (4.18)
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For example, if distortionx,y = 0.11, we can conclude that the distance between x

and y in H suffered a 11% increase/decrease in the resulting representation. Also
note that distances between samples in the feature space can be calculated without
any explicit evaluation of φ(·), via the kernel function [86]:

||φ(x)− φ(y)||2 = −2K(x,y) +K(x,x) +K(y,y). (4.19)

To measure the distortion induced by a given method while transforming a set of
N samples, the average distortion among the

(
N
2

)
possible pairs of different samples

is computed. We then use the average distortion measure to compare the different
approaches evaluated in this section in terms of their distance preservation capabili-
ties. To score them, the different methods were first provided with the corresponding
training set if needed. Next, 500 samples from the test-set of each dataset were se-
lected at random and transformed by means of each competing method. The induced
distortion was then computed and averaged for the

(
500
2

)
possible pairs of samples.

As stated above, we also evaluated to what extent the different methods can be
used to boost the accuracy of linear classifiers by generating a data representation
where they can approximate the accuracy of their non-linear counterparts. To this
extent, each kernel approximation method was provided, if needed, with the corre-
sponding training set. Next, it was used to transform both the training set and the
complete test set. A linear SVM was then trained8 on the resulting representation
and its classification accuracy was obtained. To evaluate the improvement in the
classification accuracy, we also provide the resulting accuracy of training a linear
SVM directly on the original features of each dataset.

To mitigate the stochastic nature of some of the evaluated methods, the above
described evaluation protocol was executed ten times. All the results reported in this
section consist of the average and standard deviation of the corresponding metric
over those ten runs. For a fair comparison, all the experiments in this chapter were
carried out on the same machine, equipped with an Intel i7-6700K processor and
16GB of DDR4 RAM. To ease the visualization of results in tables, each cell is
colored according to the reported score (lighter is better in all tables).

4.4.1 MNIST dataset

The database used for the first set of experiments is MNIST [108]. This database
consists of a collection of images of handwritten digits and has been profusely used
in optical character recognition and machine learning research. It contains a total of
70,000 images, each of size 28 × 28 (see Figure 4.4). The digits are size-normalized
and centered on the center of gravity of the intensity in the image. A predefined
split is normally used with 60,000 images for training and 10,000 for testing.

8 We used the linear SVM implementation of Liblinear [35]. An appropriate value of C for the
SVM was determined by performing cross-validation over the training data for each dataset. Data
standardization methods were used prior to classification in all experiments.
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Figure 4.4: Some random examples from the different categories of MNIST.

Table 4.2: Results on distance preservation from the homogeneous polynomial kernel of degree
two (g = 2) for 500 samples from MNIST.

Method Parameters 200 output dim. 500 output dim. 1000 output dim.
avg. dist. time avg. dist. time avg. dist. time

φ(·)+RP Gaussian 0.079±0.002 4.416s 0.050±0.002 10.124s 0.035±0.001 19.724s
φ(·)+RP Sparse, s=1 0.080±0.003 4.314s 0.051±0.002 9.893s 0.036±0.001 19.338s
φ(·)+RP Sparse, s=3 0.080±0.002 3.616s 0.050±0.002 8.899s 0.036±0.001 19.495s
Nyström [103] - 0.259±0.002 0.064s 0.155±0.001 0.102s 0.101±0.001 0.309s
D2PK-RP [73] s=1 0.085±0.002 0.121s 0.054±0.002 0.311s 0.038±0.001 0.651s

PK-RP Gaussian, p=16000 0.082±0.004 0.583s 0.053±0.002 0.611s 0.038±0.002 0.609s
PK-RP Gaussian, p=8000 0.083±0.003 0.299s 0.055±0.003 0.315s 0.040±0.002 0.334s
PK-RP Gaussian, p=3000 0.087±0.003 0.122s 0.056±0.002 0.134s 0.046±0.005 0.152s

PK-RP Gaussian, p=976 0.092±0.007 0.039s 0.079±0.018 0.054s 0.059±0.007 0.079s
PK-RP Sparse, s=1, p=976 0.094±0.004 0.038s 0.068±0.008 0.050s 0.059±0.008 0.075s
PK-RP Sparse, s=3, p=976 0.098±0.007 0.038s 0.072±0.009 0.051s 0.060±0.008 0.074s
KG-RP [110] p=976 0.141±0.013 7.525s 0.127±0.011 8.602s 0.130±0.006 10.509s

PK-RP Gaussian, p=488 0.106±0.008 0.025s 0.102±0.029 0.036s 0.095±0.038 0.058s
PK-RP Sparse, s=1, p=488 0.101±0.004 0.023s 0.088±0.012 0.037s 0.082±0.017 0.058s
PK-RP Sparse, s=3, p=488 0.113±0.015 0.022s 0.095±0.019 0.037s 0.092±0.021 0.061s
KG-RP [110] p=488 0.207±0.019 1.957s 0.211±0.005 2.378s 0.210±0.004 3.136s

PK-RP Gaussian, p=244 0.120±0.006 0.015s 0.106±0.018 0.028s 0.112±0.024 0.053s
PK-RP Sparse, s=1, p=244 0.132±0.018 0.015s 0.126±0.028 0.027s 0.101±0.020 0.050s
PK-RP Sparse, s=3, p=244 0.122±0.010 0.016s 0.116±0.027 0.030s 0.118±0.027 0.055s
KG-RP [110] p=244 0.329±0.014 0.546s 0.329±0.006 0.714s 0.328±0.005 1.018s

PK-RP Gaussian, p=122 0.177±0.052 0.011s 0.151±0.027 0.026s 0.135±0.014 0.051s
PK-RP Sparse, s=1, p=122 0.152±0.028 0.011s 0.136±0.013 0.024s 0.159±0.038 0.045s
PK-RP Sparse, s=3, p=122 0.177±0.046 0.012s 0.150±0.033 0.024s 0.159±0.027 0.045s
KG-RP [110] p=122 0.503±0.012 0.180s 0.497±0.008 0.268s 0.499±0.005 0.427s

Distance preservation on MNIST

First, we evaluate the different algorithms in terms of pairwise distance preservation.
We do so for the two most frequently used polynomial degrees, namely g = 2 and
g = 3. We also measured the time required to train each algorithm and transform 500
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Table 4.3: Results on distance preservation from the homogeneous polynomial kernel of degree
three (g = 3) for 500 samples from MNIST.

Method Parameters 200 output dim. 500 output dim. 1000 output dim.
avg. dist. time avg. dist. time avg. dist. time

Nyström [103] - 0.372±0.002 0.065s 0.255±0.001 0.116s 0.187±0.001 0.334s

PK-RP Gaussian, p=976 0.119±0.019 0.045s 0.095±0.023 0.060s 0.092±0.031 0.089s
PK-RP Sparse, s=1, p=976 0.109±0.009 0.040s 0.092±0.018 0.055s 0.080±0.016 0.088s
PK-RP Sparse, s=3, p=976 0.114±0.020 0.039s 0.117±0.057 0.057s 0.088±0.032 0.082s
KG-RP [110] p=976 0.215±0.008 7.578s 0.212±0.008 8.708s 0.214±0.006 10.576s

PK-RP Gaussian, p=488 0.153±0.031 0.029s 0.131±0.040 0.043s 0.108±0.046 0.072s
PK-RP Sparse, s=1, p=488 0.148±0.035 0.024s 0.127±0.041 0.042s 0.110±0.024 0.071s
PK-RP Sparse, s=3, p=488 0.134±0.031 0.027s 0.124±0.026 0.041s 0.131±0.055 0.067s
KG-RP [110] p=488 0.298±0.012 2.001s 0.306±0.006 2.415s 0.305±0.008 3.145s

PK-RP Gaussian, p=244 0.164±0.025 0.018s 0.141±0.036 0.034s 0.168±0.066 0.062s
PK-RP Sparse, s=1, p=244 0.192±0.075 0.018s 0.162±0.053 0.033s 0.159±0.053 0.063s
PK-RP Sparse, s=3, p=244 0.209±0.097 0.018s 0.169±0.040 0.034s 0.149±0.049 0.061s
KG-RP [110] p=244 0.421±0.011 0.560s 0.424±0.004 0.731s 0.427±0.007 1.020s

PK-RP Gaussian, p=122 0.249±0.064 0.013s 0.250±0.112 0.032s 0.241±0.083 0.059s
PK-RP Sparse, s=1, p=122 0.253±0.080 0.013s 0.247±0.119 0.030s 0.241±0.090 0.059s
PK-RP Sparse, s=3, p=122 0.232±0.093 0.013s 0.213±0.038 0.029s 0.271±0.172 0.057s
KG-RP [110] p=122 0.587±0.009 0.180s 0.587±0.009 0.277s 0.581±0.008 0.424s

test samples, reporting the average time required by each method. For both KG-RP
and our method, the hyperparameter p must be manually selected. Recall that, for
KG-RP, p controls the number of samples used by the underlaying Kulis-Grauman
method to estimate the mean and covariance matrix of data in the kernel feature
space (for more details see [65]). Meanwhile, in our method p controls the number
of random vectors used to populate S (see Section 4.3.1). The reason for comparing
KG-RP and our method with equal values of p while they have different meanings
is that, for both algorithms, the value of p determines the number of evaluations of
inner products involving the d-dimensional data samples during the test phase (see
Section 4.3.4). Furthermore, in both cases p controls the accuracy/efficiency tradeoff
of the algorithm. Due to the way these algorithms were designed, we know that
increasing p will likely result in better results at the expense of higher processing
times. For this reason, we empirically evaluated the accuracy/efficiency tradeoff
that occurs when different values of p are chosen. In particular, we experimented
with various values for p following the heuristic criterion proposed in [65]. There,
the authors advise using p = O(

√
N), where N is the number of training samples

available. Accordingly, we experimented with p = 1
2

√
N,
√
N, 2
√
N and 4

√
N . The

hyperparameter t, which controls the number of samples used by the CLT, was set
to the typical value of 30 (see [65]). The results for the polynomial degrees 2 and 3
can be found in Tables 4.2 and 4.3 respectively.

Note that the method involving the explicit computation of φ(·) for each test
sample was not evaluated for g = 3. In the case of the MNIST dataset, storing
the explicit form of test samples in the kernel feature space for g = 2 required
approximately 1.14 GBs of free memory9. Doing so for the homogeneous polynomial
kernel of degree 3 would have required almost a terabyte of main memory, which is
nearly intractable even for specialized high-performance computing systems.

9Since x ∈ R784, φ(x) ∈ H is 784g-dimensional. In the case of the homogeneous polynomial kernel
of degree 2, H is 614656-dimensional. As a consequence, the storage of 500 samples, assuming that
a 4-byte float format is used, takes about 1.14 GBs of memory.
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Not surprisingly, the results obtained using φ(·)+RP are the best in all cases.
However, the explicit computation of the feature map comes at a great cost. Look-
ing at the computation times of this approach we see that, in all cases, transforming
500 MNIST samples took longer that one minute. In addition, as previously ex-
plained, this approach becomes intractable for polynomial degrees greater than two.
For its part, Nyström seeks to preserve inner products rather than pairwise distances.
However, a close relation between both metrics exists. As a consequence, our experi-
ments show that Nyström was able to approximately preserve the pairwise distances,
but induced a significantly higher distortion than the other methods is most cases.
In addition, the distance preservation capabilities of Nyström seem to be highly de-
pendent on the output dimension, which is an important drawback since Nyström’s
time complexity scales polynomially with this hyperparameter.

Finally, D2PK-RP, KG-RP and PK-RP try to approximate φ(·)+RP while avoid-
ing the expensive computation of the feature map. KG-RP exhibited a high sensitiv-
ity to variations in the value of p. Unfortunately, the computational cost of KG-RP
grows fast with the value of this hyperparameter (see Section 4.3.4). Moreover, even
if high values of p are used, KG-RP’s distance preservation results are significantly
worse than those of our proposed method. PK-RP provided the best approximation
of φ(·)+RP with a very low computational cost. As expected, if a sufficiently high p
is used, PK-RP induces an average distortion in pairwise distances almost as small
as the explicit approach. Conveniently, this approximation is achieved with a very
small computational cost (e.g., it only took 70ms to train the algorithm and project
500 MNIST samples to R1000). In this case, D2PK-RP seems to slightly outperform
our proposed method when p < 1000, at the cost of much greater computation times.
However, increasing p above that threshold enables our method to match the accu-
racy of D2PK-RP, sacrificing some of its efficiency. Also note that D2PK-RP was
only evaluated for g = 2, as it is only compatible with the second degree polynomial
kernel.

Classification on MNIST

Here we evaluate to which extent the different methods can be used to boost the
accuracy of linear classifiers. In this case, we experimented with different values of t
and p10. The resulting classification accuracies and their standard deviations can be
found in Table 4.4, where we also provide the computation times required to train
each method and to use it to transform the MNIST training set. It is worth noticing
that the accuracy of a linear SVM classifier trained on the original MNIST samples is
91.81% (using the implementation of Liblinear [35] with C=0.5) and the accuracy of a
degree-2 polynomial-kernel SVM is 97.84% (C=0.5). For completeness, we trained a
SVM with the Gaussian kernel, which achieved a 98.56% accuracy (C = 5, γ = 0.02).

10Note that p and t hyperparameters are only used by two of the evaluated methods, namely
KG-RP and PK-RP (see Section 4.3 for more details).
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Table 4.4: Classification accuracies on MNIST obtained by a linear SVM trained on the repre-
sentations generated by different methods to approximate the feature space of the homogeneous

polynomial kernel of degree two.

F. Extraction Parameters 1500 output dim. 2000 output dim.
Acc. (%) Train Transform Acc. (%) Train Transform

Nyström [103] - 97.67±0.05 0.957s 3.510s 97.96±0.02 2.434s 5.394s
φ(·)+RP Gaussian, 96.98±0.09 22.6s 4h 38m 97.40±0.07 34.8s 6h 10m
D2PK-RP [73] t=10 96.96±0.04 0.172s 18.65s 97.33±0.12 0.302s 45.19s

PK-RP Gaussian, t=10, p=488 96.98±0.11 0.012s 3.162s 97.31±0.05 0.013s 4.073s
PK-RP Sparse, s=1, t=10, p=488 96.97±0.11 0.010s 3.165s 97.37±0.07 0.012s 4.067s
PK-RP Sparse, s=3, t=10, p=488 97.03±0.20 0.011s 3.165s 97.30±0.14 0.012s 4.067s
KG-RP [110] t=10, p=488 96.15±0.04 3.918s 1.652s 96.27±0.11 4.577s 2.036s

PK-RP Gaussian, t=1, p=488 96.95±0.12 0.012s 1.409s 97.31±0.13 0.011s 1.736s
PK-RP Sparse, s=1, t=1, p=488 96.90±0.07 0.010s 1.390s 97.33±0.08 0.010s 1.738s
PK-RP Sparse, s=3, t=1, p=488 97.00±0.08 0.011s 1.404s 97.23±0.08 0.010s 1.729s
KG-RP [110] t=1, p=488 95.95±0.07 3.833s 1.652s 96.09±0.08 4.626s 2.018s

PK-RP Gaussian, t=10, p=244 97.01±0.08 0.006s 2.950s 97.31±0.09 0.008s 3.859s
PK-RP Sparse, s=1, t=10, p=244 96.91±0.11 0.006s 2.958s 97.30±0.06 0.006s 3.872s
PK-RP Sparse, s=3, t=10, p=244 96.93±0.13 0.006s 2.956s 97.21±0.13 0.006s 3.861s
KG-RP [110] t=10, p=244 94.19±0.26 1.295s 1.121s 94.44±0.23 1.586s 1.374s

PK-RP Gaussian, t=1, p=244 96.84±0.09 0.006s 1.204s 97.20±0.09 0.006s 1.511s
PK-RP Sparse, s=1, t=1, p=244 96.86±0.11 0.005s 1.186s 97.17±0.12 0.005s 1.513s
PK-RP Sparse, s=3, t=1, p=244 96.85±0.16 0.006s 1.208s 97.24±0.06 0.005s 1.504s
KG-RP [110] t=1, p=244 94.48±0.13 1.294s 1.122s 94.46±0.25 1.583s 1.372s

PK-RP Gaussian, t=10, p=122 96.78±0.12 0.003s 2.869s 96.96±0.06 0.004s 3.750s
PK-RP Sparse, s=1, t=10, p=122 96.70±0.17 0.003s 2.903s 97.00±0.20 0.003s 3.752s
PK-RP Sparse, s=3, t=10, p=122 96.79±0.09 0.003s 2.834s 96.93±0.05 0.003s 3.752s
KG-RP [110] t=10, p=122 91.96±0.17 0.572s 0.827s 92.10±0.10 0.714s 1.044s

PK-RP Gaussian, t=1, p=122 96.65±0.11 0.004s 1.096s 96.82±0.14 0.003s 1.418s
PK-RP Sparse, s=1, t=1, p=122 96.59±0.11 0.003s 1.073s 96.85±0.12 0.003s 1.422s
PK-RP Sparse, s=3, t=1, p=122 96.59±0.10 0.003s 1.088s 96.91±0.11 0.003s 1.414s
KG-RP [110] t=1, p=122 92.06±0.20 0.565s 0.815s 92.19±0.23 0.707s 1.051s

As we can see, the highest accuracies for both 1500 and 2000 output dimen-
sions were achieved with Nyström. The explicit φ(·)+RP approach yielded slightly
lower accuracies, with the gap being smaller when using 2000 output features. As
expected, the computational time required by this approach was several orders of
magnitude higher than that of the other methods. As both PK-RP and KG-RP
try to approximate the computations performed in the explicit approach, we can
not expect them to outperform Nyström in this case. Regarding PK-RP, when a
reasonably high p was used, our method achieved the same classification accuracy as
the explicit approach. The accuracies achieved by D2PK-RP were similar to those
of PK-RP, but again with a computational cost one order of magnitude larger.

We found that the impact of t on the classification accuracy is almost negligible,
and thus we recommend using a small value. In this regard, figure 4.5 shows the effect
of varying t while keeping the remaining hyperparameters fixed. As in the previous
set of experiments, our method was the most efficient alternative, especially in the
training phase where it was several orders of magnitude faster than some alternative
methods. In this case, KG-RP fails to approximate the accuracies obtained by the
explicit approach, even for the highest values of p evaluated.

4.4.2 Webspam dataset

The webspam dataset [101] compiles thousands of web pages categorized as spam or
legitimate. The goal of its creators was to facilitate research on web spam detection
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Figure 4.5: Effect on the classification accuracy of varying the value of t while using a fixed
output dimension and p hyperparameter value. The accuracies were obtained by applying the
proposed method with g = 2 followed by a linear SVM on the MNIST dataset, averaging the

resulting accuracies of each experiment over 15 runs.

algorithms by providing a large-scale, publicly available dataset. A refined version
of this dataset, used in [21], can be found at the LIBSVM tools web page [20]. This
subset consists of uni-gram count features for 350,000 websites. Each sample was
normalized to unit-length and the number of features for each sample is 254. As
opposed to MNIST, this dataset does not come with predefined training and testing
sets. For this reason, we used a 80/20 random split for training and testing, as
done in [21]. Hence, the training and testing datasets consist of 280,000 and 70,000
samples respectively.

Distance preservation on Webspam

Tables 4.5 and 4.6 compile the results concerning the average distance distortion
obtained when transforming 500 samples from the Webspam dataset with g = 1 and
g = 2 respectively. A value of t = 30 was used for KG-RP and PK-RP in all cases.

Interestingly, in this case Nyström provided the best results in terms of pairwise
distance preservation from the kernel feature space. It even outperformed the ex-
plicit approach of φ(·) + RP. The success of this method when evaluated on the
Webspam dataset contrasts with the results obtained in our experiments with other
datasets, where Nyström never outperformed φ(·) + RP or PK-RP. Nevertheless,
the previously mentioned limitation regarding the scalability of Nyström holds.

The results obtained using φ(·)+RP were as good as expected. However, once
again computational costs render this approach impractical. Even with the relatively
low original dimension of Webspam samples, the explicit approach consumes up to
9 seconds to initialize its projection matrices and transform 500 samples.

Regarding KG-RP and PK-RP, our results suggest that they are evenly matched
when it comes to approximating the pairwise-distance preservation capabilities of
the explicit approach. However, if computational requirements are considered, our
proposed approach offers a significantly better option, as in this case it can provide
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Table 4.5: Results on distance preservation from the homogeneous polynomial kernel of degree
two (g = 2) for 500 samples from Webspam.

Method Parameters 200 output dim. 500 output dim. 1000 output dim.
avg. dist. time avg. dist. time avg. dist. time

φ(·)+RP Gaussian 0.078±0.007 7.358s 0.052±0.005 7.961s 0.036±0.004 8.991s
φ(·)+RP Sparse, s=1 0.079±0.008 7.349s 0.049±0.004 7.915s 0.034±0.003 8.927s
φ(·)+RP Sparse, s=3 0.084±0.007 7.265s 0.052±0.007 7.830s 0.036±0.004 8.798s
Nyström [103] - 0.037±0.003 0.087s 0.014±0.000 0.124s 0.006±0.000 0.296s
D2PK-RP [73] s=1 0.170±0.016 0.038s 0.159±0.021 0.132s 0.145±0.008 0.288s

PK-RP Gaussian, p=2116 0.082±0.011 0.034s 0.060±0.009 0.047s 0.051±0.015 0.068s
PK-RP Sparse, s=1, p=2116 0.093±0.014 0.031s 0.057±0.005 0.046s 0.051±0.012 0.067s
PK-RP Sparse, s=3, p=2116 0.086±0.010 0.034s 0.060±0.006 0.049s 0.049±0.005 0.069s
KG-RP [110] p=2116 0.081±0.006 36.440s 0.054±0.005 41.336s 0.041±0.006 48.975s

PK-RP Gaussian, p=1058 0.094±0.011 0.020s 0.067±0.011 0.034s 0.052±0.008 0.056s
PK-RP Sparse, s=1, p=1058 0.088±0.007 0.019s 0.073±0.022 0.035s 0.054±0.009 0.055s
PK-RP Sparse, s=3, p=1058 0.095±0.018 0.019s 0.066±0.004 0.035s 0.068±0.026 0.055s
KG-RP [110] p=1058 0.085±0.006 8.683s 0.063±0.009 10.010s 0.047±0.006 12.305s

PK-RP Gaussian, p=529 0.113±0.020 0.015s 0.086±0.013 0.027s 0.068±0.010 0.049s
PK-RP Sparse, s=1, p=529 0.103±0.019 0.015s 0.075±0.012 0.028s 0.074±0.034 0.048s
PK-RP Sparse, s=3, p=529 0.105±0.019 0.013s 0.085±0.018 0.027s 0.076±0.020 0.048s
KG-RP [110] p=529 0.099±0.017 2.243s 0.082±0.011 2.754s 0.066±0.011 3.557s

PK-RP Gaussian, p=264 0.114±0.016 0.010s 0.096±0.018 0.025s 0.088±0.012 0.047s
PK-RP Sparse, s=1, p=264 0.113±0.044 0.011s 0.095±0.015 0.024s 0.080±0.009 0.045s
PK-RP Sparse, s=3, p=264 0.138±0.034 0.011s 0.111±0.024 0.025s 0.104±0.025 0.045s
KG-RP [110] p=264 0.140±0.013 0.620s 0.141±0.012 0.813s 0.131±0.013 1.121s

Table 4.6: Results on distance preservation from the homogeneous polynomial kernel of degree
three (g = 3) for 500 samples from Webspam.

Method Parameters 200 output dim. 500 output dim. 1000 output dim.
avg. dist. time avg. dist. time avg. dist. time

Nyström [103] - 0.067±0.001 0.097s 0.032±0.001 0.154s 0.018±0.001 0.379s

PK-RP Gaussian, p=2116 0.098±0.014 0.040s 0.075±0.009 0.057s 0.064±0.016 0.083s
PK-RP Sparse, s=1, p=2116 0.100±0.012 0.035s 0.086±0.044 0.055s 0.064±0.029 0.082s
PK-RP Sparse, s=3, p=2116 0.096±0.011 0.039s 0.096±0.045 0.056s 0.081±0.032 0.082s
KG-RP [110] p=2116 0.087±0.008 37.241s 0.061±0.013 41.357s 0.047±0.004 50.742s

PK-RP Gaussian, p=1058 0.114±0.017 0.027s 0.079±0.020 0.042s 0.080±0.021 0.070s
PK-RP Sparse, s=1, p=1058 0.102±0.014 0.023s 0.095±0.030 0.042s 0.085±0.036 0.070s
PK-RP Sparse, s=3, p=1058 0.112±0.019 0.023s 0.082±0.013 0.039s 0.088±0.029 0.072s
KG-RP [110] p=1058 0.092±0.009 8.867s 0.069±0.011 10.138s 0.057±0.004 12.319s

PK-RP Gaussian, p=529 0.163±0.051 0.019s 0.108±0.026 0.037s 0.123±0.059 0.063s
PK-RP Sparse, s=1, p=529 0.126±0.020 0.017s 0.141±0.076 0.034s 0.097±0.027 0.062s
PK-RP Sparse, s=3, p=529 0.147±0.042 0.017s 0.094±0.024 0.035s 0.114±0.050 0.062s
KG-RP [110] p=529 0.111±0.010 2.320s 0.086±0.011 2.778s 0.083±0.007 3.598s

PK-RP Gaussian, p=264 0.198±0.132 0.013s 0.175±0.069 0.032s 0.189±0.098 0.062s
PK-RP Sparse, s=1, p=264 0.166±0.077 0.014s 0.172±0.066 0.029s 0.137±0.056 0.061s
PK-RP Sparse, s=3, p=264 0.209±0.067 0.013s 0.146±0.049 0.032s 0.120±0.033 0.062s
KG-RP [110] p=264 0.172±0.017 0.658s 0.157±0.016 0.836s 0.162±0.009 1.141s

similar distance preservation results while keeping computation times under 80 ms
(while KG-RP times range from half a second to almost one minute). In this case
D2PK-RP performed poorly, while also being significantly more computationally
expensive than PK-RP.

Classification on Webspam

As with the previous dataset, we experimented with different values of p and t.
The resulting classification accuracies and their standard deviations are shown in
Table 4.7. This table also provides the computation times required to train each
method and to use it to transform the Webspam training set. Note that the accuracy
of a linear SVM classifier trained on the original Webspam dataset is 92.55% (with
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Table 4.7: Classification accuracies on Webspam obtained by a linear SVM trained on the repre-
sentations generated by different methods to approximate the feature space of the degree-2 homo-

geneous polynomial kernel.

F. Extraction Parameters 1500 output dim. 2000 output dim.
Acc. (%) Train Transform Acc. (%) Train Transform

Nyström [103] - 97.99±0.04 3.071s 11.803s 98.23±0.02 3.745s 19.466s
φ(·)+RP Gaussian 97.90±0.03 2.47s 2h 11m 98.15±0.03 3.17s 2h 54m
D2PK-RP [73] s=1,t=10 97.80±0.01 0.0631s 50.92s 98.08±0.01 0.080s 154.85s

PK-RP Gaussian, t=10, p=1058 97.81±0.03 0.009s 8.232s 98.02±0.03 0.009s 10.656s
PK-RP Sparse, s=1, t=10, p=1058 97.80±0.04 0.009s 8.204s 98.02±0.07 0.007s 10.652s
PK-RP Sparse, s=3, t=10, p=1058 97.79±0.02 0.009s 8.215s 98.01±0.05 0.007s 10.678s
KG-RP [110] t=10, p=1058 97.66±0.02 14.901s 11.321s 97.64±0.07 17.328s 14.485s

PK-RP Gaussian, t=1, p=1058 97.79±0.06 0.009s 3.825s 97.98±0.03 0.009s 5.061s
PK-RP Sparse, s=1, t=1, p=1058 97.70±0.09 0.009s 3.844s 98.04±0.06 0.007s 5.079s
PK-RP Sparse, s=3, t=1, p=1058 97.83±0.06 0.009s 3.832s 98.03±0.04 0.007s 5.032s
KG-RP [110] t=1, p=1058 97.27±0.13 14.915s 10.620s 97.42±0.07 17.844s 14.488s

PK-RP Gaussian, t=10, p=529 97.82±0.05 0.006s 7.750s 98.03±0.06 0.007s 10.067s
PK-RP Sparse, s=1, t=10, p=529 97.82±0.03 0.008s 7.692s 98.04±0.05 0.008s 10.071s
PK-RP Sparse, s=3, t=10, p=529 97.79±0.03 0.007s 7.686s 98.01±0.04 0.008s 10.095s
KG-RP [110] t=10, p=529 96.75±0.10 4.852s 6.404s 96.72±0.02 5.529s 9.058s

PK-RP Gaussian, t=1, p=529 97.80±0.03 0.005s 3.319s 98.05±0.02 0.006s 4.251s
PK-RP Sparse, s=1, t=1, p=529 97.77±0.04 0.006s 3.319s 98.01±0.06 0.007s 4.264s
PK-RP Sparse, s=3, t=1, p=529 97.80±0.04 0.006s 3.295s 98.02±0.05 0.006s 4.234s
KG-RP [110] t=1, p=529 96.63±0.13 4.860s 6.511s 96.69±0.09 5.486s 9.534s

PK-RP Gaussian, t=10, p=264 97.81±0.03 0.005s 7.420s 98.00±0.05 0.006s 9.924s
PK-RP Sparse, s=1, t=10, p=264 97.80±0.01 0.008s 7.426s 98.00±0.02 0.009s 9.891s
PK-RP Sparse, s=3, t=10, p=264 97.79±0.06 0.008s 7.410s 98.02±0.02 0.009s 9.850s
KG-RP [110] t=10, p=264 95.15±0.11 1.662s 5.047s 95.24±0.06 2.006s 6.603s

PK-RP Gaussian, t=1, p=264 97.76±0.03 0.005s 3.070s 98.01±0.02 0.005s 3.988s
PK-RP Sparse, s=1, t=1, p=264 97.75±0.10 0.007s 2.986s 97.94±0.06 0.009s 3.972s
PK-RP Sparse, s=3, t=1, p=264 97.81±0.06 0.007s 3.007s 98.00±0.02 0.008s 3.961s
KG-RP [110] t=1, p=264 95.24±0.07 1.677s 4.913s 95.21±0.13 1.968s 6.098s

C=4) and the accuracy of a degree-2 polynomial-kernel SVM is 98.4% (C = 512).
A SVM with the Gaussian kernel achieves a 99.23% accuracy (C = 8, γ = 32).

Again, the highest accuracies for both 1500 and 2000 output dimensions were
achieved with by the Nyström method. However, in this case the accuracy difference
between φ(·)+RP and Nyström was almost negligible (≈ 0.09%). As expected, both
PK-RP and KG-RP approximate the accuracy achieved by the explicit approach,
which brings them very close to the accuracy obtained by the winning method. For
instance, using PK-RP with the Gaussian distribution, k = 1500, p = 529 and t = 1,
one can achieve a linear classification accuracy of 97.80%, which is only 0.19% below
the accuracy of Nyström for than same number of output dimensions. However, PK-
RP achieves this with a training time two orders of magnitude lower and by using
one-third the time to transform the samples. The accuracies obtained with KG-RP
are slightly lower than those of PK-RP, and the difference increased when using
lower values of p. Also, the computation times of KG-RP are significantly greater.
D2PK-RP performed comparably to PK-RP, but as in the previous experiments
this performance came with a computational cost approximately ten times that of
PK-RP.

4.4.3 W8a dataset

The w8a dataset [83] is a widely used [27, 81] web-classification dataset in the con-
text of machine learning research. Conveniently, it is publicly available and can be
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Table 4.8: Results on distance preservation from the homogeneous polynomial kernel of degree
two (g = 2) for 500 samples from w8a.

Method Parameters 200 output dim. 500 output dim. 1000 output dim.
avg. dist. time avg. dist. time avg. dist. time

φ(·)+RP Gaussian 0.079±0.003 9.693s 0.051±0.002 10.532s 0.036±0.001 11.951s
φ(·)+RP Sparse, s=1 0.077±0.002 9.684s 0.049±0.001 10.474s 0.035±0.001 11.890s
φ(·)+RP Sparse, s=3 0.079±0.001 9.561s 0.050±0.001 10.351s 0.036±0.001 11.687s
Nyström [103] - 0.772±0.005 0.024s 0.633±0.008 0.056s 0.507±0.006 0.200s
D2PK-RP [73] s=1 0.131±0.005 0.077s 0.112±0.003 0.334s 0.107±0.003 0.331s

PK-RP Gaussian, p=892 0.105±0.005 0.021s 0.084±0.004 0.034s 0.078±0.002 0.054s
PK-RP Sparse, s=1, p=892 0.103±0.002 0.019s 0.080±0.004 0.035s 0.071±0.005 0.055s
PK-RP Sparse, s=3, p=892 0.107±0.003 0.021s 0.085±0.004 0.033s 0.079±0.005 0.053s
KG-RP [110] p=892 0.554±0.009 6.744s 0.547±0.007 8.286s 0.548±0.007 10.891s

PK-RP Gaussian, p=446 0.126±0.009 0.015s 0.109±0.005 0.029s 0.099±0.005 0.049s
PK-RP Sparse, s=1, p=446 0.126±0.005 0.015s 0.104±0.005 0.026s 0.098±0.008 0.047s
PK-RP Sparse, s=3, p=446 0.127±0.006 0.014s 0.107±0.006 0.027s 0.101±0.005 0.048s
KG-RP [110] p=446 0.677±0.007 1.738s 0.676±0.007 2.241s 0.674±0.005 3.045s

PK-RP Gaussian, p=223 0.157±0.008 0.012s 0.141±0.005 0.023s 0.142±0.008 0.045s
PK-RP Sparse, s=1, p=223 0.152±0.009 0.010s 0.135±0.006 0.027s 0.132±0.010 0.047s
PK-RP Sparse, s=3, p=223 0.154±0.008 0.010s 0.151±0.015 0.025s 0.138±0.005 0.047s
KG-RP [110] p=223 0.791±0.007 0.485s 0.791±0.006 0.652s 0.788±0.006 0.950s

PK-RP Gaussian, p=111 0.218±0.031 0.009s 0.203±0.016 0.024s 0.191±0.008 0.044s
PK-RP Sparse, s=1, p=111 0.195±0.009 0.009s 0.183±0.008 0.021s 0.179±0.008 0.044s
PK-RP Sparse, s=3, p=111 0.218±0.017 0.009s 0.194±0.014 0.022s 0.200±0.009 0.046s
KG-RP [110] p=111 0.887±0.008 0.160s 0.883±0.007 0.251s 0.883±0.004 0.394s

downloaded from the LIBSVM tools web page [20]. Each sample in the dataset con-
sist of a number of binary features which represent the presence/absence of a set of
keywords in the web page associated to the sample. The dataset contains a total
of 64,000 samples, with 300 features each. Predefined training and testing sets are
usually used for evaluation, with 49,749 and 14,951 samples respectively. As opposed
to the other datasets used in this chapter, w8a exhibits a significant imbalance in
the distribution of class labels, which makes it much more challenging for algorithms
which rely on correctly estimating the distribution of data to operate.

Distance preservation on W8a

Tables 4.8 and 4.9 list the results concerning the average distance distortion ob-
tained when transforming 500 samples from the w8a dataset with g = 2 and g = 3

respectively. A value of t = 30 was used for KG-RP and PK-RP in all cases.

In this case, both the KG-RP and Nyström methods failed to preserve pairwise
distances. This is probably due to the fact that, as opposed to PK-RP, both these
methods depend on training data, so the imbalance exhibited by the w8a dataset
affected them in a negative manner. One more time, φ(·)+RP produced the best
results regarding distance preservation, at the cost of large processing times. Fi-
nally, the approach proposed in this chapter approximated the distance preservation
properties of φ(·)+RP reasonably well, while keeping computational times always
below 70ms. Again, D2PK-RP performed poorly, while also being significantly more
computationally expensive than PK-RP.
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Table 4.9: Results on distance preservation from the homogeneous polynomial kernel of degree
three (g = 3) for 500 samples from w8a.

Method Parameters 200 output dim. 500 output dim. 1000 output dim.
avg. dist. time avg. dist. time avg. dist. time

Nyström [103] - 0.915±0.006 0.025s 0.846±0.009 0.066s 0.773±0.005 0.226s

PK-RP Gaussian, t=30, p=892 0.135±0.009 0.022s 0.127±0.013 0.039s 0.112±0.006 0.067s
PK-RP Sparse, s=1, t=30, p=892 0.133±0.008 0.022s 0.114±0.005 0.040s 0.105±0.004 0.063s
PK-RP Sparse, s=3, t=30, p=892 0.144±0.007 0.021s 0.121±0.006 0.040s 0.111±0.007 0.067s
KG-RP [110] t=30, p=892 0.802±0.007 6.681s 0.798±0.009 8.239s 0.798±0.007 10.862s

PK-RP Gaussian, t=30, p=446 0.170±0.009 0.016s 0.161±0.011 0.034s 0.158±0.008 0.061s
PK-RP Sparse, s=1, t=30, p=446 0.161±0.009 0.016s 0.145±0.004 0.032s 0.140±0.009 0.060s
PK-RP Sparse, s=3, t=30, p=446 0.171±0.010 0.016s 0.162±0.010 0.033s 0.150±0.009 0.061s
KG-RP [110] t=30, p=446 0.871±0.007 1.720s 0.867±0.007 2.236s 0.871±0.007 3.031s

PK-RP Gaussian, t=30, p=223 0.241±0.020 0.013s 0.224±0.026 0.032s 0.219±0.024 0.058s
PK-RP Sparse, s=1, t=30, p=223 0.213±0.010 0.013s 0.209±0.014 0.029s 0.199±0.009 0.056s
PK-RP Sparse, s=3, t=30, p=223 0.228±0.012 0.012s 0.221±0.012 0.030s 0.218±0.024 0.059s
KG-RP [110] t=30, p=223 0.924±0.005 0.487s 0.923±0.007 0.640s 0.924±0.006 0.941s

PK-RP Gaussian, t=30, p=111 0.320±0.030 0.012s 0.302±0.021 0.028s 0.310±0.028 0.056s
PK-RP Sparse, s=1, t=30, p=111 0.290±0.020 0.013s 0.284±0.025 0.028s 0.298±0.040 0.057s
PK-RP Sparse, s=3, t=30, p=111 0.336±0.033 0.011s 0.296±0.016 0.030s 0.294±0.014 0.056s
KG-RP [110] t=30, p=111 0.959±0.004 0.166s 0.962±0.004 0.257s 0.959±0.004 0.414s

Classification on W8a

Finally, we present the classification results of the different methods on the w8a
dataset. Again, we experimented with different p and t hyperparameter values. Due
to the class imbalance in w8a, the raw accuracy is not an appropriate metric to
measure the performance of classification methods on this dataset. Instead, we used
the F1-score:

F1 = 2 · precision · recall
precision + recall

. (4.20)

We also report the standard deviation in the F1-score over multiple runs of the
experiments, and the computation times required to train each method and transform
w8a’s entire training set (see Table 4.10). Note that the F1-score of a linear SVM
classifier trained on the original w8a samples is 0.7343 (with C=1), which corresponds
to a classification accuracy of 98.66%. The classification F1-score of a degree-2
polynomial-kernel SVM is 0.9020 (with C = 1). For comparison, a SVM with the
Gaussian kernel achieves a 0.9037 F1-score (C = 200, γ = 0.05).

As opposed to what happened in the experiments with MNIST and Webspam,
the classification performance with Nyström was not the best. Instead, this method
was largely outperformed by φ(·)+RP, with the gap between their scores being lower
when using 2000 output dimensions. Similarly, KG-RP performed poorly in this
dataset, supporting our hypothesis that these methods are largely affected by the
imbalance of the dataset.

For its part, PK-RP performed remarkably well in this dataset, achieving F1-
scores similar to those of φ(·)+RP but with a computational-time lower by orders of
magnitude. For instance, by using PK-RP with the Gaussian distribution, k = 2000,
p = 446 and t = 1, one can achieve a linear classification F1-score of 0.8973, which is
only 0.0018 below the score of φ(·)+RP for the same number of output dimensions.
In this case D2PK-RP performed poorly also for classification, in spite of being
significantly more computationally expensive than PK-RP.
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Table 4.10: Classification accuracies on w8a obtained by a linear SVM trained on the representa-
tions generated by different methods to approximate the feature space of the degree-2 homogeneous

polynomial kernel.

F. Extraction Parameters 1500 output dim. 2000 output dim.
F1-score Train Transform F1-score Train Transform

Nyström [103] - .7849±.015 0.743s 2.117s .8596±.008 2.127s 3.480s
φ(·)+RP Gaussian .8738±.003 3.65s 32m 34s .8991±.002 4.83s 44m 48s
D2PK-RP [73] s=1, t=10 .7679±.005 0.068s 8.713s .8496±.001 0.087s 11.935s

PK-RP Gaussian, t=10, p=446 .8721±.011 0.004s 2.273s .9003±.004 0.005s 2.927s
PK-RP Sparse, s=1, t=10, p=446 .8702±.007 0.004s 2.255s .8972±.003 0.004s 2.917s
PK-RP Sparse, s=3, t=10, p=446 .8785±.012 0.004s 2.265s .8988±.002 0.004s 2.938s
KG-RP [110] t=10, p=446 .4223±.061 3.815s 1.054s .4423±.048 4.692s 1.352s

PK-RP Gaussian, t=1, p=446 .8667±.004 0.004s 0.795s .8973±.002 0.004s 1.014s
PK-RP Sparse, s=1, t=1, p=446 .8722±.005 0.003s 0.803s .8999±.003 0.004s 1.016s
PK-RP Sparse, s=3, t=1, p=446 .8695±.006 0.003s 0.805s .8972±.002 0.004s 1.004s
KG-RP [110] t=1, p=446 .4916±.030 3.819s 1.056s .4865±.031 4.625s 1.336s

PK-RP Gaussian, t=10, p=223 .8690±.002 0.003s 2.167s .8982±.002 0.003s 2.879s
PK-RP Sparse, s=1, t=10, p=223 .8715±.006 0.002s 2.180s .8984±.001 0.002s 2.903s
PK-RP Sparse, s=3, t=10, p=223 .8663±.005 0.002s 2.179s .9008±.004 0.002s 2.888s
KG-RP [110] t=10, p=223 .3070±.033 1.208s 0.724s .3652±.031 1.498s 0.934s

PK-RP Gaussian, t=1, p=223 .8637±.011 0.002s 0.717s .8966±.004 0.002s 0.932s
PK-RP Sparse, s=1, t=1, p=223 .8585±.006 0.002s 0.719s .8960±.002 0.002s 0.923s
PK-RP Sparse, s=3, t=1, p=223 .8650±.007 0.002s 0.728s .8985±.003 0.002s 0.933s
KG-RP [110] t=1, p=223 .2924±.048 1.210s 0.727s .3337±.045 1.481s 0.949s

PK-RP Gaussian, t=10, p=111 .8656±.006 0.002s 2.126s .8978±.002 0.002s 2.828s
PK-RP Sparse, s=1, t=10, p=111 .8622±.006 0.002s 2.133s .8986±.003 0.002s 2.838s
PK-RP Sparse, s=3, t=10, p=111 .8667±.011 0.002s 2.128s .8983±.003 0.002s 2.823s
KG-RP [110] t=10, p=111 .1242±.063 0.539s 0.566s .1757±.044 0.679s 0.744s

PK-RP Gaussian, t=1, p=111 .8434±.014 0.001s 0.670s .8884±.005 0.001s 0.883s
PK-RP Sparse, s=1, t=1, p=111 .8375±.009 0.002s 0.664s .8863±.004 0.002s 0.888s
PK-RP Sparse, s=3, t=1, p=111 .8361±.009 0.002s 0.664s .8874±.004 0.001s 0.882s
KG-RP [110] t=1, p=111 .1572±.037 0.542s 0.555s .1542±.073 0.665s 0.746s

4.4.4 Polynomial kernel degree selection

As mentioned before, due to their function, increasing the hyperparameters t and
p for our method will likely result in higher accuracies at the expense of a greater
computational cost. However, determining the best polynomial degree is not that
simple. While in some contexts the best performing polynomial kernel degree is
known based on expert knowledge, experimentation is usually needed to determine
the best value for this hyperparameter. In this section, we show how the right
polynomial degree for PK-RP can be determined by using a standard hyperparameter
selection strategy. In particular, given a desired output dimension and the value of p
and t, the most appropriate kernel degree can be determined by performing a Cross-
Validation on the training set with different polynomial kernel degrees. Then, the
best performing value of g according to the Cross-Validation accuracies is selected
and evaluated on the test set.

For the experiments in this section, we used the binary version of the Covertype
dataset [29]. The task with this dataset is to predict the forest cover-type from car-
tographic variables (e.g., elevation, slope, soil type, etc.). In particular, we used the
pre-processed version of the dataset available at the LIBSVM web page11. It contains
a total of 581,012 samples each of dimension 54. Since no predefined train/test split
exists for this dataset, for our experiments we randomly sampled 20% of the data to

11www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets (Date accessed: 03/02/2018).

www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Table 4.11: Classification accuracies for 5-fold Cross-Validation on the training set and for the
test set of Covertype. The results show that, given an output dimension and the the desired
value of p, the most suitable polynomial degree g for PK-RP can be selected by using a standard

hyperparameter selection strategy.

Parameters 1000 output dim. 2000 output dim. 3000 output dim.
CV Acc. (%) Test Acc. (%) CV Acc. (%) Test Acc. (%) CV Acc. (%) Test Acc.

g=2, p=500 79.21±0.28 79.55±0.03 79.33±0.25 79.56±0.03 79.37±0.21 79.57±0.03
g=3, p=500 78.27±0.25 79.17±0.26 79.85±0.34 80.45±0.15 80.45±0.17 81.17±0.09
g=4, p=500 69.34±0.71 70.39±0.51 72.08±0.23 73.10±0.25 73.64±0.70 74.25±0.42

g=2, p=1000 79.26±0.22 79.54±0.04 79.34±0.32 79.55±0.02 79.32±0.33 79.55±0.03
g=3, p=1000 78.51±0.14 78.93±0.28 79.82±0.11 80.63±0.13 80.34±0.16 81.13±0.11
g=4, p=1000 69.83±0.75 69.85±0.62 72.22±0.78 72.92±0.23 73.69±0.25 74.29±0.28

form the test set (116,202 samples) and 10% to form the training set (58,101 sam-
ples). Table 4.11 shows the 5-fold Cross-Validation accuracies and the corresponding
test accuracies for different polynomial degrees, values of p and output dimensions on
the Covertype dataset. Hyperparameter t as fixed to 10. Looking at the table we can
se that, for each output dimension and selected p combination, the best performing
polynomial degree in the Cross-Validation process over the training set matches the
best performing kernel as evaluated on the test set. This suggests that the most
appropriate kernel degree for a specific application can be successfully determined
with the above described hyperparameter selection scheme. In addition, it must be
noted that the best performing polynomial degree for PK-RP need not be the same
as the best polynomial degree for a conventional kernel-SVM using a polynomial ker-
nel. Since our method is implicitly performing a Random Projection from the kernel
feature space, higher polynomial degrees might require a bigger output dimension to
fully capture their discriminative information, as the dimension of the implicit kernel
feature space grows with the degree. Therefore, the optimal polynomial degree to
be used with our method depends on the selected output dimension. For instance,
we can see that in this case our method performed best using g = 3 only when the
output dimension was at least 2000.

4.4.5 Repetition minimization

Before concluding this chapter, we present a small modification of the proposed al-
gorithm which slightly improves the performance with little to no cost. As explained
before, our algorithm generates a set S containing p i.i.d. random vectors. After-
wards, k random subsets of S are selected, each containing the random vectors that
will be used for one of the output components. This enables us to pre-compute the
inner product of data samples with the p vectors in S, reducing the total number
of d-dimensional inner products evaluated by our algorithm from gtk to p. How-
ever, this approach results in an uneven usage of the vectors in S. That is, after
selecting the k random subsets S1, . . . , Sk from S, some of the original vectors might
be present in more of the subsets than others. In fact, it is even possible that a
given vector in S does not appear in any of the random subsets, in which case we
would be wasting computational resources for nothing. To solve this, we introduce
an alternative procedure to generate the collections of vectors used for each output
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Figure 4.6: Comparison of the proposed method for a fixed output dimension of k = 300,
g = 2, different values of t and p, and with/without repetition minimization. Average distortion

is evaluated for pairwise distances among 500 MNIST test samples.

component. The goal here will be to achieve a more even usage of the p vectors in S.
First, we generate a collection P containing the elements of S repeated the necessary
number of times to ensure |P | = gtk:

P = S ∪ · · · ∪ S︸ ︷︷ ︸
bgtk/pc

∪ S[1 : gtk mod p]. (4.21)

Then, we sample P without replacement to form k collections S1, . . . , Sk, each with
gt vectors. The gt vectors in collection Sc are as usual used in the computation
of the c-th output component. In addition to ensuring that vectors in S are more
evenly used, this method guarantees that if we select p to be equal to gtk, no vector
repetition will occur, so we will no longer be violating the theoretical requirement
of independence among the output components of the Random Projection. We will
refer to this alternative approach to populate S1, . . . , Sk as repetition minimization.
Figure 4.6 compares the performance of our algorithm with and without repetition
minimization, measuring the average distortion of pairwise distances among 500 test
samples from MNIST. As expected, small improvements were registered, especially
for lower values of t. This trick will be further exploited in the following chapter.

4.5 Conclusions and future work

This chapter introduced a novel method to approximate Random Projections from
the feature spaces of homogeneous polynomial kernels. As opposed to previous ker-
nelization attempts of the Random Projection algorithm [110, 111], our approach
preserves the data-independence and low computational complexity of the original
Random Projection method. As a drawback, this was achieved by sacrificing the gen-
erality of the method, focusing on a specific kernel family. Nevertheless, the chosen
kernel family, homogeneous polynomial kernels, is one of the most popular choices
and has been successfully applied to a wide range of classification and clustering
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problems. In addition, our method is compatible with homogeneous polynomial ker-
nels of arbitrary degree, and can also be used to approximate Random Projections
from the feature spaces of inhomogeneous polynomial kernels, via the trick described
in section 4.3.3.

Our work is closely related to the theoretical work of Balcan et al. [9, 11],
who demonstrated that it is in general not possible to perform a valid Random
Projection from the feature space of an arbitrary kernel, given only black-box access
to the kernel function and without access to the distribution of data. However,
they hypothesized that such methods could be developed for specific natural kernel
families. The proposed method confirms their hypothesis, since it can approximate
a Random Projection from the feature space of the homogeneous polynomial kernel,
without ever computing the explicit form of the feature space or considering the
distribution of data samples being processed.

Our theoretical analysis of computational complexities showed that the time re-
quired by the proposed approach grows linearly with respect to the dimensionality
of samples and the desired output dimension. Also, the training time of PK-RP is
independent of the number of training samples as opposed to KG-RP, which requires
O(p3) training time where p must be set considering the number of available training
samples12. Our method also compares favorably to the Nyström algorithm, whose
training and testing times are O(k3) and O(k2) respectively. Our theoretical anal-
ysis regarding the time complexities of the different methods is supported by the
experimental measurements, where our approach consistently resulted in the lowest
execution times.

The experimental results presented in Section 4.4 evidence the performance of
the proposed method both in terms of distance preservation and generation of useful
representations for linear classification. Regarding distance preservation, the pro-
posed approach outperformed alternative methods in most of our experiments. In
terms of classification accuracy, PK-RP showed its ability to approximate the results
obtained with the explicit φ(·)+RP approach, while being orders of magnitude faster.

Apart from the above mentioned advantages of the proposed method, it is also
worth noticing that it works in a completely data-independent manner. That is, the
algorithm can be initialized without access to any training sample, and the prop-
erties of the algorithm do not depend on estimating the distribution of input data.
As a consequence, our method is well suited to work in online/incremental learning
scenarios [38], where data samples arrive in a sequential manner. Lastly, we showed
that the kernelization approach proposed in this chapter is directly compatible with
the database-friendly distribution proposed by Achlioptas [2]. This property can be
used to ease the implementation of this algorithm in SQL environments, as the pro-
jection of data samples over the random vectors can be done in terms of aggregate

12 In the case of KG-RP, the hyperparameter p controls the number of training samples used by
the underlying Kulis-Grauman method to estimate the distribution of data. As a consequence, the
authors of this method [65] recommended setting p = O(

√
N), where N is the number of training

samples available.
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evaluation. In this regard, our experimental results show no significant accuracy loss
when using Achlioptas’ distribution with s = 1, 3 instead of the Gaussian distribu-
tion. Using greater levels of sparsity in the projection vectors could be explored as
a way of reducing computational costs even more.

As for future lines of research, we propose exploring the development of similar
kernelized variants of Random Projection for other kernel families. While in this
chapter we have focused on the polynomial kernel family, it would be interesting to
compare kernel feature space approximation methods for different kernel families.
In addition, we intend to investigate the applicability of the proposed approach
in different clustering, classification and information retrieval tasks, especially in
domains where a limited computational power is available.
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Chapter 5

Compact Bilinear Pooling via
Kernelized Random Projection

Bilinear convolutional neural networks, which include the bilinear pooling operation
as their key feature, are among the most popular and effective models for fine-grained
image recognition. However, a major drawback of models using bilinear pooling is the
dimensionality of the resulting descriptors, which typically consist of several hundred
thousand features. Even when generating the descriptor itself is feasible, its dimen-
sion renders any subsequent operations impractical and often results in huge compu-
tational and storage costs. In this chapter, we introduce a novel method to efficiently
reduce the dimension of the bilinear pooling descriptor by performing a Random Pro-
jection. Conveniently, this is achieved without ever computing the high-dimensional
descriptor explicitly. Experimental results show that our technique outperforms exist-
ing compact bilinear pooling algorithms in most cases. In addition, it runs faster that
alternative methods on low computational power devices, where efficient extensions
of bilinear pooling are most useful.

The contents of this chapter have been adapted from the journal paper: Daniel
López-Sánchez, Angélica González Arrieta and Juan M. Corchado. “Compact Bilin-
ear Pooling via Kernelized Random Projection for Fine-Grained Image Categoriza-
tion on Low Computational Power Devices”. In: Neurocomputing (In press).

5.1 Introduction

The term fine-grained recognition is generally applied to describe classification tasks
with a relatively large number of very similar categories. Examples of this include
animal and plant species classification [99, 59, 78], automobile and plane model
identification [61, 74], or scene recognition [112], among others. These classification
tasks tend to be quite challenging, partly because of the high intra-class variabil-
ity they exhibit, combined with a low inter-class variability. In other words, the
small variations that contain the information needed to distinguish between classes

https://www.journals.elsevier.com/neurocomputing
https://www.journals.elsevier.com/neurocomputing
https://www.journals.elsevier.com/neurocomputing
https://www.journals.elsevier.com/neurocomputing
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can be easily overwhelmed by non-informative factors such as pose, orientation or
illumination conditions.

In the recent years, many different approaches have been proposed to address
the challenge of fine-grained recognition, and accuracies have risen steadily [16, 105,
62]. One of the most effective and widely adopted approaches is the use of bilinear
Convolutional Neural Networks (CNN) [26, 37, 95, 6, 91], originally proposed by
Lin et al. [71]. As explained in Section 2.5, bilinear CNNs build an image feature
descriptor by first applying two CNNs as feature extractors. Then, the two descrip-
tors generated are combined at each location by using the outer product. Finally,
the resulting descriptor is pooled across locations to obtain a global descriptor of the
input image. A classic linear classifier (e.g., softmax, logistic regression, etc.) is then
applied on the global descriptor. This approach enables bilinear CNNs to capture
pairwise feature interactions in a location-invariant manner, which in turn produces
a boost in fine-grained classification accuracies.

In spite of their success and popularity, models using bilinear pooling have a ma-
jor drawback. As a consequence of using the outer product, the generated descriptor
is extremely high-dimensional. For instance, the bilinear descriptor used in [71] had
more than 250, 000 features. As a consequence, even a simple linear classifier will
have millions of parameters when trained on such a high-dimensional descriptor, or
even hundreds of millions if the number of classes is large. This results in high com-
putation and storage overheads, and makes machine learning models more prone to
over-fitting.

To mitigate this problem, methods which try to compress the discriminative in-
formation of the bilinear descriptor into low-dimensional representations have been
developed. Most notably, Gao et al. proposed an approach called compact bilin-
ear pooling [43], which uses polynomial kernel approximation techniques to achieve
this. In addition, the authors of [43] also discussed the possibility of using the Ran-
dom Projection algorithm [3] to reduce the dimension of the bilinear descriptor, but
discarded this option after noting that such an approach would require storing a
huge projection matrix and explicitly computing the bilinear descriptor before the
projection.

In this chapter, we further develop the idea of using Random Projection to reduce
the dimension of the bilinear pooling descriptor. In particular, we propose adapting
the kernelized variant of Random Projection presented in the previous chapter to
efficiently project bilinear descriptors to a lower dimension, without ever having to
explicitly compute the high-dimensional bilinear descriptors themselves. We also
derive back-propagation for our algorithm, so that it can be included as a building
block in end-to-end trainable models. As a practical application of the proposed
approach, we study the task of fine-grained image classification on low computational
power devices. We focus on this application scenario because, as pointed out by Gao
et al. [43], methods for making bilinear pooling more efficient are most useful for low
power devices, where computational resources are scarce. Our experimental results



Chapter 5. Compact Bilinear Pooling via Kernelized Random Projection 71

suggest that the proposed algorithm generates a better compacted representation of
the bilinear descriptor in most cases, while being significantly faster than alternative
approaches.

5.2 Related work

Bilinear models were originally proposed in [94], where the authors used them to
separately model the style and content of images. More recently, Lin et al. [71]
explored their applicability in the context of deep learning for fine-grained image
categorization, showing that bilinear Convolutional Neural Networks could be used to
achieve state-of-the-art results in various fine-grained image categorization datasets.

In [43], the authors applied two polynomial kernel approximation techniques
to make bilinear CNNs less computationally demanding, especially in terms of the
memory required for parameter storage. This approach emerged from the notion that
bilinear features are fundamentally related to the feature space of the homogeneous
polynomial kernel of degree two, so kernel approximation methods can also be used
to approximate bilinear pooling descriptors. This approach is known as compact
bilinear pooling, since it reduces the dimension of the bilinear descriptor proposed
in [71]. In addition, back-propagation was derived for both methods in [43], making
the proposed models end-to-end trainable.

The first kernel approximation technique applied in [43] was Random Maclau-
rin (RM) [58]. In essence, Random Maclaurin builds a randomized feature map
which, when approximating the degree-two homogeneous polynomial kernel, takes
the form Z : Rd → R, Z : x → 〈x,w1〉〈x,w2〉 where x ∈ Rd is the input data
sample and w1,w2 ∈ Rd are i.i.d. random Rademacher vectors. Conveniently, for
two arbitrary data samples x and y, it can be proven that E[Z(x)Z(y)] = 〈x,y〉2.
That is, the randomized feature map preserves inner products from the kernel feature
space in expectation. Of course, the quality of this feature map can be improved by
using more than one entry in the output representation, thus reducing the variance
of the estimator. While this approach performed well in the experiments of [43], it
has the inherent limitation of requiring a significant amount of memory to store the
Rademacher vectors used for the map.

The second kernel approximation method used in [43] was Tensor Sketch (TS) [82].
Introduced a few years later than Random Maclaurin, Tensor Sketch obtains a Count
Sketch [22] of the outer product of two vectors in an efficient manner, which can be
used to approximate polynomial kernels and in turn the bilinear descriptor. In par-
ticular, instead of explicitly computing the outer product, TS computes the Count
Sketch of the vectors and then uses polynomial multiplication via the Fast Fourier
Transform to compute the Count Sketch of their outer product. Using this method
to achieve a compact bilinear pooling typically results in higher accuracies, while
requiring much less memory for parameter storage than RM.
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As mentioned above, Gao et al. [43] also suggested the possibility of using the
Random Projection algorithm [3] to reduce the dimensionality of bilinear descrip-
tors. Thanks to the Johnson-Lindenstrauss lemma [33] that underpins Random
Projection, pairwise distances between bilinear descriptors would be approximately
preserved in the resulting representation. However, they discarded this idea because
directly applying a Random Projection to the bilinear descriptors would require stor-
ing a large projection matrix and explicitly computing the bilinear descriptors in the
first place. However, recent advances in the intersection of kernel functions and Ran-
dom Projections [110, 5, 73, 72] have made it possible to efficiently perform Random
Projections from the feature spaces of different kernel functions in an efficient man-
ner. In particular, an efficient method to approximate Random Projections from the
feature spaces of polynomial kernels was introduced in the previous chapter (also see
[72]). Here we adapt the ideas presented in Chapter 4 to make bilinear pooling less
computationally demanding by approximating a Random Projection of the bilinear
descriptor.

5.3 Proposed method

Bilinear pooling [71] computes a global descriptor for an image I by computing the
outer product of local descriptors and then applying average pooling over locations.
In the context of this chapter, the local descriptors are generated by means of an
arbitrary CNN (see Figure 5.1). Formally, the global bilinear descriptor is:

Φ(I) =
∑
l∈L

CNN(I, l)⊗ CNN(I, l), (5.1)

where CNN(I, l) denotes the descriptor extracted from image I at location l by
the chosen CNN1, L is the set of existing locations and ⊗ denotes the Kronecker
product2. For instance, if the CNN generates feature maps of dimension H×W with
d channels, there will be HW locations in L, and each local descriptor CNN(I, l) will
be of size d. As a consequence, the final bilinear descriptor Φ(I) will be of dimension
d2, which is the main cause of the inefficiency of this approach. The descriptor is
typically normalized by first applying an element-wise signed square root operation
(i.e., x→ sgn(x)

√
|x|), followed by L2 normalization.

One possible approach to mitigate the issue of the high dimensionality of the
bilinear descriptor is to perform a Random Projection to reduce its size. In practice,
explicitly performing this Random Projection would involve multiplying the bilinear
descriptor Φ(I) ∈ Rd2 by a projection matrix R ∈ Rd2×k whose entries are indepen-
dently drawn from a suitable distribution [3]. Formally, a Random Projection of the

1Note that, like in [43], we focus on the case were the same feature-extraction CNN is used in
both sides of the Kronecker/outer product.

2We use the Kronecker product rather than the outer product to characterize bilinear pooling
for the sake of consistency with the notation in [72], but these operations are in this case equivalent
when their output is reshaped.
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Avg-poolingKronekerCNN

(outer prod.)

Figure 5.1: Schematic view of Bilinear Pooling [71] for an input image I and a Convolutional
Neural Network (CNN) which produces an output feature map with d channels. First, the
Kronecker product is applied at each location of the feature maps generated by the CNN. Then,
the resulting bilinear descriptors are averaged to form the final global bilinear descriptor.

bilinear descriptor would be:

1√
k

Φ(I)R =
1√
k

(∑
l∈L

CNN(I, l)⊗ CNN(I, l)

)
R, (5.2)

which results in a k-dimensional descriptor. Intuitively, we can think of each output
feature from this operation as the projection (inner product) of the bilinear descriptor
onto one of the columns of the projection matrix. As discussed in Section 2.2,
several options have been proposed over the years for the distribution of the entries
of R. Originally, the standard normal distribution was used [52, 8]. Later on,
studies demonstrated that projection matrices could be drawn from much simpler
distributions. Notably, Achlioptas showed that the entries of the projection matrix
can be instead drawn from a discrete and sparse distribution [3]. In particular,
Achlioptas’ work proved that if the entries of R are drawn from the distribution
shown in (5.3) with sparsity term s = 1 or s = 3, then the result will be a valid
Random Projection.

Rij =
√
s


1 with prob. 1/2s

0 with prob. 1− 1/s

−1 with prob. 1/2s

. (5.3)

A crucial point, however, is that the entries of the projection matrix must be chosen
independently, as we have seen in the previous chapters.

It is worth to keep in mind that using the distribution proposed by Achlioptas
reduces the computational cost of the projection. For instance, when using s = 3,
only 1/3 of the entries of the projection matrix are nonzero. Moreover, it has been
suggested that using greater sparsity levels in (5.3) is possible with little loss in
accuracy. In particular, some studies recommend using s = O(

√
d), where d is the

dimension of data samples [70].

However, as pointed out by Gao et al. [43], even if a sparse projection matrix is
used, the d2-dimensional bilinear descriptor needs to be computed before performing
the projection in (5.2), incurring in much of the inefficiency of standard bilinear pool-
ing. Luckily, various methods have been recently introduced to efficiently perform
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Random Projections from kernel feature spaces. In particular, the kernelized algo-
rithm proposed in Chapter 4 can be used to approximate Random Projections from
the feature spaces of homogeneous polynomial kernels. Moreover, the same ideas can
be used to apply Random Projection to bilinear descriptors in an efficient manner.
To show this, we begin by examining the following property of the Kronecker prod-
uct. Let r1, r2 and x be three arbitrary vectors from Rd. Then the following equality
holds:

〈x, r1〉〈x, r2〉 = 〈x⊗ x, r1 ⊗ r2〉. (5.4)

A more general version of this equality was proved and used in Chapter 4 to per-
form operations in the feature space of homogeneous polynomial kernel without ever
evaluating it explicitly. Note that φ(·) : x → x ⊗ x is a valid feature map for the
homogeneous polynomial kernel of degree two, so the inner product in the right-hand
side of the above equation can be thought as taking place in the feature space of that
kernel. Conveniently, the inner products in the left-hand side of the equation are in
Rd, which enables us to evaluate the expression in an efficient manner.

At this point, one might attempt to exploit (5.4) to perform a Random Projection
of x ⊗ x, as a first step towards our goal of projecting the bilinear descriptor. To
achieve this, r1 and r2 should be chosen in such a way that the entries of r1 ⊗ r2
follow one of the valid Random Projection distributions reviewed in Section 2.1, so
r1⊗r2 can play the role of one of the columns of the projection matrix. For instance,
if we draw the entries of r1 and r2 according to (5.3) with s = 1, then the entries
of r1 ⊗ r2 will appear to also follow this distribution when analyzed individually.
However, the entries of r1 ⊗ r2 are not mutually independent, which as mentioned
before is a crucial requirement for achieving a valid Random Projection.

As shown in Chapter 4, one possible solution to this problem is to apply the
multidimensional Central Limit Theorem (CLT) [17]. This classical result states
that the sum of t i.i.d. random vectors with zero means and Σ covariance, scaled
by 1/

√
t, converges in distribution to a multivariate normal with zero means and Σ

covariance as t goes to infinity. As a consequence, given 2t i.i.d. zero-mean random
vectors r1, . . . , r2t, we can ensure that

t−1∑
i=0

(
r2i+1 ⊗ r2i+2√

t

)
(5.5)

converges in distribution to a multidimensional normal distribution with zero means.
Moreover, if vectors we are summing have identity covariance matrix, then (5.5)
converges in distribution to a multidimensional normal with zero means and identity
covariance, which is one of the valid distributions for the Random Projection ma-
trix3 [8]. Conveniently, the desired identity covariance for vectors in the summation

3Note that drawing the columns of the projection matrix from a multidimensional normal with
zero means and identity covariance is equivalent to independently drawing the individual entries
from the unidimensional standard normal, as done in [8].
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of (5.5) can be achieved by independently drawing the entries of r1, . . . , r2t from
Achlioptas’ distribution, displayed in (5.3). Note that, by definition, the individual
variables in a multidimensional normal with identity covariance are independent [50],
so the dependence among the entries of vectors formed following (5.5) gradually van-
ishes as t grows.

Therefore, if we use projection vectors generated as in (5.5), with r1, . . . , r2t ∈ Rd

populated according to (5.3), then for a sufficiently large t we will be performing a
valid Random Projection. Formally, each component yc of the output representation
will be:

yc =
1√
k

〈
Φ(I),

t−1∑
i=0

(
r2i+1 ⊗ r2i+2√

t

)〉
Rd2

. (5.6)

As shown in Chapter 4, even if the selected value for t is not big enough to make
the entries of the resulting projection vectors follow a perfect normal distribution,
the summation in (5.5) has the effect of reducing the statistical dependence among
the entries of the projection vectors, resulting in a better approximation of a valid
Random Projection.

However, directly using (5.6) to compute the Random Projection of the bilinear
descriptor involves explicitly generating the descriptor and the projection vectors,
resulting in the same inefficiencies as directly applying a classic Random Projection.
Luckily, the inner product between the bilinear descriptor and our projection vector
can be conveniently rewritten to avoid working in the d2-dimensional space. This is
achieved by using (5.4) along with some elementary properties of inner products:

yc =
1√
k

〈
Φ(I),

t−1∑
i=0

(
r2i+1 ⊗ r2i+2√

t

)〉

=
1√
tk

t−1∑
i=0

〈Φ(I), r2i+1 ⊗ r2i+2〉

=
1√
tk

∑
l∈L

t−1∑
i=0

〈CNN(I, l)⊗ CNN(I, l), r2i+1 ⊗ r2i+2〉

=
1√
tk

∑
l∈L

t−1∑
i=0

〈CNN(I, l), r2i+1〉 〈CNN(I, l), r2i+2〉 . (5.7)

Conveniently, the inner products appearing in the last expression are in Rd,
avoiding the explicit generation of the bilinear descriptor and the d2-dimensional
projection vectors. The complete output representation generated by our algorithm
is obtained by repeating this projection k times, each with a different set of random
vectors r1, . . . , r2t:

y = [y1, . . . ,yk] . (5.8)
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Algorithm 3 Compact Bilinear Pooling via Kernelized Random Projection
Require: Descriptors for some image I at each location: CNN(I, l) for l ∈ L. The total number of vectors

p and their sparsity level s, the number t of vectors used for the Central Limit Theorem and the desired
output dimension k.

Ensure: Returns a k-dimensional vector which approximates a Random Projection of the full bilinear
pooling descriptor.

1: S ← {r1, . . . , rp} where each entry of ri ∈ Rd is {−
√
s, 0,
√
s} w.p. { 1

2s
, 1− 1

s
, 1
2s
} . Generate vectors

2: P = S ∪ · · · ∪ S︸ ︷︷ ︸
b2tk/pc

∪ S[ 1 : 2tk mod p], so that |P | = 2tk . Generate a redundant collection

3: Sample P w/o replacement to form S1, . . . , Sk, where |Si| = 2t . Form k collections of 2t vectors
4: y← (0, . . . , 0) ∈ Rk . Initialize output vector
5: for l ∈ L do . Iterate over locations
6: for c = 1, . . . , k do . Iterate over output components
7: for i = 0, . . . , t− 1 do
8: y[c]← y[c] + 1√

t
〈CNN(I, l), Sc[2i+1]〉 · 〈CNN(I, l), Sc[2i+2]〉 . Apply equation (5.7)

9: y← 1√
k
· y . Scale to compensate for the dimensionality reduction

10: return y

Regarding the selection of the hyperparameter t, the results in Chapter 4 suggest
that while relatively high values of t are required for a good pairwise-distance preser-
vation after the projection, classification accuracies do not benefit much from using
values of t greater than two. In fact, the results presented there seem to suggest that
it is a good idea to use small values of t in classification scenarios in order to reduce
computational cost.

5.3.1 Reusing vectors for improved efficiency

Up to this point, we have assumed that each of the output components yc of the
representation generated by our algorithm uses a completely different set of random
vectors r1, . . . , r2t. This ensures that the projection vectors generated using (5.5)
for different output components are independent of each other, which is required
to achieve a valid Random Projection. Unfortunately, this also forces us to main-
tain a total of 2tk d-dimensional vectors in memory, which in some cases can be
challenging. However, as shown in Chapter 4, this requirement can be relaxed in
practice. In particular, instead of using 2tk different vectors, one can generate a set
S = {r1, . . . , rp} containing p i.i.d. vectors, and then use a random subset Sc ⊂ S

for each output component. This approach produced good results in practice, while
enabling substantial computational savings [72].

A similar approach is taken in this chapter. First, a set containing p i.i.d. random
vectors S = {r1, . . . , rp} is generated with the entries of each vector following the
distribution defined in (5.3) and 2t < p ≤ 2tk. Then, 2t of those vectors are selected
for each output component y1, . . . ,yk. However, rather than simply selecting k

random subsets of S as done in Chapter 4, we make sure that each individual vector
is used the lowest number of times possible. In contrast, randomly selecting k subsets
of S would result in some vectors being used more often than others, as discussed in
Section 4.4.5. To achieve a more even usage of the vectors in S, we first generate a
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collection P containing the elements of S repeated the necessary number of times to
ensure |P | = 2tk:

P = S ∪ · · · ∪ S︸ ︷︷ ︸
b2tk/pc

∪ S[1 : 2tk mod p]. (5.9)

Afterwards, we sample P without replacement to form k collections S1, . . . , Sk, each
with 2t vectors. The 2t vectors in collection Sc are then used in the computation of
the output component yc, using (5.7).

In practice, S1, . . . , Sk store references to the original vectors is S rather than
copies of them, so no extra memory needs to be allocated. Algorithm 3 provides a self-
contained high-level description of the proposed method. A lower-level description
of the algorithm is provided in Appendix A. Throughout the following sections, we
will refer to this algorithm as Compact Bilinear Pooling via Kernelized Random
Projection (CBP-KRP).

5.3.2 Computational complexity and implementation tricks

Analyzing the different steps in Algorithm 3, it is possible to determine both the time
complexity and storage requirements of the proposed method. Steps 1-3 correspond
to the instantiation of the algorithm, and contain the initialization of the parameters
of the model. Most of the memory cost comes from storing S, which contains p
vectors of dimension d. Luckily, these vectors are drawn from Achlioptas’ sparse
distribution, so using an appropriate sparse matrix implementation the zero-valued
entries need not be stored. Therefore, only O(dp/s) parameters need to be stored to
represent S.

Regarding the collections P and S1, . . . , Sk, as mentioned before, they can be
implemented in such a way that they only store references to the original vectors in
S, so the memory requirements are reduced significantly. In addition, note that P is
only temporarily used to form S1, . . . , Sk. In total, S1, . . . , Sk contain 2tk references4

that need to be stored after the initialization of the algorithm, together with the set of
vectors S. Therefore, the complete model requires storing O(dp/s)+2tk parameters.

To assess the computational complexity, we separately consider the initialization
phase (steps 1-3) and the projection of the bilinear descriptor (steps 4-10). Regarding
the initialization, the computational cost is O(dp+ tk), where the O(dp) comes from
forming S and the O(tk) from the sampling of P to form S1, . . . , Sk. In practice,
these initialization steps only have to be executed once and require a time in the
order of seconds at most.

For the projection of the bilinear descriptor (steps 4-10), a more detailed analysis
is required. As we can see, these steps consist of a series of nested loops that, at
the innermost operation, perform two inner products between d-dimensional vectors.

4Depending on the implementation, these references can take the form of integer indexes, memory
pointers, etc. In any case, storing one of these references has a similar memory cost as storing a
floating point parameter.
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Table 5.1: Comparison of descriptor dimension, memory usage and time complexity for the differ-
ent approaches and networks considered in this chapter. Variables d, L and C represent the number
of channels before the pooling operation, the number of locations at which the CNN is applied (i.e.,
height times width of the feature maps), and the number of classes respectively. Hyperparameter
k corresponds to the desired output dimension for CBP-KRP, TS and RM. Hyperparameters t, p
and s control the behavior of CBP-KRP. Numeric results are for C = 200, k = 5000, p=5000, t = 2

and s = 100, using float32 precision.

FB CBP-KRP TS [43] RM [43]

Theoretical

Descriptor Size d2 k k k
Parameters 0 O(dp/s) + 2tk 4d 2dk

Classifier Param. Cd2 Ck Ck Ck

Computation O(Ld2) O(L(pd+ tk)) O(L(d+ k log k)) O(Ldk)

SqueezeNet [51] Descriptor Size 262,144 5,000 5,000 5,000
Network size: 4.8 MB Parameters 0 B 280 KB 8 KB 19.5 MB
@ fire9 (13× 13× 512) Classifier Param. 200 MB 3.8 MB 3.8 MB 3.8 MB

GoogLeNet [92] Descriptor Size 692,224 5,000 5,000 5,000
Network size: 25.7 MB Parameters 0 B 406 KB 13 KB 31.7 MB
@ incept-4e (14× 14× 832) Classifier Param. 528 MB 3.8 MB 3.8 MB 3.8 MB

Therefore, considering the number of iterations of each loop and the cost of these
inner products, we can conclude that the complexity of these steps is O(Lktd),
where L is the number of local descriptors L = |L|. However, one may notice that
most of the inner products computed are redundant, since S1, . . . , Sk only contain
references to p unique vectors and we are computing 2tk inner products for each local
descriptor CNN(I, l). As shown in Chapter 4, a much more efficient strategy would
be precomputing the inner products of the L local descriptors with the p vectors
in S before steps 4-5. With these inner products precomputed, the expression in
step 8 can be evaluated in O(1) time. Therefore, applying this implementation trick,
the total time complexity of the proposed algorithm simplifies to O(L(pd + tk)),
where the O(Lpd) comes from precomputing the inner products and the O(Ltk) from
executing steps 4-10. It is also important to note that, thanks to the sparse nature of
the vectors in S, the computation of the inner products can be accelerated by using
sparse matrix multiplication routines, available in most linear algebra packages.

Table 5.1 compares the number of parameters and time complexity of the pro-
posed method with those of the Full Bilinear (FB) descriptor [71] and existing com-
pact bilinear pooling methods [43]. In addition to the number of parameters needed
to compute the final descriptor in each case, the table also shows the number of
parameters of a one-vs-all linear classifier trained on the resulting descriptor, which
in the case of the full bilinear descriptor is the main source of inefficiency. Some em-
pirical values obtained for the particular hyperparameters and CNNs used in Section
5.4 are also provided.

5.3.3 Back-propagation for the proposed method

One of the main benefits of existing compact bilinear pooling methods [43] is their
compatibility with the back-propagation algorithm, which makes them suitable for
end-to-end training schemes. The fact that the partial derivative of the output of
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these algorithms with respect to their input can be easily computed makes it possible
to include them as intermediate layers in deep learning models, as the gradient of the
loss function can be back-propagated towards the first layers using the chain rule.

In this section, we derive back-propagation for the proposed method, thus show-
ing that it is also compatible with end-to-end training schemes. First, let L denote
the selected loss function. To keep the notation simple, we will denote the local
descriptor CNN(I, l) as xl. Therefore, the input to the proposed algorithm is the
set of d-dimensional local descriptors {xl}l∈L. The output of the algorithm is the
k-dimensional projection of the bilinear descriptor, y ∈ Rk. Back-propagation for
CBP-KRP can then be written as follows:

∂L

∂xl
=

k∑
c=1

∂L

∂yc

∂yc
∂xl

, (5.10)

∂yc
∂xl

=
1√
tk

t−1∑
i=0

(
〈xl, Sc[2i+1]〉Sc[2i+2] + 〈xl, Sc[2i+2]〉Sc[2i+1]

)
.

The first equability is derived by simply applying the chain rule, and the second
one is the partial derivative of the c-th feature in y with respect to one of the input
local descriptors. A more detailed description of the derivation process can be found
in Appendix B.

With this two equations, one can propagate the gradient of the loss function
across our algorithm to layers closer to the input of the model. While it might
be possible to derive the gradient with respect to the vectors in S1, . . . , Sk to also
update them during training, this is not recommended because (1) the sparsity of
the vectors would be lost, and (2) we would no longer be approximating a Random
Projection of the bilinear descriptor, as the distribution of the projection vectors
would be altered. Section 5.4.4 presents experimental results on the fine-tuning of
CNNs with CBP-KRP as an intermediate layer.

5.4 Experimental results and discussion

In this section, we present experimental results regarding both the efficiency and
accuracy achieved by the proposed algorithm as compared with existing approaches.
As mentioned before, our inference-time results focus on low computational power
devices. As shown in [43], when compact bilinear pooling is executed on specialized
hardware such as GPUs, the high level of parallelism in such devices makes bilinear
pooling reasonably fast, to the point that compact bilinear pooling methods can
even be slower5. In addition, the dominant factor in most cases is the forward
pass of the convolution layers, so improvements in the efficiency of bilinear pooling
might not have a significant impact in the total inference time of the entire model.

5For instance, [43] reported that full bilinear pooling and TS compact bilinear pooling required
0.77 and 5.03 ms respectively, while the time required for a forward pass of their CNN was 312 ms.
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Table 5.2: Main features of the two Raspberry devices used for the inference-time experiments.

Raspberry Model CPU model Cores & Freq. RAM Release Price

Pi 3 Model B+ BCM2837B0 (Cortex-A53) 4 @ 1.4 GHz 1 GB 14/03/18 $35
Pi Zero W BCM2835 (ARM1176JZF-S) 1 @ 1 GHz 512 MB 28/02/17 $10

Figure 5.2: Raspberry Pi Model 3 B+ (Left) and Zero W (Right).

In such scenarios, the main advantage of compact bilinear pooling methods is the
reduction in the number of parameters of the model, obtained as a consequence of
the reduced dimensionality of the final descriptor. Conversely, when running on low
computational power devices, compact bilinear pooling methods can make a huge
difference both in terms of memory requirements and total inference times.

We perform inference-time experiments on two devices from one of most popular
low-cost hardware platforms. In particular, we used the Raspberry Pi 3 Model B+,
the latest version of the classic Raspberry series, and the Raspberry Pi Zero W,
the smallest Raspberry computer to date6. Table 5.2 highlights some of the most
important features of these devices, and Figure 5.2 shows their relative sizes. Given
their widespread use, some of the most popular deep learning tools such as Tensorflow
[1] now include support for installation on devices of the Raspberry Pi ecosystem.
This reflects the growing interest of the community in running deep learning models
on low cost and low power devices.

5.4.1 Evaluated methods

Since our experiments focus on inference-times for low power devices, we selected
two relatively lightweight pretrained CNNs to make sure that the models would fit
in memory. In particular, we used SqueezeNet v1.1 [51] and GoogLeNet [92] CNNs.
On the one hand, SqueezeNet is a recently proposed architecture specifically designed
for efficiency. Notably, the weights of this CNN only require 4.8 MB of storage, and
even less if weight compression techniques are applied. Version v1.1 of this model
achieves a similar accuracy as the original one while being twice as fast7. On the
other hand, GoogLeNet is a slightly heavier model with a size of 25.7 MB, which
was the winning architecture on the ImageNet 2014 challenge. Conveniently, public

6https://www.raspberrypi.org/products/ (Date accessed: 10/02/2019).
7https://github.com/DeepScale/SqueezeNet (Date accessed: 15/10/2018).

https://www.raspberrypi.org/products/
https://github.com/DeepScale/SqueezeNet
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implementations exist for both models8, based on the Keras [25] and Tensorflow [1]
Python libraries9. The cut-off layers at which the bilinear pooling operation was
performed were fire9 for SqueezeNet and inception (4e) for GoogLeNet. The different
evaluated approaches were as follows:

• Baseline: The CNN model is chopped at the specified cut-off layer. Then, a
signed square root operation is applied followed by L2 normalization of the
features. A one-vs-rest linear SVM classifier [35] is then trained directly on
those features.

• Full bilinear pooling (FB): The CNNs model is chopped at the specified cut-off
layer. Then, the bilinear pooling descriptor is generated [71] for the feature
maps at the cut-off layer, followed by a signed square root operation and L2
normalization. A one-vs-rest linear SVM classifier [35] is then trained on the
full bilinear descriptors.

• Compact bilinear pooling via Kernelized Random Projection (CBP-KRP): The
CNN model is chopped at the specified cut-off layer. Then, Algorithm 3 is ap-
plied on the feature maps at the cut-off layer to compute a compact version
of the bilinear descriptor, followed by a signed square root operation and L2
normalization. A one-vs-rest linear SVM classifier [35] is trained on the result-
ing descriptors. For CBP-KRP, we used p = 5000, t = 2 and s = 100 in all
the experiments. The CBP-KRP algorithm itself was implemented in Python,
using the standard linear algebra libraries [79] and numba [68] to accelerate
loops where possible.

• Compact bilinear pooling via Random Maclaurin (RM): The CNN model is
chopped at the specified cut-off layer. Random Maclaurin [43, 58] is used to
generate a compact representation of the outer product of each local descriptor,
and the resulting descriptors are average-pooled. Then, a signed square root
operation is applied, followed by L2 normalization. A one-vs-rest linear SVM
classifier [35] is then trained on the resulting descriptors. The original Matlab
implementation of RM was rewritten in Python, using the standard linear
algebra packages [79].

• Compact bilinear pooling via Tensor Sketch (TS): The CNN model is chopped
at the specified cut-off layer. Tensor Sketch [43, 82] is used to generate a
compact representation of the outer product of each local descriptor, and the
resulting descriptors are average-pooled. Then, a signed square root operation
is applied, followed by L2 normalization. A one-vs-rest linear SVM classifier
[35] is then trained on the resulting descriptors. The original Matlab imple-
mentation of TS was rewritten in Python, using the standard linear algebra
packages [79] and numba [68] to accelerate loops where possible10.

8https://github.com/rcmalli/keras-squeezenet (Date accessed: 15/10/2018),
https://github.com/fchollet/deep-learning-models/pull/59 (Date accessed: 15/10/2018).

9We used Keras version 2.1.1 and Tensorflow version 1.9.0 in all our experiments.
10We used the Fast Fourier Transform implementation from:

https://docs.scipy.org/doc/scipy/reference/fftpack.html (Date accessed: 15/10/2018).

https://github.com/rcmalli/keras-squeezenet
https://github.com/fchollet/deep-learning-models/pull/59
https://docs.scipy.org/doc/scipy/reference/fftpack.html
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As done in [71], we use Csvm = 1 to train the linear SVMs in all experiments.

5.4.2 Datasets used in the experiments

For our experiments, we used three well known fine-grained image categorization
datasets, all of which include predefined train/test splits:

• Caltech UCSD Birds-200-2011 [99] (CUB). Animal species recognition dataset
with 200 bird species, which extends the earlier CUB-200 dataset by increas-
ing the number of images per class. The dataset contains a total of 11,788
images, with a standard split of 5,994 images for training and 5,794 for testing.
The number of images per class ranges from 41 to 60. Part annotations and
bounding boxes are provided for all the images.

• Stanford Cars Dataset (CARS) [61] Car model recognition dataset with 196
categories. Classes include the model and year of the car, for example “2012
Tesla Model S” or “2012 BMW M3”. The dataset contains a total of 16,185
images, with a standard split of 8,144 images for training+validation and 8,041
for testing. Bounding boxes are provided for all the images.

• 102 Category Flower Dataset [78] (Flowers). Plant species recognition dataset
with 102 flower species commonly occurring in the United Kingdom. The
dataset contains a total of 8,189 images, with a standard split of 2,040 images
for training+validation and 6,149 for testing. The number of images per class
ranges from 40 to 258. Segmentation data is provided for the images.

Training and test images were preprocessed as follows. First, bounding boxes
were used for CUB and CAR datasets to extract the relevant region of the images.
In the case of the Flower dataset, bounding boxes are not explicitly provided, so the
entire images were kept. Secondly, the resulting images were padded with zeros to
make them square, and resized to the appropriate size depending on the CNN used
in the experiment11. Finally, color preprocessing was applied as required12.

5.4.3 Classification accuracy and inference-time

Tables 5.3 and 5.4 compare the accuracies and inference-times achieved by the differ-
ent approaches described in Section 5.4.1, using SqueezeNet and GoogLeNet respec-
tively. To compensate for the stochastic nature of some of the methods evaluated,
each experiment was executed ten times. Average accuracies are reported together
with their standard deviations. Regarding inference-time results, times are reported
in the format T1/T2/T3, where T1 represents the time required for the image to be

11By default, SqueezeNet and GoogLeNet have input sizes of 227×227 and 224×224 respectively.
12The GoogLeNet implementation used requires pixel values in the range [-1,1]. SqueezeNet

requires conversion from RGB to BGR and color zero-centering with respect to the ImageNet
dataset.
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Table 5.3: Comparison of compact bilinear pooling methods using SqueezeNet v1.1 chopped at
fire9 [51] as the base network. Inference time results are for the CUB dataset (i.e., 200 categories).

Method Descript. Acc. (%) Acc. (%) Acc. (%) Time (ms) Time (ms)
size (k) CUB [99] CARS [61] Flowers [78] Pi 3 Model B+ Pi Zero W

Baseline (13, 13, 512) 46.46 49.07 71.83 156/0/119
Total: 273

1989/0/490
Total: 2,481

FB 5122 66.05 63.42 83.34 149/22/360
Total: 539

1996/1042/1493
Total: 4,540

CBP-KRP 2,000 60.78±0.29 54.36±0.39 80.75±0.19 156/105/2
Total: 265

1962/490/11
Total: 2,461

TS 2,000 60.17±0.22 54.13±0.24 80.60±0.30 154/340/2
Total: 500

1968/1162/11
Total: 3,152

RM 2,000 59.51±0.28 53.12±0 .35 79.48±0.29 154/483/2
Total: 644

1950/1865/11
Total: 3,828

CBP-KRP 3,500 62.26±0.24 57.28±0.36 81.63±0.20 155/113/4
Total: 276

1966/582/20
Total: 2,573

TS 3,500 61.80±0.25 57.35±0.30 81.48±0.24 148/747/4
Total: 908

1950/2920/20
Total: 4,895

RM 3,500 60.63±0.25 55.84±0.31 80.17±0.27 147/859/4
Total: 1,021

1967/3268/20
Total: 5,257

CBP-KRP 5,000 62.94±0.16 58.68±0.42 82.04±0.29 155/123/6
Total: 287

1965/697/28
Total: 2,690

TS 5,000 62.85±0.29 58.84±0.26 81.95±0.20 152/916/6
Total: 1,077

1960/3791/28
Total: 5,797

RM 5,000 61.11±0.17 56.97±0.25 80.49±0.19 152/1224/6
Total: 1,388

1951/4668/28
Total: 6,665

Table 5.4: Comparison of compact bilinear pooling methods using GoogLeNet chopped at incep-
tion (4e) [51] as the base CNN. Inference time results are for the CUB dataset (i.e., 200 categories).

Method Descript. Acc. (%) Acc. (%) Acc. (%) Time (ms) Time (ms)
size (k) CUB [99] CARS [61] Flowers [78] Pi 3 Model B+ Pi Zero W

Baseline (14, 14, 832) 47.03 56.05 77.49 542/0/223
Total: 770

11629/0/968
Total: 12,684

FB 8322 74.83 75.46 89.78 545/74/951
Total: 1,571

11499/3083/49374
Total: 100,280

CBP-KRP 2,000 68.68±0.27 62.88±0.32 88.28±0.23 537/156/2
Total: 704

11440/740/12
Total: 12,174

TS 2,000 67.44±0.22 61.31±0.26 87.90±0.21 534/396/2
Total: 944

11770/1437/12
Total: 13,155

RM 2,000 67.56±0.33 62.17±0.34 87.82±0.21 539/820/2
Total: 1,359

11358/3417/12
Total: 14,781

CBP-KRP 3,500 70.14±0.45 65.46±0.34 89.02±0.24 537/171/4
Total: 712

11627/862/20
Total: 12,553

TS 3,500 69.61±0.35 64.20±0.24 88.73±0.23 536/872/4
Total: 1,426

11478/3636/20
Total: 15,142

RM 3,500 69.20±0.27 64.57±0.22 88.39±0.20 532/1477/4
Total: 2,020

11514/6084/20
Total: 17,614

CBP-KRP 5,000 71.04±0.22 66.84±0.32 89.24±0.15 546/182/7
Total: 731

11481/985/30
Total: 12,504

TS 5,000 70.52±0.27 65.68±0.35 89.05±0.17 526/1074/6
Total: 1,619

11452/4867/29
Total: 16,363

RM 5,000 69.87±0.30 65.71±0.28 88.56±0.17 539/2100/6
Total: 2,651

11554/8682/29
Total: 20,243

passed through the CNN, T2 is the time needed to generate the final descriptor (ei-
ther by full bilinear pooling or the corresponding compact bilinear pooling method),
and T3 is the time taken by the final linear classifier to emit a prediction. Note that
unlike T1 and T2, T3 is affected by the number of classes in the dataset. The timings
reported in the tables are for a training dataset with 200 categories (e.g., the CUB
dataset). Total inference times are also reported13.

Looking at the accuracies in Tables 5.3 and 5.4, we can see that CBP-KRP out-
performed the alternative compact bilinear pooling methods is most cases, providing

13Small discrepancies exist between total inference times reported and the sum of T1, T2 and T3.
This is because total inference times were measured independently and not computed as T1+T2+T3.
All the timings reported correspond to the lowest execution time among ten runs.
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Table 5.5: Accuracies obtained using CBP-KRP with SqueezeNet and GoogLeNet, fine tuning all
layers of the pretrained base network on the target dataset. Reported accuracies are the average
over five runs, together with the average improvement with respect to the same experiment without

fine-tuning.

Method Base
Network

Descript.
size (k)

Acc. (%)
CUB [99]

Acc. (%)
CARS [61]

Acc. (%)
Flowers [78]

CBP-KRP
fine-tuned

SqueezeNet v1.1
at fire9 2,000 68.50±0.13

(7.72 ↑)
66.50±0.18
(12.14 ↑)

84.99±0.27
(4.24 ↑)

CBP-KRP
fine-tuned

SqueezeNet v1.1
at fire9 3,500 69.53±0.42

(7.24 ↑)
68.59±0.12
(11.31 ↑)

85.47±0.10
(3.84 ↑)

CBP-KRP
fine-tuned

SqueezeNet v1.1
at fire9 5,000 69.92±0.20

(6.98 ↑)
69.66±0.11
(10.98 ↑)

85.65±0.08
(3.61 ↑)

CBP-KRP
fine-tuned

GoogLeNet
at inception (4e) 2,000 80.13±0.51

(11.45 ↑)
82.08±0.35
(19.20 ↑)

92.61±0.16
(4.33 ↑)

CBP-KRP
fine-tuned

GoogLeNet
at inception (4e) 3,500 80.71±0.06

(10.57 ↑)
83.21±0.22
(17.75 ↑)

92.72±0.20
(3.70 ↑)

CBP-KRP
fine-tuned

GoogLeNet
at inception (4e) 5,000 81.11±0.10

(10.07 ↑)
83.79±0.20
(16.95 ↑)

92.94±0.10
(3.70 ↑)

the closest approximation to the accuracy of full bilinear pooling. Notably, this is
achieved while maintaining much lower total inference times. For instance, using
SqueezeNet and k = 5, 000 on the Raspberry Pi 3 Model B+, the total inference
time with CBP-KRP as the compact bilinear pooling method is 287 ms, while with
TS and RM inference times break the one second mark. In addition, using CBP-KRP
also results in lower inference times when compared with the full bilinear approach.
In fact, CBP-KRP inference times were about half those of full bilinear pooling on
the Pi 3 Model B+, and up to eight times lower on the Pi Zero W. This efficiency
is in part achieved thanks to the sparse nature of the vectors used by CBP-KRP,
which enables using fast sparse matrix multiplication routines for the projection.
This supports our claim that, when considering low computational power devices,
compact bilinear pooling methods can be useful not only to reduce models’ memory
requirements but to achieve lower inference times.

Another important aspect to consider when analyzing these results is the final
model size achieved when using the different methods. As mentioned before, Ta-
ble 5.1 shows some useful figures in this respect. Both CNNs used have a relatively
low initial model size with 4.8 MB for SqueezeNet and 25.7 MB for GoogLeNet. In
our experimental setup, using full bilinear pooling increases model sizes by 200 and
528 MB respectively, as a consequence of the high number of parameters of a linear
classifier trained on 5122 or 8322 features, with 200 classes and a one-vs-all scheme.
This of course is a problem if we want our models to run on devices with as little as
512 MB of main memory, which might also have other running processes competing
for resources. Model size is also a problem when using compact bilinear pooling via
RM, as the parameters needed by RM itself can require an important amount of
memory. For instance, when using SqueezeNet, RM required 19.5 MB of additional
memory, making the final model five times as heavy as the base CNN. Conversely,
compact bilinear pooling via TS and CBP-KRP have a low memory footprint. As
an example, consider the case were we use GoogLeNet. With TS, only 13 KB of
additional memory are required to store its parameters. With CBP-KRP, 406 KB
are required for the same purpose. This difference in the memory requirements of
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TS and CBP-KRP is significant, but has a limited impact in the final model size
given the 25 MBs of the base network and the 3.8 MBs of the linear classifier, which
do not vary depending on whether TS or CBP-KRP are used.

5.4.4 Results with fine-tuning

As explained in Section 5.3.3, one interesting feature of the proposed algorithm is
its compatibility with the back-propagation algorithm, which makes it possible to
include CBP-KRP as an intermediate layer of end-to-end trainable models. In our
experiments so far, we have focused on a simple transfer learning use case where only
the final layer of the model is trained (i.e., the linear SVM), while the weights of the
remaining layers are fixed. However, it is also common, if enough training data is
available, to fine-tune the weights of the entire model by running some iterations of
gradient descent with a low learning rate. Conveniently, the inference-time and size
of the model do not change with this process. Therefore, models can be fine-tuned
on computers with specialized hardware and then deployed in low power devices,
obtaining a potential boost in accuracy with no increase in inference times. In this
section, we show that CBP-KRP is compatible with this fine-tuning approach and
how it can improve the performance with respect to a transfer learning strategy
without fine-tuning.

We adopted a two step fine-tuning procedure similar to the one used in [71]. The
process begins by chopping the pre-trained CNN model, keeping the layers before
the selected cutoff point. After this, CBP-KRP is initialized and appended to the
CNN as a layer in the model14. Then, a softmax layer is added as the final layer of
the model. The first step in the training procedure consist in training this softmax
layer alone, without altering the rest of the weights of the model. Then, with the
model assembled and the final layer already trained, all the weights in the model are
fine-tuned by executing a number of iterations of gradient descent. As explained in
Section 5.3.3, the parameters of CBP-KRP are excluded from this fine-tuning process
in order to preserve their sparsity. For our experiments, we used Adam [60] as the
optimizer, and set the learning rate to 0.001 with a learning rate decay of 0.1. Batch
size was set to 32 and the number of epochs to 20.

Table 5.5 shows the accuracies obtained by applying this approach with both
SqueezeNet and GoogLeNet as the base CNN, and different output dimensions for
CBP-KRP. As we can see, accuracies improved in all cases as a result of fine-tuning.
The improvements in the accuracy ranged from 3.61 to 19.20 points, with the higher
improvements occurring for the GoogLeNet CNN. These results evidence the poten-
tial of fine-tuning models which include compact bilinear pooling as an intermediate
layer, and the compatibility of CBP-KRP with this approach.

14In order to include CBP-KRP as a layer in CNN models, we had to re-implement it using Keras
and Tensorflow primitives.
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Table 5.6: Accuracies obtained by CBP-KRP on the three datasets studied, with SqueezeNet
and GoogLeNet as the base network and using different values for hyperparameters t and s. Hy-
perparameters p and k were fixed to 5000 and 2000 respectively. The best result for each dataset

and base network is stressed in bold.

CBP-KRP Accuracy with SqueezeNet (%) Accuracy with GoogLeNet (%)
Hyperparam. CUB [99] CARS [61] Flowers [78] CUB [99] CARS [61] Flowers [78]

t = 2, s = 50 60.22±0.26 54.15±0.36 80.55±0.30 68.07±0.27 62.26±0.37 88.13±0.21
t = 4, s = 50 59.86±0.38 53.78±0.37 80.22±0.24 67.58±0.32 61.72±0.44 87.88±0.21
t = 6, s = 50 59.66±0.32 53.42±0.36 80.00±0.26 67.37±0.33 61.15±0.40 87.73±0.21
t = 2, s = 100 60.75±0.35 54.30±0.39 80.73±0.26 68.73±0.36 62.88±0.43 88.25±0.20
t = 4, s = 100 60.39±0.35 54.16±0.39 80.57±0.28 68.29±0.34 62.31±0.35 88.19±0.19
t = 6, s = 100 60.15±0.40 54.06±0.35 80.49±0.27 67.88±0.33 61.74±0.44 88.06±0.26
t = 2, s = 200 60.41±0.38 52.65±0.46 80.25±0.34 68.72±0.39 63.21±0.48 88.15±0.28
t = 4, s = 200 60.74±0.33 53.86±0.43 80.60±0.39 68.77±0.41 62.86±0.37 88.30±0.31
t = 6, s = 200 60.63±0.44 54.24±0.36 80.70±0.21 68.55±0.42 62.46±0.36 88.17±0.22
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Figure 5.3: Effect of using different values for the hyperparameter p and the output dimension
k. Experiments are for the Flowers [78] dataset. When exploring different values of p, k was
fixed to 3500. Similarly, p was fixed to 5000 when exploring the effect of k. Embedding times

are for the Raspberry Pi 3 Model B+.

5.4.5 Hyperparameter selection

One possible drawback of the proposed method is that the end-user must specify the
value of a number of hyperparameters, which can be challenging when the underlying
effects of these hyperparameters are not known. This subsection tries to mitigate
this problem by providing a detailed description of the different hyperparameters of
CBP-KRP, and exploring the effect of modifying each of them.

Looking at Algorithm 3, we can see that CBP-KRP has four hyperparameters
whose values must be provided. These are the total number of random vectors
generated (p), their sparsity level (s), the number of vectors summed to form each
projection vector in the feature space (t), and the desired output dimension (k).

The hyperparameter p, which controls the number of unique random vectors
generated by the algorithm, was introduced in Chapter 4 to reduce the computational
cost of the kernelized Random Projection. As explained in Section 5.3.1, instead
of using 2t distinct vectors for each output component, our algorithm generates a
collection with p vectors, and reuses some of them in order to reduce costs. Therefore,
p must be set to be 2tk ≥ p > 2t. Larger values of p reduce the re-usage of vectors,
improving performance at the cost of longer running times. If p is set to 2tk, no vector
repetition will occur at all. Similarly, lower values of p sacrifice some performance
to achieve a faster execution. Therefore, this hyperparameter can be used to control
the performance/efficiency trade-off, without modifying the dimension of the output
representation, which may have further implications. Figure 5.3 illustrates the effect
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in accuracy and execution times of using different values for p. Conveniently, we
can see that the accuracy grows rapidly with p, while as explained in Section 5.3.2
embedding times with CBP-KRP are linear in p.

For is part, k is a common hyperparameter in most kernel approximation methods
which controls the number of features generated to approximate the kernel. There-
fore, the hyperparameter k also defines a trade-off between accuracy and efficiency.
The main difference is that, as opposed to p, k determines the dimensionality of
the resulting descriptors, which might have implications for subsequent steps in the
processing chain (e.g., for the final linear classifier in our case). Again, Figure 5.3
explores this trade-off, showing that the accuracy grows quickly as k increases.

The hyperparameter t determines the number of random vectors summed to form
the projection vectors in the feature space. As explained in Section 5.3, forming the
projection vectors as the sum of t random vectors results in a reduced dependence
among their entries, which as shown in Chapter 4 is key for the distance-preservation
properties of Random Projection. However, the same study revealed that the effect
of t in classification accuracies is limited, and recommended using small values of this
hyperparameter when the generated representations are intended for classification.

Finally, hyperparameter s determines the degree of sparsity of the generated
random vectors. In particular, the entries of these vectors are zero with probability
1 − 1/s. Therefore, using a relatively large s enables us to reduce computational
and storage costs. Furthermore, using projection vectors with a certain degree of
sparsity does not necessary have a negative impact in the classification accuracy, as
sparse Random Projections are known to perform well in practice [70]. Moreover,
sparsity has been shown to be a powerful tool in the context of deep learning, as it
can contribute to mitigate over-fitting [104].

It must be noted, however, that since the projection vectors in the kernel feature
space are built as the sum of t vectors, the sparsity level of the final projection vectors
will also be affected by t, and not only by s. Hence, t and s should be jointly selected.
Table 5.6 shows the accuracies obtained by CBP-KRP on the three datasets stud-
ied, using different values for hyperparameters t and s. Luckily, the results suggest
that the proposed method is fairly robust to the selection of these hyperparameters.
Particularly, the combination used in the comparisons of the previous section, t = 2

and s = 100, resulted in either the best or the second best result in all experiments.
In some cases, a slight improvement in the accuracy was achieved when increasing
the sparsity by setting s = 200 and using t = 4 or t = 6.

5.5 Conclusions and future work

This chapter has built upon the ideas of [43, 72] to propose CBP-KRP, a novel
method to create compact feature descriptors which capture most of the power of
full bilinear pooling descriptors [71]. Following the insights provided by [43], we
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proposed an efficient method to approximate a Random Projection of the full bilinear
descriptor, mostly preserving its discriminative information while greatly reducing
the dimension of the final descriptor. This was achieved by adapting the ideas from
Chapter 4, and exploiting the close relation that exists between the bilinear pooling
operation and the degree-two homogeneous polynomial kernel. We also derived back-
propagation for the proposed algorithm, showing that it can be used as a building
block in end-to-end trainable models.

Our experimental results show that, for three popular fine-grained image cate-
gorization datasets, our method produces the best approximation to the accuracy
of full bilinear pooling, outperforming existing compact bilinear pooling methods.
Moreover, this is achieved while running significantly faster than TS and RM-based
compact bilinear pooling on low computational power devices such as those from
the Raspberry Pi ecosystem, and also faster than full bilinear pooling. In addition,
the number of parameters used by our algorithm is relatively low, solving the mem-
ory issues that emerge when using full bilinear descriptors. As a consequence, our
algorithm could be useful in embedded systems or other low computational power
scenarios where tight computation and memory constraints exist.

Following previous studies on the topic of compact bilinear pooling, we focused
on the case where a single CNN is used to form the bilinear descriptors [43]. However,
extending CBP-KRP to the case where bilinear descriptors are formed as the outer
product of the descriptors extracted by two different CNNs would be an interesting
line for future work, as this could have applications in the domain of multi-modal
problems [42]. In addition, we would like to explore the applicability of our algorithm
in areas such as Internet of Things, Wearable technology or Embedded Systems [4],
where efficient fine-grained image understanding methods could be of great use.
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Chapter 6

Conclusion

As the amount of data generated by humans and devices continues to rise, machine
learning has become an essential tool for data analysis, forecasting and task automa-
tion. Most of the success of modern machine learning models has been thanks to the
availability of massive collections of data from which they learn, and the advances in
hardware which have made it possible to train models with hundreds of millions of
parameters. However, a growing need exists for efficient machine learning solutions,
capable of running in low computational power environments while maintaining the
standards of accuracy and reliability of existing methods.

A notable example of the importance of efficiency and scalability in machine
learning is the case of kernel approximation techniques. As discussed in Chapter 2,
a lot of effort has been put into the development of methods that efficiently approxi-
mate the properties of data in different kernel feature spaces, avoiding the scalability
issues of traditional kernelized classifiers.

This thesis has explored the applicability of the Random Projection method
to approximate the structure of data in the feature spaces of polynomial kernels.
Specifically, the algorithms presented in Chapters 3 and 4 can be used to approxi-
mate a Random Projection from the feature space of a polynomial kernel without
ever working in the feature space in an explicit manner. As opposed to existing
solutions, the methods proposed in this thesis are data-independent, meaning that
they don’t require any knowledge about the distribution of data in order to operate.
As a consequence, their training phase boils down to the initialization of some ran-
dom matrices, which makes our methods more efficient and scalable than alternative
approaches. This data-independence was achieved mainly by focusing on a specific
kernel family, which enabled us to analyze the explicit form of the feature maps
and develop more efficient methods to approximate Random Projections from kernel
feature spaces.

Our experimental results focused on the preservation of pairwise distances from
the kernel feature space down to a low dimensional representation. In addition, we
studied the the classification accuracy obtained by linear classifiers in the result-
ing representations. Generally speaking, experimental results evidenced that the
proposed methods succeed in approximately preserving the structure of data from
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the feature spaces of polynomial kernels, which opens the door to applications in
scenarios where polynomial interactions between features play an important role.
Particularly, in Chapter 5 we explored the applicability of the methods proposed
in the previous chapters to make bilinear deep learning models more efficient. Our
results evidenced that bilinear Convolutional Neural Networks can be accelerated by
applying the ideas presented in Chapter 4, leading to important time and memory
savings when models run in low computational power environments.

In the future, we would like to explore the applicability of the proposed methods
in other domains beyond categorization. While the experiments in this thesis have
focused on the problem of classification, the information present in the feature space
of polynomial kernels may likely be useful in other machine learning and data analysis
tasks such as information retrieval, regression or clustering. Moreover, the ideas
presented in this thesis could be used to accelerate existing machine learning methods
which rely on polynomial kernels or, more generally, on the polynomial interaction
of features.

In closing, Random Projections from polynomial kernel feature spaces have proven
to be an excellent approach for the efficient generation of compact representations
of data which capture the useful information offered by the kernel, thus providing a
powerful tool for the creation of effective and scalable machine learning applications.
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Appendix A

Low-level Algorithmic
Specification of the Proposed
Methods

This appendix contains a low-level description of the algorithms presented in Chap-
ters 4 and 5. While the algorithmic descriptions given in the corresponding chapters
focus on readability and clarity, the pseudo-code descriptions provided here try to
give a self-contained description of how to implement the proposed algorithms in an
efficient manner.

Pseudocode 1 gives an implementation-oriented description of Algorithm 2 (Chap-
ter 4). Similarly, Pseudocode 2 provides the implementation-oriented description of
Algorithm 3 (Chapter 5). In both cases, the main differences between the origi-
nal algorithms’ descriptions and these pseudocodes are (1) the inner products be-
tween the data samples and the projection vectors are pre-computed, and (2) the
subsets/collections of projection vectors S1, . . . , Sk are replaced by a matrix of in-
tegers, which indexes the matrix K of pre-computed inner products. Depending on
the languague and environment selected to implement the algorithms, further im-
plementation tricks might be applied to accelerate computations (e.g., sample-level
parallelism, sparse matrix multiplication routines, etc.)
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Pseudocode 1 Polynomial Kernel Random Projection (PK-RP)
Require: A N × d matrix X representing input data samples, the desired degree g for

the polynomial kernel, the total number of random vectors p, the number t of summed
vectors for the CLT, the desired output dimension k and if using Achlioptas’ distribution
the desired sparsity level s.

Ensure: Returns a N × k matrix representing output samples such that pairwise distances
between these samples are approximately equal to those of input data samples mapped
to the feature space of the homogeneous polynomial kernel of degree g.

1: Initialize a matrix S ∈ Rd×p with entries i.i.d. from N (0, 1)
or with entries independently drawn from {−

√
s, 0,
√
s} with prob. { 1

2s , 1−
1
s ,

1
2s}

2: Generate a matrix of indexes I ∈ Nk×gt where each row
consists of gt distinct random integers from the range [1, p]

3: K ← XS
4: X ′ ← {0}N×k
5: for n = 1, · · · , N do
6: for c = 1, · · · , k do
7: for i = 0, · · · , t− 1 do
8: temp← K[n, I[c, gi+ 1]]
9: for j = 2, · · · , g do

10: temp← temp ·K[n, I[c, gi+ j]]

11: X ′[n, c]← X ′[n, c] + temp

12: X ′ ← 1√
tk
X ′

13: return X ′

Pseudocode 2 Compact Bilinear Pooling via Kernelized Random Projection
Require: Descriptors for some image I at each location: CNN(I, l) for l ∈ L, represented

as a |L| × d matrix X. The total number of random vectors p and their sparsity level s,
the number t of vectors used for the CLT and the desired output dimension k.

Ensure: Returns a k-dimensional vector which approximates a Random Projection of the
full bilinear pooling descriptor.

1: Initialize a matrix S ∈ Rd×p with entries independently drawn
from {−

√
s, 0,
√
s} with prob. { 1

2s , 1−
1
s ,

1
2s} respectively.

2: P = {1, · · · , p} ∪ · · · ∪ {1, · · · , p}︸ ︷︷ ︸
b2tk/pc

∪ {1, · · · , 2tk mod p}, so that |P | = 2tk

3: Shuffle the contents of P and use them to populate a matrix of integers I ∈ Nk×2t

4: K ← XS . Accelerate using sparse matrix multiplication
5: y← (0, · · · , 0) ∈ Rk
6: for l = 1, · · · , |L| do
7: for c = 1, · · · , k do
8: for i = 0, · · · , t− 1 do
9: y[c]← y[c] +K[l, I[c, 2i+ 1]] ·K[l, I[c, 2i+ 2]]

10: y = 1√
tk

y
11: return y
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Appendix B

Back-propagation for CBP-KRP

This appendix contains the details for the derivation of back-propagation for the
CBP-KRP algorithm, considered as a layer inside an end-to-end trainable model.
The CBP-KRP algorithm takes the descriptors CNN(I, l) for each l ∈ L as the
input, and computes a k-dimensional vector y as the output. Each component of
the output vector y is computed based on a collection of randomly initialized and
fixed vectors r1, · · · , r2t, applying the following formula:

yc =
1√
tk

∑
l∈L

t−1∑
i=0

〈CNN(I, l), r2i+1〉 〈CNN(I, l), r2i+2〉 . (B.1)

First, we find the partial derivative of the output features that form y with
respect to the inputs of the algorithm. For the sake of simplicity, we will denote the
descriptor CNN(I, l) of location l as xl ∈ Rd. Therefore, we are interested in the
following derivative:

∂yc
∂xl

=
∂

∂xl

1√
tk

t−1∑
i=0

〈xl, r2i+1〉 〈xl, r2i+2〉 (B.2)

=
1√
tk

t−1∑
i=0

∂

∂xl
〈xl, r2i+1〉 〈xl, r2i+2〉 . (B.3)

Note that the summation over locations in L disappears from the expression of yc
when taking the derivative with respect to the descriptor from a particular location
l, since only one term in the summation is a function of xl. The second line follows
from the linearity of differentiation.

Now, let us consider three arbitrary d-dimensional vectors v(1),v(2),v(3). Given
the product of inner products 〈v(1),v(2)〉〈v(1),v(3)〉, we calculate its derivative with
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respect to the entry at position m of vector v(1):

∂

∂v
(1)
m

〈
v(1),v(2)

〉〈
v(1),v(3)

〉
(B.4)

=
∂

∂v
(1)
m

(
v
(1)
1 v

(2)
1 + · · ·+ v

(1)
d v

(2)
d

)
·
(
v
(1)
1 v

(3)
1 + · · ·+ v

(1)
d v

(3)
d

)
= v(2)

m ·
(
v
(1)
1 v

(3)
1 + · · ·+ v

(1)
d v

(3)
d

)
+ v(3)

m ·
(
v
(1)
1 v

(2)
1 + · · ·+ v

(1)
d v

(2)
d

)
= v(2)

m

〈
v(1),v(3)

〉
+ v(3)

m

〈
v(1),v(2)

〉
.

From this, it is easy to compute the partial derivative of 〈v(1),v(2)〉〈v(1),v(3)〉 with
respect to v(1), which of course is a d-dimensional vector:

∂

∂v(1)

〈
v(1),v(2)

〉〈
v(1),v(3)

〉
= v(2)

〈
v(1),v(3)

〉
+ v(3)

〈
v(1),v(2)

〉
. (B.5)

The formula we just derived can be conveniently used to complete the derivation of
(B.3) as follows:

∂yc
∂xl

=
1√
tk

t−1∑
i=0

(
r2i+1 〈xl, r2i+2〉+ r2i+2 〈xl, r2i+1〉

)
. (B.6)

Now that we have the derivative of each output value of our algorithm with
respect to the inputs, we can use the chain rule to obtain the partial derivative of
the final loss function of the entire model with respect to our algorithm’s inputs,
which enables the propagation of the gradient through it. Formally, let L be the loss
function of the model. Then the partial derivative of this loss with respect to one of
the input descriptors is:

∂L

∂xl
=

k∑
c=1

∂L

∂yc

∂yc
∂xl

. (B.7)

Finally, as explained in Chapter 5, CBP-KRP uses a set S containing p unique
vectors which is sampled to form the collections S1, · · · , Sk that contain the vectors
used to compute each of the k output features of y. Taking this into consideration,
(B.6) can be rewritten as:

∂yc
∂xl

=
1√
tk

t−1∑
i=0

(
〈xl, Sc[2i+1]〉Sc[2i+2] + 〈xl, Sc[2i+2]〉Sc[2i+1]

)
,

which together with (B.7) completes the derivation of the back-propagation rules for
CBP-KRP.

It is also possible to calculate the derivative of the loss function with respect to
the vectors in the set S, to update them as part of the training of the model. How-
ever, this is not recommend because (1) this would make them dense, as opposed
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to their initial sparse nature which enables important computational and memory
savings; and (2) it would alter the distribution of the resulting projection vectors in
the feature space, so we would not be approximating a Random Projection anymore.
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Appendix C

Thesis Summary in Spanish

Este anexo recoge la traducción al Español del título, resumen, agradecimientos,
índice, introducción y conclusiones del trabajo de tesis doctoral “Low Compu-
tational Cost Machine Learning: Random Projections and Polynomial Kernels”, de
Daniel López Sánchez, así como un resumen significativo de los capítulos restantes.
El trabajo original, escrito en inglés, describe los resultados de forma más detallada.

Fdo. Juan M. Corchado Rodríguez Fdo. Angélica González Arrieta

Fecha: Fecha:

Fdo. Daniel López Sánchez

Fecha:
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Resumen

Aprendizaje automático de bajo coste computacional:
proyecciones aleatorias y kernels polinómicos

por Daniel López Sánchez

Según estudios recientes, el volumen de datos creados, capturados y replicados glo-
balmente durante el año 2018 fue de 33 Zettabytes (ZB), y se espera que alcance
175 ZB para el año 2025. Manejar este impresionante crecimiento en el volumen y
variedad de los datos representa un gran reto, pero también supone una valiosa opor-
tunidad para que las organizaciones den soporte a sus procesos de toma de decisiones
mediante el conocimiento extraído de enormes colecciones de datos, y automaticen
tareas obteniendo importantes ahorros. En este contexto, el campo del aprendizaje
automático ha atraído un notable nivel de atención, y los avances recientes en el
campo han permitido crear modelos predictivos con una precisión sin precedentes.
Sin embargo, con la emergencia de nuevos paradigmas de computación, el campo
del aprendizaje automático debe afrontar el reto de crear modelos más eficientes,
capaces de funcionar en entornos con una baja potencia de cómputo, mantenien-
do al mismo tiempo un nivel alto de precisión. Esta tesis se centra en el diseño y
evaluación de nuevos algoritmos para la generación de representaciones de datos úti-
les, con especial atención a la escalabilidad y eficiencia de los métodos propuestos.
En particular, los métodos propuestos hacen un uso intensivo de la aleatorización
con el fin de mapear las muestras de datos al espacio de características de kernels
polinómicos, para luego condensar la información útil presente en esos espacios de
características a una representación compacta. Los diseños algorítmicos resultantes
son fáciles de implementar, y requieren solo una baja potencia de cómputo para ser
ejecutados. Como consecuencia, están perfectamente adaptados para ser aplicados
en entornos donde los recursos computacionales son escasos, y los datos deben ser
analizados con muy poco margen de tiempo. En particular, las dos contribuciones
principales de esta tesis son: (1) se presentan y evalúan algoritmos eficientes para
realizar Proyecciones Aleatorias desde los espacios de características de kernels po-
linómicos de diferente grado y (2) se demuestra la aplicabilidad de estas técnicas
para acelerar tareas de aprendizaje automático donde la interacción polinómica de
las características es importante, centrándonos en el caso particular de los métodos
bilineales en el aprendizaje profundo.
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Capítulo 1

Introducción

Aunque existen discrepancias en las estimaciones, todas las fuentes están de acuerdo
en que el fenómeno del Big Data1 sigue creciendo. A finales de 2018, la global Da-
tasphere, que se compone de todos los datos creados, capturados y replicados, tenía
un volumen de 33 Zettabytes (ZB). De hecho, las proyecciones indican que crecerá
hasta los 175 ZB para el año 2025 [85]. Además de este impresionante crecimien-
to, el fenómeno del Big Data ha permeado las más diversas esferas de la actividad
humana. Por ejemplo, un estudio reciente estimó que, cada minuto, los usuarios de
Internet publican 473.400 tweets, solicitan 1.389 viajes en Uber, realizan 3.877.130
búsquedas en Google, suben 400 horas de vídeo a Youtube y originan 6.940 coin-
cidencias en Tinder. Esto ejemplifica cómo el fenómeno del Big Data no solo ha
crecido de forma sostenida, sino que se encuentra ya presente en casi todas las fa-
cetas de nuestra vida cotidiana. Además de la información generada como resultado
de la interacción directa de los seres humanos con diversos sistemas digitales, una
fracción importante del flujo de información actual se debe a los cientos de miles de
dispositivos del Internet of Things (IoT) conectados a la red. De hecho, se espera
que estos dispositivos generen 90 ZB de información en 2025 [85].

Este enorme crecimiento en el volumen y variedad de los datos supone un reto
crítico para las compañías, organizaciones y gobiernos de todo el mundo, pero al
mismo tiempo representa una gran oportunidad para que estos encuentren valor en
sus datos. Una estrategia efectiva de recolección, almacenamiento y procesamien-
to de datos puede proporcionar a las organizaciones una herramienta crucial para
apoyar sus procesos de toma de decisiones, permitiéndoles reducir costes, identificar
necesidades de los consumidores, mejorar sus servicios y alcanzar nuevos mercados.
Además, la abundancia de datos ha permitido a los científicos crear modelos predic-
tivos cada vez más complejos, capaces de automatizar un amplio rango de tareas,
igualando y a menudo superando el desempeño humano.

En este contexto, es fácil entender por qué la extracción de conocimiento a partir
de los datos en bruto se ha convertido en un tema de investigación candente en los

1De acuerdo con el Gartner’s IT Glossary, el Big Data consiste en “activos de información
de alto volumen, velocidad o variedad, que requieren formas de procesamiento de la información
eficientes e innovadoras que habiliten una mejor extracción de conocimiento, toma de decisiones y
automatización de procesos.”
URL: https://www.gartner.com/it-glossary/big-data (Fecha de acceso: 24/04/2019).
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últimos años, a medida que los científicos han competido para descubrir nuevos y
mejores métodos para analizar grandes volúmenes de información. En el centro de
esta revolución tecnológica reside el campo del aprendizaje automático, donde los
avances recientes han hecho que los modelos predictivos se vuelvan más efectivos
que nunca. En particular, el volumen de datos en continuo crecimiento junto con los
avances en el diseño de los algoritmos y el uso de hardware especializado, han dado
lugar a la proliferación de modelos predictivos cada vez más precisos tales como los
del paradigma del aprendizaje profundo.

De hecho, la mayoría de los servicios digitales que usamos a diario dependen de
algún tipo de modelo de aprendizaje automático, y como hemos visto, estos provee-
dores de servicios a menudo deben dar respuesta a miles de peticiones por segundo.
Por tanto, no es ninguna sorpresa que de entre los retos afrontados actualmente por
la comunidad del aprendizaje automático, la escalabilidad y eficiencia de los algorit-
mos jueguen un papel crucial en la revolución tecnológica del Big Data. Además, la
emergencia y posterior popularización de nuevos paradigmas de computación tales
como el Internet of Things también han contribuido a dirigir el interés de los investi-
gadores hacia modelos de aprendizaje automático capaces de ejecutarse en entornos
con escasos recursos computacionales, manteniendo al mismo tiempo tiempos de
inferencia bajos.

Esta tesis se centra en el diseño y evaluación de nuevos algoritmos para la genera-
ción de representaciones útiles para los datos, con especial atención a la escalabilidad
y eficiencia de las soluciones propuestas. En particular, los métodos propuestos ha-
cen un uso intensivo de la aleatorización para mapear las muestras de datos a una
representación más rica, de mayor información discriminativa, y después condensar
esta información útil en una representación compacta. Los diseños experimentales
resultantes son fáciles de implementar y requieren pocos recursos computacionales
para ser ejecutados. Como consecuencia, están perfectamente preparados para ser
aplicados en entornos donde los recursos computacionales son escasos, y los datos
deben ser analizados en tiempo real o con un retardo pequeño.

Antes de profundizar en los métodos propuestos, presentamos algunos aspectos
fundamentales relacionados con esta tesis y revisamos los avances más recientes en
la intersección de las Proyecciones Aleatorias y las funciones de kernel. Las con-
tribuciones principales de este trabajo se presentan en los Capítulos 3, 4 y 5, que
detallan nuevos diseños algorítmicos para capturar la información descriptiva de
ciertas funciones de kernel en una representación de baja dimensión. En particular:

En el Capítulo 3, presentamos un método eficiente para aproximar una Pro-
yección aleatoria desde el espacio de características del kernel polinómico de
grado dos. Las representaciones de datos resultantes preservan de forma apro-
ximada la estructura de los datos en ese espacio de características, lo que nos
permite resolver problemas de aprendizaje de forma eficiente. En particular,
esto se logra usando clasificadores lineales sobre la versión proyectada de los
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datos, garantizando así la eficiencia del proceso al tiempo que mejora la ta-
sa de acierto, gracias a la información discriminativa extraída del espacio de
características del kernel. Al contrario que otros enfoques para la realización
de Proyecciones Aleatorias en espacios de características de kernels, nuestro
método es independiente de los datos, lo que significa que no necesita ningún
conocimiento previo sobre la distribución de las muestras de datos que serán
procesadas en la fase de test. Presentamos resultados experimentales sobre la
preservación de distancias y la tasa de acierto de clasificación de clasificadores
lineales entrenados en las representaciones de salida, evidenciando que el mé-
todo propuesto supera a los métodos existentes en la mayoría de casos, siendo
además notablemente más rápido.

El Capítulo 4 desarrolla y completa las ideas presentadas en el Capítulo 3
para mejorar la generalizad, eficiencia y efectividad del método propuesto.
Particularmente, se presenta un nuevo método que es capaz de aproximar una
Proyección aleatoria desde el espacio de características de kernels polinómicos
de grado mayor que dos. Además, un nuevo método para generar los vectores
de proyección en el espacio de características del kernel nos permite reducir el
coste computacional de nuestro algoritmo al tiempo que mejoramos su eficacia.
De nuevo, los resultados experimentales dan soporte a nuestra tesis de que el
método propuesto es capaz de condensar la estructura de los datos en el espacio
de características del kernel, preservando aproximadamente las distancias entre
las muestras y mejorando la tasa de acierto de los clasificadores lineales.

Finalmente, el Capítulo 5 explora la conexión entre la versión kernelizada del
algoritmo de Proyección aleatoria presentada en el Capítulo 4 y la popular
arquitectura de las bilinear Convolutional Neural Networks (CNN), caracteri-
zadas por el uso de la operación conocida como bilinear pooling. Si bien las
redes de tipo bilinear CNN se encuentran entre los métodos más efectivos y
populares para el reconocimiento de imágenes de grado fino, la dimensiona-
lidad de los descriptores generados por estas redes suponen una limitación
importante para estos modelos, consistiendo a menudo en varios cientos de
miles de características. El Capítulo 5 presenta un nuevo método para reducir
la dimensión de los descriptores de tipo bilinear pooling de forma eficiente,
mediante la realización de una Proyección aleatoria. Convenientemente, esto
se logra sin necesidad de computar el descriptor de alta dimensión de forma
explícita. Nuestros resultados evidencian que este enfoque supera los enfoques
conocidos como compact bilinear pooling en la mayoría de los casos, ejecután-
dose en menor tiempo en dispositivos de baja potencia de cómputo, donde
estas extensiones eficientes del bilinear pooling son más necesarias.

El Capítulo 6 cierra esta tesis, resumiendo las contribuciones principales de la
misma, así como los principales resultados obtenidos en los capítulos anteriores.
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Capítulo 2

Fundamentos

Este capítulo introduce los conceptos y técnicas fundamentales que serán relevan-
tes para los siguientes capítulos. En primer lugar, se describe el algoritmo Random
Projection, un método de reducción de dimensionalidad muy popular y de una gran
eficiencia que garantiza una baja distorsión en las distancias entre las muestras de
datos. En segundo lugar, se enumeran algunas de las propiedades más importantes
de las funciones de kernel, con especial atención a los kernels polinómicos. Des-
pués, se dibuja una conexión entre el algoritmo Random Projection y las funciones
de kernel, revisando los algoritmos existentes para la realización de proyecciones
aleatorias desde los espacios de características de diversas funciones de kernel. Fi-
nalmente, se repasan las propiedades de bilinear pooling, una técnica diseñada para
mejorar el desempeño de las redes neuronales convolucionales en tareas de clasifica-
ción de grano fino. Como veremos, esta técnica está íntimamente conectada con el
kernel polinómico de grado dos. Tal conexión nos permitirá más adelante adaptar los
métodos presentados en los Capítulos 3 y 4, haciendo que la aplicación de bilinear
pooling sea mucho más eficiente.

2.1. El algoritmo Random Projection

El algoritmo Random Projection (RP) es un método simple pero efectivo, y muy
utilizado para la reducción de dimensionalidad lineal. Al igual que cualquier otro
método de reducción de dimensionalidad lineal, Random Projection reduce la di-
mensión de las muestras aplicándoles una transformación lineal, de forma que cada
componente de salida se computa como una combinación lineal de las características
originales. Sin embargo, la mayor diferencia con métodos alternativos es que Random
Projection genera la matriz de proyección a partir de una distribución aleatoria. Por
tanto, a diferencia de otros métodos de reducción de dimensionalidad que requieren
acceso a datos de entrenamiento para generar una matriz de proyección apropiada,
Random Projection es un método independiente de los datos, dado que no necesita
información sobre la distribución de los mismos para generar la matriz de proyección.
Sorprendentemente, si se usa una distribución apropiada para generar las entradas de
la matriz de proyección, la estructura de los datos será aproximadamente preservada
en la representación resultante.
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A pesar de su simplicidad, Random Projection tiene una sólida fundamenta-
ción teórica. El resultado teórico más importante que subyace a RP es el lema de
Johnson–Lindenstrauss (JL) [54], que garantiza que N puntos en un espacio de
alta dimensionalidad pueden ser proyectados a un espacio de mucha menor dimen-
sionalidad de tal forma que las distancias entre los puntos sean aproximadamente
preservadas.

Las variantes originales de este algoritmo realizaban una proyección sobre un
subespacio aleatorio de dimensión k, por lo que la proyección aleatoria tomaba la
forma de una proyección sobre k vectores ortonormales aleatorios [41]. En versiones
posteriores, la proyección de las muestras tiene lugar por medio de una matriz de
proyección de dimensión d×k, cuyas entradas se seleccionan de forma independiente
a partir de una distribución normal estándar [52, 8].

Sin embargo, estudios más recientes han mostrado que la matriz de proyección
puede ser generada a partir de una distribución mucho más simple. En particu-
lar, Achlioptas demostró que si la matriz de proyección se genera a partir de una
distribución discreta y dispersa apropiada, el lema de Johnson–Lindenstrauss será
igualmente satisfecho [2].

Convenientemente, usar la distribución propuesta por Achlioptas reduce el coste
computacional de la proyección. Si la multiplicación por

√
s presente en la distribu-

ción propuesta por Achlioptas se retrasa, es posible evaluar la proyección haciendo
uso únicamente de sumas y restas (y no multiplicaciones) lo que permite implemen-
tar esta operación de forma sencilla en entornos de bases de datos, usando primitivas
SQL. Además, la naturaleza dispersa de la distribución de Achlioptas permite aho-
rros computacionales adicionales, ya que permite controlar la fracción de entradas
de la matriz de proyección que valen cero. Convenientemente, estudios posteriores
sugieren que se puede usar una matriz de proyección altamente dispersa, con un
bajo coste en términos de efectividad [70].

A lo largo de los años, numerosos estudios han demostrado que el fenómeno
descrito por el lema de Johnson–Lindenstrauss es bastante robusto, ya que numerosas
distribuciones para la matriz de proyección pueden dar lugar a una preservación
aproximada de las distancias entre los puntos una vez estos son proyectados [2, 8,
75]. Sin embargo, el elemento crucial presente en todas estas versiones de Random
Projection es que las entradas de la matriz de proyección deben ser seleccionadas de
forma independiente.

2.2. Funciones de kernel y el kernel trick

Intuitivamente, las funciones de kernel nos permiten evaluar de forma eficiente un
producto interno tras mapear las muestras a un espacio de características diferente.
Este espacio de características alternativo asociado a la función de kernel se conoce
como el feature space del kernel, y la función que mapea las muestras de entrada
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a este espacio se denomina feature map. Es importante señalar que pueden existir
varios feature spaces y feature maps válidos para una misma función de kernel. Por
otro lado, una característica interesante de las funciones de kernel es que las mismas
pueden ser usadas para calcular distancias entre muestras en el feature space, sin
necesidad de trabajar en el mismo de forma explícita.

Además de su importancia en la literatura matemática, las funciones de kernel
han recibido una gran atención por parte de la comunidad del aprendizaje auto-
mático, principalmente por estar íntimamente relacionadas con algunas forma de
clasificación no lineal. En particular, un gran número de clasificadores no lineales se
caracterizan por transformar las muestras por medio de un feature map no lineal,
tras el cual se aplica un clasificador lineal tradicional. Sin embargo, esto suele ser
computacionalmente muy costoso dada la alta dimensionalidad de las representacio-
nes generadas por el feature map.

Para resolver este problema, un enfoque común consiste en forzar que el vector
de pesos del clasificador lineal final sea una combinación lineal de la versión mapeada
de las muestras de entrenamiento [13, 30, 87]. Afortunadamente, existen resultados
teóricos que garantizan que, bajo condiciones razonables, el vector de pesos óptimo
admite una representación de esta forma [7]. Además, esta restricción permite re-
escribir la función de decisión de los clasificadores evitando cualquier evaluación
explícita del feature map, usando la función de kernel en su lugar. Sin embargo, este
enfoque conocido como el kernel trick introduce problemas de escalabilidad tanto
en fase de entrenamiento como de test. Esta falta de escalabilidad de los algoritmos
que usan funciones de kernel ha motivado a los científicos para buscar formas más
eficientes de combinar la eficacia discriminativa de las funciones de kernel con la
escalabilidad de los clasificadores lineales.

2.3. Kernels polinómicos

Los kernels polinómicos son una popular familia de funciones de kernel no estaciona-
rias [46], con un gran poder de discriminación y de gran aplicabilidad [21, 105, 23].
De forma intuitiva, las funciones de kernel polinómicas computan productos internos
en el espacio de características formado por todos los posibles monomios de grado
g sobre las características originales [49]. Estas interacciones polinómicas entre las
características originales resultan a menudo de gran utilidad para resolver proble-
mas de clasificación no linealmente separables en el espacio original. A diferencia de
otras funciones de kernel populares, los kernels polinómicos tienen un feature space
asociado de dimensión finita, que puede ser fácilmente determinado una vez que se
fija el grado y constante del kernel.

Dado que los feature spaces de los kernels polinómicos son de dimensión fini-
ta, algunos estudios han explorado la posibilidad de operar de forma explícita en
ellos [21], aprovechando la naturaleza dispersa de algunos datasets para reducir los
costes computacionales. Sin embargo, la dimensión de las muestras mapeadas crece
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de forma exponencial con el grado del kernel polinómico. Como consecuencia, un
algoritmo que opere en el feature space de forma explícita se volverá rápidamente
intratable a medida que crezca la dimensión original de las muestras o el grado del
kernel polinómico seleccionado.

2.4. Proyecciones aleatorias desde feature spaces de fun-
ciones de kernel

Como hemos visto, los clasificadores que usan el kernel trick obtienen una mayor
capacidad discriminativa, trabajando de forma implícita en el feature space de al-
gún kernel. Sin embargo, el uso del kernel trick compromete la escalabilidad de los
clasificadores resultantes tanto en términos de su tiempo de entrenamiento como de
inferencia [109, 14]. Esto ha motivado a los investigadores para diseñar nuevos méto-
dos que combinen el poder discriminativo de las funciones de kernel con la eficiencia
de los clasificadores lineales. Un enfoque frecuente es el de diseñar un algoritmo de
mapeo de características que de alguna forma capture la estructura de los datos en
el espacio de características de algún kernel, al tiempo que genere una representa-
ción de salida de dimensión relativamente reducida [110, 5, 82, 69, 58, 97, 103]. Esta
representación reducida es usada para entrenar clasificadores lineales, que consiguen
así aproximar la eficacia de sus versiones no lineales. Cuando se diseñan algoritmos
de este tipo, se suelen buscar las propiedades de eficiencia, independencia de datos
y independencia del kernel.

Dado que el objetivo de estos algoritmos de mapeo de características es preservar
las propiedades de los datos al tiempo que estos se transforman a una representación
de menor dimensionalidad, una opción natural es considerar el uso del algoritmo
Random Projection. En algunos de los trabajos más tempranos sobre este tema, los
autores notaron que si un problema de clasificación es linealmente separable con un
amplio margen en el espacio de características de un kernel, una proyección aleatoria
desde el mismo preservaría la separabilidad de los datos [11, 9]. Sin embargo, en
estos estudios quedó demostrado que no es posible realizar una proyección aleatoria
a través del uso de una función de kernel arbitraria, salvo que también se permita
acceso a la distribución de los datos. Esta posibilidad quedó sin embargo abierta
para funciones de kernel específicas.

Más recientemente Alavi et al. [5, 110] propusieron Kernelized Gaussian Random
Projection (KG-RP), un método general para realizar proyecciones aleatorias desde
los feature spaces de funciones de kernel arbitrarias. Sus hallazgos no contradijeron
los resultados descritos con anterioridad ya que, en efecto, su método requiere de
acceso a la distribución de los datos por medio de un número de muestras de entre-
namiento. Esto hace que el método sea dependiente de los datos, y que su fase de
entrenamiento sea más costosa y menos sencilla que el el caso del algoritmo Random
Projection original.
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En este contexto, donde las versiones kernelizadas de Random Projection son
dependientes de datos y computacionalmente costosas, esta tesis se centra en el
desarrollo de nuevos algoritmos independientes de datos para la computación efi-
ciente de proyecciones aleatorias desde los feature spaces de kernels polinómicos.
Siguiendo la intuición proporcionada en [11, 9], nos centraremos en una familia de
kernels específica para preservar la eficiencia e independencia de datos del algoritmo
Random Projection original.

2.5. Redes neuronales convolucionales bilineales

Como hemos visto, la realización de proyecciones aleatorias desde los espacios de
características de kernels ha emergido recientemente como una prometedora alter-
nativa a la pobre escalabilidad de los clasificadores kernelizados tradicionales. Un
ejemplo de cómo este enfoque puede resultar de interés es el de los modelos que
usan bilinear pooling, que como veremos más adelante está íntimamente conectado
con los kernels polinómicos. En esencia, bilinear pooling es un método diseñado para
aumenta la tasa de acierto de los modelos de clasificación en tareas de reconoci-
miento visual de grano fino [26, 37, 95, 6, 91]. Este aumento en la tasa de acierto se
logra calculando el producto de Kronecker de los vectores de características locales
extraídos por dos modelos, agrupando después los vectores resultantes para obtener
un descriptor global. Las Redes Neuronales Convolucionales (CNNs) que usan esta
técnica suelen conocerse como CNNs bilineales [71]. El Capítulo 5 profundiza en
cómo los algoritmos de proyección aleatoria para kernels polinómicos presentados en
esta tesis pueden también utilizarse para hacer que los modelos que usan bilinear
pooling sean más eficientes.





115

Capítulo 3

Proyecciones aleatorias desde el
feature space del kernel
polinómico de grado dos

Realizar una proyección aleatoria desde el feature space asociado a una función de
kernel puede ser de utilidad por dos motivos principales: (1) Como consecuencia
del lema de Johnson-Linden- strauss, la representación de baja dimensión resultante
preservará gran parte de la estructura de los datos en el feature space del kernel y (2)
un clasificador lineal eficiente entrenado sobre los datos proyectados puede aproxi-
mar la tasa de acierto de los clasificadores no lineales. En este capítulo, presentamos
un nuevo método para aproximar proyecciones aleatorias desde el feature space del
kernel polinómico de grado dos. Al contrario que otros enfoques de proyección aleato-
ria para kernels, nuestro método se centra en una familia de kernels particular para
preservar las ventajas del algoritmo Random Projection original, tales como su in-
dependencia de los datos y su eficiencia. Los resultados experimentales presentados
en este capítulo evidencian que el método propuesto consigue aproximar de forma
eficiente la eficacia de una proyección aleatoria desde el feature space del kernel,
preservando las distancias entre las muestras y permitiendo un incremento en las
tasas de acierto de los clasificadores lineales.

Los contenidos de este capítulo son una adaptación del artículo de revista: Da-
niel López-Sánchez, Juan Manuel Corchado and Angélica González Arrieta. “Data-
independent Random Projections from the feature-map of the Homogeneous Polyno-
mial Kernel of degree two”. In: Information Sciences 436-437C (2018), pp. 214-226.

3.1. Resumen del capítulo

Este capítulo presenta un nuevo algoritmo que permite aproximar de manera efi-
ciente una proyección aleatoria de nuestros datos desde el feature space del kernel
polinómico homogéneo de grado dos. De forma intuitiva, nuestro algoritmo se basa
en la idea de reemplazar los productos escalares que aparecen en la multiplicación
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de matrices del algoritmo Random Projection original por evaluaciones de la función
de kernel. Esto equivale a mapear las muestras de datos y las columnas de la matriz
de proyección al feature space del kernel, para calcular el producto escalar de las
mismas en este espacio. Sin embargo, en general esto no es equivalente a realizar
una proyección aleatoria desde el feature space de forma explícita, dado que no po-
demos garantizar que la distribución de los vectores de proyección (las columnas de
la matriz de proyección) sea preservada tras es mapeo al feature space. Elegir una
función de kernel particular nos permitirá estudiar como afecta este paso al feature
space de los vectores de proyección, tomando las medidas necesarias para garantizar
que el resultado es un set de vectores de proyección con la distribución apropiada
para el algoritmo Random Projection.

En primer lugar, analizamos qué sucede con las entradas de los vectores de pro-
yección cuando estos son transformados por el feature map del kernel polinómico
homogéneo de grado dos. Gracias a las propiedades de este kernel, resulta posi-
ble diseñar una distribución para los vectores de proyección tal que, cuando estos
son transformados por el feature map, la mayoría de sus entradas presentan una
distribución apropiada para el algoritmo Random Projection, al menos cuando las
analizamos de forma individual. Esto nos permite proponer un primer método ex-
tremadamente simple para aproximar la proyección aleatoria desde el feature space
del kernel, que implica reemplazar los productos escalares en Random Projection
por evaluaciones de la función de kernel, y el uso de una distribución especial para
la matriz de proyección.

Aunque este primer enfoque resulta conveniente por su extrema sencillez, produce
resultados significativamente inferiores a los de una proyección aleatoria explícita
desde el feature space. Nuestros análisis muestran que esto se debe a que, aunque
las entradas de los vectores de proyección mapeados al feature space siguen una
distribución apropiada cuando se analizan individualmente, no respetan en requisito
de ser estadísticamente independientes entre sí, lo que afecta negativamente a la
eficacia del algoritmo. Para solucionar este problema, se propone generar los vectores
de proyección en el feature space como la suma de t vectores independientes. De esta
forma, el Teorema del Límite Central (CLT) [57] nos permite asegurar que para
un valor de t lo suficientemente grande, las entradas de estos vectores seguirán
una distribución normal, que está entre las distribuciones válidas para la matriz de
proyección de Random Projection. Además, el uso de este enfoque consigue reducir
la dependencia entre las entradas de los vectores de proyección, lo que permite una
mejora en la eficacia de nuestro algoritmo en términos de su capacidad para preservar
las distancias entre las muestras tras la proyección.

En cuanto a la complejidad computacional del método propuesto, el análisis
presentado en este capítulo muestra que es de O(tdk) para el entrenamiento o ini-
cialización y de O(Ndk) para transformar o proyectar N muestras, donde t es un
hiperparámetro del algoritmo, d es la dimensión de las muestras y k es la dimensión
del espacio de salida. Esto quiere decir que la escalabilidad del método propuesto
en el número de muestras a transformar, su dimensión y la dimensión de salida es
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similar a la del algoritmo Random Projection original, a diferencia de las versiones
existentes de Random Projection para kernels que necesitan de costosas fases de
entrenamiento para las que requieren acceso a la distribución de los datos.

En cuanto a los resultados experimentales, estos se centran en la capacidad del
algoritmo propuesto de preservar las distancias entre las muestras de datos en el
feature space del kernel. Se compara la eficacia del método propuesto con los algo-
ritmos existentes para la realización de proyecciones aleatorias desde feature spaces
de kernels, así como con el desempeño del algoritmo Random Projection original
aplicado sobre las muestras de datos tras ser mapeadas de forma explícita al feature
space del kernel. Además de la preservación de las distancias, nuestros resultados
miden el tiempo de ejecución medio de los distintos algoritmos, tanto en su fase
de inicialización o entrenamiento como en la de proyección de muestras. Para los
experimentos, se usan tres datasets públicos: CIFAR-10, un dataset de imágenes de
tamaño 32×32 distribuidas en diez categorías; ISOLET, un dataset donde las mues-
tras consisten en características sonoras extraídas de la pronunciación de las letras
del alfabeto por diferentes individuos; y STL-10, similar en naturaleza a CIFAR-10
pero con imágenes de mucho mayor tamaño.

En general, los resultados muestran que el método propuesto en este capítulo
es la mejor alternativa, al proporcionar una buena aproximación de las propiedades
del algoritmo Random Projection al tiempo que permite mantener unos tiempos de
ejecución muy bajos. Por el contrario, los enfoques alternativos requieren de tiempos
de ejecución mucho mayores, o resultan en una peor preservación de las distancias
entre las muestras.

Además de los resultados sobre la preservación de distancias entre las muestras,
estudiamos la tasa de acierto obtenida por clasificadores lineales sobre las repre-
sentaciones resultantes de aplicar los distintos algoritmos. Como ya se ha visto, una
proyección aleatoria desde el espacio de características de un kernel debería capturar
la información discriminativa presente en este, permitiendo una mejora en las tasas
de acierto de los clasificadores lineales, sin incurrir en los problemas de escalabilidad
de los clasificadores de kernel tradicionales. Para este conjunto de experimentos,
reproducimos el protocolo experimental de Chang et al. [21], añadiendo a la compa-
rativa nuestro enfoque basado en la aproximación de una proyección aleatoria desde
el feature space. Los resultados indican que nuestro método obtiene la mejor aproxi-
mación de la tasa de acierto de los clasificadores no lineales en varios de los datasets,
a pesar de ser notablemente más eficiente, y mantener la independencia de datos del
algoritmo Random Projection original.

En definitiva, los resultados experimentales confirman que el método propuesto
consigue aproximar de forma eficiente las propiedades de una proyección aleatoria
desde el feature space del kernel polinómico homogéneo de grado dos. Posiblemente,
la mayor limitación de este enfoque sea su rigidez, al estar diseñado para trabajar
de forma exclusiva con esta función de kernel. Sin embargo, la gran aplicabilidad
y popularidad de esta función de kernel justifica el interés de nuestra propuesta.
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Además, las ideas presentadas en este capítulo sirven como base para proponer
métodos más eficientes y de aplicabilidad más general en los siguientes capítulos.
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Capítulo 4

Proyecciones aleatorias desde
los feature spaces de kernels
polinómicos de grado arbitrario

Los resultados presentados en el capítulo anterior han mostrado que es posible aproxi-
mar una proyección aleatoria desde el featrue space del kernel polinómico homogéneo
de grado dos de una forma eficiente e independiente de los datos. En las siguientes
páginas, desarrollamos las ideas del Capítulo 3 para mejorar la generalidad, eficien-
cia y eficacia de nuestro enfoque para las proyecciones aleatorias con kernels. En
particular, presentamos un nuevo método para realizar proyecciones aleatorias desde
los espacios de características de kernels polinómicos de grado arbitrario. Los nu-
merosos resultados experimentales presentados en este capítulo muestran que este
nuevo algoritmo supera a los métodos alternativos en términos de su capacidad para
preservar las distancias entre las muestras, además de ser más eficiente. Adicio-
nalmente, los resultados muestran que el método propuesto puede ser usado para
mejorar la tasa de acierto de los clasificadores lineales, aproximando en algunos ca-
sos la eficacia de los clasificadores que usan el kernel trick.

Los contenidos de este capítulo son una adaptación del artículo de revista: Daniel
López-Sánchez, Angélica González Arrieta and Juan M. Corchado. “Data indepen-
dent Random Projections from the feature-space of the Homogeneous Polynomial
Kernel”. In: Pattern Recognition (2018).

4.1. Resumen del capítulo

Tal como evidencian los resultados presentados en el Capítulo 3, es posible apro-
ximar una proyección aleatoria desde el feature space del kernel polinómico homogé-
neo de grado dos mediante una elección cuidadosa de la distribución de la matriz de
proyección y el uso del Teorema del Límite Central, así como de las propiedades de
las funciones de kernel. Centrarnos en una función de kernel específica nos permitió
analizar el efecto de su feature map al ser aplicado sobre los vectores de proyección
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cuando los productos escalares presentes en la formulación de Random Projection
se remplazan por evaluaciones de la función de kernel. Aunque este enfoque ha re-
sultado ser razonablemente efectivo, presenta algunas limitaciones. La primera es
la restricción de trabajar en exclusiva con una única función de kernel. Además, el
hecho de que los vectores de proyección en el feature space se generasen mediante
el mapeo por medio del feature map de las columnas de la matriz de proyección
derivaba en algunos problemas, como la aparición de un número de entradas que no
seguían una distribución válida para Random Projection. Por este motivo, es posi-
ble mejorar esta propuesta algorítmica en términos de su generalidad, eficiencia y
efectividad.

En esencia, el método propuesto en este capítulo se basa en la noción de que los
vectores de proyección en el feature space no tienen que ser necesariamente generados
mediante la transformación de un único vector mediante el feature map del kernel.
Por el contrario, es posible generar estos vectores como el producto de Kronecker de
g vectores diferentes, donde g es el grado del kernel polinómico utilizado. Convenien-
temente, si los vectores de proyección se generan de esta forma, es posible calcular
el producto escalar de los mismos con las muestras de datos en el feature space de
una forma eficiente y sin necesidad de trabajar en este espacio de forma explícita. Al
generar los vectores de proyección con el producto de Kronecker de varios vectores
distintos, se elimina el problema de la aparición de elementos en los vectores finales
con una distribución distinta a la deseada, lo que nos permite trabajar con kernels
polinómicos de grado mayor que dos. Sin embargo, persiste el problema de la depen-
dencia estadística entre las entradas de los vectores de proyección, que debe ser de
nuevo mitigada mediante la aplicación del Teorema del Límite Central. De nuevo,
los vectores de proyección finales se formarán mediante la suma de varios vectores
en el feature space, cada uno de los cuales consiste en el producto de Kronecker de
g vectores. Una cuidadosa formulación de estas operaciones nos permite evaluar el
producto escalar de las muestras de datos mapeadas al feature space con nuestros
vectores de proyección finales sin necesidad de operar de forma explícita en este
espacio, lo que por su alta dimensionalidad implicaría un alto coste computacional.

Adicionalmente, este capítulo presenta una serie de trucos algorítmicos para re-
ducir aún más el coste computacional de las operaciones realizadas por nuestro
algoritmo. En particular, el algoritmo propuesto hace un uso intensivo del producto
escalar entre las muestras de datos a proyectar y un conjunto de vectores aleatorios.
En su formulación más simple, el algoritmo usa un total de gtk vectores aleatorios
distintos, donde g es el grado del kernel polinómico, t controla el número de vectores
sumados para formar los vectores de proyección finales y k determina el número
de componentes de salida. Para reducir el coste computacional, es posible reutilizar
algunos de estos vectores aleatorios, en lugar de usar vectores distintos para cada
componente de salida. En particular, se propone generar un set con p vectores alea-
torios, de forma que se seleccione un subset aleatorio de los mismos para el cálculo
de cada componente de salida. Esto significa que para transformar una muestra,
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nuestro algoritmo deberá evaluar p productos escalares en lugar de gtk. Por tan-
to, controlando el valor de p, resulta posible reducir el coste computacional y los
requisitos de memoria del algoritmo propuesto, con un muy reducido impacto en
su eficacia. Además, nuestro análisis muestra que los vectores aleatorios pueden ser
generados tanto a partir de la clásica distribución normal estándar como usando la
distribución discreta propuesta por Achlioptas [2].

De nuevo, los experimentos se centran en la capacidad de nuestro algoritmo para
preservar las distancias entre las muestras de datos en el feature space del kernel, y
en la mejora de la tasa de acierto de los clasificadores lineales al entrenarse sobre
la representación generada por nuestro algoritmo. En esta ocasión, se evalúan estas
propiedades tanto para el kernel polinómico homogéneo de grado dos como el de
grado tres. Además, para cada experimento se mide tanto el resultado obtenido por
el algoritmo correspondiente como su tiempo de ejecución en fase de inicialización
y de transformación de muestras. Para los experimentos, se usan tres datasets pú-
blicos de diferentes dominios. En particular, los datasets elegidos son MNIST [108],
Webspam [101] y W8a [83].

En general, los resultados experimentales evidencian que el método propuesto
ofrece la mejor relación eficacia-eficiencia de entre los métodos evaluados. En par-
ticular, destaca su eficiencia en la fase de inicialización. Gracias a la independencia
de datos del método propuesto, su fase de inicialización se reduce a la generación
de un número de vectores aleatorios, mientras que los métodos alternativos suelen
necesitar de un conjunto de datos de entrenamiento sobre el que realizan costosas
operaciones. Como resultado, nuestro método reporta unos tiempos de inicialización
insignificantes en comparación con los de otros métodos. La eficiencia de nuestro
algoritmo queda patente también a la hora de transformar muestras, donde suele
obtener resultados comparables o superiores a los métodos alternativos, mantenien-
do generalmente tiempos de ejecución inferiores. Estos resultados confirman también
la mejora del enfoque propuesto en este capítulo respecto al descrito en el Capítulo
3, que resulta más ineficiente en la mayoría de los experimentos. Además, la posibili-
dad de controlar el balance eficiencia/eficacia de nuestro método mediante el ajuste
de sus hiperparámetros le dota de una gran versatilidad, pudiendo seleccionarse los
valores más apropiados para cada aplicación.

En definitiva, este capítulo presenta un método eficiente para la realización de
proyecciones aleatorias desde los feature spaces de kernels polinómicos de grado ar-
bitrario. Los resultados experimentales muestran su capacidad para aproximar las
propiedades de preservación de la distancia entre muestras del algoritmo Random
Projection original. Además, también confirman la posibilidad de usar este enfoque
para generar representaciones de los datos sobre las cuales los clasificadores lineales
son capaces de aproximar la tasa de acierto de los clasificadores que usan el kernel
trick, evitando sus problemas de escalabilidad asociados. Además, las técnicas descri-
tas en este capítulo pueden ser adaptadas para acelerar las computaciones de otros
algoritmos que dependan del cálculo de características de interacción polinómica,
como es el caso de las redes neuronales convolucionales bilineales. Se deja además
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la puerta abierta a la posibilidad de diseñar métodos similares para la proyección
aleatoria de datos desde los feature spaces de otras funciones de kernel populares.
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Capítulo 5

Bilinear pooling compacto
mediante proyecciones
aleatorias kernelizadas

Las redes neuronales convolucionales bilineales, que incluyen la operación bilinear
pooling como su característica principal, se encuentran entre los modelos más po-
pulares y efectivos para el reconocimiento de imagen de grano fino. Sin embargo,
una de las principales desventajas de los modelos que usan bilinear pooling es la
dimensión de los descriptores que generan, que suelen contener cientos de miles de
características. Incluso cuando generar el descriptor en sí es computacionalmente
asequible, su alta dimensionalidad hace que cualquier operación posterior se vuelva
ineficiente, resultando a menudo en grades costes computacionales y de almacena-
miento. En este capítulo, presentamos un nuevo método para reducir la dimensio-
nalidad del descriptor de bilinear pooling de forma eficiente, mediante la realización
de una proyección aleatoria del mismo. Convenientemente, esto se logra sin necesi-
dad de generar explícitamente el descriptor de alta dimensionalidad. Los resultados
experimentales evidencian que nuestra técnica supera a los enfoques de tipo bilinear
pooling compacto en la mayoría de casos. Además, se ejecuta de forma más rápida
que los métodos alternativos en dispositivos de baja potencia de cómputo, donde las
variantes eficientes de bilinear pooling son más necesarias.

Los contenidos de este capítulo son una adaptación del artículo: Daniel López-
Sánchez, Angélica González Arrieta and Juan M. Corchado. “Compact Bilinear Poo-
ling via Kernelized Random Projection for Fine-Grained Image Categorization on
Low Computational Power Devices”. In: Neurocomputing (In press).

5.1. Resumen del capítulo

El nombre “reconocimiento de grano fino” suele usarse para referirse a tareas de
clasificación de imágenes con un número relativamente alto de categorías muy simi-
lares. Estas tareas tienden a ser muy complejas, en especial por su alta variabilidad
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intra-clase y su baja variabilidad iter-clase. En otras palabras, las pequeñas varia-
ciones que contienen la información necesaria para diferenciar las distintas clases
pueden ser fácilmente obviadas por la influencia de factores no informativos como
la pose, orientación o iluminación de los elementos que aparecen en una imagen.
Uno de los enfoques más populares para resolver este tipo de problemas es el uso de
Redes Neuronales Convoluionales (CNNs) bilineales.

Originalmente propuestas por Lin et al. [71], las CNNs bilineales generan un des-
criptor global de las imágenes mediante la aplicación de dos CNNs como extractores
de características locales. Después, los descriptores extraídos en cada localización de
la imagen por las dos CNNs se combinan haciendo uso de producto de Kronecker.
Finalmente, los descriptores resultantes se agrupan usando la media para obtener
un descriptor global de la imagen, sobre el que se aplica un clasificador lineal tradi-
cional. De esta forma, las CNNs bilineales son capaces de capturar las interacciones
entre pares de características de una forma invariante a la localización, lo que pro-
picia un aumento considerable en la tasa de acierto en problemas de clasificación de
imagen de grano fino.

Sin embargo, el uso del producto de Kronecker por parte de las CNNs bilineales
acarrea un problema asociado. En particular, el descriptor resultante tiene una di-
mensionalidad muy elevada, lo que dificulta cualquier paso posterior. Para mitigar
este problema, Gao et al. [43] propusieron un enfoque conocido como bilinear pooling
compacto, que se basa en el uso de técnicas de aproximación de kernels para reducir
la dimensionalidad del descriptor de bilinear pooling. Además, Gao et al. sugirieron
la posibilidad de usar Random Projection para compactar el descriptor bilineal, des-
cartando este enfoque tras concluir que implicaría generar el descriptor de forma
explícita en un primer lugar.

Este capítulo desarrolla le idea de usar Random Projection para reducir la di-
mensionalidad del descriptor de bilinear pooling. En particular, se propone adaptar
las ideas presentadas en el Capítulo 4 para realizar esta proyección sin necesidad de
generar el descriptor de forma explícita, aprovechando la relación existente entre el
método bilinear pooling y los kernels polinómicos. Intuitivamente, nuestro método
aprovecha que cuando las dos CNNs usadas para extraer los descriptores locales en
bilinear pooling son iguales, la combinación de los descriptores locales extraídos por
ellas mediante el producto de Kronecker equivale a su mapeo al feature space del ker-
nel polinómico de grado dos. Por tanto, con algunas modificaciones es posible aplicar
el método descrito en el Capítulo 4 para realizar una proyección aleatoria de estos
descriptores, sin necesidad de usar en ningún momento el producto de Kronecker de
forma explícita, evitando así las ineficiencias de bilinear pooling.

De nuevo, se propone usar un conjunto reducido de vectores aleatorios que se
muestréa para obtener los vectores aletorios usados para el cálculo de cada compo-
nente de salida. Adicionalmente, se presenta una estrategia avanzada de muestreo
que permite minimizar la reutilización de los vectores aleatorios, resultando en una
ligera mejora de los resultados sin ningún coste adicional. Otro aspecto clave del
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método propuesto es su compatibilidad con esquemas de entrenamiento end-to-end.
En otras palabras, el algoritmo propuesto puede ser incluido como una capa más de
un modelo de red neuronal profunda, y la red resultante podrá ser entrenada con los
algoritmos tradicionales basados en el descenso de gradiente. Esto se logra mediante
la derivación de las reglas de back-propagation para nuestro algoritmo, que permiten
calcular la derivada parcial de la función de error con respecto a las entradas del
algoritmo, lo que a su vez permite propagar los gradientes hacia las primeras capas
de la red. Esta compatibilidad con esquemas de entrenamiento end-to-end permite
un proceso de ajuste fino de los pesos de las redes que incorporan nuestro algoritmo.

Los experimentos presentados en este capítulo se centran en la tasa de acierto
obtenida por los diferentes modelos comparados en problemas de clasificación de
imágenes de grano fino. En particular, se eligieron los datasets públicos Caltech
UCSD Birds-200-2011 [99] Stanford Cars Dataset [61] y 102 Category Flower Dataset
[78]. Así mismo, se eligieron dos populares arquitecturas de CNN, SqueezeNet v1.1
[51] y GoogLeNet [92]. Además de las tasas de acierto obtenidas en estos datasets
por los distintos algoritmos evaluados y las dos CNNs elegidas, se midió el tiempo
de ejecución o inferencia de los distintos modelos en dos dispositivos hardware de la
popular plataforma Raspberry. Estos dispositivos fueron la Raspberry Pi 3 Model
B+ y la Raspberry Pi Zero W.

Los resultados presentados en este capítulo evidencian que el enfoque propuesto
basado en la proyección aleatoria del descriptor de bilinear pooling supera o iguala la
tasa de acierto de los métodos existentes para el bilinear pooling compacto, al tiempo
que produce la mejor aproximación de la tasa de acierto obtenida con el uso del
descriptor original. Además, el uso de nuestro método resulta en los menores tiempos
de inferencia de entre todos los métodos evaluados, lo que le convierte en la opción
idónea para su aplicación en escenarios donde se disponga de una baja potencia de
cómputo y el tiempo de inferencia sea crítico. Además, los experimentos demuestran
que la compatibilidad del método propuesto con esquemas de entrenamiento end-
to-end permite un ajuste fino de los pesos de las CNNs utilizadas, mejorando la
tasa de acierto cuando se dispone de un conjunto de datos de entrenamiento lo
suficientemente grande.

En definitiva, el método propuesto permite aproximar la tasa de acierto de los
modelos de tipo bilinear pooling tradicionales, evitando al mismo tiempo sus proble-
mas de eficiencia. Los resultados experimentales sugieren que nuestro método es la
mejor alternativa cuando se consideran los tiempos de inferencia en dispositivos de
baja potencia computacional. Como linea de trabajo futuro, se propone explorar la
aplicabilidad de las ideas presentadas en este capítulo a problemas de aprendizaje
multi-modal, donde las dos CNNs usadas por bilinear pooling para la extracción de
características locales son distintas, ya que procesan datos de diferente naturaleza.
Además, esperamos estudiar la aplicabilidad del algoritmo propuesto en áreas como
el Internet de las Cosas o los sistemas Embebidos, donde los métodos eficientes para
el análisis de imagen de grano fino podrían ser de gran utilidad.
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Capítulo 6

Conclusiones

A medida que la cantidad de datos producida por los humanos y dispositivos sigue
creciendo, el aprendizaje automático se ha convertido en una herramienta esencial
para analizar datos, hacer predicciones y automatizar tareas. Gran parte del éxito
de los modelos de aprendizaje automático modernos se debe a la disponibilidad de
grandes colecciones de datos de las que aprender y a los avances en el hardware que
han permitido entrenar modelos con cientos de millones de parámetros. Sin embar-
go, existe un interés creciente en la creación de soluciones eficientes basadas en el
aprendizaje automático, capaces de ejecutarse en entornos con recursos computacio-
nales limitados, manteniendo los estándares de precisión y fiabilidad de los métodos
existentes.

Un ejemplo notable de la importancia del diseño de métodos de aprendizaje
automático eficientes y escalables es el caso de las técnicas de aproximación para
funciones de kernel. Tal y como se vio en el Capítulo 2, en los últimos años ha existido
un interés creciente en el diseño de métodos para aproximar de forma eficiente las
propiedades de los datos en los espacios de características de diversas funciones
de kernel, evitando los problemas de escalabilidad de los algoritmos kernelizados
tradicionales.

Esta tesis ha explorado la aplicabilidad del algoritmo de Proyección Aleatoria
para aproximar la estructura de los datos en el espacio de características de los
kernels polinómicos. En esencia, los métodos presentados en los Capítulos 3 y 4
permiten aproximar una Proyección Aleatoria desde el espacio de características
de kernels polinómicos, sin necesidad de trabajar en ningún caso en este espacio
de características de forma explícita. Al contrario que los métodos existentes, los
algoritmos propuestos en esta tesis son independientes de los datos, lo que significa
que no requieren ningún conocimiento acerca de la distribución de los datos que van
a transformar para poder operar. Como consecuencia, su fase de entrenamiento o
inicialización se reduce a la inicialización de algunas matrices aleatorias, lo que los
hace más eficientes y escalables que los enfoques alternativos. Esta independencia
de datos se ha conseguido principalmente centrándonos en una familia de funciones
de kernel específica, la de los kernel polinómicos, lo que nos ha permitido analizar
la forma explícita de los mapas de características asociados a esta familia de kernels
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y desarrollar métodos alternativos para aproximar una Proyección Aleatoria en el
espacio de características.

Los resultados experimentales presentados se centraron en la preservación de
las distancias entre las muestras de datos en el espacio de características del kernel
cuando estas eran transformadas a una representación de baja dimensionalidad, y
en las tasas de acierto de clasificación obtenidas sobre las representaciones gene-
radas, demostrando que la estructura de los datos en el espacio de características
es aproximadamente preservada por los métodos propuestos. Esto abrió la puerta
a la utilización de estos métodos en aplicaciones donde la interacción polinómica
entre características juega un papel importante. En particular, en el Capítulo 5
exploramos la aplicabilidad de los métodos presentados en los anteriores capítulos
para mejorar la eficiencia de los modelos bilineales del paradigma del aprendizaje
profundo. Los resultados obtenidos evidenciaron que los modelos del tipo Bilinear
Convolutional Neural Network pueden ser acelerados mediante la aplicación de las
ideas presentadas en el Capítulo 4, resultando en importantes ahorros en términos
de tiempo de cómputo y memoria cuando estos modelos se ejecutan en entornos de
bajas prestaciones.

En el futuro, se tratará de explorar la aplicabilidad de los métodos propuestos en
problemas más allá de la categorización. Si bien los experimentos presentados en esta
tesis se han centrado en el problema de la clasificación de muestras, la información
presente en el espacio de características de los kernels polinómicos puede ser útil para
otras tareas de aprendizaje automático tales como la recuperación de información,
la regresión of el clustering. De hecho, las ideas presentadas en esta tesis podrían ser
utilizadas para acelerar modelos de aprendizaje automático existentes cuando estos
se basen en los kernels polinómicos o en general en la interacción polinómica entre
características.

Como conclusión final, las proyecciones aleatorias desde los espacios de carac-
terísticas de los kernels polinómicos han demostrado ser un enfoque excelente para
generar de forma eficiente una representación compacta de los datos que captura
la información útil proporcionada por el kernel, dando lugar a una poderosa herra-
mienta para crear modelos de aprendizaje automático eficientes y escalables.
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