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ABSTRACT

Network Structures, Concurrency, and Interpretability: Lessons from the

Development of an AI Enabled Graph Database System

Hal James Cooper

This thesis describes the development of the SmartGraph, an AI enabled graph database.

The need for such a system has been independently recognized in the isolated fields of graph

databases, graph computing, and computational graph deep learning systems, such as TensorFlow.

Though prior works have investigated some relationships between these fields, we believe that the

SmartGraph is the first system designed from conception to incorporate the most significant and

useful characteristics of each. Examples include the ability to store graph structured data, run

analytics natively on this data, and run gradient descent algorithms. It is the synergistic aspects

of combining these fields that provide the most novel results presented in this dissertation. Key

among them is how the notion of “graph querying” as used in graph databases can be used to solve

a problem that has plagued deep learning systems since their inception; rather than attempting to

embed graph structured datasets into restrictive vector spaces, we instead allow the deep learning

functionality of the system to natively perform graph querying in memory during optimization as a

way of interpreting (and learning) the graph. This results in a concept of natural and interpretable

processing of graph structured data.

Graph computing systems have traditionally used distributed computing across multiple com-

pute nodes (e.g. separate machines connected via Ethernet or internet) to deal with large-scale

datasets whilst working sequentially on problems over entire datasets. In this dissertation, we

outline a distributed graph computing methodology that facilitates all the above capabilities (even

in an environment consisting of a single physical machine) while allowing for a workflow more typ-

ical of a graph database than a graph computing system; massive concurrent access allowing for

arbitrarily asynchronous execution of queries and analytics across the entire system. Further, we

demonstrate how this methodology is key to the artificial intelligence capabilities of the system.
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Introduction

The motivating problem for this dissertation is how to perform machine learning with graph struc-

tured datasets. In existing approaches, graph structured datasets are compressed, embedded, or

approximated as tensor valued objects. The rationale for this approach is that it allows existing

machine learning methodologies to be readily applied to complex network and graph structured

data. However, such approaches are inherently lacking in that graph structured datasets are much

more complex than tensor structured data. Any tensor-based approximation of graph structure

that performs well for a particular problem may turn out to be completely inadequate when that

same approximation is applied to another problem.

We therefore seek a solution to the problem of graph inputs, where graphs can be explored and

interpreted by machine learning models in a “natural” graph theoretic manner; by following, ex-

ploring, and understanding connections between data (in much the same way a human might), and

by summarizing this information through interpretable querying procedures. This allows machine

learning algorithms to explore and learn from (if necessary) whole graph structures. This approach

directs the algorithm to learn the relevant topological and property structure of graphs required

to solve a given graph input-based machine learning problem. As this exploration of the graph is

directed by the system (and human domain expertise, if it is beneficial), this is an approach that

can be applied to a wide range of problems.

One consequence of performing machine learning on graph structured datasets is that we need a

system capable of dealing with the potentially enormous size of the datasets. Unlike tensor-valued

inputs which may be easily batched for use in SGD methods, the size of the relevant graph struc-

tured data of a graph-input machine learning problem may not be known apriori. Furthermore, the

method of performing learning and algorithm execution concurrently is not immediately obvious.
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We design and implement the SmartGraph, a graph database that is inherently capable of machine

learning algorithm execution on graph structured datasets in a massively concurrent fashion.

This dissertation describes the steps relevant to the research, design, and implementation of the

SmartGraph. This work is an attempt at bring together ideas from the fields of graph databases,

graph computing, and deep learning systems - fields that have largely developed independently -

it will become clear through reading the dissertation that these fields have much more in common

than previously explored. We first present the projects involving work primarily focused in the

above mentioned individual research areas. These projects served as the guide for the development

of the SmartGraph system.

Where possible, we indicate and allude to concepts developed later in the dissertation in order to

demonstrate how these earlier projects inspired us to develop a system that either used techniques

from these earlier papers in a novel manner, or demonstrated clear problems with typical approaches

that needed to be acknowledged and addressed in the SmartGraph system.

In Chapter 1, we introduce methods for approximating discrete optimization problems as con-

tinuous optimization problems that can then be solved with gradient descent methods. Our par-

ticular contribution is to demonstrate how methods primarily used to optimize functions involving

categorical variables can be adapted and extended into problems involving permutation variables

[1]. Permutations are particularly important in the context of network structured data, as they

can represent unlabeled adjacency matrix structures (i.e. where we know the connectome or the

connections between vertices, but do not know the identity of the vertices). As many of the actions

taken in the natural reading of a graph are from a discrete set (e.g. which type of edge to follow

from a vertex in a relevant query), the ability to cast these settings into a continuous form where

gradient descent can be used is of critical importance later in the dissertation.

Chapter 2 outlines how typical machine learning methodologies can be used to solve problems

in a graph context. We show how GANs can be used to learn the important topological features of

graphs in contexts where there is only one graph, such as a bank’s complete financial transaction

network, and we need to understand this single instance [2].

Though both these chapters explicitly relate to network structure, they share a fundamental

approach in adapting the problem to fit the available tools that prevent them from being more

widely applicable to general graph problems in machine learning.
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In Chapter 3, we begin to flip this paradigm around. Instead of fitting the problem to existing

tools, we begin expanding existing tools to be capable of solving the problem [3, 4]. In particular,

we demonstrate how the types of techniques explored in Chapter 1 can scale problems in the

decision support system sphere using Influence Diagrams (IDs), while existing advantages like

interpretability (lost in the embedding techniques of Chapter 2) and efficiency, and adding new

concepts like “targeted robustness”, which allows us to easily introduce different types of robustness

at a very fine level of detail.

We begin the description of the SmartGraph with Chapter 4, which outlines the basic “router-

like” structure that is key to the distributed and concurrent functionality of the system, and gives

the SmartGraph its AI capabilities. As a particular example, we focus on how the router structure

allows us to solve an exponentially complex combinatorial problem related to the choice of router

representations (i.e. data structures for subgraph storage) as a series of simple linear optimization

problems that can be solved very quickly once each router “learns” about its own subgraph, and

the connections it has to other routers [5].

In the final chapter, Chapter 5, we introduce the most significant and novel capability of the

SmartGraph: the ability to perform deep learning on graph structures. The reading of the graph

as an input occurs during each iteration of machine learning problem. This occurs as part of a

querying procedure guided by both the user and gradient descent algorithms. That is, we read

the graph as an input into our algorithms not by summarizing the graph into factors or a vector-

approximation beforehand, but by exploring the graph during execution. As a particular use case,

we demonstrate how this approach can be used for product recommendation on graph data sets

[6] where there is some notion of interaction between groups of users, and between a user and the

products they own.

We then conclude the dissertation by highlighting promising areas of future research related to

the philosophy of the overall system design (where we deal with such topics for individual projects

within the corresponding chapters).
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Chapter 1

Optimization with Continuous

Approximations to Discrete

Distributions

This chapter introduces methods for approximating discrete distributions with continuous distribu-

tions for certain classes of objects. Our key contribution in this chapter is to extend the approach

to a new class of object, the permutation matrix. In the context of this dissertation, the entire

chapter is relevant due to its importance in allowing us to optimize over discrete actions taken

while processing a graph input.

1.1 Variational Inference and the Reparameterization Trick

Given a model with data y, likelihood p(y |x), and prior p(x), variational Bayesian inference al-

gorithms aim to approximate the posterior distribution p(x | y) with a more tractable distribu-

tion q(x; θ), where “tractable” means that one can sample from q and evaluate it pointwise (in-

cluding its normalization constant) [7]. We find this approximate distribution by searching for the

parameters θ that minimize the Kullback-Leibler (KL) divergence between q and the true posterior,

or equivalently, maximize the evidence lower bound (ELBO),

L(θ) , Eq [log p(x, y)− log q(x; θ)] .
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Perhaps the simplest method of optimizing the ELBO is stochastic gradient ascent. However,

computing ∇θL(θ) requires some care since the ELBO contains an expectation with respect to a

distribution that depends on these parameters.

When x is a continuous random variable, one can sometimes leverage the reparameterization

trick [8, 9]. Specifically, in some cases we can simulate from q via the following equivalence,

x ∼ q(x; θ) ⇐⇒ z ∼ r(z), x = g(z; θ),

where r is a distribution on the “noise” z and where g(z; θ) is a deterministic and differentiable

function. The reparameterization trick effectively “factors out” the randomness of q. With this

transformation, we can bring the gradient inside the expectation as follows,

∇θL(θ) = Er(z)
[
∇θ log p(g(z; θ) | y)−∇θ log q(g(z; θ); θ)

]
. (1.1)

This gradient can be estimated by Monte Carlo Simulation, and in practice, leads to lower variance

estimates of the gradient as compared to, for example, the REINFORCE estimator [10, 11].

However, the gradient in (1.1) can only be computed if x is continuous. Concurrently, [12] and

[13] proposed the “Concrete distribution” (or “Gumbel-softmax” method) for discrete variational

inference. It is based on the following observation: discrete probability mass functions q(x; θ)

can be seen as densities with atoms on the vertices of the simplex; i.e. on the set of one-hot

vectors {en}Nn=1, where en = (0, 0, . . . , 1, . . . , 0)T is a length-N binary vector with a single 1 in

the n-th position. This motivates a natural relaxation: let q(x; θ) be a density on the interior of

the simplex instead, and anneal this density such that it converges to an atomic density on the

vertices. Figure 1.1a illustrates this idea. Below we discuss some the various methods used for the

purposes of inference and optimization regarding discrete variables, and provide more detail on the

Concrete distribution.

1.1.1 The Reinforce Estimator

The REINFORCE estimator [14], also known as the “score function estimator” is probably the

most-well known estimator for use in optimizing discrete variables, and is unsurprisingly the basis

of many reinforcement learning methods. It uses the result ∇θEp(b|θ)[f(b)] ≈ Ep[f(b)
∂

∂θ
log p(b|θ)]
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for b ∼ p(b|θ) [15]. While this estimator is unbiased, it typically has very high variance (therefore

requiring many samples to get a good estimate of the gradient). As will be discussed in Chapter 5,

we require the system developed in this dissertation to use a very small a number of samples since

each “sample” involves a full graph query, potentially of very high computational cost. Thus, the

REINFORCE approach is not suited for our applications.

1.1.2 The Concrete Distribution and Extensions

Viewing x as a vertex of the simplex motivates a natural relaxation: rather than restricting ourselves

to atomic measures, consider continuous densities on the simplex. Suppose the density of x is

defined by the transformation,

zn
iid∼ Gumbel(0, 1) (1.2)

ψn = logαn + zn

x = softmax(ψ/λ)

=

(
eψ1/λ∑N
n=1 e

ψn/λ
, . . . ,

eψN/λ∑N
n=1 e

ψn/λ

)
.

The output x is now a point on the simplex, and the parameter α = (α1, . . . , αN ) ∈ RN+ ⊆ θ can

be optimized via stochastic gradient ascent with the reparameterization trick.

The Gumbel distribution leads to a nicely interpretable model: adding i.i.d. Gumbel noise

to logα and taking the argmax yields an exact sample from the normalized probability mass func-

tion ᾱ, where ᾱn = αn/
∑N

m=1 αm [16]. The softmax is a natural relaxation. As the temperature λ

goes to zero, the softmax converges to the argmax function.

It should be noted that the Concrete distribution is a biased estimator of the gradient, though

it has much lower variance than REINFORCE (consider how in comparison to the REINFORCE

estimator, the Concrete distribution has more “knowledge” of how a function is constructed with

respect to the parameters θ). Despite this bias, it tends to converge appropriately. More recent

works, such as REBAR [17] and RELAX [15] attempt to lower the variance further (e.g. through

control variates [18]) and create an unbiased estimate; however, this comes at the cost of a con-

siderable increase in implementation complexity and iteration run-times. Due to the simplicity of

the standard Concrete distribution and its success despite its bias, the works in this dissertation
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(in Chapter 3 and Chapter 5), we will build upon the standard Concrete distribution rather than

its “successors”.

In this chapter, we investigate and develop alternate methods of continuous approximations to

discrete systems for the purpose of optimization. This is not because we are attempting to reduce

variance or bias, but rather because the methods mentioned, thus far, are impractical for the

much more complex discrete system of focus in this chapter, namely the permutation. Due to the

resulting implementation complexity, the methods developed for this purpose are self-contained

in this chapter. Future work may involve the addition of these approaches to the SmartGraph

system, though results in later chapters suggest it likely unnecessary. Following the main results

of this chapter, we outline how the approaches developed here can be used for the more common

categorical case that is actively used in the rest of this work.

1.2 The Permutation Problem

Many matching, tracking, sorting, and ranking problems require probabilistic reasoning about pos-

sible permutations, a set that grows factorially with the size of the number of inputs. Combinatorial

optimization algorithms may enable efficient point estimation, but fully Bayesian inference poses a

severe challenge in this high-dimensional, discrete space. To surmount this challenge, we start by

relaxing the discrete set of permutation matrices to its convex hull, the Birkhoff polytope, i.e. the

set of doubly-stochastic matrices. We then introduce two novel transformations: an invertible and

differentiable stick-breaking procedure that maps an unconstrained space to the Birkhoff polytope,

and a map that rounds points toward the vertices of the polytope [1]. Both transformations include

a temperature parameter that, in the limit, concentrates the densities on permutation matrices. We

exploit these transformations and reparameterization gradients to introduce variational inference

over permutation matrices, and we demonstrate its utility in a series of experiments.

1.3 Introduction to Permutation Inference

Permutation inference is central to many modern machine learning problems. Identity management

[19] and multiple-object tracking [20, 21] are fundamentally concerned with finding a permutation

that maps an observed set of items to a set of canonical labels. Ranking problems, critical to search
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and recommendation systems, require inference over the space of item orderings [22–24]. Further-

more, as many probabilistic models, like preferential attachment network models [25] and repulsive

point process models [26], incorporate a latent permutation into their generative processes; infer-

ence over model parameters requires integrating over the set of permutations that could have given

rise to the observed data. In neuroscience, experimentalists now measure whole-brain recordings in

C. Elegans [27, 28], a model organism with a known synaptic network [29]; a current challenge is

matching the observed neurons to corresponding nodes in the reference network. In Section 1.5.2,

we address this problem from a Bayesian perspective in which permutation inference is a central

component of a larger inference problem involving unknown model parameters and hierarchical

structure.

The task of computing optimal point estimates of permutations under various loss functions

has been well studied in the combinatorial optimization literature [30–32]. However, many prob-

abilistic tasks, like the neural identity inference problem, require reasoning about the posterior

distribution over permutation matrices. A variety of Bayesian permutation inference algorithms

have been proposed, leveraging sampling methods [33–35], Fourier representations [21, 36], as well

as convex [37] and continuous [38] relaxations for approximating the posterior distribution. We

propose an alternative, leveraging stochastic variational inference [39] and reparameterization gra-

dients [9, 40] to derive a scalable and efficient permutation inference algorithm.

Section 1.3.1 introduces relevant definitions, and Section 1.3.2 outlines prior work on permuta-

tion inference, variational inference, and continuous relaxations. Section 1.4 presents our primary

contribution: a pair of transformations that enable variational inference over doubly-stochastic

matrices, and, in the zero-temperature limit, permutations, via stochastic variational inference. In

the process, we show how these transformations connect to recent work on discrete variational in-

ference [12, 13]. Sections 1.5.1 and 1.5.2 present a variety of experiments that illustrate the benefits

of the proposed variational approach.

1.3.1 Definitions and Notation

A permutation is a bijective mapping of a set onto itself. When this set is finite, the mapping

is conveniently represented as a binary matrix X ∈ {0, 1}N×N where entry xm,n = 1 implies that

element m is mapped to element n. Since permutations are bijections, both the rows and columns
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Concrete Distribution

Figure 1.1: Reparameterizations of discrete polytopes. From left to right: (a) The Gumbel-
softmax, or “Concrete” transformation maps Gumbel r.v.’s ψ ∈ RN (blue dots) to points in the
simplex x ∈ ∆N by applying the softmax. Colored dots are random variates that aid in visualizing
the transformation. (b) Stick-breaking offers an alternative transformation for categorical inference,
here from points β ∈ [0, 1]N−1 to ∆N , but the ordering of the stick-breaking induces an asymme-
try in the transformation. (c) We extend this stick-breaking transformation to reparameterize the
Birkhoff polytope, i.e. the set of doubly-stochastic matrices. We show how B3 is reparameterized in
terms of matrices B ∈ [0, 1]2×2 These points are mapped to doubly-stochastic matrices, which we
have projected onto R2 below (stencils show permutation matrices at the vertices). (d) Finally, we
derive a “rounding” transformation that moves points in RN×N nearer to the closest permutation
matrix, which is found with the Hungarian algorithm. This is more symmetric, but does not map
strictly onto BN .

of X must sum to one. From a geometric perspective, the Birkhoff-von Neumann theorem states

that the convex hull of the set of permutation matrices is the set of doubly-stochastic matrices;

i.e. non-negative square matrices whose rows and columns sum to one. The set is called the

Birkhoff polytope. Let BN denote the Birkhoff polytope of N ×N doubly-stochastic matrices. The

row- and column-normalization constraints restrict BN to a (N − 1)2 dimensional subset of RN×N .

Despite these constraints, we have a number of efficient algorithms for working with these objects.

The Sinkhorn-Knopp algorithm [41] maps the positive orthant onto BN by iteratively normalizing

the rows and columns, and the Hungarian algorithm [30, 31] solves the minimum cost bipartite

matching problem, optimizing a linear objective over the set of permutation matrices in cubic time.
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1.3.2 Related Work

A number of previous works have considered approximate methods of posterior inference over the

space of permutations. When a point estimate will not suffice, sampling methods like Markov

chain Monte Carlo (MCMC) algorithms may yield a reasonable approximate posterior for simple

problems [33]. In [35] an importance sampling algorithm was developed that fills in count matrices

one row at a time, showing promising results for matrices with O(100) rows and columns. In

[42], the authors considered using the Hungarian algorithm within a Perturb-and-MAP algorithm

for approximate sampling. Another line of work considered inference in the spectral domain,

approximating distributions over permutations with the low-end frequency Fourier components [21,

36]. Perhaps most relevant to this work, [38] proposes a continuous relaxation from permutation

matrices to points on a hypersphere, and then uses the von Mises-Fisher (vMF) distribution to

model distributions on the sphere’s surface. Finally, ranking problems are a special case of a

matching problem in which the labels are the ordered set of integers {1, . . . , N}. The Placket-Luce

model is one model for rankings that is parameterized by a “score” for each item, and it admits

efficient Bayesian inference algorithms [43]. In general matching problems, however, the output is

not ordered, and we instead need scores for each item-label mapping. The methods presented here

address general matching problems.

1.4 Variational Permutation Inference via Reparameterization

The Concrete distribution scales linearly with the support, rendering it prohibitively expensive for

direct use on the set of N ! permutations. Instead, we develop two transformations to map O(N2)-

dimensional random variates to points in or near the Birkhoff polytope. Like the Concrete distri-

bution, these transformations will be controlled by a temperature that concentrates the resulting

density near permutation matrices. The first method is a novel “stick-breaking” construction; the

second rounds points toward permutations with the Hungarian algorithm. We present these in

turn and then discuss their relative merits.
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1.4.1 Stick-Breaking Transformations to the Birkhoff Polytope

Stick-breaking is well-known as a construction for the Dirichlet process [44]; here we show how

the same intuition can be extended to more complex discrete objects. Let B be a matrix in

[0, 1](N−1)×(N−1); we will transform it into a doubly-stochastic matrix X ∈ [0, 1]N×N by filling in

entry by entry, starting in the top left and raster scanning left to right then top to bottom. Denote

the (m,n)-th entries of B and X by βmn and xmn, respectively.

Each row and column has an associated unit-length “stick” that we allot to its entries. The first

entry in the matrix is given by x11 = β11. As we work left to right in the first row, the remaining

stick length decreases as we add new entries. This reflects the row normalization constraints. The

first row follows the standard stick-breaking construction,

x1n = β1n

(
1−

n−1∑
k=1

x1k

)
for n = 2, . . . , N − 1

x1N = 1−
N−1∑
n=1

x1n.

This is illustrated in Figure 1.1b, where points in the unit square map to points in the simplex.

Here, the blue dots are two-dimensionalN (0, 4I) variates mapped through a coordinate-wise logistic

function.

Subsequent rows are more interesting, requiring a novel advance on the typical uses of stick

breaking. Here we need to conform to row and column sums (which introduce upper bounds), and a

lower bound induced by stick remainders that must allow completion of subsequent sum constraints.

Specifically, the remaining rows must now conform to both row- and column-constraints. That is,

xmn ≤ 1−
n−1∑
k=1

xmk (row sum)

xmn ≤ 1−
m−1∑
k=1

xkn (column sum).

Moreover, there is also a lower bound on xmn. This entry must claim enough of the stick such that

what remains fits within the confines imposed by subsequent column sums. That is, each column

sum places an upper bound on the amount that may be attributed to any subsequent entry. If the

remaining stick exceeds the sum of these upper bounds, the matrix will not be doubly-stochastic.
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Thus,

1−
n∑
k=1

xmk︸ ︷︷ ︸
remaining stick

≤
N∑

j=n+1

(1−
m−1∑
k=1

xkj)︸ ︷︷ ︸
remaining upper bounds

.

Rearranging terms, we have,

xmn ≥ 1−N + n−
n−1∑
k=1

xmk +

m−1∑
k=1

N∑
j=n+1

xkj .

Of course, this bound is only relevant if the right hand side is greater than zero. Taken together,

we have ℓmn ≤ xmn ≤ umn, where,

ℓmn , max

0, 1−N + n−
n−1∑
k=1

xmk +

m−1∑
k=1

N∑
j=n+1

xkj


umn , min

{
1−

n−1∑
k=1

xmk, 1−
m−1∑
k=1

xkn

}
.

Accordingly, we define xmn = ℓmn + βmn(umn − ℓmn). The inverse transformation from X to B is

analogous. We start by computing z11 and then progressively compute upper and lower bounds

and set βmn = (xmn − ℓmn)/(umn − ℓmn).

To complete the reparameterization, we define a parametric, temperature-controlled density

from a standard Gaussian matrix Z ∈ R(N−1)×(N−1) to the unit-hypercube B. Let,

ψmn = µmn + νmnzmn,

βmn = σ (ψmn/λ) ,

where θ = {µmn, ν2mn}Nm,n=1 are the mean and variance parameters of the intermediate Gaussian

matrix Ψ, σ(u) = (1 + e−u)−1 is the logistic function, and λ is a temperature parameter. As λ→ 0,

the values of βmn are pushed to either zero or one, depending on whether the input to the logistic

function is negative or positive, respectively. As a result, the doubly-stochastic output matrix X is

pushed toward the extreme points of the Birkhoff polytope, the permutation matrices. This map

is illustrated in Figure 1.1c for permutations of N = 3 elements. Here, the blue dots are samples

12



of B with µmn = 0, νmn = 2, and λ = 1.

We compute gradients of this transformation with automatic differentiation. Since this trans-

formation is “feed-forward,” its Jacobian is lower triangular. The determinant of the Jacobian,

necessary for evaluating the density qλ(X; θ), is a simple function of the upper and lower bounds.

While this map is peculiar in its reliance on an ordering of the elements, as discussed in Section 1.4.3,

it is a novel transformation to the Birkhoff polytope that supports variational inference.

1.4.2 Rounding Toward Permutation Matrices

While relaxing permutations to the Birkhoff polytope is intuitively appealing, it is not strictly

required in order to have a differentiable relaxation that can be used to generate samples. We can

simply get “near” the set, and use such samples as an approximation to a truly doubly stochastic

matrix. In addition, using stick-breaking introduces a bias due to the ordering of our stick-breaking.

We are thus motivated to find a relaxation that is more “balanced” across permutations. For

example, consider the following procedure for sampling a point near the Birkhoff polytope:

(i) Input Z ∈ RN×N , M ∈ RN×N
+ , and V ∈ RN×N

+ ;

(ii) Map M → M̃ , a point in the Birkhoff polytope, using the Sinkhorn-Knopp algorithm;

(iii) Set Ψ = M̃ + V ⊙ Z where ⊙ denotes elementwise multiplication;

(iv) Find round(Ψ), the nearest permutation matrix to Ψ, using the Hungarian algorithm;

(v) Output X = λΨ+ (1− λ)round(Ψ).

This procedure defines a mapping X = gλ(Z; θ) with θ = {M,V }. When the elements of Z are

independently sampled from a standard normal distribution, it implicitly defines a distribution

over matrices X parameterized by θ. Furthermore, as λ goes to zero, the density concentrates on

permutation matrices. A simple example is shown in Figure 1.1d, where M = 1
N 11T with 1 a vector

of all ones, V = 0.4211T, and λ = 0.5. We use this procedure to define a variational distribution

with density qλ(X; θ).

To compute the ELBO and its gradient in (1.1), we need to evaluate qλ(X; θ). By construction,

steps (i) and (ii) involve differentiable transformations of parameter M to set the mean close to the

Birkhoff polytope, but since these do not influence the distribution of Z, the non-invertibility of the

Sinkhorn-Knopp algorithm poses no problems. Had we applied this algorithm directly to Z, this
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would not be true. The challenge in computing the density stems from the rounding in steps (iv)

and (v).

To compute qλ(X; θ), we need the inverse g−1
λ (X; θ) and its Jacobian. The inverse is straightfor-

ward: when λ ∈ [0, 1), round(Ψ) outputs a point strictly closer to the nearest permutation, implying

round(Ψ) ≡ round(X). Thus, the inverse is g−1
λ (X; θ) =

(
1
λX −

1−λ
λ round(X)− M̃

)
⊘ V , where ⊘

denotes elementwise division. A slight wrinkle arises from the fact that step (v) maps to a sub-

set Xλ ⊂ RN×N that excludes the center of the Birkhoff polytope (note the “hole” in Figure 1.1d),

but this inverse is valid for all X in that subset.

The Jacobian is more challenging due to the non-differentiability of round. However, since

the nearest permutation output only changes at points that are equidistant from two or more

permutation matrices, round is a piecewise constant function with discontinuities only at a set of

points with zero measure. Thus, the change of variables theorem still applies.

With the inverse and its Jacobian, we have

qλ(X; θ) =
N∏
m=1

N∏
n=1

1

λνmn
N (zmn; 0, 1)× I[X ∈ Xλ],

where zmn = [g−1
λ (X; θ)]mn and νmn are the entries of V . In the zero-temperature limit we recover a

discrete distribution on permutation matrices; otherwise the density concentrates near the vertices

as λ→ 0. This transformation leverages computationally efficient algorithms like Sinkhorn-Knopp

and the Hungarian algorithm to define a temperature-controlled variational distribution near the

Birkhoff polytope, and it enjoys many theoretical and practical benefits.

1.4.3 Theoretical Considerations

Continuous relaxations require re-thinking the objective: the model log-probability is defined with

discrete latent variables, but our relaxed posterior is a continuous density. As in [12], we instead

maximize a relaxed ELBO. We assume the functional form of the likelihood remains unchanged, and

simply accepts continuous values instead of discrete. However, we need to specify a new continuous

prior p(X) over the relaxed discrete latent variables, here, over relaxations of permutation matrices.

It is important that the prior be sensible: ideally, the prior should penalize values of X that are

far from permutation matrices.
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Figure 1.2: Synthetic matching experiment results. The goal is to infer the lines that match squares
to circles. (a) Examples of center locations (circles) and noisy samples (squares), at different
noise variances. (b) For illustration, we show the true and inferred probability mass functions for
different method (rows) along with the Battacharya distance (BD) between them for a selected case
of each σ (columns). Permutations (indices) are sorted from the highest to lowest actual posterior
probability. Only the 10 most likely configurations are shown, and the 11th bar represents the
mass of all remaining configurations. (c) KDE plots of Battacharya distances for each parameter
configuration (based on 200 experiment repetitions) for each method and parameter configuration.
For comparison, stick-breaking, rounding, and Mallows (θ = 1.0) have BD’s of .36, .35, and .66,
respectively, in the σ = 0.5 row of (b).

For a categorical distribution, we can define a prior that uses a mixture of Gaussians around

each vertex, p(x) = 1
N

∑N
n=1N (x | ek, η2) (indeed, this is the prior used later on in Section 1.7).

This can be extended to permutations, where we use a mixture of Gaussians for each coordinate.

Although this prior puts significant mass around invalid points (e.g. (1, 1, . . . , 1)), it penalizes X

that are far from BN . The prior formulation is given in (1.3).

p(X) =
N∏
m=1

N∏
n=1

1

2

(
N (xmn | 0, η2) +N (xmn | 1, η2

)
. (1.3)

1.4.4 Computing the ELBO

Here we show how to evaluate the ELBO. Note that the stick-breaking and rounding transforma-

tions are compositions of invertible functions, gλ = hλ ◦ f with Ψ = f(z; θ) and X = hλ(Ψ). In

both cases, f takes in a matrix of independent standard Gaussians (z) and transforms it with the

means and variances in θ to output a matrix Ψ with entries ψmn ∼ N (µmn, ν
2
mn). Stick-breaking
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and rounding differ in the temperature-controlled transformations hλ(Ψ) they use to map Ψ toward

the Birkhoff polytope.

To evaluate the ELBO, we must compute the density of qλ(X; θ). Let Jhλ(u) =
∂hλ(U)
∂U

∣∣
U=u

denote the Jacobian of a function hλ evaluated at value u. By the change of variables theorem and

properties of the determinant,

qλ(X; θ) = p
(
h−1
λ (X); θ

)
×
∣∣Jh−1

λ
(X)

∣∣
= p
(
h−1
λ (X); θ

)
×
∣∣Jhλ(h−1

λ (X))
∣∣−1

.

Now we appeal to the law of the unconscious statistician to compute the entropy of qλ(X; θ),

Eqλ(X;θ)

[
− log q(X; θ)

]
= Ep(Ψ;θ)

[
− log p(Ψ; θ) + log |Jhλ(Ψ)|

]
= H(Ψ; θ) + Ep(Ψ;θ)

[
|Jhλ(Ψ)|

]
. (1.4)

Since Ψ consists of independent Gaussians with variances ν2mn, the entropy is simply,

H(Ψ; θ) =
1

2

∑
m,n

log(2πeν2mn).

We estimate the second term of (1.4) using Monte-Carlo samples. For both transformations, the

Jacobian has a simple form.

Jacobian of the Stick-Breaking Transformation

Here hλ consists of two steps: first we map Ψ ∈ RN−1×N−1 toB ∈ [0, 1]N−1×N−1 with a temperature-

controlled, elementwise logistic function, then we map B to X in the Birkhoff polytope with the

stick-breaking transformation.

As with the standard stick-breaking transformation to the simplex, our transformation to the

Birkhoff polytope is feed-forward; i.e. to compute xmn we only need to know the values of β up to

and including the (m,n)-th entry. Consequently, the Jacobian of the transformation is triangular,

and its determinant is simply the product of its diagonal.
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We derive an explicit form in two steps. With a slight abuse of notation, note that the Jacobian

of hλ(Ψ) is given by the chain rule,

Jhλ(Ψ) =
∂X

∂Ψ
=
∂X

∂B

∂B

∂Ψ
.

Since both transformations are bijective, the determinant is,

∣∣Jhλ(Ψ)
∣∣ = ∣∣∣∣∂X∂B

∣∣∣∣ ∣∣∣∣∂B∂Ψ
∣∣∣∣ .

the product of the individual determinants. The first determinant is,

∣∣∣∣∂X∂B
∣∣∣∣ = N−1∏

m=1

N−1∏
n=1

∂xmn
∂βmn

=

N−1∏
m=1

N−1∏
n=1

(umn − ℓmn).

The second transformation, from Ψ to B, is an element-wise, temperature-controlled logistic trans-

formation such that,

∣∣∣∣∂B∂Ψ
∣∣∣∣ = N−1∏

m=1

N−1∏
n=1

∂βmn
∂ψmn

=

N−1∏
m=1

N−1∏
n=1

1

λ
σ (ψmn/λ)σ (−ψmn/λ) .

It is important to note that the transformation that maps B → X is only piecewise continu-

ous: the function is not differentiable at the points where the bounds change; for example, when

changing B causes the active upper bound to switch from the row to the column constraint or vice

versa. In practice, we find that our stochastic optimization algorithms still perform reasonably in

the face of this discontinuity.

Jacobian of the Rounding Transformation

Recall that the rounding transformation is given as follows:

xmn = [hλ(Ψ)]mn = λψmn + (1− λ)[round(Ψ)]mn.
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This transformation is piecewise linear with jumps at the boundaries of the “Voronoi cells;” i.e., the

points where round(X) changes. The set of discontinuities has Lebesgue measure zero so the change

of variables theorem still applies. Within each Voronoi cell, the rounding operation is constant,

and the Jacobian is,

log
∣∣Jhλ(Ψ)

∣∣ =∑
m,n

log τ = N2 log τ.

For the rounding transformation with given temperature, the Jacobian is constant.

1.4.5 Comparison of Proposed Methods

The stick-breaking and rounding transformations introduced above each have their strengths and

weaknesses. Here we list some of their conceptual differences. While these considerations aid

in understanding the differences between the two transformations, the ultimate test is in their

empirical performance, which we describe in Section 1.5.1.

• Stick-breaking relaxes to the Birkhoff polytope whereas rounding relaxes to RN×N . The

Birkhoff polytope is intuitively appealing, but as long as the likelihood, p(y |X), accepts

real-valued matrices, either may suffice.

• Rounding uses theO(N3) Hungarian algorithm in its sampling process, whereas stick-breaking

has O(N2) complexity. In practice, the stick-breaking computations are slightly more effi-

cient.

• Rounding can easily incorporate constraints. If certain mappings are invalid, i.e. xmn ≡ 0,

they are given an infinite cost in the Hungarian algorithm. This is hard to do this with

stick-breaking as it would change the computation of the upper and lower bounds.

• Stick-breaking introduces a dependence on ordering. While the mapping is bijective, a desired

distribution on the Birkhoff polytope may require a complex distribution for B. Rounding,

by contrast, is more “symmetric” in this regard.

In summary, stick-breaking offers an intuitive advantage - an exact relaxation to the Birkhoff

polytope - but it suffers from its sensitivity to ordering and its inability to easily incorporate

constraints. As we show next, in practice these concerns ultimately lead us to favor the rounding

based methods.
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1.5 Experiments

1.5.1 Synthetic Experiments

We are interested in two principal questions: (i) how well can the stick-breaking and rounding

re-parameterizations of the Birkhoff polytope approximate the true posterior distribution over

permutations in tractable, low-dimensional cases; and (ii) when do our continuous relaxations offer

advantages over alternative Bayesian permutation inference algorithms?

To assess the quality of our approximations for distributions over permutations, we considered a

toy matching problem in which we are given the locations of N cluster centers and a corresponding

set of N observations, one for each cluster, corrupted by Gaussian noise. Moreover, the observations

are permuted so there is no correspondence between the order of observations and the order of the

cluster centers. The goal is to recover the posterior distribution over permutations. For N = 6, we

can explicitly enumerate the N ! = 720 permutations and compute the posterior exactly.

As a baseline, we consider the Mallows distribution [45] with density over the permutations

ϕ given by pθ,ϕ0(ϕ) ∝ exp(−θd(ϕ, ϕ0)), where ϕ0 is a central permutation with distance between

permutations given by d(ϕ, ϕ0) =
∑N

i=1 |ϕ(i)− ϕ0(i)|, and θ controls the spread around ϕ0. This is

the most popular exponential family model for permutations but, since it is necessarily unimodal,

it can fail to capture complex permutation distributions.

Table 1.1: Mean Battacharya distances in the synthetic matching experiment for various methods
and observation variances.

Variance σ2

Method .12 .252 .52 .752

Stick-breaking .09 .23 .41 .55
Rounding .06 .21 .32 .38
Mallows (θ = 0.1) .93 .92 .89 .85
Mallows (θ = 0.5) .51 .53 .61 .71
Mallows (θ = 2) .23 .33 .53 .69
Mallows (θ = 5) .08 .27 .54 .72
Mallows (θ = 10) .08 .27 .54 .72

We measured the discrepancy between true posterior and an empirical estimate of the inferred

posteriors using the Battacharya distance (BD). We fit qλ(X; θ) with a fixed λ (a hyperparame-

ter) for both stick-breaking and rounding transformations, sampled the variational posterior, and
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Figure 1.3: Inferring labels and weights in C. elegans. (a) Neural activity is optically recorded in
genetically modified C. elegans. (b) The output is a multivariate time series of neural activity of
N neurons for each worm. (c) The first challenge is to infer a latent permutation that matches
observed neuron indices to the known set of neuron names, or labels. (d) The second challenge
is to infer the weights with which each neuron influences its synaptic neighbors. The connectome
(i.e. adjacency matrix) is known, but the weights are not.

rounded the samples to the nearest permutation matrix with the Hungarian algorithm. For the

Mallows distribution, we set ϕ0 to the MAP estimate (also found with the Hungarian algorithm)

and sampled using MCMC.

Both methods outperform the simple Mallows distribution and reasonably approximate non-

trivial distributions over permutations. Figure 1.2 shows (a) sample experiment configurations;

(b) examples of inferred discrete posteriors for stick-breaking, rounding, and Mallows at increasing

levels of noise; and (c) histogram of Battacharya distance. The latter are summarized in Table 1.1.

1.5.2 Brain Dynamics of C. elegans

We consider an application motivated by the study of the neural dynamics in C. elegans. This worm

presents many advantages for scientific study. Each hermaphrodite worm has the same N = 302

neurons, and each neuron has a label, like AIBL, AVAL, etc. Moreover, the worm’s connectome -

the adjacency matrix that specifies how neurons are connected - is well-characterized [29, 46]. Yet

while the adjacency matrix is known, the weights associated with these connections are not.

Modern recording technologies enable whole-brain recordings in C. elegans [28], presenting an

opportunity to learn these weights. Figure 1.3a and Figure 1.3b provide a cartoon illustration:

worms are genetically altered so that their neurons fluoresce when active; in each frame of the

movie neurons appear as dots in the image, and over time the intensity of these dots provides

an optical read-out of the neural activity. However, labeling neurons - i.e. finding the latent
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Figure 1.4: Results on the C.elegans inference example. (a) An example of convergence of the
algorithm, and the baselines. (b) Accuracy of identity inference as a function of mean number of
candidates (correlated with ν), for M = 1 worm (square) and combining information of M = 5
worms (circles). (c) Accuracy as a function of the proportion of known networks beforehand, with
ν = 0.1 (circles) and ν = 0.05 (squares). (d)Variance of distribution over permutations (vectorized)
as a function of the number of iterations. (e) Two samples of permutation matrices round(Ψ) (right)
and their noisy, non-rounded versions Ψ (left) at the twentieth algorithm iteration. The average
of many samples is also shown. These averages take values in (0, 1), indicating uncertainty in the
variational posterior.

permutation that matches observed neurons to known labels, as in Figure 1.3c - is still a manual

task. Experimenters consider the location of the neuron along with its pattern of activity to perform

this matching, but the process is laborious and the results are prone to error. We prototype an

alternative solution, leveraging the location of neurons and their activity in a probabilistic model.

We infer neural labels by combining information from the connectome, covariates like position,

and neural dynamics. Moreover, we combine information from many individual worms to aid in

this labeling. The hierarchical nature of this problem and the plethora of prior constraints and

observations motivate our Bayesian approach.

1.5.3 Probabilistic Model

Let J denote the number of worms and Y (j) ∈ RTj×N denote a recording of worm j with Tj

time steps and N neurons. We model the neural activity as a linear autoregressive process
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Y
(j)
t = X(j)WX(j)T

Y
(j)
t−1 + ε

(j)
t , where ε(j)t is Gaussian. Here, X(j) is a latent permutation that

must be inferred for each worm in order to align the per-worm observations with the shared dynam-

ics matrix W . The hierarchical component of the model is that the unknown weight matrix W is

shared by all worms, and it encodes the influence of one neuron on another. The rows and columns

of W are ordered in the same way as the known connectome A ∈ {0, 1}N×N . The connectome

specifies which entries of W may be non-zero: without a connection (Amn = 0) the corresponding

weight must be zero; if a connection exists (Amn = 1), we must infer its weight. A cartoon example

is shown in Figure 1.3d.

Our goal is to infer W and {X(j)} given {Y (j)} and A using variational permutation inference.

We place a standard Gaussian prior on W and a uniform prior on X(j), and we use the rounding

transformation to approximate the posterior as follows:

p(W, {X(j)} | {Y (j)}, A) ∝ p(W |A)
∏
j

p(Y (j) |W,X(j), A) p(X(j)).

Finally, we use neural position along the worm’s body [47] to constrain the possible neural

identities for a given neuron. Given the positions of the neurons, we construct a binary constraint

matrix C(j) so that C(j)
mn = 1 if observed neuron m is close to where label n is typically found. We

enforce this constraint by zeroing corresponding entries in the parameter matrix M described in

Section 1.4.2. These constraints greatly reduce the number parameters of the model and facilitate

inference.

1.5.4 Results

We compared against three methods: (i) naive variational inference, where we do not enforce the

constraint that X(j) be a permutation and instead treat each row of X(j) as a Dirichlet distributed

vector; (ii) MCMC, where we alternate between sampling from the conditionals of W (Gaussian)

and X(j), from which one can sample by proposing local swaps, as described in [48], and (iii)

maximum a posteriori estimation (MAP). Our MAP algorithm alternates between the optimizing

estimate of W given {X(m), Y (m)} using linear regression and finding the optimal X(j). The second

step requires solving a quadratic assignment problem (QAP) in X(j); that is, it can be expressed

as Tr(AXBXT) for matrices A,B. We used the QAP solver proposed by [49].
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We find that our method outperforms each baseline. Figure 1.4a illustrates convergence to a

better solution for a certain parameter configuration. Moreover, Figure 1.4b and Figure 1.4c show

that our method outperforms alternatives when there are many possible candidates and when only

a small proportion of neurons are known with certainty. Figure 1.4c also shows that these Bayesian

methods benefit from combining information across many worms.

Altogether, these results indicate our method enables a more efficient use of information than its

alternatives. This is consistent with other results showing faster convergence of variational inference

over MCMC [7], especially with simple Metropolis-Hastings proposals. We conjecture that MCMC

would eventually obtain similar if not better results, but the local proposals—swapping pairs of

labels—leads to slow convergence. On the other hand, Figure 1.4a shows that our method converges

much more quickly while still capturing a distribution over permutations, as shown by the overall

variance of the samples in Figure 1.4d and the individual samples in Figure 1.4e.

For experiments on synthetic matching and the C. elegans example we used Autograd [50],

explicitly avoiding propagating gradients through the non-differentiable round operation, which

requires solving a matching problem.

We used ADAM [51] with learning rate 0.1 for optimization. For rounding, the parameter

vector V defined in 3.2 was constrained to lie in the interval [0.1, 0.5]. Also, for rounding, we

used ten iterations of the Sinkhorn-Knopp algorithm, to obtain points in the Birkhoff polytope.

For stick-breaking the variances ν defined in 3.1 were constrained between 10−8 and 1. In either

case, the temperature, along with maximum values for the noise variances were calibrated using a

grid search on the interval [10−2, 1]. Improvements may be obtained with the use of an annealing

schedule.

In the C. elegans example we considered the symmetrized version of the adjacency matrix

described in [46]; i.e. we used A′ = (A + A⊤)/2, and the matrix W was chosen antisymmetric,

with entries sampled randomly with the sparsity pattern dictated by A′. To avoid divergence, the

matrix W was then re-scaled by 1.1 times its spectral radius. This choice, although not essential,

induced a reasonably well-behaved linear dynamical system, rich in non-damped oscillations. We

used a time window of T = 1000 time samples, and added spherical standard noise at each time. All

results in Figure 4 are averages over five experiment simulations with different sampled matrices W .

For results in Figure 4b we considered either one or four worms (squares and circles, respectively),
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and for the x-axis we used the values ν ∈ {0.0075, 0.01, 0.02, 0.04, 0.05}. We fixed the number of

known neuron identities to 25 (randomly chosen). For results in Figure 4c we used four worms and

considered two values for ν; 0.1 (squares) and 0.05 (circles). Different x-axis values correspond to

fixing 110, 83, 55 and 25 neuron identities.

1.6 Discussion

Our results provide evidence that variational permutation inference is a valuable tool, especially

in complex problems like neural identity inference where information must be aggregated from

disparate sources in a hierarchical model. As we apply this to real neural recordings, we must

consider more realistic, nonlinear models of neural dynamics. Here, again, we expect variational

methods to shine, leveraging automatic gradients of the relaxed ELBO to efficiently explore the

space of variational posterior distributions.

1.7 Corresponding Methods of Discrete Variational Inference for

Categorical Distributions

We can gain insight and intuition about the stick-breaking and rounding transformations by con-

sidering their counterparts for discrete, or categorical, variational inference.

1.7.1 Stick-Breaking

The stick-breaking transformation to the Birkhoff polytope presented in Section 1.4 contains a

recipe for stick-breaking on the simplex. In particular, as we filled in the first row of the doubly-

stochastic matrix, we were transforming a real-valued vector ψ ∈ RN−1 to a point in the simplex.

We present this procedure for discrete variational inference again here in simplified form. Start

with a reparameterization of a Gaussian vector,

zn
iid∼ N (0, 1),

ψn = µn + νnzn, 1 ≤ n ≤ N − 1,
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parameterized by θ = (µn, νn)
N−1
n=1 . Then map this to the unit hypercube in a temperature-

controlled manner with the logistic function,

βn = σ(ψn/λ),

where σ(u) = (1 + e−u)−1 is the logistic function. Finally, transform the unit hypercube to a point

in the simplex:

x1 = β1,

xn = βn

(
1−

n−1∑
m=1

xm

)
, 2 ≤ n ≤ N − 1,

xN = 1−
N−1∑
m=1

xm,

Here, βn is the fraction of the remaining “stick” of probability mass assigned to xn. This transfor-

mation is invertible, the Jacobian is lower-triangular, and the determinant of the Jacobian is easy

to compute. In [52], the density of x implied by a Gaussian density on ψ is computed.

The temperature λ controls how concentrated p(x) is at the vertices of the simplex, and with

appropriate choices of parameters, in the limit λ→ 0 we can recover any categorical distribution (we

will discuss this in detail in Section 1.7.3). In the other limit, as λ→∞, the density concentrates

on a point in the interior of the simplex determined by the parameters, and for intermediate values,

the density is continuous on the simplex.

Finally, note that the logistic-normal construction is only one possible choice. We could instead

let βn ∼ Beta(anλ ,
bn
λ ). This would lead to a generalized Dirichlet distribution on the simplex. The

beta distribution is slightly harder to reparameterize since it is typically simulated with a rejection

sampling procedure, but [53] have shown how this can be handled with a mix of reparameteri-

zation and score-function gradients. Alternatively, the beta distribution could be replaced with

the Kumaraswamy distribution [54], which is quite similar to the beta distribution but is easily

reparameterizable.
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1.7.2 Rounding

Rounding transformations also have a natural analog for discrete variational inference. Let en

denote a one-hot vector with n-th entry equal to one. Define the rounding operator,

round(ψ) = en∗ ,

where

n∗ = arg min
n

∥en − ψ∥2

= arg max
n

ψn.

In the case of a tie, let n∗ be the smallest index n such that ψn > ψm for all m < n. Rounding

effectively partitions the space into N disjoint “Voronoi” cells,

Vn =
{
ψ ∈ RN : ψn ≥ ψm ∀m ∧ ψn > ψm ∀m < n

}
.

By definition, round(ψ) = en∗ for all ψ ∈ Vn∗

We define a map that pulls points toward their rounded values,

x = λψ + (1− λ)round(ψ). (1.5)

Proposition 1.1. For λ ∈ [0, 1], the map defined by (1.5) moves points strictly closer to their

rounded values so that round(ψ) = round(x).

Proof. Note that the Voronoi cells are intersections of halfspaces and, as such, are convex sets.

Since x is a convex combination of ψ and en∗ , both of which belong to the convex set Vn∗ , x must

belong to Vn∗ as well.

Similarly, x will be a point on the simplex if and only if ψ is on the simplex as well. By

analogy to the rounding transformations for permutation inference, in categorical inference we use

a Gaussian distribution ψ ∼ N (proj(m), ν), where proj(m) is the projection of m ∈ RN+ onto the

simplex. Still, the simplex has zero measure under the Gaussian distribution. It follows that the
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rounded points x will almost surely not be on the simplex either. The supposition of this approach

is that this is not a problem: relaxing to the simplex is nice but not required.

In the zero-temperature limit we obtain a discrete distribution on the vertices of the simplex.

For λ ∈ (0, 1] we have a distribution on Xλ ⊆ RN , the subset of the reals to which the rounding

operation maps. (For 0 ≤ λ < 1 this is a strict subset of RN .) To derive the density q(x), we need

the inverse transformation and the determinant of its Jacobian. From Proposition 1.1, it follows

that the inverse transformation is given by,

ψ =
1

λ
x− 1− λ

λ
round(x).

As long as ψ is in the interior of its Voronoi cell, the round function is piecewise constant and the

Jacobian is ∂ψ
∂x = 1

λI, and its determinant is λ−N . Taken together, we have,

q(x;m, ν) =λ−NN
(
1

λ
x− 1− λ

λ
round(x); proj(m), fdiag(ν)

)
× I[x ∈ Xλ].

1.7.3 Limiting Analysis for Stick-Breaking

We show that stick-breaking for discrete variational inference can converge to any categorical

distribution in the zero-temperature limit.

Let β = σ(ψ/λ) with ψ ∼ N (µ, ν2). In the limit λ→ 0 we have β ∼ Bern(Φ(−µ
ν )), where Φ(·)

denotes the Gaussian cumulative distribution function (cdf). Moreover, when βn ∼ Bern(ρn) with

ρn ∈ [0, 1] for n = 1, . . . , N , the random variable x obtained from applying the stick-breaking trans-

formation to β will have an atomic distribution with atoms in the vertices of ∆N ; i.e, x ∼ Cat(π)

where

π1 = ρ1

πn = ρn

n−1∏
m=1

(1− ρm) n = 2, . . . , N − 1,

πN =

N−1∏
m=1

(1− ρm).

These two facts, combined with the invertibility of the stick-breaking procedure, lead to the

following proposition
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Proposition 1.2. In the zero-temperature limit, stick-breaking of logistic-normal random variables

can realize any categorical distribution on x.

Proof. There is a one-to-one correspondence between π ∈ ∆N and ρ ∈ [0, 1]N−1. Specifically,

ρ1 = π1

ρn =
πn∏n=1

m=1 1− ρm
for n = 2, . . . , N − 1.

Since these are recursively defined, we can substitute the definition of ρm to obtain an expression

for ρn in terms of π only. Thus, any desired categorical distribution π implies a set of Bernoulli

parameters ρ. In the zero temperature limit, any desired ρn can be obtained with appropriate

choice of Gaussian mean µn and variance ν2n. Together these imply that stick-breaking can realize

any categorical distribution when λ→ 0.

1.7.4 Variational Autoencoders (VAE) with Categorical Latent Variables

We considered the density estimation task on MNIST digits, as in [12, 13], where observed digits

are reconstructed from a latent discrete code. We used the continuous ELBO for training, and

evaluated performance based on the marginal likelihood, estimated with the variational objective

of the discretized model. We compared against the methods of [12, 13] and obtained the results

in Table 1.2. We used Tensorflow [55] for the these experiments, slightly changing the code made

available from [13].

Table 1.2: Summary of results in VAE

Method − log p(x)
Concrete 111.5
Rounding 121.1
Stick-breaking 119. 8

Figure 1.5 shows MNIST reconstructions using Concrete, stick-breaking and rounding reparam-

eterizations. In all the three cases reconstructions are reasonably accurate, and there is diversity

in reconstructions.

While stick-breaking and rounding fare slightly worse than the Concrete distribution, they are

readily extensible to more complex discrete objects, as previously shown. However, this difference
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Real Gumbel-Softmax Rounding Stick-breakingConcrete Distribution RoundingReal Stick-Breaking

Figure 1.5: Examples of true and reconstructed digits from their corresponding discrete latent
variables. The real input image is shown on the left, and we show sets of four samples from the
posterior predictive distribution for each discrete variational method: Concrete, rounding, and
stick-breaking. Above each sample we show the corresponding sample of the discrete latent “code.”
The random codes consist of of K = 20 categorical variables with N = 10 possible values each.
The codes are shown as 10× 20 binary matrices above each image.

in performance and increase in complexity is justification for primarily focusing on the Concrete

distribution in Chapter 3 and Chapter 5 when focusing on Categorical distributions as part of

the development of the SmartGraph system. In Chapter 5, we develop an approximation to the

Concrete distribution that makes it computationally tractable for use in a graph setting.

The “network” aspects of this current chapter are quite clear, as are the relevance of deep

learning techniques to solving problems related to networks. However, as we observed, there is a lot

of manual work required in setting up approximate priors and finding appropriate transformations

for each problem, that may be prohibitive in any context where we may wish to know many aspects

of a system, and do not have the capability to perform such specific analytics for each and every

problem variation. An example of such a situation is a graph database, with many users wishing

to run different graph analytics and computation using shared and/or distinct data. Nonetheless,

the techniques of this chapter form the basis for how machine learning problems can be approached
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on graphs in a fairly general way through the use of continuous approximation techniques, as

demonstrated in future chapters.

30



Chapter 2

Learning Graph Topological Features

through Generative Adversarial

Networks

In this chapter, we explore some typical approaches for handling graph structured datasets for

machine learning tasks. Key focus points of this chapter are how graphs are interpreted by tradi-

tional deep learning methodologies, and how the disparity in the structure of graphs necessitates

more flexible approaches that can handle many types of graphs. This chapter focuses on structural

considerations more than vertex and edge properties, and demonstrates a methodology capable of

dealing with many graphical structures. This work was key in our understanding the need for a

machine learning methodology for graphs that can not only be used for a wide variety of graphs,

but can also interpret graphs in a more natural way (e.g. through querying), a concept developed

further in Chapters 3-5.

2.1 Motivation

Inspired by the power of generative adversarial networks (GANs) in image domains, we introduce

[2, 56] a novel hierarchical architecture for learning characteristic topological features from a sin-

gle arbitrary input graph via GANs. The hierarchical architecture consisting of multiple GANs

preserves both local and global topological features and automatically partitions the input graph
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into representative “stages” for feature learning. The stages facilitate reconstruction and can be

used as indicators of the importance of the associated topological structures. Experiments show

that our method produces subgraphs retaining a wide range of topological features, even in early

reconstruction stages (unlike a single GAN, that cannot easily identify such features, let alone

reconstruct the original graph). This chapter outlines the first research effort on combining the use

of GANs and graph topological analysis.

2.2 Introduction

Graphs have great versatility, able to represent complex systems with diverse relationships between

objects and data. With the rise of social networking, and the importance of relational properties

to the “big data” phenomenon, it has become increasingly important to develop ways to automat-

ically identify key structures present in graph data. Identification of such structures is crucial in

understanding how a social network forms, or in making predictions about future network behavior.

To this end, numerous graph analysis methods have been proposed to analyze the topology of the

target network at the node [57], community [58, 59], and global levels [60], and perform certain

data analysis and machine learning tasks.

Unfortunately, each level of analysis is greatly influenced by the underlying network topology,

and so far no algorithm can be effectively and automatically adapted to arbitrary and complex net-

work structures. For example, modularity-based community detection [61] works well for networks

with separate clusters, whereas edge-based methods [62] prevail in dense networks. Similarly, when

performing graph sampling, Random Walk (RW) is suitable for sampling paths [63], whereas Forrest

Fire (FF) is useful for sampling clusters [64]. When it comes to graph generation, Watts-Strogatz

(WS) graph models [65] can generate graphs with small world features, whereas Barabasi-Albert

(BA) graph models [66] can simulate super hubs and regular nodes according to the scale-free

features of the network.

However, real-world networks typically have multiple and potentially complex topological fea-

tures, which may be beyond the expressive power of a single graph model. Moreover, taking

real-world networks into consideration also introduces another issue that traditional graph analysis

methods have been struggling with: one may only have a single instance of a graph (e.g. the trans-

action graph for a particular bank), making it difficult to identify the key topological properties
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Original Graph DCGAN Output Graph GTI Output Graph

Figure 2.1: How GTI recovers the original graph while naive GAN methods fail.

in the first place. In particular, many graph mining and analysis problems are often associated

with both “local topological features” such as the presence of subgraph structures like triangles and

“global topological features” such as degree distribution.

In this chapter, we propose an unsupervised method, the Graph Topology Interpolater (GTI),

to facilitate graph analysis with an aim of bypassing the aforementioned issues. GTI is a novel

approach combining techniques from graph analysis and GAN based image processing techniques.

In Figure 2.1, we demonstrate that naively feeding the full graph (here, a 20 node BA network [66])

into a standard GAN implementation (the DCGAN [67]) is unsuccessful; such a GAN structure

is unable to learn to reproduce the original graph, and instead becomes stuck in undesirable local

minima. By reproducing critical topological structures through stages, we are able to interpretably

demonstrate the importance of topological properties and features to the graph.

Instead of directly and naively analyzing the entire topology of a graph as an image, GTI first

divides the graph into several hierarchical layers. A hierarchical view of a graph can split the

graph by local and global topological features, giving a better understanding of the graph [68].

As different layers have different topological features, GTI uses separate GANs to learn each layer

and the associated features. By leveraging GAN’s feature identification capability [69, 70] on each

layer, GTI has the ability to automatically capture arbitrary topological features from a single

input graph.

In addition to learning topological features from the input graph, the GTI method defines a

reconstruction process for reproducing the original graph via a series of reconstruction stages (the

number of which is automatically learned during training). As stages are ranked in the order of

their contribution to the full topology of the original graph, early stages can be used as indicators

of the most important topological features. This work is the first-line research in leveraging GAN
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to learn hierarchical topological features given a single input graph. We demonstrate its ability to

efficiently learn important topological features to retain critical structures and make comparisons

to graph sampling methods.

Our proposed GTI method has three core contributions:

1. GTI is a model-agnostic graph topology analysis tool, which means it can analyze arbitrary

kinds of topology for a graph, rank the edge set, and outputs representative stages for the

graph.

2. For each stage, it can preserve both local and global topological features of the input graph.

3. The input of GTI is a single graph, which renders this method applicable to a wide range of

applications with unique but rare graphs.

2.3 Method

In this section, we demonstrate the work flow of our Graph Topology Interpolater (GTI) (see Figure

2.2), with a particular focus on the GAN, Sum-up and Stage Identification modules. At a high

level, the GTI method takes an input graph, learns its hierarchical layers, trains a separate GAN

on each layer, and autonomously combines their output to reconstruct stages of the graph. Here

we give a brief overview of each module.

Hierarchical Identification Module: This module detects the hierarchical structure of the

original graph using the Louvain hierarchical community detection method [71]. Let L denote the

number of layers. The average size of communities in each layer is used as a criterion for how many

subgraphs a layer should pass to the next module.

Layer Partition Module: The main purpose of this module is to partition a given layer

into M non-overlapping subgraphs, where M is the number of subgraphs. The reason why we do

not use the learned communities from the Louvain method is that we cannot constrain the size of

any community. We instead balance the communities into fixed size subgraphs using the METIS

approach [72].

Layer GAN Module: Here we apply the GAN methodology to graph analysis. Rather than

directly using one GAN to learn the whole graph, we use different GANs to learn features for each
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layer separately. If we use a single GAN to learn features for the whole graph, some topological

features may be diluted or even ignored. See Section 2.3.2 for more details.

Layer Regeneration Module: Here, for a given layer, the corresponding GAN has learned

all the properties of each subgraph, meaning we can use the generator in this GAN to regenerate

the topology of the layer by generating M subgraphs consisting of k nodes. Note that this recon-

struction only restores edges within each non-overlapping subgraph, and does not include edges

between subgraphs.

All-layer Sum-up Module: By summing up the results from reconstructed layers, along

with the edges that were not considered in the Regeneration Module, the purpose of this module

is to output a weighted graph, where the “weight” represents the importance of an edge during the

reconstructing process. Indeed, we rely upon these weights to identify the reconstruction stages for

the original graph. For more details, see Section 2.3.3.

Stage Identification Module: By analyzing the weighted adjacency matrix of the Sum-up

Module, we can regenerate the graph by controlling different thresholds to generate an edge on a

node-pair with respect to the value of the previously obtained weighted adjacency matrix. Here, we

use the term “stage” to indicate a regenerated graph where the weights of edges are equal or larger

than a given threshold. Note that these stages can be interpreted as steps for graph reconstruction,

and can be automatically determined by the weights of edges. See Section 2.3.4 for details.

Original 
Graph

Reconstruction
StagesHierarchical

Identification

Layer 1
Partition 

Layer 1
GAN

Layer 1
Regenerate

Layer 2
Partition 

Layer 2
GAN

Layer 2
Regenerate

Layer L
Partition 

Layer L
GAN

Layer L
Regenerate

…… …

Stage
Identification

Inter Subgraph Edges

Figure 2.2: Work flow for the Graph Topology Interpolater (GTI).
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2.3.1 Layer Identification and Layer Partition Module

This module implements the Louvain community detection method to identify the number of

hierarchical layers in a graph [71]. By introducing a local optimization function “Incremental

Modularity ∆Q,” this approach calculates the ∆Q of a node and its neighbors, and selects one with

the largest ∆Q. When ∆Q > 0, the corresponding neighbor(s) are merged to the local community

where the current node belongs to. The selection process will stop when the local community in the

graph is no longer changing. Following this, the Louvain method begins a new iteration by merging

these local communities into a new layer in the hierarchy, and again performing arg max∆Q to

detect new local communities in this layer. Consequently, this algorithm automatically constructs

hierarchical layers for a graph.

As the Louvain method helps to determine hierarchical structure and communities of the input

graph in an unsupervised manner, we use two sources of information, the number of hierarchies

and the number of communities in the corresponding layer, as prior information for guiding the

algorithm to generate training samples for each layer. The reason to use the number of communities

instead of the communities themselves is because the input tensor for convolution neural network

always requires the same size inputs. Hence, we need to unify the size of input samples for the

generator to learn. In practice, this harsh requirement can be satisfied by adding isolated node(s)

to the subgraph, or padding zeros to the adjacent matrix of the subgraph. Of course, this has the

consequence of introducing noise. This sort of strict requirement about input dimensions (for a

class of input objects where this varies drastically) is an example of why future chapters of this

dissertation involve developing alternative input methods for varied graph structures, for use in the

SmartGraph system.

If we directly used the identified community as a subgraph, given the fact that one cannot

ensure Louvain method will detect communities of the same size, we would need to add more

isolated nodes to make same-sized communities and will inevitably incur the aforementioned noise

in the learning process. To avoid this issue, we use the METIS method [72]. The METIS method

takes a graph as its input, and partitions the nodes in a balanced way so that each partition has

the same number of nodes while minimizing the number of cut edges. Consequently, in the task of

community detection with a known number of communities, the METIS method finds same-sized

communities with strong within-community connections.
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Figure 2.3: An example of Layer Identification and Layer Partition module.

The overall procedure for the Layer Identification and Layer Partition module is summarized

in Figure 2.3. First, by conducting Louvain method on the input graph, we can obtain the hier-

archical structure. Here, each hierarchy stands for an layer, and we can also obtain the number

of communities in this layer (i.e. M1,M2 · · ·M l for layer 1, 2, and l, respectively). Then, for

each layer, we use the METIS method, along with the corresponding number of communities, to

partition the original graph into same-sized communities (sub-graphs).

2.3.2 Layer GAN Module

Figure 2.4 and Figure 2.5 show the architectures for the generator and discriminator of the GAN,

respectively. The generator is a deconvolutional neural network with the purpose of restoring a

k × k adjacency matrix from the standard normal distribution. The discriminator is instead a

CNN whose purpose is to estimate if the input adjacency matrix is from a real dataset or from a

generator. Here, BN is short for batch normalization which is used instead of max pooling because

max pooling selects the maximum value in the feature map and ignores other values, whereas

BN will synthesize all available information. LR stands for the leaky ReLU activation function

(LR = max(x, 0.2 × x)). Its value 0 carries a specific meaning for adjacency matrices (no edges).

In addition, k represents the size of a subgraph, and FC is the length of a fully connected layer.

We set the stride for the convolutional/deconvolutional layers to be 2. We adopt the same loss

function and optimization strategy as used in DCGAN [67].

2.3.3 Sum-up Module

In this module, we use a linear function (see Equation (2.1)) to add the graphs from all layers

together. The term reG stands for the reconstructed adjacency matrix (with inputs from all layers),
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Figure 2.5: Discriminator architecture.

G′
i (i ∈ L) represents the reconstructed adjacency matrix for each layer (with G representing the

full original graph with N nodes), E refers to all the inter-subgraph (community) edges identified

by the Louvain method from each hierarchy, and b represents a bias. Note that while each layer

of the reconstruction may lose certain edge information, summing up the hierarchical layers along

with E will have the ability to reconstruct the entire graph:

reG =

L∑
i=1

wiG
′
i + wE + b (2.1)

To obtain the weight w for each layer and the bias b, we use Equation (2.2) as the loss function

(where we add ϵ = 10−6 to avoid taking log(0) or division by 0), use 500 iterations of stochastic

gradient descent (SGD) with learning rate 0.1 to minimize this loss function and find suitable

parameters. We note that Equation (2.2) is similar to a KL divergence, though of course reG and
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G are not probability distributions.

Loss (reG, G) =
∑

i∈1···N2

vec(G+ ϵ)i · log
vec(G+ ϵ)i
vec(reG + ϵ)i

(2.2)

2.3.4 Stage Identification

After the above calculations, we obtain the weighted adjacency matrix reG, where weights on edges

represent how each edge contributes to the entire topology. Clearly, different weights represent

different degrees of contribution to the topology. Therefore, according to these weights, we can

divide the network into several stages, with each stage representing a collection of edges greater

than a certain weight. We introduce the concept of a “cut-value” to turn reG into a binary

adjacency matrix. We observe that many edges in reG share the same weight, which implies these

edges share the same importance. Furthermore, the number of unique weights can define different

reconstruction stages, with the most important set of edges sharing the highest weight. Each stage

will include edges with weights greater than or equal to the corresponding weight of that stage.

Hence, we define an ordering of stages by decreasing weight, giving insight on how to reconstruct

the original graph in terms of edge importance. We denote the i-th largest unique weight-value as

CVi (for “cut value”) and thereby denote the stages as in Equation (2.3) (an element-wise product),

where I[w ≥ CVi] is an indicator function for each weight being equal or larger than the CVi:

reiG = reGI[w ≥ CVi] (2.3)

In Section 2.5, we use synthetic and real networks to show that each stage preserves identifiable

topological features of the original graph during the graph reconstruction process. As each stage

contains a subset of the original graphs edges, we can interpret each stage as a sub-sampling of

the original graph. This allows us to compare with prominent graph sampling methodologies to

emphasize our ability to retain important topological features.

By comparing GTI with some state-of-the-art graph sampling methodologies, we have found

that the stages in GTI have similar performance for most metrics. Moreover, we note that since

the number of stages in the reconstruction and the size of the graph in each stage are learned

automatically, we do not have precise control over the size of the “sampled” graphs. Of course, we
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should recall that the purpose of the approach is not sampling as such, but rather to understand the

important topological properties of the graph interpretably, as demonstrated by the reconstruction

stages.

2.4 Related Work

The development of deep learning and the growing maturity of graph topology analysis has led to

more attention on the ability to use the former for the latter [73]. A number of supervised and

semi-supervised learning methods have been developed for graph analysis. A particular focus is on

the use of CNNs [74–77]. These methods have shown promising results on their respective tasks

in comparison to traditional graph analysis methods (such as kernel-based methods, graph-based

regularization techniques, etc). The above methods have been discussed in detail, with [77, 78]

pointing out the strengths and drawbacks of various approaches. Recently, it was proposed [79]

that one could use a naive method to generate the graph topology using GANs, by randomly

perturbing the input graph 10,000 times, and feeding these graphs into a DCGAN. It simply treats

the adjacency matrix of a graph as an image, and uses random permutation to generate enough

samples to train a DCGAN. Unlike our approach, this does not take any topological information

of the graph into consideration.

A key difference between GTI and other methods is that GTI is an unsupervised learning tool

(facilitated by the use of GANs), that leverages the hierarchical structure of a graph. GTI can

automatically capture both local and global topological features of a network. To the best of the

authors’ knowledge, this is the first unsupervised method in such manner.

Since GANs were first introduced [69] in 2014, its theory and application have expanded greatly.

Many advances in training methods [80–83] have been proposed in recent years, and this has

facilitated their use in a number of applications. For example, GANs have been used for artwork

synthesis [84], text classification [85], image-to-image translation [86], imitation of driver behavior

[87], identification of cancers [88], etc. The GTI method expands the use of GANs into the graph

topology analysis area.
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2.5 Evaluation

All experiments in this chapter were conducted locally on CPU using an Intel Core i7 2.5GHz

processor and 16GB of 1600MHz RAM. Though this limits the size of our experiments in this

work, the extensive GAN literature (see Section 2.4) and the ability to parallelize GAN training

based on hierarchical layers suggests that our method can be efficiently scaled to much larger

systems. To study the benefit of the proposed GTI method, this section provides both qualitative

and quantitative evaluations of the stages identified by GTI.

2.5.1 Datasets

We use a combination of synthetic and real datasets. Through the use of synthetic datasets with

particular topological properties, we are able to demonstrate the ability of retaining these easily

identifiable properties across the reconstruction stages using GTI. In addition to validation on

synthetic datasets with known topological properties, we also demonstrate our method on a number

of real-world datasets with varying sizes.

We use the ER graph model [89], the BA graph model [66], the WS graph model [68] and the

Kronecker graph model [90] to generate our synthetic graphs. Here, we have observed that for a

WS network, the hyper-parameter k will affect the clustering coefficient, as k controls the number

of neighbors a node may connect in a WS network (WS-1). That is, if we set k ≤ 3, the clustering

coefficient for each node in WS network is 0. Hence, we add an extra WS network (WS-2) with

k = 6 to avoid this case. For all synthetic networks, we use the python package NetworkX [91] to

generate the corresponding graph.

For real datasets, we use data available from the Stanford Network Analysis Project (SNAP)

[92]. In particular, we use the Facebook network, the Wiki-Vote network, and the P2P-Gnutella

network. The Facebook [93] dataset consists of “friends lists”, collected from survey participants

according to the connections between user-accounts on the online social network. It includes node

features, circles, and ego networks; all of which has been anonymized by replacing the Facebook-

internal IDs. Wiki-Vote [94] is a voting network (who votes for whom etc) that is used by Wikipedia

to elect page administrators; P2P-Gnutella [95] is a peer-to-peer file-sharing network: Nodes rep-

resent hosts in the Gnutella network topology, with edges representing connections between the
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Table 2.1: Size of original datasets, hyper-parameters for synthetic graphs, and corresponding
reconstruction stages

Graph # Nodes # Edges # Stages Retained edge percentage for ordered stages (%)
BA (m=2) 500 996 7 19.48, 26.31, 36.04, 39.36, 41.57, 57.43, 100
ER (p=0.2) 500 25103 4 4.32, 21.73, 94.91, 100
WS-1 (p=0.2, k=3) 500 500 7 11.20, 11.40, 16.00, 18.00, 54.60, 97.80, 100
WS-2 (p=0.2, k=6) 500 1500 8 15.60, 16.30, 21.04, 25.18, 38.62, 73.21, 98.13, 100
Kronecker 2178 25103 10 87.77, 88.65, 91.76, 91.89, 92.47, 93.32, 96.06, 97.05, 98.57, 100
Facebook 4039 88234 7 52.28, 83.33, 87.49, 91.41, 90.31, 91.95, 100
Wiki-Vote 7115 103689 4 58.31, 73.79, 85.60, 100
RoadNet 5371 7590 12 0.62, 3.87, 26.64, 27.98, 31.79, 32.42, 34.22, 34.65, 34.80, 64.06, 76.81, 100
P2P 3334 6627 7 49.04, 53.90, 70.32, 87.54, 88.40, 89.65, 100

hosts. RoadNet [96] is the road network of Pennsylvania. Intersections and endpoints are repre-

sented by nodes, and the roads connecting them are edges. As this graph is of a size prohibitive to

the computing resources used in work, we choose a connected component of appropriate size (note

that the full network is not connected because nodes may be connected in the real-world by roads

outside of Pennsylvania). Detailed information for the synthetic graphs as well as the real-world

datasets are outlined in Table 2.1.

2.5.2 Local Topological Features

As discussed in Section 2.3, GTI automatically ranks edge sets based on their contribution to the

reconstruction of the original graph. Here we use two examples to demonstrate how this process

retains important local topological structure during each reconstruction stage. By applying GTI

to the BA network, the method learns that there are six stages for reconstruction of the original

topology (with stages 1, 3, and 5 shown in Figure 2.6). In our second example, we demonstrate

GTI reconstruction for the real-world RoadNet dataset. For this input, Figure 2.7 demonstrates

the learned reconstruction stages 4,8, and 11.

BA Network Stage Analysis: We demonstrate the reconstruction process of a BA network

in Figure 2.6, with the top row demonstrating the entire reconstruction process of the full network.

We clearly observe that each reconstructed network becomes denser and denser as additional stages

are added. The bottom row of Figure 2.6 shows the subgraphs corresponding to nodes 0 to 19 at

each reconstruction stage. We observe that these subgraphs retain the most important feature of

the original subgraph (the star structures at node 0), even during the first reconstruction stage. In

addition, we observe that the final stage exactly corresponds to the original stage. We again note
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Stage 1 Stage 3 Stage 5 Final Stage = Original Graph

Figure 2.6: The topology of original graph and corresponding stages of BA network.

that as illustrated in Figure 2.1, this reconstruction is extremely difficult when training a single

GAN directly on the original graph.

Road Network Stages Analysis: We observe in Table 2.1 that the retained edge percentages

of the RoadNet reconstruction decrease more consistently with each stage than in the BA network.

This is reasonable, because geographical distance constraints naturally result in fewer super hubs,

with each node having less variability in its degree. In Figure 2.7, we observe the reconstruction of

the full network, and the node 0 to node 19 subgraph of RoadNet. We observe in the bottom row

of Figure 2.7 that the dominant cycle structure of the original node 0-19 subgraph clearly emerges.

We also observe an interesting property of the stages of the original graph in the top row of

Figure 2.7. As SNAP does not provide the latitude and longitude of nodes, we cannot use physical

locations. We instead calculate the modularity of each stage, where modularity represents how well

connected the community is [97]. The tighter the community, the larger the modularity. We found

that the modularity deceases from 0.98 to 0.92 approximately linearly. This suggests that the GTI

stages first prioritize the clustering of nodes (through edge connections) over connections between

clusters. This indicates that GTI views the dense connections between local neighborhoods as a

particularly important topological property of road networks, consistent with our intuition.

2.5.3 Global Topological Features

In this section, we demonstrate the ability of GTI reconstruction stages to preserve global topo-

logical features, focusing on degree distribution and the distribution of cluster coefficients.
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Stage 4 Stage 8 Stage 11 Final Stage = Original Graph

Figure 2.7: The topology of original graph and corresponding stages of road network.

Figure 2.8 and Figure 2.9 respectively show the log-log degree distributions and log-log cluster

coefficient distributions for each of the datasets given in Table 2.1. In Figure 2.8 (2.9), the horizontal

axis in each degree distribution represents the ordered degrees (ordered cluster coefficient), with

the vertical axis representing the density of each degree (cluster coefficient). For each sub-figure,

we use a red line to demonstrate the degree (cluster coefficient) distribution of the original graph,

and use a set of colors (gradient from green to blue) to represent the corresponding distributions

of the ordered stages.

We observe that except for the ER network, the degree distributions and the cluster coefficient

distributions of early stages are similar to the original graphs, and only become more so as we

progress through the reconstruction stages. Although the degree distributions and cluster coefficient

distributions for the early stages of the ER network reconstruction are shifted, we observe that GTI

quickly learns the Poisson like shape in degree distribution, and also learns the “peak-like” shape

in the cluster coefficient distribution. This is particularly noteworthy given that the ER model has

no true underlying structure (as graphs are chosen uniformly at random). Finally, we note that

the cluster coefficient for each node in WS-1 is zero, and we have observed that GTI learns this

feature very quickly, even in the first few stages. However, as we cannot take the log of zero in the

subplot, we plot the behavior of GTI on WS-2 instead in Figure 2.9. The results show that in both

cases (zero or non-zero cluster coefficient), GTI is able to learn the corresponding characteristics.

In addition, we also use Frobenius norm [98] (see Equation (2.4)) and average node-node simi-

larity [99] (see Equation (2.5)) to evaluate the similarity between generated stages and the original

graph. Let A = G − G′
L−1, where G′

L−1 is the adjacency matrix of the penultimate stage. The
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Figure 2.8: Degree distributions for 8 datasets.

notation AT denotes the matrix transpose of A, and sim
(
n
G′

L−1

i , nGj

)
represents the node-node

similarity with mismatch penalty [100] between node i ∈ G′
L−1 and node j ∈ G. The total number

of nodes in the original graph is given by
∣∣NG

∣∣. Here, the F-norm calculates the distance between

two adjacency matrices, and average node-node similarity indicates how G′
L−1 resembles G.

F-norm =

√√√√ N∑
i=1

N∑
j=1

a2ij =
√
trace(ATA) (2.4)

sim(G′
L−1, G) =

∑
i∈N

∑
j∈N sim

(
n
G′

L−1

i , nGj

)
|NG|

(2.5)

For comparison, we use the same model parameters to generate 100 ensembles of BA, ER,

Kronecker and WS networks. These newly generated networks serve as base models to help us

evaluate the similarity between the penultimate stage and the original graph. Table 2.2 and 2.3

respectively display the F-norm and the average node-node similarity between the penultimate

stage and original graph. Here, bold letters imply best values between the penultimate stage and

the mean value of corresponding base models for each dataset. We likewise generated 100 samples

for each base model. Hence, for the BaseModel and Penultimate Stage Columns in Table 2.2 and

Table 2.3, we add the standard error for each generated network.
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Figure 2.9: Cluster coefficient distributions for 8 datasets.

• Table 2.2 shows that 3 of 4 penultimate stages (i.e. BA, Kronecker, WS) have smaller F-norm

distances, which means GTI successfully maintains the topological information of the original

graph.

• Table 2.3 shows that the penultimate stage of BA has larger average node-node similarity with

the original graph, and the penultimate stages of Kronecker and WS and the corresponding

base model have identical similarity to the original graph. These results give a solid evidence

that GTI also has the ability to attain good node-level similarity to the original graph.

• The ER network is a totally random graph model and hence GTI performs slightly worse

than the base models (i.e. due to a lack of important topological structure for GTI to learn).
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Table 2.2: F-norm distance numerical evaluation on penultimate stage and original graph

Graph Penultimate Stage BaseModel BaseModelmin BaseModelmean BaseModelmax
BA 53.0283±0.0436 62.9031±0.0859 62.8172 62.9031 62.9762
ER 285.8566±0.6287 282.9252±0.5637 282.3615 282.9252 283.4431
WS-1 44.4522±0.0372 44.6094±0.0448 44.5646 44.6094 44.6542
WS-2 44.3101±0.0218 44.5103±0.0463 44.4640 44.5103 44.5566
kronecker 124.9320±0.2698 125.323±0.2757 125.1987 125.1987 125.5987

Table 2.3: Average node-node similarity numerical evaluation on penultimate stage and original
graph

Graph Penultimate Stage BaseModel BaseModelmin BaseModelmean BaseModelmax
BA 99.9707%±0.0047% 99.9640±0.0068% 99.9573% 99.9640% 99.9681%
ER 99.6372%±0.0196% 99.6590±0.0277% 99.6338% 99.6590% 99.6867%
WS-1 99.9994%±0.0001% 99.9994±0.0001% 99.9993% 99.9994% 99.9995%
WS-2 99.9994%±0.0001% 99.9994±0.0001% 99.9993% 99.9994% 99.9995%
kronecker 99.2240%±0.0593% 99.2241±0.0650% 99.1606% 99.2240% 99.2889%

2.5.4 Comparison with Graph Sampling

The graphs generated by GTI can be considered as samples of the original graph in the sense

that they are representative subgraphs of a large input graph. We compare the performance of

GTI with that of other widely used graph sampling algorithms (Random Walk, Forest Fire and

Random Jump) [63] with respect to the ability to retain topological structures . We benchmark on

the subgraph structures of the BA and Facebook datasets to compare the stage 1 of GTI against

the graph sampling algorithms (designed to terminate with the same number of nodes as the GTI

stage).

We show each of subgraphs from BA and Facebook networks (nodes 0-19 and nodes 0-49) to

visually compare the ability of the first stage of GTI to retain topological features in comparison to

the three graph sampling methods. In Figure 2.10, we observe that the stage 1 of GTI has retained

a similar amount of structure in the 20 node BA subgraph as Forest Fire [64], while demonstrating

considerably better retention than either Random Walk or Random Jump. However, for the 50

node BA subgraph, only GTI has the ability to retain the two super hubs present in the original

graph. In Figure 2.11, we observe that GTI demonstrates vastly superior performance to the other

methods on the Facebook dataset, which has a number of highly dense clusters with very sparse

inter-cluster connections.
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Original Graph GTI Random WalkFirst 20 nodes

First 50 nodes

First 20 nodes First 20 nodes

First 50 nodes First 50 nodes

Random Jump First 20 nodes

First 50 nodes

Forest Fire First 20 nodes

First 50 nodes

Figure 2.10: Comparison with graph sampling methods on the BA subgraphs.

Original Graph GTI Random WalkFirst 20 nodes

First 50 nodes

First 20 nodes First 20 nodes

First 50 nodes First 50 nodes

Random Jump First 20 nodes

First 50 nodes

Forest Fire First 20 nodes

First 50 nodes

Figure 2.11: Comparison with graph sampling methods on the Facebook subgraphs.

2.6 Discussion

This chapter leveraged the success of GANs in (unsupervised) image generation to tackle a fun-

damental challenge in graph topology analysis: a model-agnostic approach for learning graph

topological features. By using a GAN for each hierarchical layer of the graph, our method allows

us to effectively reconstruct input graph, preserving both local and global topological features. In

addition, our method is able to automatically learn the number of stages required to construct the

graph non-parametrically. This is potentially advantageous in terms of understanding the distinct

stages of graph reconstruction, and providing interpretable insight into the important features of

the graph. Our experimental findings show promising results on the capability of GTI for learning

distinct topological features from different graphs. To the best of our knowledge, there is no single

graph model that can capture these distinct topological features.

The work completed for this chapter demonstrates the need for approaches capable of dealing

with the wide variety of graph structures, as well as their potential. However, despite GTI’s

capability for dealing with many graph structures without the need for manual tuning, it still
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fundamentally relies on many of the same tools for ingestion and processing as other deep learning

methods (e.g. CNNs). In the next chapter, we begin to move towards approaches that “ingest”

the graph in a more natural way; exploration and traversal.
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Chapter 3

Graphs and Machine Learning for

Decision Support

This chapter continues the discussion of traditional ways to input graphs to machine learning

models, and introduces the DeepID, which can be viewed as our first step on the path to a method

of natural and interpretable input of graphs to machine learning algorithms. The approach followed

in this chapter differs somewhat from that of the more general Computational Graph Query outlined

in Chapter 5 in that the DeepID explicitly encodes the graph structure into the machine learning

model (though it nonetheless is a special case of the CGQ methodology). A key contribution of

this chapter is in demonstrating the importance of interpretability in machine learning models, and

how it enables us to easily incorporate targeted robustness constraints.

3.1 Traditional Approaches for Machine Learning with Graphs

As discussed briefly in Chapter 2, the traditional methods for solving deep learning problems in-

volving graphs look much the same as the methods for static inputs. Rather than viewing the

graph as a whole, the graphs is “summarized” in some manner. In industry, this will often involve

manual computation and “feature selection” [101–103] where a graph is summarized according to

known relevant properties. For example, in problems of money laundering detection on financial

transaction networks [104–106], the presence of large cycles is often suspicious, and so graphs may

be pre-processed to identify, count, and locate such cycles. This information (rather than the graph
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itself), is then input to traditional machine learning approaches, as this summary information typi-

cally has the required static form (i.e. can be summarized by tensors) that graph objects themselves

lack. An even more common summary tensor of the graph is the adjacency matrix; indeed, recall

that in both Chapters 1 and 2, this was the primary method through which information about the

graphs were input to the model. This information is then read as a simple tensor; machine learning

algorithms in general have no way of knowing that a supplied matrix represents a graph structure

as opposed to any other binary (or weighted, for a graph with defined edge-weights) matrix.

Of course, doing this process manually for every problem is not practical, and so many methods

have been developed to automatically extract features, or project the graph onto a vector space

(where we can view the coordinates of the embedded vector space, when given a graph, as features).

This approach is typically referred to as “graph embedding”. This approach is exemplified by one

of the most prominent methodologies for performing machine learning on graphs, node2vec [107],

where random walks are used to create a vector embedding for each node (as opposed to the entire

graph), with these vectors then input as a representation of the graph. There are also whole graph

embeddings [108] (typically used for quick classification problems involving varied smaller graphs,

e.g. molecule identification [109]) and everything in between (for a comprehensive review, see [110–

112]). Unfortunately, embeddings can be impractical in many situations. For instance, a given

vector space may work well for a money laundering problem, but perform poorly when trying to

predict non-performing loans [113].

We see this approach of embedding, in general, as trying to mold the problem to fit existing

solutions, rather than expanding upon existing solutions to develop new methodologies that can

instead interpret graph structures in a more natural way with more precise detail. In this disserta-

tion, we accomplish this partly by mimicking how graphs are analysed in graph databases, through

querying (see Chapter 5 for more detail on this perspective). This is essentially taking a lesson

from graph databases and applying it to deep learning. Fortunately, this transfer of knowledge

can go in multiple directions. In Chapter 1, we outlined techniques for discrete optimization via

continuous approximation; in this chapter, we outline how these techniques (as well as other deep

learning methodologies like GANs) can be applied to solve an important interpretable problem in

graph analytics, that of using graphs to model and solve decision problems.
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3.2 Introduction to Decision Support Systems

The goal of decision making frameworks is to provide a tool for representing key elements affecting

agents’ decisions and their relationships, and to provide assistance in selecting good decisions. In

most decision making frameworks, there is a trade-off between interpretability, i.e. the ability to

clearly identify the relationships between the key elements, and computational efficiency (and large

memory requirements). There are many decision making settings, in particular, those involving

financial or regulatory decisions, where interpretability often takes precedence over efficiency. In

this chapter, we outline the DeepID, a neural network approximation of Influence Diagrams, that

avoids both pitfalls. We demonstrate how this framework alsoallows for the introduction of robust-

ness in a very transparent and interpretable manner, without increasing the complexity class of

the decision problem.

Influence Diagrams (IDs) [114] were one of the earliest quantitative approaches for single agent

decision making. IDs represent the elements relevant to a decision making problem using a directed

graph consisting of three kinds of nodes (see Figure 3.1a): “oval” chance nodes that represent

exogenous random variables, “rectangular” decision nodes where the decision maker chooses a

strategy (i.e. a distribution over available actions), and one or more “rhombus” utility nodes that

output a utility for the chosen strategy. Initially, IDs had one utility node, but this was later

relaxed. The dependence between the exogenous random variables, the strategy, and the utility is

encoded by directed edges. The objective in a (single-agent) ID is to compute the strategy that

maximizes expected utility. An ID reduces to a Bayesian network once a strategy is chosen at

each of the decision nodes, thus inheriting the conditional dependence structure of the Bayesian

network. This allows for the relationships between key elements impacting the decision problem to

be defined in a clearly interpretable manner. The ID in Figure 3.1 represents a decision problem

with three decisions and two chance nodes. The conditional independence C2 ⊥ D1|D2 is clearly

apparent from the ID representation.

Although IDs facilitate interpretable decision analysis, IDs are not able to efficiently represent

and integrate over distributions associated with the chance and decision nodes. IDs typically

require a “no-forgetting” condition where all future decisions must retain knowledge of, and thus

in general, be dependent on all past decisions with complexity growing exponentially with network

size. Consequently, IDs have been limited to relatively small decision problems with small discrete
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chance and decision distributions, and only limited support for continuous distributions [115, 116].

As a result, they have lost prominence as a method of choice for decision analysis, which has led

to a lack of new academic literature in the field (though still find some use in the medical domain

[117] due to the particular importance of interpretability in the field).

In direct contrast to IDs, Markov Decision Processes (MDPs) and their extensions [118] must

satisfy the Markov property wherein the state encodes all relevant past information, and the op-

timal action is only a function of the current state. Consequently, there is a possibility that the

optimal policies can be computed efficiently. However, in many decision problems, the Markov

property is achieved only by defining a very complex state such that the resulting MDP lacks any

interpretability [119]. The graph in Figure 3.1b is an MDP representation for the ID on the left

hand side. In order to create the MDP we have assumed that each chance node Ci, i = 1, 2, and

decision node Dj , j = 1, 2, 3, has a binary outcome {0, 1}. The gray nodes are the states, and the

white nodes are the allowed values of actions in a particular state. The MDP has a larger graph-

ical representation because one has to track all past decisions in the state definitions to satisfy

the Markov property; often making it impossible to characterize the optimal policy because of the

curse of dimensionality. But perhaps more importantly, the conditional independence structure is

completely obscured.

An increasingly important requirement for decision problem is robustness to uncertainty in the

elements of the associated decision problems. The tension between computational efficiency and

an interpretable representation becomes even more stark when one is uncertain about some of the

parameters and wants to be robust to these perturbations. The decision analysis framework must

allow agents to model uncertainty in a more granular manner, e.g. uncertainty in distribution of

exogenous noise, or execution uncertainty, or uncertainty in the risk tolerance of the agent. For

example, it is possible that the distribution of the chance node C1 (see the ID on the left side

of Figure 3.1) is uncertain; however, the distribution of the chance node C2 has no error. We

propose a framework that allows for the modeling of such targeted uncertainty; moreover, the

resulting framework retains the macro-level structure of an ID, albeit with a few more nodes.

Targeted uncertainty is very hard to introduce in MDP models for decision problems because the

requirement to maintain the Markov property completely obscures the conditional independence

structure of the decision process. The chance nodes C1 and C2 are conflated into the state S1,
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a) b)

Figure 3.1: Example ID (a) and a corresponding MDP formulation (b).

since the outcomes of both these nodes define the decision D3 (see the MDP on the right hand

side of Figure 3.1). Thus, the targeted uncertainty in C1 has to be represented as a structured

uncertainty in the transition matrices. It is well-known that introducing structured uncertainty in

the transition matrices is computationally intractable [120, 121].

To summarize, IDs are interpretable and allow for the targeted modeling of uncertainty; how-

ever, the difficulties associated with representing distributions and integrating over these distri-

butions are prohibitive. Recent developments in the deep learning community precisely address

this computational difficulty. Differentiable generator nets (DGNs) essentially convert the task of

generating samples from (or equivalently, integrating over) complicated distributions into a func-

tion approximation task [122]. The function is represented by a deep neural network that can

be efficiently trained using gradient descent. Generative adversarial networks (GANs) [69], have

made the task of such a function approximation more efficient by removing the need to maintain

a balance between the generator and the discriminator, and also reduced mode dropping. Varia-

tional auto-encoders [123] extensively employ DGNs to efficiently learn high dimensional posterior

distributions. Conditional GANs [124], Wasserstein GANs [125] and autoregressive networks e.g.

[126] extend function approximation to learning conditional distributions.

3.3 The DeepID

We propose a new representation for robust decision making called DeepID [4] that retains the

Bayesian-like conditional independence interpretability of IDs, but does not suffer from the asso-

54



ciated computational difficulties. In our representation, each chance, decision, and utility node

is represented by a DGN. Thus, selecting strategies in decision nodes reduces to optimizing over

the parameters of a neural net. GANs can efficiently encode both a very large class of continuous

distributions, as well as discrete distributions via Concrete distributions (see Chapter 1). We show

that the DeepID framework allows us to introduce targeted uncertainty in a very flexible manner

by appropriately introducing additional chance, decision, and utility nodes. In the DeepID frame-

work, we model each node of an ID as a separate deep network, and connect the corresponding

networks according to the macro-level structure of the original ID; thus, the larger deep network

we construct retains the interpretability associated with IDs. From DGNs and GANs, we inherit

computational efficiency, as we are able to use all the associated tools.

In the resulting network, the chance and utility nodes can be trained apriori as GANs since

they approximate conditional distributions; whereas the decision nodes are collectively trained as

feed-forward neural networks to optimize the sample mean. This is in contrast to traditional end-

to-end feed-forward deep networks constructed by connecting a series of layers in an ad-hoc fashion,

which lack interpretability.

We focus primarily on the case of a single agent in a one-shot game [127], which covers important

contexts like medical decisions [128]. Robust decision making is particularly important in one-shot

settings since agents do not have the ability to repeat the game or update models of uncertainty.

Our main contribution in this chapter is to show that robustness can be introduced in a very

flexible and interpretable manner in IDs, that can then be trained by constructing and optimizing

the corresponding interpretable DGN. We propose DeepID as a tool for interpretable robust decision

making. In the DeepID approach, the nodes of an ID are replaced by DGNs with free parameters

for decision nodes, and fixed parameters for chance or utility nodes.

A DGN transforms the task of generating samples from (or, integrating over) a complex distri-

bution into a function approximation task. Let f(x|y) be a given conditional distribution. A DGN

generates samples from this distribution by first generating a sample ϵ from a known distribution

and transforming the sample using a differentiable nonlinear function gθ(y, ϵ). Thus, the task of

representing the distribution f(x|y) reduces to learning the parameter θ. This task is non-trivial;

however, there is now a mature literature on how to efficiently and robustly learn the parameter
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θ [69, 124]. In this work, we leverage this technology to argue the computational efficiency of

DeepIDs.

Recall that an ID consists of set chance nodes C, decision nodes D, and utility nodes U ,

connected by directed arcs representing the conditional independence relations. In the DeepID

framework, each chance node and utility node is replaced by a DGN, i.e. the function gθ̄c(π(c), ϵ),

where π(c) denotes the outputs at the direct parents of the node c in the ID representation (for

example, in Figure 3.1 π(C2) = D2, and π(U) = {D1, D2, D3}), the fixed parameter θ̄c is learned

by matching conditional distributions using a GAN, and ϵ are samples from a given fixed distri-

bution. In contrast, at a decision d, the strategy is represented by the DGN gθd(π(d), ϵ) where

the parameter θ is chosen to maximize the expected utility. Thus, DeepID decision nodes do not

directly represent strategies over actions; rather, parameters of DGNs control the distribution of

the generated samples. To the best of the authors’ knowledge, this is the first ID approximation

framework where decision nodes are replaced by a sample generating procedure. Some distributions

(such as those in the location-scale family) can be easily implemented using DGNs. For example,

suppose f(x|y) = N (µ + Cy,RR⊤) is a multivariate Gaussian distribution with mean µ + Cy

and covariance RR⊤. This distribution can be generated by the DGN gθ(y, ϵ) = µ + Cy + Rϵ,

where ϵ ∼ N (0, I), which is a simple linear layer with an offset. As in Chapter 1, we can use

this reparameterization trick [123] to create simple but exact chance nodes (where parameters are

trained or set apriori) or decision nodes, where parameters are free to be trained during joint learn-

ing of the full DeepID DGN. Whenever a known differentiable reparameterization exists, we can

significantly reduce the complexity of learning appropriate DGNs (and even eliminate it entirely,

e.g. for a chance variable in the location-scale family with known mean and variance).

The DeepID reduces the ID into a interpretable DGN – differentiability is very important to

ensure that the strategy space can be searched efficiently. In many applications of IDs, discrete

distributions play a very important role. In order to be able to model these in the DeepID, we need

a differentiable approximation of discrete distributions. As discussed in Chapter 1, the Concrete

distribution allows us to approximate discrete distribution using DGNs. In the Concrete relaxation,

recall that samples from a discrete set of size n are approximated by samples from the continuous

simplex ∆n−1 = {x ∈ Rn|xk ∈ [0, 1] ,
∑n

k=1 xk = 1}, with vertices of the simplex being the one-hot

vectors that can be mapped to the elements of the discrete set. Recall from Equation (1.2) that
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α parameters representing unweighted probabilities across the categorical values determine the

probability of a given vertex being the closest to the generated sample. The key feature here is

that the parameter α is allowed to be a differentiable function of the parameters or outputs of the

parent nodes in the DeepID. Thus, complex probability tables can be approximated as conditionally

dependent functions of parent nodes that output the appropriate values of α, leading to a significant

reduction in storage.

Clearly, the DeepID framework is of interest only if we one can guarantee that the optimal

strategy can be represented by the associated DGN. We show that a large class of IDs can be

arbitrarily closely approximated by DeepIDs, with optimal solutions that correspond to one another.

Consider an ID with chance nodes C, decision nodes D and utility nodes U . Suppose the outputs

of all nodes i ∈ C ∪D take values in a compact set, the inverse conditional CDF F−1
i (xi|π(i)} is

continuous for all i ∈ C ∪D, and the utility functions are differentiable and bounded.

Theorem 3.1. (a) Let σ̄ = {σ̄d}d∈D denote any strategy profile across all decision nodes D

in the ID, and let Pσ̄ denote the corresponding joint distribution over actions, chance and

utility node outcomes. Then there exists a sequence of DGNs g(n) and parameter vectors

θ(n) such that the corresponding joint distribution over actions, chance, and utility outcomes

Pgn
θ(n)

D→ Pσ̄.

(b) Let σ∗ denote the optimal strategy for the ID, with expected utility E[u(σ∗)]. Then there

exists a sequence of DGNs gn with input size m such that E[u(gn
θ
(n)
max

(X))] → E[u(σ∗)], for

X ∼ Uniform[0, 1]m, where the components of the parameter vector θmax corresponding to

the chance and utility nodes are defined by matching conditional distributions apriori, and

the parameters corresponding the decision nodes are computed by the maximization of the

expected utility.

Proof. (a) We first prove the result for an ID consisting of a single multivariate decision node d

with no parent nodes, where the decision involves selecting a vector a from a set A ∈ Rm,

with the utility defined as the sum of the components of the decision node vector. We then

argue that any ID satisfying the theorem conditions can be cast into this setting, proving the

result for IDs with multiple chance, decision, and utility nodes.
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Let σ̄d denote the random strategy at node d. Let Fi(xi|a1, a2, . . . , ai−1) denote the inverse

conditional CDFs for the i-th component ai of the decision vector conditioned on the previous

i− 1 components: a1, . . . , ai−1. We assume that Fi is continuous in (xi, a1, . . . , ai−1).

Define a function g : [0, 1]m → Rm+1 as follows:

g1(x) = F1(x1)

gk(x) = Fk
(
uk | g1(x), . . . , gk(x)

)
, k = 2, . . . ,m.

gm+1(x) =
∑m

k=1 gk(x)

Let X ∼ Uniform[0, 1]m. Then it is clear that g (X)
D
= Pσd . Since each conditional inverse

CDF Fi is continuous in all its arguments, the function g is also.Therefore, by the universal

approximation theorem for feed-forward neural networks [129], for n ≥ 1 there exists a net-

work gnθ : [0, 1]m → Rm+1 and parameter value θn such that supu∈[0,1]m |gnθn,k(x)− gk(x)| ≤ 1
n

for all k = 1, . . . ,m + 1. Thus, limn→∞ gnθn = g, where the convergence is uniform. Next,

uniform convergence of the sequence of functions implies that gnθn(X)
D⇒ g(X)

D
= σd.

Now consider a more general ID satisfying the assumptions of the theorem. A utility node is

simply a chance node with a deterministic output, and a chance node is a decision node where

there is only one choice. Any multi-node ID satisfying the conditions of the theorem can be

cast as a single decision node over a vector, ordered according to a topological sort of the ID

graph. That is, we view all utility nodes as chance nodes, and all chances nodes (including

those that are actually utility nodes) as decision nodes. With a network consisting of nothing

but “decisions”, we can define a vector of “decisions” that corresponds to the “decisions” at

each node. We can then concatenate all of these decisions as a single decision node over this

vector (where only well-defined combinations of decisions are defined). At this point, the

above argument can be applied, and the result is proved.

(b) Since σ∗ is a given fixed randomized strategy, from (a) it follows that there exist a sequence

of networks and parameters such that gnθn(X)
D⇒ σ∗.

The parameter θnmax is defined as follows. Fix the parameters for the chance and utility

nodes to the appropriate components of the sequence θn. Compute the components for

decision nodes by maximizing the expected utility. Thus, it follows that E[u(gnθmax(X))] ≥
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E[u(gnθn(X))]. Moreover, since θnmax implements a randomized policy, it follows that we have

E[u(gnθmax(X))] ≤ E[u(σ∗)].

Since gnθn(X)
D⇒ σ∗, by the uniform integrability of the sequence of generator network func-

tions it follows that E[u(gnθn(X))] → E[u(σ∗)]. Since E[u(gnθn(X))] ≤ E[u(gnθmax(X))] ≤

E[u(σ∗)], it follows that E[u(gnθmax(X))]→ E[u(σ∗)], and the result is proved.

3.4 Interpretable Robustness

Parameter and distributional uncertainty has been a focus of research in a number of different fields,

with numerous techniques proposed for ensuring that the solutions are robust to the underlying

uncertainties. Interpretability in the DeepID facilitates more than just network simplification and

an ability to encode an understanding of the decision system. It also facilitates robust decision

making that is itself interpretable. In this context, we define interpretable robustness to mean that

users can target their uncertainty and risk return preferences to accomplish specific robustness

goals by making the individual component networks robust in particular ways. In neural network

training, one employs drop-out techniques, or adds noise to network parameters or the input

data to ensure that the parameters converge to values that ensure robustness with respect to

perturbations [122]. This goal can also be achieved by suitably regularizing the network parameters.

Robustness in many problems is achieved by explicitly modeling the uncertainty as part of the

problem. In the financial risk management context, coherent risk measures [130] ensure robustness

to uncertainty in the distributions of the underlying risk factors. Conditional value at risk (CVaR)

is a very popular coherent risk measure that ensures robustness by reweighting the worst quantile

of losses. Clearly, robustness to uncertainty is equally important in decision problems. Decision

problems, typically, involve a complex set of interacting elements, some more uncertain than others.

Thus, it is beneficial for decision making frameworks to be flexible enough to allow for the targeted

introduction of robustness.

In this section, we show that DeepIDs allow for targeted robustness to be introduced inter-

pretably. In a DeepID, the purpose of each component deep network is retained; therefore, one can

separately control the robustness of each component network. Introducing such targeted robustness
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is nearly impossible in a standard deep network where we have relatively limited understanding of

the function of particular nodes or sub-networks. MDPs also do not easily accommodate targeted

robustness since the definition of state, and corresponding transitions, often obscure the underlying

independence relations. State aggregation further makes such a task difficult. DeepIDs allow us to

model the following different classes of uncertainties.

3.4.1 Distributional Uncertainty for Specific Chance Nodes

For a chance node c ∈ C with the DGN gθ̄c(π(c), ϵ) we can modify the parameters θ̄c or the

exogenous samples ϵ to model distributional uncertainty. For example, consider the case where the

network gθ̄c(π(c), ϵ) = µc + σcϵ1, where θ̄c = (µc, σc) and ϵ1 is distributed according to a location-

scale family. Then we can encode an agents uncertainty in the mean of the output of node c by

setting µc ← µc + γcϵ2, where ϵ2 is sampled from another zero mean density. This is represented

graphically by adding a new chance node c′ (representing ϵ2), adding a directed arc (c′, c), and

updating gθ̄c(π(c), ϵ) accordingly.

3.4.2 Regularization for Specific Decisions

Consider an agents decision node d with the DGN gθd(π(d), ϵ), we can regularize the parameters θd

to encourage certain properties at node d. A noteworthy application of decision level regularizers is

to encourage particular discrete decisions to have pure or mixed strategies. This can be achieved by

adding a utility node u with gθ̄u(gθd(π(d), ϵ), ϵ
′) a p-norm regularization penalty on θd (see Section

3.5 for an example employing the Concrete distribution).

3.4.3 Execution Uncertainty for Specific Decisions

For an agents decision node d with DGN gθd(π(d), ϵ), we can add noise at any level – to θd, to

ϵ, or the output of d – to encourage gradient descent to compute a stable decision strategy. We

can also interpret this as encoding that decision execution isn’t exact, with the agent sometimes

making mistakes (e.g. a financial trading strategy where executing a trade at a desired price is not

possible, or takes time). Introducing such an uncertainty will ensure that the chosen strategy is

less sensitive to execution errors.
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3.4.4 Custom Risk-Tolerances

We can modify the network gθu(π(u), ϵ) at a utility node u by adding a new layer that represents

an agents’ risk-reward tolerance, i.e. setting the output to gθu′ (gθu(π(u), ϵ), ϵ
′). This is represented

by introducing a new node u′ and adding an arc (u, u′).

Note that all these modifications to a DeepID are equivalent to adding new chance or utility

nodes, changing the objective of the training algorithm. Consequently, such modifications do not

increase the complexity class of the problem.

3.5 Experimental Results

3.5.1 Robustness

Here we demonstrate how interpretably robust modifications of an ID can be reformulated as

DeepIDs. For purposes of demonstrating this translation, we use a relatively simple ID, and

straight-forward DGN formulations for all distributions. We focus on the Reactor Problem [131]

that involves an agent choosing between constructing a conventional or an advanced reactor. The

performance of both the conventional and advanced reactors are uncertain; however, the perfor-

mance of the advanced reactor is less certain. The state of the reactor in the future takes one of

the following three values: Catastrophic failure, Small failure, and No failure. The probability

distributions for the future states, and the corresponding utilities are in Table 3.2. The agent

conducts a test to predict the performance of the advanced reactor. The conditional probability

table for the test outcome is given in Table 3.1.

The DeepID formulation for this problem is displayed in Figure 3.2, with the macro-level ID

structure shown on the LHS in (a), and example DGN internal structure shown on the RHS in

(b) (where shaded nodes are inputs or outputs, and non-shaded nodes are operations). It consists

of 3 chance nodes, Conventional Reactor (CR), Advanced Reactor (AR) and Test Results (TR),

1 decision node, Reactor Choice (RC), and 1 utility node, Standard Utility (SU). Note that the

SU node is not a rhombus. This is because it can be fed into a CVaR utility node (CU) to

add robustness to the utility outcome. The RC decision node chooses between constructing a

conventional or advanced reactor as a function of the output from the TR chance node that take

three possible values: Catastrophic failure, Small failure, and No failure. The utility of the decision
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Figure 3.2: Reactor problem DeepID and modifications (a), and internal DGN of RC (b).

at RC node is a function of the true future state of the conventional and advanced reactors, and

hence, the SU node has inputs from the CR, AR and RC nodes.

Since the outcomes of all nodes of the ID are discrete, we model the associated discrete dis-

tributions using the Concrete DGN as outlined in Section 3.4, with distinct αi|π(i)∀i ∈ C ∪ D

parameters for each possible combination of input and output. We let αi denote the matrix of

parameters that define the distribution at node i. The α parameters for chance nodes are fixed to

the corresponding values, e.g. αTR=N|AR=S = 0.288), whereas the α corresponding to the decision

node is a free parameter. For a chance node c ∈ C (resp. decision node d ∈ D) with parent outcome

π(c) (resp. π(d)), a sample of the outcome from c is drawn according to the Concrete DGN using

α = π(c)αc (see Figure 3.2b). Though not necessary for a problem of this size, we again note that

the function approximation literature referenced in Section 3.2 can be used to let α = f(π(c)) for

some approximating function f when the size of αc would be prohibitive.

Thus far we have described the standard DeepID for the Reactor Problem. Next, we demon-

strate how to introduce robustness to the standard DeepID in an easily interpretable fashion. Each

(optional) change is represented by additional shaded nodes and lines in Figure 3.2a. In our exper-
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Table 3.1: CPT of test results given future advanced reactor performance

Future Performance Test Results
Catastrophic failure Small failure No failure

Catastrophic failure 0.9 0.0 0.1
Small failure 0.147 0.565 0.288
No failure 0.0 0.182 0.818

Table 3.2: Reactor performance probabilities and associated utilities

Reactor Catastrophic failure Small failure No failure
Prob. Utility Prob. Utility Prob Utility

Advanced 0.14 -50 0.2 - 6 0.66 12
Conventional N/A N/A 0.02 -4 0.98 8

iments, we explore the effects of making each robust addition separately. We can, of course, also

mix and match combinations of these robustness concepts.

CVaR Utility

We can replicate a CVaR like custom risk-tolerance by taking advantage of the sample-based

nature of the DeepID. To set CV aRp as the objective function of the DeepID, we simply sort the

output samples and take the mean of the pth quantile. This corresponds to a deterministic utility

node with the function gθu′ = 1
k

∑k
i=1 gθu(π(u), ϵ[i]) where k = ⌊pN⌋ and gθu(π(u), ϵ[i]) is the ith

smallest standard utility sample calculated through a sort function. Note that although gθu′ is in

general not differentiable, there exist standard techniques to smooth this function to any degree

of accuracy [132]. We demonstrate how this affects the DeepID layout in Figure 3.2a, where the

regular utility node now feeds into the CU node at the output. This change was incorporated at

the end of the network where we have a clear concept of good and bad utilities, though such a

sample-based transformation could be applied anywhere in the network.

Uncertainty in Test Accuracy

In the standard formulation, we are quite sure about the ability of the test to correctly predict

a catastrophic failure, and so we choose to build the advanced reactor if the test result is good.

However, we may be interested in observing how our suggested behavior changes if we introduce

distributional uncertainty to our test accuracy. In this experiment, we add Q ∼ Uniform(0, a) noise
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Figure 3.3: Training as CV aR(p) is decreasing in p.

as αTR=C|AR=C ← αTR=C|AR=C −Q and αTR=N|AR=C ← αTR=N|AR=C +Q for increasing values

of a. In Figure 3.2a, this corresponds to the additional chance node TAU representing the noise Q

that is fed into αTR|AR.

Test Repetition

In some decision problems, we may have the ability to repeat actions to improve certainty. For

instance, we may choose to repeat the advanced reactor test for some additional cost, resulting in

an overall testing procedure that is more accurate. We show in Figure 3.2a how a new node can be

added to represent this ability. The new decision node is connected to both TR (as it changes the

accuracy of the test to be more accurate) and RC (because we must know when making the decision

if our test results correspond to the more accurate situation where we have run an additional test),

changing the αi matrices accordingly. We experiment with this modification for increasing test

costs (tc), with the additional test cost corresponding to a new utility node. Note that in this

experiment, TR uses the conditional probability table of Table 3.3, where the Catastrophic failure

prediction corresponds to the probability of any individual test in the overall testing procedure

suggesting Catastrophic failure.
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Figure 3.4: Training as Test Accuracy is Reduced.

Figure 3.5: Training with different costs to repeating a test.

65



Figure 3.6: Training with different regularization strength.

Table 3.3: Test Results CPT given future catastrophic performance and repeat testing modification

Num. tests Test Results | C
Catastrophic failure Small failure No failure

1 0.7 0 0.3
2 0.91 0 0.09

Mixed Strategy Regularization

In the standard ID formulation of the reactor problem, learning encourages the use of pure strate-

gies. However, we may have a preference for mixed strategies in certain situations. Here, we

demonstrate how regularizers can be added to individual decisions to encourage or discourage

mixed strategies for particular decisions. We add a p-norm regularizer on αRC through a new

utility node MST with gθMST
(π(MST )) = δ

∥∥αRC|TR=C
∥∥
p
+ δ

∥∥αRC|TR=S
∥∥
p
+ δ

∥∥αRC|TR=N
∥∥
p

for

p = 0.1, where we can force RC to have a mixed strategy or pure strategy by varying the parameter

δ.

3.5.2 Scalability

Here we apply the DeepID approach to a series of IDs with an increasing number of parameters,

allowing us to investigate some scaling properties of the method. With an eye towards applying
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Table 3.4: Global Connection Game running times in (s) on Intel(R) Core(TM) i7-4700MQ @
2.40GHz with 200 samples for 2000 iterations.

Distribution H = 12 H = 80 H = 572 H = 4352

Concrete 3599 5325 9247 28473

the DeepID framework in large multi-agent systems, we define a DeepID for the special case of the

Global Connection Game [133] where a central planner makes the decisions for all players (thus

it is not truly a multi-agent system, though it is suggestive of that capability). In the Global

Connection Game, each of p ∈ {1, · · · , P} players has a source node sp and a sink node tp in a

directed graph Z = (V,E) that they wish to have connected. In our Global Connection DeepID,

the central planner wishes to find the cheapest path for each player such that the total cost of

making all paths is as low as possible. We formulate the cost as the sum of the costs assigned

to each player, using a mechanism where edge costs ce = 1 ∀e ∈ E are split between each player

who has that edge in their path. Further, we restrict the graph Z to be a sequence of four fully

connected layers, each with P nodes such that the source and sink nodes of each player p are the

pth nodes in the first and final layers, respectively. This graph is shown in Figure 3.7. By only

including the costs of edges between the 2nd and 3rd layers (because unique sources and sinks for

each player mean no edges can be shared by multiple players between the 1st and 2nd, and 3rd and

4th layers) as our utility, the optimal solution is clearly for every player to share the same edge

between the 2nd and 3rd layers, for an optimal expected utility of 1.

This corresponds to an ID with no chance nodes, where the central planner must make decisions

for each player in each layer about which node to connect to in the next layer, where each decision

is a conditional distribution depending on a player’s location in the current layer. We model the

discrete distribution of each players’ next destination in a DeepID formulation using P 2 variables

(a simplex over P possible destinations for each of the P possible current locations that the decision

is conditionally dependent upon). With four node layers and deterministic start and end points

for each of the P players, the central planner has control over H = P 2(1 + P ) parameters in total.

The DeepID formulation of this problem is shown in Figure 3.7b. In our results here (See Figure

3.8 and Table 3.4), we perform gradient updates using the FTRL Algorithm [134].
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Figure 3.7: Global Connection Game graph for P players with designated source(s) and sink(t)
nodes (a). Global Connection Game ID for P players where Dlp is the decision made in layer l for
player p, where there is no third decision because players must terminate at the corresponding sink
node (b).

Table 3.5: Experiment results summary

Test Parameter Strategy Before Strategy After Switchpoint
CVaR dec. p BAoN ABC 0.7
Test Accuracy inc. a BAoN ABC 0.3
Rep. Tests inc. tc Two tests, BAoN Single test, ABC 0.8

MS Reg. dec. δ δ = −0.01,αRC|TR =

0.93 0.07
0.55 0.45
0.41 0.59

 δ = −0.06,αRC|TR =

0.65 0.35
0.51 0.49
0.49 0.51

 N/A

3.6 Results

The effects of our ID modifications in Section 3.5 are summarized in Table 3.5, where BAoN is

shorthand for the strategy “Build Advanced on a No failure test result, otherwise build Conven-

tional”, and ABC is shorthand for the strategy “Always Build Conventional”. We observed that the

convergence was not sensitive to the particular choice of algorithm or the learning rate. We note in

Figure 3.3 with the CVaR modification that lowering p causes the learned strategy to change from

BAoN to ABC. With the advanced reactor having terrible consequences for failure, and a higher

chance of failure, such samples dominate when the strategy allows for the advanced reactor to be

built (due to imperfections in the testing procedure). As p is decreased, such samples increasingly

dominate the utility. In contrast, ABC means we are indifferent to test inaccuracy, and CV aRp is

relatively constant in p due to the small failure rate of 0.02. A similar trade-off is observed in Figure

3.4 when increasing a for Q ∼ Uniform(0, a). As a increases, the test is considered increasingly

unreliable until the recommended strategy likewise becomes ABC. Though the result is ultimately
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Figure 3.8: Expected utility training for FTRL (learning rate of 1.0) in the Global Connection
Game, using λ = 0.1 and with all distributions initialized as uniform across all possible choices.

similar, the mechanisms of robustness that these tests represent differ, with CVaR representing

risk-tolerance, and Q representing distributional uncertainty in a specific component of the model.

As we increase tc in the RT modification (see Figure 3.5), we switch from being willing to pay for

increased accuracy to allow the BAoN strategy to be effective, until the increase in cost is greater

than the difference between the BAoN and ABC strategies. With the mixed strategy regularizer

shown in Figure 3.6, we observe the same standard recommendation for BAoN , with the pure

strategy suggestion becoming increasingly mixed as δ becomes more negative. Though it is not

necessary in this example, we could also add a regularizer with δ > 0 to encourage a pure strategy.

In Figure 3.8 and Table 3.4, we observe that the method displays favorable scalability properties

for our toy Global Connection Game, with iteration time and iterations to convergence (to the

correct value, as demonstrated by Figure 3.8) both demonstrating near-linear performance (for the

number of parameters, and the number of players, respectively).
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3.7 Discussion

This chapter presented an existence proof for the arbitrary accurateness of the DeepID and its abil-

ity to be trained with gradient based methods. As we will see in Chapter 5, this chapter was critical

in showing how essentially separated fields such as graph based methods for decision making and

machine learning can have synergistic capabilities when methodologies combining their properties

are developed. We take this approach further in the next chapter. We also demonstrate how many

of the techniques and approaches used in this chapter are required for a larger methodological

breakthrough in Chapter 5.
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Chapter 4

The SmartGraph

Graph databases and distributed graph computing systems have traditionally abstracted the design

and execution of algorithms by encouraging users to take the perspective of lone graph objects, like

vertices and edges. In this chapter, we introduce the SmartGraph [5], a graph database that instead

relies upon thinking like a smarter device often found in real-life computer networks, the router.

Unlike existing methodologies that work at the subgraph level, the SmartGraph is implemented

as a network of AI enabled Communicating Sequential Processes (CSPs). The primarily goal of

this design is to give each “router” a large degree of autonomy. We demonstrate how this design

facilitates the formulation and solution of an optimization problem which we refer to as the “router

representation problem”, wherein each router selects a beneficial graph data structure according to

its individual requirements (including its local data structure, and the operations requested of it).

We demonstrate a solution to the router representation problem wherein the combinatorial global

optimization problem with exponential complexity is reduced to a series of linear problems locally

solvable by each AI router. This design is currently involved in two pending patents [135, 136]. This

system also implements many of the functionalities mentioned in all chapters of this dissertation,

as it is the SmartGraph that brings together many central tenets of this systems dissertation.

Where appropriate, this functionality is covered in more detail in the associated chapters. This is

particularly true of the Computational Graph Query outlined in Chapter 5, which is implemented

in (and demonstrably benefits from many of the design elements of) the SmartGraph system, but is

a novel contribution in its own right (to both graph querying, and in performing machine learning

that requires the processing of graphs) so as to warrant a separate chapter.
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4.1 System Concepts

4.1.1 Introduction to Graph Computing and Graph Databases

This chapter combines many of the lessons from graph computing with those of graph database de-

sign. This is a more common combination of fields than occurs in other chapters of this dissertation

(e.g. graph databases and deep learning), primarily because Online Analytical Processing (OLAP)

and Online Transactional Processing (OLTP), which refer to a focus on analytics and transaction

response respectively [137], are typically seen as part of a “continuum”. This is true for standard

database and analytics technologies, as well as specifically for graph databases (which typically

focus on OLTP; with functionality like storage and querying falling under the transactional do-

main) and graph computing (focusing on OLAP, where storage and the data itself is viewed as less

important than the results of efficient large-scale calculations using that graph structured data)

[138].

Data is often thought of in the context of input and output, to be used or analyzed by some

external program or process. The structure of graph data, however, can indicate useful information

about how to best execute graph based algorithms on that structure. This is demonstrated by a key

refrain for existing graph computing paradigms, such as Pregel [139]: to “think like a vertex” [140].

In this work, we demonstrate the benefits of further integrating graph data with the analytics run

on that data by creating an AI based graph database. When graphs have knowledge of their own

properties, have the ability to send messages to other graphs, run calculations concurrently, and

perform self-modification, a graph is no longer a static source of data. Instead it begins to resemble

a network of routers. In this work we replace the “think like a vertex” mantra with “think like

a router”, using a router inspired abstraction to create a “SmartGraph” database. The method

distinguishes itself from existing graph databases because of the AI enabled router abstraction;

the routers, that are defined by the subgraphs they encapsulate, manage graph representation,

concurrency and execution of operations themselves, as opposed to being simple static data managed

by an external process.

Our work is not the first to combine OLAP and OLTP functionality. Indeed, there are many

such works [137, 141–145] that claim to fall somewhere on the OLAP-OLTP “continuum”. It is

our perspective that the “continuum” as , typically, thought of (where to move towards an OLAP
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design is to move away from a pure OLTP design) is not precisely correct. This is because of a

simple premise; transactions can be used to execute analytics, if those transactions are properly

managed. The difficulty, then, lies in properly managing small transactions such that the overall

result of executing these transactions is to execute an analytic.

We do not claim to have been the first to have this view of the continuum in the graph sphere

(even if it has not been explicitly stated in the academic literature as such). For example, Gremlin

[146] executes queries on both OLAP and OLTP systems (Gremlin can be built on top of any

graph system that implements its API) by sending “traverser” objects around a graph. However,

as the years have passed, Gremlin has added additional functionality such that these “traversers”

can also execute some simple graph analytics (e.g. PageRank [147]). There are of course many

differences between Gremlin and our system; the most apparent of which is that Gremlin is a query

language built on top of other systems (and not a system, in and of, itself). In addition, our system

implements operations (some of which are described in Chapter 5) that go far beyond querying

(the focus of Gremlin) and extend into deep learning, functionality that, to our knowledge, does

not exist within any other graph database or graph computing system. However, the focus of this

chapter is on functionality inherent to our SmartGraph design that strongly differentiates it from

Gremlin and most graph computing systems. Namely, the SmartGraph is an asynchronous and

concurrent system.

Asynchronous concurrent execution (as distinct from parallelism, as described in Section 4.1.2)

is difficult in traditional distributed graph computing systems, such as Pregel, in part because

the “think like a vertex” mantra (that was chosen to make “reasoning about programs easier”) is

typically implemented using Bulk Synchronous Parallel [148] methodologies. This involves top-level

maintenance of lists of “active” vertices (and/or edges) during each “superstep” that all perform the

same vertex (and/or edge) calculation. This can waste many computing cycles [149], since many

graph algorithms do not converge at the same rate across different nodes. Proposed solutions to

this problem often focus on maintaining sets of those nodes (or edges) that need to be updated

during each iteration, and therefore, despite acknowledgment of asymmetric convergence rates,

ultimately still use a synchronous iterative system.

The SmartGraph has a further novel feature that makes true asynchronicity a high priority;

concurrent user requests and calculations. Consider, for instance, a distributed graph computing
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implementation of two graph analytics which we wish to run concurrently; if one of the analytics is

considerably faster than the other, the faster analytic will be held up by the global synchronization

of the slower analytic. There are, of course, ways to address such issues (e.g. through multiple levels

of synchronization), but it remains uncommon in graph computing systems to use concurrency and

asynchronicity to solve multiple problems simultaneously (with asynchronicity instead employed

to solve large instances of a single problem). The asynchronicity of the SmartGraph is instead

designed to facilitate “multiple job asynchronicity” in order to serve the requirements of the many

users who may be attempting to interact with the system at any given moment, in contrast to

existing graph computing systems.

Despite its absence in existing methodologies, we show that concurrency is not incompatible

with graph computing. Indeed, we demonstrate concurrency can dramatically increase the speed of

graph computations. The business need for many simultaneous users existed in the graph database

sphere, and thus, methods of solving this need (via concurrency) were developed. This business

need has not traditionally been of such relevance for graph computing, yet we show that the

techniques developed nonetheless are very effective when used for this purpose.

Thus the key difference between the existing methods for graph computing and the system

outlined in this chapter is in having complex but manageable asynchronous concurrency of execution

that eliminates the need for iterative supersteps and, more generally, the need for external macro-

level management of the graph database and execution process. This chapter (and the system

developed in this dissertation) facilitates this through subgraph level control, and by giving AI

capabilities (through machine learning) to these subgraphs. Though there exist previous works

that have used subgraphs as a base unit for organizing computations, such works either limit

their asynchronicity to “within subgraph” computations [150], or define subgraphs as connected

components [151, 152]. In general, we wish to define subgraphs with less restrictions than existing

methodologies allow in order to take advantage of more local structure, and to give these local

structures individual autonomy.

There are many clear benefits to having highly concurrent asynchronous routers capable of

“thinking for themselves”. For example, routers can receive, execute, and transmit graph query

operations without needing to know (and limit their speed to) the global supersteps, as well as

automatically handle locally relevant operations concurrently with other routers. In this chapter,
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Figure 4.1: Toy graph with a possible goroutine router assignment.

we focus on outlining the design of the SmartGraph itself, and demonstrate how its asynchronous

concurrency capabilities facilitate local AI. In particular, we demonstrate the value of this approach

through the “router representation problem”, where “routers” use machine learning methods and

solve local optimization problems to great effect (i.e. well approximating the globally optimal

solution).

4.1.2 Concurrency and Communicating Sequential Processes

In a modern graph database, it is a functional requirement not only that the system be able to deal

with large amounts of data, but that the system be able to deal with a large amount of different

requests with limited computational resources. The SmartGraph architecture facilitates massive

concurrency for graph operations on graph-based data by explicitly tying this graph structure into

a concurrency management mechanism.

Unlike parallelism which is typically thought of as simultaneous execution of very similar tasks,

concurrent aware design can be thought of as a way of abstracting highly complex multi-part

systems so that different processes (that may be related or entirely distinct) can interweave with one

another (e.g. having overlapping lifetimes), resulting in the appearance of simultaneous execution.

This appearance may be an illusion, such as a single-threaded CPU allowing a browser and word

processor to run “at the same time” by quickly alternating cycles between each concurrent process
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(and therefore the two tasks are not running truly simultaneously at the hardware level). It may also

be a reality, in the case that process tasks are allocated to distinct threads of the CPU. Figure 4.2

outlines the differences (and similarities) between naive parallel execution and concurrent execution

using three fictitious processes. Note that one can take advantage of the delay in Process 3 (e.g.

representing some external servers’ computation that needs to be complete before the process can

be finished) using concurrency in both the single-threaded and dual-threaded scenarios. The dual-

threaded and concurrent execution model takes advantage of parallelism more effectively than naive

parallel execution of the processes; the ability to move process tasks between threads facilitates a

consistent high load and shorter overall execution time.

Communicating Sequential Processes is a method of implementing concurrency in programs

based on message passing. This work takes some liberty with the theory of CSP as a whole, and

instead focuses on CSP as it is implemented in the programming language Go (also known as

Golang) [153], developed by Google in 2009 with a focus on concurrency primitives as first-class

citizens. Go is a language often described as a systems programming language, and is commonly

used to design services, web-servers etc. It is with these capabilities in mind that we have created

the SmartGraph in the Go language.

In Go, CSP is implemented through two main concurrency primitives: Goroutines and channels.

A goroutine is essentially a very lightweight function that can be multiplexed onto different threads

to be run concurrently with one another (and with the Main, which is itself a goroutine). Goroutines

communicate not by sharing memory, but “share memory by communicating” through the use of

the channels. In computer science terminology, this kind of simulated thread is called a “green

thread” (as opposed to concurrency executed directly on the OS level thread) [154]. The simplest

Golang channels “block” until there is a goroutine that wants to read from the channel at the same

time as a goroutine that wants to write to the channel (at which point the channel permits the

sending routine to push the message into the channel, and the reading routine to pull that message

out).

Although goroutines (and green threads, in general) act like threads, they are not true hardware

threads. This allows us to design a more lightweight concurrency mechanism, with many more

goroutines than available threads. This is ultimately of critical importance, as it allows us to think
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Figure 4.2: A comparison of concurrent and parallel execution in single and multi-threaded envi-
ronments.

about concurrency at a higher level of abstraction, permitting us to simplify the management of

graphs with a number of goroutine managed partitions at scales unheard of in the literature [155].

4.1.3 The Router

The SmartGraph concept is implemented in Go by explicitly tying goroutines to the graph struc-

tured data that is to be explored or used in algorithms to be executed. Individual goroutines

define (not merely control) the subgraphs of interest, with the relevant graph structure, vertex and

edge properties defined in the variable size stack corresponding to the particular goroutine. The

goroutines are our method of implementing the routers, and the highly concurrent functionality of

the goroutine is the mechanism through which we implement the communication and execution of

analytics.

This approach contrasts strongly with the very strict definition of a subgraph (as connected

components) used in prior works [151, 152], as it allows us to arbitrarily assign vertices and edges
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to routers. Though this may seem similar to partitioning done at the network or thread level in

distributed graph computing [155], recall that goroutines are far more numerous than threads, and

balancing occurs by multiplexing goroutines onto threads, in contrast to finding a partition that

provides a balanced cut of the graph to all available threads. This allows us to partition the graph

into many more pieces than might be indicated by the number of OS level threads. Having separate

graph structures in the routers facilitates taking advantage of local graph structure or optimizing

with respect to locally requested operations. An example of this phenomenon, which we refer to

as the “router representation problem” is explored in Section 4.3.

Through viewing this as the graph managing its own concurrent execution, one can do away

with the top-level maintenance of sets of vertices, or algorithm iteration supersteps required by BSP

methods. Concurrent execution is instead automatically handled by the router goroutines, as they

will (through their status as a goroutine) immediately signal to the scheduler when they are ready

(having received required data or messages from parent goroutines) to execute desired operations.

This allows the system to be highly asynchronous, yet manageable thanks to the router abstraction.

A basic example encapsulating a SmartGraph in goroutine routers is given in Figure 4.1. Observe

the toy directed graph with no particularly noteworthy node or edge features. We show an example

set of three goroutine routers that encapsulate the SmartGraph. Each router, defined by a dotted

ellipse of a primary color, contains a subset of nodes and edges from the overall graph. The dotted

black connections represent channels between the source and destination routers.

The network router is useful not only as an abstraction model for efficiently implementing

and executing graph algorithms, it also inspires useful functionality for the SmartGraph. Network

routers have the ability to maintain useful information in memory, such as routing tables. They

also possess the ability to perform custom routing logic independently of other routers. There are

both obvious and subtle ways in which a graph database and analytics platform aping this function-

ality provides benefits. For example, a straight-forward method of employing the benefits of local

representation is in saving memory address space as highlighted by Figure 4.3. The “local” aspect

of the router can also be taken further than simple indices. With routers able to act independently,

we introduce the notion of “local subgraph representations”, where the routers encapsulating a

subgraph do so via different storage mechanisms and graph formats. For instance, one router may

organize the subgraph it encapsulates using vertex adjacency lists, with another router learning
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Figure 4.3: Toy comparison of graph-level and router-level vertex indexing.

to use an RDF framework. An example of this sort of router dependent representation is given

in Figure 4.1. This approach has both computational benefits (since some operations have faster

implementations in certain graph representations) and storage benefits (e.g. when using a sparse

representation like CSR, or when compressing a subgraph consisting of nodes with high similarity).

4.2 System Implementation and Performance Metrics

As mentioned in Section 4.1.3, the SmartGraph system was designed and implemented in Google’s

Go programming language. In this section, we give a brief overview of the implementation. The

overview is brief by necessity; as demonstrated by Figure 4.4, the project contains approximately

64k lines of code in nearly 200 files, and so giving a detailed account of all functionality in the system

is infeasible. Instead, we focus on aspects of the implementation that we believe are particularly

interesting and/or novel. This takes the form of Subsections below, or entire chapters where

appropriate e.g. Chapter 3 and Chapter 5. In particular, material central to the system design

and implementation is also discussed in Chapter 5 due to the central importance of deep learning

functionality within the system. We also include performance metrics within this section in order to

demonstrate the functionality of the system. These metrics were chosen specifically to demonstrate

central theoretical and design concepts developed for the SmartGraph and this dissertation.

First we demonstrate in Figure 4.5 the macro-level logic behind the design of the SmartGraph.

The reason we use this term is that this is how the system appears to act when observed at a high
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Figure 4.4: SmartGraph code implementation size summary.

level of abstraction. However, this figure is clearly an approximation for a very simple reason; the

SmartGraph is massively concurrent, and therefore its operation cannot be truly captured by a

state diagram. At any given moment, the SmartGraph can have hundreds of thousands of different

“states” (i.e. running goroutines) that are performing operations that are related or distinct,

communicating or non-communicating, or originating from individual or multiple users.

4.2.1 Buffered Channel Management

A buffered channel is much like a regular channel (in that they are used to send information

between concurrent goroutines), except that they have buffers. This means that it is possible to

put information onto a channel as long as there is space available, and possible to read from a

buffered channel as long as there is something on the buffer. This is in contrast to non-buffered

channels, where messages only propagate along the channel when a read and write occur at the

same time (i.e. one is blocked until the other occurs). These buffered channels form an important

part of the SmartGraph router system.

When a router is initialized, a goroutine and a corresponding channel are created that together

serve as an input to, and overall manager of, that router. When the router receives a request

from “somewhere” (input by a user, hard-coded, created by a different router, or created by that

router itself during a previous iteration) through the router channel (in our design, router channels

are always considered inputs; for a router A to send a request to a different router B, it must

send it through the channel corresponding to router B), the request is then placed on a buffer

that is managed by the router goroutine. This buffer (paying a one-time memory penalty during

construction of arbitrary size; all experiments conducted for this dissertation used a buffer for each

router with a limit of 20000 requests to ensure we never reached full capacity even during very

heavy workloads) is then processed in FIFO order by the central loop of each router object.

This central loop of the router goroutine determines the request type of the request read off

of the buffer. Each request carries an information packet with the information relevant (and/or
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Figure 4.5: State diagram of the macro-level logic of the SmartGraph system.
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required) for the corresponding request type. The central loop then spawns a new goroutine to

execute the request and passes this information packet to the appropriate function (allowing the

central loop to continue reading requests off of the buffer while the new goroutine processes the

current request). Here we note that Figure 4.5 is simplified in that it has a separate “Request

stream” and router level buffers. In reality, these systems are the same, and the requests stream

directly in at the router buffer level (however, as indicated by the Figure, they are correctly targeted

to the relevant router(s)).

There are a number of important categories of requests. The most basic of these are requests

that do not require any sort of acknowledgment or response, which can be casually executed without

concern. More complicated are requests that require a signal (such as verification that adding some

new graph structure has been completed) or data (such as the result of executing an analytic).

These signals or response data messages are the mechanism through which complicated algorithms

consisting of many requests across many routers are executed.

This is accomplished through a special request type called a ContentRequest. A ContentRequest

carries in its information packet another request, as well as a globally unique subchannel ID number

(e.g. generated by a secure random number generator at the receipt of each message) and a channel

capable of returning the type resulting from the internal request, which we refer to as the “return

channel”. Upon receiving a ContentRequest, the router stores into a map keyed by subchannel IDs

the return channel, and then adds the internal request to its own buffer. This internal request is

special, in that it includes the subchannel ID from the ContentRequest in its information packet.

When this new internal request is executed by the router, the presence of the subchannel ID

indicates to the router that the result of the internal request needs to be returned. The subchannel

ID is used to key into the map of return channels, the appropriate channel found, and the result

sent back upon it. While all of this is happening, the return channel may have been sent to another

router B with instructions to read from that channel when possible and input the result along

with a new request (i.e. a concurrent goroutine is created by router B to wait for the “return

channel” to have something available; in this way, router B is free to continue processing available

requests while it waits for the result of the original internal message to become available) into its

own buffered channel of requests.
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A simple example of this process is demonstrated by Figure 4.6. Router 1 has received two

dependent requests, in addition to many other unrelated requests. The boundaries within each

process box represent when a new operation in a process is ready to begin (and thus the only

assumption made about the completion time of the previous operation is that it is completed by

the time the next process division is given). The first request is to read the vertex weights of the

neighbors of node β, and the second is to sum these weights. In this example, Router 1 creates a

goroutine to read the neighbor weights of vertex β in Router 1 (Figure 4.6 is drawn so goroutine

creation is drawn downward, and results are passed upward). While this is being executed, the

created goroutines check and determine that vertex β exists in Routers 2 and 3 also, and therefore

neighbors in these Routers must also be checked. The goroutine created by Router 1 thus creates

requests as appropriate and sends them to the corresponding routers, which in turn generate new

goroutines to execute the requests and return the results. While this is all going on, Router 1 is

free to process the other requests sent to its buffer.

It should be noted that Figure 4.6 is a simplification in a number of ways. The most significant

is that the SmartGraph system actually has a rule that routers only interact through requests, so

when we “Return result on Channel B”, we are actually sending a new request to Router 2 to send a

request to Router 1 containing the result, which will then be combined with a similar process from

Router 3 to allow the red goroutine to complete. This is part of the ContentReturn request type

that we will not delve into beyond this description. As we can see, even “simple” programs become

extraordinarily complex in their execution patterns in the SmartGraph system. Fortunately, the

mechanics of how the Buffered Channel Management is set up mean that the user does not need

to know any of this; it is all automatically managed by the interactions between the routers and

the subchannel identification system as described above.

It is this system that facilitates the management of millions of concurrent operations with

extraordinarily complex interdependencies. The SmartGraph also supports very complex requests:

with requests in requests in requests, a single request on a single router generating multiple requests

of different nature across multiple different routers of different type etc, but all of these more

advanced requests are built on the foundation of the ContentRequest. Thus, we are able to execute

complex OLAP analytics using a transactional system inspired by OLTP graph databases. Consider

that it is only through thinking at the level of abstraction facilitated by green threads that this
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Figure 4.6: Concurrent execution of a ContentRequest and a dependent request.
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system design is able to be conceptualized; the goroutines that manage each router routinely create

new goroutines to execute each request, and essentially forget about them (unless a subsequent

message requests the result of a prior ContentRequest, or the result is forcibly placed upon the

buffer). In contrast, OS thread level concurrency management would have us manually running

concurrent processes on a very small number of physical threads. It is clear from Figure 4.6 that such

manual management would essentially be impossible. This ability to think larger in terms of the

number of threads (virtual though they may be) facilitates not only an effective concurrent process

management system, but also leads to tangible performance benefits, as we soon demonstrate.

4.2.2 Multiple Routers

Thus far, this methodology could technically be implemented with a single router. However, it

should be clear it is not beneficial to do so. Though many requests are executed concurrently,

each router has only a single loop extracting requests from the buffer, and only one request can

interact with a given router’s data at a time, otherwise we can have race conditions where different

processes attempt to write to the same memory i.e. simultaneous property updates on the same

vertex. The code in the SmartGraph is written to be completely free from race conditions, and

deadlocks (where there is a cyclic dependency between goroutines waiting on data, meaning nothing

is getting done and the program crashing) are naturally avoided by the Buffer Channel Management

system. Consider Figure 4.6 once again; by virtue of having multiple routers, each of which have

their own subgraph structure, we can read these structures concurrently, and thus execute analytics

more quickly.

Some of the most tangible performance benefits of having multiple routers are demonstrated

in Section 4.3, but we can observe them even at this stage. For example, consider Figure 4.7,

that demonstrates execution time on our machine (an 8-core 16 thread Intel(R) Core(TM) i7-7700

CPU @ 3.60GHz with 64GB of 2400MHz RAM) for a task involving the addition of 10000 property

vertices (note that this is a task that interacts with only individual routers, since it is a request that

does not require router interaction) across SmartGraph setups with different numbers of routers.

Observe that increasing the number of routers readily reduces the execution time of the problem.

Furthermore, we get benefits with more than 16 routers; that is, it can be beneficial to have more

routers executing analytics than the number of threads present on the machine. Eventually, we
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Figure 4.7: Increasing the number of routers for a vertex input task.

get to a point where the overhead cost of maintaining multiple router systems is greater than the

concurrency benefits of additional routers, and the execution time begins to increase once more.

We note that the appropriate number of routers is problem dependent. In general, communication

within a router is faster than communication between routers, but having an increased number

of routers is beneficial when requests involve different parts of the graph (e.g. as would be the

case for a batch of requests to analyze transaction networks of many individuals within a financial

transaction network). The key here is that having a single router is almost never optimal, nor is

the other extreme of having an independent router for every vertex in the graph.

4.2.3 Graph Representations

A key functional capability of the SmartGraph is the ability to represent graph structured data

using multiple representations. This functionality combines with multiple routers to be beneficial

for both efficiency and memory usage. We briefly outline some representations supported by the
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type RDFSubGraph struct { 
   sync.RWMutex // ReadWrite mutex to restrict read/write or write/write clashes. 
   EdgeList *sortedmap.SortedMap // Sorted by destination vertex id. 
   VertexList map[int]Vertex // Keyed by map ID to object of general Vertex type. 
   RouterId int // Associated RouterId 
} 
type MapAdjacencyListSubGraph struct { 
   sync.RWMutex // ReadWrite mutex to restrict read/write or write/write clashes. 
   VertexMap map[int]*ALVertex // Pointer to ALVertex type that contains edges. 
   RouterId  int // Associated RouterId 
} 
type ListAdjacencyListSubGraph struct { 
   sync.RWMutex // ReadWrite mutex to restrict read/write or write/write clashes. 
   VertexList []ALVertex // Locally stored list of vertices that contain edges. 
} 
type CscSubGraph struct { 
   sync.RWMutex // ReadWrite mutex to restrict read/write or write/write clashes. 
   Indices []int // Used to find edges in the CSC representation. 
   Indptr  []int // Used to find edges in the CSC representation. 
   AdjacencyEdge           []Edge // List of edges ordered by INTERNAL index. 
   VertexMap               map[int]Vertex // VertexMap is keyed by the EXTERNAL index. 
   InternalToExternalIndex map[int]int // Map to move from internal to external index. 
   ExternalToInternalIndex map[int]int // Map to move from internal to external index. 
} 

 
Figure 4.8: Graph representation data structures as implemented in the SmartGraph.

SmartGraph, and demonstrate how different operations are often suited to particular representa-

tions.

The most important representations supported by the SmartGraph are the Matrix Adjacency

List (MAL), and the Resource Description Framework (RDF) [156], as these are the representations

used to demonstrate the Router Representation problem in Section 4.3 below. These representations

are implementations of the standard adjacency list and edge list forms. In an adjacency list, each

vertex contains a list of outbound edges (and thus the MAL representation performs particularly

well when executing an ordered traversal of all outbound edges, as demonstrated by Figure 4.10),

and so space is not wasted on non-existed edges as in an adjacency matrix form. For an edge list,

separate lists of vertices and edges are maintained (the lack of complex property structure gives

RDF an advantage when performing simple tasks that don’t require lookup, such as batch-loading

vertices; demonstrated by Figure 4.9). In addition to the MAL representation of the adjacency list,

the SmartGraph also contains the List of Adjacency Lists (LAL) representation (where vertices are

stored into a list rather than a map that can be keyed into), inspired by the “Index Free Adjacency”

storage method of Neo4j [138]. Due to their frequent use in tensor computations, we also include a

Compressed Sparse Column (CSC) representation. A property of the CSC representation of a sparse

matrix is that column slicing is extremely efficient. Since columns of an adjacency matrix refer to

87



Figure 4.9: Execution time comparison for different representations performing a property vertex
batch-load operation.

inbound edges, orderly traversal of inbound edges is thus extremely fast in the CSC representation,

as shown by Figure 4.11.

The code describing these data structures is given in Figure 4.8. An important point to note

here is that the RDF representation has edges ordered by destination vertex ID such that there is

an increased lookup speed for inward edge lookups and traversals (as a contrast to the outbound

edge focused MAL representation). This is why RDF begins to outperform representations other

than CSC in Figure 4.11. The benefit requires a large graph due to the overhead inherent in having

an ordered map structure. Also observe that the adjacency list representations use a special kind

of vertex structure (that satisfies the general Vertex interface used in the other representations)

that contains edge objects (in their entirety) in addition to the regular vertex information (such as

vertex ID, type, vertex properties etc), which is why they tend to be slower for small operations

that don’t require much inspection of the graph.

It should be clear from these results how and why different representations are suited to different

kinds of operations (and vice versa). We explore this problem in detail in Section 4.3.
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Figure 4.10: Execution time comparison for different representations performing an outbound
traversal of all edges in the graph, vertex by vertex.

Figure 4.11: Execution time comparison for different representations performing an inbound traver-
sal of all edges in the graph, vertex by vertex.

89



4.2.4 Total Asynchronicity Control

In prior sections, we have discussed how the use of multiple routers and the Buffered Channel

Management system allow the SmartGraph to achieve extraordinarily high levels of asynchronous

execution, without management becoming overly complicated due to the automatic management

of this asynchronous execution. Complexity is part of the reason that BSP methods are so popular.

The other reason is that BSP allows for similar operations to be batched together, and executed

at the same time (gaining performance benefits from economies of scale). Note however that while

this is a situation that will occur regularly in a strict graph computing setting (where we are

focusing on single large analytics at a time), it is not expected to be particularly common in a

graph database setting (where the different requirements of many simultaneous users can make

such batching potentially difficult with less straight-forward benefits).

Nonetheless, the ability to batch operations can be beneficial under some circumstances. For

this reason, the SmartGraph system does have capability for requests to be batched, and this

is achieved in a very natural way. To batch requests together, we simply assign them the same

subchannel ID (though these IDs are generated as unique values, the unique values can then be

assigned to multiple requests if desired). If a router receives a request with an ID that already

exists within the system (recall that subchannel IDs of requests are stored within a map, and thus

this check is an extremely quick O(1) operation), it automatically creates a new goroutine that

keeps track of all matching requests, this goroutine will then only allow a given request in the

batch to return (via the creation of ContentReturn requests) any information or results when all

requests in the batch are complete.

This simple feature means that the SmartGraph gives users an essentially arbitrary level control

over asynchronicity. Unlike BSP methods, and very regimented computation methodologies like

the MapReduce framework [157], any combination of requests can be manually batched together

to achieve some goal (e.g. speed-up through cache-access of the same data). This process is

always manual since deadlocks are possible if cyclically dependent requests are batched together

(it is the responsibility of the user to ensure that this does not occur). If manual batching is not

specified (or for any non-batched requests when batched requsts are also present), the SmartGraph

will continue to execute requests with the approach to asynchronicity determined by the Buffered

Channel Management system.
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4.2.5 Shadow Vertices and Replication

By virtue of having multiple routers that each contain a subgraph of the overall graph structure, we

are inherently partitioning the graph into multiple pieces. Since graph structure is interconnected

(across partitions), this by necessity means that the SmartGraph requires functionality to allow

connected parts of the data to be recognized at connected, even across routers. The most “natural”

way of envisioning this is that “edges cross between routers”. This “edge cut” method is therefore

what the user of the SmartGraph sees when working with the system. However, much research

[155, 158] has been completed that indicates a somewhat counterintuitive result; it is typically

better for both communication and storage overhead for vertices to cross routers.

In practice, this means that vertices are duplicated across routers, and each router maintains

a map of its vertices that are duplicated elsewhere, and the duplicated locations. We refer to

duplicated vertices as “shadow vertices”. A serious problem in many distributed graph computing

systems is that these vertex copies can become out of sync (e.g. if a machine updates a vertex at

the same time another machine is using it in a computation). There are many approaches for this

problem, such as informing any duplicate machines to halt and redo any calculations that used an

old value of a vertex property etc. However, it was determined that this would be too costly in the

SmartGraph system where we can have many more partitions than is traditionally considered. We

therefore use a “best effort” approach. Whenever a vertex on a given router, that has duplicates, is

changed, requests are automatically generated by the router and sent to the routers containing the

duplicates with an instruction to update the content to the most recent vertex copy. This means

that if a router receives a vertex update request for a vertex that it has updated more recently,

the request is ignored, and it is the more recent update that will be propagated (this prevents

an infinite loop of update requests where a vertex updates in response to an update request from

another router, and generates an update request as a result).

This approach is usually sufficient, but can mean that a change may be forgotten by the graph.

In many cases, such as PageRank, this is not necessarily a problem, as the next iteration may

synchronize the vertices in time for the subsequent iteration. In cases where it is critical, a user

may use the batching methodology outlined in Section 4.2.4 above to ensure that any dependent

calculations do not occur until all vertex copies have been updated.
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As we mentioned, this complexity is abstracted away from the user, who instead sees edges

crossing routers. Thus when a user enters a request for an edge to be created that crosses the

boundaries of routers, what actually occurs is that a request is sent from the source router to the

destination router for a copy of the vertex. This vertex is then added to the source and destination

routers’ list of duplicated vertices, and the edge is stored on the source router from the source

vertex to the duplicated “shadow vertex” that was just created.

Thus, any request regarding vertices that are duplicated elsewhere (recall this information is

stored in a map, so this check is a quick O(1) operation for each vertex, regardless of representation)

can quickly be resolved by the SmartGraph system. In Figure 4.12, we demonstrate the execution

time of a set of requests to add edges to an existing partioning of vertices across routers in a

SmartGraph system. The destination routers (whether internal or “external”) of the edges are

chosen according to the x-axis. We observe that as we increase the proportion of “external” edges

from 0 to 1, the execution time increases accordingly. However, this increase is not too large,

staying within two orders of magnitude for most representations. Note that the case of a large

proportion of edges crossing routers is an extreme and unusual one chosen to demonstrate this

performance characteristic, as most graph partitioning algorithms explicitly partition in order to

minimize either the number of external edges, or amount of communication between shards of the

partition [155].

4.3 The Router Representation Problem

The representation problem, as defined here, is closely related to the more generic problem of

selecting data structures either at compile- or run-time, in order to minimize memory usage, exe-

cution time, or some combination of the two. In contrast to this work, the literature focuses almost

exclusively on optimization with respect to standard container objects (such as lists, sets, arrays,

hashMaps etc) [159–161] rather than graph specific data structures. A few papers do address

the problem in a more graph specific context; for example, [162] directly considers the impact of

basic graph operations and representations on execution time. However, it only uses the vertex

adjacency list form and investigates how the single graph representation can be constructed by

different container types, and so does not directly consider multiple graph specific data structures
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Figure 4.12: Performance of different representations for an edge addition task as the proportion
of edges crossing router boundaries increases.

(i.e. alternatives to the adjacency list). Furthermore, [162] considers representations that “change”

over time, but at any given time applies a single data structure to the entire graph. This means

that the method cannot benefit from local graph structure. In contrast, [163] explicitly investigates

different graph structure representations (both the adjacency list and the adjacency matrix), but

again only considers their choice in application to the entire graph.

The data structure selection problem has been approached from three primary directions. The

first is that of optimization, where benchmarking is used to create a function that approximates

the execution time of a series of operations [162]. The second is using machine learning to generate

rule sets that can be used to determine the choices of representations (e.g. “if BFS is called on a

graph with density greater than 25 percent, use an adjacency matrix, else use an adjacency list”)

[159]. The final commonly used method is to simply provide a framework for implementing swap

rules, and allow the user to specify precisely what those rules are manually [160].
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Unique to this work, we explore methods for choosing local graph representations (that is,

structural representations that apply locally rather than to the whole graph) by solving a set of

optimization problems over learned models that consider both the local graph data, as well as

the graph operations requested in relation to that data. Furthermore, we do so by deconstructing

the problem such that a problem that initially appears exponential in complexity becomes linear

in the number of routers by the number of router representations (and that can therefore be

solved concurrently by the routers). In Section 4.3.1 we introduce the basics of the representation

problem. In Section 4.3.2, we establish the basis of solving the representation problem under

idealized circumstances, and in Section 4.3.3, outline how we learn the functions required to solve

the problem in practice. This involves using average router behavior as an approximation, which

we argue in this section and demonstrate in Section 4.3.4, is an approximation that ultimately

works very well.

4.3.1 Representation Methodology

Let G = (V,E) be a known property graph, i.e. a graph with properties attached to vertices

and edges, where we allow multi-edges (e.g. representing different types of relationships between

the same two objects). Let P = (P1, P2, P3, . . . , Pk) denote a partition of the edge set E. Let

Vi = {u : (u, v) or (v, u) ∈ Pi}. We allow for a vertex v to be an element of more than one Vi (thus

we are in the “vertex cut” framing as actually used in the SmartGraph; see Section 4.2.5 for more

details). In a SmartGraph database, a router Ri encapsulates the subgraph (Vi, Pi).

We emphasize that the partitioning introduced here should not necessarily be considered in the

same vein as traditional graph partitioning [155], as we are operating on a single machine (though

with many cores) unconstrained by threads (due to the nature of green threads), and as a result

we are not overly concerned with partition balance.

Let S denote the set of all graph representations allowed by the SmartGraph. Let Ri ∈ S denote

the representation employed by router Ri for (Vi, Pi), i = 1, . . . , k, with R the vector of all such

representation choices. In this work, the allowed set S of representations includes the adjacency

list (wherein vertices are stored in a hash-table like structure, with lists of outbound vertices), and

the Resource Description Format (RDF), which stores separate tables of edges and vertices (we

deliberately use the term tables here, as the use of RDF can be thought of as functionally similar
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to implementing a graph database in a traditional relational database system). See Section 4.2.3

for more details. These two representations are by far the most common method of representing

graphs in practice. For example, the RDF format is used in Spark, and it’s GraphX [158] and

GraphFrames [164] packages, whereas adjacency lists are used by Neo4j [165], a leading commercial

graph database system.

There are many more graph representations, including adjacency matrices (often impractical

in practice due to large storage requirements), sparse matrix representations (wherein a user is

more focused on efficiently performing mathematical operations than graph operations; though the

two are often closely connected), and representations with particular properties (such as allowing

directed graphs only, disallowing multi-edges, cyles) etc. There are also custom representations

designed to work efficiently with GPU operations [166, 167]. Thus it should be noted that the com-

bination of representations used in this chapter (and solved by the SmartGraph router abstraction

herein) is not intended to argue that it will always result in the most efficient representative struc-

ture. Instead, we are arguing for a methodology for combining arbitrary different representation

possibilities, and using the RDF and adjacency list as our representations for purposes of demon-

stration.

4.3.2 Predicting Execution Times and Choosing Representations

We represent a database job x ≡ {x1, x2, . . . , xM} as a sequence of M known operations, that we

classify as either “complex”, or “basic”. Complex operations are those that internally execute other

operations (either complex or basic) to complete their execution, those that require knowledge of

multiple routers (such as inspecting the number of vertices in a given router that are duplicated

in other routers), and those that requiring complex input. What remains we describe as basic

operations. Each operation xa ∈ x is executed on some graph structure of some size (e.g. a number

of vertices, or a number of edges). The size of this structure may or may not be known in advance

for each operation (consider a job of two hop neighbor traversals, where the number of neighbors

traversed in the second operation depends upon how many neighbors were traversed in the first

operation), and we thus introduce the term |xa| ∈ N to represent the size of the structure upon

which xa will execute.
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We allow for directed acyclic dependence between operations of a job, i.e. all parents of an

operation xa, π(xa) must be executed before xa. Let B denote the set of l basic operations. We

assume that the average run time for a basic operation b ∈ B on a graph with n vertices and m

edges, and representation r ∈ S, is given by a function h(b,m, n, r) (which for the moment we

assume is given; Section 4.3.3 will outline how we learn this and other necessary functions).

Furthermore, we define a function h (σ,m, n, r) =
∑l

u=1 σuh (bu,m, n, r), where σ ∈ Nl is a

vector of basic operation counts (such that the element σu corresponds to the number of executions

of basic operation bu), and h is the time to execute σ counts of the basic operations without

concurrent execution. Note that an operation initiated on router Ri may have to initiate calls to

other routers in order to complete the operation. For example, since vertices are possibly duplicated,

a “traverse neighbors” operation may require calls to other routers to check if those vertices exist

there too, and get neighbors of such duplicates also. Let cij(xa, |xa|) ∈ Nl denote the number of

calls of basic operations B initiated on router Rj when the operation is initiated on router Ri. The

non-concurrent execution time T (xa, |xa|, i, R) for an operation xa initiated on router Ri is then

given by

T (xa, |xa|, i, R) = h
(
cii(xa, |xa|), |Vi| , |Pi| , Ri

)
+
∑
j ̸=i

h
(
cij(xa, |xa|), |Vj | , |Pj | , Rj

)
. (4.1)

However, in practice jobs are sequences of operations, where the number of relevant graph

objects for a job can depend upon its parents. For example, consider a job p := {x1, x2} with

π(x2) = x1 on a directed graph G (weighted by w) with partition P , where xa is an operation

“traverse edges from current vertex set if w ≥ w̄”. For x1, we assume that we have some initial

vertex z ∈ Vi as the current vertex set. However, we do not know in advance the size of the vertex

set to which x2 will apply. This means that in addition to knowing how many basic operations (and

their type) σ are required to execute a given operation, we also need a count of how many graph

objects (e.g. vertices or edges) are filtered through by parent operations. We define fj(xa) ∈ N as

a function that takes an operation and returns a count of the graph objects within partition part j

that survived the filtering of the parent operations π(xa). Then the non-concurrent execution time

of job p is given by
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T (p,i, R) = T (x1, |x1|, i, R) +
∑
j

T (x2, fj (x2) , j, R), (4.2)

where the first term corresponds to execution x1 on the initial router, and the sum represents

running the subsequent operation on the “filtered” nodes. We have overloaded the notation T

to correspond to runtimes for either jobs or operations, with the meaning clear from context.

Note that cij(xa, 1) · |xa| ̸= cij(xa, |xa|) because there may be duplicates (e.g. multiple edges

pointing to the same vertex) that could otherwise cause a vast overestimation (e.g. consider a fully

connected graph) in the number of objects for the next operation, and therefore a large error in

time estimation.

It is easy to see how this approach extends to a much more general job x as

T (x,i, R) =
∑
xa∈x

∑
j

T (xa, fj (xa) , j, R), (4.3)

where we assume fi(x1) is a count some known set, and fj(x1) = ϕ ∀i ̸= j. With this execution

time function, we therefore wish to solve the following optimization problem:

min
{R=(R1,...,Rk):Ri∈S}

T (x,i, R) = min
{R=(R1,...,Rk):Ri∈S}

∑
xa∈x

∑
j

T (xa, fj(xa), j, R), (4.4)

Problem (4.4) is a very complex combinatorial problem (as there are exponentially many, k|S|,

possible choices of the router representation vector R), where the representation of any given

router i can influence the performance of operations sent to different routers j. Thus, the choice

of router representations must be made globally, with no opportunity for parallelization. However,

we observe that we have an important opportunity, by virtue of having established total counts of

basic operations and their router occurrence locations.

Consider that the number of routers, and the length of the job x, is finite. We can therefore

interchange the order of summation on the RHS. Also, each complex operation ultimately results

in a set of basic operations distributed across the routers, and that we know this distribution

of basic operations before solving the optimization problem because it is not dependent upon the

representation, rather only on how complex and basic operations are defined. This means that,
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supplied with appropriate c, f functions, we can rewrite the job x as a job y, such that y consists

only of basic operations (i.e. executing y executes x). Furthermore, we can group the basic

operations by router, such that for y = {y1,y2, . . . ,yk}, yi is the set of all basic operations for

router Ri. That is, we have the following very significant result:

arg min
{R=(R1,...,Rk):Ri∈S}

∑
xa∈x

∑
j

T (xa, fj (xa) , j, R) =

[
argmin

Ri∈S
h (yi, |Vi|, |Pi|, Ri)

]
i=1,...,k

, (4.5)

where we are abusing notation in assuming yi also has an appropriate vector form of counts of

basic operations on Ri. There are two key points to (4.4). The first is that we have successfully

decomposed a very complex interdependent problem with exponentially many possible solutions,

into a linear number of problems in the number of routers (represented as a vector of problems

on the RHS) with a linear number of solutions (in the number of representations), resulting in a

vast reduction in problem complexity. Furthermore, these optimization problems are local to each

partition part. This means that each router can locally solve the simple problem associated with

itself (potentially concurrently), and these locally optimal solutions together combine to form the

globally optimal solution of Problem (4.5).

One aspect of this representation problem is that the problem as designed was explicitly con-

structed to avoid the use of concurrency (i.e. all runtime formulations and approximations assume

there is no concurrency within the system). This was necessary in order to develop a feasible

formulation (for as we noted earlier in this chapter, the mechanisms for concurrent execution are

extremely complex). As such, the cost function in (4.5) is, strictly speaking, only a surrogate

for what we truly seek to minimize; the runtime of a set of operations with concurrency enabled

(this is why the problems outlined herein are framed as arg min). This formulation is therefore

a surrogate based optimization approach [168, 169]. Yet, as we observe in Section 4.3.4, using

this non-concurrent placeholder works extremely well in practice (where all experiments in Section

4.3.4 have concurrency enabled, as part of the SmartGraph system upon which all experiments

were run). Though the addition of concurrency considerably changes how operations are executed

within the system, models of how operations would be executed with concurrency disabled provides

a powerful surrogate.

98



4.3.3 Learning Filtering, Counting, and Timing

In practice, we do not know the functions cij , fj , and h unless we first run the operations, which

is contrary to our intent of choosing representations before execution. Instead, we seek to learn

approximations c̄ij , f̄j , and h̄. To learn the approximations c̄ij , f̄j , we send sample operations

to each router and learn based upon the average responses of each router. In job p, different

routers may have different vertex degree (affecting basic operation counts and c̄ij because edges

must be checked, even if they do not satisfy the condition to be passed to the next operation),

and different edge weight distributions (affecting f̄j and the number of objects passed to the next

operation). In contrast, we learn h̄, our basic operation runtimes, as a global precomputation for

each representation type.

We wish to have a range of operations that is sufficiently flexible such that they can be composed

into more complex graph operations. This means that their combination should be sufficiently

expressive. In the extensive literature on graph query languages [170–172], the expressiveness of

query formulations has been a central area of research, with expressiveness often traded off against

complexity and efficiency. In practice, industrial graph query languages like Cypher and Gremlin

have not been theoretically analyzed to any significant degree due to the complexity facilitated by

the wide range of possible query operations permitted [173].

Query methodologies typically fall into two categories; path queries [170], and pattern matching

[174]. For purposes of demonstration within this chapter, we choose to use a path query approach

rather than a pattern matching approach. We choose this approach because it is clearly suitable

for the methodology outlined in Section 4.3.2 (and because this is the approach used in Chapter

5 to facilitate new deep learning capabilities on graphs, due to the similarity with the execution

of computational graphs). Consider that a path query typically has a form I
cond.→ J where we

are seeking paths from graph object set I to (potentially unknown) graph object set J that must

satisfy conditions cond. along the path. There is an extensive literature on graph query algebras,

and we refer the reader to [171] for a recent survey on the topic. For our purposes, we define path

queries by chaining single hops with conditions on edges and/or vertices. Observe that this maps

very neatly into the functions cij , fj , and h. We have some path query that is decomposed into a

series of stages, and conditions upon those stages. Each stage requires observing a certain number

of graph objects (related to cij), only some of which survive to the next stage (related to fj), and
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Table 4.1: Examples of basic and complex operations

Basic Operation Complex Operation
AddInternalEdge AddExternalEdge
AddVertex GetSharedVertices
GetVertex ExploreNeighborsOutsideRouter
GetInternalEdge FilterEdges
CheckVertexExists FilterVertices
CheckInternalEdgeExists CheckRoutersConnected
UpdateInternalEdgeProperties External ContentRequest
UpdateVertexProperties ComputationalGraphQuery
ExploreNeighborsInRouter ExecuteOptimization

these are internally composed of basic graph operations (related to h, see Table 4.1) with timing

dependent upon representation.

The existence of properties within the graph database strongly differentiates this problem, even

from the existing attempts at data structure optimization, as they focus entirely on graph structure

[162, 163, 175]. The existence of properties is critical to our methodology, as it is not possible to

ignore the schema of the graph when profiling simple operations as in existing works (e.g. profiling

a GetVertex operation is not sufficient, since the schema of the vertex added will have a large

impact on performance).

In-line with our view of routers as structures with AI capabilities, we learn approximations

to c̄ij and f̄j independently at each router. That is, each router generates and executes sample

queries according to the router’s schema, and stores the resulting models for solving a problem

akin to Problem (4.5), where we make the substitutions cij ← c̄ij , fj ← f̄j , and h ← h̄. Thus we

are using average router performance as a model for these functions, something that is facilitated

at finer grains as we increase the number of routers (recalling that it is the router abstraction

and the implementation of routers with goroutines that allows us to fathom router numbers in the

tens of thousands, rather than the the relatively few shards used in typical thread-focused graph

computing).

4.3.4 Experimental Results

We use random forests [176] to learn each of the c̄ij , f̄j , h̄ approximations owing to their ease of use

combined with their ability to capture non-linear interactions. To demonstrate the efficacy of the
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method, we construct an artificial graph system consisting of four vertex types; Person, Product,

Location, and Mail (with 300, 400, 500, and 600 vertices of each type respectively). We split the

graph by vertex type, such that a given router primarily contains a single vertex type. As we allow

edges both within the routers and between them, each router also contains a number of duplicated

vertex types copied from other routers due to external edges. We constructed the graph using the

Erdos-Renyi model [177] such that average degree is given as in Table 4.2. We note here that we do

not expect our method to require a graph substantially similar to the graph presented here-in, or

even to partition by vertex type as we have done. Instead, this example was generated for ease of

understanding and reproducibility. We have similarly designed the average between router degree

to be much smaller than the within-router degree. This is because methods of graph partitioning

typically involve minimizing edges or communication between partitions [155], and so we believe

this a reasonable choice (note that this work does not deal with the question of graph partitioning,

since it would need to be solved jointly with the assignment problem; such investigation is left to

future work).

In terms of edge properties, we add two properties to each edge; a bivariate Gaussian with

correlation ρ chosen ∼ U [0, 1] for each edge type. We thus demonstrate that queries interacting

with multiple properties are not an inconvenience for the method.

Basic Operations

For the purposes of learning basic operations, we simply run many instances of the basic operation

on each edge and vertex type described in the schema, for varying sizes of the graph (that is; the

only input available is the total number of vertices and edges in a graph). In this instance, we

are not training specifically on the graph described in Table 4.2, merely graphs of different sizes

with the same vertex and edge types. For this reason, the learning of h̄ functions, which we do

independently for each representation type (RDF and MAL in our example), can be performed

independently of any particular graph, only depending upon the schema. This indicates that if we

expect multiple graphs with the same schema, we need only learn our approximations h̄ once for

each representation. In contrast, the methods described below require training on each individual

graph.
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Table 4.2: Average out-degree for each vertex combination

Person Product Location Mail
Person 32 0.08 0 0.06
Product 0.1 26 0.12 0.04
Location 0.01 0.02 255 0.01
Mail 5 3 8 100

Complex to Basic Count Mapping

In order to learn c̄ij , we generate a number (in our experiments, approximately 10,000) of single-

step test queries. These queries are of various types (e.g. filter a list of edges, filter in-bound

from a list of vertices, filter out-bound from a list of vertices etc). In order to ensure that our

methodology can be applied more broadly, we generate these test queries by randomly sampling

vertices and edges from each router (the number of which is chosen uniformly from zero to the

number of edges/vertices in the router). We then generate test queries randomly designating a

property on the sampled graph object, such that we are searching for edges that are greater than

or less than the property at the sampled edge. Clearly this technique will generate queries that

span the range of allowable property values, without any need to know in advance the distribution

of any given property on the graph. We tag each query with a unique identifier, and track that

identifier as it results in the execution of basic operations (that is, for any given complex operation,

we know exactly where basic operations occur, which operations they are, and how many of them

occur).

We then use a random forest to learn this mapping, such that the test input includes the number

of vertices or edges we wish to start the query from. In addition, we include the number of vertices

shared between the source router (i.e. the router where the query is first initiated) and the other

routers. We found that the inclusion of the latter was key to obtaining random forest models with

very high accuracy. We observed that the random forest models quickly learned to become very

accurate. We note that this is not a case of overfitting; all experiments used half of the samples

for training, and half for evaluation. Indeed, the nature of our sampling methodology means that

the sample space of possible queries is extraordinarily large. With R2 → 1 for many mapping

functions, we observed the power of local learning, where the models quickly pick up on router

characteristics.
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Figure 4.13: R2 for learning vertex output and router locations given list of vertices and filtering
conditions.

Learning Filtering

The method for learning filtering (that is, the number of objects that will survive a query) is very

similar to that described above. However, here we additionally use the parameter values of the

queries (as they relate to the vertex and edge properties examine in each query) as inputs to our

random forest models. In addition to the relationships between the complex and basic operation

tags, the system also keeps track of how many graph objects survive each filtering operation. As in

the learning of c̄ij , we quickly obtain R2 → 1. Of course, we expect that the difficulty of learning

the filtering mapping will increase as the number of variables that we perform filtering on increases.

Nonetheless, as demonstrated by Figure 4.13, in this example the random forests are capable of

learning the filtering mapping approximation to a very high degree of accuracy, given sufficient

samples.
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The Representation Problem

We use all the above methods to solve the representation problem. This problem involved sending

100 random two-step queries (that is, each query had an output that had to be fed into the next

stage) to each of the four routers (as described by Table 4.2). We ran the queries in each of the six-

teen possible sets of representation choices (in order to demonstrate the fully optimal solution), and

then fed the query specifications to our learned models of c̄ij , f̄j , h̄. We observed very encouraging

results (as seen in Figure 4.14); using our machine-learning models gave us representations that on

average were only 14% slower than optimal, with the average router representation being more

than 13 times slower than the optimal. As optimal representations run the gamut from all-MAL

and all-RDF to everything in between, the value of an approach that gets a near optimal solution

is particularly important given that the consequences of incorrect assignment can be so drastic.

Note that finding the true optimal solution requires running the set of jobs with every possible

combination of router assignments. As mentioned previously, this requires an exponential number

of router representation tests. As the size of the jobs increases, it becomes infeasible to look for an

optimal representation through brute force (and to do so is redundant, as completing the job once

is the purpose of the execution on the database). In contrast, the SmartGraph method will scale

with the machine learning models used to learn c̄ij , f̄j , h̄, and in many instances will not need to

be retrained at all (e.g. if we keep the same graph and move from two-step to three-step traversal

queries). Note again that despite our use of a surrogate based formulation (where we did not con-

sider concurrency in our formulation, despite the SmartGraph system being specifically designed to

take advantage of concurrency), we get very promising results that were able to drastically reduce

concurrent runtimes.

4.4 Discussion

In this chapter we demonstrated the details of the SmartGraph, a new system for constructing

graph databases, and detailed many of its important features. We showed how the Buffered Chan-

nel Management component of the SmartGraph facilitates high levels of automatically managed

concurrent execution of requests, while retaining the ability to manually control asynchronicity to

any level a user desires. We demonstrated how multiple routers and graph representations can be
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Figure 4.14: Representation Problem on our Test Cases.

of great benefit, and explored this further in the representation problem. We also used the repre-

sentation problem to demonstrate how giving artificial intelligence to “router-like” subgraphs can

be used to solve highly complex problems. We showed that the representation problem is an ex-

ponentially large combinatorial optimization problem, but that it can be solved to near-optimality

by having each router learn machine-learning model representations of themselves and their neigh-

boring routers. By adding artificial intelligence at the “edge” of graph database technology, we

increased the computing capabilities of the graph database, and continue to muddle the space

between graph computing and graph databases.
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Chapter 5

The Computational Graph Query

Graph querying is often thought of as a static process for simply reading and interpreting graph

structured data. We argue that recent innovations in dataflow and computational graph systems

allow us to extend graph querying to actually executing a range of algorithms, including optimiza-

tion problems that rely on graph structured data as inputs to their cost functions. We demonstrate

how this approach can be incorporated into the SmartGraph system detailed in Chapter 4, and use

the problem of recommendation systems as a practical example of its use. In this chapter, we bring

together many of the concepts, methodologies and systems developed elsewhere in this dissertation

to achieve our goal of machine learning with graph structured data.

5.1 Introduction to Queries and Query By Example

In graph databases, as in relational databases [178] and other forms of NoSQL databases [179],

the purpose of querying is to summarize data within the database, or to extract information that

meets a particular need (e.g. “find all users who executed transactions greater than ten-thousand

dollars in the last 4 days”). In the relational database setting, these results are typically presented

in a tabular form, matching the structure of the relational database. Graph queries typically result

in graph structures, such as subgraphs, lists of satisfying vertices, or lists of satisfying edges. In

some cases, results may also be presented in tabular or scalar forms (such as when queries relate

to retrieving particular properties of graph objects without reference to graph structure).

As discussed in Chapter 4, methodologies for graph querying typically fall into two categories;

path queries [170], and pattern matching [174]. In pattern matching [104, 180], a subgraph is
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supplied, with exact or approximate [181–184] matches within the overall graph returned as results.

A path query on a graph typically has a form I
cond.→ J where we are seeking paths from graph object

set I to (potentially unknown) graph object set J that must satisfy conditions cond. along the path.

This is the approach taken by many prominent graph querying algebras such as Gremlin [146]. It is

also the approach taken by the SmartGraph in defining its filtering and operations (see Chapter 4

for more details) due to it being more mathematically compatible with the representation problem,

concepts of Bayesian inference and deep learning (such as ancestral sampling and computational

graph execution), and the Computational Graph Query (CGQ) as outlined in this chapter.

In the graph database context, the goal of “querying by example” (also sometimes referred to

as “reverse engineering”, or “the reachability problem” ) [185–187] is to learn queries that return

certain vertices (or more general graph objects). For the most part in the existing literature, query

by example is explored from a theoretical perspective as part of a larger formal analysis of graph

querying methodologies (see [171] for a recent overview of the field) in the context of graphs with

relatively fixed structure and properties. The graph is viewed as strictly representing data, as

opposed to representing the expression of a problem, or algorithm, etc. However, it is clear from

recent work in deep learning, where algorithms are commonly processed as (computational) graphs

[55, 188, 189] (with idea of expressing algorithms as graphs being well-established [190]), that

graphs are very effective structures for representing computation in addition to network structured

data. In this work, we are loose in our use of “by example”, as referring to either specific vertices

or edges (as in the recommendation problem explored in Section 5.7.3), or, in a more general sense,

as “query results that give high utility” (where the meaning of “utility” in this context is made

clear in Section 5.2 below).

The primary methodological contribution of this chapter is to demonstrate a method for per-

forming interpretable queries that can be used to execute algorithms and solve optimization prob-

lems with any graph structured data as input (in contrast to the more traditional embedding

techniques discussed in Chapter 2 and Chapter 3). This is accomplished by taking some key ideas

from Chapter 3 significantly further. In particular, we allow the SmartGraph to store variable

parameters (similar to the Variable tensor objects in TensorFlow [55]) that can be used to define

complex expressions, but also to interpret the graph by executing path queries through it during

algorithm or optimization execution. That is, we read the graph as an input into our algorithms
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not by summarizing the graph into factors or apriori embedding it (or its constituent vertices etc.)

into a vector space, but by exploring the graph during execution of analtyics or optimization via

path querying.

5.1.1 Filtering Implementation in the SmartGraph

In Chapter 4, we described the implementation of querying and filtering operations in the Smart-

Graph only as they related to the representation problem. Here we give more details about the

implementation of the filtering and querying functionality of the SmartGraph system, as required

by CGQ.

In the SmartGraph, we define functions classified by a direction (when a direction can be de-

fined) and triples of InputType− CentralOperation− OutputType, such as representing a filtering

function VertexInput− EdgeFilter− VertexOutput that takes a set of vertex IDs, finds outbound (or

inbound, if specified) edges and performs the filtration step upon these edges (i.e. applying the

filtering conditions), and then returns the set of vertices on the other side of the surviving filtered

edges. We can easily chain complex filtering operations together as a sequence of such requests, and

generate a valid path query as a result. For a given filtering operation, each part is executed before

the next part begins; for example, all first stage vertices in a VertexInput− EdgeFilter− VertexOutput

query step are examined before the second stage of querying the edges is asked to begin (though as

discussed in Chapter 4, these filtrations may execute asynchronously if the first stage vertices are

duplicated in other routers). We can also add additional complexity in the middle step, e.g. if the

CentralOperation is actually a more complex operation (e.g. a different complete path query that

takes the correct input type and generates the correct output type could be put in the place of a

simple vertex or edge filter, allowing us to have arbitrarily asynchronous control over the execution

of queries).

The complex operation implemented in the SmartGraph that is of key importance to this chap-

ter is the InputType− Split− OutputType series of filtering functions. This series of functions allows

a single filtering input request (and its input set) to probabilistically generate different types of

CentralOperation requests (e.g. satisfying different filtering requirements) given a probability sim-

plex along with the associated CentralOperation objects. Consider two E CentralOperation objects,

E1 and E2 that represent “friendship” and “family” edge label filtering constraints respectively
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(e.g. in a social network). Then for α = [0.3, 0.7], 30% of the edges (chosen uniformly at ran-

dom) outbound from the input vertex set will be filtered by E1, and the remaining 70% by E2,

resulting in two different sets of vertices (friend vertices corresponding to E1, and family vertices

corresponding to E2). Thus by changing the probability simplex, we can change the nature of the

query step that is executed. We can do this for some (or all) query steps in a full path query. This

is a central tenet of the CGQ methodology.

5.2 Queries as Functions on a Graph

Consider a property graph G = (V,E) with properties on both vertices and edges. We allow for

the properties to be variables ϕ or fixed data. Let O denote set of permitted query operations, and

let FO denote the set of all possible queries expressed by the operation set O. Then the “query by

example” problem outlined in Section 5.1 can be formulated as the optimization problem

max
Q∈FO

f(Q,S) (5.1)

where f : FO × S → R denotes the utility of a query Q starting from source nodes S. The utility

function in a typical query by example problem is determined by some measure of accuracy on

the match with the “examples”. Here we allow the problem to be more general, where the utility

function value might be determined by the “quality” of the returned graph object(s), with no

actual “examples” necessarily required. This optimization problem is computationally hard, and

is typically solved using heuristics.

We show that a useful mechanism for expressing graph queries is to appropriately parameterize

them and consider them as “functions” on a graph. While the ideas that we propose apply to a

more general set of parameterizations, we focus on queries that are generated by parameterized

probability simplexes (though we keep our notation as general as possible) that control choices

made during the execution of path queries. In this manner, we see the direct relevance of the work

completed in earlier chapters of this dissertation.

Suppose a query is defined by a parameter θ (where ϕ ⊆ θ in the most general case) and let Θ

denote the set of all possible parameter values. Let Q(θ) denote the complete return query array:

the (not necessarily numeric) array of nodes and other graphical structures returned by the query
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Q over the entire graph, corresponding to parameter θ ∈ Θ. We use the term array rather than

set because loops involving repeated elements are allowed in the result. Let a single traversal path

obeying the query rules of Q(θ) be denoted Qi(θ). Qi(θ) obeys all step orderings and filtering rules

associated with the full query Q(θ), but only picks up a single object during each step: e.g. if Q(θ)

is to get the neighbors of the neighbors of a vertex β, some Qi(θ) will return an array containing

a single neighbor of β, i.e. ζ, a single neighbor of ζ, and the edges connecting them.

In our solution methodology, which we call the Computational Graph Query (CGQ), we ap-

proximate Q(θ) by N traversals as follows:

QN (θ) = [Qi (θ)]i=1,...,N ≈ Q (θ) , (5.2)

corresponding to parameter θ and the resulting path query. Observe in (5.2) that we define QN (θ)

as an array of Qi(θ). As each Qi(θ) is itself an array, QN (θ) is therefore an array of arrays (that can

be flattened to a simple array). This is explicitly formulated this way to emphasize that traversals

may collect the same graph structures (e.g. pick up the same vertex) during multiple traversals,

and that the collection of these repeated structures is to be emphasized in our formulation. E.g. if

a vertex is picked up in multiple different traversals, we argue that it demonstrates the importance

of the vertex; importance that would be diminished if we used sets and considered the vertex only

once.

Next, we approximate the optimization problem (5.1) by a sample-based approximation:

max
Q∈FO

f (Q,S) = max
θ∈Θ

f (Q (θ) , S) ≈ max
θ∈Θ

f (QN (θ) , S) . (5.3)

Note that the traversal samples in QN (θ) are in part generated by discrete probability distri-

butions of the form P(D = i) = pi, since we are using probability simplexes p ∈ θ. We want to

choose parameters of the simplexes p to maximize the utility. The samples of D can be generated

by setting D = arg max{− log(pi) − log(− logUi)} where Ui ∼ unif[0, 1]. However, the arg max

function is not differentiable in p; hence one cannot use gradient descent to compute the optimal

p.

But this is exactly the problem dealt with in Chapter 1 (and in Chapter 3). We replace the

discrete distributions of the query operations by their continuous approximation counterparts (e.g.
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Figure 5.1: Unrolling of a query on a two node graph database graph (a) into a small corresponding
computational graph (b).

through the Concrete distribution, using unnormalized α rather than the normalized p equiva-

lents), allowing us to perform gradient-based optimization, such as Stochastic Gradient Descent,

in computing an approximate solution to (5.1).

5.3 A Curse of Dimensionality in Computational Graph Queries

Consider a graph database with two connected nodes, A and B as shown in Figure 5.1a, where blue

nodes are actual graph database structure. These two nodes have directed edges to one another,

and a vertex property w. Consider the trivial query “starting from vertex A, sum all values of w

for all two hop paths, and take the average over all such paths”. Because of the cycle, A is a vertex

within two hops of itself, and so the single possible path query taken goes A→ B → A. Let u be

the result of executing this simple query on Figure 5.1a. Then the corresponding computational

graph, resulting from unrolling the query on the graph database into a computational graph, is

given by Figure 5.1b. Green nodes are input to a computational graph, black edges denote the flow

of data (where we have indicated when edges also correspond to traversals in the graph database),

grey nodes are operations, and orange nodes are outputs of a computational graph. By unrolling,

we have formed a directed acyclic computational graph from a graph database that clearly contains

a cycle.

Similarly, we can unroll more complicated path queries into directed acyclic computational

graphs. Consider a graph database differing from Figure 5.1a only by an additional fully connected

node, C, shown in Figure 5.2a. In 5.2b, we demonstrate how the addition of this single node

results in a significantly larger computational graph (when we unrolled with the same query as
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Figure 5.2: Unrolling of a query on a three node graph database (a) into a large computational
graph (b).

used previously). By adding a single node, we have gone from one possible path satisfying the

query to four, with a significantly larger computational graph as a result. This is the result of a

very modest change. Consider if we instead doubled the number of hops in the query, or doubled

the number of nodes in the graph database; we quickly encounter a case of exponential growth in

the unrolled computational graph.

As discussed in Section 5.2, we are often interested in queries that involve discrete values or

choices. As outlined in Chapter 1, we can use the Concrete distribution for this situation, where

the use of the Concrete distribution replaces the request for taking an average over all paths.

We demonstrate how the Concrete distribution would be used for a similar query (on the same

three node graph database) in Figure 5.3. We label Concrete operations as nodes s1, s2, s3 in

the computational graph in Figure 5.3b. We assume these Concrete distributions are respectively
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Figure 5.3: Unrolling of a query with Concrete traversals into a corresponding computational graph.

driven by parameters [α1, α2, α3] = θ, but omit these parameters from the computational graph for

readability.

The output of these nodes are weights on a simplex, represented as blue edges. The blue edges

(that sum to one) are then applied as a multiplication on all further calculations on that path. This

would most properly be represented in a computational graph as an operation of a multiplication

by the relevant weight at the end of the associated path, however, such a graphical representation

soon becomes too cumbersome and hard to interpret when considering sequences of decisions (the

earlier a “decision” is made, the later it would appear in the computational graph).

Let the Concrete nodes generate Concrete samples s1 = [0.9, 0.1], s2 = [0.7, 0.3], s3 = [0.2, 0.8]

(for purposes of illustration, we are overloading the notation s here to indicate both the node

and the sample values generated by the Concrete distributions: running the same computational

graph again would lead to different values). We assume that the simplex is ordered such that

indices corresponding to edges that are drawn higher are lower (i.e. s1 in Figure 5.3b is ordered as

[A→ B,A→ C]). The value of u in this setting would then be calculated as follows:

u = 2 + 0.9[8 + 0.7(2) + 0.3(9)] + 0.1[9 + 0.2(8) + 0.8(2)] = 14.11, (5.4)

where the blue terms indicate our Concrete elements that multiply the rest of the corresponding
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path. Since we have a sequence of decisions, we have multiplications of the blue terms by other blue

terms. This nesting of multiplication is why the true computational graph is not as interpretable as

that given in Figure 5.3b. We have written the expression for u in the same order as our method of

indexing s, with later decisions nested in earlier decisions. In addition to the nesting, note that this

formulation means that all values going forward are multiplied by the Concrete sample element,

but inputs to the Concrete nodes pass through with their full value.

The Concrete distribution works fairly well in practice for many applications. However, it has

a fatal flaw in any setting with considerable fan-out (such as CGQ). We observe that in (5.4),

there is a calculation associated with every path (from the first “2” input node to u) through the

computational graph, each of which correspond to a path in Figure 5.3a that satisfies the query.

We emphasize the issue by showing how queries on graph databases “unroll” into computational

graphs in the CGQ setting (where executing the computational graph runs the query on the graph

database). We use the term unrolling because a simple query on a simple graph database results in

a long and wide feed-forward computational graph that only grows as the complexity of the query

or graph database increases.

This means that the Concrete distribution has a problem when used with CGQ; an exponentially

growing computational graph associated with a query means an exponentially growing computation,

since there are computations associated with every edge. For gradient descent, this occurs in both

the forward-pass (where we want to calculate the value of the utility node u, and values for each

intermediate node), as well as in the backward-pass (where we want to back-propagate gradients into

the parameters α1, α2, α3 that control the samples generated by the s1, s2, s3 Concrete operations).

5.4 Computationally Tractable Approximations to the Concrete

Distribution

We are thus motivated to develop an approximation to the Concrete distribution that does not

suffer from this issue of exponential growth within the CGQ setting. We are not the first to develop

an approximation to the Concrete distribution, however, we are the first to do so specifically for

reasons of computational complexity.
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The Concrete distribution allows us to replace discrete variables with continuous approximations

over a simplex, facilitating the use of gradient descent methods in computational graphs. However,

many models will not allow us to make evaluations in a continuous space. Consider for instance,

either going left or right in a maze. We cannot go both left and right simultaneously (nor can we go

x = [0.99, 0.01], 0.99 left and 0.01 right); we must instead commit to a direction and follow it before

we can evaluate the utility of our decision. This trivial example demonstrates a problem with the

Concrete distribution; it may be impossible to evaluate the objective or utility function (or even

know what the appropiate function may be) in some settings given an input over the simplex. Of

course, this does not cause an issue in all settings; it may be possible to directly evaluate a simplex

sample in some settings by taking an expectation over the simplex, e.g. as we did in (5.4).

In situations where direct evaluation is not possible, the Straight-Through Gumbel-Softmax

Estimator [13] (STGSE) is used. Let x be a Concrete sample on the simplex ∆k−1, parameterized

by some set of variables θ. Then a “hard-sample” is given by y = one-hot(arg max(x)), where we

define o∗ ∈ {1, . . . , k} as the index of the largest element of the vector x. This one-hot setting

means that truly discrete choices are made (because no weight is given to choices other than the

argmax), always allowing for evaluation of the utility function.

A side effect of the STGSE is that it removes the exponential growth in the forward-pass of a

CGQ iteration. Consider Figure 5.3 once more, where we assume that the Concrete nodes output

STGSE samples. We therefore have the following:

s1 = one-hot(arg max([0.9, 0.1])) = [1.0, 0.0] (5.5)

s2 = one-hot(arg max([0.7, 0.3])) = [1.0, 0.0]

s3 = one-hot(arg max([0.2, 0.8])) = [0.0, 1.0].

This means that we choose the path A→ B → A, and our calculated value of u is as follows:

u =2 + 1[8 + 1(2) + 0(9)] + 0[9 + 0(8) + 1(2)] = 12 (5.6)

=2 + [8 + (2)]

=12.
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Observe that many of the blue values are zero. This means the corresponding paths are mul-

tiplied by zero, and therefore, all nodes along that path will have value zero (excepting when

combined into the utility at the end of the calculation). This means that we do not need to calcu-

late the values of the nodes along these paths, because they will all be zero. As a result, the STGSE

has eliminated the exponential complexity of the forward-pass, since we only calculate values along

the path taken in the computational graph according to the sequence of decisions made at the

Concrete distribution nodes.

In the STGSE, a single forward pass is computed quickly at any Concrete distribution node in

the simplex ∆k−1 through the hard-sample approximation above. Because we still cannot differen-

tiate with respect to a max, STGSE uses the gradient of the standard Concrete distribution when

back-propagating:

∇θy ≈ [∇θx1, . . . ,∇θxk]. (5.7)

Recall that in the backward-pass of gradient descent in a computational graph that the chain

rule is used starting from the end node (e.g. the utility) with a gradient of ∇end = 1, with gradients

back-propagated as follows:

∇r =
∑

v∈out(r)

∇v∂v
∂r
, (5.8)

where out(r) is the set of all output vertices from the computational graph node r. Unfortunately,

despite all nodes in the non-chosen paths of the STGSE approximation having value zero, they do

not necessarily have a zero gradient. This means that back-propagation must propagate throughout

the entire graph, and not just the chosen forward path. Though the STGSE reduces computational

complexity in the forward pass, it does not do so in the backward pass, and the order of complexity

of the overall calculation is thus the same as for the standard Concrete distribution. The primary

purpose of the STGSE, then, is in allowing the evaluation of a cost function that might otherwise

be undefined (and not necessarily in computational simplification).

We introduce the Straight-Back Gumbel Softmax Estimator (SBGSE). Like the STGSE, a single

forward sample pass of the SBGSE is calculated by using a y = one-hot(arg max(x)) approximation.

This means that the forward pass of SBGSE is calculated exactly as for the STGSE, and retains

the reduced computational complexity of the forward pass.
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The challenge is, therefore, in reducing the complexity of the backward-pass. In addition to

the STGSE-like one-hot approximation during the forward pass, the SBGSE also uses a modified

backward-pass. The idea here is quite simple; we only back-propagate along the chosen path, and

do not compute gradients along any path that has been zero multiplied (i.e. by a zero element of

the one-hot vector). SBGSE therefore uses the following gradient approximation for a Concrete

node on the simplex ∆k−1:

∇θy ≈ [0,...,∇θxo∗ , ..., 0] ̸= ∇θx, (5.9)

where o∗ is the maximizing index of the one-hot forward sample. Note the differences between

(5.9) and (5.7). Rather than approximating all gradient elements of ∇θy by the corresponding

gradient in ∇θx, we approximate using only the gradient of the element that corresponds to the

hard-sample, with the rest set to zero. This is equivalent to never calculating or storing the zero

gradients at all (and in fact, we do not do so in the SmartGraph), because a zero gradient makes

no contribution to the calculation of earlier gradients during back-propagation (see that there is

no contribution to earlier node r in (5.8) when ∇v = 0).

To briefly demonstrate the backward-pass (and forward-pass) differences between the Concrete

distribution, the STGSE, and the SBGSE, we zoom in on decision s2 from Figure fig:cgq-unroll2b,

assuming that s1 = [1.0, 0.0]. This is shown in Figure 5.4. We do this to give more insight

into the Concrete nodes, as well as the complexity of showing back-propagation through the full

computational graph of Figure 5.3b.

In Figure 5.4, we show the forward- and backward-passes for the Concrete distribution, the

STGSE, and the SBGSE. We observe that the STGSE shares a backward-pass with the Concrete

distribution, and a forward pass with the SBGSE. We outline in red the path taken (from B to node

C and its w = 9), and include the 2 + 8 as the utility coming from the previous A→ B traversal.

The z correspond to the Gumbel samples as outlined in (1.2), with α = [0.3, 0.7] a randomly

selected initialization, and cA/cC corresponding to the node weights of A and C respectively. Since

many of the operations (e.g. log, plus, division, softmax) are vectorized, we separately include

the forward- and backward-passes of each element above and below the operation nodes (e.g.

log(0.3) + (−0.49) = −1.69).
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Figure 5.4: Comparison between Concrete, STGSE, and SBGSE in forward and backward passes.

We note that in the SBGSE, we do not compute the backward-pass for the B → A path, as it

is zero (which, as argued above, means it is not necessary to calculate). In contrast, STGSE does

calculate (non-zero) gradients along this path, and these ultimately affect the gradients determined

at the α nodes. SBGSE in general does not need to back-propagate along any zeroed out path.

In order to analyze differences in computational efficiency between the SBGSE and the STGSE

in a more general setting, we consider an extended computational graph in Figure 5.5. Here we

consider a sequence of l decisions di, i = 1 . . . l, each from k options, where the available k options

differ depending upon previously made decisions (and correspondingly, the utility of the decisions

is dependent upon the entire sequence, which we assume is non-zero for all possible sequences

of decisions). In order to aid visualization, we are ignoring the computational complexity of the

“Concrete” operation nodes that might otherwise appear in the computational graph. We introduce

the node θ, connected to every other node, such that each node makes a fan-out decision that is

dependent upon θ i.e. some function of θ describes the α terms used during sampling at each node.

Consider a hard sample of decisions made in this setting. As indicated by the dotted line in

Figure 5.5, the forward pass of both STGSE and SBGSE moves along only l+2 edges. This single
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Figure 5.5: Large-scale computational graph of a series of history dependent discrete decisions.

forward sample can thus be computed very quickly for both STGSE and SBGSE. Consider back-

propagation on this computational graph in the STGSE setting. At each node of the computational

graph in the fan-out stages, a decision between k alternatives is being made. As we demonstrated

in Figure 5.4, a zero value at a node in a hard forward-pass does not mean the gradient is non-zero.

With non-zero gradients potentially everywhere, naive back-propagation in SBGSE would need to

compute an enormous amount of computations. In contrast, we show in Theorem 5.1 that the

complexity of SBGSE is considerably more forgiving:

Theorem 5.1. Back-propagation of the Straight-Through Gumbel Softmax Estimator in the l stage

k alternative fan-out is O(kl+1), whereas the Straight-Back Gumbel Softmax Estimator is O(l).

Proof. There is a computation associated with every edge during back-propagation of the STGSE,

and so the complexity of back-propagation is O (E) = O
(∑l

i=1 k
i +
(∑l+1

i=0 k
i
)
+ kl+1 + 1

)
=

O
(
kl+1

)
, where the terms correspond to edges from Concrete nodes to other Concrete nodes (to

the kl+1 grey recombination nodes, after the lth fanout), edges from θ to all Concrete nodes, edges

from the recombination nodes, and the edge to the final utility node.
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In the SBGSE, there is instead a backward calculation associated with every edge traversed by

a walk through the computational graph, and a calculation for the connections of these nodes back

to θ. A walk of SBGSE traverses l Concrete related edges, 2 edges in the recombination stage, and

l edges from the Concrete nodes back to θ, resulting in O(l) complexity.

Note that O(l) ≪ O(kl+1), for even moderately sized graphs. Given the large size and high

degree of structural complexity present in many real-world graphs (often exhibiting the “supernode”

phenomena [191] where some vertices have extremely high numbers of outgoing edges, resulting in

high values of k), and because many graph queries have a number of important stages (resulting

in high values of l), it is clear that STGSE will break down due to the exponential complexity.

Although naive back-propagation is typically very efficient in most applications (because the widths

of the network layers are controlled), it is hampered by the fan-out of the scenario described herein.

When we run graph queries, we are soon looking at neighbors, then neighbors of neighbors, their

properties, ad infinitum. Thus running a query on a graph in a graph database unrolls into a

computational graph similar to Figure 5.5. This was observed in Figure 5.3b, even for a very

simple query on a simple graph. We argue Figure 5.5 and its complexity results are, therefore, a

strong basis for analyzing the computational efficiency of CGQ.

5.5 A Self-Directing Multi-Sample Approximation

Theorem 5.1 is not a complete picture for the complexity comparison. The back propagation of

STGSE provides gradient information to all parameter components of θ, whereas SBGSE only prop-

agates gradient information to those variables involved in the nodes through which the hard-sample

traversed. As discussed in Section 5.2, we are thus motivated to use a multi-sample approximation.

The obvious benefits of this are getting more accurate gradients with respect to the parameter

components of θ, as well as getting gradients related to more of the components.

Let there now be N SBGSE traversals. In this situation, we approximate each Concrete sample

gradient as outlined in (5.9). We are approximating the gradients of individual hard-samples

with the gradients of the individual Concrete samples (or at least, the gradient of each samples’

most significant element). It is common in gradient approximation methods to use multi-sample

approximations to get a more accurate estimation of the gradient of a parameter (either in terms
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of reduced bias, variance, or both). It would appear that we are still using a strictly single-sample

approximation in the SBGSE; and this is true, when we are considering the individual traversals

in a vacuum. However, recall that the actual parameters of interest are not the paths themselves

(which are related to the series of y along each path), but the parameter θ that controls which

paths are taken through the graph. If the gradient of the utility function with respect to parameter

θ contributed by walk n of N total walks is given by ∇θnu, then we simply define the following:

∇θu ≈
1

N
∇θnu. (5.10)

This means that, by virtue of the back-propagation process, any paths that share nodes in

the computational graph will contribute to the gradients of those nodes. For example, multiple

paths in Figure 5.3 that traverse A → B → C will all contribute to the gradients of the α

variables corresponding to the Concrete nodes along this path. The same holds for any variables

that are shared between traversals (this will involve traversing the same parameter node in the

computational graph, but the corresponding paths in the graph database may be entirely disjoint).

In this sense, the STGSE is actually a multi-sample approximation.

This is not the first such notion of a multi-sample approximation of the Concrete distribu-

tion; indeed, one of the original Concrete distribution papers [12] discussed the possibility of a

multi-sample approaches (using NVIL [192] and VIMCO [193]), though their results focused on

a single-sample approximation of the gradient. The other [13] implemented such multi-sample

approximations, but the reasoning behind the multi-sample approach in those papers was very

different to our use-case, in that the primary focus in those papers was on removing bias and

lowering variance of the calculated gradient (a common use for multi-sample approaches in many

computational graphs).

The goal of SBGSE is not to reduce bias or variance, but to develop a continuous approximation

to categorical random variables that has a computationally tractable backward pass in the case of

extreme fan-out. A key advantage of our multi-sample approach is that it is inherently selective

based upon the “importance” of the associated parameter node in the computational graph. To

see this, consider that our optimization of (5.3) drives our paths towards increasing utility. This

means that a variable that is only traversed by a single path out of N is likely relatively unim-

portant. In this case, little effort is spent on ensuring the estimated gradient of this variable is
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highly accurate. However, if this single traversal indicates there is perhaps benefit to changing

the corresponding variable, the next generation of traversals will likely include more paths through

this variable, allowing for a more accurate gradient estimation. We have therefore devised a multi-

sample gradient approximation method that automatically devotes higher levels of computational

effort to accurately estimate gradients of variables of higher import.

Through the use of multiple samples, we increase the chance that any given traversal will interact

with a particular variable, and thereby back propagate information from the utility function. We

generate a number of “random walks” according to some input graph query (that are actually

dependent upon and differentiable functions of parameters of interest θ). The use of random walks

and traversals to approximate graphs is a well-known technique in graph computing [112, 194, 195],

but these approximations are typically used for embedding or calculating factor terms, as opposed

to the SBGSE, which is changing its exploration and meaning with each iteration. SBGSE, then,

can be viewed as a method combining back-propagation with random walks on graphs, where we

only back-propagate along the paths we have taken during traversals. Though we do not theoretically

investigate the question of “how many traversals” do we need for SBGSE to perform effectively,

our empirical results in Section 5.7 and Section 5.7.4 suggest that the answer is “not many”.

5.6 CGQ Optimization

Thus far we have focused on single iterations of a CGQ (where we use the term iteration standard to

optimization methods). To gain an understanding of optimization in the CGQ context, consider a

computational graph resulting from the execution of a single query on a graph in a graph database.

This computational graph consists of data (i.e. from the graph database objects), as well as

variables (in our examples thus far, coming from the Concrete distribution sampling procedure

and its α values, though such variables can also be stored within graph database objects in the

SmartGraph system).

As a result, we could take this computational graph as static, and optimize the variables until

convergence, as in systems like TensorFlow [55]. Suppose that the computational graph corresponds

to only a single querying procedure (even if that single query procedure involved many traversals).

This means that even if the parameters θ change, the traversals are constant (for that iteration).
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Therefore running many iterations of gradient descent on this first computational graph could lead

to wildly inaccurate results, as we would have α parameters that no longer correspond to the paths

as given in the unrolled computational graph.

We have previously discussed our goal in enabling deep learning capabilities via querying, and

that this is accomplished by reading the graph during optimization. To be precise about our

meaning, CGQ does not view the graph database as a static object, and it does not use a static

computational graph. Instead, the computational graph used by CGQ is dynamically generated

by each graph query. After every iteration of gradient descent that changes parameters critical to

the computational graph structure, e.g. the α parameters that generate traversal choices, we again

query the graph database, form a new utility function with respect to those new sample paths, and

perform gradient descent.

Through this approach of alternating a process of query sampling with a process of gradient

descent upon the utility function defined by those samples, we allow the graph database to be

fully explored. Given appropriate variables, the entire graph can be explored if required. This

overall methodology is kept tractable by a combination of the SBGSE as outlined in Section 5.4,

approximating the full query via sample paths, and using continuous approximations to discrete

variables as outlined in Chapter 1. In the SmartGraph implementation, CGQ uses the Gorgonia

[196] package for performing Stochastic Gradient Descent, a TensorFlow-like package for the Go

programming language with support for dynamic computational graphs via its LispMachine.

5.7 Experiments and Results

Here we outline a series of results demonstrating the applicability of the CGQ methodology (on an

Xbox Live dataset summarized below in Table 5.1). These are more general results demonstrating

the implementation of the CGQ approach in the SmartGraph system. In Section 5.7.3, we formulate

and show CGQ approaches specifically targeted at solving product recommendation.

Note that all our results reference α values, where we assume (unlike Chapter 1), that the α

values are normalized onto the simplex. To ensure this always stays the case and does not cause

problems during training (recall that we take logαi, and so α values can never be allowed to

become negative), we perform gradient descent on unnormalized values ηk that are allowed to be

123



negative, and set α = softmax(η). In this manner, we can use gradient descent methods with the α

parameters always interpreted as well-behaved probability values. In this manner, the experiments

below demonstrating components of α that are close to 1 is a desirable behavior, as it indicates

gradient descent has located a pure strategy that is suitable for the cost function associated with

optimization problem. Of course, there exist many optimization problems where a mixed strategy

is optimal (well recognized in game theory and discussed in Chapter 3). For illustrative purposes,

the problems below are, by construction, CGQs where we expect the optimal solution to be a pure

strategy.

5.7.1 Exploration of Data

The video game industry is larger than both the film and music industries combined. Recom-

mendation systems for video games have received relatively scant academic attention, despite the

uniqueness of the medium and its data. We explore recommendations that make use of interactiv-

ity, arguably the most distinguished feature of video game products. In [6], we showed that the

use of implicit data that tracks user-game interactions and levels of attainment (e.g. Microsoft

Xbox Achievements) has high predictive value when making recommendations. Furthermore, we

argue that the characteristics of the video gaming hobby (low cost, high duration, socially relevant)

make clear the necessity of personalized, individual recommendations that can incorporate social

networking information. We demonstrate a solution to this problem as an application of the CGQ

methodology, and also use this data in demonstrating functionality of the CGQ system in general.

The Xbox Live marketplace and video game service includes a wide range of data services,

including data relating to games, game ownership, friendships, group (e.g. gaming “clans” or social

groups representing real-world groups) membership, sales data, and achievements. The Xbox Live

service does not have an official publicly accessible API, and so to crawl this dataset, we used an

unofficial API service [197]. In Table 5.1 and Figure 5.6, we briefly describe and summarize the

graph dataset formulated from crawling the API (see [6] for a more detailed exploration of the

dataset).
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Table 5.1: Vertex and edge type counts in the crawled datasets

Name Type Description Xbox Live Count
VP Vertex Players 102861
VG Vertex Games 1681
VD Vertex Game developers 994
VR Vertex Game genres 21
EF Edge Friendships between players 12834391
EO Edge Ownership of games by players 3755497
ED Edge Games developed by developers 1736
ER Edge Games belonging to genres 2480
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Figure 5.6: Fictional subgraph of the Xbox Live dataset, showing various node and edge types. Dif-
ferent vertex types are represented by different box colors and shapes, with edge types described on
the edge. Properties are represented as double-lined orange rectangles, though in the SmartGraph
they are stored inside the corresponding vertex or edge. We show a superset of node and edge
types, e.g. the “sequel” relationship is in the full dataset, but not among the edge types considered
in our experiments.
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5.7.2 Learning and Convergence in the Computational Graph Query

Starting each iteration with 500 Players VP (chosen uniformly at random in each iteration), in

Figure 5.7 and Figure 5.8, we demonstrate the application of the CGQ methodology to a query

where we set α parameters to generate game ownership edge samples EO for a variety of different

genres, i.e. [αFamily, αSocial, αFighting, αStrategy, αShooter] using a split CentralOperation, as described in

Section 5.1.1. The goal of the Computational Graph Query in this experiment is to “find paths from

Players to Games that maximize the average Gamerscore of the players” (Gamerscore is defined in

Section 5.7.3below in more precise detail, but it is essentially a measure of overall accomplishment

within all the games a user owns), we use gradient descent on the relevant α parameters to select

the genre of the games that the CGQ traverses such that we maximize the Gamerscore of Players.

We chose this application to demonstrate how the utility function of a CGQ can depend on earlier

stages of the traversal, and not just the final stage. Here, the query goes from Player nodes to

Game nodes, with the utility using properties of the first Player vertex set. However, the Game

nodes are critical, as they guide the path of the CGQ, because players who play particular genres

tend to have higher Gamerscores (indeed, this is what the result of the CGQ tells us).

We observe some very interesting properties in Figure 5.7 and Figure 5.8. The most apparent is

that Figure 5.7 appears as complete noise, whereas Figure 5.8 eventually demonstrates convergent

behavior for the parameters. The noisy appearance of Figure 5.7 is to be expected, given how

Section 5.6 outlines that every cost function value is actually calculated from a different set of N

traversals. However, when we use the gradients of this noisy appearing cost function, the CGQ

is still able to learn the correct parameter values, demonstrating that owners of games with the

“Shooting” genre tend to have higher Gamerscores. This is akin to how the Player “Matt” in

Figure 5.6 owns many shooting games, and has the highest Gamerscore property. These figures

demonstrate an important aspect of CGQ that must be considered when using it to perform deep

learning on graphs; the cost function can be used for guiding parameters in the descent, but

typically can’t be used for ascertaining convergence.

Figure 5.9 and Figure 5.10 investigate this phenomenon more closely, with the trivial query

“which genre traversals from Players to Educational or Shooter Games have the highest average

minimum age requirement”. This query is trivial since the genres are restricted to “Educational”

and “Shooter”, where the latter often have M or R ratings, and the former no such ratings. In each
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Figure 5.7: A Noisy cost function of a CGQ.

Figure, we observe the effect of increasing the number of sample paths used in each optimization

step of the CGQ. While the cost function shown in Figure 5.9 is still “noisy”, we observe that the

magnitude of this noise reduces as we increase sample paths.

This might seem trivial (i.e. a simple result of the law of large numbers), but recall that

parameter optimization and graph querying is constantly occurring during this process. Of interest

is that regardless of the sample size, we observe in Figure 5.10 that all queries are quickly converging

to the correct answer. This is a very important point to note about the CGQ methodology; we

appear to converge to the correct values even when we don’t seem to have “enough” samples to

represent the graph structure. The reason this is important is related to the exponential blowup

discussed above. That is, even for a moderate sized graph, there can be so many possible traversals

through the graph that we could never hope to generate enough samples to make the approximation

of (5.3) particularly accurate. Fortunately for the CGQ methodology, the gradients generated by

the approximation still appear to guide the optimization to the correct solution. We propose that

part of the reason for this is that the CGQ methodology is highly resistant to getting trapped in
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Figure 5.8: Values of α parameters associated with each genre during gradient descent on a CGQ.

local minima by virtue of the requerying process. This is because a local minima that is good for

a particular set of paths is unlikely to be a good local minima for the subsequent paths generated

after a new query, though this is, of course, dependent upon the graph and property structure

of the database objects. The use of randomness to escape local minima is a well-studied field in

optimization [198, 199]. However, there is a significant qualitative difference between the use of

randomness in typical gradient descent approaches, and the randomness in CGQ. In batched SGD,

randomness is introduced before function evaluation in the definition and/or choice of the data

samples used in the function evaluation. In contrast, the randomness involved in CGQ comes from

explorations of the graph that are potentially the result of the input parameters.

For very small problems, we anticipate that noise in the approximation would essentially dis-

appear as it becomes computationally feasible to have a large enough number of samples. Indeed,

we have already shown this is the case in Chapter 3. Consider the problem of performing ancestral

sampling on a DeepID, with Concrete approximations to decisions used to maximize some notion

of utility. Thinking of the macro-level graph structure of the DeepID quite literally, we observe
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Figure 5.9: Cost function becoming more regular as samples are increased.

that DeepIDs are special cases of CGQs; they just happen to be quite small “graph databases”. In

the optimizations shown in Chapter 3, we observe the kind of regularity in the optimization of the

cost function value that is absent from Figure 5.9. This regularity is also present in Section 5.7.4

because of the highly constrained values of the properties involved in the query.

In Figure 5.11, we demonstrate the compatibility between the CGQ methodology and the

SmartGraph by showing 32 (chosen as it is double the number of threads on the machine the

test was executed upon) concurrent CGQ optimizations. We use the same trivial query here, as

our goal is to demonstrate that the SmartGraph can many concurrent optimizations - recall that

each iteration of each optimization is also performing a large graph query that are all executing

concurrently with the other graph queries and optimizations. Rather than performing simply one

CGQ at a time, the SmartGraph implements the approach with the same philosophy of graph

databases and graph querying, facilitating massive concurrency and multiple user usage.

In the above experiments, the SmartGraph uses three routers, all using the MAL abstraction.

In Figure 5.11 we demonstrate how the facility to add more routers improves the execution time
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Figure 5.10: Convergent behavior in a CGQ regardless of the number of samples.

of the concurrent CGQ experiments. As we observed in Chapter 4, the optimal number of routers

is not at either extreme - neither a single router, nor a router for every vertex or edge.

5.7.3 Personalized Product Recommendations using Attainment Data

In this section, we give a brief introduction to recommendation systems, and devise a new method

for generating user-game scores that we generate from achievement data. Achievements are flags

stored digitally within the Xbox Live dataset that indicate a player has completed a certain task

(typically of some difficulty, such as finishing a game on “hard mode”) within the product, that are

combined (within and across owned games) to form a global “Gamerscore” for each player. Since

we want scores on a Player→Game level, we construct our own method of scoring, which we call an

“attainment score”. We then generate recommendations using these scores as a practical example

of the CGQ methodology.
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Figure 5.11: Concurrent execution of 32 CGQ optimization problems.

Introduction to Recommendation Systems and Attainment Ratings

Recommendation systems and the techniques developed for them have historically focused on music

[200], film [201], and other media for which consumption is a predominantly passive process. These

services (see [195] for a recent review of the field) primarily employ “explicit” ratings data, wherein

a user directly and deliberately inputs some form of rating for a product. In this context, implicit

data, i.e. data that may implicitly indicate user preferences, but that does not involve the user

explicitly designating a score or writing a review, is often seen as less causally informative, more

biased, and less precise. We argue that there exists a class of products for which implicit data is

disproportionately relevant; interactive media products for which interaction is the primary method

of consumption. Further, we show how this data can be used effectively for making recommen-

dations. We use the video game industry and Xbox Live [202] as our source of interactive media

products. Xbox Live is a digital distribution service for Windows PCs and Microsoft’s Xbox line

of home video game consoles. Products on Xbox Live are actively marketed to users running each
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Figure 5.12: Effect on CGQ runtime as we increase the number of routers.

service, with regular discounted sales events and pop-ups of recommended purchases. Although

Xbox Live does allow users to post reviews of purchased products, the use of such data in making

recommendations can be called into question due to the frequency of review bombing incidents

[203, 204] and the relative sparsity of the review datasets (i.e. where few users post reviews).

The need for recommendation systems capable of taking into account the particulars of inter-

active media products is clear. We outline a method for how this enormous implicit data set can

be combined into scores between zero and one for each user-game pair and argue that the resulting

score can be interpreted as an implicit rating of the game by the user with that rating having many

desirable properties. Unlike many traditional implicit data sets, these ratings are not unary or bi-

nary, and demonstrate global consistency (unlike explicit rankings, where e.g. users may disagree

what criteria is required for a 5-star rating).

Xbox Live is also a software platform on which purchased products are managed, organized, and

run. It is the interactive nature of video games that distinguishes games from other forms of media.

Rather than a passive process of consumption, playing video games involves making conscious
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choices about how, when, and why to perform certain interactions. It is this interactive experience

of the consumers with the product that they purchase (and other users who have made the same

purchase) that differentiates digital distribution systems like Xbox Live from retailers like Netflix

and Amazon [205] that sell physical and digital products through an online marketplace. Here we

argue that the choices players make are indicative of their preference of titles, and can therefore be

used for the purposes of product recommendation. Furthermore, we argue that presently recorded

data, in the form of achievements, directly reflects these actions.

Query by Example in Recommendations

We detail a method for generating game recommendations by exploring the networks of Xbox

Live using the CGQ methodology. The field of social recommender systems [206–209] has become

increasingly important in recent years, growing alongside the size and complexity of commonly

used social networks. Such work has typically focused on key domain areas such as web search

[147, 210, 211] and friend recommendation in social networks [212, 213]. In its most basic form,

the problem of social recommendation can be viewed as an example of link prediction on graphs,

and much work has been completed from this perspective [213–215]. Indeed, many methods of

recommendation in general can be viewed as such. Consider that the method of collaborative

filtering [195] on user-movie-ratings triplets (e.g. of Netflix Prize ilk) can be viewed as a link

prediction problem on a bipartite graph of users and movies (connected by edges denoting ratings).

In social recommendation datasets, we are instead performing link prediction on a graph that is not

necessarily bipartite, with many vertex (e.g. person, product, organization, news item) and edge

types (friends, owns, belongs to, read). Recommendation, then, can thus be considered a graph

problem.

This has led to work generating recommendations via random walks on the graph [111, 208,

216, 217]. Multi-modality in vertex and edge types has primarily been addressed through two

different approaches. The first is to use an ensemble approach, where existing bipartite techniques

are applied to graphs partitioned by vertex and edge type (this is required due to the tendency of

a particular node or edge type to dominate when types are not considered), and recombined into

overall recommendations. The second approach, more relevant to this chapter, is to bias random

walks on the graph such that the biased walks are more likely to arrive at relevant products [218,
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219]. These approaches work to calculate edge transition probabilities, such that the probability

of any individual walk is then the product of the probabilities of the edges it contains. While

these approaches are useful for finding recommendations for existing users and products, they lack

explanatory power because they do not interpretably describe why or how the walks are biased.

This can result in difficulty in applying supervised random walk methods to new data without

additional computation.

Developed separately from supervised random walks is a related graph problem that can simi-

larly be used to generate product recommendations. Rather than focusing on product recommen-

dation specifically, “reverse engineering” a.k.a. “reachability problem” a.k.a. “query by example”

[185–187] seeks (in the graph database context) to learn the queries on graphs that result in certain

vertices (or more general graph objects) being returned (where to perform learn queries to recom-

mend products, we set a users owned products as the example vertices). In contrast to supervised

random walks, the focus of query by example is specifically on learning some approximate query

within the bounds of a particular query language. Naturally, the hope is that such a query is

interpretable, and that interpretation of this query is just as informative as the additional results

that the learned query might yield.

Attainment Ratings

We argue that achievements are highly informative implicit data that can be used to determine

a score representing how much a particular user likes a particular game. The rationale is quite

simple; the more a user enjoys a game, the more they will attempt to complete everything it has to

offer. We compute an overall achievement score for a particular user by combining each individual

achievement weighted by difficulty level computed using global achievement rates.

Hours played has been proposed in the literature [220] as a metric to approximate user pref-

erences. However, there are significant issues with the use of simple play times. For instance, the

length of games is not uniform. Certain genres (e.g. Role-Playing games) are typically significantly

longer than other genres (such as Action games), and many highly acclaimed games are extremely

short (such as the Playstation title, Journey). Though we can “normalize” play times (e.g. by

uniform scaling, using z-scores etc.), the process of normalization requires explicitly comparing all

users (or at least, some statistically significant subsample), a computationally expensive operation.
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We propose to eliminate these shortcomings by using achievement data to define what we call an

attainment rating. These attainment ratings can be computed without explicitly comparing users,

yet result in a score that is globally consistent across all users.

The attainment rating is computed by combining each individual achievement weighted by

a difficulty level computed using global achievement rates. For a game g we denote its set of

achievements as Ag = {Ag1 , Ag2 , ..., AgNg
}, where Ng is the total number of achievements of game

g. Each Agi ∈ Ag is a binary vector of length ∥Pg∥, where Pg is the set of players who own game

g, such that Agis indicates whether or not player s has achieved achievement number i in game g.

Clearly, the proportion of players who have achieved Agi can be calculated as follows:

Cgi =

∑
p∈Pg

Agip

∥Pg∥
(5.11)

We define the attainment score Ags of player s for game g as follows:

Ags =
∑

Agi∈Ag

Agis · (1− Cgi)
Ng

(5.12)

The attainment score Ags has a number of desirable properties. First, we observe that for each

player s, the impact of all other players on the attainment score of player s for game g is expressed

solely through global achievement proportions as determined by (5.11). However, due to the gam-

ification of obtaining and displaying achievements, the evaluations of (5.11) for all achievements

are available apriori in the dataset. From (5.12) it follows that that Ags aggregates a global un-

derstanding of achievement difficulty without the needing for explicit user comparisons – a rare

achievement, i.e. one with Cgi ≈ 0, makes a large contribution to Ags. Similarly, extremely

common achievements, i.e. those with Cgi ≈ 1, contribute very little to the attainment rating.

From (5.12) we have:

0 ≤ Ags ≤ 1− 1

∥Pg∥
(5.13)

The attainment rating Ags = 0 if the user has no achievements for game g, or in the very unlikely

event that everyone else has all the achievements for it. The maximum value Ags = 1 − 1
∥Pg∥ is

achieved in the unlikely event that user s has all achievements for game g, and is the only user

to have all the achievements. In a traditional rating system, different users may have entirely
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different standards for what constitutes a given score (e.g. giving out full marks for “I liked this”

versus full marks for “this is literally my favorite game of all time”). In contrast, the attainment

ratings in (5.12) are precise, and measure the same degree of attainment for every user. The use of

achievements can give scores across the full range for all users, with truly high attainment ratings

possible, but increasingly rare.

5.7.4 Computational Graph Query Recommendations

Figure 5.13: Training of a product recommendation CGQ.

The average playtime of a video game is considerably longer than many other forms of enter-

tainment, with games in the Action genre having playtimes typically in the 10-20 hour range, and

Role-Playing games often extend to hundreds of hours. Given the comparatively long length of

video games and the large number of products in the dataset, the ability to recall even a small

fraction of highly relevant products using attainment ratings suggests an ability to generate a suf-

ficiently large number of recommendations for users for the duration of their use of the platform.
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This encourages the repeated use of more personalized queries, where a user can narrow these

general recommendations to match their specific desires of the moment.

The social aspect of using (attainment) rating data from actual friends (as opposed to other

users designated as “similar” via some clustering or similarity measure) makes particular sense in

the context of video games, where online multiplayer is often a big part of a product’s appeal.

These properties suggest the value of graph-based recommendations using CGQ in this setting,

where users can easily specify queries that account for desired properties and social networks. We

search in the graph for specific paths of nodes and edges that can succinctly and interpretably

describe “complex” queries that actually represent intuitive ideas.

In query by example for recommendation systems, we might seek to learn an interpretable

graph query from data. Or, we might understand aspects of the query (such as desirable product

properties), but not know how best to traverse the graph to get the most relevant recommendations.

To demonstrate the applicability of the CGQ approach, we parameterize a family of queries where

αijm is the probability of a walk traversing from a node of type i to a node of type j on the kth

traversal step s.t.
∑K

j=1 αijm = 1 (i.e. for every step and vertex label type, there is a distribution

over the vertex labels of the next step). Once a future label is chosen for each sample path according

to α using the Concrete distribution, the sample path walks along an edge chosen uniformly at

random from all edges that will get from the current location to the chosen vertex label. As a

utility function, we use the sum of average attainment rating (note that attainment scores are not

graph data here, but a pre-calculated property value for each Game vertex) for each game traversed

during each walk, and sum over all walks (note the similarity to finding the average of sums of

weights on paths in Figure 5.2). That is, we maximize the following objective:

N∑
n=1

M∑
m=1

xnm.avgAttainment, (5.14)

where xnm.avgAttainment is the average attainment (across Players who own the game) of the

node arrived at from the mth traversal step of the nth sample path (where xnm.avgAttainment is

non-zero only if the node is a game node). In Figure 5.13, we observe that simple SGD very quickly

learns to optimize the CGQ. In particular, it learns the globally optimal (and interpretable) solution

of “traverse repeatedly from users to owned games, to other users who own that game, to games

that they own”. Something of note in Figure 5.13 is that the cost function value is relatively stable,
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unlike the examples in Figure 5.7 and Figure 5.9. We suggest this is because of the stability of

problem 5.14; with N and M fixed, and with attainment ratings continuous in the interval [0, 1], it

is much less likely that subsequent iterations will have huge deviations, even as they sample different

paths. This is in contrast to the queries examined previously, which depended on parameters like

Gamerscore that are unbounded, and minimum age requirements, which are categorical. To aid

with interpretability, Figure 5.13 is shown with respect to the maximum objective, which was found

by manually enumerating each combination of traversal sequences (something that cannot be done

with more complicated queries, as discussed in Section 5.4).

5.8 Discussion

The Computational Graph Query methodology described in this chapter is a potential solution to

a problem that has plagued machine learning researchers since deep learning first began to gain

serious traction. Instead of approximating graphs as tensors, CGQ allows us to retain all structural

and property information contained in a graph database. Furthermore, it allows the machine

learning algorithms to interpret graph structured data as an actual graph, through inspection in

the same way that users interpret large graph structures, that is, by querying. There is a cost to

pay, of course, in potentially having to generate numerous traversals. Fortunately, all of our results

indicate that in practice, we can solve problems of note with only a moderate number of traversals.

Through both simple examples and the important use-case of recommendation systems, we

outlined how CGQ exhibits a lot of promise, and performs well even in environments where we

cannot hope to obtain “enough” path samples to fully approximate a graph. Importantly, we

demonstrated how CGQ can work in a real graph computing environment, the SmartGraph as

outlined in Chapter 4. Instead of merely getting CGQ running in the SmartGraph, we used the

concurrent capabilities of the system to demonstrate how CGQ could be used to solve graph based

machine learning problems for many users simultaneously.
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Conclusion

In this dissertation, we outlined how aspects of three typically unrelated fields could be combined

synergistically to solve outstanding problems in each field.

In deep learning, we demonstrated how the concept of graph querying, as it has been developed

in graph databases, can be used to solve the problem of inputting highly variable graph struc-

tured data into machine learning models without hammering it to fit the existing tensor-focused

environment of traditional deep learning systems. This method of interpreting graph structured

data in a more natural, interpretable way is one of the most significant accomplishments of this

dissertation, and also indicates many possible directions for future research (as there are many

graph-input based problems to which this methodology could be applied).

In graph computing, we demonstrated how the concurrent execution models developed in graph

databases can be used to execute complex analytics. For graph analysis in general, we showed how

continuous approximations for discrete systems allow us to incorporate a wide range of deep learning

techniques (such as Stochastic Gradient Descent) into situations where it is typically not possible

to do so.

We further demonstrated the importance of having interpretability in the models that we use.

Not only did it allow us to easily make robust modifications to the DeepID decision support system

(which we later revealed as a special case of a Computational Graph Query), it was also a key

concept behind the development of the Computational Graph Query methodology; interpretabil-

ity leads to “natural understanding”, and thereby natural language processing. For not only is

interpretability important to human users of algorithms and analytics (e.g. in understanding the

how and why of generated results), it is also important to the execution of the algorithms them-

selves. By giving machine learning models the ability to interpret graph structured datsets in the
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same way as humans (i.e. interpretable path traversals), we facilitated important new solution

methodologies.

As a systems dissertation, we demonstrated how many of the theoretical and abstract ideas

of this dissertation could be implemented in a real-world combined graph database, graph com-

puting, machine learning system. This allowed us to explore and understand how many of these

ideas actually mesh and can be applied in practice. While some combinations seemed atypical

(e.g. implementing CGQ on multiple routers), we ultimately observed that these combinations

were beneficial, either resulting in increased performance, or entirely new capabilities. It is our

hope that the ideas and philosophy behind this dissertation encourages others to examine how

traditionally disparate fields can be used both to generate new academic research, and to build

practical industrial systems.
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