
 
 
 
 
 
 
 
 
 
 

Predicting Autonomous Promoter Activity Based on Genome-wide Modeling of 
Massively Parallel Reporter Data 

 
 

Vincent D. FitzPatrick 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

Submitted in partial fulfillment of the  
requirements for the degree of  

Doctor of Philosophy 
 in the Graduate School of Arts and Sciences 

 
COLUMBIA UNIVERSITY 

 
2020



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

©2019 

Vincent D. FitzPatrick 

All rights reserved 



 

   
 

  ABSTRACT  
 

Predicting Autonomous Promoter Activity Based on Genome-wide Modeling of 
Massively Parallel Reporter Data 

 
Vincent D. FitzPatrick 

 
 

Existing methods to systematically characterize sequence-intrinsic activity of promoters 

are limited by relatively low throughput and the length of sequences that could be tested.  

Here we present Survey of Regulatory Elements (SuRE), a method to assay more than a 

billion DNA fragments in parallel for their ability to drive transcription autonomously. In 

SuRE, a plasmid library is constructed of random genomic fragments upstream of a 

barcode and decoded by paired-end sequencing. This library is transfected into cells and 

transcribed barcodes are quantified in the RNA by high-throughput sequencing. By 

computationally analyzing the resulting data using generalized linear models, we succeed 

in delineating subregions within promoters that are relevant for their activity on a genomic 

scale, and making accurate predictions of expression levels that can be used to inform 

minimal promoter reporter construct design. We also show how our approach can be 

extended to analyze the differential impact of single-nucleotide polymorphisms (SNPs) on 

gene expression. 
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1 Introduction 

 
The human genome has on the order of 100,000 promoters, which are defined as 

regions of DNA capable of driving transcription [1]. At the most basic level, for protein-

coding genes and many non-coding RNA (ncRNA) genes, promoters must include the 

position at which RNA polymerase II (RNAPII) initiates transcription. Modern RNA 

sequencing techniques allow us to identify the position of transcription start sites (TSSs) 

with single nucleotide precision [2]. While the locations of initiation events demonstrate 

the presence of a promoter in the immediate vicinity, identifying the specific parts within 

these promoter regions that are responsible for driving transcription initiation requires 

more information. 

One common structural feature of promoters is the core promoter region, i.e., the 

region extending roughly 50bp up- and downstream of the TSS [3]. At the core promoter, 

general transcription factors (GTFs) bind to the DNA and assemble in a step-wise fashion 

before recruiting and positioning RNAPII for initiation. The complex of GTFs and 

RNAPII bound together at the core promoter constitute the pre-initiation complex (PIC). 

In addition to RNAPII, a minimal PIC includes the GTFs TFIIA, TFIIB, TFIID, TFIIE, 

TFIIF, and TFIIH [4]. Additional GTFs and associated proteins can be part of the PIC as 

well. PIC positioning is guided by the presence of core promoter elements, i.e., short 

DNA sequences that can be bound by components of the PIC. For example, the TATA-
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box is typically located 30bp upstream of the TSS and is recognized by TATA-binding 

protein (TBP), a component of TFIID. Other core promoter elements found in vertebrates 

include the BRE motifs (bound by TFIIB and flanking the TATA-box), the Initator motif 

(Inr, overlapping the TSS), and the downstream core elements (DCEs) [4, 5].  

While the concept of a core promoter region seems to suggest a trivial means of 

identifying the boundaries of promoter regions (i.e. locating core promoter elements or 

the binding sites of PIC proteins), the reality of transcription initiation is more 

complicated. It is rare for some of these core promoter elements to appear in the same 

promoter region, and different elements are typically associated with different promoter 

architectures [3, 6]. Additionally, while simpler organisms tend to have more fixed 

positions of initiation determined by core promoter elements, mammalian promoters 

show a greater diversity in the distribution of initiation sites. Mammalian promoters with 

TATA-boxes reflect the “focused” initiation sites of simpler organisms, but only include 

about 15% of promoters [4]. These tend to be associated with highly regulated genes. In 

contrast, housekeeping gene promoters rarely include clearly recognizable core promoter 

elements, and exhibit a “broad” pattern, where initiation can occur at any number of sites 

over a broader promoter region [3, 4]. These promoters tend to be associated with CpG 

islands, defined as regions of increased density of CpG dinucleotides. However, these 

CpG dinucleotides do not appear play a direct role in recruiting the transcriptional 

machinery, and can be associated with active or inactive promoters depending on their 

methylation state [7, 8]. 
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Tightly regulated genes reveal another complication in using core promoter 

regions to define promoter boundaries. The underlying DNA sequences are present in 

cellular contexts where the core promoter is bound and active, as well as cellular contexts 

where the core promoter is not bound and inactive. Clearly, the presence of a core 

promoter alone is not sufficient to determine whether active transcription will occur. 

Identifying the local regions that influence the activity of the core promoter region can 

help delineate the broader promoter region. 

One mediating factor in determining promoter activity is chromatin context. 

Chromatin is the macromolecular complex formed by DNA, histones and other proteins. 

An average of 147bp of DNA winds around each histone octamer to form a nucleosome 

[9]. Histones can be chemically modified to alter the degree to which nucleosome are 

packed together, which in turn can modify the accessibility of DNA. DNA accessibility is 

important for the formation of the PIC. Active promoters are generally associated with 

nucleosome-depleted regions (NDRs), flanked by the upstream –1 nucleosome and the 

downstream +1 nucleosome. In active NDRs, these flanking nucleosomes, and other 

nearby nucleosomes, tend to carry specific chromatin marks and histone protein variants 

[4, 9, 10]. Together, the position of nucleosomes and NDRs, their associated chromatin 

marks and histone variants provide some information about the structure of the promoter. 

Experiments like ChIP-seq and DNase-seq allow us to map the distribution of these 

chromosome features [4, 10]. However, these do not fully delineate which promoter 

sequences influence transcription activity. Histone modifications and positioning depend 

on the presence of other DNA-binding proteins, including specific transcription factors 
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other than the PIC-associated GTFs [10]. Only a subset of the sequence in and near the 

NDR may be necessary for modifying and positioning histones and recruiting the PIC. 

Additionally, the consistency of nucleosome positioning relative to the core promoter can 

differ across promoter classes [3, 4], suggesting that NDRs are an imprecise way of 

delineating precise promoter regions. 

Due to the important role that non-GTF TFs play in recruiting the components of 

the PIC, the identification of transcription factor binding sites (TFBSs) in promoter 

regions is a strong indicator of which sequences may be driving transcription. TFBSs can 

be identified in several different ways. ChIP-seq experiments can identify the places 

where specific TFs bind in vivo [5]. Motif models can be constructed from prior binding 

experiments (including in vivo experiments like ChIP-seq and in vitro experiments like 

protein binding microarrays [11] and SELEX [12]), then used to predict binding based 

purely on DNA sequence. Finally, motif models can be combined with in vitro 

experimental data that identify accessible regions or sub-regions occupied by any DNA-

binding proteins, such as DNase footprinting [13]. One important limitation to these 

approaches is that available datasets are limited to a subset of known TFs. While recent 

high-throughput methods have greatly expanded the number of TFs for which TFBS data 

are available [11, 14], these vary in quality and do not cover all of the thousands of 

known TFs. This makes it difficult to identify important regulatory sequences if they are 

bound by an uncharacterized TF. 

Additionally, the identification of TFBSs does not directly implicate these regions 

in driving nearby transcription. Non-GTF TFs that regulate a nearby promoter tend to 
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bind upstream in what is called the proximal promoter region [5]. However, the presence 

of a TFBS in the proximal promoter region does not guarantee that the associated TF 

plays an active role in transcription initiation. TFs can bind in complexes called cis-

regulatory modules (CRMs), and the composition of a CRM can alter the effect of 

individual TFs on downstream transcription. In some cases, the same TF can be 

associated with activation or repression depending on its binding partners [15]. 

Additionally, TFBSs can occur in regions outside of the proximal promoter, including in 

enhancers and the gene body itself [5]. Enhancer-binding TFs can influence the 

transcription of distal promoters via DNA looping. This is further complicated by the fact 

that enhancers are frequently transcribed themselves, either due to proximal TF binding 

or due to being brought into contact with the transcriptional machinery of promoters [16].  

On the small scale, there is a simple experimental method that is capable of 

assessing the transcriptional activity of specific genomic sequences: promoter bashing. In 

promoter bashing, a candidate promoter sequence capable of driving transcription is 

inserted upstream of a reporter gene [17]. Subsequently, the promoter sequence is 

modified, either through mutation or deletion, usually on the 5’ or 3’ end [17]. The 

functional consequences of these changes are compared to the original construct either 

through transfection or genomic insertion, followed by expression and experimental 

detection of the reporter gene [17]. Deletions or mutations that result in decreases in 

transcription have probably affected functional sequences, while changes that do not 

cause a change in expression suggest that the altered DNA is non-functional. Some 

changes in the DNA sequences may even lead to increases in expression by removing 
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repressive elements or improving the spatial organization of the construct. If performed 

iteratively, promoter bashing can produce a minimal regulatory element, capable of 

performing the functional role of the original sequence without including unnecessary 

sequences [17]. A similar approach can probe the functional properties of enhancers by 

adding a target promoter to the plasmid construct. These minimal promoter and enhancer 

elements can be useful in future experiments. 

 While promoter and enhancer bashing are useful, they are labor-intensive and can 

only be used to probe a small number of regulatory regions at a time. In contrast, a 

number of massively-parallel reporter assays (MPRAs) have been developed to probe the 

regulatory activities of thousands to millions of specific genomic regions in parallel [18, 

19]. Typically, a large number of regulatory sequences are inserted into a plasmid 

construct similar to those used in promoter bashing, except for the addition of a unique 

DNA sequence that ensures that each reporter transcript can be distinguished from all 

others [20]. This is often a short random barcode sequence that can be mapped back to 

the inserted regulatory region by sequencing the plasmid library. Upon transfection, this 

barcode is expressed as part of the reporter construct, and can then be selectively 

sequenced to measure the relative expression driven by the associated regulatory element. 

A notable exception is STARR-seq, which probes enhancer activity by inserting enhancer 

sequences downstream of the reporter gene itself [21]. Enhancers capable of driving 

expression of an upstream minimal promoter lead to their self-transcription. 

Unfortunately, this approach has limited approach in promoters, which typically 

transcribe in a downstream direction and must therefore be inserted upstream of the 
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reporter construct. Thus, promoter-based MPRAs typically include a barcode-based 

reporter construct architecture [20]. These plasmid libraries are transfected en masse into 

cell culture, followed by isolation and sequencing of expressed reporter constructs, 

allowing for the parallel measurement of the relative expression of the entire library. 

 Promoter-based MPRAs vary in their ability to accurately discriminate functional 

regions, both locally and on a genome-wide scale. Assays that test tens to hundreds of 

thousands of sequences have been applied to small sections of the genome, and typically 

are targeted at specific regions thought to contain functional elements a priori [22]. This 

can provide useful information about the specific boundaries of functional elements 

within these targeted regions, just as promoter bashing does in individual cases. 

However, it lacks the genome-wide scale that might be useful to the broader research 

community, whose targets of interest lie outside the selected regions. 

To perform a promoter activity assay that can reveal the location of specific 

functional elements throughout the genome, the total number of elements tested must be 

several orders of magnitude larger. To this end, we have developed Survey or Regulatory 

Elements (SuRE), a genome-wide promoter-based MPRA that has been used to probe the 

activity of hundreds of millions of human genomic elements in parallel. SuRE is the 

subject of this dissertation. My primary focus has been the statistical analysis of SuRE 

data, which has aided in the development and analysis of SuRE experiments by my 

colleagues in the lab of Bas van Steensel at the Netherlands Cancer Institute.  

In Chapter 2, I will introduce statistical background that is important to 

understanding my approach to modelling SuRE data. This includes basic information on 
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generalized linear models (GLMs), as well as a summary of some common regularization 

methods that can improve predictions of GLMs in certain contexts.  

Chapter 3 is an overview of the SuRE protocol, as well as a summary of some 

initial results generated by myself and my colleagues and originally published in Nature 

Biotech. Our approach to SuRE experimental data produces a map of normalized 

autonomous promoter activity, which can reveal insights into the functional organization 

of promoters and enhancers throughout the genome. My contributions were particularly 

focused on the spatial patterns of transcription at promoters. I analyzed the global 

expression patterns of elements at various positions relative to annotated transcription 

starts sites, as well as and in conjunction with the autonomous activity of bidirectional 

promoter pairs. Also discussed are my initial attempts to model the high-resolution 

spatial promoter activity of specific promoter regions using penalized GLMs. Finally, I 

explored the specific relationship between genome-wide patterns in CpG density and 

SuRE expression. 

 In Chapter 4, I develop the penalized SuRE-GLM approaches used in Chapter 3 by 

scaling these models up to the entire genome. Leveraging the same SuRE experimental 

data used in Chapter 3, I generate a higher-resolution genome-wide promoter activity 

track that can be used to accurately predict expression of novel reporter constructs. This 

track is also used to provide finer-scale insights into spatial patterns of promoter 

organization. I also integrate results from other SuRE experiments into a novel 

multivariate SuRE-GLM approach, which allows for the analysis of differential 

expression across multiple cell culture conditions or cell types. Then, I demonstrate the 
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use of SuRE-GLM to identify regulatory SNP-variants by combining SuRE experiments 

from separate genomes. 

 Finally, in Chapter 5 I discuss future directions for the analysis of SuRE results. 
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2  Generalized Linear Models 

2.1  Introduction 

Generalized linear models (GLMs) are a general class of model that extend the 

basic regression framework of linear models to include response variables with error 

distributions that are not normal. GLMs are a powerful tool for identifying the 

relationship between biological datasets and a wide variety of explanatory variables. Of 

particular interest are GLMs that can be used to model count data, of which the normal 

distribution is often a poor approximation. GLMs based on discrete distributions, such as 

the Poisson, binomial, and multinomial distributions, may be appropriate in different 

contexts. In this chapter, we describe various conceptual and technical aspects of GLMs 

that are relevant to the analyses presented in Chapters 3 and 4. 

2.1.1 Linear models 

In a linear model, an observation (yi) is modelled as being drawn from a normal 

distribution centered on a mean (µi): 

𝑦" = 	𝜇" +	𝜖" 

Here, 𝜖" is the normally-distributed error term. The mean 𝜇" is not bounded, and 𝜖" is 

drawn from a continuous distribution, which means that the expectations and 

observations in a linear model can take on any real value, positive or negative [23]. 

The mean is specified as the linear combination of the products of one or more 

covariates (i.e. explanatory variables, 𝑥")) and their respective coefficients (bk): 
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𝜇" = 	𝛽+ +	𝛽,𝑥", +	𝛽-𝑥"- + ⋯	𝛽/𝑥"/ = 𝑋"⊺𝜷 

Here 𝛽+ represents an intercept shared across all observations. The interpretation of 

coefficients is straightforward: a unit change in 𝑥", produces a linear change of 𝛽, in the 

expected mean of 𝑦". A positive relationship between 𝑋)  and 𝝁 is indicated by a positive 

coefficient, while a negative relationship results in a negative coefficient. However, the 

relative magnitude of a coefficient is not directly informative about the magnitude of the 

effect of the corresponding covariate on the responses, since different covariates can vary 

on different scales. For this reason, covariates are often standardized prior to the 

regression, so that coefficients uniformly represent the change expected in the response 

given a change of one standard deviation in the covariate [23]. 

For a set of observations, the likelihood function for the model is: 

ℒ(𝜷) = 	7
𝑒
9(:;9<;)=

->=
?

𝜎√2𝜋

D

"E,

 

and the log-likelihood is: 

ℓ(𝜷) =G−
(𝑦" − 𝜇")-

2𝜎-

𝑵

𝒊E𝟏

− log	(𝜎√2𝜋) 

The left-hand side of this expression depends on the sum of squares ∑ (𝑦" − 𝜇")-𝑵
𝒊E𝟏 , 

where each term in the sum is the square of the difference between an observation and the 

corresponding mean, i.e. the error term 𝜖".  

In ordinary least squares (OLS) linear regression, the coefficients of a linear 

model are estimated by minimizing the sum of squares, thus maximizing the likelihood 

function. This minimum has a closed form, so the estimates can be achieved using simple 
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matrix operations [23]. This makes OLS regression particularly efficient relative to other 

modelling approaches, which do not have closed-form solutions [24]. 

2.1.2  Generalizations 

Generalized linear models model observations in similar ways as a linear model, 

but with two key differences. The first is how the parameters of the GLM are specified by 

the covariates. In a GLM, we also calculate a linear sum of contributions of each 

covariate to each response: 

𝑧" = 	𝛽+ +	𝛽,𝑥", +	𝛽-𝑥"- + ⋯	𝛽/𝑥"/ = 𝑋"⊺𝜷 

However, while in a linear model, 𝑧" = 	𝜇", the mean parameter of the normal error 

distribution, in a GLM the relationship between this sum 𝑧" and the estimated parameters 

of the error distribution 𝜃" need not assume this functional form [24]. The link function 

𝑔(𝜃) describes the transformation needed to apply to 𝜃" to return it to 𝑧". For example, in 

a model with a log-link function, 𝑧" corresponds to the natural logarithm of the associated 

parameter: 𝑔(𝜃") = 	log	(𝜃") = 𝑧". To calculate the parameter 𝜃" given 𝑧", we use the 

inverse of the link function. In the case of the log-link, the inverse is the exponential 

function, so 𝜃" = 𝑔9,(𝑧") = 	 𝑒S;.  In a linear model, the link function is called the 

identity function, which is its own inverse.  

The second major difference between a given GLM and a linear model is the error 

distribution, which defines the probability of observing 𝑦" given the parameter 𝜃" [24]. A 

linear model uses a normal distribution as its error function, while a GLM can use a 

variety of different distributions. This includes continuous and discrete distributions, with 

infinite and non-infinite support. In the case of distributions with more than one 
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parameter, each can be modelled separately with its own link function and coefficients, or 

one or more can be modelled as fixed across all observations, as with the standard 

deviation parameter in a linear model [24]. By allowing for non-normal error 

distributions, GLMs can better reflect the structure of the observations, and can capture 

different relationships between the parameters and the properties of the response 

variables, such as relationships between the variance and the mean of a distribution.  

In most cases, a “canonical” link function exists for a given distribution [24]. The 

canonical link functions are the most commonly used link functions for their respective 

distributions, although others can be used. The canonical link function usually reflects the 

properties of the distribution, and allows for straightforward interpretation of covariates. 

For example, the mean parameter of the Poisson distribution can assume any positive real 

value, and therefore the log-link function ensures that the mean will assume values within 

this support.  

As in a linear model, the coefficients of a GLM are estimated by maximizing the 

log-likelihood, or equivalently minimizing the negative log-likelihood. However, in most 

cases this solution does not have a closed form, and iterative methods must be used to 

estimate the coefficients [24]. 

2.2  Families 

2.2.1  Poisson distribution 

The Poisson distribution is a discrete probability distribution used to model the 

probability of a observing a fixed number of independently occurring events given their 
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rate. For example, if the we assume that the transcription rate of a given gene is fixed and 

transcription is rare enough that subsequent transcription events are independent, then the 

number of transcripts produced after a fixed amount of time within a cell would be 

Poisson distributed. It is parameterized by single parameter, the mean 𝜆. The probability 

mass function is given by: 

𝑓(𝑘) = 	
𝑒9W𝜆)

𝑘!  

An important property of the Poisson distribution is that the mean is equal to the 

variance. This means that higher rates produce higher variances, a property observed in 

many sequencing datasets.  

In Poisson regression, the canonical link function for the Poisson distribution is 

the log-link. Thus log(𝜆") 	= 	𝑧" 	= 	𝑋"⊺𝜷, and 𝜆" = 	 𝑒Y;
⊺𝜷. A consequence is that an 

expected mean rate 𝜆" can only assume positive real values. Each covariate has a 

multiplicative effect on the expected mean, so that a unit increase in a covariate with 

coefficient 𝛽 produces a multiplicative change of 𝑒Z. When the coefficient is positive, 

this produces a larger rate; when the coefficient is negative, the rate shrinks. 

The likelihood function in Poisson regression is: 

ℒ(𝜷) = 	7
𝑒9W;𝜆"

:;

𝑦"!

D

"E,

 

 

and the log-likelihood function is: 
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ℓ(𝜷) = G−𝜆" + 𝑦" log(𝜆") − log	(𝑦"!)
𝑵

𝒊E𝟏

∝G−𝜆" + 𝑦" log(𝜆")
𝑵

𝒊E𝟏

 

The Poisson distribution is commonly used for modeling DNA sequence counts 

[25], especially when the observed count for any one gene or locus is dwarfed by the total 

sequencing depth.  

2.2.2  Binomial distribution 

The binomial distribution is a discrete distribution used to model the outcome of 

one or more Bernoulli trials, which result in either a “failure” (0) or a “success” (1). 

Given a fixed probability of success 𝑝 and total number of trials 𝑛, the binomial 

distribution describes the probability of observing a given number of successes 𝑘, where  

0	 ≤ 𝑘 ≤ 𝑛. The probability mass function is: 

𝑓(𝑘) = `
𝑛
𝑘a𝑝

)(1 − 𝑝)c9) 

The expected number of successes is 𝐸(𝑘) = 𝑛𝑝. The variance of the binomial 

distribution is 𝑉(𝑘) = 𝑛𝑝(1 − 𝑝). Thus, for fixed 𝑝, the variance increases linearly with 

the sample size 𝑛 (and therefore with the mean as well). For fixed 𝑛, the variance is 

maximized at 𝑝 = ,
-
 and decreases non-linearly as 𝑝 approaches 0 or 1.  

The binomial and Poisson distributions are related in two important ways. First, 

for large 𝑛 and small 𝑝, the Poisson distribution with 𝜆 = 𝑛𝑝 serves as a good 

approximation of the binomial distribution. As this is often the case for large sequencing 

datasets (e.g. the proportion of all RNA-seq reads corresponding to a single gene is 

small), the Poisson distribution can often be substituted even when the binomial 
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distribution is technically more appropriate. Second, given two Poisson-distributed 

variables with means 𝜆, and 𝜆- and total count 𝑛 = 	𝑘, + 𝑘-, the count 𝑘, is a binomial-

distributed variable with probability 𝑝, =
Wf

Wfg	W=
.   

In binomial regression, 𝑛" is known and fixed for each observation 𝑘", while 𝑝" is 

estimated using a link function that restricts it to values between 0 and 1. Most often, the 

canonical logit or log-odds link function is used, such that 

log h
𝑝"

1 − 𝑝"
i = 	 𝑧" = 𝑋"⊺𝜷	

When 𝑧" = 0, 𝑝" =
,
-
. As 𝑧" increases, 𝑝" approaches 1. Similarly, 𝑝" approaches 0 as 𝑧" 

decreases. The inverse of the logit link function,  

𝑝" = 	
1

1 +	𝑒9Y;⊺𝜷
	

is a logistic function. This is why binomial regression models that use the logit link are 

often referred to as logistic regression. 

The likelihood function in binomial regression is: 

ℒ(𝜷) = 	7h
𝑛"
𝑦"
i 𝑝":;(1 − 𝑝")c;9:;

D

"E,

 

and the log-likelihood function is given by: 

ℓ(𝜷) = Glogjh
𝑛"
𝑦"
ik + 𝑦" log(𝑝") + (𝑛" − 𝑦") log(1 − 𝑝")	

𝑵

𝒊E𝟏
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2.2.3 Multinomial distribution 

 The multinomial distribution extends the binomial distribution to cases with more 

than two outcomes. Each outcome is assigned its own probability 𝑝l, such that ∑ 𝑝l
m
lE, =

1. The probability mass function is: 

𝑓(𝒌) =
𝑛!

∏ 𝑘l
m
lE,

7𝑝l)p
m

lE,

 

Just as the counts of two Poisson-distributed variables are binomial-distributed 

given their sum, the counts of 𝐽 Poisson-distributed variables are multinomial-distributed 

given their sum. In such a case, 

𝑝l = 	
𝜆l
∑ 𝜆lr
m
lrE,

? 	

In multinomial regression, the parameters of the distribution are linked to the covariates 

through a functional form that reflects this relationship: 

𝑝l = 	
𝑒S;p

∑ 𝑒S;psm
lrE,

, 

where 	

𝑧"l = 𝑋"⊺𝜷l 

Since the sum of 𝑝l is restricted to 1, often the first outcome is used as the base case and 

z1 is fixed to 0. For 𝑗 > 1, each outcome has its own set of coefficients. In the case of two 

outcomes, we have 

𝑝"- = 	
𝑒S;=

𝑒S;f + 𝑒S;= = 	
𝑒S;=

𝑒+ + 𝑒S;= =
𝑒S;=

1 + 𝑒S;= =
1

1 + 𝑒9S;= 
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This last term is the same as in binomial logistic regression. As such, multinomial 

regression is often referred to as multinomial logistic regression.  

2.3  Regularization in GLMs 

When fitting GLMs, several problems can emerge due to the structure of the 

model and properties of the data. In some cases, these problems will cause common GLM 

regression software to fail to converge to an estimate of the model parameters within a 

reasonable time frame. In other cases, the models will converge but will produce poor 

predictions or erroneous interpretations of the results. Fortunately, there are extensions of 

the standard GLM approach that can help address many of these challenges. These 

extensions are called regularization.  

Regularization introduces additional constraints to the GLM by penalizing some 

property of the coefficients. Different regularization methods are used to fit models with 

different properties, and to address different problems. While many different 

regularization schemes exist, this section will focus on three of the most popular: 

LASSO, ridge, and elastic net penalization. 

2.3.1  LASSO 

Least absolute shrinkage and selection operator (LASSO) [26] is a regularization 

approach that places a penalty on the ℒ,-norm, or sum of the absolute value, of the 

coefficients in a model. In applying LASSO to GLMs, optimization of the objective 

function takes the following form: 
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min
𝜷
z−

1
𝑁 ℓ

(𝜷) +	𝜆,G|𝛽)|
}

)E,

~ 

Here ℓ(𝜷) is the log-likelihood function from the unpenalized GLMs discussed above, 𝑁 

is the number of observations, 𝑝 is the number of coefficients (usually excluding 𝛽+, the 

intercept), and 𝜆, is the ℒ, penalty parameter that must be selected a priori.  

In general, this penalization method tends to shrink coefficients towards zero [26]. 

This “shrinkage” effect helps address a common problem in regression analysis: 

overfitting. Overfitting occurs when a model is fit too exactly to the sample data such that 

the model does not generalize [24]. While only a fraction of the variance in a sample can 

be explained by a given set of covariates, an overfit model will erroneously assign some 

of the residual variation to these covariates as well. This will tend to produce errors when 

the model is used to make predictions based on new data. With LASSO regularization, 

the ℒ,	penalty partially counteracts the effects of overfitting [26]. Even when increasing 

the magnitude of a coefficient would improve the log-likelihood for a small number of 

observations by overfitting, these improvements must be fairly large in order to overcome 

the resulting increase in the coefficient penalty. As a result, coefficients in a LASSO 

model reflect conservative estimates of the true coefficients. This is particularly useful in 

cases where 𝑝 > 𝑁, which leads inevitably to overfitting in unpenalized models.  

In many cases, a LASSO model will result in some fraction of all coefficients 

being set to exactly zero [27]. This sparsity can be a useful property of LASSO models. 

In some situations, a priori information suggests that only a subset of all covariates is 

expected to contribute to the outcome. For example, if we tried to predict gene expression 
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based on the presence of many different transcription factor binding motifs in gene 

promoters, we might reasonably assume that only a subset of all transcription factors is 

active in a given cellular context, even if we are unaware of which transcription factors 

are active a priori. Unlike an unpenalized model, a LASSO model will assign non-zero 

coefficients to only a fraction of the covariates, separating the covariates into active and 

inactive sets. This is a form of feature selection, allowing for the identification of a subset 

of covariates of interest.  

 LASSO requires a single 𝜆, be chosen before fitting a model. Obviously, it is difficult 

to know the appropriate choice beforehand. In the extreme cases, a very large 𝜆,will 

produce a null or intercept model, where all coefficients are set to 0, while a very small 

𝜆,will produce a model that approaches the unpenalized model. Selection of 𝜆,is usually 

based on cross-validation [26]. In most cases, the cross-validated error of models using a 

series of 𝜆,values will be minimized at some point between these two extreme cases, 

suggesting that the predictive power of our model is most improved at a particular non-

zero value of 𝜆,. 

2.3.2  Ridge regression 

Ridge regression, also known as Tikhonov regularization, is a regularization 

method that places a penalty on the ℒ--norm, or sum of squares, of the model 

coefficients: 

min
𝜷
z−

1
𝑁 ℓ

(𝜷) + 𝜆-G
𝛽)

-

2�
}

)E,

~ 
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As in the case of LASSO, ridge regression can help address over-fitting by shrinking the 

coefficients towards zero [28]. Due to the fact that the square of a small coefficient will 

produce a penalty very close to zero, ridge regression generally does not set any 

coefficients to zero. This makes ridge regression a poor choice when feature selection is 

desired. However, one advantage of ridge regression over LASSO is that it helps to 

address (multi-)collinearity.  

Collinearity occurs when some covariates are highly correlated. In the extreme 

case, consider two identical covariates. Assume that an unpenalized model that included 

only one of these covariates would assign the coefficient 𝛽∗. When both covariates are 

included in an unpenalized model, any values (𝛽,, 𝛽-) such that 𝛽, +	𝛽- = 	𝛽∗ will 

produce a model with identical results. Without a unique optimal solution to the objective 

function, an unpenalized model will fail to converge. Even in cases where only partial 

collinearity exists, unpenalized methods can result in convergence issues. 

With LASSO regression, identical covariates can still give rise to convergence 

issues. For example, a model where 𝛽, = 𝛽∗ and 𝛽- = 0 will produce the same result as a 

model where 𝛽, = 0	and 𝛽- = 𝛽∗. In cases where covariates are collinear but not 

identical, LASSO may converge, but will often set some of these covariates to zero in an 

arbitrary manner that is highly sensitive to noise. In contrast, ridge regression tends to 

have a “grouping effect”, such that correlated covariates receive similar coefficients. This 

better reflects the relationship between each covariate and the response variable than 

arbitrarily assigning this effect to a single covariate.  
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As in LASSO, the 𝜆- penalty parameter used in ridge regression must be selected 

a priori. This is typically accomplished in a similar manner using cross-validation. 

2.3.3  Elastic net 

Elastic net regularization combines both the ℒ, penalty of LASSO and the ℒ- 

penalty of ridge regression in a single model [27]. Rather than using 𝜆, and 𝜆-, these 

penalties are reparameterized using 𝜆 = 𝜆, + 𝜆-  and 𝛼 = 	 	Wf
	Wfg	W=

 such that 𝜆 > 0, 0 ≤

𝛼 ≤ 1. The objective function is therefore: 

min
𝜷
z−

1
𝑁 ℓ

(𝜷) + 𝛼𝜆G|𝛽)|
}

)E,

+ (1 − 𝛼)𝜆G𝛽)
-

2�
}

)E,

~ 

  
By combining the ℒ, and ℒ- penalties, elastic net regression produces models that 

have the advantages of both ridge and LASSO. Some feature selection occurs due to the 

ℒ, penalty, so a subset of coefficients will be set to zero. Both penalties produce 

shrinkage that helps avoid overfitting. The ℒ- penalty produces a grouping effect that 

encourages correlated covariates to have similar coefficients.   

The relative strength of these effects can be tuned using the 𝛼 parameter. In the 

extreme case of 𝛼 = 0 or 1, we have pure ridge or LASSO regression, respectively. 

Intermediate values of 𝛼 produce a compromise between the two. For a given 𝛼 value, 

Friedman et al. [29] have developed a cyclical coordinate descent algorithm that can 

efficiently fit models over a “𝜆 path” of decreasing 𝜆 values. Using this algorithm, cross-

validation can be used to select an optimal 𝜆 value given 𝛼, and this procedure can be 

repeated at a series of 𝛼 values to validate the two penalty parameters. 
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2.4 Alternative approaches 

In addition to the methods mentioned above, the GLM framework has been 

extended in many different ways. In designing the models used in this thesis, I considered 

but ultimately rejected a number of these methods for practical reasons. Nevertheless, 

these methods have some compelling properties, and may occur to readers with a 

statistical modelling background. For these reasons, I will discuss a few of these 

modelling approaches below. 

2.4.1 Overdispersed count distributions 

 A commonly observed feature of sequencing experiments is overdispersion, i.e. when 

the variability of a dataset exceeds what is expected given a statistical model [25]. This 

may be the result of underlying biological heterogeneity orthogonal to the variables of 

interest, or due to experimental processes such as PCR duplication. Regardless of the 

source, GLM approaches that relax the variance assumptions of the default count 

distributions can be useful in modelling sequencing datasets. 

 As alternatives to the Poisson distribution, there exist several common GLM 

extensions that are used to model overdispersed count data. The quasi-Poisson approach 

assumes a linear relationship between the variance and the mean, such that 𝑉(𝑘|𝜆) = 𝜃𝜆 

where 𝜆 is the expected value for 𝑘 and 𝜃 ≥ 1. This approach has been used previously to 

model RNA-seq data [30]. However, it is important to note that the quasi-likelihood 

approach does not correspond to the likelihood function of any known probability 

distribution. This makes it more difficult to interpret the results of a quasi-Poisson model.  
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 A more popular Poisson alternative is the negative binomial (NB) distribution. NB 

has been employed extensively for modelling overdispersed RNA-seq data [25]. In the 

NB distribution, 𝑉(𝑘|𝜆) = 𝜆(1 + 𝜃𝜆). Unlike the quasi-Poisson approach, the NB 

corresponds to a well-characterized probability distribution. Another interesting property 

of the NB distribution is that it can be considered as a Poisson mixture distribution, where 

the underlying mixture of Poisson means is distributed according to the two-parameter 

gamma distribution [30]. 

 For the binomial distribution, a popular overdispersion model is the beta-binomial 

distribution [31, 32]. As the name suggests, the beta-binomial distribution can be 

understood as a mixture distribution, where the success probability 𝑝 of the binomial-

distributed variable is itself distributed according to a two-parameter Beta distribution.  

 For the multinomial distribution, a common way to deal with overdispersion is to use 

the Dirichlet-multinomial distribution. Just as the multinomial is the multivariate 

extension of the binomial distribution, the Dirichlet distribution is the multivariate 

extension of the Beta distribution. The Dirichlet-Multinomial is commonly used for 

machine learning applications such as topic modelling [33], and has seen some 

applications in the modelling of biological sequencing data [34]. 

 All the models discussed above have been implemented in R, the programming 

platform used for my analyses. The quasi-Poisson is implemented as part of the base R 

function glm() from the stats package. Negative binomial regression can be implemented 

using the glm.nb() function in the MASS package [35], or using specialized sequencing 

packages like DESeq2 [36]. Beta-binomial regression has been implemented in VGAM 
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[37] and Dirichlet-multinomial regression has been implemented in the MGLM package 

[38]. While our data showed some signs of overdispersion, initial testing showed that the 

approaches described here could not be scaled up to the necessary scale. Additionally, all 

the overdispersed models described here lacked an implementation with flexible 

regularization options. Given the collinearity of the covariates in our models, I deemed it 

necessary to use a model that included some form of penalization. 

 One overdispersion model that I have neglected to mention is the linear (or normal) 

model, and the related multivariate normal model. Linear models can be used for 

modelling count data [39], and both the univariate and multivariate normal distribution 

have been implemented as part of glmnet [29], making these models just as easy to 

implement as their penalized Poisson and multinomial counterparts. However, there are a 

couple of problems with applying a normal model to count data. For one, a normal model 

assumes that there is a uniform variance regardless of predicted mean. In our data, there 

is a clear relationship between variance and mean. Second, normal models make 

predictions that do not make sense in the context of count data, such as predicting a 

negative mean. These properties make a count distribution preferable to a normal 

distribution in our case.  

2.4.2 Zero-inflated distributions 

Our data showed signs of zero-inflation, where values of zero occurred more 

often than we would expect given our count distribution models. This may be due to the 

fact that, as will be explained later, these experiments require transfection of a plasmid 

into a cell before any expression can occur. Observed counts of zero therefore represent a 
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mixture of plasmids that failed to transfect and plasmids that transfected but did not 

express. Ideally, we could implement a model that accounts for this zero-inflation.  

 Zero-inflated Poisson models have been applied to RNA-seq datasets [40], and 

implementations in R exist [41]. A similar approach is used for the zero-inflated negative 

binomial model [41]. These approaches model the probability of a structural zero (e.g. 

probability of no transfection in our case) using a logit link-function, as in binomial 

regression. Unfortunately, these R implementations suffer from the same drawbacks as 

the overdispersed models discussed above: they are difficult to scale, and lack 

penalization options. 

 One alternative method I considered to address our zero-inflation was a compound 

Poisson-Poisson distribution. This distribution is sometimes called the Neyman Type A 

distribution [42]. With this model, I assume that the number of transfection events 𝑁" per 

plasmid is Poisson distributed based on some global mean 𝜃, and then the observed 

response variable is the sum of 𝑁" Poisson-distributed counts with a mean 𝜆" dependent 

upon the specific covariates associated with plasmid 𝑖. This model has the advantage of 

capturing both zero-inflation (when 𝑁" = 0) and overdispersion (variance has a similar 

relationship with the mean as in the negative binomial distribution). While this may 

represent my preferred model for this data, no R implementations exist for this 

distribution. 

2.4.3 Alternative regularization approaches 

In the model discussed below, we used elastic net penalization to regularize the 

coefficients corresponding to different spatial bins along the genome. This penalization 
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approach helps address the inherent collinearity present in adjacent bins, but the model 

does not explicitly include the spatial relationship between bins. Given that we might 

expect regulatory sequences to co-locate (e.g. clusters of TFBSs), I considered alternative 

models that took spatial relationships into account as part of the penalization.  

Smoothing splines are used to find a smooth polynomial (most often cubic) 

function that models the relationship between a covariate and a response variable subject 

to some smoothing penalty that mediates between a perfect interpolation and a linear 

relationship [43]. There are base R functions that allow splines to be used in GLMs via 

the glm() function. By using genomic position as a covariate, such a model could fit a 

continuous function relating each position in the genome to an activity level, such that 

adjacent genomic positions would have similar activity levels. However, genomic 

fragments do not overlap a single genomic position, but a range of positions. The base R 

implementation of smoothing splines does not allow for an integration over a range of 

covariate values, making this approach intractable. 

 An alternative penalization scheme that allows for the inclusion of structural 

information is the fused LASSO. Rather than penalizing the absolute value of covariates, 

fused LASSO penalizes the absolute value of the difference of adjacent covariates [44]. R 

implementations of fused LASSO exist, as in the genlasso package. However, initial tests 

showed some issues with scaling, and GLM extensions were unavailable. For these 

reasons, I chose to implement an elastic net model. 
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3 Survey of Regulatory Elements 
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chapter. 
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3.1  Introduction 

 

Promoters harbor the transcription start site (TSS) and various other sequences that 

control transcription initiation through the binding of trans-acting factors [45]. Various 

genome-wide methods have been developed to map endogenous promoter activity [2, 46-

48]. These methods have identified tens of thousands of human promoters, often at 

nucleotide resolution, and have provided estimates of their relative activity in many cell 

types. A limitation of these maps is that they provide information about where the 

promoters are located, but not how their activity is controlled. Proximal sequences, distal 

enhancers, local chromatin context, and 3D conformation of the genome may all 

contribute to promoter activity. There is currently no estimate of the relative importance 

of these factors. Large-scale perturbative approaches are needed to tackle this problem 

systematically.  

One important perturbation strategy is to take sequence elements out of their 

native context, to separate regulatory activities that are intrinsic to the underlying 

sequence from those that are extrinsic to it. Several highly multiplexed reporter assays 

have been developed for this purpose. One class of methods combines random barcodes 

located in the transcription unit with synthetic upstream promoter or enhancer sequences 

[49-55]. This approach is particularly suited to systematic mutagenesis of selected 

regulatory elements; however, both the length of the tested elements (~150bp) and the 

level of multiplexing (104 - 105) are limited by DNA synthesis technology. A variant 

approach uses mutagenized or randomly assembled small enhancer fragments of up to 
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several hundreds of basepairs [18, 19, 56], also with a multiplexing level between 104 and 

105. A complementary strategy that uses shotgun cloning into a reporter plasmid was 

used to screen several hundreds of kilobases of genomic DNA for enhancer activity in 

mouse cells [57]. Furthermore, a cell-sorting strategy was used to screen nearly 105 

random DNA fragments from nucleosome-depleted regions (which are likely to contain 

enhancers and promoters) for regulatory activity in mouse cells [22]. At substantially 

higher throughput, near-saturating coverage of the entire Drosophila genome was 

achieved with STARR-seq [21, 58]. However, this approach is only suitable to detect 

enhancer activity and not promoter activity. Moreover, like all other methods reported so 

far, it has not been applied on a scale sufficient to cover entire mammalian genomes.  

 Here, we present Survey of Regulatory Elements (SuRE), a method that overcomes 

some of these limitations. Instead of short synthetic promoter sequences, SuRE queries 

random genomic fragments in the size range of 0.2-2kb, which is long enough to include 

most elements that constitute fully functional promoters. Moreover, with SuRE it is 

possible to achieve a throughput of >108 fragments, which is sufficient to redundantly 

scan the entire human genome at an average base coverage of ~55-fold.  

We demonstrate the feasibility of this approach in cultured human cells. SuRE data can 

be interpreted as maps of promoter "autonomy", i.e., the degree to which sequences 

across the genome can act as promoters in the absence of other regulatory elements. 

Additionally, because each promoter is represented by many partially overlapping 

random fragments, it is possible to delineate the regions that contribute to its activity. We 



 

31 
 

present a computational strategy for this purpose. The SuRE maps provide unique 

opportunities to gain new insights into the biology of human promoters and enhancers. 

 

3.2  Methods 

 

3.2.1  SuRE library preparation 

The SuRE vector was constructed using standard molecular biology techniques. It is 

based on a pSMART backbone (Addgene plasmid # 49157; a gift from James Thomson) 

and contains a green fluorescent protein (GFP) open reading frame followed by a SV40 

derived polyadenylation signal (PAS). To generate a barcoded SuRE vector library, 30 

µg SuRE vector was digested with NheI (#R0131; NEB) and XcmI (#R0533; NEB) and a 

gel extraction was performed on the vector. Barcodes were generated by performing 10 

PCR reactions of 100 µl each containing 5 µl 10 µM primer 256JvA, 5 µl 10 µM primer 

264JvA and 1 µl 0.1 µM template 254JvA (see Supplementary Table 2 for 

oligonucleotide sequences). A total of 14 PCR cycles (1¢ at 96 °C, 14x(20¢¢ at 96 °C, 20¢¢ 

at 60 °C, 20¢¢ at 72 °C), hold at 10 °C) were performed using MyTaq™ Red Mix  (#BIO-

25043; Bioline), yielding ~30 µg barcodes. Barcodes were purified by phenol-chloroform 

extraction and isopropanol precipitation, digested overnight with 80 units AvrII 

(#ER1561; Thermo Fischer) and purified using magnetic beads (#AC60050; GC 

Biotech). Vector and barcodes were then ligated in 3 reactions of 100 µl with each 

containing 5 µg digested SuRE vector and 5 µg digested barcodes, 20 units NheI 
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(#R0131S; NEB), 20 units AvrII, 10 µl of 10x CutSmart buffer, 10 µl of 10mM ATP, 10 

units T4 DNA ligase (#10799009001 Roche). A cycle-ligation of 6 cycles was performed 

(10¢ at 22 °C and 10¢ at 37 °C), followed by 20¢ heat-inactivation at 80 °C. The ligation 

reaction was purified by magnetic beads and digested with 40 units of XcmI (#R0533S; 

NEB) for 3 hours, and size selected by gel-extraction, yielding 5-10 µg barcoded SuRE 

vector.  

To insert genomic DNA into the barcoded vector, DNA was isolated from 40 

million K562 cells and 250 µg was fragmented using NEBNext® dsDNA Fragmentase 

(#M0348; NEB), size selected (0.5-2kb) using gel-extraction (#11696505001; Roche), 

repaired using End-It™ DNA End-Repair Kit (#ER0720; Epicentre) and A-tailed using 

Klenow HC 3->5 exo– (#M0212L; NEB). We also obtain many smaller elements in the 

final library (Figure 3.8b) presumably because size-selection is imperfect and smaller 

fragments preferentially contribute to the final plasmid library. Five µg of A-tailed 

genomic fragments were ligated with 5 µg barcoded SuRE vector in a 600 µl reaction 

using the Takara ligation kit v1.0 (#6021; Takara).  The ligation product was purified by 

phenol-chloroform extraction and isopropanol precipitation and then digested in a 600 µl 

reaction with 60 units of Plasmid-Safe™ ATP-Dependent DNase (# E3101K; Epicentre) 

for 3 hours to digest away any non-ligated vector, again purified by phenol-chloroform 

extraction and isopropanol precipitation, taken up in 20 µl water, purified with magnetic 

beads and taken up in 20 µl water. This material was then electroporated into 

CloneCatcher DH5G electrocompetent E. Coli (#C810111; Genlantis) in 4 separate 

electroporations with each 5µl ligation product and 20µl bacteria, each transferred to 500 
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ml standard Luria Broth (LB) plus kanamycin (50µg/ml), grown overnight and together 

purified using a GIGA plasmid purification kit (#10091; Qiagen), yielding ~10 mg of 

SuRE library. The choice of plasmid backbone and bacteria used for expanding the 

plasmid pool were key to obtaining a highly complex library with low bias in A/T 

content. This allowed us to achieve a sufficiently homogenous representation of the 

genome. This protocol takes an experienced person about 5 days to complete. Day 1: 

preparation of vector and barcodes; Day 2: ligation of barcodes onto vector, genomic 

DNA isolation and fragmentation; Day 3: genomic DNA size-selection, repair and A-

tailing, ON ligation of barcoded vectors and A-tailed inserts; Day 4: Purification of 

ligation product and electroporation of library; Day 5: GIGA plasmid purification. The 

typical yield of ~ 10 µg can be used for 50 transfections on 100 million cells. 

 

3.2.2  Focused SuRE library 

In addition to the above genome-wide SuRE library, we also generated a library from 9 

pooled Bacterial Artificial Chromosomes (BACs), collectively covering 1.3 Mb of the 

human genome (Supplementary Table 1). This library was prepared essentially the same 

as the genome-wide library except that size-selection was performed for elements of 

0.1kb-1kb and that only 100 ng barcoded vector was used with 100 ng of size-selected 

BAC inserts. The ligation product was phenol-chloroform purified, isopropanol 

precipitated and taken up in 16µl water. Four µl was electroporated into 20ul bacteria and 

transferred to 250 ml LB plus kanamycin (50µl/ml). This yielded an approximate library 
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complexity of ~3 million unique clones and we mapped ~25% of these elements to their 

barcode, as the library was somewhat under-sequenced. 

 

3.2.3  SuRE library characterization by iPCR  

To associate the barcodes with the linked genomic fragments, we digested 4 µg SuRE 

library with I-CeuI (#R0699S; NEB), followed by magnetic bead purification (1:1 ratio 

beads:DNA solution). Of this, 2 µg was self-ligated overnight at 16 °C in a total volume 

of 2 ml (#10799009001; Roche), and purified using phenol-chloroform extraction and 

isopropanol precipitation. To reduce the size of the genomic fragments this material was 

digested for 1 hour with 10 units of frequent cutter Nla III (#R0125S; NEB) or 10 units of 

HpyCH4V (#R0620L; NEB), bead purified and self-ligated again in a final volume of 1 

ml. This material was purified by phenol-chloroform extraction and isopropanol 

precipitation, treated with 25 units of Plasmid-Safe™ ATP-Dependent DNase for 1 hour 

and purified again with phenol-chloroform and isopropanol precipitation. To facilitate 

PCR, the resulting mini-circles were linearized by digesting with I-SceI (#R0694S; NEB) 

in a volume of 25 µl. Finally, 10 cycles of PCR (1¢ at 98°C, 10x(15¢¢ at 98°,15¢¢ at 60°, 

20¢¢ at 72°)) with Phusion high-fidelity DNA Polymerase (#M0530L; NEB) were 

performed on 2.5 µl of the I-SceI digested material using primers 151AR (containing the 

S1 and p5 adapter) and (index variants of) 117JvA (containing the S2, index and p7 

adapter). The PCR product was bead purified and subjected to high-throughput paired-

end sequencing on an Illumina MiSeq, HiSeq2000 or HiSeq2500.  
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3.2.4  Cell culture and transfection 

K562 (ATCC® CCL-243™) were cultured according to supplier's protocol. Every 3 

months all cells in culture were screened for Mycoplasm using PCR (Takara; # 6601). 

Cells were transiently transfected using Amaxa Nucleofector II, program T-016 and 

nucleofection buffer as published previously. For K562, 2 biological replicates were done 

of each 100 million cells (5 million per cuvette with each 10 µg plasmid) and harvested 

after 24 hours (see below). For the focused library experiments, 2 biological replicates of 

each 10 million cells were done per condition (standard, hemin, solvent control). In the 

hemin treatment experiment, treatment was started with 50 µM hemin (Sigma; #51280-

1G) or solvent control 1 hour after nucleofection and cells were harvested 24 hours later.  

 

3.2.5  RNA extraction and reverse transcription 

RNA was isolated using Trisure (#BIO-38032; Bioline) and polyA RNA was purified 

using Oligotex from Qiagen (#70022; Qiagen). PolyA RNA was divided into 10 µl 

reactions containing 500 ng RNA and treated with 10 units DNase I for 30 minutes 

(#04716728001; Roche) and DNase I was inactivated by addition of 1µl 25mM EDTA 

and incubation at 70ºC for 10 minutes. Next, cDNA was produced by first adding 1 µl of 

10 µM gene specific primer targeting the GFP ORF (247JvA) and 1 µl dNTP (10mM 

each) and incubating for 5 minutes at 65°C. Then 4 µl of RT buffer, 20 units RNase 

inhibitor (#EO0381; ThermoFisher Scientific), 200 units of Maxima reverse transcriptase 

(#EP0743; ThermoFisher Scientific) and 2.5 µl water was added and the reaction mix 

was incubated for 30 minutes at 50°C followed by heat-inactivation at 85° for 5 minutes. 
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Per biological replicate of the genome-wide library, 20-30 reactions were done in 

parallel. For the focused library, 4 reactions were doen in parallel per biological replicate. 

Each 20 µl reaction was then PCR amplified (1’ 96 °C, 20x(15’’ 96 °C, 15’’ 60 °C, 15’’ 

72 °C)) in a 100 µl reaction with MyTaq™ Red Mix and primers 151AR (containing the 

S1 and p5 adapter) and (index variants of) 211JvA (containing the S2, index and p7 

adapter) for 21 cycles. Reactions were then pooled and 500 µl was purified using a PCR 

purification kit (#BIO-52060; Bioline) and then size-selected using e-gel (#G6400EU; 

Invitrogen) and subjected to single read 50 bp high throughput sequencing on an Illumina 

HiSeq2000 or HiSeq2500.   

 

3.2.6  Mapping of iPCR sequencing data 

Paired-end reads are trimmed, using cutadapt (version 1.2.1), to remove the adapter 

sequences from the forward 

(CCTAGCTAACTATAACGGTCCTAAGGTAGCGAACCAGTGAT) and the 

reverse reads (CCAGTCGT). The remaining read sequences are then trimmed from 

the first occurring NlaIII/HpyCH4V restriction site (CATG/TGCA) onward. Trimmed 

reads with length < 6 bp were removed from further processing.  Next, reads were 

aligned to the human genome reference sequence (hg19, including only chr1-22, chrX, 

chrY, chrM) using Bowtie2 (version 2.1.0) [59], with a maximum insert length set to 4kb. 

All read pairs not aligned as 'proper pair' were excluded from further processing.  The 

resulting bam files where converted to bedpe files using custom scripts. 
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3.2.7  SuRE normalization 

Data were processed using custom R scripts (https://www.R-project.org). To normalize 

SuRE expression data, we first characterized the barcode frequencies in the plasmid 

library. More specifically, we digested 1 µg library with I-SceI (#R0694S; NEB) in 25 µl 

to linearize the plasmids, then performed 2 replicate PCRs each on 2µl I-SceI digested 

material, using the same protocol as for the cDNA but for 8 cycles. Because of the high 

complexity of the library (~270 million) the aim was not to get a quantitative readout for 

each barcode, but rather to identify potentially over-represented barcodes and/or regions 

of the genome and normalize for that (see below for validation). The PCR product was e-

gel size-selected and subjected to single-read 50 bp high throughput sequencing on an 

Illumina HiSeq2500 or HiSeq2000.  

 In total we obtained ~40 million reads per PCR replicate. From these reads barcode 

counts were determined using cutadapt version 1.2.1 

(http://journal.embnet.org/index.php/embnetjournal/article/view/200) to remove the 

adapter (GCTAGCTAACTATAACGGTCCTAAGGTAGCGAA) from the sequence. To 

determine genome-wide input coverage ('input') we took all fragments mapped in the 

iPCR step, initializing the read count to a pseudo count of 1 for each. The barcode counts 

determined for the input plasmid libraries were then added to these initial counts.  

 Raw SuRE expression data was determined by counting barcodes in cDNA, 

discarding those not identified in the iPCR mapping. Barcodes with identical genomic 

positions accounted for 5% of the library and mostly corresponded to iPCR barcode read 

errors; input and cDNA counts for these fragments were aggregated. To obtain SuRE 
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enrichment profiles, cDNA read numbers were normalized (to reads per billion) and 

genome-wide coverage was calculated and divided by a similarly generated genome-wide 

input coverage (i.e. ‘input’ normalized to reads per billion). Throughout the manuscript 

the combined data from the biological replicates is used unless indicated otherwise. We 

created BigWig files for the profiles thus obtained using the GenomicRanges package in 

BioConductor [60].   

 

3.2.8  Validation using the focused SuRE library 

To assess if the sequencing depth for the input is sufficient we sequenced our focused 

BAC library input deeply and then by down-sampling established that normalization by a 

deeply sequenced input (average = 10 reads per barcode) gave essentially the same result 

(r2 = 0.98 for TSSs) as normalization by lowly sequenced input (average =0.1 read per 

barcode). This thus strongly suggests there is no large systematic differences in plasmid 

representation that affect our final results, presumably in large part because of the 

redundant representation of each part of the genome.  

 Furthermore to assess systematic transfection biases, we used the focused library and 

compared pre- and post-transfection plasmid abundances. We find that coverage is highly 

similar between pre- and post-transfection libraries (r2 = 0.98; Figure 3.9e). In addition, 

in neither library there is any correlation between insert length and representation (data 

not shown), presumably because the typical insert-size (~1000bp) only represents 25% of 

the total plasmid-size. We conclude that the use of the pre-transfection library as input 

does not compromise the results. 
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3.2.9  Post-transfection plasmid extraction.  

Per replicate, 10 million cells were transfected with our focused SuRE library. After 24 

hours, cells were spun down, washed with PBS, spun down again and taken up in 500 µl 

nuclear extraction buffer (10mM NaCl, 2mM MgCl, 10mM Tris-HCl (pH 7.8), 5mM 

DTT, 0.5% NP40). Cells were incubated on ice for 5 minutes, and nuclei were spun down 

at 7000g and washed twice more with nuclear extraction buffer. The resulting pellet was 

taken up in 500 µl miniprep buffer 1 (#BIO-52057) and purified as 2 minipreps according 

to the manufacturer’s protocol.  Per replicate 5 µg was digested in 50ul with 2.5ul Sce-1 

for 2 hours, heat inactivated at 65C° for 20 minutes and two PCRs with 2.5ul of this 

material were amplified as described above to characterize the barcode frequencies in the 

pre-transfection plasmid library. For comparison, 1µg of pre-transfection library was 

subjected to the same protocol from the Sce-1 digest onwards. 

 

3.2.10  Annotations and data analysis 

As a reference for transcription start sites (TSSs) we used GENCODE version 19 TSSs 

(downloaded from http://www.gencodegenes.org). We focused on TSSs located on chr1-

22 or chrX. To filter out TSSs based on computational analysis for which no empirical 

evidence is available, we required them to be identified as being expressed in at least one 

of the samples assayed in the FANTOM5 phase 1 project [1]. The FANTOM5 phase 1 

project profiled RNA expression using CAGE in 889 cell-types, cell-lines and tissues and 
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used these data to identify 184,827 TSSs (intervals representing clusters of mapped 5¢ ends 

of mRNAs). This intersection yielded a curated set of 28,844 GENCODE TSSs which we 

refer to throughout the manuscript.  

To assign an expression level to GENCODE TSSs, the BioConductor package 

CoverageView (version 1.4.0) was used to retrieve the mean SuRE or GRO-cap expression 

from the respective BigWig files for the interval +/– 500bp around the TSS, using either 

total expression or expression in the sense orientation as indicated. Thus, where an 

expression level is assigned to a TSS (i.e. in all density plots and scatter plots) the 

expression level represents the mean over a 1kb region. Metaprofiles (e.g., Figure 3.2a) 

were also generated using CoverageView, using 50bp bins, except for the PRO-seq data in 

Figure 3.6e which was generated using 1kb bins because of the sparser nature of the data.  

In log-transformed data representations on data-sets that also contain zero’s, such 

as the comparison of GRO-cap and SuRE at GENCODE TSSs in Figure 3.1d, a pseudo-

count of half the minimal non-zero measurement was used to calculate correlations and 

visualize all values.  

We used the FANTOM data to determine the tissue specificity of each TSS. We 

considered any (center of a) FANTOM phase 1 TSS that fell within 500 bp of the 

GENCODE TSS, retrieved the number of samples in which each was detected and used 

the highest (i.e. least tissue specific) number. In the comparison of tissue specificity or 

proximal enhancers with promoter autonomy only endogenously active promoters (mean 

GRO-cap > 0.25) which were also detected in SuRE (SuRE >0) were used (n=13,815). In 

the analysis of the relation between relative promoter autonomy and enhancers, any 
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enhancer (ENCODE state ‘Enh’) was considered that was within 5-50 kb on either side of 

the considered TSS and at least 5kb away from any GENCODE TSS.  

 To assess the spatial profile of contribution to autonomous expression of successive 

intervals relative to the TSS (Figure 3.3c), we created a 2D histogram by binning both the 

start and end position of each SuRE fragment in 100 bp increments. In this analysis, we 

only included GENCODE TSSs that were expressed in at least one tissue in FANTOM 

phase 1.  

In the analyses of Figure 3.5b-d only those ENCODE chromatin states were used 

for which their center was at least 5 kb away from GENCODE TSSs in either direction 

(‘Enh’; n=18257), ‘EnhW’; n=28763, ‘Quies’; n=36627). Heatmaps in Figure 3.2b,c and 

Figure 3.5b were ordered based on the signal in the full 10 kb interval.  

In the comparison of enhancer expression in SuRE with enhancer strength, we used all 

enhancer elements tested by the authors for which significant activity was found (~20%) 

using a comparison to a scrambled control [61]. In addition we required enhancers to be 

at least 3 kb (rather than 5 kb, in order to have a large enough sample) from a TSS 

(n=189). For these, we compared enhancer activity (normalized CRE-seq signal using the 

Hsp68 minimal promoter) with SuRE activity over a window ±500bp from their center. 

For the single-locus analysis in Figure 3.3a and e, only genomic fragments are shown that 

were detected in the cDNA. In Figure 3.6e histone genes were indicated that contained 

‘HIST’ in their name and to avoid redundancy, alternative TSSs were only plotted if they 

were at least 500bp from the previous. For Figure 3.6a we focused on the mappable part 
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of the genome which we obtained by concatenating all adjacent 36-mer mappable regions 

from ENCODE (wgEncodeCrgMapabilityAlign36mer.bw). 

 

3.2.11  Penalized Generalized Linear Modeling 

To create Figures 3.3b,d,f,h-j and 3.6d, we used the R package glmnet (http://CRAN.R-

project.org/package=glmnet) to fit an elastic net Poisson log-linear regression model to 

SuRE counts, based on a design matrix indicating, for each consecutive 50 bp genomic 

window, the fraction of bases in that window included in the SuRE fragment. Elastic net 

combines LASSO regression (penalty on absolute value of the coefficients) and ridge 

regression (penalty on the square of the coefficients). Together they reduce overfitting of 

the bin coefficients that can result from the high multicollinearity of adjacent bins. To 

avoid bias due to the specific choice of bin positions, we performed this fit for all 50 

possible ways of positioning the windows relative to the TSS, and then assigned to each 

base pair in the genome the average of the regression coefficients for all 50 windows 

containing it, one from each fit, resulting in a smooth curve. Equal ridge and LASSO 

penalties were used for all regressions (α = 0.5). A log(λ) value of 0 was used for 

NUP214, –1.5 for the BAC, LTR12C and whole-genome regressions. For Figure 3.3g, 

we used stable/unstable peak pairs identified in K562 GRO-cap [48], assigning stable 

peaks to the sense strand and unstable peaks to the antisense strand. TSS positions 

correspond to the center of each peak. LTR12C positions were determined via global 

pairwise alignment of RepeatMasker-annotated genomic LTR12C sequences to the Dfam 

consensus sequence [62]. 
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3.2.12  Data sources 

• As a reference for transcription start sites (TSSs) we used GENCODE [63] version 19 

TSSs (gencode.v19.annotation.gff3.gz) downloaded from 

http://www.gencodegenes.org/releases/19.html. 

• FANTOM phase 1 data [1] was downloaded from 

http://fantom.gsc.riken.jp/5/tet/#!/search/hg19.cage_peak_counts_ann_decoded.osc.txt.g

z. 

• ENCODE chromHMM annotations [64] in K562 were downloaded from 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgSegmenta

tion/wgEncodeAwgSegmentationChromhmmK562.bed.gz. 

• CAGE data [64] (wgEncodeRikenCageK562CellPapAlnRep1.bam) was downloaded 

from http://moma.ki.au.dk/genome-mirror/cgi-

bin/hgFileUi?db=hg19&g=wgEncodeRikenCage. 

• GRO-cap data [48] (GSM1480321_K562_GROcap_wTAP_plus.bigWig and 

GSM1480321_K562_GROcap_wTAP_minus.bigWig) was downloaded from 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1480321. 

• Annotation of repetitive elements were taken from the UCSC table browser, track 

'Repeats', track 'RepeatMasker' (downloaded 26-01-2015). 

 

3.2.13  Peak calling on SuRE signal 

To detect peaks of enrichment in the genome-wide SuRE-seq signal, we applied the 

MACS2 peak calling tool (version 2.1.0) [65] using (non-default) options "- g hs --bw 
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2000 --nomodel --keep-dup all  --nolambda --slocal 1500") to the 2 biological replicates 

of the cDNA data (‘treatment data’) and the genome-wide input coverage (‘control data’, 

see above; “Annotations, normalization and integrated data analysis”).  

 

3.2.14  Overlap of SuRE peak summits, TSS, enhancers, and repetitive elements. 

The SuRE peaks were annotated by determining overlap of the peak summits with ‘Tss’ 

and combined ‘Enh’ and ‘EnhW’ regions taken from the ENCODE annotation, and with 

repetitive regions taken from the repeatmasker annotation (see above: “Data Sources”). 

Overlap was determined using the GenomicRanges package of BioConductor [60].  

 

3.2.15  qPCR of globin genes 

Treatment of K562 cells with hemin or solvent control was performed in triplicate as 

described above. RNA extraction and DNAse digestion for ~ 1µg RNA were performed 

as described above, but no polyA purification was done. Next, cDNA was produced by 

adding 0.5 µl of 10 µM oligo dT, 0.5 µl 50ng/ul random hexamers and 1 µl dNTP 

(10mM each) and incubating for 5 minutes at 65°C. Then 4 µl of first strand buffer, 20 

units RNase inhibitor (#EO0381; ThermoFisher Scientific), 1µl of Tetro reverse 

transcriptase (#BIO-65050; Bioline) and 2 µl water was added and the reaction mix was 

incubated for 10 minutes at 25°C followed by 45 minutes at 45°C and heat-inactivation at 

85° for 5 minutes. qPCR was performed on the Roche LightCycler480 II using the 

Sensifast SYBR No-ROX mix (#BIO-98020). All expression levels were normalized to 
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the internal control TBP and then expressed as relative to the 24 hour solvent treated 

control.  Primer sequences can be found in Supplementary Table 2. 

 

3.2.16  Conventional reporter assay 

Promoters were chosen to cover the entire SuRE enrichment range. For each promoter a 

region representing ~550bp upstream to ~50bp downstream of the TSS was PCR 

amplified using MyTaq™ Red Mix  (#BIO-25043; Bioline), repaired using the End-It™ 

DNA End-Repair Kit (#ER0720; Epicentre) and cloned into the SuRE reporter vector 

lacking barcodes. PCR primers are listed in Supplementary Table 2. The SuRE reporter 

vector was generated as described above but after the first gel-extraction (after the 

Xcm1/Nhe1 digest), the vector was repaired using the End-It™ DNA End-Repair Kit and 

dephosphorylated using rSAP (M037PS; NEB). All constructs were purified by miniprep 

(#BIO-52057) and their sequence was confirmed by Sanger sequencing. One µg was 

nucleofected along with 0.2µg of a control plasmid (YFP expressed under the CMV 

promoter) into 2 million K562 cells. Expression was analyzed by RT-qPCR after 20 

hours as described above for the globin genes. GFP expression was quantified and 

normalized to the internal control YFP. Results were then compared to the mean SuRE 

enrichment obtained for the interval covered by the cloned promoter region.  
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3.2.17  Statistics 

All SuRE peaks were called with FDR <= 0.05; for each region the SuRE enrichment and 

the peak summit were recorded. We subsequently only considered peaks that showed at 

least a 2-fold enrichment in SuRE. 

 Enrichment of overlap between features in Figure 3.1f and 3.6a was defined as the 

ratio of the overlap on the generated data and on the overlap between the features where 

one feature set was circularly randomized within each chromosome (using R-package 

regioneR [66]). The overlap distribution in 10,000 random circular permutations was 

used to compute a p-value for enrichment. 

The p-values in Figure 3.1e,f and 3.5e,f refer to the p-value of the Pearson 

correlation. 
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3.3  Results 

3.3.1  SuRE method and library preparation 

The SuRE experimental strategy consists of three main steps (Figure 3.1a, Figure 3.7). 

First, genomic DNA is randomly fragmented and subjected to size selection to obtain 0.2-

2kb long fragments. These are ligated en masse into a plasmid, immediately upstream of 

a promoter-less transcription unit that contains a random 20 bp barcode near its 5¢ end. 

High-throughput paired-end sequencing of the resulting library associates each barcode 

with the genomic start and end positions and orientation of the corresponding fragment 

(Figure 3.7). Finally, the library is transiently transfected into cultured cells, where the 

vast majority of plasmids remains episomal and hence is not subject to chromosomal 

position effects.  

Only fragments that contain a functional promoter will drive transcription into 

barcoded mRNA. These barcodes are counted after reverse transcription, PCR 

amplification, and high-throughput sequencing. Using the barcode-to-fragment table, a 

genome-wide map of promoter activity can then be constructed (Figure 3.1a). We define 

activity detected in this way as autonomous promoter activity, because the reporter 

plasmid does not contain a promoter nor any other regulatory elements.  

We generated a human SuRE plasmid library with an estimated complexity of 

~270 million unique genomic fragments. Of these, we were able to map ~150 million to 

their barcode, resulting in a 55-fold coverage of the human genome on average (Figure 

3.8a), with 96% of the mappable genome covered at least 15-fold (Figure 3.8a).  
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3.3.2  Genome-wide map of autonomous promoter activity in human cells 

We transiently transfected the library into human K562 erythroleukemia cells. Two 

independent replicate experiments cumulatively yielded 111,851,687 SuRE reads across 

26,501,576 distinct barcodes. More technical details about the data are provided in Figure 

3.7.  

 As expected, the resulting SuRE activity map shows a pattern of peaks that overlap 

frequently with known transcription start sites and histone modifications marking active 

promoters, such as H3K4me3 and H3K27ac (Figure 3.1b). A peak detection algorithm 

[65] identified 55,453 SuRE peaks at an estimated false discovery rate of 5% and with at 

least 2-fold enrichment of SuRE signal over background (Supplementary Dataset 1). 

SuRE activity is enriched in previously annotated active promoters, and to a lesser degree 

in enhancers and certain repetitive elements (see below), but depleted from repressed 

(‘Repr’) or quiescent (‘Quies’) parts of the genome [64] (Figure 3.1c, Figure 7c). 

Promoters and enhancers together explain 26% of the SuRE peaks (see below). 

 To verify these results, we repeated the SuRE experiments with a focused library 

derived from 9 selected regions of the human genome [67] (Table S1), together spanning 

1.3 Mb. This library had an average 212-fold coverage of the included base-pairs. Due to 

its lower complexity and higher coverage it yielded highly reproducible results (Pearson's 

r = 0.99; Figure 3.8a). Within the regions probed by this focused library, 45 out of 50 

peaks (90%) previously identified in the genome-wide SuRE dataset also showed 

enriched signals in the focused SuRE dataset (Figure 3.9b). Similarly, out of 55 TSSs 

with a genome-wide SuRE enrichment of at least 2-fold, 53 (96%) showed enriched 
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signals in the focused SuRE dataset (Figure 3.9c). This indicates that the false discovery 

rate of genome-wide SuRE peaks is low. Finally, for 23 promoters we compared SuRE 

peak heights to signals obtained by conventional reporter assays with individually cloned 

constructs. This showed an overall r2 = 0.73 (Figure 3.9d).  

 

3.3.3  Autonomous promoter activity explains a large fraction of gene expression 

To determine to what extent the autonomous activity of known promoters correlates with 

their endogenous activity we compared the genome-wide SuRE map to levels of engaged 

RNA polymerases just downstream of TSSs, as determined by the GRO-cap method [48]. 

We focused on a curated set (see Methods) of 28,844 TSSs annotated by the GENCODE 

project [63]. Notably, SuRE and GRO-cap signals are substantially correlated (r2 = 0.54; 

Figure 3.1d). Similar results were obtained when only comparing TSSs which showed 

expression in both SuRE and GRO-cap (r2 = 0.43), and in a comparison with 

transcription activity detected by the CAGE method [64] (r2 = 0.49; Figure 3.8d). Thus, a 

substantial part of promoter activity is reproduced by sequence elements <2kb from the 

TSS, i.e., in the absence of distal enhancers, chromatin context and 3D organization. 

Promoters of widely expressed ("housekeeping") genes typically show more 

relative autonomy (i.e., SuRE signal divided by GRO-cap signal) than those of cell-type 

specific genes (Figure 3.1e). Yet, we also identify many housekeeping promoters with a 

low level of promoter autonomy, for example promoters of genes that encode histones 

(Figure 3.8e). Relative promoter autonomy is inversely correlated with the number of 

enhancers near the promoters in the native genomic context (Figure 3.1f). This cannot be 
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explained by differences in local gene density (Figure 3.8f). These results support the 

notion that autonomous promoters as detected by SuRE are less dependent on distal 

enhancers than non-autonomous promoters.  

 

3.3.4  Divergent transcription is generally autonomous 

Endogenously, most human promoters drive divergent transcription, with stable 

transcripts produced in the sense orientation and unstable short transcripts originating 

upstream in the antisense orientation [2]. We expected that in SuRE this antisense 

transcription might be detected if a promoter is inserted in reverse orientation, as the 

transcript would be stabilized by the plasmid-encoded transcription unit. Indeed, SuRE 

detects extensive activity of promoters in the antisense direction (Figure 3.2a-c). The 

antisense activity is on average 2-3 fold weaker but it correlates with the sense activity 

(Figure 3.2b-d; r2 = 0.48). We conclude that divergent transcription initiation is generally 

an autonomous feature of human promoters, and can be assayed by SuRE.   

 

3.3.5  Delineation of promoter regions that drive autonomous transcription 

In SuRE, each promoter is represented by a series of partially overlapping fragments with 

different sizes and different start and end positions. This offers the opportunity to identify 

critical sequence regions. For example, around the promoter of NUP214, multiple 

fragments that only include ~100 bp upstream of the annotated sense TSS show high 

SuRE signals (Figure 3.3a), indicating that this region together with the TSS is sufficient 
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to drive transcription autonomously. For a more quantitative analysis, we developed a 

generalized linear modeling (GLM) method based on Poisson statistics, which effectively 

deconvolves the SuRE data and identifies the promoter subregions that contribute most to 

the genome-wide autonomous transcription activity (see Methods). When applied to 

NUP214, this confirms that the proximal ~100 bp upstream of the TSS is primarily 

responsible for its autonomous activity (Figure 3.3b).  

To understand which parts of human promoters are generally required for optimal 

autonomous transcription, we aggregated SuRE data according to the start and end 

positions of each query fragment relative to the nearest TSS (Figure 3.3c, top triangle). 

This shows that, as expected, most activity is contributed by the core promoter and 

sequences within a few hundred bp upstream; inclusion of longer upstream regions on 

average does not increase reporter activity. Increasing the length of the sequence included 

downstream of the TSS tends to reduce reporter activity, which may in part be due to the 

inclusion of splice sites (Figure 3.8j) or other elements that are not compatible with the 

reporter design. Application of GLM to all promoters combined yielded a similar 

conclusion: significant contributions to sense transcription are primarily provided by the 

core promoter region itself and sequences up to ~200 bp upstream (Figure 3.3d, blue 

curve). These analyses illustrate how SuRE data can be used to identify critical sequence 

regions within promoters, both individually and genome-wide. 
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3.3.6  Requirements for autonomous antisense transcription  

Sequence motif analysis of antisense TSS regions has suggested the presence of an 

independent antisense core promoter which may be responsible for antisense transcription 

[48, 68, 69]. Indeed, two antisense core promoters were found to drive transcription 

autonomously in vitro [68]. On the other hand, the sense and antisense core promoters 

have been proposed to function in a cooperative manner [69]. To date, the functional 

interdependence of the sense and antisense core promoters has not been addressed 

through systematic deletion experiments. We therefore used the randomly overlapping 

fragment information as illustrated above to gain insight into the requirements for 

antisense transcription.  

Virtually all NUP214 fragments that show antisense SuRE activity extend at least 

~200bp to include the annotated sense TSS, suggesting that the sense core promoter (here 

defined as –50 to +50 bp relative to the annotated TSS) is critical for antisense 

transcription (Figure 3.3e). GLM confirmed this conclusion and found no evidence that 

the antisense TSS subregion is needed for antisense transcription (Figure 3.3f). Indeed, 

genome-wide analysis shows that promoter fragments that include the forward core 

promoter generally exhibit the highest SuRE activity in antisense orientation (Figure 

3.3c, bottom triangle). GLM applied to all promoters combined also indicated that 

antisense transcription is dependent on essentially the same sequence region (including 

the sense core promoter) as sense transcription (Figure 3.3d, red curve). Analysis of a 

well-defined set of sense-antisense TSS pairs [48] (Figure 3.3g) underscores this general 

conclusion.  
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Inspection of raw SuRE data and GLM profiles of individual promoters covered 

by our focused library revealed several interesting examples and exceptions to this 

general trend. For example, transcription from both the main sense and main antisense 

TSSs of SLC50A1 requires the same subregion located between them; however, an 

alternative sense TSS upstream and an additional antisense TSS downstream appear to be 

non-autonomous, because no GLM signal is detectable at these sites (Figure 3.3h). In the 

WDR47 gene, antisense transcription does not require the antisense TSS subregion, but 

rather depends on a subregion that is also the primary driver of sense transcription, thus 

representing an example of the general trend (Figure 3.3i). Finally, the sense and 

antisense TSSs at the HIST1H2BD gene are each primarily driven by distinct local 

sequence elements (Figure 3.3j). Thus, exceptions exist to the general rule that antisense 

transcription is driven by sequence subregions nearby the sense TSS. 

 

3.3.7  Relationship between CpG content and autonomous promoter activity 

Promoter regions in mammalian genomes often contain CpG islands, regions that have a 

relatively high ratio between the observed CpG dinucleotide density and the expected 

density, given the local C+G content [70]. CpG content has previously been linked to 

promoter activity [55, 71]. When binned by their observed and expected CpG density 

(Figure 3.4a), SuRE fragments around TSSs form two distinct populations that can be 

separated by a ~50% observed/expected CpG ratio, consistent with a previous 

classification of promoters [71]. However, the relationship between SuRE expression 

level and CpG content for individual fragments takes a different form (Figure 3.4b): 
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expression is highest when the observed and expected CpG density are equal, and decays 

gradually with decreasing CpG observed/expected ratio. Notably, this relationship is 

largely independent of the CpG density per se (i.e., the highest expression occurs along 

the diagonal in Figure 3.4b). 

 This result most likely reflects the evolutionary history of promoters. A low 

observed/expected CpG ratio is thought to be the result of conversion of methylated 

cytosine (which primarily occur in CpG dinucleotides) to thymine by deamination [7]. 

Our data suggest that autonomous promoters have been protected from this loss, 

presumably because they have remained consistently hypomethylated in the germline 

throughout evolution.  

 

3.3.8  Enhancers act as autonomous promoters 

In their native context, enhancers can also act as promoters, although the resulting 

transcripts (termed eRNAs) tend to be unstable [16, 72]. For a subset of enhancers, 

stimulus-induced eRNA production precedes mRNA transcription from the target 

promoters [73, 74], suggesting that enhancers may be transcribed independently of their 

target promoter. On the other hand, significant correlations between physical promoter–

enhancer interactions and the production of eRNAs have been reported [72, 73, 75] and it 

has been shown that enhancer transcription can be dependent on the presence of the target 

promoter [76]. We therefore used our SuRE data to investigate to what degree 

transcription initiation from enhancers is autonomous. The locus control region (LCR) of 

the β-globin gene cluster, a potent multi-enhancer region [77], showed several clear bi-
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directional SuRE signals (Figure 3.5a). Analysis of 47,020 predicted active enhancers in 

K562 cells [64] revealed SuRE signals for the majority (Figure 3.5b,c), although the 

overall level of activity is approximately 10-fold lower than for promoters (cf. Figure 

3.3a and Figure 3.5c; Figure 3.5d). We conclude that eRNA production is generally 

autonomous, i.e. it generally does not require interactions of the enhancer with its target 

promoter in cis. We cannot rule out that the transfected plasmids interact with their target 

promoters in trans [78]. 

 Notably, the ENCODE classification of enhancers as 'weak' or 'strong' [64] correlates 

with the strength of SuRE signals (p <2.2x10-16, Wilcoxon test) (Figure 3.5b-d). SuRE 

signal also correlates positively with the endogenous levels of H3K27ac (Figure 3.5e), 

the histone modification most characteristic of active enhancers [79]. Furthermore, the 

ability of ~130 bp fragments derived from ENCODE-annotated enhancers to activate a 

minimal promoter in a previous reporter assay [61] shows a significant (p = 4x10-4) 

positive correlation with the SuRE signal for the same enhancers (Figure 3.5f). These 

results indicate that the level of autonomous transcription initiation from enhancers is 

related to enhancer strength.  

 

3.3.9  Dissection of regulatory element interplay in the alpha-globin LCR. 

To further illustrate the value of SuRE for dissecting regulatory mechanisms, we focused 

on the alpha-globin locus, which harbors a locus control region that can activate several 

globin genes over a distance of >50kb. The locus control region contains several separate 

enhancers known as R1-4. In mouse these enhancers work in an additive manner and no 
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single element is critical for globin expression [80]. Treatment of K562 cells with hemin 

is known to increase expression of several of the genes in the alpha-globin locus [81], 

which we confirmed by RT-qPCR (Figure 3.5g). Although R2 can be activated by hemin 

[82], it is not known whether other elements in the region contribute to the response to 

hemin. Comparison of SuRE profiles obtained from hemin-treated and control cells 

(Figure 3.5h) revealed that R2 was exclusively activated by hemin. This indicates that 

activation of the three genes occurs selectively via elevated activity of enhancer R2, 

without contributions of any of the other enhancer or promoter sequences. This example 

illustrates how SuRE may be used to identify key elements in dynamic regulatory 

mechanisms. 

 

3.3.10  Autonomous promoter activity in repetitive elements 

ENCODE-annotated promoters and enhancers in K562 account for only 26% of the 

genome-wide SuRE peaks (Figure 3.8i). Several families of repetitive elements show 

significant (p < 0.01 after multiple testing correction) overlap with SuRE peaks, in 

particular the ERVL-MaLR and ERV1 retrotransposons (Figure 3.6a), which account for 

another 19% of the peaks. Certain subfamilies within these families exhibit specific and 

high SuRE signals, for example the LTR12C subfamily of solitary long terminal repeats 

(Figure 3.6b, c). For some repeat subfamilies (e.g., LTR12C) the average SuRE activity 

resembles that of promoters in terms of strength and directional bias, whereas for others 

(e.g., MER41B) the relatively weak signal and the balanced bidirectional activity are 

more reminiscent of enhancers (Figure 3.6b, c). 
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Note that technologies like CAGE and GRO-cap have difficulty mapping 

transcription initiation activity uniquely to specific repeat instances in the genome [83], 

whereas SuRE maps are based on paired-end sequencing reads that generally include 

unique sequences flanking the repeat instances, yielding a much more detailed map of 

promoter activity in repetitive regions. For example, autonomous promoter activity could 

be unambiguously assigned to a LTR12C insertion in the β-globin locus (Figure 3.5a). In 

addition, GLM analysis of partially overlapping SuRE fragments, similar to what we 

applied to promoters (cf. Figure 3.3d), pinpointed the precise sequence regions that 

generally contribute to autonomous promoter activity across hundreds of LTR12C 

variants (Figure 3.6d). These data extend earlier analyses of single LTRs [84] and again 

indicate that essentially the same sequence elements contribute to sense and antisense 

transcription. 

 Sense-oriented run-on transcription [48] is detectable downstream of LTR12C 

insertions with high SuRE activity (Figure 3.6e). This is not found for insertions with low 

SuRE activity and not in the antisense direction (Figure 3.10). This indicates that the 

autonomously active LTR12 copies drive downstream intergenic transcription in their 

endogenous context and may produce long non-coding RNAs.   

 

3.3.11  Non-annotated SuRE peaks may be cryptic promoters 

Of the 55,453 SuRE peaks, only 45% are accounted for by ENCODE-annotated 

promoters and enhancers or ERVL-MaLR and ERV1 retrotransposons. Of the 30,548 

remaining ‘unexplained’ peaks only 15% overlap with a TSS or enhancer annotated in 
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one of 889 cell sources assayed by the FANTOM project. The unexplained peaks 

however do show enrichment for epigenetic marks of promoter activity, such as 

H3K4me3 or DNase I hypersensitivity (Figure 3.11a, b). Their average SuRE signal is 

substantially above background, while they produce almost no GRO-cap signal (Figure 

3.11c, d). These peaks may thus represent cryptic promoters that fail to initiate 

transcription in the native chromatin setting. One function of chromatin may be to 

suppress such cryptic promoter activity. 

 

 

3.4  Discussion 

These results establish SuRE as a high-throughput tool to functionally deconstruct large 

genomes and systematically identify elements that drive autonomous transcription 

activity. SuRE stands out from previous high-throughput promoter assays by its 100-

1,000 fold larger scale, sufficient to survey the entire human genome at >50x coverage. 

Furthermore, the partial overlap of the query fragments makes it possible to use the SuRE 

data as a massive “promoter truncation” experiment and delineate the minimal regions 

required for autonomous activity, both for individual promoters and genome-wide.   

 Our GLM approach, which enhances the spatial resolution of SuRE by an order of 

magnitude, indicates that sequence elements that contribute to promoter autonomy are 

generally concentrated in regions <200 bp upstream of the TSS. The high density of 

regulatory information proximal to the TSS is in line with the findings in yeast and 

Drosophila [53, 58]. Specific promoters may require additional elements further 
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upstream; it is a matter of definition whether such elements should be considered as part 

of the promoter or as proximal enhancer elements.  

 With a minor modification of the reporter design (Figure 3.12) SuRE should also be 

suited to survey the entire human genome specifically for functional enhancer activity 

(i.e., the ability of genomic fragments to activate a cis-linked minimal promoter) with a 

similar throughput and coverage as described here. In conjunction with complementary 

functional genomics strategies [18, 19, 21, 22, 49-53, 55-57, 85] this will help dissect the 

sequence determinants of promoter and enhancer activity, and unravel the complex 

interplay of the possibly more than one million regulatory elements in the human genome 

[64]. 

 

3.4.1  Accession Codes 

SuRE data sets are available at the Gene Expression Omnibus, accession GSE78709. 
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FIGURES  

 

Figure 3.1 SuRE provides a genome-wide map of autonomous promoter activity. 

a. Schematic representation of the SuRE experimental strategy. ORF, open reading frame; 
PAS, polyadenylation signal. Colors indicate different barcodes. b. Representative ~1Mb 
genomic region showing histone modifications H3K27ac and H3K4me3[64] that mostly mark 
active TSSs, and SuRE signals divided into plus and minus orientation. SuRE signal represents 
fold enrichment over input. c. Relative enrichment (compared to random) of SuRE peaks 
among the major types of chromatin [64]. d. Correlation between endogenous promoter 
activity (measured by GRO-cap [48]) and SuRE enrichment at TSSs. The density plots show 
the data distribution over each axis. nd, not detected. e. Correlation between relative promoter 
autonomy (log10(SuRE enrichment/GRO-cap)) and tissue specificity (number of cell types and 
tissues in which each TSS is active, out of 889 tested [1]). Grey line shows linear fit. f. 
Correlation between relative promoter autonomy and the total number of enhancers that are 
found in a fixed window of 5-50 kb from the TSS (regardless of the position of neighboring 
genes). The y-axis scale is the same as in e. 
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Figure 3.2 Autonomous divergent promoter activity. 

a. Mean SuRE enrichment at all TSSs and their 5kb flanking regions. b, c. SuRE enrichment 
aligned to all TSSs in the sense (b) and antisense (c) orientation, sorted by sense signal 
intensity. d. Distribution of SuRE enrichment levels at all TSSs; nd, not detected. 
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Figure 3.3 Partially overlapping query fragments allow for delineation of regions that 
drive promoter activity. 

a. Top tracks: GRO-cap expression, SuRE enrichment and alternative transcripts; bottom 
panel: SuRE expression of individual genomic fragments around the NUP214 TSS in the sense 
orientation. The y-axis indicates the log10-transformed number of reads for each genomic 
fragment; a random value between -0.2 and +0.2 was added to avoid overlap of fragments. The 
5¢ end of each element is indicated by a black vertical bar. b. Contribution to autonomous 
promoter activity across the region surrounding the NUP214 TSS, estimated using an elastic 
net Poisson regression model that uses fragment overlap with 50bp genomic sequence bins to 
predict expression in a multiplicative manner. The model fit was repeated using shifted 
versions of the same bins to avoid artefacts due to breakpoint choice. Shown are the 
exponentiated per base mean coefficients for all possible shifts. c. Mean SuRE expression of 
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genomic fragments with a similar start and end position (binned in 100 bp windows) relative to 
the nearest TSS. For example, the leftmost colored arrows mark all fragments starting at -500 
± 50 bp and the rightmost colored arrows mark all fragments ending at the TSS ± 50 bp; the 
square at the intersection shows the mean SuRE expression of all fragments that match both 
criteria. NA: fewer than 50 fragments in bin. d. Same as (b) but for all TSSs. e. Same as (a) but 
for antisense orientation. Here the 3’ end of each element is indicated by black vertical bar. f. 
Same as (b) but for antisense orientation. g. Same model used in (d) was applied to a subset of 
sense-antisense TSS pairs [48], using 50bp regions centered on the sense TSS (right) in one 
model and the antisense TSS (left) in a second. Expected fold-changes in sense (above) and 
antisense expression (below) are shown for the 50 bp region centered on the corresponding 
TSS. Error bars indicate standard error of Poisson regression coefficients. h-j. GRO-cap 
expression and alternative transcripts (top panels) and contribution to autonomous promoter 
activity as in (b) (bottom panels) for the genes SLC50A1 (h), WDR47 (i) and HIST1H2BD (j). 
In all panels, sense orientation is depicted in blue and antisense orientation in red. 
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Figure 3.4 Relationship between CpG islands and gene expression. 

a. Distribution of all mappable SuRE fragments, regardless of their expression level, in terms 
of their CpG characteristics. Only fragments that overlap an annotated TSS were included. The 
color scale indicates the number of fragments belonging to each hexagon bin. The lines denote 
when the observed CpG density per base pair equals 100% (solid) or 50% (dashed) of the value 
expected based on C+G content. b. Relationship between expression level and CpG 
characteristics. The color scale indicates the average cDNA read count per fragment in each 
hexagon bin. Lines are the same as in a. 
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Figure 3.5 Autonomous transcription from enhancers. 

a. SuRE data indicate that three of the five DNase hypersensitive sites (DHS) [64] in the β-
globin locus control region show autonomous transcription activity. b. SuRE signals (plus and 
minus strand combined) aligned to enhancers (‘Enh’), weak enhancers (‘EnhW’) and quiescent 
parts of the genome (‘Quies’) [64], each sorted by SuRE signal intensity. c. Average profiles of 
data in b. d. Distribution of SuRE enrichments as shown in b compared to TSSs. nd, not 
detected. e. Correlation between SuRE expression and H3K27ac signal for enhancers. Grey 
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line shows linear fit. f. Correlation between enhancer strength of ~130 bp fragments from 
selected enhancers [61] and the mean SuRE expression in a 1 kb window around the center of 
these (n=189). Grey line shows linear fit. g. Expression levels of 4 genes of the alpha-globin 
region and a negative control gene (ACTB) after 24 hours of induction with hemin or the 
solvent control. Expression levels were normalized to TBP and visualized as fold-change 
relative to solvent control. Error bars indicate the SEM of 3 biological replicates. h. Genomic 
region of the alpha-globin locus. The top track indicates conserved enhancers. The track below 
shows the DHS-seq signal [64]. The bottom 4 tracks show SuRE enrichment before and after 
hemin induction for the plus strand (blue) and minus strand (red).   
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Figure 3.6 Autonomous transcription from specific repeat elements. 

a. Enrichment of SuRE peaks among the major repeat families. Asterisks: significant 
enrichment or depletion (p < 0.01 after multiple testing correction).  b. Mean SuRE enrichment 
of subfamilies LTR12C (left panel; n = 2,600) and MER41B (right panel; n = 2,764) in the 
sense (blue) and antisense (red) direction. c. Distribution of SuRE enrichment levels (plus and 
minus strand combined) of LTR12C and MER41B repeats compared to enhancers and TSSs. 
nd, not detected. d. Contribution of LTR12C sequences to autonomous promoter activity, as in 
Fig. 3b, relative to previously annotated [86, 87] U3, promoter (P), enhancer (E), transcribed 
(R) and U5 elements. e. Average endogenous run-on transcription [48] levels in the sense 
orientation at indicated distances upstream or downstream of LTR12C repeats. High and low 
activity refers to top 50% and bottom 50% in SuRE enrichment. 
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Figure 3.7 Detailed schematic representation of SuRE methodology. 

See Methods for detailed description. a. Size-selected and A-tailed random fragments 
(‘queries’) of the human genome are inserted in bulk into barcoded T-overhang plasmids by 
ligation. BC, barcode; ORF, open reading frame; PAS, polyadenylation signal. b. The library is 
digested by endonuclease I-CeuI so that the barcode with the query sequence is released. This 
is then self-ligated and again digested with a frequent cutter restriction enzyme to reduce the 
insert size. After another self-ligation the circle is linearized, PCR amplified and subjected to 
high-throughput sequencing. c. Per biological replicate ~50 million cells are transfected. Those 
plasmids that contain promoter activity in the direction of the barcode will transcribe the 
barcode into RNA. Cells are harvested after 24 hours, RNA is extracted, polyA purified, 
reverse transcribed, PCR amplified and subjected to high-throughput sequencing. By 
normalization to estimated barcode frequencies in the SuRE plasmid library a genome-wide 
SuRE expression profile is generated.  
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Figure 3.8 SuRE genome coverage, reproducibility and peaks. 

a. Coverage of the human genome by unique elements in the SuRE library. b. Distribution 
(fold enrichment) of SuRE peaks among the 25 types of chromatin. c. Correlation of SuRE 
enrichment between biological replicates at TSSs. d. Correlation between CAGE1 and SuRE at 
the TSSs. e. Same as Fig. 1e but with Histone genes indicated in red. Correlation between 
relative promoter autonomy (log10 (SuRE/GRO-cap)) and tissue specificity (number of cell 
types and tissues in which each TSS is active, out of 889 tested). Grey line shows linear fit. f. 
Correlation between relative promoter autonomy and the total number of promoters (ENCODE 
chromatin type ‘Tss’) that are found in a fixed window of 5-50 kb from the TSS. g. Size 
distribution of genomic fragments in the SuRE library. h. Number of reads (per individual 
replicate) of barcodes in cDNA. Only barcodes linked to a unique genomic fragment were 
counted. i. Venn diagram representing the overlap between the summits of SuRE peaks as 
called by the MACS algorithm3 and ENCODE-annotated promoters (‘Tss’) and enhancers 
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(‘Enh’ and ‘EnhW’ combined) . Because >1 peak summit can overlap a ENCODE annotation, 
overlaps are given for each direction of the comparison in the color of the annotation. j. 
Relative SuRE expression (SuRE/GRO-cap) of SuRE fragments for which the 3%apos; ends 
either in an intron (black) or an exon (red). Expression is normalized to GRO-cap to avoid 
systematic biases resulting from possible correlations between gene structure and expression 
level. A LOESS curve was separately fit to the logratios for all exon- and intron-terminal 
fragments using the distance each fragment ended downstream of the corresponding TSS, then 
predicted ratios were normalized to a maximum of 1. ENCODE annotation, overlaps are given 
for each direction of the comparison in the color of the annotation.    
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Figure 3.9 Focused BAC library. 

a. Correlation between biological replicates for the focused SuRE library. Data is shown for all 
TSSs within in the BAC library. b. Correlation between SuRE enrichment obtained with the 
genome-wide library (x-axis) and the focused library (y-axis) for all peaks overlapping the 
BAC library. c . Same as (b) but for all TSSs in the BAC library. d. Correlation between SuRE 
enrichment obtained with the genome-wide library (x-axis) and a conventional reporter assay 
(y-axis) for 23 promoters. Grey line shows linear fit. e. Correlation between pre-transfection 
read-counts and post-transfection read-counts for all TSSs in the BAC library.  
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Figure 3.10 Run-on transcription around LTR12C elements, antisense. 

Average PRO-seq run-on transcription activity4 around LTR12C elements as in Fig. 5e, but in 
antisense orientation.  
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Figure 3.11 Chromatin marks associated to unannotated SuRE peaks. 

a. Mean enrichment for 4 chromatin marks centered on the summit of unannotated SuRE 
peaks, i.e. peaks that did not overlap ENCODE annotated promoters or enhancers (‘Tss’ or 
‘Enh’ chromatin state) or repetitive elements of the ERV1 or ERVL-MaLR family. b. Same as 
(a) but for SuRE peaks that overlapped encode annotated promoters. c. Mean SuRE enrichment 
for all peaks overlapping ENCODE annotated promoters (green) and unannotated SuRE peaks. 
d. Same as (c) but for mean GRO-cap signal.  
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Figure 3.12 Envisioned SuRE methodology for enhancer detection. 

a. Current SuRE reporter construct for promoter detection. b. Envisioned reporter construct for 
enhancer detection. Query: genomic fragment, BC: barcode, ORF: open reading frame, PAS: 
polyadenylation signal, mPR: minimal promoter.  
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4 Genome-wide Analysis with SuRE-GLM 

4.1  Introduction 

 When a normalized activity track (cf. Figure 3.1a,b) is constructed, each SuRE 

element contributes to the normalized activity over its entire extent. This ensures that an 

active promoter region will be assigned some weight from all overlapping elements 

regardless of the relative position of the promoter within each element. However, this 

averaging procedure also assigns higher expression levels to low-activity regions 

proximal to active promoters, due to the fact that many elements overlapping the 

promoter will tend to extend into these inactive flanks. In cases of high coverage, this 

“piggy-backing” effect produces a broad triangular peak centered on the high-activity 

promoter and decreasing on each side as the proportion of elements that extend over the 

promoter diminishes (Figure 4.1b). In cases of lower coverage, random differences in the 

extent of elements overlapping up- and downstream of the active promoter can result in 

“false peaks” in the inactive flanks.  

In all cases, the “piggy-backing” results in the assignment of higher normalized 

activity to inactive regions outside of the flanking active promoter. As a result, SuRE 

normalized expression profiles provide only a low-resolution map of promoter activity 

throughout the genome. This can be seen by comparing the SuRE normalized expression 

profile for the NUP214 promoter region (Figure 4.1b) to the expression of individual 

SuRE elements that contributed to this profile (Figure 4.1a). Many elements containing 

the region immediately upstream of the NUP214 TSS have high expression, regardless of 
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how far they extend up- and downstream. The smallest of these highly expressed 

elements are less than 200bp in length. Meanwhile, nearby elements that do not overlap 

the TSS-proximal region show very little expression. This suggests that a fairly small 

promoter region may be responsible for the expression of elements that extend over a 

larger area.  

In contrast, the normalized activity profile is limited in the information it can 

provide about the boundaries of the active promoter region driving expression at a given 

locus. Based on this profile, we might expect an element extending from 500bp upstream 

to 200bp upstream of the NUP214 TSS to have fairly high expression, despite the fact 

that it does not extend into the region shared across all active SuRE elements. While the 

normalized expression profile peak does match the location of the center of this active 

region, the borders of the active region are ambiguous. Individual elements suggest that a 

minimal promoter capable of high expression could be less than 200bp long, yet the 

normalized profile transitions from high to low expression gradually over a much wider 

region. Even if boundaries for a “minimal promoter” were set to those parts of the region 

with a profile score greater than 50% of the peak height, the resulting promoter would be 

around 500bp long, much longer than necessary.  

 In some cases, this limitation can be overcome by looking for the smallest specific 

elements that show full expression, as we have with NUP214. However, this method has 

its own limitations. SuRE libraries differ in the number and length distribution of their 

elements, and within a library there can be considerable differences in coverage across 

different regions. For example, in the SuRE23 library (see Chapter 3) an average of 25 
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elements overlap a given position on each strand, considerably less than what we see in 

Figure 4.1a. Additionally, the mean length of elements in the SuRE23 library is close to 

1kb, with only a small fraction of elements reaching lengths below 400bp. As a result, 

there are many instances where all the elements overlapping a small active promoter will 

greatly exceed the length of the active region itself.  

 Furthermore, the observed expression of a single SuRE element is a poor estimate of 

its true expression rate. In an ideal experiment, each SuRE expression count would 

follow a Poisson distribution. In reality, sequencing counts are typically overdispersed 

relative to the Poisson model [25]. Also, note that a small number of elements 

overlapping the active NUP214 promoter region show no expression. These likely 

represent elements that failed to transfect into any cells in each of the 3 SuRE biological 

replicates. These structural zeroes do not reflect the expression rate of the elements, as 

transfection must occur before expression can occur. Elements may transfect in all 

replicates, a subset of the replicates, or none at all. As a consequence of all these sources 

of experimental noise, we cannot draw accurate conclusions about the expression rate of 

individual elements.  

Only by leveraging information from multiple overlapping elements can we 

identify active promoter regions at a higher resolution. To do so, we developed SuRE-

GLM, a penalized generalized linear model that predicts SuRE element expression based 

on overlap with short, disjoint spatial bins. The model output is a coefficient track which 

represents the estimated contribution of each base-pair on the expression of an 

overlapping genomic fragment. These tracks can be used to predict the relative promoter 
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activity of any genomic fragment overlapping the regions covered by the SuRE library 

used to generate the model. They can also be used to provide insight into the structure 

and mechanisms of promoter activity in specific cellular contexts. 

4.2  Methods 

4.2.1 Datasets 

 
In this chapter, we will focus on data from several SuRE libraries:  

• SuRE23: This library was discussed in Chapter 3. Experiments using this library 

were performed in three cell types: K562, HT1080, and HEPG2. It was used for 

qPCR validation and in the multinomial model. 

• SuRE34: This library was created from BAC regions covering several subsets of 

the genome, totaling 1.6Mbp in length. Experiments were performed using this 

library in K562 cells under two conditions, in the presence and absence of hemin. 

These results were used to validate the binomial GLM model. 

• SuRE42-45: These libraries were constructed from four divergent genomes from 

the 1000 Genomes Project, twice independently for each genome. They were each 

used to perform experiments in K562 and HEPG2 cells. Together, they contain 

many more fragments (2.4 billion) than the SuRE23 library (150 million), at a 

smaller mean fragment length (~300bp). As a result, this library was used for the 

majority of the Poisson GLM analyses. 

• SuRE49: This library was created from BAC regions covering several subsets of 

the genome that total 673kbp in length. Experiments were performed using this 
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library in K562 cells. The high genomic coverage associated with this library 

allowed us to use it for validation of the model built from libraries SuRE42-45. 

 

4.2.2 SuRE-GLM Poisson model implementation  

 To predict the expression of SuRE elements in a single cell type, SuRE-GLM uses a 

log-link Poisson model with elastic net penalization. For the SuRE23 model, the 

covariates in this model correspond to short, non-overlapping strand-specific spatial bins 

of equal length that tile the length of all the regions covered by the SuRE library. Each 

SuRE element overlaps a set of consecutive bins. If an element overlaps an entire bin, it 

receives a value of 1 for that bin’s covariate. If the element only partially overlaps a bin, 

as is usually the case for the start and end of an element, the covariate value for that bin is 

equal to the fraction of the bin overlapped by the element. For all bins not overlapped by 

an element, the corresponding covariate value is 0. This overlap covariate matrix is then 

fit to the SuRE element expression counts, summed over all replicates, using a Poisson 

GLM with elastic net penalization.  

 For the SuRE42-45 model, a slightly different approach was used to take advantage 

of higher coverage. Rather than equal-length bins, the endpoints of the covariate bins 

were generated by using the union of endpoints of all elements in all eight libraries. This 

allowed bin length to vary depending on the local density of elements. Additionally, 

covariate values were set to the square root of the bin length, which biased the model 

towards assigning larger weight to longer bins than to shorter ones. 
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The resulting coefficients estimate the effect of each bin on the log-expression 

rate of an element containing the entire bin. This means that the presence of each 

genomic bin in a reporter construct is predicted to have multiplicative effect on the 

expression of the construct, allowing SuRE-GLM to capture both activating and 

repressive effects without producing non-sensical predictions, such as the negative 

expression rates that could appear in a linear-link model. By dividing each bin coefficient 

by the length of the bin, or by the square root of the length in the case of SuRE42-45, we 

estimate the contribution of each base-pair within the bin. Each strand is modelled 

separately to allow for strand-specific differences in promoter activity. As a result, each 

model produces two strand-specific coefficient tracks. The model also produces an 

intercept, which accounts for the cumulative sequencing depths of the experiments, and 

does not factor into the track. Additional unpenalized parameters were included in the 

SuRE42-45 model, which will be discussed below. 

4.2.3 Penalization 

 The elastic net GLM fits were implemented using the glmnet() function in the glmnet 

R package (http://CRAN.R-project.org/package=glmnet). Elastic net penalization is a 

natural choice for SuRE-GLM for several reasons. The L1 penalty promotes sparsity 

[26]. Previous research has suggested that only a small subset of the genome is 

transcriptionally active [2], and so we can reasonably expect that many parts of the 

genome will have little to no effect on promoter activity. The L2 penalty helps address 

collinearity [28]. Because the elements overlapping one genomic bin are very likely to 

overlap the adjacent genomic bin, the covariates for neighboring bins are highly collinear. 
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In an unpenalized fit, this can prevent a model from reaching convergence. With the L2 

penalty, the coefficients for collinear bin covariates are encouraged to have similar 

values, or identical values in the case of perfectly collinear bin covariates, which is an 

intuitive behavior. Finally, both L1 and L2 help prevent overfitting, which is a 

particularly important feature, as overfitting is exacerbated by overdispersion and 

collinearity, both of which are present [28].  

Prior to performing the full fit, the glmnet() function is used to validate the 

penalty parameters. Given an alpha penalty parameter value, this function efficiently fits 

a series of models, each with a different lambda penalty parameter value. To validate the 

lambda parameter for a given alpha, an optimal lambda value was chosen based on the 

model that maximized the log-likelihood of a test dataset (a random sample of 10% of the 

full dataset). The initial, largest lambda in the “lambda path” was selected to ensure that 

all coefficients in this model are penalized to zero, with the rest of the lambda path being 

a decreasing series evenly spaced in log-space. If the optimal lambda selected via this 

method was also the smallest lambda tested, a series of even smaller lambdas was tested. 

In all cases, the smallest lambda eventually produced an inferior model to some larger 

lambda, and the optimal lambda was selected. This lambda selection procedure was 

repeated at various values of alpha, and the optimal alpha value was based on the alpha-

lambda pair that maximized the test dataset deviance ratio (Figure 4.2). Then the model 

was re-run using these optimized penalty values and the full dataset in order to produce a 

single model. In the case of the genome-wide libraries (SuRE23 and SuRE42-45), 
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validation was performed on a large region of the genome rather than on the entire 

dataset, which would be intractable. 

 The deviance ratio is a measure of the predictive ability of a given model. A deviance 

ratio equal to zero describes a model that produces predictions that are no better than 

those produced by the null (intercept) model, while a deviance ratio equal to one 

describes a perfect model that predicts mean expression values exactly equal to the 

observed cDNA count of each test fragment. For a given model, the deviance ratio gives 

the fraction of the log-likelihood difference between these two model extremes that is 

captured in the fit.  

4.2.4 Standardization 

 SuRE-GLM fits differ from a default glmnet fit in some important ways. In a typical 

elastic net regression model, covariates are standardized prior to the fit to ensure that all 

covariates are at a similar scale [27], as the scale of the covariates can modify the effect 

of the penalization on the coefficient estimates. However, in SuRE-GLM all covariates 

are either in the same units (coverage of identical-length bins) or modified to reflect bin 

size (SuRE42-45) so standardization is unnecessary and was suppressed.  

4.2.5 Strategy for performing genome-wide GLM fits 

Additionally, in the case of genome-wide SuRE-GLM models, it is 

computationally intractable to fit the entire genome simultaneously using the R glmnet 

framework. In these cases, the genome was broken up into smaller subsets. In the 

SuRE23 model, one representative subset of the genome was used to validate the penalty 
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parameters and to estimate an intercept term. Then all genomic subsets were fit in parallel 

using the validated penalty parameters, with the model-specific intercept set to zero and 

the estimated intercept used as an offset in all the models to ensure a universal intercept 

across all subsets.  

In the SuRE42-45 Poisson GLM, validation was performed using two 10Mb 

subsets of the genome. After the penalization parameters were validated, several 

additional unpenalized parameters were estimated using the average of coefficients from 

models fit to ten other 10Mb subsets. These parameters included: 

• Library-specific intercepts: These reflect differences in sequencing depth for 

individual library experiments. 

• iPCR coefficients: iPCR counts are defined as the number of times each 

element was observed in the barcode mapping procedure. They reflect relative 

library concentration indirectly, but our analysis suggested a library-specific 

and non-linear relationship. To allow the model to incorporate the information 

provided by iPCR, two covariates were included for each library separately: 

log(iPCR) and [log(iPCR)]2. 

• Length: Our analysis showed a log-linear relationship between mean 

expression and length, with longer fragments showing lower mean expression. 

This may be due to differences in transfection efficiency. 

Once these unpenalized parameters were estimated, element-specific offsets were 

calculated and used in the genome-wide models. 
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4.2.6 Averaging over coefficient bin offsets 

In models that use a fixed bin width, a single SuRE-GLM fit produces tracks with 

a noticeable “tiered” pattern resulting from the model structure, in which all positions 

within a single bin are assigned a single coefficient. The start position of the initial bin 

(and consequently all subsequent bins) is chosen arbitrarily, but the tiered structure can 

suggest the false impression that positions within a bin have some biological relationship. 

In theory, this could be avoided by fitting the model with a bin length of one base pair. In 

practice, these models are computationally intractable. To select the appropriate bin 

length, for the SuRE23 model, we tested a series of decreasing bin lengths. While smaller 

bin lengths generally produced models with better predictive power, the improvements 

were minor after a length of 50bp. To ameliorate the misleading “tiered” pattern, ten fits 

were run on the same dataset, but with the bin start positions shifting by a tenth of the bin 

length in each fit. The resulting tracks were then averaged, producing a “smoothed” 

average model track which was subsequently used for all downstream applications. 

4.2.7 Modelling multiple conditions 

A binomial GLM was applied to the SuRE34 hemin dataset to capture differential 

expression due to hemin exposure. The model used a logit link function and elastic net 

penalization, with penalty parameter validation performed on the entire dataset. Fixed-

length bins of 50bp were used with shifted smoothing similar to the SuRE23 Poisson 

model. The output of the binomial model is a single coefficient profile, where positive 

and negative coefficients indicate higher expression in the hemin and control conditions, 

respectively. 
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An elastic-net multinomial GLM was fit to the SuRE23 experiments in three cell 

types: HT1080, HEPG2, and K562. Penalty parameter validation, bin size, and smoothing 

were similar to that for the Poisson model, except that the resulting model yields three 

distinct coefficient tracks, with positive and negative coefficient values indicating relative 

over- and under-expression in the corresponding cell type. For the multinomial triangle 

plots shown in Figure 4.13, multinomial probabilities were calculated by first summing 

the coefficients on the plus strand for each gene within 2kb of the associated TSS, and 

then exponentiating this sum, and dividing by the sum over all three cell lines. This is 

equivalent to the link function used in the GLM, except it excludes the cell type-specific 

intercepts which capture sequencing depths. For each cell type, a related tissue was 

selected from those available in the GTEX RNA-seq database (skin, liver, and blood). 

For each tissue, the relative expression for all genes was calculated by dividing the 

normalized expression in that tissue by the mean across all GTEX tissues. To determine 

the statistical significance of the association between multinomial probabilities for each 

cell type and expression levels in the corresponding GTEX tissue sample, we used a one-

sided Wilcox-Mann-Whitney rank sum test. 

4.2.8 SNP SuRE-GLM modeling 

SNPs were evaluated for allele-specific SuRE42-45 differential expression using 

two methods: (i) a simple Wilcox-Mann-Whitney (WMW) rank sum test, and (ii) a 

GLM-based approach.  

For the WMW approach, element cDNA counts were normalized by their iPCR 

counts to remove biases due to element-specific library concentrations. These ratios were 
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then normalized by the mean ratio to control for differences in sequencing depth across 

libraries. Finally, a WMW test was applied to the normalized counts. 

The GLM-based approach used the same model as the SNP-agnostic version 

described above, except that SNP covariates were included in the design matrix. For 

elements containing a given SNP, reference allele-containing elements received a value 

of –0.5, while alternative allele-containing elements received a value of +0.5. This 

ensured that the resulting coefficient describes the change in log-expression predicted to 

occur due to a change from the reference to the alternative allele. By using –0.5 and +0.5 

instead of 0 and 1, the model avoids estimation biases due to the structure of the 

penalization scheme for SNPs that are covered in an unbalanced way by reference or 

alternative-containing elements. 

Once the coefficients were extracted from the GLM, coefficient p-values were 

calculated. To do this, the model was repeated with shuffled allele assignments within 

each SNP, yielding an empirical null distribution. SNPs were then assigned to a specific 

bin based on the number of elements overlapping the reference and alternative alleles. 

This procedure was motivated by the observation that coefficient magnitude was strongly 

associated with sample size. There were 225 bins, corresponding to 15 equal-sized 

breakpoints each for the reference and alternative sample size. Within each bin, shuffled 

coefficients were used to estimate the null distribution of coefficients. The distributions 

of the negative and positive coefficients were fit separately. The empirical distribution 

was used for the 95% of coefficients closest to zero, due to the density of coefficients 

within this region. In the remaining 5% tails of the distribution, observations were 
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sparser, with the largest observed coefficient often exceeding the largest coefficient in the 

null distribution, making it impractical to use the empirical distribution to determine a p-

value for these extreme coefficients. To remedy this, we sought a distribution that could 

capture the general shape of the tails, and settled on the shifted stretched exponential 

distribution. The shifted stretched exponential distribution has the form: 

𝑝(𝑥) = 	
𝜆

Γ(1 +	𝛽9,) 𝑒
9(|�9	��|W)� 

Here, 𝑥+ is the 95% quantile discussed above, so 𝑥 ≤ 	𝑥+ < 0 for the left tail of the 

coefficient distributions and 𝑥 ≥ 	𝑥+ > 0 for the right tails.  

These distributions were fit using the optim() function in R. Then these 

distributions were used to calculate the p-values for all SNPs. 

 

4.3  Results 

4.3.1  High-resolution genome-wide promoter activity map 

SuRE-GLM reveals fine-scale spatial patterns in promoter activity. At the 

NUP214 TSS, normalized K562 SuRE42-45 activity shows a broad triangular peak 

(Figure 4.1b). Based on this track alone, it is unclear whether the breadth of this peak 

reflects a similarly broad promoter region driving the activity of overlapping fragments, 

or if a smaller promoter region is producing a broader peak due to the aforementioned 

“piggy-backing effect”.  

The genome-wide SuRE-GLM track (Figure 4.1c) suggests that the latter is true. 

According to the model, most positions within the peak have only a small effect on the 
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expression of overlapping genomic fragments. The exception is a small region 

immediately upstream of the TSS. This region corresponds to the region shared by the 

active individual SuRE constructs observed in Figure 4.1a. The information provided by 

the activity of many active and inactive fragments can be reduced to a single track using 

SuRE-GLM.  

4.3.2  Spatial patterns in promoter activity 

The preinitiation complex (PIC), which is responsible for Pol II transcription 

initiation, typically binds to core promoter sequences ±50bp from the TSS [48], while 

other transcription factors bind further upstream in the proximal promoter. Recent 

genome-wide TSS-mapping assays have shown widespread divergent transcription 

throughout the genome, with antisense transcripts typically initiating 90-120bp upstream 

of their sense-strand pairs [48], which suggests that transcription initiation occurs at 

separate, directional core promoters. This has led to some discussion about whether 

promoter activity is being driven primarily by these individual core promoters, or if a 

central proximal promoter is responsible for divergent activity at the two nearby core 

promoters [16, 48, 68, 69].  

SuRE-GLM allows us to examine the spatial distribution of promoter activity 

more closely. On the sense strand, cross-correlation between GRO-cap and SuRE-GLM 

peaks at 50bp (Figure 4.3), suggesting that the proximal drivers of promoter activity tend 

to slightly precede endogenous transcription initiation sites upstream by this distance. 

This places the primary proximal drivers of promoter activity partially outside the 

canonical core promoter region. Meanwhile, the same proximal promoter regions appear 
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to be responsible for both sense and antisense transcription among the most highly 

expressed genes (Figure 4.4) and in the mean profile for all TSSs (Figure 4.5). The 

median sense profile lies slightly upstream of the annotated TSS position, with most 

sense profiles peaking within 100bp upstream and 50bp downstream. A subset of profiles 

peaks further up- or downstream of the annotated TSS, and may reflect alternative TSS 

promoter activity. Antisense profiles are generally highly correlated with sense profiles 

(Figure 4.6), with overlapping peaks of lower intensity (Figure 4.4). This suggests that 

the sequences responsible for driving divergent transcription are shared between sense 

and antisense TSS pairs, and that these regions tend to be just upstream of the core 

promoter. An example can be seen at the WDR55 TSS (Figure 4.7). 

Sense and antisense profiles show a bias towards more negative coefficients 

moving away from the peak in the downstream and upstream directions, respectively 

(Figure 4.4). In both cases this represents reduction in expression in the direction of 

transcription for transcripts initiating near the peak. This may reflect the effects of 

downstream sequence features that decrease the transcription rate (pausing sites, e.g.), 

cause early termination before the reporter barcode is transcribed, or promote degradation 

of transcripts before reverse transcription can occur [48].  

4.3.3  Accurate prediction of reporter construct relative expression 

In addition to producing per-bp coefficient tracks, SuRE-GLM models allow us to 

predict the relative expression of novel reporter constructs with arbitrary start- and end-

points. To make a prediction, we simply sum up all coefficients between the start and end 

of a hypothetical construct, then exponentiate the sum to get the predicted relative 
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expression rate. To test the quality of these predictions, we tested the expression level of 

23 reporter constructs in K562 cells using RT-qPCR. We compared the results to 

predictions based on the mean normalized SuRE23 activity within the endpoints of the 

constructs (Figure 4.8a) as well as the SuRE-GLM predictions (Figure 4.8b). These 

constructs all contain an annotated TSS, and have a median length of 1050. SuRE-GLM 

improved the R2 for the predictions from 0.73 to 0.78. 

4.3.4 Validation on BAC libraries 

To further test the predictive power of our SuRE-GLM models, we explored the 

ability of SuRE-GLM to predict the activity of thousands of smaller elements in the K562 

SuRE49 experiment. These elements have a median length of ~300bp, and lie within 2kb 

of an annotated TSS within the regions covered by at least 100 elements in the SuRE49 

BAC library. These elements allow us to test SuRE-GLM predictions on smaller 

constructs than were used in the qPCR-based validation experiments.  

 In Figure 4.9, genome-wide SuRE-GLM predictions based on our SuRE42-45 model 

accurately predict the relative expression of SuRE49 elements. This produces an overall 

R2 of 0.65. This correlation is based on multiple different loci, suggesting that SuRE-

GLM can be used to make comparisons of constructs both within and across different 

genomic loci. 

4.3.5  Minimal promoter design with SuRE-GLM 

Given that SuRE-GLM can accurately predict the expression of constructs of 

various length within a TSS region, SuRE-GLM predictions can aid in the identification 



 

92 
 

and design of minimal promoter regions for specific genes. In Figure 4.10a, we visualize 

the relative expression of all hypothetical elements within 2kb of the DGCR14 TSS.  The 

endpoints of each element can be found by extending two lines parallel to the sides of the 

larger triangle, from the corresponding point to the base of the triangle. Grid patterns 

form in the predictions due to oscillations in the coefficient profile between positive and 

negative values. While many constructs show some predicted expression, there are three 

hypothetical constructs that maximize relative expression within this region. These red 

regions share an endpoint ~100bp downstream of the TSS, with the smallest option 

extending ~400bp upstream of the TSS. By leveraging SuRE predictions over a range of 

lengths and positions, researchers can use SuRE-GLM to isolate minimal promoters 

without having to perform multiple promoter-bashing experiments. 

4.3.6  Binomial and multinomial models predict differential expression 

In addition to predicting expression in a single cell type with a penalized Poisson 

model, SuRE-GLM can be extended to predict differential expression across multiple cell 

types or conditions using a penalized binomial and multinomial model. This approach 

requires data from multiple SuRE experiments using the same SuRE library in different 

cell cultures or conditions. Based on the spatial bins that a SuRE element overlaps, the 

SuRE-GLM model fits a model that predicts that element’s distribution of counts over 

each experiment. The result is a high-resolution track of the regions responsible for 

differential expression across the cell types or conditions. 

To test this differential SuRE-GLM approach, a SuRE library was constructed 

using a BAC library that included the R2 α-Locus Control Region (LCR), a region known 
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to be upregulated in the presence of hemin [88]. This library was transfected into two 

K562 cultures, one exposed to hemin and another exposed only to solvent. On both 

strands, the normalized SuRE activity track in the R2 α-LCR is substantially higher in the 

hemin condition than in the control (Figure 4.11b). While normalized expression peaks 

within the LCR, the difference in normalized activity extends beyond the bounds of this 

region. We then applied differential SuRE-GLM to these two conditions. Note that a 

binomial model was used, as this is the special case of the multinomial appropriate for 

two conditions. This model, wherein counts in the hemin condition were considered a 

“success” (see Section 2.2.2), reveals a narrower coefficient peak within the R2 α-LCR 

region on both strands (Figure 4.11a). This reflects the ability of multinomial SuRE-GLM 

to identify specific, biologically relevant regions responsible for differences in expression 

that only appear at lower resolution in normalized SuRE activity profiles.  

We also applied the multinomial SuRE-GLM model to data from SuRE 

experiments using the genome-wide SuRE23 library discussed above. These experiments 

include the K562 results discussed previously, as well as results in HEPG2 and HT1080 

cells. In Figure 4.12, we compare results from Poisson SuRE-GLM models fit separately 

to each cell type to a multinomial SuRE-GLM model fit to all three together. In both 

cases, a broad region immediately upstream of the annotated CA1 TSS is identified as 

contributing to expression in K562 cells. As this region is inactive in HT1080 and 

HEPG2 cells, the Poisson coefficient profile remains flat for these cell types. However, 

the multinomial coefficient profile for these two cell types is negative in the same region 

where it is positive in K562 cells. This reflects the fact that multinomial model captures 
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relative differences in expression across cell types. The result is that the coefficients of 

one cell type can be affected by the relative expression of another cell type, even if their 

independent Poisson coefficient profiles are flat. 

Given that the different cell lines originate from distinct tissue types, we might 

expect that genes predicted to be over-expressed based on our SuRE-GLM model would 

also show increased expression in related tissues. To test this hypothesis, we compared 

the normalized SuRE-GLM predicted cell type-specific proportions to the relative 

expression of genes in related tissues according to GTEX [89]. The SuRE-GLM 

predictions indicate that genes overexpressed in skin cells are biased towards higher 

expression in the HT1080 cell line relative to the other two cell lines (Figure 4.13a, p-

value < 2.2x10–16). HT1080 is a fibroblast cell line [90]. We see a similar relationship 

between genes overexpressed in the liver and the relative predicted expression in HEPG2 

(Figure 4.13b, p-value < 2.2x10–16), which is derived from a hepatocellular carcinoma 

[91]. We did not observe a significant association between the relative expression of 

erythrocyte cell line K562 [92] predicted expression levels and overexpression in whole 

blood (Figure 4.13c), which may be the result of cell type heterogeneity in blood or 

divergent patterns of gene expression in K562 cells. Nevertheless, these patterns show 

that multinomial SuRE-GLM can predict biologically meaningful differences in 

expression patterns across different cell lines. 
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4.3.7 Identifying regulatory SNP variants with SuRE 

A typical genome contains hundreds of thousands of SNPs that overlap regulatory 

regions [93]. In some cases, SNP variants in regulatory regions can affect the binding of 

transcription factors or other regulatory factors, which can lead to downstream changes in 

gene expression [94]. Methods that have been used to identify SNP variants that drive 

differential expression include genome-wide association studies (GWAS) [95, 96]  and 

expression quantitative trait loci (eQTL) mapping [97, 98]. Unfortunately, these 

approaches are limited in their resolution due to linkage disequilibrium (LD), which 

makes it difficult to separate the effects of adjacent SNPs on expression. Identifying a 

causal SNP among a block of SNPs in LD remains a challenging problem in the search 

for non-coding regulatory variants.  

 One approach used to identify causal regulatory SNPs among a block of SNPs in LD 

is to use reporter assays [99, 100] in a similar fashion to promoter-bashing experiments, 

except that the variation in sequence across constructs is limited to the allele of a single 

SNP at a time. Given that many candidate SNPs can share an LD block, this method 

requires the creation of many constructs to find a single causal SNP. Creating synthetic 

constructs for all SNPs across many LD blocks is intractable.  

As we have previously demonstrated, the SuRE experimental protocol makes it 

possible to deconvolve the effects of adjacent genomic regions with a fairly high 

resolution. Similarly, by comparing the results of SuRE experiments across different 

genomes, we can observe genome-specific differences in expression that may be 

attributed to sequence variants. Over one billion of the SuRE42-45 library elements 
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contain at least one SNP for which we observed both allele variants. In total, we observed 

both alleles for 5,919,293 SNPs, accounting for 57% of the known common SNPs world-

wide (minor allele frequency >5%). 

When we look at normalized SuRE activity alone, the libraries used in SuRE42-

45 reveal pronounced differences in expression at certain loci, which correspond to 

differences in genotype (Figure 4.14). Most SuRE elements in these experiments contain 

less than 500bp of genomic DNA, and are therefore unlikely to contain more than a few 

SNPs that vary across the four genomes. This largely eliminates the issue faced in GWAS 

and eQTL analyses, as the effects of a SNP can be decoupled from the effects of most of 

the SNPs in the same LD block. As a consequence, differential SuRE expression can 

frequently be attributed to a single SNP contained within the differentially active region. 

A simple comparison of normalized SuRE expression across different genomes 

can reveal some patterns in differential expression. In Figure 4.14, two individuals 

homozygous for the C allele show high expression on both strands, while the individual 

homozygous for the A allele shows almost no expression. The heterozygous individual 

shows intermediate expression. However, as described earlier in this chapter, normalized 

SuRE activity tracks capture only a subset of the information available in the full SuRE 

experimental data.  

The allelic identity of SuRE42-45 SNPs was identified during the mapping 

procedure for the majority of fragments covering any given SNP. This allows us to 

separately measure the activity of fragments overlapping a particular allele of a given 

SNP (Figure 4.15), even in the cases where the corresponding genome is heterozygous. In 
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regions with some active expression, we can estimate the relative contribution of each 

allele to expression by integrating information across all elements from SuRE42-45 for 

which the relevant SNP position has been sequenced. 

The simplest way to assess whether a SNP influences expression in SuRE42-45 is 

to directly compare the distribution of all elements containing the reference allele with 

the distribution of all elements containing the alternative allele. For each SNP, we 

calculated a p-value with a Wilcox-Mann-Whitney rank sum test. We repeated this 

process for all SNPs using shuffled allele assignments to generate a null distribution for 

p-values. At an FDR < 10%, we identified 22,986 SNPs that are differentially expressed 

across different allelic variants.  

In addition to the WMW method, we wanted to test whether the GLM method 

could aid in the identification of differential SNPs. Elements that overlap a given SNP 

differ in terms of start- and endpoints, and therefore some elements may contain active 

regions that are missing in others. If active regions are asymmetrically distributed across 

elements containing one allele when compared to the other allele, this may produce a 

misleading signal when using the WMW test. By including both spatial bins and SNP 

covariates in the a single SuRE-GLM model, we can account for spatial differences 

across the elements corresponding to each allele. Additionally, by running a model that 

estimates the effects for all SNPs simultaneously, we may be able to disentangle the 

effects of adjacent SNPs that appear in some, but not all, of the same elements.  

To implement the SNP-SuRE-GLM model, we used the same model as for the 

SNP-agnostic SuRE42-45 model, except that we included additional terms to capture the 
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effects of SNP allele variants. Elastic-net penalized models do not report p-values by 

default. To nevertheless assess the statistical significance of the model coefficient for 

each SNP, we constructed a coefficient null distribution by repeating the GLM model fit 

with shuffled allele assignments. We then constructed a series of null models based on 

these coefficients, as well as the sample size of the reference and alternative alleles (see 

Methods, Figure 4.16). The result was a p-value distribution that is much flatter than the 

WMW p-value distribution (Figure 4.17), suggesting that the GLM-based method better 

reflects the more likely scenario in which only a small fraction of SNPs is predicted to 

have a significant effect on local transcription activity. Indeed, the number of SNPs found 

to be significant at an FDR cutoff of 10% is 1,203 in K562 cells, a much smaller number 

of significant SNPs than was found using the WMW method. 

To evaluate the ability of both methods to detect functional SNPs, we compared 

our results from both methods to the SNP2TFBS database, which lists TF motifs 

predicted to be disrupted by SNP variants. Based on the assumption that functional SNPs 

would be enriched in this list compared to non-functional SNPs, we checked to see 

whether SNPs with smaller p-values according to each method were enriched in the 

SNP2TFBS database (Figure 4.18). In K562 cells, both methods showed enrichment for 

SNP2TFBS SNPs at low p-values. For the one thousand smallest-ranked p-values, the 

WMW showed higher enrichment. However, beyond this initial group the GLM-based 

method shows higher enrichment. This suggests that the GLM-based method can capture 

the true differential activity of more SNPs by removing the false positives present in the 

WMW-based ranking.  
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Figure 4.1 Comparison of cDNA counts, normalized activity, and coefficient profile 

To visualize K562 cDNA counts for all SuRE42-45 elements near the NUP214 TSS, each 
element appears as a line extending between its upstream and downstream cut sites (a). A small 
random pseudocount has been added to each count to allow for visualization of overlapping 
and zero-count elements. Element counts have also been normalized to reflect library-specific 
scaling factors. These same offsets are used to generate a K562 normalized activity track (b). 
GLM estimates of expression fold-change per base pair were smoothed by a running average of 
20bp (c) for a clearer visualization of the coefficient track.  
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Figure 4.2 Cross-validated deviance ratios for SuRE-GLM fits 

Each point represents a unique pair of alpha and lambda values tested in a 10Mb subset of 
chromosome 22 from the K562 experiments performed with the SuRE42-45 libraries. Each 
hyperparameter pair was used to model 90% of this subset, and predictions for the remaining 
10% test set were used to assess the performance of each model. A higher deviance ratio 
indicates a more predictive model. 
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Figure 4.3 Cross-correlation of SuRE-GLM and GRO-cap in TSS regions 

Cross-correlation of K562 SuRE42-45 GLM coefficient profile and K562 GRO-cap in the 2kb 
regions surrounding annotated TSSs. The cross-correlation peaks around 50bp, suggesting that 
the proximal drivers of promoter activity tend to precede endogenous transcription initiation 
sites upstream by this distance. This places the primary proximal drivers of promoter activity 
just outside the canonical core promoter region, which surrounds the transcription initiation 
site. 
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Figure 4.4 Sense and antisense strand profiles for 2000 most active TSS loci 
 
Line plots of K562 SuRE-GLM coefficient profiles for the 2000 most active TSS loci for the 
sense and antisense strands, based on total K562 GRO-cap activity within a 1Kb window 
surrounding each TSS. Profiles are sorted vertically by the relative position of the sense GRO-
cap profile peak. Sense and antisense profiles for each TSS are shown on the same line and are 
shown relative to the sense strand. Red and blue points reflect negative and positive GLM 
coefficients, respectively.  
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Figure 4.5 Mean GLM coefficients profile surrounding annotated TSSs  
 
Mean profiles are based on the SuRE42-45 K562 GLM model. The sense and antisense plots 
are shown in relation to the sense strand. Both the sense and antisense profiles peak within 
50bp upstream of the annotated TSS, while antisense profiles tend to peak within 50bp 
downstream of the annotated TSS, suggesting that unlike GRO-cap peaks, which show separate 
peaks for transcription initiation on the two strands, sense and antisense promoter activity 
profiles tend to overlap.  
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Figure 4.6 Correlation structure between sense and antisense SuRE profiles  
 
Correlation structure between sense and antisense genome-wide SuRE42-45 K562 GLM 
profiles in the region surrounding annotated TSS. Positions are relative to the sense strand. 
Sense and antisense profiles are the most highly correlated at matching positions (solid line), 
and are somewhat anticorrelated about 150bp downstream (dotted line). 
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Figure 4.7 Normalized SuRE, GLM, and GRO-cap tracks in the WDR55 TSS region  
 
Normalized SuRE, GLM, and GRO-cap tracks in the region surrounding the WDR55 TSS in 
K562 cells. Plots are shown for both the sense (blue) and antisense (red) strand. Both the 
normalized SuRE tracks (a, dark blue; d, dark red) and the GLM coefficient tracks (b, c) are 
based on K562 experiments using the SuRE42-45 libraries. The GRO-cap tracks (a, light blue; 
d, pink) capture the position of transcription initiation sites in this region. At the TSS, the 
tracks reflect a common pattern, with overlapping sense and antisense SuRE-GLM peaks 
separating downstream sense and upstream antisense GRO-cap peaks. 
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Figure 4.8 qPCR-based validation of predictions  
 
Predictions based on normalized activity (a) or GLM-based estimates (b) from genome-wide 
K562 SuRE23. Normalized activity predictions are made based on the mean normalized 
activity level over the length of the tested element. GLM-based estimates are calculated by 
exponentiating the sum of all coefficients within the bounds of the element. SuRE-GLM 
marginally improves the correlation coefficient when compared to normalized SuRE 
predictions. 
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Figure 4.9 Predicted and observed expression of SuRE elements near annotated TSSs  

SuRE49 elements were grouped based on whether they started within the same 100bp bin and 
ended within the same 100bp bin. Variations in coverage and fragment length resulted in bins 
of different size, represented by dot size. Predictions were based on the K562 genome-wide 
SuRE42-45 GLM model, while the observations resulted from the separate K562 SuRE49 
experiment. The blue line indicates the line of best fit from a separate Poisson fit. 
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Figure 4.10 Prediction of expression for elements in the DGCR14 TSS region  
 
K562 SuRE23 genome-wide GLM 2-D prediction profile (a) and 1-D coefficient profile (b) for 
the region surround the DGCR14 TSS. The position of each point in the 2-D profile reflects the 
center (x-axis) and length (y-axis) of a hypothetical element, while the color reflects the 
predicted relative expression of this element, ranging from no expression low (dark blue) to 
high (dark red).  
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Figure 4.11 Multinomial SuRE-GLM identifies known regulatory region in hemin 
response experiment 

(a) Binomial coefficient profiles on both strands (+ blue, - red) at the R2 α-Locus Control 
Region (shown by black lines). (b) Normalized SuRE activity for same region on both strands 
in two conditions: hemin (solid line) and solvent control (dotted line). 
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Figure 4.12 Poisson and multinomial coefficient profiles for three cell types at the CA1 
TSS region 

The Poisson profiles (a) are based on the genome-wide Poisson SuRE23 GLMs fit to each cell 
type separately, while the multinomial profiles (b) reflect a single SuRE23 genome-wide 
multinomial logistic GLM fit to the three cells together. 

 
 
 
 
 
 
 
 
 
 
 
 
 

b 
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Figure 4.13 Normalized SuRE multinomial probabilities and observed relative GTEX 
expression in related tissues  
 
Multinomial SuRE23 probabilities are projected on the triangle simplex (a-c), so that the 
proximity to each corner reflects the bias towards each cell type. Points are colored based on 
over-expression of the corresponding tissue in the GTEX RNA-seq database: skin (a), liver (b), 
or blood (c). Cumulative distributions (d-f) show the distribution of cell type-specific GLM 
probabilities for genes that are greater than 4x enriched in the corresponding tissue: blue (d), 
green (e), or red (f), as well as the distribution for genes that are not enriched (black). 
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Figure 4.14 Normalized SuRE activity at SNP rs6739165 

SuRE signals from the four genomes in an example locus, showing differential SuRE activity 
depending on the allele (A or C) present. 
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Figure 4.15 SuRE expression of individual fragments overlapping an example 
differentially expressed SNP locus 

SuRE42-25 cDNA counts were normalized for library- and fragment-specific effects using 
GLM offsets. Fragments are color coded based on whether they contain the reference (T, 
green) or alternative (C, yellow) allele.  
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Figure 4.16 Estimated density function for a subset of SNP sample size bins 

For each bin, the black line represents the kernel density estimates of the shuffled SNP 
coefficients, shown on a log-scale. The red and blue lines describe the shifted stretched 
exponential distributions fit to the 5% of coefficients in the negative and positive tails, 
respectively. 
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Figure 4.17 P-value distributions for differential SNP analysis methods 

P-value distributions for (a) Wilcoxon-Mann-Whitney test and (b) GLM-based methods.  
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Figure 4.18 Validation of SNP differential analysis methods using predicted TFBS dataset 

SNP2TFBS validation of SuRE results using Wilcox-Mann-Whitney p-values (blue) and GLM 
p-values (red). For each method, SNPs were placed in bins of 1000 based on their p-value rank, 
then the fraction of SNPs in each bin that also appears in the SNP2TFBS dataset was 
calculated. Dotted lines represent the 0.1 FDR cutoff for the corresponding method. 
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5 Future Directions  

 

5.1  Webtool for promoter design and analysis 

In Chapter 4, we introduced a method for the visualization of predicted reporter 

construct activity (Figure 4.12). This method is equivalent to an in silico promoter 

bashing experiment, and can be used to design optimal minimal promoters that can be 

used in a variety of experimental applications in similar cellular backgrounds. In the 

future, we aim to develop an interactive web-tool that can enable researchers to visualize 

and select promoter constructs in just this manner. Users will be able to select and 

visualize expression within a given cell type and in any genomic region, select a 

candidate construct with high expression within the region, and identify the start and end 

positions of this construct in just a few clicks. Similarly, users will be able to enter their 

own start and end coordinates, and the corresponding position within the triangle will be 

highlighted for easy assessment. Other information (such as predicted and experimentally 

verified transcription factor binding sites, SuRE library coverage, and genomic 

annotations) can be added below the visualization plot to aid in promoter design. This 

application will leverage SuRE-GLM to produce a valuable tool for experimental 

biologists, expediting the task of minimal promoter selection. 
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5.2  Database for minimal promoter elements 

While the webtool above allows researchers to take their own criteria into account when 

designing minimal promoter constructs, a simplified optimization procedure can be 

automated to produce a database of minimal promoter elements. Within a set of annotated 

regions (such as gene promoters, enhancers, or repetitive elements), all possible 

constructs can be evaluated based on the SuRE-GLM model for a given cell type, and a 

single minimal promoter can be selected based on an algorithmic tradeoff of expression 

level and length. This can be understood as a more refined version of the peak-calling 

used in Chapter 3, but based on a SuRE-GLM track and additional length criteria. This 

will provide a resource to researchers interested in selecting a single promoter based on 

these simple criteria. Additionally, it will act as a more stringent and cell type-specific 

annotation source of transcriptionally active promoters than is currently available.  

 

5.3  Motif analysis 

As demonstrated by the CpG analysis in Chapter 3, SuRE can be a useful tool in 

analyzing sequence patterns that are associated with transcription activity. Ideally, SuRE 

reporter activities could be used to identify sequence motifs that are responsible for 

driving expression. Unfortunately, my initial motif discovery attempts were unsuccessful, 

in part due to the “piggy-backing” effect discussed in Chapter 4. This effect causes large 

inactive regions to become associated with high activity if there is an active promoter 

within a few hundred base pairs. Fitting a motif model to such a noisy signal fails 

because these “false positives” drown out the signal from “true positives”. Only patterns 
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broadly associated with active regions, such as CpG dinucleotides, are readily 

recognized.  

 SuRE-GLM provides a remedy to this motif discovery problem. By removing the 

“piggy-backing” effect, positive SuRE-GLM track signals are largely isolated within 

smaller, functionally important regions where relevant transcription factors are bound. 

SuRE-GLM coefficients can be aggregated over small regions of identical lengths, and 

motif discovery programs can be used to predict these signals based on the underlying 

sequences of these regions. To test this method, I aggregated K562 SuRE23 GLM 

coefficients into 100bp bins in the 2kb region surrounding all annotated TSSs, then 

applied MatrixREDUCE [101] to this signal. The results are promising (Figure 5.1). 

MatrixREDUCE identifies a large signal from CpG dinucleotides as previously observed, 

but also discovers motifs that resemble whole and partial consensus sequences for 

transcription factors known to be active K562 cells. These include GABP (consensus 

CCGGAAG), CREB (CGTCA) [102], and C/EBP (CCAAT) [103]. This suggests that 

future motif discovery efforts, applied to a broader set of genomic regions, can produce 

biologically meaningful results.  
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Figure 5.1 Motifs discovered via MatrixREDUCE in K562 TSS regions. 
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