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Abstract 

Geospatial and genomic tools for conserving the Critically Endangered blue-eyed black lemur 

(Eulemur flavifrons) and the sportive lemurs (genus Lepilemur) 

Jen Tinsman 

Madagascar’s lemurs are the most endangered group of mammals in the world, with 94% 

of species threatened with extinction. Forest loss is one the greatest threat to these arboreal 

primates, but hunting, habitat degradation, and climate change also threaten their survival. 

Lemurs are a diverse group of more than 100 species; and their ecological traits shape how 

species respond to anthropogenic pressure. Incorporating knowledge of species’ ecological 

niches and evolutionary histories can contextualize threats and improve conservation 

assessments. In this dissertation, I investigate what constitutes suitable habitat for lemurs in light 

of the threats present, their sensitivity to forest fragmentation, their dispersal ability, and their 

ecological uniqueness. 

I obtained data about lemur distributions in two ways. First, I conducted field surveys of 

the Critically Endangered blue-eyed black lemur (Eulemur flavifrons), which only occurs in the 

ecotone between eastern rainforest and western dry forest in the Sahamalaza region. I also 

surveyed the range of sister species, the black lemur (E. macaco), which inhabits nearby eastern 

rainforest in the Manogarivo region. I focused on areas that have not been surveyed recently and 

on the poorly studied boundary between the species to collect observations from the breadth of 

these species’ ecological ranges. I also documented threats, including incursions into protected 

areas, and collected fecal samples to test whether whole genomes could be obtained 

noninvasively for analyses of local adaptation in these species. 



  

 

 

Second, I searched online databases and published literature for GPS localities for all 

species of lemur. I used these records, along with the ones collected in the field, to construct 

ecological niche models for nearly all species of lemur using Maxent. For the blue-eyed black 

lemur and the black lemur, I estimated the remaining area they can occupy based on these 

models and the threat survey data. Next, I examined the role of not just forest loss, but forest 

degradation, in determining where lemur species occur. I used high-resolution forest cover maps 

to determine lemurs’ tolerance for characteristics of degraded forest, including distance to the 

edge and mean patch size. I then limited species niche model to only intact, forested habitat. 

Lastly, using the sportive lemurs (genus Lepilemur) as an example, I evaluate how the inability 

to disperse across large rivers has influenced ecological niche diversity. I also examine what 

limited dispersal ability will mean for these species as climate change causes their ranges to shift. 

Field surveys in the Sahamalaza and Manongarivo regions revealed extensive threats to 

blue-eyed black lemurs, from traps to cattle incursions and fire. I found no evidence of sympatry, 

but did locate an undocumented population of E. flavifrons north of the Andranomalaza River. 

Madagascar National Parks (MNP) managed protected areas appear to have less human incursion 

than NGO-managed protected areas. Further investigation of the ecological distinctiveness of 

these species is possible via non-invasive methods: I sequenced whole genomes at 2.3x coverage 

from eight of the fecal samples collected during this study. While SNPs indicating a loss of 

function did not reveal any patterns, sequencing additional samples could make studies of local 

adaptation and population genetic diversity possible.  

At the regional scale, forest conversion is a grave threat to lemurs. When forest loss and 

degradation are considered in habitat models, lemur species have lost 51% of their habitat in the 

last 30 years. Proximity to a forest edge rendered more forested areas too degraded for lemurs 



  

 

 

than did mean patch size. This result is likely the influence of human contact nearer the forest 

edge. I recommend urgent support for reserves like Beanka, Tsimembo Forest, Ranobe PK 32, 

and Amoron’i Onilahy, which have highly suitable, intact forest for many lemur species. Spaces 

like these will be important for conserving the remarkable diversity within the sportive lemur 

clade. Though their distribution is largely explained by riverine barriers, I show a role for 

ecological niche divergence and local adaptation in accelerating allopatric speciation. These 

same rivers will limit their ability to track climatically suitable areas as climate change 

progresses: sportive lemurs as a group will lose nearly a quarter of their accessible habitat to 

climate change by the 2070s. 

While my results are focused on the particulars of lemur conservation in Madagascar, the 

methods I have presented here are broadly applicable to other threatened species. Piggybacking 

fecal sample collection onto rapid field surveys is straightforward. The possibility of obtaining 

whole genomes from non-invasive samples presents a new way to answer questions about local 

adaptation without risking injury to other arboreal study subjects, like Neotropical monkeys, or 

for elusive species like big cats. For threatened species, their climatic niche only dictates part of 

their distribution. The habitat quantification pipeline presented here takes advantage of thirty-

five years of research in Madagascar to estimate species’ tolerance for forest fragmentation. 

While these records are impressive for primates, they are dwarfed by those available for 

passerines, through scientific literature and online repositories like eBird. By integrating field 

surveys, ecological niche modeling, and non-invasive genomics, we can begin to understand the 

complex threats facing species like lemurs and the options for ensuring their survival. 
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Chapter 1: Range and conservation updates for the Critically Endangered blue-eyed black 

lemur Eulemur flavifrons and the Vulnerable black lemur Eulemur macaco 

 

In Oryx, DOI: https://doi.org/10.1017/S0030605318000868 

 

Abstract  

The Critically Endangered blue-eyed black lemur Eulemur flavifrons of north-western 

Madagascar is one of the most threatened primates. The majority of research and conservation 

efforts for the species have been restricted to the Sahamalaza Peninsula but there are unstudied 

and unprotected populations farther inland. The dearth of information regarding the transition 

between E. flavifrons and its parapatric sister species, the Vulnerable black lemur Eulemur 

macaco, and the possibility of a hybrid population complicates conservation planning for both 

species. We surveyed 29 forest fragments across both species’ ranges to investigate the boundary 

between the taxa, whether hybrids persist, and the threats to lemurs in the region. We found E. 

flavifrons in six fragments and E. macaco in seventeen. We never observed E. flavifrons and E. 

macaco in the same location and we found no conclusive evidence of hybrids. Three fragments 

in which E. flavifrons was present were north of the Andranomalaza River, which had been 

previously considered the barrier between the two species. Based on these observations and a 

literature review, we provide updated ranges, increasing the Extent of Occurrence (EOO) of E. 

flavifrons by 28.7% and reducing the EOO of E. macaco by 44.5%. We also evaluate the 

capacity of protected areas to conserve these lemurs. We recommend additional surveys and the 

implementation of an education programme in this region to help conserve both species. 
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Introduction 

Madagascar, a biodiversity hotspot (Myers et al., 2000), is home to > 100 endemic 

species of lemurs, accounting for > 20% of global primate diversity; however, 94% of lemur 

species are threatened by hunting and deforestation (Schwitzer et al., 2014). One of the species 

most affected is the Critically Endangered blue-eyed black lemur Eulemur flavifrons, which is 

subject to poaching and habitat loss as a result of slash-and-burn rice cultivation (tavy), logging 

and livestock rearing (Andrianjakarivelo, 2004; Seiler et al., 2010; Andriaholinirina et al., 

2014a). The population of blue-eyed black lemurs declined by > 80% during 1990–2014 

(Andriaholinirina et al., 2014a). 

Estimates of E. flavifrons numbers have focused mainly on the protected population in 

the Ankarafa Forest of Sahamalaza–Iles Radama National Park, where there are estimated to be 

60–130 individuals/km2 (Schwitzer et al., 2006; Volampeno et al., 2010). Surveys of the isolated 

fragments where E. flavifrons occurs farther inland found much lower densities, with a mean of 

24 individuals/km2 (Andrianjakarivelo, 2004). Based on these surveys there are only an 

estimated 2,780–6,950 individuals remaining (Schwitzer et al., 2006). A population viability 

analysis concluded that the Ankarafa population, which is the largest remaining, could be 

extirpated by 2026 (Volampeno et al., 2015). The vulnerability of E. flavifrons is partially 

attributable to its unique habitat; the species occurs only in the transitional, subtropical forest 

between Madagascar’s western dry deciduous forests and the humid evergreen rainforests of the 
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east (Schwitzer et al., 2007). The plant, amphibian, reptile and mammal communities of the 

Sahamalaza Peninsula include endemic species that occur nowhere else on the island 

(Birkinshaw, 2004; Schwitzer et al., 2006; Penny et al., 2017). 

Although not confined to the Sahamalaza Peninsula, E. flavifrons has one of the smallest 

geographical ranges of the genus Eulemur (Volampeno et al., 2010). Its estimated Extent of 

Occurrence (EOO; i.e. the smallest, continuous area encompassing all known or projected 

occurrences of a species; IUCN, 2001) is < 2,700 km2 (Andriaholinirina et al., 2014a). Its Area 

of Occupancy (AOO; i.e. the area of suitable habitat that is actually occupied within a species’ 

EOO; IUCN, 2001) must be even smaller, although it had not been estimated previously. 

The EOO of E. flavifrons is bounded by the Mozambique Channel to the west and the 

Maevarano River to the south (Koenders et al., 1985; Petter and Andriatsarafara, 1987; 

Randriatahina and Rabarivola, 2004; Schwitzer and Lork, 2004; Andriaholinirina et al., 2014a; 

Fig. 1.1). It extends east to the Sandrakota River and Manongarivo Special Reserve, which 

comprises 32,000 ha of protected Sambirano rainforest (MEF and MNP, 2010). Previous studies 

have identified the Andranomalaza River, also called the Maitsomalaza in the local Sakalava 

dialect, as the boundary between E. flavifrons and its parapatric sister species, the black lemur 

Eulemur macaco (Koenders et al., 1985; Andriaholinirina et al., 2014a).  

However, there is conflicting evidence regarding whether the lemurs between the 

Andranomalaza River and the more northern Manongarivo River are hybrids, intermediate-

appearing forms on a phenotypic cline, or typical members of either species (Meyers et al., 1989; 

Rabarivola et al., 1991; Andrianjakarivelo, 2004; Randriatahina and Rabarivola, 2004). 

The first report of phenotypic variation was by Meyers et al. (1989), who observed two distinct 

groups of lemurs unlike typical E. flavifrons or E. macaco. The first group was at Beraty, and 
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individuals had light brown eyes and short ruffs of hair around their ears, characteristics that are 

intermediate between E. flavifrons and E. macaco. The second group was at Ambodivoahangy, 

and individuals had darker eyes and redder coats than is typical of Sahamalaza E. flavifrons. 

However, when Andrianjakarivelo (2004) visited Ambodivoahangy he found animals that 

‘greatly resembled’ E. flavifrons. Goodman and Schütz (2000) surveyed the eastern slopes of 

Manongarivo Special Reserve, north of Ambodivoahangy, and identified groups containing both 

E. macaco and ‘hybrid’ individuals but did not detail their criteria for these distinctions. Their 

assessment was complicated by the presence of E. fulvus in that area, which may be perceived as 

having a reddish coat (Goodman and Schütz, 2000). 

Updated assessments of the lemurs in this region are necessary to establish effective 

conservation initiatives for these two species (Rakotonirina et al., 2011, 2014). They could also 

improve estimates of the species’ ranges, especially considering the area has not been assessed 

since 2004 (Schwitzer et al., 2014). We investigated the presence and phenotypes of Eulemur 

species from Sahamalaza–Iles Radama National Park to Manongarivo Special Reserve, and the 

threats to their survival, to (1) establish the continued existence of E. flavifrons outside protected 

habitat, (2) locate the purported contact zone between E. flavifrons and E. macaco, and (3) 

understand anthropogenic pressures in and around the protected areas in this region. We provide 

updated EOOs and new AOOs for both species, and report on the status of the lemurs between 

the Manongarivo and Andranomalaza Rivers. 

 

Methods 

We conducted surveys during June-September and November-December 2015, June 

2016 and April-June 2017. To evaluate possible barriers between E. flavifrons and E. macaco we 
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worked eastwards from the coast near Maromandia (-14.17467, 48.12539) to the north-eastern 

slopes of Manongarivo Special Reserve (-14.01189, 48.37981), focusing our efforts around the 

Andranomalaza and Manongarivo rivers. We visited eight sites within and 10 outside the 

Reserve (Fig. 1.2) and 11 other sites throughout the region to record threats to lemur survival and 

to observe typical members of both species (Figs. 1.2, 1.3). We searched for lemurs for up to 7 

days at each site, calling the site an absence if we could not find lemurs after a week of diurnal 

surveys led by a local person who worked in the forest. We walked the interior of each fragment, 

relying on paths when possible, until we heard lemur vocalizations or movement. We followed 

the lemurs until they would settle down to sleep, enabling their observation. We recorded global 

positioning system (GPS) coordinates for all observed Eulemur spp. and noted key 

morphological features (eye color, presence of ruffs) to distinguish between E. flavifrons and E. 

macaco. Evidence of tavy, livestock incursions, traps, and hunting was also noted. 

In addition to field surveys we conducted a thorough review of the literature for 

occurrence records of E. flavifrons and E. macaco. We searched four online databases 

(ReBioMa, Manis, VertNet and GBIF) for Eulemur spp. records. All relevant articles published 

in Lemur News, Madagascar Conservation and Development, Primate Conservation and 

Malagasy Nature were scanned visually for GPS coordinates. We also conducted several 

searches in Google Scholar using combinations of the following terms: Eulemur macaco, 

Eulemur flavifrons, GPS, occurrence, coordinates, and range. These articles, databases and our 

field efforts yielded 119 unique records for E. flavifrons and 182 for E. macaco (Supplementary 

Table 1.1). New EOOs were determined by comparing these records to the river catchments in 

this region. River data were downloaded from WWF’s HydroSHEDS project (Lehner et al., 

2008). 
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To approximate AOOs for these species we used these occurrence records to construct 

ecological niche models. Points were thinned to no closer than 2.5 km apart, to reduce spatial 

autocorrelation (Kramer-Schadt et al., 2013). Environmental data related to an arboreal life 

history were downloaded from WorldClim, CliMond, SoilGrids, WorldGrids, and CIRCAD (see 

Supplementary Table 1.2 for data types and sources). Only variables with relatively low 

correlation to each other (|r| < 0.85; mean |r| = 0.38) were included in analyses to reduce model 

overfitting (Dormann et al., 2013; Pearson et al., 2014). Niche models were constructed with 

Maxent 3.4.1 (Phillips et al., 2017) using parameters identified with ENMeval (Supplementary 

Table 1.3; Muscarella et al., 2014). A 10% training threshold was used to turn models into a 

binary prediction of 1 (suitable habitat) or 0 (unsuitable). The model for each species was then 

limited to its EOO and the most recent forest cover estimate available (Vieilledent et al., 2018). 

They were resampled to 2 km2 resolution, which is the IUCN standard for AOO, before the area 

was calculated. 

 

Results 

We observed E. flavifrons in six of the 29 forest fragments surveyed (21% of sites; Table 

1.1), and E. macaco in 17 fragments (59%). We observed E. fulvus at four sites, twice on its own 

and twice co-occurring with E. macaco. At four of the sites (14%) we found no individuals of 

any Eulemur species, and we never observed E. flavifrons and E. macaco in the same forest 

fragment. The lemurs we observed in previously unstudied areas near Antsahabilahy and along 

the Maherivaratra mountain range had pale eyes and no ruffs and appeared to be E. flavifrons, 

despite occurring north of the Andranomalaza River, within the IUCN-identified EOO for E. 

macaco (Plate 1, Fig. 1.2; Andriaholinirina et al., 2014b). 



 

7 

 

The only lemurs we observed that did not resemble typical members of either species 

were a few male lemurs at Beraty in Manongarivo Special Reserve (Plate 1). These males had 

shorter ruffs than other male E. macaco we had seen previously. Given that the females all 

resembled typical E. macaco and these individuals occurred at the southern end of their range, 

they could simply be clinal variants. Thus, we tentatively identify them as E. macaco. On the 

north-eastern slopes of the Reserve, at another possible hybrid site we visited, we saw only 

typical E. macaco and E. fulvus. We were unable to locate any lemurs at Ambodivoahangy, the 

last possible hybrid site, despite extensive searching. 

Although we observed E. flavifrons north of the Andranomalaza River, we never 

observed the species north of the Manongarivo River, nor did we observe E. macaco south of the 

Manongarivo. We therefore propose that the Manongarivo and its tributary, the Antsahakolana 

River, form the boundary between the two species (Fig. 1.2). We generated a new EOO polygon 

for E. flavifrons based on these findings, increasing its EOO by 29%, from 2,700 to 3,475 km2 

(Andriaholinirina et al., 2014a; Fig. 1.2). 

In addition to changing the southern boundary of E. macaco to the Manongarivo River, 

we concluded the species is bounded in the east by the Ifasy River, as our literature search 

revealed no records east of the river (Figs. 1.1, 1.2). In the south-east E. macaco was bounded by 

the Tsaratanana Reserve for similar reasons, although such limited surveys have been conducted 

in this region that this should be considered a low-confidence boundary. This revision reduces 

the EOO for E. macaco to 6,510 km2, only 55% of the previous estimate of 11,740 km2 

(Andriaholinirina et al., 2014b). When these EOOs are limited to suitable habitat and remaining 

forest cover, E. macaco has an AOO of ≤ 1,992 km2 and E. flavifrons of ≤ 884 km2. 
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Throughout their ranges these lemurs endure extensive habitat disturbance and other 

anthropogenic threats. Subsistence hunting and tavy were present in a majority of the 29 

surveyed locations (69%, n = 20; Table 1.1), including 100% of the E. flavifrons locations we 

visited. Only nine sites had no evidence of hunting or tavy. Eight were within protected areas 

managed by Madagascar National Parks and one was a heavily trafficked site on Nosy Komba 

where local people procure lemurs to entertain tourists. There was evidence of hunting, tavy or 

both in all four protected areas managed by an NGO, whereas there were threats present in only 

three of the 11 sites managed by Madagascar National Parks (Table 1.1). 

 

Discussion 

Although these changes in EOO do not warrant immediate adjustments to the species’ 

IUCN Red List status, the range contraction for E. macaco is of concern and suggests the need 

for updated population estimates (Volampeno et al., 2010, 2015). A census of the newly 

identified population of E. flavifrons at Maherivaratra and Antsahabilahy is also needed urgently. 

The area it occupies south of Manongarivo Special Reserve is part of the largest continuous 

forest in this species’ AOO (Fig. 1.3), and this population may be the largest remaining without 

any protection. 

We were unable to confirm the ongoing presence of hybrid lemurs, despite visiting three 

of the four sites where they had been reported previously (Supplementary Table 1.1). Surveys 

between the headwaters of the Antsahakolana and Sandrakota Rivers are needed to determine a 

more accurate boundary between E. flavifrons and E. macaco and to collect genetic samples to 

address the question of any potential hybridization. 
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During our surveys we encountered traps, hunters, livestock, and/or tavy in 20 of the 29 

study sites (Table 1.1), indicating that disturbance is an ongoing concern both inside and outside 

protected areas. The recent pressures on these lemur populations were described by our local 

guide for the Bemabaza fragment, where we observed fewer than a dozen E. macaco in 2016. He 

informed us that there had been nearly 100 lemurs 5 years previously but most of these had been 

wiped out by hunting. This increased pressure may be partly a result of cultural shifts. This 

region was traditionally home to the Sakalava people, for whom lemur consumption is taboo 

(Ramanantsoa, 1976; Harpet et al., 2000); however, there has been a recent influx of Tsimihety 

people (Wilson, 1971; Feeley-Harnik, 1980), who consume primates (Golden and Comaroff, 

2015). 

Given the level of habitat exploitation and hunting we observed in this region we suggest 

a multifaceted approach to conserving both species, as well as protecting the remaining forest 

fragments. In the near term additional surveys are needed to measure population numbers 

accurately (Salmona et al., 2014), evaluate habitat quality in these fragments (Irwin et al., 2005) 

and assess the impact the various threats reported here have had on E. flavifrons and E. macaco 

(Rakotonirina et al., 2011; Ravaloharimanitra et al., 2011). 

In general, we observed fewer threats to lemurs in areas managed by Madagascar 

National Parks than in those managed by NGOs (Table 1.1); however, this dichotomy is 

confounded by a few factors. Well-protected sites within Manongarivo Special Reserve had one 

of two factors in their favour: frequent park staff presence or steep terrain unsuitable for rice 

cultivation or cattle ranching. All the NGO-managed protected areas we visited were closer to 

human settlements, arable, and unpatrolled by enforcement authorities.  
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The new-to-science population of E. flavifrons is in relatively accessible forest, but park 

patrols or on-site staff would help protect these animals. These options would be a possibility if 

the previously proposed expansion of Manongarivo Special Reserve happens (MEFT and MEM, 

2008). This expansion would include the newly identified populations of E. flavifrons reported 

here and the largest block of suitable forest remaining for this species (Fig. 1.3). 

However, increasing of the size of the Reserve will not achieve protection for these 

lemurs until the ongoing problems at its current borders are addressed (Gardner et al., 2018). The 

remote, low-lying areas in and south of the Reserve, including Ambodivoahangy and the 

proposed area of expansion, are experiencing ongoing forest loss; and the tavy and poaching we 

report here have been a problem for the Reserve since at least 2010 (MEF and MNP, 2010). 

These incursions are in part because of the lack of boundary markers around the Reserve and the 

difficulty in patrolling remote areas. Additional funding to address these concerns, coupled with 

increased researcher presence in this region, would help to deter deforestation (Seiler et al., 

2010; Campera et al., 2017). Poaching is probably driven by the lack of readily available protein 

in this region; we saw children with kwashiorkor in several of the towns we visited south of the 

Reserve. In Madagascar, domestic meats are generally preferred to bushmeat. Therefore, 

providing chickens or fish stocks to these communities could reduce the poaching pressure on 

lemurs (Jenkins et al., 2011). 

We also propose expanding the community-based conservation education initiative of the 

Association Européenne pour l’Etude et la Conservation des Lémuriens, which increases local 

support for conservation by teaching > 2,000 students on the Sahamalaza Peninsula about E. 

flavifrons, the Association’s flagship species (Randriatahina, 2013). We suggest expanding the 

programme westwards to include the communities near the newly discovered population of E. 
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flavifrons, as well as incorporating aspects of community-based monitoring into the initiative. 

Community monitoring schemes have been established elsewhere in Madagascar to engage local 

people in forest management and the collection of species abundance and demographic data 

(Rakotonirina et al., 2011; Ravaloharimanitra et al., 2011). Such a programme would promote 

conservation (Ratsimbazafy, 2003), foster positive attitudes towards the environment (Balestri et 

al., 2017), and reduce hunting in and around the Reserve (Nadhurou et al., 2017). 

Continued surveying of Critically Endangered species such as E. flavifrons is vital for 

establishing range distributions and identifying anthropogenic pressures on taxa living in 

increasingly fragmented forests. However, our research and future work should serve as a 

foundation for urgent, practical efforts to conserve these species. We hope that the identification 

of new EOOs and AOOs for two priority lemur species, and the threats facing these species, will 

help the Association Européenne pour l’Etude et la Conservation des Lémuriens and community 

stakeholders as they collaborate to protect the few remaining populations of E. flavifrons and E. 

macaco. 
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Table 1.1. Presence/absence of lemurs and threats to their survival recorded in surveys of forest 

fragments in Madagascar (Figs. 1.2, 1.3) conducted during 2015-2017. 

Forest fragment Year Protected 

area* 

Species Traps/evidence 

of hunting 

Tavy 

1 Ambavanambahatra 2016 MNP E. fulvus - - 

2 Ambodimanga 2015  E. flavifrons Yes Yes 

3 Ambodivoahangy 2015 MNP  Yes Yes 

4 Ambohitsara 2016 MNP E. fulvus - - 

5 Ampapanabe 2015   Yes Yes 

6 Analafady 2015  E. macaco - Yes 

7 Andokobe 2015  E. macaco Yes Yes 

8 Andranomatavy 2015 NGO E. macaco Yes Yes 

9 Angodrahely 2017  E. flavifrons Yes Yes 

10 Ankazomena 2016 MNP E. macaco - - 

11 Antsahabilahy A 2015  E. flavifrons Yes Yes 

12 Antsahabilahy B 2015   Yes Yes 

13 Befalafa 2015 MNP E. macaco - - 

14 Bekiritsana 2015 MNP E. macaco - Yes 

15 Bemabaza 2015  E. macaco Yes Yes 

16 Beraty 2015 MNP E. macaco,  

E. fulvus 

- - 

17 Bevazimba 2016   - Yes 

18 Bongomirahavavy 2015 NGO E. macaco Yes - 

19 Galoko 2015 NGO E. macaco Yes Yes 

20 Kalobinono 2015 NGO E. macaco Yes Yes 

21 Kapany 2015 MNP E. macaco - - 

22 Lokobe 2015 MNP E. macaco - - 

23 Mahadera 2016  E. macaco - Yes 

24 Maherivaratra A 2015  E. flavifrons Yes Yes 

25 Maherivaratra B 2016  E. flavifrons - Yes 

26 Mandriranabe 2015  E. macaco Yes Yes 

27 Manongarivo1 2015 MNP E. macaco,  

E. fulvus 

- - 

28 Nosy Komba 2015  E. macaco - - 

29 Sahamalaza (Ankarafa) 2015 MNP E. flavifrons Yes Yes 

*MNP, protected area managed by Madagascar National Parks; NGO, protected area managed 

by the Missouri Botanical Garden. 
1 E. macaco and E. fulvus were resting in the same tree together 



 

 

 

 
 

Plate 1.1. Typical Eulemur flavifrons (left; (a) male and (d) female) and E. macaco (right; (c) male and (f) female), with a possible 

intermediate form from Beraty (center; (b) male), with similar eye color but a shorter ruff compared to E. macaco. (e) Putative E. 

flavifrons (female) from Antsahabilahy A (Table 1.1), with pale eyes and no ruff. 
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Figure 1.1. Previous Extent of Occurrence polygons for Eulemur sp., from IUCN and used with permission. All known occurrence 

records for E. flavifrons, E. macaco and putative hybrids, and for E. fulvus, in the area are noted.  
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Figure 1.2. Updated Extent of Occurrence polygons for Eulemur flavifrons and E. macaco based on field work conducted in this study 

(triangles) and previous published studies (circles). Numbers correspond to forest fragments in Table 1.1.  
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Figure 1.3. Extent of remaining suitable habitat for E. flavifrons and E. macaco, and threats observed throughout the study area. 

Numbers correspond to forest fragments listed in Table 1.1. 
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Whole genomes generated from non-invasively collected wild lemur samples 

 

Abstract 

The use of genomics in conservation has increased exponentially as next generation sequencing 

has become more readily available. Genomic data can provide more information about local 

adaptation, phylogenetic history, and population diversity than traditional genetics. However, the 

study of non-model organisms and remote wild populations still poses challenges. Minimally 

invasive samples like hair and feces have been a source of genetic data for these difficult-to-

sample animals, but they have not traditionally yielded the amount of target species DNA 

required for massively parallel sequencing. Recent developments in DNA capture, which 

enriches for target species DNA, have finally put genomics within reach for minimally invasive 

samples. In this paper, I demonstrate an extension of a currently available DNA capture method, 

FecalSeq, by obtaining whole nuclear genomes from lemur fecal samples. These samples were 

collected from wild populations of two highly arboreal primates, the Critically Endangered blue-

eyed black lemur (Eulemur flavifrons) and the Endangered black lemur (E. macaco), and stored 

in RNAlater at ambient temperature for up to six months. I sequenced whole lemur genomes 

from eight samples, with median coverage of 2.3x. These genomes yielded 41,374 reliable, high-

quality SNPs. These results demonstrate the possibility of obtaining whole genomes from 

heavily contaminated, low target-DNA samples when invasive methods are not available. 

 

Keywords  

Minimally invasive sampling, fecal samples, whole genomes, DNA capture, blue- 

eyed black lemur, black lemur 
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Introduction 

 Capture is the most stressful experience wild primates are subjected to by field 

researchers (Fedigan, 2010). Although capture is necessary to collar study subjects, obtain 

morphometric data, or draw blood, the risks of darting wild, arboreal primates are substantial. 

These risks range from transient elevation of white blood cell counts, to overheating, drug 

overdose, allergic reaction, pregnancy loss, and fatal injury during a fall (Lambeth et al., 2006; 

Cunningham et al., 2015). While appropriate veterinary care can mitigate some of the risks of 

anesthesia to study subjects, seeking alternatives to capture and chemical immobilization are 

animal welfare imperatives (Glander, 2013; Lane and McDonald, 2010; Osofsky and Hirsch, 

2000).    

Minimally invasive samples, such as feces or hair, have been used in primate genetics 

research for nearly three decades (Phillip et al., 1991). Collecting fecal samples poses minimal 

risk to primate study subjects, and feces can be collected without habituation (Bradley et al., 

2001; McGrew et al., 2004). Obtaining DNA from feces is also advantageous to researchers 

because these materials are more readily available than invasive samples like blood. However, 

DNA from feces is often very fragmented and upwards of 99% of the DNA can be from gut flora 

or contaminants (Perry et al., 2010; Perry, 2014; Snyder-Mackler et al., 2016). Thus, studies 

relying on fecal samples continue to face intrinsic technical challenges, while those using 

invasive samples have embraced genomics over the last decade (Ryder, 2005; Ekblom and 

Galindo, 2010; Carroll et al., 2018). 

Recent progress has been made moving minimally invasive samples into the genomic age 

(Perry, 2014; Carroll et al., 2018). Massively parallel sequencers read small sections (~200 bp) 

of DNA, making the fragmentation inherent in fecal DNA (fDNA) less of an issue than with 
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longer Sanger sequencing reads (Perry, 2014; Perry et al., 2010). Several successful attempts 

have been made to address the contamination problem by enriching fDNA for target species 

DNA. Two approaches have obtained target species genomic data from primate feces so far 

(Perry et al., 2010; Snyder-Mackler et al., 2016; Chiou and Bergey, 2018). The first, DNA bait 

capture, targets the species of interest’s DNA without binding to microbial DNA by using use 

RNA-baits derived from a reference genome and a microarray (Perry et al., 2010) or from a high-

quality sample from the species of interest (Snyder-Mackler et al., 2016). The second, called 

FecalSeq, enriches for CpG-methylated DNA, which is common in vertebrate genomes and 

uncommon in bacterial ones (Chiou and Bergey, 2018). This paper will focus on FecalSeq, 

because it enables enrichment of fecal samples without an accompanying high-quality genome or 

DNA sample, making it apt for non-model, difficult to sample primates. 

After successful enrichment, Chiou and Bergey (2018) used RADseq to prepare samples 

for sequencing. RADseq sequences areas of the genome near specific restriction enzyme sites 

throughout the genome (Andrews et al., 2016). While a random sampling of neutral and adaptive 

alleles from across the entire genome is suitable for many studies (Davey and Blaxter, 2010), 

RADseq may not be suitable for researchers interested in comprehensive genome-wide scans or 

local adaptation. Adaptations not covered by the random RAD loci cannot be included; and when 

signal is detected, it can be difficult to tell if the RAD locus itself is under selection or if it is in 

linkage disequilibrium (Lowry et al., 2016). Another reduced representation approach, RNAseq, 

provides results from the exome, but cannot provide information about regulatory regions or 

provide non-coding areas for comparison (Wang et al., 2009).  

Unfortunately, some of the most interesting questions regarding local adaptation and 

speciation are best answered with a more laborious whole genome approach (Andrews et al., 
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2016; Lowry et al., 2016). Relatively recent adaptation to local conditions may occur at only a 

few key loci, which might be missed with a reduced representation approach (Savolainen et al., 

2013). Local adaptation along strong environmental gradients often ends in speciation through 

diversifying selection. When one end of the environmental gradient, or ecotone, selects for traits 

that would be maladaptive at the other end, these selective pressures can cause speciation with 

gene flow (Coyne and Orr, 2004; Smith et al., 2011). Neutral gene flow continuing for some time 

after loci under selection become geographically localized. This tapering of gene flow between 

speciating populations is an identifying characteristic of ecological speciation relative to 

allopatric speciation, where all gene flow stops simultaneously (Pinho and Hey, 2010). Reduced 

representation genomic approaches that exclude neutrally evolving genes, such as RNAseq, 

cannot discriminate between ecological and allopatric speciation. Thus, whole genomic data are 

best suited for documenting local adaptation and the process of ecological speciation. 

Here I present the case of two species of lemur, the blue-eyed black lemur (Eulemur 

flavifrons) and the black lemur (E. macaco). These sister taxa diverged 160 Kya, during the 

second most recent Pleistocene ice age (Meyer et al., 2015). A date in the Pleistocene supports a 

hypothesis of speciation in refugia (Markolf and Kappeler, 2013). However, this is not the only 

plausible hypothesis for how E. flavifrons and E. macaco diverged. 

Despite their narrow geographic ranges, the two species occupy a complex landscape of 

barriers and selective pressures. Humid, evergreen rainforest in the east rapidly transitions into 

sub-humid forest and ultimately dry deciduous forest in the west (Schwitzer et al., 2006). Rivers 

may act as dispersal barriers, and two pockets of forest, or ‘refugia,’ were isolated during 

glaciation events in the Pleistocene (Vences et al., 2009). The ecological gradient and physical 
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barriers represent an opportunity to understand the relative importance of physical barriers and 

gradient-driven diversifying selection in primate speciation. 

This gradient occurs in the Sahamalaza region of northwestern Madagascar, and it is the 

only place where the Critically Endangered blue-eyed black lemur occurs. Tree heights can top 

30 meters (Schwitzer et al., 2006). Both species are highly arboreal, making the risk of darting-

related injury or fatality very high (Birkinshaw, 1999; Volampeno et al., 2011; Cunningham et 

al., 2015). Further, the terrain in Manongarivo, where the black lemur occurs, makes swift 

human movement difficult to impossible (pers. obs.), making the risk of not catching a darted 

animal high even outside of Sahamalaza.  

Unsurprisingly, genetic studies of these species in the wild are limited. In 1998, 

Rabarivola et al. examined restriction fragment length polymorphisms to assess the diversity of 

three populations of black lemur: two insular (Nosy Be and Nosy Komba) and one from the 

nearby coast (Ambato Peninsula). They found that the population on the larger island, Nosy Be, 

had the greatest genetic diversity of the three. In 2000, using random amplified polymorphic 

DNA, Fausser et al. found similar levels of genetic diversity in blue-eyed black lemurs on the 

Sahamalaza Peninsula as in other lemur species. Finally, an unpublished study of intermediate 

morphology lemurs at Kapany that assigned them to E. macaco relied solely on the 

mitochondrial D-loop (C. Schwitzer., pers. comm.). 

Data on these lemurs derived from captive individuals are more plentiful. Meyer et al. 

(2015) generated a de novo genome assembly for E. flavifrons and high coverage genomes for 

four individuals from each of E. flavifrons and E. macaco. They identified MITF, a melanocyte 

development gene, as the gene responsible for E. flavifrons’s blue eyes (Meyer et al., 2015).  
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Whole genome data from wild populations could answer questions about how these 

species diverged, whether they are locally adapted to the Sahamalaza ecotone, and whether any 

gene flow is ongoing. In this preliminary study, I demonstrate that whole genomes can be 

generated from fecal samples collected in the wild. 

 

Methods 

From June to Sept 2015, collaborators and I collected 202 fecal samples at 14 sites throughout 

the ranges of both E. flavifrons and E. macaco (median: 7.5 samples per site, range: 0-71; Table 

2.1; Fig. 2.1). The most intensive sampling efforts focused around the Manongarivo and 

Andranomalaza (also called the Maitsomalaza) Rivers, where the two species meet. After 

consulting local conservation experts at Missouri Botanical Garden, Madagascar National Parks, 

and the Association Européenne pour l'Étude et la Conservation des Lémuriens, I chose 

additional sampling localities to cover as many remaining populations as possible. We sampled 

lemurs at Kapany, where an unusual color morph unlike either species was reported (Schwitzer 

et al., 2005), and Beraty and the northeastern slopes of Manongarivo, where putative hybrids 

were observed in 1988 (Meyers et al., 1989; Rabarivola et al., 1991).  

We also visited Ambodivoahangy, where E. flavifrons and E. macaco are thought to 

occur in sympatry (Randriatahina and Rabarivola, 2004). Unfortunately, Ambodivoahangy was 

the only location where samples were not obtained – there was evidence of intense hunting and 

we observed no lemurs. We did not continue on to Begiripy, another site of possible sympatry, 

due to these discouraging findings and security issues. I excluded the southernmost extent of E. 

flavifrons’s range and the Sambirano River Valley based on reports of extensive hunting and no 

recent observations. Thus, my samples represent many of the remaining populations of both 
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species. 

We collected samples by locating the lemurs, usually while they were asleep, with the 

help of a local guide and then waiting for them to wake up and defecate. As soon as this 

occurred, we located droppings and picked them up with gloved hands. The entire fecal bolus 

was collected, with ~3 mL of feces placed in each 15 mL falcon tube. These tubes contained 7.5 

mL of RNAlater solution and were shaken vigorously until the contents were homogenized. A 

Garmin ETrex 10 GPS unit was used to determine coordinates, and tubes were labeled with GPS 

coordinates, date, and species. We added sex and any unusual physical characteristics (e.g. eye 

color, ruff length) when we could discern which individual was associated with which sample. 

This was not always possible as multiple animals in the same tree sometimes defecated 

simultaneously. In the field, samples were stored in individual baggies at ambient temperatures 

to prevent any cross contamination from accidental leakage. After October 2015, they were 

stored in a -20oC freezer.  

 To extract DNA from fecal samples, I adapted a variation of QIAamp®’s stool kit 

developed for big cat scat written by American Museum of Natural History researchers Simone 

Loss Chaves, Isabela Dias, Cristina Pomilla. I then did an AMPure bead cleanup before 

quantifying total DNA amounts with Qubit Fluorometric Quantification and lemur DNA 

amounts with qPCR.  

For qPCR, I designed a set of primers targeted to methylated areas, because the FecalSeq 

DNA capture protocol enriches for CpG-methylation. I chose areas of the human genome that 

were methylated across most human tissues using the ENCODE tracks on the UCSC genome 

browser (Sloan et al., 2015). I BLASTed several of these areas to my target species’ genomes 

and designed primers that would amplify lemur DNA but not human to avoid identifying any 
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samples potentially contaminated by human collectors as having high levels of target DNA. I 

also checked that the primers would not amplify anything in the Escherichia coli genome using 

the NCBI primer-BLAST tool (Ye et al., 2012). This practice helped avoid mistaking high 

quantities of bacterial DNA with high levels of lemur DNA. 

I kept the amplicon length between 80-150 bp, and kept the primer melting temperature 

near 60oC (Ye et al., 2012). I also ensured that the primers were associated with a single copy 

area of the genome so that copy number variation would not be mistaken for variation in the 

amount of lemur DNA in a sample. The primers I used were: Forward: 5'-

TTTCTGCCTCGCGTATCCC-3' and Reverse: 5'-ATCGCCCCTTTGGTTCGC-3'. I ran each 

sample for only one amplicon and in duplicate to conserve DNA for downstream work. Thus, I 

did not treat the qPCR results as actual quantitation and instead used them to compare samples to 

each other and to themselves, before and after enrichment. 

Samples that had either a minimum estimate of 200 ng total fDNA from Qubiting or 

0.5% ng total lemur DNA according to the qPCR were moved onto FecalSeq enrichment (Chiou 

and Bergey, 2018). After FecalSeq, samples were requantified with Qubit and qPCR. I expected 

successfully enriched samples to have lower total DNA amounts and higher proportions of lemur 

DNA than they did previously. Samples that enriched successfully were prepared for sequencing 

using a Nextera DNA kit and a protocol developed by Kenneth Chiou and Noah Snyder-Mackler 

for very small DNA inputs. Fifty-nine samples were sequenced on 4 Illumina MiSeq lanes. 

These results were mapped to the well-characterized gray mouse lemur genome (Microcebus 

murinus; Larsen et al., 2017). The eight samples with the best mapping and lowest duplication 

rates were pooled and sequenced on two Illumina HiSeq X lanes (Table 2.2). 

Lab work from extraction through FecalSeq DNA capture and post-FecalSeq quality 
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checks was performed at the American Museum of Natural History. Library preparation was 

performed at the Snyder-Mackler Lab at the University of Washington by Kenneth Chiou. 

Samples were sequenced at the UW core. The entire step-by-step protocol, from frozen samples 

to FecalSeq, is available in Supplementary File 2.1. As a preliminary assessment of the utility of 

these data, single nucleotide polymorphisms (SNPs) were identified using the mpileup command 

in SAMtools (Li et al., 2009).  

 

Results 

 Samples had a median of 273 ng DNA each after extraction. I selected 88 samples 

covering all field sites for FecalSeq enrichment, with a median DNA quantity of 356 ng. After 

FecalSeq, 59 samples had quantifiable amounts of DNA (median = 0.75 ng). These 59 samples 

had a median of 6887.5 mapped reads, with median PCR duplication rates of 8.33% and median 

mapping rates of 55.68%. The eight best samples, their reads, mapping and duplication rates are 

described in Table 2.2. Filtering SNPs for quality and coverage yielded 41,374 reliable SNPs. Of 

these, forty-two were high impact mutations, most of which were stop gains. 

 

Discussion 

While this preliminary investigation certainly leaves more questions than answers about 

the black lemurs, it does indicate that whole genomes can be obtained from non-invasively 

collected samples. As additional samples are sequenced, I look forward to investigating local 

adaptation, population genetic diversity, and whether introgression between E. macaco and E. 

flavifrons has occurred. Even so, this application of DNA capture methods is a first for extant 

lemurs, for arboreal primates, and for any wild population in Madagascar. 
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These results demonstrate the feasibility of obtaining genomic data from low-quality 

fecal samples. Indeed, my samples had lower quantities of fDNA and target DNA at every point 

in analyses than either of the previous studies that obtained genomic data from wild-collected 

baboon feces (Snyder-Mackler et al., 2016; Chiou and Bergey, 2018). This difference may have 

been related to storage conditions or the difference in diet between baboons and black lemurs 

(Panasci et al., 2011). Nevertheless, I was able to obtain sequence from nearly half the samples I 

extracted. This success with extremely low quantity and quality DNA samples indicates that 

other studies using minimally invasive samples need not default to RADseq or RNAseq when a 

whole genome approach would suit their research questions better.  

One benefit of this pipeline is that species-specific reference genomes are not strictly 

necessary for primates or other organisms with a reasonably close relative that does have its own 

reference genome. Nor is high-quality, uncontaminated DNA necessary. The qPCR step with 

species-specific primers and the high-quality DNA dilutions can be omitted, although this is not 

ideal. One could instead assume that the concentration of target species DNA in a fecal sample is 

1% of the total DNA quantity (prior to FecalSeq enrichment) using Qubit values alone (Perry et 

al., 2010; Snyder-Mackler et al., 2016). This assumption could lead to wasted time and reagents 

if the samples are highly variable in their target DNA concentrations and is not recommended as 

a first step. However, this protocol is not a necessary or sensible choice for well-studied 

organisms for which blood or tissue is readily available. 

Despite the promising progress in minimally invasive conservation genomics in the last 

few years, darting and collecting blood is still cheaper, quicker, and more likely to yield results 

than fecal samples (Perry et al., 2010; Snyder-Mackler et al., 2016; Chiou and Bergey, 2018). 

Even considering the expense of veterinary care during darting, those costs are currently 
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outweighed by the risk of low target DNA in feces, the extensive processing needed prior to 

library prep, and the much greater sequencing depth required to approximate uncontaminated 

samples even after DNA capture. However, when we look at only the prices of lanes on a 

sequencer, we fail to account for the risks to arboreal primates that invasive sample collection 

poses (Cunningham et al., 2015; Glander, 2013; Lane and McDonald, 2010; Osofsky and Hirsch, 

2000). The possibility of obtaining whole genomes from feces should inspire other researchers 

who are interested in moving from genetics to genomics without sacrificing their study subjects’ 

welfare. 

  



 

28 

 

Table 2.1. Fecal samples collected for this study. Field site numbers correspond to those in 

Figure 2.1. 

Field Site Name 
Field 

Site 

Code 

Species 
Number of 

individuals sampled 

  1. Ambodimanga AB E. flavifrons 7 

  2. Mahevatanana MA E. flavifrons 3 

  3. Sahamalaza SA E. flavifrons 71 

  4. Ambodivohangy   0 

  5. Andranomatavy AM E. macaco 10 

  6. Antafiabe AN E. macaco 8 

  7. Beraty BE E. macaco 6 

  8. Bongomaravavy BG E. macaco 5 

  9. Galoko GA E. macaco 7 

10. Kapany KP E. macaco 45 

11. Kolobinono KL E. macaco 1 

12. Nosy Be NB E. macaco 11 

13. Nosy Komba NK E. macaco 18 

14. Manongarivo MG E. macaco 10 

TOTAL 202 
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Table 2.2. Mapping and duplication rates for whole lemur genome sequencing from fecal-

derived DNA. 

Sample 

ID 
Paired reads Total reads Mapped reads 

Mapping 

rate (%) 

Duplication 

rate (%) 

Coverage 

(X) 

BT02 96936964 193873928 115581007 59.44 39.63 3.488813 

BE05 116337188 232674376 166074413 70.28 72.92 2.248648 

KP02 73238135 146476270 126538543 83.99 84.01 1.011676 

AM04 98951152 197902304 118657782 59.74 60.65 2.334592 

BE03 116651555 233303110 169454385 71.79 72.23 2.352874 

BE04 92426124 184852248 106402476 56.75 58.16 2.22594 

NB11 125732457 251464914 167381150 66.51 70.38 2.478915 

MA06 80589878 161179756 98900679 61.2 63.82 1.789113 

MEDIAN 63.86 67.10 2.29162 

 

 



 

 

 

 
 

Figure 2.1. Map of sampling localities for the blue-eyed black lemur (Eulemur flavifrons) and the black lemur’s (E. macaco) 

throughout their ranges in northwestern Madagascar. 
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Chapter 3: Modeling arboreal species’ distributions in degraded forests: lessons from the 

lemurs of Madagascar 

 

Abstract  

Identifying where threatened species occur is a basic necessity of conservation biology. While 

many tools like ecological niche modeling can help accomplish that goal, there are fewer 

methods for integrating our knowledge of species’ fundamental biotic needs and their sensitivity 

to habitat disturbance. In this study, I determine how forest loss and degradation limit the habitat 

available to Madagascar’s lemurs, the world’s most threatened mammals. Using niche modeling, 

a high-quality forest cover map, and an extensive collection of curated occurrence records, I 

demonstrate that lemurs lost 29% of their habitat to forest loss and degradation from 1973 to 

2014. Over half of species were most negatively affected by proximity to the forest edge, with 

mean forest patch size mattering less than edge effects. While Madagascar’s protected area 

system covers most lemur species, nearly half of extant lemur habitat is unprotected. Two 

species, Jolly’s mouse lemur (Microcebus jollyae) and Grewcock’s sportive lemur (Lepilemur 

grewcockorum), do not occur in any protected area. Further, M. jollyae lost 95% of its habitat to 

forest loss and fragmentation in a 31-year period, indicating urgent need for conservation 

measures. I suggest reforestation efforts as an intervention for these species, and highlight NGO- 

and community-managed protected areas, including Beanka, Tsimembo Forest, Ranobe PK 32, 

and Amoron’i Onilahy, as highly suitable areas for lemurs that should be targeted for additional 

funding and support.  
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Introduction 

Lemurs are the most endangered group of mammals, with 94% of species facing 

extinction (Schwitzer et al., 2014). These arboreal primates are threatened by forest loss and 

fragmentation, but lemurs vary in their sensitivity to habitat degradation (Irwin et al., 2010; 

Arroyo-Rodríguez et al., 2013). Studies of lemur responses to forest degradation frequently 

compare conspecifics in nearby forest parcels of different quality or size (Ganzhorn, 1995; 

Herrera et al., 2011; Merenlender et al., 1998; Sawyer et al., 2017; Steffens and Lehman, 2018). 

These case studies provide crucial information on lemur presence, density, health, and/or 

behavioral changes across habitat types, but these comparisons can be quite difficult. Study sites 

differ in their size, levels of degradation, time since the last logging event, levels of ongoing 

disturbance, and even in their definitions of degradation (Arroyo-Rodríguez et al., 2013; Irwin, 

2016). Thus, it can be quite difficult to make inferences about whether unstudied forests are 

suitably intact for lemurs, even before different species’ ecological needs are considered.  

One trend supported by evidence from multiple forest types is that frugivorous species 

struggle more than folivores in degraded habitat. Frugivores need larger home ranges and bigger 

trees to meet their nutritional requirements than folivores do (Lehman, 2007; Irwin et al., 2010). 

True lemurs with fruit-heavy diets, including Eulemur collaris, E. flavifrons, and E. rufus had 

lower densities near the edges of the forests in which they were studied (Lehman, 2007; 

Schwitzer et al., 2007; Donati et al., 2011).  
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Some folivorous species even increase their population density as regrowth commences 

after disturbance (Irwin, 2008). Several species that can subsist on leaves, including Propithecus 

diadema, Hapalemur griseus, and Avahi laniger, had the same or greater densities near the edge 

or in fragments (Lehman et al. 2006c; Irwin, 2008). Microcebus rufus, an insectivore, also 

increased in density in a degraded habitat, perhaps because recent tree clearing increased its food 

supply (Lehman et al., 2006a, 2006c; Herrera et al., 2011). These changes may not be 

sustainable, because living near the forest edge means living closer to humans. Hunting is more 

common further away from the forest core (Irwin et al., 2010; Schwitzer et al., 2011). Some 

lemurs are also more likely to have parasites in degraded forest, smaller fragments, and nearer 

the forest edge (Wright et al., 2009; Ragazzo et al., 2018; Raharivololona and Ganzhorn, 2009). 

Long-term, lemurs in forest fragments and nearer the forest edge have lower genetic diversity 

than conspecifics in core primary forest (Craul et al., 2009; Radespiel et al., 2018).  

However, one cannot assume that species with similar traits, even closely related ones, 

will respond to habitat degradation in the same ways. The densities of Avahi peyrierasi, 

Hapalemur aureus, and Prolemur simus, all folivores, decreased in disturbed forest, while 

frugivores, Eulemur rubriventer and E. fulvus were unaffected (Herrera et al., 2011). In an 

unusual study that directly compared sympatric congeners in the same forest, Microcebus 

murinus and M. ravelobensis had almost completely different responses to the forest edge. At 

Ankarafantsika National Park, Burke and Lehman (2014) captured 82% of M. murinus in the 

interior and 72% of M. ravelobensis at the forest edge. Thus, we cannot assume that unstudied 

species will exhibit responses to habitat degradation similar to those of their close relatives for 

which data are available. 
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Identifying not just forested, but high-quality, intact habitat at a regional scale requires a 

supplemental approach to fragmentation case studies. Ecological niche models can be used to 

map where suitable areas occur throughout a landscape by comparing georeferenced occurrence 

records with environmental variables like precipitation and temperature (Kremen et al., 2008; 

Mulligan, 2010; Brown and Yoder, 2015). However, these models typically include only climate 

as a predictor because of the difficulty in including anthropogenic habitat loss and degradation 

(Fahrig, 2003; Irwin et al., 2010; Arroyo-Rodríguez et al., 2013). Climate-based models can 

make use of species occurrence records from the past several decades. Indeed, many papers 

include records from museum collections because recent climate data still provide relevant 

information about specimens’ environments (Hijmans et al., 2005; Wilmé et al., 2006; Aschroft 

et al., 2011). Human-driven forest change, by contrast, has proceeded rapidly in biodiversity 

hotspots and requires study at a much finer temporal scale than the 30-year window used to 

define climate (Brooks et al., 2002).  

From 1953 to 2014, Madagascar lost 44% of its forest cover with losses accelerating 

from 2005 onward. The remaining forest is increasingly subject to human disruption – in 1973 a 

quarter of all forest was within 100 meters of the forest edge. Today, 49% of forest is within 100 

meters of the edge (Vieilledent et al., 2019). Accounting for this rate of landscape change within 

the traditional niche modeling context presents some undesirable options: one could violate 

model assumptions by including forest predictor variables from a time frame associated with 

only some of the species records (Warren and Seifert, 2011; Merow et al., 2013). Alternatively, 

one could discard years’ worth of occurrence data to accommodate the narrow time window 

associated with a forest cover variable.  
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In this chapter, I demonstrate a post hoc method for limiting climate-based niche models 

to intact forest. I develop species-specific thresholds for habitat degradation using presence data 

from 60 years of literature on Madagascar’s lemurs and remotely sensed forest cover. By using 

the same approach for over one hundred species, I identify which species have been the most 

affected by both forest loss and degradation. I also use these forest-aware niche models to 

identify species that have no protected habitat and to highlight areas that are suitable to many 

species of lemurs outside of Madagascar’s protected area system. 

 

Methods 

I obtained GPS occurrence records for all extant species of lemur identified in peer-

reviewed literature from three types of sources (Supplementary Table 3.1). The first were points 

I collected in the field and points courtesy of other researchers. Second were online databases 

including the Global Biodiversity Information Facility (GBIF), Mammal Networked Information 

System (MaNIS), VertNet, and Reseau de la Biodiversité de Madagascar (ReBioMa). Third, I 

recorded localities from 277 published sources.  

All articles published in Lemur News, Madagascar Conservation and Development, and 

Primate Conservation were visually scanned for GPS coordinates. I also conducted several 

Google Scholar searches using each of the following search terms combined with “lemur”: 

“GPS,” “occurrence,” “coordinates,” and “range” (e.g. “lemur” AND “GPS”). I visually scanned 

articles for coordinates from these results and recorded the points. Points were traced to their 

original publication whenever possible, and the year of first publication was recorded. These 

papers, the databases, and field efforts yielded 26,197 records (Supplementary Table 3.1).  
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All points were plotted and evaluated, and suspect data (e.g. undated localities for species 

that have been split taxonomically) were removed from the dataset, leaving 17,180 reliable and 

unique locality records (Supplementary Table 3.2). These points were then thinned to reduce the 

effects of spatial autocorrelation and sampling bias (Kramer-Schadt et al., 2013; Boria et al., 

2014). To balance the need to correct for bias and the desire to include micro-endemic taxa in 

this study, points were thinned to no closer than 5 km for species with IUCN polygons ≥5,000 

km2, no closer than 2.5 km for species with IUCN polygons between 5,000 km2 and 2,500 km2, 

and no closer than 1 km for species with polygons <2,500 km2 and for species not assessed by 

IUCN yet, similar to Brown and Yoder (2015). Only species that had at least 5 occurrences after 

thinning were analyzed (Pearson et al., 2007). 104 species of lemur met this minimum. 

Climate variables related to temperature, precipitation, and solar radiation, and soil 

variables are detailed in Table 3.1. They represent a 30-year window of very recent climate, 

centered on 1985, and were downloaded from the WorldClim, CliMond, SoilGrids, and 

WorldGrids databases (Hijmans et al., 2005; Kriticos et al., 2014). Variables included in analyses 

had Pearson’s r correlation coefficients < |0.85| (Merow et al., 2013).  

I constructed niche models in Maxent 3.4.1 (Phillips et al., 2017). Model parameters were 

selected for each species using ENMeval 0.2.2 (Muscarella et al., 2014). Because many species 

had a small sample size after thinning, I chose from models with a ΔAIC ≤ 2, a method that 

improves models built with few occurrence records (Galante et al., 2014). Of those, I selected the 

parameters that had the mean tenth percentile omission rate closest to 0.1 to limit over- and 

under-fitting, and then the highest mean AUC (Warren and Seifert, 2011; Muscarella et al., 

2014). Model parameters and quality metrics are available in Supplementary Table 3.3.  

A maximum of ten thousand pseudo-absence points, no more than one per cell, was 
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drawn from a species-specific buffer of 50 km, drawn around all occurrence records for each 

species (Phillips et al., 2009). Models were then projected from this background to all of 

Madagascar. I assigned locations with climate outside the range of the training background a 

suitability score of zero (Elith et al., 2011). I used a 10% training threshold, which is the 

suitability score associated with the 10th percentile presence record, to turn models into a binary 

prediction of 1: suitable climate, or 0: unsuitable.  

Forest quality metrics were calculated from forest layers at six time points generated by 

Vieilledent et al. (2018). These layers were resampled to 1 km2 resolution. Forest cover at this 

resolution was highly correlated across all six time points, and no interval had a Pearson’s r 

correlation coefficient < |0.85| (Table 3.2).  

Four metrics of habitat integrity, selected for their relevance to lemurs and 

interpretability, were used in this study. Mean Patch Area was included because patch size 

influences lemur presence, density, and behavior (Irwin, 2007, 2016; Schüßler, 2018). Edge 

Density and minimum Distance to Edge were chosen because of lemurs’ varied responses to 

forest edge (Donati et al., 2011; Lehman et al., 2006a, 2006b, 2006c; Lehman, 2007; Schwitzer 

et al., 2007; Herrera et al., 2011). Finally, Mean Perimeter-Area Ratio was chosen to represent 

possible interactions between perimeters/edges and patch size.  

These metrics are defined in Fragstats software and were calculated in the R package 

SDMTools (McGarigal et al., 2002; VanDerWal et al., 2012). Edges were defined as where 

forest and non-forest matrix meet, and patch as forest identified in the Vieilledent et al. (2018) 

layers. For each occurrence record, habitat integrity values were extracted from the forest layers 

closest in time to its publication year (Table 3.2). Only points with known publication or 

collection dates were included in these analyses, excluding 154 records. For each species, the 
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most disturbed value at an occurrence record was determined for each metric and assumed to 

represent the most habitat degradation that species can tolerate. This assumed that lemurs would 

be more visible to researchers in disturbed habitat and that occurrence records would therefore 

include lemurs in the most degraded habitat they are able to occupy.  

These species-specific minimum habitat integrity values were used to identify forest ≥ 

that minimum value for the most recent year available, 2014, and for the earliest year in the 

Vieilledent et al. (2018) dataset covered by the “current” climate data, 1973. Suitable forest was 

defined as including only pixels for which the minimum value was met for all four habitat 

integrity metrics. I chose this conservative consensus approach because I did not want to count 

cells as false positives if a species is highly susceptible to the effects of only one metric – for 

example, a species that is edge tolerant but requires a large patch size might have an 

overestimated suitable area if MPA is excluded. Further, due to spatial autocorrelation, low-

quality forest pixels are likely to be disturbed across multiple metrics. 

Suitable forest was identified for 103 species – Hapalemur alaotrensis was excluded 

because they are arguably marsh-dwellers (Guillera-Arroita et al., 2010), and the Lac Alaotra 

marshes are not included in the forest cover dataset. These fragmentation tolerance maps and the 

most recent forest cover map (Vieilledent et al., 2018) were used to limit individual species’ 

climate-based niche models to only pixels that were climatically suitable, forested, and 

sufficiently intact. Areas of suitable habitat were calculated from the niche model alone, from the 

model limited to only forested land, and from the model limited to sufficiently intact forest using 

the habitat integrity metrics. These distinctions allowed me to calculate the percentage of habitat 

lost specifically to habitat degradation, in addition to outright forest loss, for each of the 103 

species.  



 

39 

Protected area (PA) data were downloaded from ReBioMa and sorted into two categories: 

managed by Madagascar National Parks (e.g. special reserves, strict nature reserves) or less 

protected PAs including community-managed areas and those managed and funded by NGOs 

under the auspices of the Ministry of Environment, Ecology and Forests (Virah-Sawmy et al., 

2014; Gardner et al., 2018). These data were used to identify areas suitable to high levels of 

lemur diversity not currently under protection. Pixels were identified as being “highly suitable” if 

they were in the 90th percentile or above for number of species that could occupy the area. This 

threshold was calculated separately for each ecoregion since different types of forest support 

different numbers of species (Muldoon and Goodman, 2010). 

 

Results 

In 1973, Madagascar had 286,966 km2 of forested land that was suitable for at least one 

lemur species based on their climatic niches (Fig. 3.1). Of this area, 92% was sufficiently intact 

to support at least one species of lemur. By 2014, 258,687 km2 of climatically suitable areas 

were forested, representing a 10% decline due to forest loss in 31 years (Figs. 3.1, 3.2). Only 

203,940 km2 of this forested area were sufficiently intact to support any lemurs, rendering 21% 

of the forested area unsuitable. From 1973 to 2014, Lemuroidea lost 29% of their habitat to 

forest, loss, fragmentation, and degradation (Figs. 3.1, 3.2). 

Individual lemur species’ responses to forest conversion varied greatly. From 1973 to 

2014, each species lost an average of 51% of its otherwise suitable habitat to forest loss and 

degradation. These reductions ranged from 10% (Propithecus candidus and Lepilemur petteri) to 

more than 90% (Lepilemur ahmansonorum, 91%; Microcebus jollyae, 95%; and the Manombo 

mouse lemur, Microcebus sp. nova 1, 96%). Individual species’ habitat areas and losses appear 
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in Table 3.3. The habitat available to three example species based on climate only, forest cover, 

and fragmentation tolerance are shown in Fig. 3.3.  

For over half of species (56 out of 103), Distance to Edge caused the greatest amount of 

habitat loss (Table 3.3). On average, a too-close forest edge reduced suitable areas by 26% when 

considered alone. Mean Perimeter-Area Ratio, Edge Density, and Mean Patch Area each 

eliminated on average 17%, 14%, and 12% of forested habitat, respectively. 

Nearly all lemur species had some suitable habitat in a PA, with the exceptions of 

Microcebus jollyae and Lepilemur grewcockorum (Table 3.3). On average, 48% of lemurs’ 

remaining habitat occurred in some kind of PA. When only areas managed by Madagascar 

National Parks (MNP) were considered, this number fell to 18%. In total, 15,675 km2 of lemur 

habitat was protected by MNP, and an additional 35,417 km2 have a lower level of protection. 

Habitat protected by MNP was suitable to more species of lemur (11.8 on average) than that in 

other types of PAs (10.8 on average) and unprotected habitat (5.6 on average). However, not all 

areas that can support high lemur biodiversity are protected. Figs. 3.4, 3.5, and 3.6 illustrate areas 

throughout Madagascar that are highly suitable to lemurs but are currently unprotected or have 

lower levels of protection. 

Discussion 

Lemurs lost over a quarter of their remaining habitat to forest loss and degradation in a 

31-year period. Forest degradation alone resulted in lemurs losing 21% of their habitat from 

1973 to 2014 (Fig. 3.2). Degradation more than doubled habitat reduction due to forest loss 

(10%), which is often recognized as the greatest threat to primates (Fig. 3.2; Fahrig, 2003; Irwin 

et al., 2010; Arroyo-Rodríguez et al., 2013; Estrada et al., 2017). With forest being lost at a rate 

of 1.9%/year, all of Madagascar’s tropical forest could disappear in the next fifty years 
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(Vieilledent et al., 2019). If habitat degradation continues to outpace forest loss, lemurs could 

disappear even sooner. 

Lemurs are particularly sensitive to the forest edge (Table 3.3). When considered on its 

own, being too close to the forest edge rendered a quarter of forested areas unsuitable. Distance 

to edge was the single biggest driver of habitat lost to forest degradation of the metrics 

considered for over half of species. These results are a little surprising, because several studies 

have demonstrated that folivores are not negatively affected by the forest edge or that they even 

prefer it (Lehman, 2007; Irwin, 2008; Irwin et al., 2010). Food availability for certain dietary 

guilds, including folivores and insectivores, increases where recent forest disturbance has 

occurred (Lehman et al., 2006a, 2006c; Herrera et al., 2011). Thus, one might have expected 

forest size to matter more, since its effects seem more uniformly negative. However, mean patch 

area rendered less forest unsuitable than any of the edge-related metrics (Irwin et al., 2010; Irwin 

2016). 

The fact that proximity to the nearest forest edge is such a strong indicator of lemur 

absence probably represents the negative influence of human contact. Threats like hunting, 

artisanal mining, logging, and livestock incursions are more present near the forest edge (Irwin et 

al., 2010; Schwitzer et al., 2014). Temporarily increased food supply may not be enough to offset 

these factors for lemurs.  

These habitat losses due to edge proximity underscore the need for protecting 

Madagascar’s remaining intact forests. In 2014, the most recent year for which data were 

available, the mean distance to edge in Malagasy forests was 300 m and falling (Vieilledent et 

al., 2018). Promoting forest integrity by reducing deforestation rates is therefore critical to lemur 

survival. Madagascar’s network of protected areas (PAs) counts habitat protection amongst its 
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goals, and this study shows that half of lemurs’ remaining habitat has some level of official 

protection.  

Most of this protected lemur habitat is in PAs created after 2003, when the Malagasy 

government oversaw a quadrupling of protected lands in Madagascar. While PAs created prior to 

2003 had biological research and conservation as their primary focus, the hurried timeline for 

PAs created after 2003 and understanding of the rights of rural people made Strict Nature 

Reserves, Madagascar’s highest level of protection for biodiversity, infeasible. Thus, these new-

style PAs are often multi-use areas, where an international NGO and the local community share 

management of the site. These areas permit resource extraction and provide less protection to 

lemur habitat on paper and in practice than PAs managed by MNP (Virah-Sawmy et al., 2014; 

Gardner et al., 2018).  

Several of these modern PAs are suitable to high levels of lemur biodiversity. In the 

western dry forest ecoregion, the Mahavavy Kinkony Complex, Beanka PA, Tsimembo Forest, 

and Menabe Antimena Forest are all species-rich and have sufficiently intact forest for lemurs 

(Fig. 3.4). In the southwestern spiny forest, highly suitable habitat is found in the western part of 

Ranobe PK 32, the Amoron’i Onilahy PA along the Onilahy River, and the PAs adjoining 

Andohahela National Park (Fig. 3.5). In the eastern humid forests, the Corridor Forestier 

Ankeniheny Zahamena (CAZ), Marolambo, and the northeastern arm of Makira Natural Park are 

similarly diverse and intact (Fig. 3.6). Most of these sites were included in the Lemur Action 

Plan, an emergency site-based conservation and fundraising effort for lemurs started in 2013 

(Schwitzer et al., 2013). Should a revised plan be issued, Beanka, Tsimembo Forest, Ranobe PK 

32, and Amoron’i Onilahy merit consideration for inclusion and for increased support of the 

community-led efforts at these sites. 
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Similarly, the completely unprotected areas at Anosibe An’Ala in the east, between the 

Mamambolo and Tsiribihina Rivers in the west, and south of the Onilahy River/east of Beza 

Mahafaly in the south are suitable to many different lemur species. If the Malagasy government 

continues its PA expansion, these relatively unfragmented areas might pose the least disruption 

to local livelihoods and the best hope for lemurs.  

Work outside of PAs is needed, if the goal is to prevent any species of lemur from going 

extinct. Two species are missing from Madagascar’s protected area system: Grewcock’s sportive 

lemur (Lepilemur grewcockorum) and Jolly’s mouse lemur (Microcebus jollyae). L. 

grewcockorum lost 75% of its habitat to forest degradation in three decades, and M. jollyae lost a 

shocking 95% (Fig. 3.3). Similarly, the Manombo mouse lemur (M. sp.nova 1), which occurs in 

the Alan'Agnalazaha PA, lost 97% of its habitat and may go extinct before it is even named. 

Urgent action, such as targeted reforestation efforts aimed at putting more distance between these 

lemurs and the forest edge, are necessary to ensure these species’ survival. The successful 

community-based reforestation and agroforestry project at Kianjavato, an unprotected site 

funded by conservation NGO the Madagascar Biodiversity Project, could serve as an example 

(Manjaribe et al., 2013). 

This study highlights the need to consider not just forest cover, but also forest quality, in 

arboreal species conservation (Irwin, 2016; Schwitzer et al., 2011). The methods outlined here 

are applicable to other systems where occurrence records and satellite maps of forest cover are 

available. Regional scale models that omit forest quality data may overestimate the amount of 

habitat available to species of interest when scaled up, which could hamper conservation 

planning (Arroyo-Rodríguez et al., 2013; Irwin, 2016).  
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Certainly, as far as lemurs are concerned, not all forest is equal. The increasingly 

fragmented nature of Madagascar’s forests has drastically reduced the habitat available to these 

threatened animals and brought lemurs into closer contact with humans than ever before. Much 

of lemur’s remaining habitat is in PAs jointly-managed by locals and international conservation 

organizations. Maintaining our commitments to those communities is crucial as Madagascar as it 

works to make its PAs more effective and ensure a future for lemurs and people alike. 
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Table 3.1. Environmental variables included in niche model construction. 

Climate Variable Source 

BIO2: Mean diurnal temperature range  WorldClim v1.4; (Hijmans et al., 2005) 

BIO3: Isothermality  WorldClim v1.4; (Hijmans et al., 2005) 

BIO4: Temperature seasonality WorldClim v1.4; (Hijmans et al., 2005) 

BIO5: Max temperature of warmest 

month 
WorldClim v1.4; (Hijmans et al., 2005) 

BIO6: Min temperature of coldest month WorldClim v1.4; (Hijmans et al., 2005) 

BIO12: Annual Precipitation WorldClim v1.4; (Hijmans et al., 2005) 

BIO13: Precipitation of Wettest Month WorldClim v1.4; (Hijmans et al., 2005) 

BIO16 Precipitation of wettest quarter WorldClim v1.4; (Hijmans et al., 2005) 

BIO17: Precipitation of driest quarter WorldClim v1.4; (Hijmans et al., 2005) 

BIO18: Precipitation of warmest quarter WorldClim v1.4; (Hijmans et al., 2005) 

BIO21: Highest weekly solar radiation CliMond v1.2; (Kriticos et al., 2014) 

BIO22: Lowest weekly solar radiation CliMond v1.2; (Kriticos et al., 2014) 

BIO24: Radiation of wettest quarter CliMond v1.2; (Kriticos et al., 2014) 

BIO25: Radiation of driest quarter CliMond v1.2; (Kriticos et al., 2014) 

Slope 
WorldGrids; (Becker et al., 2009; Amante and 

Eakins, 2009) 

Topographic wetness 
WorldGrids; (Becker et al., 2009; Amante and 

Eakins, 2009) 

Depth to bedrock SoilGrids v0.5; (Hengl et al., 2017) 

Soil acidity (pH in H2O) SoilGrids v0.5; (Hengl et al., 2017) 

Soil organic carbon content SoilGrids v0.5; (Hengl et al., 2017) 
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Table 3.2. Forest cover years from which fragmentation metrics were generated. The second 

column indicates the Pearson’s correlation values for chronologically adjacent forest cover 

layers. The years for which a fragmentation layer was used to assign values to an occurrence 

record, and the number of lemur records falling in each interval are also shown. 

Forest cover layer 

Correlation to 

previous layer 

(Pearson’s r) 

Interval covered by each 

forest cover layer 

Lemur occurrence 

records in the 

interval 

1973 NA Between 1963 and 1982 126 

1990 0.862 Between 1983 and 1995 179 

2000 0.995 Between 1996 and 2003 1649 

2005 0.996 Between 2004 and 2008 2064 

2010 0.994 Between 2009 and 2012 2237 

2014 0.993 2013 onwards 2487 
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Table 3.3 is available in an attached Excel file. Areas in square kilometers of lemur habitat 

limited to forest cover in 1973 and in 2014. Habitat areas once lemur sensitivity to forest 

degradation is accounted for are also listed for 1973 and 2014. The percent of habitat rendered 

unsuitable by forest fragmentation is also listed, as is the broad ecoregion each species was 

designated to for analysis. The last four columns show how each individual fragmentation metric 

(edge density, distance to edge, mean patch area, and mean perimeter-area ratio) affected the 

area of suitable habitat available to each species. These areas represent losses in addition to 

outright forest loss. Redder cells indicate greater habitat losses for a species caused by their 

response to that particular degradation metric. 



 

 

 

 
 

Figure 3.1. Maps of Madagascar indicating where suitable habitat for at least one species of lemur occurs, considering: A). climatic 

niches only, B). remaining forest cover, and C). lemurs’ tolerance of forest degradation. Greener areas indicate the habitat is suitable 

to more species. These maps do not account for physical barriers or competition between species. 
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Figure 3.2. Lemur habitat changes from 1973 to 2014, A). considering only forest cover, and B). considering species-specific 

requirements for intact forest. 
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Figure 3.3. Potentially suitable areas for three species (from left to right: Lemur catta, Eulemur flavifrons, and Microcebus jollyae) 

when their climactic niche model, forest cover, and their individual sensitivity to forest fragmentation are considered. M. jollyae has 

lost 96% of its available habitat to forest loss and degradation and is one of two lemur species with no habitat under protection. 
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Figure 3.4. Areas suitable to many lemur species in Madagascar’s western dry forests with low or no levels of protection. 
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Figure 3.5. Areas suitable to many lemur species in Madagascar’s southwestern spiny forests with low or no levels of protection.
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Figure 3.6. Areas suitable to many lemur species in Madagascar’s eastern rainforests with low or 

no levels of protection. 
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Chapter 4: Ecological niche diversity in the sportive lemurs (genus Lepilemur) 

 

Abstract 

Primates, and lemurs especially, have undergone a taxonomic expansion in recent years due in 

large part to ever-increasing amounts of genetic data. One of the most hotly debated groups is the 

sportive lemurs (Lepilemur spp.), which has increased from eight species to 25 in the last two 

decades. Large rivers acting as dispersal barriers are thought to explain much, but not all, of 

these newly identified species’ distributions. To investigate the role of local adaptation in this 

diversity, I constructed ecological niche models for 24 species of sportive lemur. I then 

compared sister species’ niches to see if they evolved neutrally after a vicariant event or if they 

exhibited signals of selection. The genus as a whole did not exhibit Brownian motion in the 

evolution of their niches. Most sister taxa had significantly divergent ecological niches given the 

climatic background available to them, including the only sympatric species in the genus L. 

ankaranensis and L.milanoii. Other sister pairs experienced phylogenetic niche conservatism. 

Only one sister species pairing out of seven potentially exhibited neutral evolution in their 

ecological niches. Geographical neighbors were also largely diverged from each other. Rather 

than stochastic changes after vicariant events, many sportive lemurs seem to have undergone 

local adaptation. These changes may have accelerated and reinforced the allopatric speciation 

process initiated by riverine barriers. These unique ecological niches represent another line of 

evidence supporting the remarkable diversity in this genus. 
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Introduction 

The number of known primate species has greatly expanded as ever-increasing amounts 

of genetic data become available, with dozens of cryptic species of lemur identified. The 1994 

edition of Lemurs of Madagascar recognized 50 taxa, the 2006 edition 71, and just four years 

later the 2010 edition included a further 30 taxa, totaling 101 (Mittermeier et al. 1994, 2006, 

2010). More species have been recognized since then, and much work is needed to understand 

these newly identified species and how this diversity arose (Tattersall 2013).  

The sportive lemurs (Lepilemur spp.) are emblematic of this boom in described species 

(Tattersall, 2013). Nearly forty years ago, Tattersall (1982) considered the species to be 

monotypic with four subspecies. These subspecies were eventually elevated to full species status, 

and increased research effort on nocturnal lemurs revealed fourteen new species of sportive 

lemur in 2006 alone. These new species were initially identified mostly through genetic and 

morphological data (Andriaholinirina et al., 2006; Louis et al., 2006; Rabarivola et al., 2006). As 

of 2019, 25 species of sportive lemur are supported by mitogenomic data (Lei et al., 2017). 

However, these species numbers have been the topic of much debate in the literature, 

with Tattersall (2007) cautioning that geography, pelage variation, and mitochondrial distance 

cannot be used to reliably distinguish between a local population and a species. These lines of 

evidence constitute much of the data available for species within this genus (e.g. Louis et al. 

2006; Craul et al. 2007), thus Tattersall (2007) finding firm evidence for only about a third of the 
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24 species at the time of writing. Markolf et al. (2011) argued that in order to use genetic 

distance and Population Aggregation Analysis to delimit species with the mitochondrial control 

region, at least ten samples per population are needed to conduct an adequate analysis of 

intraspecific variation. The difficulty of capturing primates in previously unsampled forests 

without established field sites can make this target sample size prohibitive.  

Even so, one aspect of sportive lemur species that is not in debate is the influence large 

rivers have had on their biogeography. Most of the 25 species are delimited by major rivers, 

indicating that rivers acted as strong barriers, leading to allopatric speciation (Craul et al., 2007; 

Lei et al., 2017; Louis et al., 2006). However, rivers do not fully explain the distribution of 

sportive lemurs: two sister taxa in the north are partially sympatric (L. ankaranensis and L. 

milanoii), and L. seali in the northeast occurs on either side of the Antainambalana River (Craul 

et al., 2008; Louis et al., 2006).  

Other hypotheses have been proposed to explain Madagascar’s the distribution of 

remarkable biodiversity, including one rooted in current climate (Pearson and Raxworthy, 2009) 

and the watershed or retreat-dispersion hypothesis (Wilmé et al., 2006). The latter argues that 

many Malagasy species’ current distributions could be explained by drier past climate causing 

forest to contract to higher elevation headwaters, isolating populations in lower elevation refugia, 

and ultimately resulting in speciation. However, no one model adequately explains the 

biodiversity patterns seen in lemurs (Yoder and Heckman, 2006; Pearson and Raxworthy, 2009). 

Considering current climatic niches alongside geographic distributions could help illuminate the 

extent to which current and past climates have fostered diversity in the genus Lepilemur 

(Kamilar and Muldoon, 2010; Pearson and Raxworthy, 2009). Ecological niche modeling can 

also be used to support species delimitation by quantitatively addressing questions about 
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ecological uniqueness or exchangeability between closely related species (Crandall et al., 2000; 

Raxworthy et al., 2007; Rissler and Apodaca, 2007; Warren et al. 2008). 

Lei et al. (2017) began these efforts by examining sportive lemur distributions in the 

context of these hypotheses using SEEVA analysis, which compares phylogenetic distance to 

differences in individual climate variables at occurrence records across sister species (Struwe et 

al., 2011). They found limited support for both the current climate and watershed hypotheses, but 

not in the north where unexplained sympatry occurs (Lei et al., 2017). However, SEEVA does 

not account for the differences between the climate available to species, despite the spatially 

autocorrelated nature of variables like precipitation and temperature (Struwe et al., 2011). 

Accessible climate may also differ significantly for allopatric species with highly limited ranges 

or for those occurring on a latitudinal gradient, both of which are true of sportive lemurs 

(Pearson and Raxworthy, 2009; Warren et al., 2008). 

In this study, I further Lei et al.’s (2017) analyses by using Warren et al.’s (2008) 

background test on an expanded set of occurrence records and climate variables. The background 

test is suitable for allopatric species because it determines whether two species occupy more 

similar niches than would be expected given the climate available to them. As a null hypothesis, 

I assumed that sister species and geographic neighbors are separated by riverine barriers only and 

that they would exhibit phylogenetic niche conservatism, or the tendency to maintain ecological 

characteristics in the absence of strong selective pressures (Wiens and Graham, 2005). I also 

investigate whether phylogenetic distance across the genus correlates with ecological distance 

with a null hypothesis of changes in niches reflect Brownian or random motion over time. 
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Methods 

A total of 885 reliable occurrence records were obtained from online databases, 

collaborators, and 85 peer-reviewed or gray literature papers (Supplementary Table 4.1). 

Localities without a known date that plotted in the occurrence area of another species were 

revised to match the taxonomy presented by Lei et al. (2017) or removed prior to analyses if near 

a poorly documented boundary between species. Lepilemur mittermeieri was treated as a junior 

synonym of L. dorsalis following Lei et al. (2017), and Ampasindava lemurs were considered to 

be L. dorsalis. Points were thinned as described in Chapter 3, resulting in 407 records across 25 

species, with between 5 and 53 records each (Supplementary Table 4.1). Pseudo-absence points 

were drawn from a 50 km buffer drawn around all occurrence points for each species (Phillips et 

al., 2009). 

Lepilemur spp. are entirely folivorous (Wright 1999); therefore, climate variables related 

to temperature, precipitation, and solar radiation, and soil were included in analyses (Table 4.1). 

They represent a 30-year window of very recent climate, centered on 1985, and were 

downloaded from the WorldClim, CliMond, SoilGrids, and WorldGrids databases (Hijmans et 

al., 2005; Kriticos et al., 2014). Only variables with a Pearson’s r correlation coefficient < |0.85| 

were included in analyses (Merow et al., 2013). I constructed niche models in Maxent 3.4.1 

(Phillips et al., 2017).  

Model parameters were selected for each species using ENMeval 0.2.2 (Muscarella et al., 

2014). Because many species had a small sample size after thinning, I chose from models with a 

ΔAIC ≤ 2, a method that improves models built with few occurrence records (Galante et al., 

2014). Of those, I selected the parameters that had the mean tenth percentile omission rate 

closest to 0.1 to limit over- and under-fitting, and then the highest mean AUC (Warren and 
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Seifert, 2011; Muscarella et al., 2014). Model parameters and quality metrics are available in 

Supplementary Table 4.1. Models were then projected from this background to all of 

Madagascar. I assigned locations with climate outside the range of the training background a 

suitability score of zero (Elith et al., 2011). 

All pairings of species’ models were compared with two metrics of niche overlap, 

Schoener’s D and Hellinger’s I, calculated in ENMTools 1.4.4 (Warren et al. 2010; Tables 2 and 

3). To test whether these values of niche overlap correlated with phylogenetic distance, I 

conducted two Mantel tests employing Pearson’s correlation for 1,000 permutations in R 3.6.1 

using the vegan package v 2.5-5 (Dixon, 2003; Cattin et al., 2004; Knouft et al., 2006; Warren et 

al., 2008). I used times to most recent common ancestor (TMRCA) from Lei et al. (2017) for 

phylogenetic distance. Schoener’s D and Hellinger’s I values were all subtracted from 1 prior to 

analyses to change the metrics from overlap scores to distances (from similarity to dissimilarity). 

In one Mantel test I compared Schoener’s D values to TMRCA; in the other I compared 

Hellinger’s I values to TMRCA. 

Next, I investigated whether these metrics of niche overlap represented more niche 

conservatism or divergence than expected based on the climate available to species using Warren 

et al.’s (2008) background test. The background test does not assume that both species are drawn 

from the same geographic distribution and is well-suited to examining non-overlapping 

distributions (Warren et al., 2008). Niche models based on points drawn at random from the area 

available to Species A are repeatedly constructed to form a null distribution. These models are 

evaluated for niche similarity (Schoener’s D and Hellinger’s I) against the actual niche model of 

Species B.  
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If the niche similarity metric for Species A and B is greater than the distribution 

generated by the background test, the species are said to be more conserved than expected given 

the climate available to them. If the actual metric is lower, the species’ niches have diverged. 

The test is run both directions (i.e. comparing species A to background points from species B’s 

range and comparing B to background points from A), generating a two-tailed p-value. If both 

iterations of the test agree, confidence may be had in the assessment of niche conservatism or 

divergence (Warren et al., 2008).  

I ran background tests for each pair of sister-species in the data set, as defined in Lei et al. 

(2017), and for geographic neighbors. The Maxent regularization multiplier, a value that 

accounts for the fittedness of the model, was set to the average of both species’ most suitable 

values obtained in ENMeval (Supplementary Table 4.1). Each test was run for 100 iterations 

with 5000 background points sampled in ENMTools to obtain an approximate p-value resolution 

of 0.01. Two-tailed p-values of ≥ 0.975 indicated significant convergence, while values ≤ 0.025 

indicated divergence. A majority of results (i.e. 3 out of 4 background tests across both D and I 

metrics) had to concur for a conclusion regarding the relationship of species’ niches. 

 

Results 

Lepilemur spp. ecological niche models are displayed in Fig. 4.1. Most models predicted 

the occurrence data quite well, with average test AUC values of 0.82 (values range from 0-1, with 

models above 0.5 predicting better than chance; Table 1). The model for L. jamesorum had an 

AUC value of 0.5 and was excluded from analyses. For the remaining 24 species, Hellinger’s I 

values ranged from 0.00-0.78, and Schoener’s D values ranged from 0.00-0.96 (Supplementary 

Tables 4.2, 4.3). These metrics of niche overlap were used in the following tests. 
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 Phylogenetic distance did not correlate with ecological niche dissimilarity for either 

Schoener’s D or Hellinger’s I, indicating that the genus as a whole does not exhibit Brownian 

motion in the evolution of its ecological niches (D: r = 0.01, p = 0.40; I: r = 0.03, p = 0.32). At 

the level of sister species, four pairs had significantly diverged niches, two had significantly 

conserved niches, and one pair had a result which indicated neither conservation nor divergence. 

The niches of the only species to occur in sympatry, L. ankaranensis-L. milanoii, have diverged 

significantly relative to the habitat available to them (Table 4.2; Fig 4.2). Three sister pairs are 

parapatric: L. leucopus-L. petteri, L. hubbardorum-L. ruficaudatus, and L. hollandorum-L. seali 

(Fig. 4.1). L. leucopus-L. petteri were significantly diverged; L. hubbardorum-L. ruficaudatus 

were significantly conserved (Fig. 4.3). L. hollandorum-L. seali were more conserved in one 

direction and more diverged in the other, indicating neither process describes these species 

exactly. 

Sister species were not more diverged or conserved than geographic neighbors (χ2 = 0.66, 

p = 0.72). Geographic neighbors also exhibited a diversity of relationships, outlined in Table 4.3. 

Five species had significantly conserved niches, twelve had significantly diverged, and seven had 

inconclusive or conflicting results. Most species of sportive lemur occurring in the western dry 

forest were significantly diverged from their nearest geographic neighbors (8 out of 11 pairs), 

compared to only three out of nine eastern rainforest pairings. 

 

Discussion 

Riverine barriers have produced high levels of allopatric speciation across the sportive 

lemur genus (Craul et al., 2007; Louis et al., 2006), but many species’ ecological niches evolved 

non-neutrally as well. Sportive lemur niches did not follow a pattern of Brownian motion as the 
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genus diversified. Instead, sister species exhibit signatures of niche divergence and conservatism 

(Table 4.2). Thus, environmental conditions acted as selective pressures on sportive lemur 

populations during and/or after speciation events. These results underscore the uniqueness of 

these species and their utility as discrete evolutionarily significant units for conservation 

measures (Crandall et al., 2000). 

Four pairs of sister species had significantly diverged niches, indicating that climatic 

conditions act as a barrier to gene flow for these lemurs, in addition to rivers (Wiens and 

Graham, 2005). One of these sister pairings, L. ankaranensis-L. milanoii, is sympatric in the 

Andrafiamena forest, the only known instance of sympatry in the genus Lepilemur (Fig. 4.2; 

Louis et al., 2006; Salmona et al., 2014). The limited ecological overlap between these species 

may have prevented adaptive gene flow between populations, resulting in speciation through 

diversifying selection (Orr and Smith, 1998; Wiens and Graham, 2005). 

Even for the species limited by a riverine barrier, climatic niche evolution may have 

accelerated the allopatric speciation process (Desjardins-Proulx and Gravel, 2011). Local 

adaptation can reduce populations’ ability to disperse through novel climate to other areas with 

suitable climate, reinforcing physical barriers (Kozak and Wiens, 2007, 2010). When niches are 

phylogenetically conserved (i.e. selected to stay the same over time), as in the case of L. aeeclis 

and L. randrianasoloi, species may be separated by a zone of unsuitable habitat that prevents 

ecologically similar species from coming into contact (Cooper and Freckleton, 2010; Wiens and 

Graham, 2005; Fig. 4.3).  

When niches are diverged, geographically close species that may be able to cross a 

riverine barrier cannot colonize the different climate on the other side. This is apparently true of 

many geographic neighbors in the genus Lepilemur (Table 4.3). Most neighbors tend to have 
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significantly diverged niches, indicating that they are ecologically non-exchangeable (Crandall et 

al., 2000). This trend was more present in the western dry forests than the eastern humid forests 

of Madagascar. Although additional Malagasy taxa should be studied before drawing 

conclusions, this finding tentatively supports those of Kozak and Wiens (2010). They observed 

that niche diversification tends to be greater in places with fewer taxa. Madagascar’s eastern 

rainforests have greater species richness that its western dry forests (Vences et al., 2009). 

Due to its heterogenous landscapes and complex climatic past, Pearson and Raxworthy 

(2009) cautioned against a “one size fits all” explanation for Madagascar’s remarkable 

endemism. This advice seems to hold for the sportive lemurs, despite the apparent influence of 

rivers on their biogeography. Instead of the Brownian motion that might be expected from purely 

allopatric speciation, Lepilemur climatic niches exhibit strong signals of divergence and 

conservatism. Local adaptation may have intensified the splits introduced by riverine barriers, 

resulting in the genetic diversity observed today (Kozak and Wiens, 2007, 2010; Lei et al., 

2017). The ecological non-exchangeability of closely related taxa also represents another line of 

evidence for species within this clade (Crandall et al., 2000; Raxworthy et al., 2007; Rissler and 

Apodaca, 2007). Rather than neutrally-evolving lineages, sportive lemurs may represent one of 

the widest spread adaptive radiations of Madagascar (Rundell and Price, 2009; Wilmé et al., 

2006). 
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Table 4.1. Environmental variables included in niche model construction. 

Climate Variable Source 

BIO2: Mean diurnal temperature range  WorldClim v1.4; (Hijmans et al., 2005) 

BIO3: Isothermality  WorldClim v1.4; (Hijmans et al., 2005) 

BIO4: Temperature seasonality WorldClim v1.4; (Hijmans et al., 2005) 

BIO5: Max temperature of warmest 

month 
WorldClim v1.4; (Hijmans et al., 2005) 

BIO6: Min temperature of coldest month WorldClim v1.4; (Hijmans et al., 2005) 

BIO12: Annual Precipitation WorldClim v1.4; (Hijmans et al., 2005) 

BIO13: Precipitation of Wettest Month WorldClim v1.4; (Hijmans et al., 2005) 

BIO16 Precipitation of wettest quarter WorldClim v1.4; (Hijmans et al., 2005) 

BIO17: Precipitation of driest quarter WorldClim v1.4; (Hijmans et al., 2005) 

BIO18: Precipitation of warmest quarter WorldClim v1.4; (Hijmans et al., 2005) 

BIO21: Highest weekly solar radiation CliMond v1.2; (Kriticos et al., 2014) 

BIO22: Lowest weekly solar radiation CliMond v1.2; (Kriticos et al., 2014) 

BIO24: Radiation of wettest quarter CliMond v1.2; (Kriticos et al., 2014) 

BIO25: Radiation of driest quarter CliMond v1.2; (Kriticos et al., 2014) 

Slope 
WorldGrids; (Becker et al., 2009; Amante and 

Eakins, 2009) 

Topographic wetness 
WorldGrids; (Becker et al., 2009; Amante and 

Eakins, 2009) 

Depth to bedrock SoilGrids v0.5; (Hengl et al., 2017) 

Soil acidity (pH in H2O) SoilGrids v0.5; (Hengl et al., 2017) 

Soil organic carbon content SoilGrids v0.5; (Hengl et al., 2017) 
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Table 4.2. Approximate p-values generated by Warren et al.’s (2008) background test of niche 

similarity for sister Lepilemur species. Conserved niches are more similar than expected based 

on the climatic background available to species, while diverged niches are less similar. 

Sister species 

Comparing 

Species A to 

Species B's 

background 

Comparing 

Species B to 

Species A's 

background 

 

Result 

Species A Species B I D I D  
L. aeeclis L. randrianasoloi > 0.99 < 0.01 < 0.01 < 0.01 conserved 

L. ahmansonorum L. sahamalazensis > 0.99 > 0.99 > 0.99 > 0.99 diverged 

L. ankaranensis L. milanoii > 0.99 > 0.99 > 0.99 > 0.99 diverged 

L. edwardsi L. grewcockorum > 0.99 > 0.99 > 0.99 > 0.99 diverged 

L. hollandorum L. seali < 0.01 < 0.01 > 0.99 > 0.99 inconclusive 

L. hubbardorum L. ruficaudatus < 0.01 < 0.01 > 0.99 < 0.01 conserved 

L. leucopus L. petteri > 0.99 > 0.99 > 0.99 > 0.99 diverged 
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Table 4.3. Approximate p-values generated by Warren et al.’s (2008) background test of niche 

similarity for geographic neighbors in the Lepilemur genus. Conserved niches are more similar 

than expected based on the climatic background available to species, while diverged niches are 

less similar. 

Geographic Neighbors 

Comparing 

Species A to 

Species B's 

background 

Comparing 

Species B to 

Species A's 

background 

 

Result 

Species A Species B I D I D  
L. aeeclis L. ahmansonorum < 0.01 < 0.01 < 0.01 < 0.01 diverged 

L. aeeclis L. edwardsi < 0.01 < 0.01 < 0.01 < 0.01 diverged 

L. ahmansonorum L. randrianasoloi < 0.01 < 0.01 < 0.01 < 0.01 diverged 

L. ankaranensis L. dorsalis < 0.01 < 0.01 < 0.01 < 0.01 diverged 

L. ankaranensis L. milanoii < 0.01 < 0.01 < 0.01 < 0.01 diverged 

L. ankaranensis L. septentrionalis < 0.01 < 0.01 < 0.01 > 0.99 diverged 

L. betsileo L. microdon < 0.01 0.74 < 0.01 < 0.01 diverged 

L. betsileo L. mustelinus > 0.99 > 0.99 < 0.01 < 0.01 inconclusive 

L. betsileo L. milanoii < 0.01 < 0.01 > 0.99 < 0.01 diverged 

L. dorsalis L. sahamalazensis < 0.01 < 0.01 < 0.01 < 0.01 diverged 

L. dorsalis L. seali > 0.99 > 0.99 > 0.99 > 0.99 conserved 

L. edwardsi L. otto < 0.01 < 0.01 < 0.01 < 0.01 diverged 

L. fleuretae L. leucopus < 0.01 < 0.01 < 0.01 < 0.01 diverged 

L. fleuretae L. wrightae > 0.99 > 0.99 > 0.99 > 0.99 conserved 

L. grewcockorum L. otto < 0.01 < 0.01 < 0.01 < 0.01 diverged 

L. grewcockorum L. sahamalazensis < 0.01 < 0.01 < 0.01 < 0.01 diverged 

L. hollandorum L. mustelinus > 0.99 > 0.99 < 0.01 < 0.01 inconclusive 

L. hollandorum L. seali > 0.99 > 0.99 < 0.01 < 0.01 inconclusive 

L. hubbardorum L. petteri > 0.99 > 0.99 > 0.99 > 0.99 conserved 

L. hubbardorum L. ruficaudatus > 0.99 > 0.99 < 0.01 > 0.99 conserved 

L. leucopus L. petteri < 0.01 < 0.01 < 0.01 < 0.01 diverged 

L. microdon L. wrightae < 0.01 0.27 < 0.01 < 0.01 diverged 

L. randrianasoloi L. ruficaudatus > 0.99 > 0.99 > 0.99 > 0.99 conserved 

L. scottorum L. seali > 0.99 > 0.99 < 0.01 < 0.01 inconclusive 
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Figure 4.1. Lepilemur spp. ecological niche models binarized with a 10th percentile training 

presence threshold.  
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Figure 4.2. Thresholded ecological niche models for Lepilemur ankaranensis and L. milanoii. 

Andrafiamena Forest, the only known location of sympatry in Lepilemur spp. is marked. 
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Figure 4.3. Thresholded ecological niche models for Lepilemur aeeclis and L. randrianasoloi. 

These species’ niches are conserved, but a zone of unsuitable habitat separates them. 
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Chapter 5: Stationary rivers and shifting climate: how much suitable habitat will lemurs be 

able to access as Madagascar warms? 

 

Abstract 

Climate change threatens global biodiversity, with suitable habitat expected to shift or contract 

for many species. Assessing the severity of these changes is an increasingly necessary 

component of conservation planning. Projecting current ecological niches onto future climate 

scenarios can help identify priority areas for conservation, but these models require careful 

interpretation to be of use for dispersal-limited species. Here, I examine how riverine barriers 

alter future habitat predictions for a group of highly endemic primates, the sportive lemurs 

(Lepilemur sp.). When dispersal ability is ignored, climate change does not appear to have much 

of an effect at the genus level by the 2070s: some species’ habitat is lost, but other species 

expand into those areas. When future projections are limited to accessible areas, many of those 

gains vanish. Sportive lemurs lose on average 25% of their current habitat, and five species are 

predicted to have no suitable, accessible habitat by 2070. Further, all habitat available in 2070 

will represent novel climatic conditions relative to the niches they currently occupy. I discuss the 

likelihood that sportive lemurs will persist under novel climate conditions. These results 

demonstrate that species’ abilities to track habitat as climate change progresses can greatly affect 

projections of future habitat and that species-specific knowledge is critical to interpreting 

ecological niche projections for conservation planning. 

 

Key words: climate change vulnerability; ecological niche modeling; sportive lemurs; 

Lepilemur; Madagascar; riverine barriers 
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Introduction 

Assessing species vulnerability to climate change is an increasingly important component 

of conservation plans (Foden et al., 2013, 2019; Pacifici et al., 2015; Thomas et al., 2004). 

Climate change drives demographic declines as large as those caused by habitat loss and its 

impact is only expected to increase over time (Selwood et al., 2015). Correlative models of 

ecological niches are one method for evaluating the impact of climate change, and they can be 

particularly useful for species like primates where physiological tolerances can be difficult to 

observe directly (Anderson, 2013; Graham et al., 2016). By projecting species’ current climatic 

envelope onto projected future climate, we can predict changes in available habitat and identify 

species at risk for extinction due to climate change (Elith et al., 2011; Foden et al., 2019; Weins 

et al., 2009). 

However, climate-based models need to be evaluated in the context of other risks to 

inform conservation efforts (Pearson and Dawson, 2003). Habitat loss and fragmentation are 

threats on their own and are often exacerbated by warming temperatures (Mantyka-Pringle et al., 

2012). Biotic factors, like climate-driven changes in food availability and novel contact with 

competitors, can render climatically suitable habitat uninhabitable (Eronen et al., 2017; 

HilleRisLambers et al., 2013). Critically, species must be able to disperse to future, suitable 

habitat if it does not occupy the same geographic space as their current distribution (Schloss et 

al., 2012). 

Dispersal ability is often highly species-specific and can depend on landscape features 

occurring at smaller scales than ecological niche models (Anderson, 2013; Pearson and Dawson, 

2003). Several global-scale assessments have chosen between two dispersal options: unlimited 

and none at all, but acknowledge that more realistic abilities fall in between those extremes 
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(Graham et al., 2016; Thomas et al., 2015). Others have calculated a maximum rate of dispersal 

based on body mass and other traits (Schloss et al., 2012). For the lemurs of Madagascar, Brown 

and Yoder (2015) limited dispersal to 1.4 km/year but assumed no physical barriers. While 

species’ limitations may not change broad trends for continent or ecosystem-wide analyses, 

physical barriers can matter a great deal to individual species.  

In fact, riverine barriers are responsible for much of Madagascar’s biodiversity 

(Goodman and Ganzhorn, 2004; Pearson and Raxworthy, 2009; Wilmé et al., 2006). Perhaps no 

group demonstrates the influence of rivers limiting dispersal more clearly than the sportive 

lemurs (Lepilemur sp.). The genus is widely distributed across Madagascar, but sympatry has 

only been documented in a single forest (Louis et al., 2006). Most of the 25 species are delimited 

from each other by large rivers (Andriaholinirina et al., 2006; Craul et al., 2007; Lei et al., 2017; 

Louis et al., 2006). The majority of these speciation events took place in the Plio-Pleistocene, 

indicating that these rivers have persisted over time and past climate changes (Lei et al., 2017). 

In this chapter, I use sportive lemurs and their sensitivity to rivers to investigate how 

physical barriers affect accessible habitat as climate change progresses. I also consider how 

much of their future range depends on adapting to novel climate. Niche modeling algorithms 

often extrapolate when asked to project onto one or more climate variables outside of the training 

range. Elith et al. (2011) recommend “extreme care” when drawing inferences from these 

projections of suitability in novel climates. I hypothesize that when physical barriers to dispersal 

and novel climate are considered, sportive lemurs will have access to less habitat than when 

barriers are excluded from climate change vulnerability assessments. 
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Methods 

A total of 885 reliable occurrence records were obtained from online databases, 

collaborators, and 85 peer-reviewed or gray literature papers (Supplementary Table 5.1). 

Localities without a known date that plotted in the occurrence area of another species were 

revised to match the taxonomy presented by Lei et al. (2017) or removed prior to analyses if near 

a poorly documented boundary between species. Lepilemur mittermeieri was treated as a junior 

synonym of L. dorsalis following Lei et al. (2017), and Ampasindava lemurs were considered to 

be L. dorsalis. Localities were thinned as described in Chapter 3, resulting in 407 records across 

25 species, with between 5 and 53 records each (Supplementary Table 5.1).  

Nine climate variables were downloaded from the WorldClim database at 30 arc-second 

(~1 km) resolution for “current” climate (centered on 1985), and two future time points, centered 

on 2050 and 2070 (Hijmans et al., 2005; Table 5.1). Only climate variables with Pearson’s r 

correlation coefficients ≤ |0.85| were included in analyses (Merow et al., 2013). I used future 

climate projections generated by the Community Climate System Model v. 4 and selected a 

middling climate change scenario, Representative Concentration Pathway 4.5, for analyses. I 

excluded elevation as a variable in favor of other highly correlated variables that will change 

over time (e.g. temperature, precipitation). Model parameter choice and construction followed 

methods outlined in Chapter 3 and model quality metrics are available in Supplementary Table 

5.2. All models were binarized using the 10th percentile training presence as a threshold and 

areas of suitability were calculated for each time period using rgeos in R. 

To investigate whether physical barriers could limit dispersal to future habitat by sportive 

lemurs, I generated inter-river polygons extending to known barriers for each species in ArcMap 

(Supplementary Fig. 5.1). I used these polygons to limit species’ distribution models to only 
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those areas that sportive lemurs could disperse to and recalculated areas of suitability. All 

polygons terminated at either a river, the coast, or in the unforested central highlands. When a 

river’s status as a barrier to dispersal was uncertain due to a lack of fieldwork near the river, I 

assumed it could be crossed, that absence on the other side of the river might be a result of 

competitive exclusion, and chose the next known barrier river for the polygon (note that the 

polygons for L. betsileo, L. jamesorum, and L. microdon in Supplementary Fig. 5.1 are identical 

for this reason). This choice meant that estimates of accessible, suitable habitat in future 

scenarios err on the side of optimism. I also calculated how much predicted habitat in the future 

models fell within the current training range and how much relied on the suitability of novel 

climatic conditions. 

 

Results 

Assuming perfect dispersal ability across Madagascar and the ability to occupy novel 

climate, sportive lemurs lost very little habitat to climate change. As a genus, they lost 3% of 

their net suitable area to climate change by 2050 and 0% by 2070 (Table 5.2; Fig. 5.1.A). 

Responses were more variable for individual species, with nine species out of 25 not 

experiencing much change in the area of their habitat by 2070 (defined as maintaining between 

75% and 125% of their current suitable area, following Brown and Yoder, 2015). Three species, 

L. grewcockorum, L. microdon, and L. petteri, actually expanded their ranges (beyond 125% of 

their current area; Fig. 5.2). Six species lost more than 90% of their suitable space by 2070, with 

two of these species losing all their habitat to climate change: L. septentrionalis and L. 

ruficaudatus (Table 5.3). 
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A more realistic dispersal scenario, in which large rivers are treated as barriers to sportive 

lemurs, revealed greater losses (Tables 5.2, 5.3; Fig. 5.1.B). Accessible, climatically suitable 

habitat represented roughly one-third of the areas obtained assuming perfect dispersal (Table 

5.4). When barriers were considered, climate change resulted in losses of 21% of accessible 

habitat by 2050 and 24% by 2070 on average (Table 5.2). Eight species experienced little change 

in their accessible habitat due to climate change by 2070. L. microdon and L. petteri still gained 

suitable habitat even when riverine barriers were considered (Fig. 5.3), but L. grewcockorum 

actually lost 97% of its accessible habitat (Table 5.3; Fig. 5.2). The other 15 species experienced 

losses, and L. edwardsi, L. leucopus and L. tymerlachsoni joined L. septentrionalis and L. 

ruficaudatus in disappearing entirely (Table 5.3). 

When Maxent is constrained from predicting suitable habitat in novel climatic conditions, 

much smaller areas are suitable in the future. Only 53% of their current climate habitat is 

available to sportive lemur species on average in 2050. By 2070, 100% of available habitat 

would include novel climatic conditions outside the current realized niches of these lemurs. 

 

Discussion 

Barriers to dispersal greatly reduce the amount of suitable space sportive lemurs will be 

able to access as climate change progresses (Fig. 5.1). Models assuming perfect dispersal did 

tend to reflect the general trends of gains or losses of the river-limited models. However, sportive 

lemurs lost proportionally more of their river-limited habitat to climate change (Table 5.3). 

These losses included five species losing all accessible, climatically suitable space by 2070, even 

when novel climatic conditions were included. Three of those species would appear to maintain 

some suitable area when barriers are not considered, underscoring the point made by others that 
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future projections assuming perfect dispersal can be unrealistically optimistic (Schloss et al., 

2012; Thomas et al., 2004). 

Remarkably, one species that appeared to gain suitable space under perfect dispersal, L. 

grewcockorum, lost nearly all of its accessible habitat to climate change (Fig. 5.2). This 

climatically suitable, but inaccessible, habitat occurs south of the Sofia River, which separates L. 

grewcockorum from its sister species L. edwardsi (Lei et al., 2017). L. edwardsi is projected to 

lose all of its accessible habitat by 2050 (Table 5.3). It is thus possible that instead of seeing an 

expansion of L. grewcockorum, the area between the Betsiboka and Sofia Rivers will lose 

sportive lemurs altogether in the next 30 years. 

Nonetheless, species with projected total losses, like L. edwardsi, may not disappear 

outright. The models in this study are trained on the realized niches of sportive lemurs, not their 

fundamental niches. The fundamental niche represents the entirety of suitable conditions, 

whereas the realized niche represents the occupied subset thereof (Phillips and Dudik, 2008; 

Elith et al., 2011; Wiens et al., 2009). Even if the occurrence localities here represented complete 

sampling, the range of climatic conditions at sportive lemur occurrence records would still be 

limited by barriers and interspecific competition (Ganzhorn, 1997; Wright, 1999). Thus, species 

with very narrow geographic ranges like L. septentrionalis and L. tymerlachsoni may tolerate 

future climate. It is difficult to tell where those tolerable conditions might occur and whether 

they will be accessible without mechanistic studies, complicating conservation planning for these 

primates. 

Indeed, we must hope that sportive lemurs are able to persist in novel climatic conditions. 

By 2070, nowhere in Madagascar will resemble the current climate conditions to which lemurs 

are adapted (Tables 5.2, 5.3). If sportive lemurs are not able to inhabit or rapidly adapt to novel 
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conditions, they could go extinct within the century. Lemurs do have a suite of adaptations that 

contribute to their resilience in harsh environments, including the low basal metabolic rates, 

fibrous diets, and small group sizes exhibited by sportive lemurs (Wright, 1999, 2006). While 

these traits may help species temporarily endure climate change, it is unclear how much more 

desiccation and extreme weather events lemurs can adapt to and whether they can do so rapidly 

enough to outpace anthropogenic climate change (Dunham et al., 2011; Wright, 2006).  

These adaptations to extreme climate are predicated on a complex network of biotic 

interactions and seasonal resources which may also be threatened by climate change (Anderson, 

2017; Eronen et al., 2017). One of the basic resources required by sportive lemurs are holes in 

mature trees for sleeping (Rasoloharijaona et al., 2008). Unfortunately, forest loss is also an 

accelerating threat to lemurs, not only because of lost habitat but also increased contact with 

humans (Lehman et al., 2006a; Vieilledent et al., 2018). Fragmentation has left 46% of 

remaining forest within 100 m of the edge, close enough for the forest micro-climate to be 

altered (Broadbent et al., 2008; Vieilledent et al., 2018).  

Accessible, forested areas that will maintain suitable climate over time should be 

prioritized for limited conservation resources. While corridors between currently suitable climate 

and future habitat areas will help more vagile species (Brown and Yoder, 2015), the inability of 

sportive lemurs and other species to cross large rivers limits their utility. The results of this study 

also demonstrate the importance of considering species-specific physical barriers to dispersal 

when modeling habitat under climate change. Conservation actions based on over-projection 

could be at best inefficient, and at worst waste time that lemurs do not have. 
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Table 5.1. Climate variables included in niche model construction. 

Climate Variable Source 

BIO2: Mean diurnal temperature range  WorldClim v1.4; (Hijmans et al., 2005) 

BIO3: Isothermality  WorldClim v1.4; (Hijmans et al., 2005) 

BIO4: Temperature seasonality WorldClim v1.4; (Hijmans et al., 2005) 

BIO5: Max temperature of warmest month WorldClim v1.4; (Hijmans et al., 2005) 

BIO6: Min temperature of coldest month WorldClim v1.4; (Hijmans et al., 2005) 

BIO12: Annual Precipitation WorldClim v1.4; (Hijmans et al., 2005) 

BIO13: Precipitation of Wettest Month WorldClim v1.4; (Hijmans et al., 2005) 

BIO17: Precipitation of driest quarter WorldClim v1.4; (Hijmans et al., 2005) 

BIO18: Precipitation of warmest quarter WorldClim v1.4; (Hijmans et al., 2005) 

 

  



 

79 

 

Table 5.2. Space suitable to at least one species of sportive lemur based on ecological niche 

models, with and without Maxent’s extrapolation into novel climate, and with and without 

riverine barriers to dispersal. 

Model limitations 

Climatically suitable area 

(km2) 

Percentage of 

current suitable 

area lost 

Current 2050 2070 by 2050 by 2070 

Models including novel climate 553,357 539,308 553,729 3% 0% 

River-limited models including 

novel climate 216,073 170,047 164,634 21% 24% 

Models without novel climate 301,428 181,476 0 40% 100% 

River-limited models without novel 

climate 188,075 102,070 0 46% 100% 
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Table 5.3 is available in an attached Excel file. Climatically suitable areas in km2 as calculated 

by projecting current ecological niche models into future climate scenarios and then applying 

different dispersal rules. 
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Table 5.4. The percentage of projected models represented by inaccessible, but climatically 

suitable, areas when riverine barriers are ignored. 

Species 

Climatically suitable area lost 

to river barriers (with novel 

projections) 

Climatically suitable area lost to 

river barriers (exclusive of novel 

projections) 

Current 2050 2070 Current 2050 2070 

Lepilemur aeeclis 98% 97% 98% 72% 89% 0% 

Lepilemur ahmansonorum 99% 99% 99% 96% 100% 0% 

Lepilemur ankaranensis 89% 85% 89% 0% 0% 0% 

Lepilemur betsileo 32% 38% 48% 11% 0% 0% 

Lepilemur dorsalis 78% 81% 82% 45% 70% 0% 

Lepilemur edwardsi 65% 100% 95% 24% 100% 0% 

Lepilemur fleuretae 89% 90% 90% 77% 83% 0% 

Lepilemur grewcockorum 94% 92% 99.9% 88% 56% 0% 

Lepilemur hollandorum 68% 67% 68% 57% 54% 0% 

Lepilemur hubbardorum 41% 63% 46% 20% 35% 0% 

Lepilemur jamesorum 75% 90% 80% 24% 55% 0% 

Lepilemur leucopus 30% 24% 100% 1% 0% 0% 

Lepilemur microdon 38% 31% 29% 29% 23% 0% 

Lepilemur milanoii 25% 27% 20% 25% 27% 0% 

Lepilemur mustelinus 87% 86% 86% 73% 68% 0% 

Lepilemur otto 93% 93% 93% 81% 81% 0% 

Lepilemur petteri 76% 77% 79% 17% 8% 0% 

Lepilemur randrianasoloi 62% 96% 78% 12% 42% 0% 

Lepilemur ruficaudatus 71% 73% 0% 14% 22% 0% 

Lepilemur sahamalazensis 69% 48% 62% 55% 0% 0% 

Lepilemur scottorum 86% 89% 87% 54% 76% 0% 

Lepilemur seali 36% 29% 1% 20% 17% 0% 

Lepilemur septentrionalis 2% 0% 0% 2% 0% 0% 

Lepilemur tymerlachsoni 99.84% 99.99% 100% 68% 33% 0% 

Lepilemur wrightae 95% 98% 98% 84% 95% 0% 

MEAN 68% 71% 69% 42% 45% 0% 
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Figure 5.1. Areas that are climatically suitable for at least one species of sportive lemur now and 

in the future, assuming unlimited dispersal ability (A. and C.), and treating large rivers as 

barriers to dispersal (B. and D.). The models without novel climate (C. and D.) only include 

changes by 2050 because there was no non-novel climate in 2070 for sportive lemurs. 
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Figure 5.2. Northwestern Madagascar and thresholded models of suitable and accessible areas 

for Lepilemur grewcockorum reflecting current climate and projections for 2070. Suitable but 

inaccessible areas south of the Sofia River are depicted in bright pink.



 

 

 

 
Figure 5.3. The east coast of Madagascar and A.) current climate models of suitable area for Lepilemur microdon, which is projected 

to increase as climate change progresses, and for geographic neighbor L. betsileo. B.) Projected habitat for both species in 2070.

8
4
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