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ABSTRACT

Optimal Auctions and Pricing

with Limited Information

Mohammed-Amine Allouah

Information availability plays a fundemantal role in decision-making for business

operations. The present dissertation aims to develop frameworks and algorithms in

order to guide a decision-maker in environments with limited information. In particu-

lar, in the first part, we study the fundemantal problem of designing optimal auctions

while relaxing the widely used assumption of common prior. We are able to char-

acterize (near-)optimal mechanisms and associated performance. In the second part

of the dissertation, we focus on data-driven pricing in the low sample regime. More

precisely, we study the fundemantal problem of a seller pricing a product based on

historical information consisting of one sample of the willingness-to-pay distribution.

By drawing connection with the statistical theory of reliability, we propose a novel ap-

proach, using dynamic programming, to characterize near-optimal data-driven pricing

algorithms and their performance. In the last part of the dissertation, we delve into

the detailed practical operations of the online display advertising marketplace from

an information structure perspective. In particular, we analyze the tactical role of

intermediaries within this marketplace and their impact on the value chain. In turn,

we make the case that under some market conditions, there is a potential for Pareto

improvement by adjusting the role of these intermediaries.
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Introduction

Decision-making is embedded at all strategic and operational levels of organizations.

With the widespread emergence of technology during the last decades, there is an un-

precedented need for theory and frameworks to guide real-time decisions in a scalable

fashion.

One key building block of any decision-making task is the information available to

the decision-maker. Depending on the availability and the structure of the informa-

tion at hand, the approach might differ significantly. For example, in the e-commerce

industry, if a seller has tailored information about the preferences of her customers,

then she might be able to segment these customers and make the decision to present

personalized offers to each segment. More broadly, given the information gathered,

a decision-maker needs to be armed with suitable algorithms, tools and models that

would guide her toward the “best” decision. Such a need was at the inception of many

streams of literature across different research communities. In particular, some main

streams of literature across Operations Research, Economics, Computer Science have

led different approaches to tackle this need. For instance, some streams develop differ-

ent stochastic models and optimization frameworks in order to guide a decision maker.

Some other key streams study models in order to analyze the market equilibrium and

strategic behavior of agents that a decision maker might face. Also, some important

streams analyze and design algorithms and study approximation solutions in order

to help a decision maker approach the best decision. Moreover, within the machine

learning community, there has been recently significant developments of algorithms
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in order to train models from existing data to learn to guide decision-making.

Despite the difference in approaches and interests, at the heart of these commu-

nities lays some fundemantal questions: How to model the information available to

the decision-maker? Given this model of available information, how to find the best

decision? As a result, what insights or recommendations the decision maker needs to

follow? What is the impact of such decisions on the other agents?

There has been a massive body of research trying to address these questions across

different communities with important questions still open. This present dissertation

aims to contribute to this stream, focusing on the design of selling mechanisms under

various information structure: a decision maker, aka a seller, with limited informa-

tion, aims to design a selling mechanism to sell goods to buyers. In the first two

chapters, we analyze the case when the seller has limited information about the pro-

cess generating the buyers’ values for the goods. Especially, in the first, chapter, we

focus on characterizing the optimal selling mechanism in the presence of competi-

tion under limited information. In the second chapter, we study a complementary

direction, where there is no competition and the seller has some available data to

design the optimal selling mechanism. In the last chapter, we analyze a model where

the information structure is impacted by the market structure rather than the lack

of knowledge of buyers’ characteristics. More precisely, we study the impact of the

presence of intermediaries between the seller and buyers on the information structure

and ultimately on the welfare of each agents involved.

Chapter 1. We will be analyzing the questions raised under the lens of auctions.

In other words, the central question of the first chapter is what is the optimal auction

or optimal decision of an auctioneer, when she has limited information about the

preferences of potential buyers.

The motivation of this question is rooted around different practical and theoretical
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reasons. Indeed, auctions have been a central tool in selling goods and services across

history. Nowadays, auctions are used in many of industries. Governments for instance

use auction to sell public goods such as spectrum licenses. Auctions are also used to

sell unique and historical art pieces. Given the rise of technology and new industries,

auctions have gained even more prevalence. In online advertisement, there are millions

of auctions taking place daily.

This importance of auctions has led different communities such as Operations

Research, Economics and Computer Science to elaborate and analyze models, algo-

rithms and tools in order to support decision making in auctions. Although there

has been extensive work on designing auctions under different settings, a large body

of the literature is anchored around a crucial informational assumption: that of a

common prior. In more details, this assumption means that the seller as wells as the

buyers share some common prior on the process generating the values for the object.

Since the seminal works of Vickrey (1961) and Myerson (1981), this assumption

has allowed many subsequent works to derive tractable models and solutions for

the optimal auctions. However, at the same time, this assumption might create a

potential disconnect between practice and theory. Indeed, there are many settings

in which this assumption can be clearly violated. For instance, in the case of a

brand new product, it is not clear how a decision maker can determine the exact

process generating the values of buyers. Another setting is motivated by emerging

privacy policies. In particular, even though an auctioneer can have access to large

data-sets, then due to regulation constraints, she might be constrained not to use

the full data when fine tuning the auction. More generally, the buyers themselves

might not know apriori their own value and might need to go through some complex

process to determine the value of the auctioned good, and in turn it is not clear how

an auctioneer might make assumptions on such a complex process. Hence, practice

motivates the need to relax this assumption.
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This need to relax this assumption to have more “realistic” models is typically

referred as the “Wilson doctrine” (Wilson, 1987). Motivated by this doctrine, a recent

stream of literature at the frontier of Operations Research, Economics and Computer

Science has emerged to close this gap. This first chapter contributes to this growing

stream.

In particular, we study the design of optimal prior-independent selling mecha-

nisms: buyers do not have any information about their competitors and the seller

does not know the distribution of values, but only knows a general class it belongs

to. Anchored on the canonical model of two buyers with independent and identically

distributed values, we analyze a competitive ratio objective, in which the seller at-

tempts to optimize the worst-case fraction of revenues garnered compared to those

of an oracle with knowledge of the distribution. We characterize properties of op-

timal mechanisms, and in turn establish fundamental impossibility results through

upper bounds on the maximin ratio. By also deriving lower bounds on the maximin

ratio, we are able to crisply characterize the optimal performance for a spectrum of

families of distributions. In particular, our results imply that a second price auction

is an optimal mechanism when the seller only knows that the distribution of buyers

has a monotone non-decreasing hazard rate, and guarantees at least 71.53% of oracle

revenues against any distribution within this class. Furthermore, a second price auc-

tion is near-optimal when the class of admissible distributions is that of those with

non-decreasing virtual value function (aka regular). Under this class, it guarantees a

fraction of 50% of oracle revenues and no mechanism can guarantee more than 55.6%.

Finally, we extend our results to the case of an unknown and adversarially selected

number of buyers and show that the same bounds above hold.

Chapter 2. In the first chapter, we have focused on the case in which the decision

maker does not use any side or historical information. In the second chapter, we
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study a complementary setting. Especially, under limited information, we assume

that the decision maker has access to some side information or historical data and

facing only one buyer, meaning there is no competition among buyers. In other

words, we study the canonical model of one seller selling one indivisible good based

on existing data. This falls under the data-driven pricing. The main problem we

are interested by is how to design the optimal algorithm that maps available data to

the pricing decision. This stream has also received attention from different angles.

Some streams have studied the sample complexity in order to achieve a near-optimal

revenue compared to the oracle monopoly revenue under full information. The online

learning community has studied this problem in a dynamic fashion. The focus of

that stream is to minimize the regret by optimally trading-off between exploration

and exploitation. In both of the last streams, the mode of analysis is asymptotic,

meaning either the seller has a large amount of data or has a long time horizon to

learn. In the recent years, there has been an interest on developing models in finite

sample regimes.

Chapter 2 focuses on the regime where the seller has only access to one obser-

vation. In more details, we analyze the following fundamental problem: how should

a decision-maker optimally price based on a single sample of the willingness-to-pay

(WTP) of customers. The decision-maker’s objective is to select a general pricing

policy with maximum competitive ratio when the WTP distribution is only known to

belong to some broad set. We characterize optimal performance across a spectrum of

non-parametric families of distributions, α-strongly regular distributions, two notable

special cases being regular and monotone hazard rate distributions. We develop a

general approach to obtain structural lower and upper bounds on the maximin ratio

characterized by novel dynamic programming value functions. In turn, we develop

a tractable procedure to obtain near-optimal mechanisms and near-worst-case distri-

butions, allowing to characterize the maximin ratio for all values of α in [0, 1].
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Chapter 3. In the last two chapters, we have analyzed how the optimal auctions

and pricing are impacted by the available information to the seller. Sometimes, the

information availability is also impacted by the structure of the market. In particular,

the presence of intermediaries between a seller and potential buyers might distort

the information flow. In this third chapter, we study how does the structure of a

marketplace, especially the presence of intermediaries, impact the information and

the performance of different agents within this market? This is particularly motivated

by the marketplace of Online Display Advertising.

Online Advertising is becoming one of the most prominent channels for companies

and brands to reach their customers. In particular, with the advance of the technol-

ogy, online advertising allows these companies to target in real time their customers.

This selling mechanism is typically referred as Real-time Bidding. In more details,

while a user is loading a page with an advertisement banner, advertisers can now

participate in auctions and send in real time their bids based on the available infor-

mation about this user. This high flexibility of targeting has attracted over the last

decades lot of interest in industry and has created a value chain of different actors.

Especially, there has been the emergence of intermediaries between the advertisers

and publishers across the value chain. In other words, advertisers can go through

some intermediaries that will manage the bidding process on their behalf.

In practice, these intermediaries allow to reduce the cost of participating in this

real-time bidding process for advertisers because of the economy of scale and the

need of technical expertise. But at the same time, these intermediaries impact the

information structure within this marketplace given the fact that they may manage

couple of advertisers simultaneously. In turn, intermediaries, when bidding on behalf

of their customers, strategize to maximize some internal objective and may only

submit a single bid to limit competition on a given item. In this chapter, we propose

a framework to analyze the implications of such a campaign coordination role by
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intermediaries, taking as a benchmark the case in which each intermediary would

manage the bidding process of each advertiser it represents independently of other

buyers, a case we refer to as multi-bidding. We show that the adoption of multi-

bidding by all intermediaries would lead to an increase in both the social welfare and

the seller’s revenues. Furthermore, we analyze the impact on buyers in two regimes:

i.) without competition among intermediaries and ii.) with competition, with a large

number of intermediaries and buyers in an appropriate asymptotic regime. Quite

remarkably, we establish that multi-bidding would also lead to an increase in the

buyers’ side surplus under a very broad set of market characteristics. In particular,

as long as the average number of buyers interested in an item is moderate and the

coefficient of variation of buyers’ values is not too small, moving from coordinated

campaigns to multi-bidding leads to a Pareto improvement in the value chain.

In each chapter, we discuss in more details, the contributions and the positioning

within the existing literature, as well as potential extensions.
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Chapter 1

Prior-Independent Optimal Auctions

1.1 Introduction

Auctions have been run for many centuries and play today a prominent role in ap-

plications as diverse as e-commerce, spectrum allocation, antique sales, online adver-

tising and procurement. In turn, auction design has been a central topic of research

at the intersection of Operations Research, Computer Science and Economics. The

monograph of Krishna (2009) provides an overview of auction theory and Talluri and

Van Ryzin (2006) details many revenue management applications. While there is an

elegant theory of auction design dating back to the seminal works of, e.g., Vickrey

(1961) and Myerson (1981), the classical theory of auctions is anchored around a fun-

damental assumption: that of a common prior. This assumption stipulates that the

seller as well as the buyers share the same common prior on the process generating

the values for the object. In turn, this assumption leads naturally to the buyers using

this common prior to play equilibrium bidding strategies, forming a Bayesian Nash

equilibrium; and the seller, anticipating such equilibrium behavior, can optimize the

selling mechanism based on this prior. This poses a challenge in practice as such a

prior is not available and it is not clear how the seller’s belief and the buyers’ beliefs

about values should coincide, or how they would be formed correctly. In turn, a

fundamental question from practical and theoretical perspectives pertains to how to

relax such an assumption and what performance can one expect in its absence. This

fundamental need to move beyond mechanisms that rely on priors is often referred
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to as the “Wilson doctrine” (Wilson, 1987). Relaxing the assumption on common

priors leads to a trade-off between information about the distribution of values and

performance which motivate the following questions. What is the maximum fraction

of revenues that one can guarantee compared to an oracle that would have access to

the underlying distribution of values? How does this fraction vary as a function of

the information available about the underlying distribution? These are the central

questions that this chapter aims to address.

In the present chapter, we aim to address the above in the canonical private value

model of a seller trying to sell a good to two bidders with independent and identi-

cally distributed values1. While mechanism design is very well understood for this

classical model under the common prior assumption, it remains challenging in prior-

independent environments. (We review shortly in detail related work.) As soon as

one relaxes the common prior assumption, a first question is how to formulate the

problem. On the one hand, the common prior affected bidding behavior of buyers.

On the other hand, it also affects the seller’s mechanism optimization problem. We

maintain the fact that values are drawn from an underlying distribution (the true

distribution of values), as in the classical framework, but we do not assume knowl-

edge of this distribution by the buyers or the seller. In turn, one needs to specify

the information available to the buyers and the resulting equilibrium, as well as the

seller’s knowledge and feasible mechanisms, and these two are tightly interconnected.

For the buyers’ side, we will adopt a detail-free approach and assume that buyers’

optimal decisions are independent of any information about the other buyers’ val-

ues. For that, we will restrict attention to mechanisms for which truth-telling is a

dominant strategy, so-called Dominant Strategy Incentive Compatible (DSIC) mech-

anisms. Against such a mechanism, buyers bidding their values represent a dominant

1We extend the results to the case in which the number of buyers can be more than two, and is
picked adversarially by nature.
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strategy Nash Equilibrium. On the seller’s side, we will assume that the seller is

free to select among such mechanisms. Given that the seller does not know the true

distribution of values, we will adopt a maximin ratio approach. We model our prob-

lem as a game between nature and the seller. The seller first selects a mechanism in

the class of DSIC mechanisms. Then, nature may counter such a mechanism with

any distribution for buyers’ values from a given class of admissible distributions. In

particular, the resulting equilibrium induced by the mechanism is dominant strat-

egy incentive compatible and the only knowledge the seller is endowed with is the

class of admissible distributions. For any distribution and mechanism, we measure

the performance of the seller through the ratio of the revenue she garners using this

mechanism over the optimal revenue she would have obtained with access to the exact

knowledge of the distribution. We refer to the latter as the oracle revenues. The ratio

is always between 0 and 1 and the higher the ratio, the better the performance. We

focus on a maximin setting in which the seller attempts to maximize the worst-case

performance ratio (or competitive ratio) over the class of admissible distributions.

Our results provide a characterization of the maximin ratio across a spectrum of

distribution classes. In particular, we consider three main classes of distributions. It

is possible to show that against the general class of distributions, no DSIC mechanism

can guarantee a positive fraction of oracle revenues and hence there is a need to study

how different structures of the underlying distributions affect the type of performance

that can be achieved. Beyond the general class of distributions, we will consider a

class which is central to mechanism design (including under the common prior as-

sumption), that of so-called regular distributions. These are distributions that admit

increasing virtual value function. In addition to the class of regular distributions,

we will also analyze the subclass of monotone increasing hazard rate distributions

(MHR) (also often referred to as increasing failure rate distributions), which contains

many distributions often assumed in practice and in the literature (e.g., uniform,
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exponential, . . . ).

Summary of contributions. Before laying out our main results, it is important

to highlight the nature of the problem we study. On the one hand, given a particu-

lar mechanism, nature selects the worst possible distributions in the non-parametric

classes above. So nature when minimizing the ratio of revenues compared to ora-

cle performance, is solving a non-convex infinite dimensional optimization problem.

In turn, fully understanding the worst-case performance of a specific mechanism is

highly non-trivial and not necessarily tractable. On the other hand, the seller, when

optimizing over DSIC mechanisms, is also solving an infinite dimensional problem

(over allocation and payment mappings). An important contribution of the present

chapter is to propose an approach to tackle this class of problems and characterize

optimal or near-optimal performance.

For regular distributions, it is known that a second price auction2 guarantees, in

the worst case scenario, 50% of the oracle revenues, as articulated in Dhangwatno-

tai et al. (2015) through a reinterpretation of the results in Bulow and Klemperer

(1996). Notably, Fu et al. (2015) recently establish that a second price auction is not

prior-independent optimal. In particular, they exhibit a mechanism that randomizes

between a second price auction and an auction that inflates the second value and

establish that it ensures a competitive ratio of at least 51.2%. Table 1.1 below sum-

marizes the best known lower bounds on the maximin ratios as well as implications of

our results. While there is a lower bound on the maximin ratio against regular distri-

butions, there is no notion of what performance one should aim at, and how good are

the prior-independent auctions previously proposed. In the popular subclass of MHR

distributions, to the best of our knowledge, no lower or upper bounds were available

in the literature.

2Here and throughout the chapter, whenever we refer to a second price auction, unless otherwise
noted, it is implicitly assumed that there is no reserve price.
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A first significant layer of contribution pertains to the methodological domain and

allows to obtain the first impossibility results for any mechanism in a broad class of

DSIC mechanisms. We mainly focus on the case with two buyers, which intuitively

is the case with most tension while relaxing the common prior assumption, and then

establish that the bounds obtained for the case of two buyers also apply to the case

when the number of buyers is adversarially selected (Section 1.7.1).

We first develop families of tractable upper bounds on the maximin ratio. These

are obtained through successive dimensionality reductions on the space of mechanisms

and the space of distributions. We show that, under some mild regularity assumption

on the mechanisms, an optimal mechanism is scale-free (see Theorem 3.2). In other

words, it is sufficient to focus on mechanisms that only rely on the ratio of values of

buyers. In turn, leveraging properties of the allocations, we are able to “discretize”

the mechanisms without loss of optimality, and reduce the description of mechanisms

to a countable set (Proposition 1.1).

Given the result above, we then introduce general subsets of distributions. These

abstract subsets are developed in order to, on the one hand, being “hard” for any

mechanism, and on the other hand allow to further reduce the complexity of the set

of mechanisms under consideration, leading to a new generic upper bound (Theo-

rem 1.2). By customizing this bound through appropriate concrete classes and lever-

aging additional properties of the classes, we obtain parametric upper bounds for the

maximin ratio against regular distributions (Theorem 1.3) and MHR distributions

(Theorem 1.4). In turn, these upper bounds lead to the first impossibility results for

general randomized mechanisms against these two central classes of distributions. No

DSIC mechanism considered can guarantee more than 55.6% of oracle performance

against all regular distributions, and no DSIC mechanism considered can guarantee

more than 71.53% of oracle performance against all regular distributions.

These results have a significant implication for regular distributions. They imply
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that the mechanisms proposed to date in the literature are in fact near-optimal. A

second price auction is within 5.6% of optimal and the mechanism proposed in (Fu

et al., 2015) is within 4.4% of optimal. These impossibility results allow to quantify

the quality of any mechanism compared to optimal performance in the class of DSIC

mechanisms.

As a second layer of contribution, we also develop lower bounds on the max-

imin ratio. We develop a series of generic parametric lower bounds (Proposition 1.4,

Proposition 1.5) and in turn obtain lower bounds on the worst-case performance of

specific mechanisms. For the case of regular distributions, we establish that there

exists a mechanism that guarantees at least 51.9%, improving the best known lower

bound and further closing the gap with the upper bound we have developed. For the

case of MHR distributions, we establish that a particular mechanism, a second price

auction, guarantees at least 71.53% of oracle performance.

While we improve the lower bound on regular distributions, the significant impli-

cation of the lower bounds is for the MHR class. The first implication stems from

comparing it to the novel upper bound we derive for regular distributions. In particu-

lar, our results show how refined class information (from regular to MHR) translates

into improved performance. Against MHR distributions, even with only two buyers,

a seller is guaranteed 71.53% of oracle performance. The second implication is even

more notable. The conjunction of our upper and lower bounds imply that a second

price auction is actually optimal against MHR distributions and that we have exactly

characterized the maximin ratio for that class. Overall, the results above provide a

crisp characterization of the maximin ratio as information regarding distributions is

refined.

In addition, the results shed light on the trade-off that an auctioneer might face

between running an auction with limited information and the cost of collecting addi-

tional information to approach the oracle optimal revenue. Our results highlight how
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this trade-off might be affected by the nature of distributions that a decision-maker

might face, e.g., if distributions are more “concentrated” (as is the case for MHR).

From a different angle, in practice, there is also often a trade-off between revenue

maximization and social efficiency. In the canonical class studied, our results highlight

that, in a prior-independent environment, a second price auction is near optimal for

the wide class of regular distributions and optimal for the large subclass of MHR

distributions. As such, when limited information about the underlying distribution

of values is available, a simple, practical and socially efficient mechanism appears

“sufficient” from a revenue maximization perspective. Hence, there is a weak trade-off

between revenue maximization and social efficiency when facing regular distributions

and no trade-off when facing MHR distributions.

Maximin ratio
Lower Bounds Upper Bounds

Distributions class best known this chapter this chapter best known

Regular 51.2% 51.9% 55.6% n/a

MHR n/a 71.53% 71.53% n/a

Table 1.1: Maximin Performance. The table contrasts known results in the exist-
ing literature with the bounds derived obtained through the analysis in the present
chapter.

The remainder of the chapter. After relating our chapter to the existing litera-

ture, we formulate our problem and set up our framework for two buyers. In Section

1.3, we establish that one may restrict attention to scale-free mechanisms and charac-

terize the maximin ratio for general distributions. In Section 1.4, we derive a family

of upper bounds on the maximin ratio against subsets of regular distributions. In

Section 1.5, we investigate the case of regular distributions while the subset of MHR

distributions is the focus of Section 1.6. Then, in Section 1.7, we extend our results

to the case in which the number of buyers is arbitrary and adversarially selected, and
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discuss future directions. All proofs are presented in the appendix in the electronic

companion.

1.1.1 Literature review

Our work relates to a rich literature on auction design. Since the seminal work

Myerson (1981) that characterized the structure of an optimal revenue maximizing

mechanism when the seller has access to the exact distributions of values of buyers,

the research community has raised early on the need of designing auctions that do not

rely on such informational assumptions, often referred to as the “Wilson doctrine”

(Wilson, 1987). Our work belongs to the stream that aims to relax such assumptions.

There are different layers of informational assumptions that have been analyzed in

the literature. Some layers relate to the seller’s knowledge about the distributions

of values of buyers or the number of participating buyers. Other layers relate to

the knowledge of buyers about their own values as well as the values or number of

competitors.

When relaxing informational assumptions in auction design, there are two im-

plications. On the one hand, the information affects the type of mechanisms that

the seller can adopt. On the other hand, the information also affects the type of

equilibrium played by the competing buyers.

In terms of the assumption that each buyer makes on the value generating pro-

cess of his competitors, various alternatives have been analyzed. One extreme is to

assume that the buyers’ know their competitors distributions of values. In this case,

Caillaud and Robert (2005) show that the seller could exploit this and recover the

optimal oracle revenue even if she does not have access to the distributions of values

through a dynamic mechanism. A first relaxation is to assume that the buyers know

some ambiguity sets characterizing the distributions, see Bose et al. (2006), Chiesa

et al. (2015) and Koçyiğit et al. (2017). A further relaxation is to assume that buyers
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do not have access to any information about values of other buyers, this is typically

done by assuming Dominant Strategy Incentive Compatible (DSIC) mechanisms. We

refer the reader to Chung and Ely (2007) that gives a formal foundation of such an

assumption by showing that a dominant strategy mechanism always dominates in

terms of revenue any other mechanisms when the buyers’ beliefs about the distribu-

tion of their competitor is selected adversarially. Our work aims to make minimum

assumptions on both the seller and the buyer’s side, and in turn we focus on DSIC

mechanisms. Furthermore, we do not make any assumption on the buyers knowledge

on the number of competitors.

Another line of work relaxes the knowledge of the buyers regarding her true value,

by assuming that the buyer observes some signal related to the true value. We

refer the reader to, e.g., Bergemann et al. (2016) that aims to characterize optimal

auctions when there is uncertainty on the information structure of the buyers. See

also Bergemann and Morris (2013) for a broader overview. We would like to note that

in this line of work, it is typically assumed that the seller knows the distribution of

values of buyers. Compared to our work, we assume that the seller does not know the

distribution of values of buyers but knows the information structure of the buyers.

Furthermore, the DSIC assumption also implies that the equilibrium of buyers does

not depend on the underlying distributions of values. The buyers’ strategies also

does not depend on the number of buyers. In that regard, we also note that another

dimension of information on the side of buyers pertains to the number of buyers.

Harstad et al. (1990) and Levin and Ozdenoren (2004) relax this, while maintaining

knowledge of the distribution of values.

Once information on the buyers’ side is formulated, the next dimension relates to

the layer of information that the seller has. In that regard, there are at a high level

three main classes of information structures assumed on the knowledge of distribu-

tions of values of buyers: non-parametric canonical classes of distributions (Dhang-
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watnotai et al., 2015), statistics of the distributions (Azar et al., 2013), uncertainty

sets on the distributions (Koçyiğit et al., 2017) or the values (Bandi and Bertsimas,

2014).

Finally, a fundamental other dimension pertains to how performance of a mech-

anism is measured in such an environment. One approach, typically referred to as

“robust” is to use the absolute worst-case performance based on the information

available, see, e.g., Carrasco et al. (2015), Bandi and Bertsimas (2014) and Koçyiğit

et al. (2017). Another approach is to measure worst-case performance relative to

a full information benchmark, see, e.g., Neeman (2003) and Dhangwatnotai et al.

(2015). A more detailed discussion on various candidate objectives can be found in

Borodin and El-Yaniv (1998). Our work relates to the last branch of literature since

we characterize the optimal competitive ratio when the seller has only access to the

class of distributions of buyers. The ratio we analyze is unitless and has a physical

interpretation in terms of the fraction of oracle performance one can obtain compared

to an oracle.3

In this stream, an important set of results pertain to “existence” of mechanisms

with good guarantees. Looking at different classes of distributions Neeman (2003)

derive an early result and establishes a guarantee for the English auction, compared

to the social optimum. In particular, the author characterizes tight lower bounds as a

function of some summary statistics, on the performance of an English auction with

or without reserve price. The setting we focus on is the independently and identi-

cally distributed values case. In this setting, if the seller knows that the distribution

of values of buyers belongs to the regular class of distributions, then an implication

of classical results of Bulow and Klemperer (1996), based on the interpretation of

3It is worthwhile noting here that against the classes we consider (regular and mhr), a worst-
case absolute performance analysis would lead to a value of zero and all feasible mechanisms would
be optimal. The relative benchmark approach allows to control for the environment and derive
guarantees on broader sets of distributions.
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Dhangwatnotai et al. (2015), is that there exists a particular mechanism, namely a

second price auction, that extracts 50% of the oracle revenue had one known the

true distribution, against any regular distribution. Recently, Fu et al. (2015) show

that a second price auction is suboptimal against regular distributions by exhibiting

a randomized mechanism that has a higher guarantee than a second price auction. In

the present work, we focus on optimizing over a very broad class of DSIC mechanisms

and in turn establish fundamental impossibility results for any such mechanism. The

results complement the literature by not only characterizing what is achievable by

a particular mechanism but also characterizing optimal performance through upper

bounds on the maximin ratio. Furthermore, by focusing on the widely considered

subclass of mhr distributions, we establish that a second price auction is actually the

exact optimal mechanism in that case. This also sheds light on the role of random-

ization and its relationship to the class of distributions one faces.

In the case of multiple goods, Goldberg et al. (2006) introduce and analyze the

competitive ratio, where the worst case is taken with respect to any possible inputs;

and then establish that some auctions are competitive compared to a fixed pricing

benchmark. In more general environments Dhangwatnotai et al. (2015) leverages the

connection to Bulow and Klemperer (1996) to propose a mechanism that has a non-

trivial performance even in general allocation environments. Relatedly, Sivan and

Syrgkanis (2013) extend a result of Bulow and Klemperer (1996) to the case in which

the distributions of values of buyers are a convex combination of regular distributions.

A related stream of literature focuses on alternative information about the distri-

bution. For instance, Azar and Micali (2012) and Azar et al. (2013) propose mech-

anisms in cases in which the seller has access to some summary statistics of the

distributions of values of buyers (mean or median). They exhibit mechanisms that

have performance guarantees compared to an oracle using these. In the present chap-

ter, we do not assume that the seller has access to some summary statistics and we
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focus on the optimal mechanism among a broad set of randomized mechanisms.

In our chapter, we focus on a static model with limited information. Other ex-

amples of directions analyzed pertain to the amount information available or the

dynamics. Cole and Roughgarden (2014) analyze the size of the sample that the

seller needs to observe from past data in order to design a near optimal mechanism.

Dynamic models have also been considered in the literature; see, e.g., Bose and Daripa

(2009) for a dynamic model under ambiguity. We refer the reader to review chap-

ters of Hartline and Roughgarden (2009), Hartline (2013), and Carroll (2018) for a

broader overview.

Another information assumption from seller’s perspective that the literature has

tried to relax is the knowledge of the exact number of buyers. For instance, while

maintaining the common prior assumption, McAfee and McMillan (1987) characterize

the optimal auctions when the seller has some prior on the number of buyers and Levin

and Ozdenoren (2004) study the seller’s best response when the number of buyers is

picked adversarially from some ambiguity set.

Our work also relates to pricing under limited information. Monopoly pricing with

unknown demand information was analyzed with various considerations in Bergemann

and Schlag (2008) for a minimax regret objective and in Eren and Maglaras (2010)

for the competitive ratio. Caldentey et al. (2016) extends this line of work to account

for the presence of strategic customers. Cohen et al. (2016) derive performance guar-

antees for pricing heuristics when the firm has some knowledge about the demand

shut-down price. More recently, Chen et al. (2017) study robust single item and bun-

dle pricing based on summary statistics of buyers’ values distribution. Leveraging

existing data, Huang et al. (2015) focus on pricing based on a finite sample of values.

There is also an extensive body of work on joint learning and pricing with various in-

formational structures. We refer the reader to Kleinberg and Leighton (2003), Keskin

and Zeevi (2014) and Besbes and Zeevi (2015) for various informational structures,
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as well as to Besbes and Zeevi (2009), Araman and Caldentey (2009) Farias and

Van Roy (2010), and Wang et al. (2014) for inventory considerations in such pricing

problems. den Boer (2015a) provides a survey of this line of work.

1.2 Problem formulation

We consider a seller offering an indivisible object for sale to two buyers. For now,

we focus on the two buyers case since it is the case with minimum competition,

and isolates the impact of relaxing the common prior assumption. We return to the

case of more than two buyers in Section 1.7. The two buyers have values identically

and independently distributed according to a distribution F with support SF in

[0,∞). We will denote by F (·) := 1−F (·) the complementary cumulative distribution

function (ccdf) of values.

We assume that the seller does not know exactly the distribution of values of

buyers, however she knows that it belongs to a particular class. The goal of the seller

is to design a mechanism that maximizes her revenue given the limited information

about the underlying distribution of values of buyers.

Seller’s problem. We model our problem as a game between the seller and nature,

in which the seller selects a prior-independent selling mechanism and then nature may

counter such a mechanism with any distribution of buyers’ values from an admissible

class.

A selling mechanism m = (x, t) is characterized by an allocation mapping x and

a payment mapping t, where x : R2 → [0, 1]2 and t : R2 → R. In particular, given

reports b1, b2 by buyers 1 and 2, a mechanism would allocate the good to buyer i with

probability xi(bi, b−i) and the expected payment of buyer i is ti(bi, b−i). Here, and in

all that follows, the notation (vi, v−i) is the vector that has value vi at position i and

v−i at the other position.
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We do not make any assumption on the buyer’s knowledge of the distribution.

Given this, we will restrict attention to dominant strategy incentive compatible

(DSIC) mechanisms. For such mechanisms, buyers need not make any assumptions

about the underlying distribution of values and will find it optimal to report their

true value, independently of the realization of value of the other buyers.4

More formally, we focus on the class of mechanisms m = (x, t) that satisfy the

following constraints

vi xi(vi, v−i)− ti(vi, v−i) ≥ 0, for all i and vi, v−i in R2
+ (IR)

vi xi(vi, v−i)− ti(vi, v−i) ≥ vi xi(v̂i, v−i)− ti(v̂i, v−i), for all i and vi, v−i, v̂i in R3
+,

(IC)∑
i=1,2

xi(vi, v−i) ≤ 1, for all v in R2
+. (AC)

The first constraint (IR) captures ex-post individual rationality and states that

buyer i should be willing to participate compared to his outside option, normalized to

zero. The second constraint (IC) captures ex-post incentive compatibility and imposes

that a buyer should always find it optimal to report his true value, independently

of the value of the other buyer. Finally, (AC) is a constraint on the allocation

probabilities that captures that the seller can allocate at most one good. Note here

that we allow for randomized mechanisms by the seller. In addition, we will introduce

a regularity assumption on mechanisms. We denote by TV (xi, [a, b] × [c, d]) the

Arzelà total variation of the allocations on the set [a, b]× [c, d].5 We assume that the

allocations around zero have finite Arzelà total variation. In particular, we will be

focusing on the following set of mechanisms.

M =

{
(x, t) : (IR), (IC), (AC) and max

i=1,2
{TV (xi, [0, ε]

2)} <∞ for some ε > 0

}
.(1.1)

4We also refer the reader to Chung and Ely (2007) for an in-depth discussion of DSIC mecha-
nisms.

5We recall the definition of Arzelà total variation in Section 1.8.
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This class of mechanisms is a rich one, containing for example the second price auction

with a deterministic reserve price and most mechanisms typically considered in the

literature. The assumption on the boundedness of the total variation of allocations

around zero is technical in nature6 but could also be seen as a way to avoid potentially

overly complex mechanisms that might be hard to implement in practice, given the

high burden this would put on the buyers.7

The revenue of the seller using a feasible mechanism m inM, if nature is selecting

a distribution F , is given by

EF

[
2∑
i=1

ti(vi, v−i)

]
.

We will use the subscript F to emphasize that the expectation is taken with respect

to that distribution.

The challenge in the present chapter is that the seller does not know the distri-

bution F and as a result cannot evaluate the objective above to select a “good” or

optimal mechanism. We next introduce a performance benchmark and pose a proper

objective for the seller for this environment with unknown distribution of values.

Oracle benchmark. The benchmark we will use, opt(F ), is the maximal perfor-

mance one could achieve with knowledge of the exact distribution of buyers’ values

when selecting mechanisms in M. More formally,

opt(F ) := sup
m∈M

EF

[
2∑
i=1

ti(vi, v−i)

]
. (1.2)

Seller’s objective. For an arbitrary mechanism in M, we define its performance

against a distribution F such that opt(F ) > 0 as follows

R(m,F ) =
EF
[∑2

i=1 ti(vi, v−i)
]

opt(F )
.

6While it is needed for the proofs, we conjecture that it does not imply a loss of optimality.

7In recent years, there has been growing literature advocating for simple mechanisms (see for
example Hartline and Roughgarden (2009), Daskalakis and Pierrakos (2011)). In that sense, the
mechanisms inM could be thought as a formalization of some broad class of “simple” mechanisms.
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In other words, R(m,F ) represents the fraction of the oracle benchmark performance

the mechanism is able to achieve. The ratio R(m,F ) always lies in [0, 1] and the

closest the ratio is to 1 the better the performance of the mechanism.

Let G denote the set of distributions with support included in [0,∞) with finite

and non-zero expectation, i.e.,

G = {F : [0,∞)→ [0, 1] : F is a cdf and 0 < EF [v] <∞} . (1.3)

Note that EF [v] > 0 if only if opt(F ) > 0. Hence the ratio R(m,F ) is well defined

for any element of the class G.

The objective of the present chapter is to characterize for classes F ⊆ G the

maximin ratio

R(M,F ) = sup
m∈M

inf
F∈F

R(m,F ). (1.4)

In other words, we are interested in designing mechanisms that admit “good” perfor-

mance independently of the underlying distribution of values. In particular, the value

R(M,F ) represents the maximal fraction of oracle revenues (obtained with knowl-

edge of the distribution of values) that can be recovered when nature may select any

distribution in F .

Definition 1.1. A cdf F is said to be regular on its support SF if it admits a density

f and if the corresponding virtual value function φF : v 7→ v−(1−F (v))/f(v) is non-

decreasing over SF . We will further say that the distribution has monotone hazard

rate (MHR) if v 7→ f(v)/(1− F (v)) is non-decreasing over SF .

The class of regular distributions is very widely used and plays a central role in

mechanism design (with knowledge of the distribution of buyers) and the class of

monotone hazard rate distributions is a wide subclass of the set of regular distri-

bution that encompasses all distributions with log-concave densities (e.g., uniform,
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exponential, . . . ). In particular, beyond G, we will analyze the two subclasses of

distributions

Freg = {F ∈ G : F is regular}

Fmhr = {F ∈ G : F has monotone non-decreasing hazard rate}

It is clear that we have Fmhr ⊂ Freg ⊂ G and hence

R(M,G) ≤ R(M,Freg) ≤ R(M,Fmhr).

In the coming sections, we will be interested in quantifying the three quantities above

and characterizing optimal or near-optimal mechanisms.

Review of some known results. While, to the best of our knowledge, the prob-

lem above has not been addressed in the literature, some mechanisms m have been

exhibited and their performance characterized. A classical mechanism in M is the

second price auction mspa defined by

xi(vi, v−i) = 1{vi > v−i}+ .5 1{vi = v−i}

and

ti(vi, v−i) = v−i 1{vi > v−i}+ .5 v−i 1{vi = v−i}.

The results of Bulow and Klemperer (1996) and their reinterpretation for the per-

formance of the second price auction (see, e.g., Dhangwatnotai et al. (2015)) imply

that

inf
F∈Freg

R(mspa, F ) = 50%,

Recently, Fu et al. (2015) exhibited a mechanism m that randomizes between the

identity and a mapping that inflates the second highest value and established that

inf
F∈Freg

R(m,F ) ≥ 51.2%.
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The results above imply a lower bound on R(M,Freg) through specific mechanisms

but leave open the question of optimal performance. In the present chapter, we aim

at characterizing the maximin ratio (2.2) and corresponding near-optimal solutions

for Freg, but also for G and Fmhr.

1.3 Optimality of Scale-Free Mechanisms

The goal of this section is to establish that one may reduce the space of mechanisms

to a simpler class, without loss of optimality. In particular, we will establish that one

may restrict attention to scale-free mechanisms (as defined later in Eq.(1.5)).

We first state a classical result from the mechanism design literature (see Myerson

(1981)) that links payments and allocations for any incentive compatible mechanism.

Lemma 1.1. A mechanism (x, t) verifies (IC) if and only if xi(·, v−i) is non-decreasing

for any v−i ≥ 0 and the payment mapping satisfies

ti(vi, v−i) = vi xi(vi, v−i)−
∫ vi

0

xi(l, v−i)dl + ti(0, v−i), for all vi, v−i ≥ 0.

Note that by the constraint (IR), ti(0, v−i) ≤ 0. Hence, we can restrict attention

to mechanisms that set ti(0, v−i) = 0 without loss of optimality. With some abuse

of notation, we impose this additional constraint in the class of mechanisms M. In

other words, given (IC), we can restrict attention to allocations that are monotone

in own values and payments are fully determined by the allocations.

Before stating the main result of this section, let us now introduce some definitions

pertaining to scaled distributions as well as a scale invariant classes of distributions.

Scaled distributions. For any distribution F in G, and θ > 0, we define Fθ(·) :=

F (θ ·) to be the θ-scaled distribution.
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Definition 1.2 (scale invariance). A class of distributions F ⊆ G is said to be

invariant under scaling if for any element F in F , the distribution Fθ also belongs to

F for any θ > 0.

Note that G, Freg and Fmhr are all scale invariant. The scale invariance of G

follows from the fact that EFθ [v] = θ−1 EF [v]. For Fmhr and Freg, note that for any

F , we have for all v in its support,

fθ(v)

1− Fθ(v)
= θ

f(θv)

1− F (θv)
and v − 1− Fθ(v)

fθ(v)
=

1

θ

(
θv − 1− F (θv)

f(θv)

)
.

Hence, the MHR and regularity properties of any distributions Fθ are inherited from

the original distribution F .

Scale-free mechanisms. Recall the class of mechanisms M introduced in (1.1).

We next introduce the subclass of scale-free mechanismsMsf ⊂M defined as follows

Msf = {m ∈M : xi(θvi, θv−i) = xi(vi, v−i) for all v1, v2 ≥ 0, θ > 0, i = 1, 2} .(1.5)

This subclass of mechanisms have the property that the allocations do not depend

on the scale of values. With these definitions in place, we may now state the main

result of this section.

Theorem 1.1. For any class F ⊆ G that is invariant under scaling, when solving

(2.2), it is sufficient to consider scale-free mechanisms. Namely, we have

R(Msf ,F ) = R(M,F ).

This result establishes that we can restrict attention to the scale-free mecha-

nisms without loss of optimality. Intuitively, an optimal prior independent mecha-

nism should not depend on the scale of buyers’ values. If that were the case, then

nature could leverage it to significantly affect the performance of the seller. The proof

builds on this idea by evaluating a mechanism inM against a particular distribution
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and noting that the performance of this mechanism against any scaled version of the

distribution serves as an upper bound on the worst-case performance of this mech-

anism. (For this step, we leverage the boundedness of the total variation of feasible

mechanisms around zero.) In turn, by “swapping” the scale from the distribution to

the mechanism, we establish that the limiting performance of the mechanism against

a scaled version of the distribution as the scale goes to ∞ can be reinterpreted as

the performance of a scale-free mechanism against the original distribution. In other

words, we obtain that there exists a scale-free mechanism that performs at least as

well (in the worst-case) as the original mechanism.

The reduction to scale-free mechanisms significantly simplifies the set of mecha-

nisms under consideration and we will leverage this property to further reduce the

space of mechanisms in upcoming sections when we consider regular distributions

and its subsets. Before that, we directly leverage Theorem 3.2 to characterize the

maximin ratio under arbitrary distributions G, defined in (1.3).

In the previous literature, it was alluded to that without restrictions the seller can-

not have any guarantee, Dhangwatnotai et al. (2015). For completeness, we formalize

this here in our specific context.

Lemma 1.2. No mechanism in M can achieve a positive max-min ratio against the

general class G, namely,

R(M,G) = 0.

Lemma 1.2 shows that it is impossible for the seller to design a mechanism that

achieves positive worst-case performance against arbitrary distributions. The proof

relies on two main ideas. Given Theorem 3.2, one may restrict attention to scale-free

mechanisms. In turn, we establish that if the value of a buyer is zero then necessarily,

a scale-free mechanism charges zero to the other buyer, independently of its value.
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Given this, we establish that the performance of any scale-free mechanism when facing

the family of Bernoulli distribution of values can be arbitrarily small.

In the rest of the chapter, we focus on characterizing the maximin ratio for the

set of regular distributions Freg and the set of monotone hazard rate distributions

Fmhr.

1.4 Maximin Ratio for Subsets of Regular

Distributions

In this section, we focus on the development of a family of upper bounds onR(M,F )

for any F that is a subset of the class of regular distributions Freg. In particular,

the analysis of this section applies to both Freg and Fmhr and we will leverage these

results in Sections 1.5 and 1.6, when we specialize the analysis to those classes.

In Section 1.4.1, we establish that one may, without loss of optimality restrict

attention to a simpler set of mechanisms that are characterized by a sequence of

thresholds. In Section 1.4.2, we focus on a simplification of the set of distributions

against which one competes, which leads to a further simplification of the set of

mechanisms one needs to consider. The conjunction of results leads to a generic

family of upper bounds on R(M,F ) presented in Theorem 1.2.

Oracle Performance for regular distributions. Note that when the distribution

of values F is known and is regular, it is a standard result (cf. Myerson (1981)) that

an optimal mechanism is given by a second price auction with reserve price given by

rF := φ−1
F (0), and in turn

opt(F ) = EF [φF (max{v1, v2})1{max{v1, v2} ≥ rF}] .

In particular, the optimal oracle mechanism depends on the knowledge of the distri-

bution through the reserve price. In what follows, we denote by qF = 1− F (rF ) the
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quantile associated with rF .

1.4.1 From general mechanisms to discrete threshold

mechanisms

Our first result consists of a reduction of the set of mechanisms that one needs to

focus on when the seller faces a subset of regular distributions. To that end, we

introduce the subset of mechanisms M′
sf defined by

M′
sf = {m ∈Msf : for i = 1, 2,

xi(vi, v−i) =
N∑
n=1

1

N
1{vi > γn v−i}1{vi 6= v−i}+ c 1{vi = v−i},

for some N ≥ 1, γ ∈ RN and c ∈ [0, 1/2] }.

Note first that this set M′
sf is nonempty. For example, the second price auction

(without reserve price) belongs to this set. (To see that, one can take N = 1, γ1 = 1

and c = 1/2.). This set represents, a subset of the scale-free mechanisms Msf that

consists of mechanisms that are constructed using a randomization over prices to be

paid by the buyer that is a linear transformation of the value of the competitor.8 The

next result characterizes the performance of mechanisms in M′
sf .

Proposition 1.1. For any subclass F of the set of regular distributions Freg, it is

sufficient to focus on mechanisms in M′
sf , i.e.,

R(M′
sf ,F ) = R(Msf ,F ).

Proposition 1.1 shows that without loss of optimality we can focus on mechanisms

that belong to M′
sf . Furthermore, note that this result allows one to move from a

8Note also that this set captures explicitly the probability of allocation to a buyer when the
value of buyers are equal. While seemingly unimportant in the class Freg since ties happen with
probability zero, this explicit inclusion of the case of ties will play an important role when we
will be dealing with the limiting performance of a mechanism against an appropriate sequence of
distributions which converges weakly to a point outside of Freg (see Proposition 1.3).
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(potentially intractable) functional space of mechanisms, Msf , to the union of finite

dimensional vector spaces, M′
sf .

The result relies on three key ingredients. We first leverage the monotonicity of

the allocations (cf. Lemma 1.1) to establish that one may approximate those from

below by a combination of step functions, where the steps are chosen so that the

new allocation stays appropriately close to the original allocation. This leads to a

new mechanism in M′
sf . Then, leveraging the scale-free property of mechanisms

and the fact that the distributions are regular, we can establish that necessarily the

performance (in terms of the ratio of revenues achieved compared the optimal oracle

revenues) of the new mechanism is necessarily appropriately close to that of the

original mechanism.

1.4.2 Family of Upper Bounds on R(M,F )

Having reduced the strategies of the seller to a more tractable space by discretizing

the allocation function, we next reduce the complexity of the space of distribution

functions under consideration F ⊂ Freg. To that end, we introduce the subclass of

distributions

W :=

{
F ∈ G : vF <∞, F admits a density on [vF , vF ) and sup

v∈[vF ,vF )

φF (v) ≤ 0

}
,

where for any distribution F ∈ G, we denote by vF = inf{x : x ∈ SF} and vF =

sup{x : x ∈ SF}. In particular, W denotes the class of distributions with bounded

support, that have non-positive virtual value function on the interior of the support

and a potential mass at the upper limit of the support. Note that this set is clearly

non-empty and we will consider explicit examples in Sections 1.5 and 1.6. Moreover,

note also that for each element of W , the expectation of the virtual value function is

not necessarily equal to the expected revenue. The expected revenue is given by

EF [ti(vi, v−i)] =

∫ v̄

0

φi(vi)x̄i(vi)f(vi)dvi + F̄ (v̄)

(
v̄x̄i(v̄)−

∫ v̄

0

x̄i(s)ds

)
.
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where x̄i(vi) =
∫∞

0
xi(vi, u)f(u) du is the interim allocation to buyer i. In addition to

the “classical” first term on the RHS, a second term, driven by the mass at v̄, is also

present.

Note that the payment of any mechanism inM′
sf takes the form (cf. Lemma A.2-

5)

ti(vi, v−i) =
N∑
k=1

1

N
γk v−i 1{vi > γk v−i}1{vi 6= v−i}+ c′ v−i 1{vi = v−i},

for some appropriate c′. In particular, when evaluating the expected revenues of

a mechanism in M′
sf , one needs to consider terms of the form EF [v21{v1 > αv2}].

The next result establish that one may characterize the performance of terms of

EF [v21{v1 > αv2}], not only for elements of Freg, but also for limits of such elements.

Lemma 1.3. Suppose that a sequence {Fn : n ≥ 1} in Freg, with supn≥1{v̄Fn} <∞,

converges weakly to a distribution F where the latter has at most a discontinuity at

vF <∞. Then, for any α ≥ 0,

lim
n↑∞

EFn [v21{v1 > αv2}] =


EF [v21{v1 > αv2}] , if α 6= 1,

1
2
EF [min(v1, v2)] if α = 1,

(1.6)

This result is established by leveraging the weak convergence in conjunction with

the regularity of the distributions Fn’s. This result is a key step in linking the

performance against elements of W to that against F .

Proposition 1.2. Fix a non-empty subset F of Freg and a non-empty subset W ′ of

W . Suppose that for any element of W ′, there exists a sequence of distributions in

F that weakly converges to that element. Then we have

R(M′
sf ,F ) ≤ R(M′

sf ,W ′).

In other words, whileW ′ is not a subset of Freg, the result states that the maximin

ratio against the class of distributions W ′ upper bounds the maximin ratio against
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the class Freg. The proof of this result leverages the fact that we are working under

the tractable space of mechanisms M′
sf in conjunction with the limits established

Lemma 1.3. Indeed, the worst-case performance of any mechanism in M′
sf against

F is upper bounded by that against any element of a sequence Fn that converges

weakly to an element F of W ′. In the proof, we characterize an asymptotic upper

bound on the performance of any mechanism inM′
sf against Fn. Then, we establish

that the asymptotic upper bound may be expressed as the performance of a new

mechanism in M′
sf when facing the distribution corresponding to the weak limit F .

Subclass of optimal mechanisms against W . Next, we exploit the structure of

the distributions in W to further simplify the maximin ratio against subclasses W ′

of W , R(M′
sf ,W ′). Let us introduce the following subset of mechanisms of Msf :

Mmax
sf = {m ∈Msf : for i = 1, 2,

xi(vi, v−i) =
N∑
n=1

1

N
1{vi > γn v−i}1{vi 6= v−i}+ c 1{vi = v−i},

for some N ≥ 1, γ ∈ ([1,∞))N and c ∈ [0, 1/2] }.

Note thatMmax
sf is a subset ofM′

sf and is the set of mechanisms inM′

sf that never

allocate to the minimum value of buyers (when both values are different).

Proposition 1.3. For any subset of distributions W ′ of W ,

R(M′
sf ,W ′) = R(Mmax

sf ,W ′).

This proposition shows that without loss of optimality, when facing distributions

inW , one can focus on mechanisms that never allocate to the minimum value (if the

latter is different from the maximum value). The intuition behind the result is that

under the class of distributionsW , the seller would like to set a reserve price equal to

the upper bound of the support if she would know the distribution (cf. Lemma A.2-4).

In addition, allocating to a buyer with value strictly below this reserve price yields
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a negative contribution to the revenue of the seller (cf. Myerson (1981)). When the

seller sees two values, while she does not know the distribution, she knows that it

belongs toW , and hence she still knows that both values are weakly below the optimal

oracle reserve price. In turn, the seller never wants to allocate to the minimum value

(if it is different from the maximum value).

We are now ready to put together all earlier results and state the main result of

this section.

Theorem 1.2. Fix a non-empty scale invariant subset F of Freg and a non-empty

subset W ′ of W . Suppose that for any element of W ′, there exists a sequence of

distributions in F that weakly converges to that element. Then we have

R(M,F ) ≤ R(Mmax
sf ,W ′).

This result provides a family of upper bounds on the maximin ratio associated

with any subset of the set of regular distributions, and in particular applies to Fmhr

and Freg. In Section 1.5, we apply this upper bound to F = Freg and in Section 1.6,

we apply it to F = Fmhr, where for each we select a suitable set W ′.

1.5 Maximin Ratio for Regular Distributions

In this section, we develop upper and lower bounds on R(M,Freg), leading to a

narrow interval to which R(M,Freg) belongs.

1.5.1 Upper Bound

Theorem 1.3 (Upper bound for regular distributions). The maximin ratioR(M,Freg)

is upper bounded as follows

R(M,Freg) ≤ sup
N≥1

sup
γ∈[1,+∞)N

inf
q∈(0,1)

N − |I+|
N

1

2− q
+
|I+|
N

q

2− q
+
∑
k∈I+

1

N
ψ (γk, q) ,
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where I+ = {k ∈ [1, N ] : γk > 1} and

ψ (γk, q) := 2
γk

γk − 1

1

1− q
1

2− q

[
1− q

1− q + γkq
− 1

γk − 1
ln

(
γk

1− q + γkq

)]
.

Theorem 1.3 provides a fundamental limit on the performance of any mechanism

in M. At a high level, the upper bound captures the complexity of the space of

mechanisms through a vector γ ∈ [1,+∞)N and the space of distributions has been

distilled down to a scalar q ∈ [0, 1]. This is in stark contrast with the initial space of

mechanisms M and the space of regular distributions. The sharpness of this upper

bound will be apparent in the coming subsections, when we evaluate it and compare

it to a lower bound.

The upper bound in Theorem 1.3 also explicitly highlights the tension associated

with the design of a prior-free mechanism. On the one hand, one may want to put

weight on values γk = 1 to guarantee performance in line with a second price auction,

which hedges against deterministic values. This corresponds to the first term in the

upper bound, i.e. 1/(2− q). On the other hand, putting weight on terms γk > 1 may

yield higher performance if nature selects a distribution with a heavy tail.

Key ideas underlying the proof of Theorem 1.3. The first step in the proof

is to derive an upper bound on R(M,Freg) through Theorem 1.2. Given the latter,

the key then is to identify an appropriate subset of distributionWreg that verifies the

conditions of Theorem 1.2 and the rest of the proof is organized around identifying

such a subset and explicitly deriving an upper bound on the worst-case performance

of any mechanism in Mmax
sf against Wreg.

The family of distributions for which the revenue curve in the quantile space is a

triangle have the following expression

Fa(v) =


1− 1

v+1
, if v < a,

1 , if v ≥ a,

(1.7)
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for some a ≥ 0 and has received attention in the literature in various contexts. If we

introduce the following class of distribution Wreg := {Fa : a > 0}, then one can show

that each element in this class of distribution Wreg can be approached by a sequence

of elements of Freg (cf. Lemma B.6-2). As a result, R(Mmax
sf ,Wreg) is a valid upper

bound for R(M,Freg). The proof then relies on deriving an analytical expression for

R(Mmax
sf ,Wreg).

1.5.2 Lower Bound

We have just established an upper bound on R(M,Freg). We next focus on deriving

a lower bound.

Proposition 1.4 (Lower bound for regular distributions). Consider any mechanism

m = (x, t) in Mmax
sf and the corresponding parameters N ≥ 1, γ ∈ [1,∞)N and

c ∈ [0, 1/2]. Let I+ = {k ∈ [1, N ] : γk > 1}. If |I+|/N ≤ 1/3, then the performance

of such a mechanism in the presence of two buyers against a distribution F with

optimal quantile qF is lower bounded as follows

R(m,F ) ≥ N − |I+|
N

1

2− qF
+
∑
k∈I+

1

N
ψ(γk, qF ),

where

ψ(γ, q) :=
γ

γ − 1

(
1− q − 1

γ − 1
ln

[
γ

1 + (γ − 1)q

])
1

1− q
− 2γq

1 + (γ − 1) q

1

2− q
.

The proposition above gives an explicit lower bound for any mechanism inMmax
sf

which satisfies |I+|/N ≤ 1/3, i.e., which does not inflate the second price more than

a third of the time. In particular, the lower bound admits the same structure as the

function characterizing the upper bound up to a correction factor. In particular, it is

possible to see that the difference between the upper and lower bounds goes to zero

as q approaches zero.
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Comparison to the lower bound obtained in Fu et al. (2015). The authors

study a mechanism that randomizes between a second price auction and an inflation

factor of γ which can be viewed as a special instance of the mechanisms in Mmax
sf .

For γ = 2, and using the second price auction with probability 1−p and inflation γ

with probability p, one may establish that the lower bound obtained in Proposition 1.4

is tighter and higher by a factor of

p
2 q2

F (1− qF )

(1 + qF ) (2− qF )
.

The key drivers of the improvement are dual. A first improvement stems from bound-

ing in a dependent fashion the contributions of the second price auction (γk = 1) and

that of the inflation mechanisms (γk > 1). A second improvement stems from ob-

taining a tighter bound on the contributions of high γk terms.

1.5.3 Characterization of R(M,Freg)

We next evaluate numerically values for upper and lower bounds on R(M,Freg).

Using Theorem 1.3, we derive an upper bound on the maximin ratio. To that end,

we fix q = 0.17 For such a value, we have 1/(2 − q) = 54.64%. Furthermore, the

function ζ : (1,+∞)→ R defined by

ζ(γ) = 2 γ
1

1− q
1

2− q

[
1

γ − 1

1− q
1− q + γq

− 1

(γ − 1)2 ln

[
γ

1 + (γ − 1)q

]]
+

q

2− q

reaches its maximum around γ = 1.5 and its maximal value is 55.59%. From the

above, we deduce that maximin ratio is upper bounded by 55.59%.

Applying Proposition 1.4, we evaluate numerically the lower bound by taking

γ = (1, 1, 1, 1, 2), and a vector q of values from 0 to 1 with a step 0.001. We find that

the lower bound is 51.9%. We conclude that

51.9% ≤ R(M,Freg) ≤ 55.59%.
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In other words, we have characterized the maximin ratio up to less than 4%. There

is an important implication of the results above. In the face of regular distributions,

while randomization is helpful compared to a second price auction (that guarantees

50% of oracle revenues), the extent to which one may improve performance is limited

to at most 5.59%. An interpretation of our results is that the second price auction is

near-optimal in environments with unknown regular distributions.

1.6 Maximin Ratio for MHR Distributions

In this section, we focus on the maximin ratio when nature can only select distri-

butions in Fmhr, which is a subset of the regular class of distributions Freg. In

other words, the seller now has more information about the distribution of buyers,

compared to the setting analyzed in Section 1.5.

1.6.1 Upper Bound

Theorem 1.4 (Upper bound for MHR distributions). The maximin ratioR(M,Fmhr)

is upper bounded as follows

R(M,Fmhr) ≤ inf
q∈[e−1,1]

1− q2

2 q (2− q) ln(1/q)
.

Theorem 1.4 provides a fundamental limit on the performance of any mechanism

against distributions in Fmhr. Quite notably, this upper bound comes in quasi-closed

form and takes a significantly much simpler form than for the broader class of regular

distributions. We next highlight the main ideas in the proof and highlight the role of

the MHR knowledge in the derivation of this upper bound.

The proof of this result follows initially the same structure as that of of Theo-

rem 1.3. As earlier, we leverage Theorem 1.2 but now, we use a different familyWmhr,

suited to the increasing hazard rate family of distributions Fmhr. In particular, we
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define Wmhr to be the set of distribution F parametrized by a ≥ b > 0 such that

Fa,b(v) =


1− exp

(
− v
a

)
, if v < b,

1 , if v ≥ b.

This family is constructed by truncating the exponential family distribution. This

family is rich enough to cover the range of all possible optimal oracle quantiles (qF )

of MHR distributions. We establish that any such element can be “approached” by a

sequence in Fmhr and in turn, R(Mmax
sf ,Wmhr) is an upper bound on R(M,Fmhr).

The role of the MHR assumption comes into play when we evaluate the performance of

any mechanism inMmax
sf againstWmhr. In this context, we are able to establish that

the optimal performance against Wmhr is given by that of a second price auction. In

particular, it is suboptimal to randomize the allocation when facing the familyWmhr.

1.6.2 Lower Bound

We next establish a lower bound on R(M,Fmhr) by lower bounding the performance

of a second price auction.

It is worthwhile to note that a first coarse lower bound may be readily obtained

from existing results by simply noting that the oracle optimal quantile qF cannot be

less than e−1 for MHR distributions; see, e.g., Hartline et al. (2008). Combining this

with the lower bound on the performance of a second price auction of 1/(2 − qF )

obtained in Fu et al. (2015) for regular distributions, one readily obtains that

R(mspa, F ) ≥ 1

2− e−1
≈ 61.2%.

One can already see that a significantly higher performance is possible with the

additional knowledge that the distributions belong to the MHR class. Next, we

establish a sharp lower bound on R(mspa, F ).
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Proposition 1.5 (Lower bound for MHR distributions). For any F in Fmhr, the

performance of the second price auction in the presence of two buyers is bounded

below as follows

R(mspa, F ) ≥ 1

2

1− q2
F

qF (2− qF )(− ln(qF ))
,

where qF = 1− F (rF ) is the oracle optimal quantile.

The key idea underlying this result is to leverage the structural properties that

the MHR distribution imposes on the the structure of the revenue curve in the quan-

tile space. In particular, leveraging a single crossing property between the ccdf of

any MHR distribution and any exponential tail developed in the reliability theory

literature (Barlow and Proschan, 1975), we establish a lower bound on the ccdf of

the distribution of any MHR distribution through that of a particular exponential

distribution. This leads to a lower bound on the revenue curve in the quantile space,

ultimately leading to the bound above.

We discuss the implications of this result next.

1.6.3 Optimality of Second Price Auction and

Characterization of R(M,Fmhr)

We are now ready to state the main result of Section 1.6, which follows from the two

earlier results.

Theorem 1.5 (Optimality of second price auction). The second price auction is

optimal in M when facing two buyers with MHR distributions. Namely,

inf
F∈Fmhr

R(mspa, F ) = R(M,Fmhr).

Furthermore

R(M,Fmhr) = inf
q∈[e−1,1]

1− q2

2 q (2− q) ln(1/q)
≈ 71.53%.
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We conclude that the second price auction and an element in Wmhr represent a

(quasi) saddle point for the maximin ratio R(M,Fmhr).9 Theorem 1.5 provides an

exact characterization of the maximin ratio and the corresponding optimal prior-free

auction.

Interestingly, while randomization of the allocation helped the seller counter na-

ture when facing regular distributions, such randomization does not help anymore

when facing the subclass of monotone hazard rate distributions. It is quite notable

that this simple mechanism, a second price auction, which is also efficient, is actually

optimal in this environment.

The result above also quantifies the value of additional knowledge about the dis-

tributions. If a seller knows that the distribution is MHR, then she gains at least

71.53% − 55.59% = 15.94% in guaranteed performance (compared to an oracle).

Indeed, MHR distributions have limited variability as measured, e.g., through the

coefficient of variation. The latter is bounded by 1 (Barlow and Proschan, 1975)

whereas it is unbounded for regular distributions. With such limited variability, a

second price auction appears “sufficient.”

1.7 Extensions and Concluding Remarks

We have analyzed the problem of optimally selling one indivisible good to two sym-

metric and independent buyers when one relaxes the common prior assumption. For

that, we look at the model where the buyers are not assumed to know any informa-

tion about the other buyers and the seller does not know the exact distribution. We

characterize the maximin ratio for a broad subclass of DSIC mechanisms against the

classes of regular and MHR distributions. We refer back the reader to Table 1.1 in

Section 1.1 for a summary of some implications of our results. While we have done

9Technically speaking, it is not exactly a saddle point given that the elements of Wmhr do not
belong to Fmhr.
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so while focusing on the case of two buyers, we establish next that the bounds we

have derived apply to the case when the number of buyers is selected adversarially.

1.7.1 Extension to the case of an adversarially selected

number of buyers

In this section, we will show that our bounds apply to the case in which the number

of buyers is arbitrary but adversarially selected.

We assume as earlier that the seller does not know exactly the distribution of

values of buyers but knows it belongs to some class of distribution F in the general

class of distributions G. Moreover, we assume also that the seller does not know the

exact the number of buyers K ≥ 2. We model the seller’s problem as a game between

the seller and nature, where the seller will first pick a collection of prior-independent

mechanisms contingent on the number of bids K, and then nature picks both the

number of buyers and their distribution of values from some class.

A seller’s mechanism is now a set of allocations and payment functions con-

tingent on the number of bids received K ≥ 2. The seller will apply a mecha-

nism characterized by an allocation mapping xK and a payment mapping tK , where

xK : RK → [0, 1]K and tK : RK → RK . We focus on DSIC mechanisms that verify

for any K ≥ 2

vi x
K
i (vi,v−i)− tKi (vi,v−i) ≥ 0, for all i and vi,v−i in RK

+ (IR-K)

vi x
K
i (v)− tKi (v) ≥ vi x

K
i (v̂i,v−i)− tKi (v̂i,v−i), for all i and v, v̂i in RK+2

+ , (IC-K)

xK(vi,v−i) belongs to ∆K , for all vi,v−i in RK
+ , (AC-K)

where ∆K is the probability simplex of RK . These constraints are similar to those

introduced earlier (see (IR), (IC) and (AC)).

More formally, the seller’s strategy is a collection of mechanisms from the set M̃,
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where

M̃ =

{(
xK , tK

)
K≥2

:
(
xK , tK

)
satisfies (IR-K), (IC-K), (AC-K)

and max
i=1,2
{TV (x2

i , [0, ε]
2)} <∞ for some ε > 0

}
.

Similarly, we define the oracle benchmark as well as the performance of each

mechanism contingent on having K buyers, by

optK(F ) := sup
m∈M

EF

[
K∑
i=1

tKi (vi,v−i)

]
and RK(m,F ) =

EF
[∑K

i=1 t
K
i (vi,v−i)

]
optK(F )

.

In the case of an arbitrary but adversarially selected number of buyers, the ob-

jective of the seller is now given by

R̃(M̃,F ) = sup
m∈M̃

inf
K≥2

inf
F∈F

RK(m,F ).

Next, we state the main result of this section.

Proposition 1.6. 1. The maximin ratio for the regular class of distributions ver-

ifies

51.9% ≤ R̃(M̃,Fref ) ≤ 55.6%.

2. A second price auction is an optimal mechanism when facing MHR distribu-

tions. Furthermore,

R̃(M̃,Fmhr) = inf
F∈Fmhr

R2(mspa, F ) ≈ 71.53%.

Note that a priori it is not clear that the case of two buyers is the worst case,

since the oracle benchmark also varies with the number of buyers. In the proof

of Proposition 1.6, we show formally that the smallest maximin ratio is achieved

when only two buyers participate in the auction. The proof of these results rely

fundamentally on the case of two buyers studied earlier in the chapter in conjunction

of some known results in the literature. Hence, when nature can pick adversarially

any number of buyers K ≥ 2, a second price auction is still near-optimal against

regular distributions and is actually optimal against MHR distributions.
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1.7.2 Future directions

A direct and complementary direction would be to characterize the maximin ratio as

a function of the number of buyers, when this number cannot be selected adversarially

by nature.

Also, in our analysis we have mainly focused on the regular and MHR classes,

which are subsets of the α-strongly regular class of distributions; see Ewerhart (2013),

Cole and Roughgarden (2014), Cole and Rao (2015) and Schweizer and Szech (2016)

for more details about this class of distributions. The results developed in Section 1.4

for the upper bounds have the potential to be applied to any subclass of the α-

strongly regular class where α would be a parameter that would capture the degree

of knowledge of the seller. As such, an interesting direction is to characterize the

maximin ratio as a function of the degree of knowledge of the seller.

Another way to incorporate the knowledge of the seller is to assume that she has

access to extra information such as the moments and a potential research question is

how one could leverage such additional information to improve the performance and

what is the structure of optimal mechanisms in such cases. (We refer the reader to,

e.g., Azar et al. (2013) that study deterministic mechanisms that incorporate such

information.)

More generally, our work tries to relax the common prior assumption and we have

focused on the canonical setting of one indivisible good and symmetric buyers with

independent values that are regular. There are various generalizations that naturally

emerge. For example, it would be interesting to see if one can develop results of a

similar nature when the class of distribution is a “structured” irregular class (see, e.g.,

Sivan and Syrgkanis (2013) for an example of such a subclass). Similarly, developing

parallel lower and upper bounds on the maximin ratio for general environments that

would allow, e.g., for correlation among values or asymmetric buyers is a promising

direction.
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1.8 Additional Notes: Auxiliary Definition

Here, we recall the definition of the Arzelà total variation definition for functions of

two variables; see, e.g., Clarkson and Adams (1933).

Definition 1.3. The Arzelà total variation of a mapping h : [a, b] × [c, d] → R is

given by

TV (h, [a, b]× [c, d]) := sup
N≥1

sup
u∈[a,b]N

u1≤...≤uN

sup
v∈[c,d]N

v1≤...≤vN

N∑
j=1

|h(uj+1, vj+1)− h(uj, vj)| .

Furthermore, h is said to have finite total variation in [a, b] × [c, d] if TV (h, [a, b] ×

[c, d]) <∞.

44



Chapter 2

Sample-Based Optimal Pricing

2.1 Introduction

Pricing has constituted and continues to be a central decision in a host of indus-

tries, ranging from retail to hospitality. In turn, this practical importance has lead

academic communities in Operations Research, Economics and Computer Science

to develop frameworks and algorithm classes for pricing. At the heart of pricing

lies a fundamental informational dimension regarding the level of knowledge about

customers’ willingness-to-pay (WTP).

At an extreme side of the spectrum, if a seller knows the exact WTP of a customer,

then pricing is “easy”. If the seller wishes to maximize revenues, the seller may

just charge the customer its WTP. Of course, in practice this rarely happens and

alternative informational formulations are needed. A first relaxation of the above

setting would be that the seller only knows the distribution from which the WTP is

drawn. In this case, one may optimize pricing to maximize the expected revenues,

leading to the classical setting, which is a building block to a significant number of

studies across disciplines. However, such a construct of WTP distribution is rarely

available in practice, leading to the basic questions: How should one price without

knowledge of the WTP distribution? How should existing data be used to refine

pricing decisions? In this regard, there are many levels of information that one could

adopt. Ideally, one would like to understand, given a particular amount of data,

what should be an optimal pricing policy. This is an incredibly challenging problem
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from a theoretical perspective. In turn, towards better understanding this question,

a first interesting regime is the large data regime in which one may have access

to a large number of past observations. In this case, one key question pertains to

sample complexity: how many samples would one need to guarantee near-optimal

performance. Another regime of interest is the low-data regime, in which the firm

has access to very limited information. This regime has dual motivations. On the one

hand, in practice, many goods are sold in customer segments with very limited data.

On the other hand, from a theoretical perspective, this regime may allow to build

from the bottom up towards a general theory for an arbitrary and finite number of

samples. The present chapter focuses on this regime.

In more detail, we focus on a seller optimizing her pricing strategy when selling one

good to a buyer. The seller does not know the WTP distribution of the buyer. She

only knows that it belongs to some broad non-parametric class and in addition, has

access to one sample drawn from the same distribution. In particular, the question

the seller faces is: what is the optimal pricing strategy given the data available? We

adopt a maximin ratio formulation in which performance is measured in comparison

to the best the seller could have obtained with complete information on the WTP

distribution. The seller optimizes over a broad set of randomized pricing strategies

and nature may select any distribution in the class of interest to counter a pricing

strategy. We are interested in characterizing the maximin ratio, as well as in deriving

insights on the value of the sample and on the structure of near-optimal strategies.

The fundamental problem above, while simple and elegant to state, is seemingly

intractable. On the one hand, the set of possible pricing strategies is infinite di-

mensional and so is the set of possible underlying WTP distributions. Our main

contributions lie in developing a novel approach to characterize the structure of near-

optimal mechanisms and near-worst case families, and in turn providing crisp upper

and lower bounds on the maximin ratio, leading to a characterization of the maximin
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ratio over a spectrum of distribution classes. In particular, we focus on α-strongly

regular distributions (α-SR) introduced in Cole and Roughgarden (2014). Two spe-

cial cases are regular distributions (α = 0) and non-decreasing monotone hazard rate

(MHR) distributions (α = 1). The latter two classes include a broad set of distri-

butions that are typically assumed in the pricing and mechanism design literature,

including in settings in which the WTP distribution is known.

The present chapter develops a novel and unified approach to characterize jointly

the structure of near optimal pricing mechanisms, as well as the structure near-

worst case distributions. As a result, the chapter also provides a series of tight

upper and lower bounds on the maximin ratio for α-SR distributions. As highlighted

earlier, the seller problem is highly intractable. As a first reduction, we show that

without loss of optimality, the seller can focus on pricing strategies that randomize

over posted prices that are multiplicative of the sample. This reduction enables one to

focus on simpler mechanisms, characterized by a single distribution. Leveraging this

reduction, we focus on jointly deriving lower bounds as well as impossibility results

on the worst-case performance of an optimal mechanism. Note that for a specific

mechanism, characterizing worst-case performance is still a priori intractable since

nature’s problem is over an infinite dimensional and non-convex set of distributions.

One key contribution resides in establishing a lower bound on performance that only

depends on a finite number of local quantiles around the optimal one (as opposed to

the entire distribution). This is enabled by a succession of structural results on “local”

contributions to performance (Proposition 2.2), leading initially to a lower bound

that only depends on a countable number of quantiles of the distribution. In turn, a

fundamental next step is a dimensionality reduction of the lower bound dependence

on the distribution through the development of novel and judiciously constructed

dynamic programming recursions (Proposition 2.3 and Proposition 2.4) that capture

worst-case performance only through a small number of quantiles. In turn, we derive
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an alternative maximin problem that lower bounds the initial problem, and in this

alternative problem, nature’s problem is now tractable (Theorem 2.1, Theorem 2.2).

Interestingly, the derivation of lower bounds also highlights “hard” cases. Next,

by leveraging such families that are meant to counter all mechanisms, we develop

impossibility results in the form of an alternative maximin problem that is tractable

(Proposition 2.5, Proposition 2.6). Ultimately, as an implication of our results, we

obtain for any α ∈ [0, 1], a lower and upper bound on the maximin ratio but also a

near-optimal pricing mechanism and near-worst case distribution. Figure 2.1 depicts

the lower and upper bounds we obtain for various values of α. The figure highlights

the tightness of our approach. In particular, for all values of α tested, the maximin

ratio is characterized up to 1.3%.

0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

0.65

0.7

α

B
ou

n
d
s

on
R

(P
,F

α
)

Figure 2.1: Visualization of the results. The figure summarizes the upper and
lower bounds on the maximin ratio R(P ,Fα) for a grid of values of α. We refer the
reader to Table 2.1 for more details.

As a first notable special case for our approach, we develop a new lower bound

for regular distributions (α = 0). The best known lower bound, established in Fu

et al. (2015), is 50% + 5 × 10−9. Our unified approach yields a new lower bound

of 50.1%. In addition to improving on the best known lower bound, we provide the
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first impossibility results for randomized mechanisms against regular distributions.

We establish that no mechanism can achieve a better performance than 51.1%. This

impossibility result shows that there is very little room for improvement against reg-

ular distributions. In particular, a simple mechanism that just posts the sample is

known to achieve a worst-case performance of 50% (Huang et al., 2015). Our impos-

sibility result implies the near-optimality of this simple mechanism against regular

distributions.

As a second notable special case of our approach, we develop a lower bound

for randomized mechanisms when nature picks from the MHR class of distributions.

The best known lower bound for deterministic mechanisms, developed in Huang et al.

(2015), is 58.9%. Our approach yields a lower bound of 63.5% through a deterministic

mechanism. Also, we provide the first impossibility result for randomized mechanisms

against MHR distributions. We show that no mechanism can achieve a higher com-

petitive ratio than 64.8%. The conjunction of the lower and upper bounds show how

tight the results are.

Furthermore, our approach can be applied to any value of α, leading to the first

α-dependent lower bounds and impossibility results for this class of problems. Across

all values of α tested, the lower and upper bounds are within 1.3% of each other.

This highlights the quality of the bounds developed but also allows to guarantee the

near-optimality of the pricing strategies used in the derivation of the lower bounds.

In turn, our results suggest that deterministic mechanisms are near-optimal, with

losses of at most 1.3%, compared to randomized strategies. For many values of α,

the gap is typically smaller than that can can be as small as 0.3%.

We believe that the analysis and results may have implications in other applica-

tions and also lay some foundation to analyze maximin ratio for the case in which

the seller has access to an arbitrary number of samples.

Literature review. While there is a vast literature on pricing across disciplines,
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our work relates to the efforts towards relaxing the knowledge of the seller.

A first way to relax informational assumptions is to assume full lack of knowledge

of the WTP distribution. Two early studies in that regard are Bergemann and Schlag

(2008) and Eren and Maglaras (2010). These study pricing in cases when the seller

does not know the underlying distribution of values but only knows the support. In

the former, the setting is static, whereas in the latter it is dynamic. These characterize

the optimal pricing policy and performance as a function of the support. Building on

the framework above in terms of informational assumptions, Caldentey et al. (2016)

characterize optimal pricing strategies in a dynamic setting where myopic or strategic

customers arrive over time. An intermediary setting is studied in Cohen et al. (2016)

in which the seller knows the maximum willingness to pay of customers but does not

know the exact demand function. In contrast to these, we study a setting in which

the seller has access to some information (a sample), and allow distributions with

arbitrary support.

An alternative regime that has received attention is the “large” sample regime,

with a first focal question pertaining to sample complexity. How many samples are

needed to achieve a particular level of performance compared to an oracle with full

information. Huang et al. (2015) have shown that a polynomial number of samples

is sufficient to achieve near optimal revenue. In a different line of work, a series of

studies look at how to collect and incorporate data on the fly for pricing purposes, in

which case an exploration-exploitation trade-off emerges. See Kleinberg and Leighton

(2003), Besbes and Zeevi (2009) and Broder and Rusmevichientong (2012), as well

as den Boer (2015b) for a review.

In the above, the mode of analysis is asymptotic, understanding performance as

the number of samples or time periods grows large. More closely related to our work

are recent studies that focus on a regime in between the large sample regime and the

no information regime. Huang et al. (2015) and Fu et al. (2015) both analyze the case
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when a seller has access to only one sample. Huang et al. (2015) study the perfor-

mance of deterministic pricing strategies. They establish that post your sample is an

optimal strategy (among deterministic ones) against regular distributions and pro-

vide lower and upper bounds on the performance of deterministic pricing mechanisms

against MHR distributions. In parallel, Fu et al. (2015) have exhibited a randomized

pricing mechanism that “beats” any deterministic mechanisms against the regular

class of distributions, highlighting the need to expand the set of pricing strategies

one focuses on. Building on those chapters, we study the broader class of randomized

pricing mechanisms, and develop a unified general framework for α-strongly regular

distributions, covering as special cases regular and MHR distributions. This general

framework allows to develop novel impossibility results, to significantly improve ex-

isting lower bounds but also to develop new α-dependent lower bounds. Recently,

Babaioff et al. (2018) analyze the setting when the seller has access to two samples.

In such a setting, the authors exhibit a deterministic mapping from the two samples

to prices that guarantees at least 50.9% of oracle performance.

While we do not assume competition among buyers in the present chapter, our

work relates to the growing literature on prior independent auctions in the sense that

a seller does not know the exact distribution of buyers’ values. We refer the reader

to Hartline (2013) and Roughgarden (2015) for a broader overview of this line of

work. In particular, our work relates more closely to Bulow and Klemperer (1996),

Dhangwatnotai et al. (2015), Fu et al. (2015) and Allouah and Besbes (2018). At

high-level, there are many other problem classes being studied in distribution-free

environments; see, e.g., Correa et al. (2019) for a recent contribution in the context

of prophet inequalities.

From a methodological perspective, our work builds on the statistical theory of

reliability (Barlow and Proschan, 1975) as well as the theory of α-strongly regular

distributions introduced in Cole and Roughgarden (2014), and further studied in
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Cole and Rao (2015) and Schweizer and Szech (2016) (see also the related class of

ρ-concave distributions in Ewerhart (2013)).

2.2 Problem Formulation

We consider a seller trying to sell one indivisible good to one buyer. We assume

that the buyer value v is drawn from some distribution F with support included in

[0,∞). We assume that the seller does not know this distribution but has access to

one sample s from the same distribution.

The problem we are analyzing is how can the seller leverage the observed sample

s to maximize her revenue. More formally, we model the problem as a game between

nature and the seller, in which the seller picks a selling mechanism and nature may

select a distribution F from which the past sample s and the current value of the

buyer v are drawn independently.

The seller selects a randomized posted price mechanism, that is tailored to the

sample s observed. In words, a seller’s strategy can be interpreted as the set of

conditional probability distributions for all possible realizations of s. We denote by

W(X ) the set of real-valued functions from a set X into R. We denote by D the

set of distributions, i.e., the set of non-decreasing functions from R+ into [0, 1] such

that the limit at infinity is one. A pricing mechanism Ψ in W([0,∞)2) is a family

of distributions {Ψ(·|s) in D : s ∈ [0,∞)} that specify the cumulative distribution

function (cdf) of prices the seller posts conditional on observing sample s.

Definition 2.1. We say that a pricing mechanism Ψ(·|·) is “well-behaved” around

zero if for any s, p ≥ 0, the function Ψ(ζp|ζs) admits a limit as ζ ↓ 0.
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The set of feasible pricing mechanisms P is defined as follows

P = {Ψ in W([0,∞)2) : Ψ(·|s) is in D for any s ∈ [0,∞)

and Ψ is well-behaved around zero}.

The “well-behaved” condition is purely technical and it is a sufficient condition for

the optimization problem we will introduce to be well posed. The expected revenue

of the seller using a mechanism Ψ in P , if nature is selecting a distribution F , is given

by∫ ∞
0

∫ ∞
0

[∫ ∞
0

p1{v ≥ p}dF (v)

]
dΨ(p|s)dF (s) =

∫ ∞
0

[∫ ∞
0

pF (p) dΨ(p|s)
]
dF (s),

where F := 1 − F is the complementary cumulative distribution function. Note

that here, we evaluate the expected performance of mechanism Ψ, where the expec-

tation is taken with respect to the value of the buyer v, the sample s as well as the

randomization of the pricing strategy.

Oracle benchmark. We define opt(F ) as the maximal performance one could

achieve with knowledge of the exact distribution of buyer’s values when selecting

mechanisms in P . More formally,

opt(F ) := sup
p≥0

p F (p). (2.1)

Seller’s objective. For an arbitrary mechanism Ψ in P , we define its performance

against a distribution F such that opt(F ) > 0 as follows

R(Ψ, F ) =

∫∞
0

[∫∞
0

pF (p) dΨ(p|s)
]
dF (s)

opt(F )
.

Let G denote the set of distributions with support included in [0,∞) with finite

and non-zero expectation, i.e.,

G = {F : [0,∞)→ [0, 1] : F is in D and 0 < EF [v] <∞} .
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Note that opt(F ) is in (0,∞) for all F in G, and hence the ratio R(Ψ, F ) is well

defined for any element of the class G. The objective of the present chapter is to

characterize for classes F ⊆ G the maximin ratio

R(P ,F ) = sup
Ψ∈P

inf
F∈F

R(Ψ, F ). (2.2)

One may easily observe that it is impossible to design any mechanism with a

positive competitive ratio when competing against G (see Cole and Roughgarden

(2014)). In turn, we focus on subclasses of G and we will analyze the maximin ratio

against a spectrum of classes of distributions.

Definition 2.2 (α-strong regularity). Fix α in [0, 1]. A cdf F is said to be α-strongly

regular (α-SR) on its support SF if it admits a density f and if the corresponding

virtual value function φF : v 7→ v−(1−F (v))/f(v) satisfies φF (v′)−φF (v) ≥ α(v′−v)

for all v′ ≥ v in SF .

The notion of α-strong regularity was introduced in Cole and Roughgarden (2014).

We also refer the reader to Ewerhart (2013) and Schweizer and Szech (2016) for

connections to ρ-concavity. Let us introduce the following notation

Fα = {F ∈ G : F is α-SR}.

Two notable special cases are α = 0 and α = 1. Note that F0 is the set of so-

called regular distributions, i.e., distributions that admit a non-increasing virtual

value. The set F1 is the set of monotone increasing hazard rate distributions (also

referred to as increasing failure rate distributions). Regularity and the monotone

increasing hazard rate conditions are very common assumptions across the pricing

literature (including in cases in which the distribution is known to the seller). It

is worth noting that these non-parametric classes of distributions encompass many

widely used and studied parametric classes such as large subsets of Gamma, Beta

and other classes of distributions. (see, e.g., Ewerhart (2013)).
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It is clear that for any 0 ≤ α ≤ α′ ≤ 1, Fα′ ⊆ Fα, and hence R(P ,Fα) is non-

decreasing in α. Furthermore, all the classes Fα are subclasses of the regular class of

distributions. In the coming sections, we will be interested in quantifying R(P ,Fα)

and characterizing near-optimal mechanisms.

For any distribution F in Fα, we define rF := arg maxp≥0 p F (p). The oracle

optimal price rF is well defined by the regularity assumption of the distribution and

the fact that EF [v] <∞. Moreover, the optimal revenue is given by

opt(F ) = rF F (rF ).

Throughout the chapter, whenever a distribution F is defined, we use qw to denote

F (w) to lighten the notation. The latter represents the quantile of the distribution

at the value w. In most of our analysis, we will leverage working with quantiles

(see Bulow and Klemperer (1996) for more detailed economic interpretations of those

quantities). We also use the generalized inverse of a distribution F in D, defined by

F−1(1− q) := inf{v in R+ s.t. F (v) ≥ 1− q} for all q in [0, 1].

2.3 Pricing Mechanisms: Structural Results

2.3.1 Reduction of the Space of Mechanisms

In this section, we show that we can reduce the space of pricing strategies that a

seller needs to consider.

Proposition 2.1. Let M ⊂ P be given by

M =
{

Ψ ∈ P : for any p, s > 0, Ψ(p|s) = ψ
(p
s

)
for some ψ in D

}
.

Then for any α in [0, 1], one can restrict attention to mechanisms in M without loss

of optimality, i.e.,

R(P ,Fα) = R(M,Fα),
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In particular, the result states that while initial pricing mechanisms are charac-

terized by an uncountable collection of distributions (conditional distributions on the

sample), it is sufficient to optimize over pricing mechanisms that are characterized by

a single distribution. To elaborate on what this distribution corresponds to, consider

Ψ in M. The performance against a distribution F in Fα is given by

R(Ψ, F ) =

∫∞
0

[∫∞
0

pF (p) dΨ(p|s)
]
dF (s)

opt(F )

=

∫∞
0

[∫∞
0

pF (p) dψ(p/s)1
s

]
dF (s)

opt(F )

=

∫∞
0

[∫∞
0

γsF (γs) dψ(γ)
]
dF (s)

opt(F )

=

∫∞
0

[∫∞
0

γsF (γs) dF (s)
]
dψ(γ)

opt(F )
. (2.3)

In other words, a mechanism inM can be thought of as a mechanism that randomizes,

not over the price to post, but over a multiplicative factor to be applied to the observed

sample. We use the mnemonic notation M that refers to the multiplicative nature

of the pricing mechanism. Proposition 2.1 above states that restricting attention to

such mechanisms is without loss of optimality.

For multiplicative mechanisms, the seller would randomize between different levels

of inflation of the sample ( γ > 1) or deflation of the sample (γ ∈ (0, 1)) or simply

posting the sample (γ = 1).

Going forward, for any mechanism inM, with some abuse of notation, we use in-

terchangeably the mechanism Ψ(·|·) and its corresponding object ψ such that Ψ(p|s) =

ψ
(
p
s

)
. Similarly, we write interchangeably R(Ψ, F ) or R(ψ, F ).

2.3.2 Approach to bound R(P ,Fα): Overview

The key challenge in evaluating R(P ,Fα) and designing optimal or near-optimal

sample-based pricing policies resides in the fact both P and Fα are infinite dimen-

sional spaces. While we have shown that one may reduce attention to mechanisms
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in M, even for any such particular mechanism, it is not clear how to evaluate its

worst-case performance. Next, we derive a decomposition of the performance of a

mechanism through two steps. First, we decompose the performance of a mecha-

nism through the contributions of deterministic mechanisms inM. Second, for such

mechanisms, we decompose the performance through local contributions stemming

from different realizations of the sample. This decomposition will be key in deriving

tractable bounds on R(P ,Fα).

For any mechanism ψ in M, based on Eq.(2.3), one can write

R(ψ, F ) =

∫ ∞
0

R(δγ, F )dψ(γ), with δγ(v) := 1{v ≤ γ}, for all v ≥ 0, (2.4)

where δγ is a dirac-delta function at γ, in other words, a “deterministic” mechanism

that posts the price γs. Furthermore, we have for any γ > 0,

R(δγ, F ) =

∫∞
0

γsF (γs) dF (s)

opt(F )
.

Let, for any 0 ≤ w ≤ w′,

C (γ, w, w′;F ) :=

∫ w′

w

γsF (γs) dF (s). (2.5)

The term C (γ, w, w′;F ) corresponds to the contribution to the performance stem-

ming from realizations of the sample that are in the interval [w,w′] for a deterministic

mechanism inM characterized by the parameter γ. Fix a given non-negative mono-

tone increasing sequence {wi : i ∈ Z}, such that limi↓−∞wi = 0 and limi↑∞wi = +∞.

Then
∫∞

0
γsF (γs) dF (s) may be decomposed into an infinite sum of “local” terms

of the form C (γ, wj, wj+1;F ), i.e.,

R(δγ, F ) =
1

opt(F )

∞∑
i=−∞

C (γ, wi, wi+1;F ). (2.6)

In what follows, we will derive lower bounds onR(P ,Fα) by establishing paramet-

ric lower bounds on the worst-case performance of dirac-delta mechanisms R(δγ, F ).

The key to our approach will be a reduction of the complexity of nature’s optimization
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problem from an infinite dimensional problem to a finite dimensional problem. This

reduction will be enabled by two key steps. On the one-hand a “local” reduction of

dimensionality is established in Section 2.4 by focusing on local contributions of the

form C (γ, w, w′;F ). On the other hand, these local results are leveraged to obtain

a global dimensionality reduction through an appropriate decomposition of the form

of (2.6) in conjunction with the development of a set of novel judiciously constructed

dynamic programs in Section 2.5.

To derive an upper bound on R(P ,Fα) in Section 2.6, we extensively rely on the

reduction of mechanisms inM as well as the intuition gleaned from the lower bound

arguments to construct a sufficiently rich family of “hard cases” that yield tractable

upper bounds.

2.4 Parametric Lower Bounds on Local

Contributions

This section is dedicated to derive lower bounds on local contributions C (γ, w, w′;F )

as defined in (2.5), that depend on the distribution F only through a “small” num-

ber of local quantile values. To do so, we first establish how local bounds on the

tails of distributions translate into bounds on the local performance, and then estab-

lish α-dependent local bounds on the tails of distributions in the class Fα. Finally,

combining these two results, we obtain lower bounds on the local contributions.

2.4.1 From tail bounds to lower bounds on local

contributions

The next result establishes how one may leverage local bounds on the tails to obtain

a lower bound on local performance.
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Lemma 2.1. Fix α ∈ [0, 1] and F in Fα. Fix γ > 0 and w,w′ such that 0 ≤ w < w′.

Suppose that there exists a non-increasing function Hl : R+ → [0, 1] such that F (v) ≥

Hl(v) on [γw, γw′].

i.) If the revenue function vF (v) is non-decreasing on [γw, γw′] and there exists a

non-increasing function H̃l : R+ → [0, 1] such that F (v) ≥ H̃l(v) on [w,w′] and

H̃l(w) = F (w) and H̃l(w
′) = F (w′), then

C (γ, w, w′;F ) ≥
∫ qw

qw′

γH̃−1
l (q) Hl

(
γH̃−1

l (q)
)
dq.

ii.) If the function vHl(v) is non-increasing on [γw, γw′] and there exists a non-

increasing function Hu : R+ → [0, 1] such that F (v) ≤ Hu(v) on [w,w′] and

Hu(w) = F (w), then

C (γ, w, w′;F ) ≥
∫ qw

qw′

γ min
(
w′, H−1

u (q)
)
Hl

(
γ min

(
w′, H−1

u (q)
))
dq.

Part i.) of the result establishes that as long as the revenue curve is non-decreasing

on the interval [γw, γw′] (which, by unimodality, would hold if w′ ≤ rF/γ), then it

is sufficient to obtain lower bounds on the tail of the distribution F on the intervals

[w,w′] and [γw, γw′] to obtain a lower bound on the local expected performance.

Part ii.) of the result applies to regions where the revenue curve can be lower

bounded by a non-increasing function, and intuitively applies to the right of w ≥

rF/γ. As in the first part, we establish how bounds on the tails translate to bounds

on the local expected performance. However, now that the revenue curve can be

lower bounded by a non-increasing function, one needs a lower bound on the tail on

[γw, γw′] and an upper bound on the tail on [w,w′].

2.4.2 Local lower and upper bounds on the tail

In the previous section, we have established how lower bounds on local contributions

to performance can be derived through suitable local lower and upper bounds on the
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tails. In this section we establish a systematic way through which such bounds may

be derived.

Lemma 2.2. Fix α ∈ [0, 1], F in Fα and a pair of values (w,w′) such that 0 ≤ w <

w′. Then

F (v) ≥ qw Γα

(
Γ−1
α

(
qw′

qw

)
v − w
w′ − w

)
if w ≤ v ≤ w′,

F (v) ≤ qw Γα

(
Γ−1
α

(
qw′

qw

)
v − w
w′ − w

)
if v ≥ w′,

where for any v ≥ 0,

Γα(v) =


(1 + (1− α) v)−1/(1−α) if α ∈ [0, 1),

e−v if α = 1.

In addition, Γ−1
α is the inverse of Γα and we set Γ−1

α (0) := +∞ and Γα(+∞) := 0.

Lemma 2.2 provides a systematic way to obtain local lower and upper bounds

on the complementary cumulative distribution function of any distribution in Fα as

a function of Γα(·). The bound coincides with the original function at the extreme

points of the interval [w,w′], and provides a lower bound on the interval [w,w′] and

an upper bound on [w′,+∞) that coincides with the function at w′. Furthermore,

the bounds are only parameterized by α and the quantiles at the interval extremes.

The function Γα is the complementary cumulative distribution function of a par-

ticular Generalized Pareto distribution. The function φF (v)−αv of this distribution

is non-decreasing and hence it belongs to Fα. As a matter of fact, φF (v) − αv is

constant, and hence the complementary cumulative distribution function represents

in some sense an “extreme” element of the class. In turn, note that these bounds are

tight in the sense that there exists an element in Fα for which all the inequalities are

actually equalities.

This result is related to a “single crossing property” studied in the statistical the-

ory of reliability, that is satisfied by the monotone hazard rate class of distributions,
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F1. More precisely, (Barlow and Proschan, 1975, Chapter 4, Theorem 2.18) show

that for any monotone hazard rate distribution F , if the complementary cumulative

distribution function F crosses the complementary cumulative distribution function

of any exponential distribution then both curves must cross only once. Moreover, if

the cross occurs then the exponential tail is always below the tail of F before the

cross and above after the cross.

The proof of Lemma 2.2 relies on two steps. The first step of our proof generalizes

this result to the α-SR class of distributions by establishing that the family Γα plays a

similar role for α-SR distributions as the exponential tails do for MHR distributions.

In a second step, we apply the single crossing property to a truncated version of the

original distribution to the domain v ≥ w.1

Figure 2.2 provides a visual illustration of the main implication of Lemma 2.2.

Using the same distribution F in Fα, consider the interval [w,w′] such that w cor-

responds to the quantile F (w) = 0.7, and w′ to the quantile F (w′) = 0.4. An

application of Lemma 2.2 with w,w′ yields the blue curve and offers a lower bound

on [w,w′] and an upper bound on [w′,+∞) (dashed line). Furthermore, an appli-

cation of Lemma 2.2 on [0, w] leads to the red curve and in particular to an upper

bound on [w,w′] (dashed line).

2.4.3 Parametric lower bounds on local contributions

We are now in a position to develop lower bounds on local contribution C (γ, w, w′;F ).

Proposition 2.2. Fix α ∈ [0, 1], F in Fα and γ > 0. We have

C (γ, w, w′;F ) ≥


γw′qγwqw Aα

(
βLw/w′

(
qw′
qw
,
qγw′

qγw

))
, if 0 ≤ w < w′ ≤ rF/γ,

γwqγwqw Aα

(
βRw/w′

(
qw′
qw
, qw
qγ̂w

,
qγw′

qγw

))
, if rF/γ ≤ w < w′,

1An implication of Lemma 2.2 is that once the function F in Fα is strictly below Γα then it
stays always below. This implication was already noted by Cole and Rao (2015) using a different
approach.
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Figure 2.2: Example of local tail bounds. The figure depicts some distribution
belonging to Fα with α = 1/2, together with local lower (full lines) and upper bounds
(dashed lines) obtained through Lemma 2.2.

where γ̂ = w
w′

and for σ > 0

βLσ (η1, η2) := (η1, 1, η1, σ, 1, η2, 1, η1, σ, 1, σ, σ) , η ∈ R2
+

βRσ (η1, η2, η3) := (η1, σ, η2, σ, η2, η3, σ, η2, σ, η2, 1, σ) , η ∈ R3
+

Aα (η) :=

∫ 1

η1

uα (η2, η3, η4, η5q)Γα

(
Γ−1
α (η6) η7

uα (η2, η8, η9, η10q)− η11

1− η12

)
dq, η ∈ R12

+

uα (η) := min

(
1

η1

, η3 + (1− η3)
Γ−1
α (η4)

Γ−1
α (η2)

)
, η ∈ R4

+.

An important implication of Proposition 2.2 is that the lower bounds developed

on the local contributions C (γ, w, w′;F ) in both cases only depend on the distribu-

tion F through a “small” number of quantiles. Through the lower bound, we have

moved from a local contribution that depends on an infinite dimensional object F

to a lower bound that only depends on α, as well as the quantiles at the following

values w,w′, γw, γw′ and γ̂w. The function Aα coming into play in the lower bound

is a tractable function and represents in some sense the “normalized” worst-case

contribution driven by the bounds derived in Lemmas 2.1 and 2.2.

We also remark that Proposition 2.2 distinguishes between two cases. Either the

62



observed sample belongs to a segment which is below rF/γ or belongs to a segment

which is above rF/γ. Technically, this separation is due to the fact that the revenue

curve is non-decreasing on [γw, γw′] in case i) whereas it is non-increasing in the other

case. Intuitively, this separation can be understood as follows: for a deterministic

mechanism inM characterized by a coefficient γ, the value rF/γ represents the ideal

sample that a seller could observe. Hence, if she observed a sample less than rF/γ

then she would be charging a final price under the optimal oracle price. Whereas

in the other case if a seller observes a sample higher than rF/γ then she would be

charging over the optimal oracle price. In other words, rF/γ represents a threshold

sample value that separates the types of “errors” the mechanism will, eventually,

make. In turn, these two regions require different bounds.

The proof is deferred to Appendix B.3 and leverages the previous results developed

in the current section. Concretely, for the first point i.), we use the fact that the

revenue curve is non-decreasing within the considered interval. Given that, we lower

bound the complementary cumulative distribution function F using Lemma 2.2 on

[w,w′] and [γw, γw′]. In turn, Lemma 2.1 i.) leads to the result. The bound given in

the latter depends on the inverse of the lower bound on the complementary cumulative

distribution function H−1
l . This is exactly what is driving the expression of uα(·)

whereas AL
α is driven by the final bound given in Lemma 2.1. The proof of ii.) relies

on a similar line of arguments. However, we now apply Lemma 2.1 ii.) in conjunction

with Lemma 2.2.

2.5 Parametric Lower Bounds on R(P ,Fα)

Recalling the decomposition for an arbitrary non-negative monotone increasing se-

quence {wi : i ∈ Z}, such that limi↓−∞wi = 0 and limi↑∞wi = +∞ given in (2.6), the

performance of any deterministic mechanism characterized by a multiplicative factor
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γ > 0 is given by

R(δγ, F ) =
1

opt(F )

∞∑
i=−∞

C (γ, wi, wi+1;F ),

Given the lower bound in Proposition 2.2, we see that if one starts with consecutive

elements of the sequence {rF/γ̃i : i ∈ Z} where γ̃ = min(γ, 1/γ), then all the relevant

quantities in the lower bound are always quantiles of elements of the sequence. More

formally, we have

R(δγ, F ) =
1

opt(F )

∑
i:rF /γ̃i+1≤rF /γ

C (γ, rF/γ̃
i, rF/γ̃

i+1;F )

+
1

opt(F )

∑
i:rF /γ̃i≥rF /γ

C (γ, rF/γ̃
i, rF/γ̃

i+1;F )

≥ 1

qF

[ ∑
i:

rF /γ̃
i+1≤ rF

γ

γ

γ̃i+1
qγwiqwi Aα

(
βLγ̃

(
qwi+1

qwi
,
qγwi+1

qγwi

))

+
∑
i

rF /γ̃
i≥ rF

γ

γ

γ̃i
qγwiqwi Aα

(
βRγ̃

(
qwi+1

qwi
,
qwi
qγ̃w

,
qγwi+1

qγwi

))]
,

where in the last inequality, we have used Proposition 2.2. Under such a decomposi-

tion, we now obtain a lower bound on the performance of a deterministic mechanism

R(δγ, F ) that only depends on a countable number of quantiles associated with the

underlying distribution F . Next, we develop an approach to obtain a low dimensional

lower bound that is based on the construction of judicious dynamic programming re-

cursions and corresponding value functions. We first analyze contributions stemming

from “low” realizations of samples, below rF/γ (Section 2.5.1) and then those stem-

ming from high realizations, above rF/γ (Section 2.5.2), and then present our main

lower bound in Section 2.5.3.
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2.5.1 Lower bound for contributions from samples lower

than rF/γ

In this section, we develop a bound that exploits local relationships between a se-

quence of quantiles associated with values in [0, rF/γ]. The key intuition underlying

our approach is to “propagate” the local bounds developed in Proposition 2.2, and

construct a functional operator such that if one starts from a functional that lower

bounds the contribution from samples between 0 and rF/γ, i.e., C (γ, 0, rF/γ;F ), the

application of the operator maintains the lower bound structure. In particular, if

γ < 1 (a parallel argument applies if γ > 1), we assume that we have already devel-

oped a lower bound J(·) on the performance on any segment [0, rF/γ
j] with j ≤ 1.

Then we propagate by dividing the interval into a segment [rF/γ
j−1, rF/γ

j] and the

remainder [0, rF/γ
j−1]. For the segment [rF/γ

j−1, rF/γ
j), we use the bound devel-

oped in Proposition 2.2 whereas for the remainder, we use the bound obtained in the

previous iteration, i.e., J(·). Then, taking the worst case quantiles around rF/γ
j−1

leads a new lower bound defined through a dynamic programming operator.

More formally, let us introduce the following operator T L
α,γ :W([0, 1]2)→W([0, 1]2),

that maps bounded functions into bounded functions such that for any (q, ρ+) in

[0, 1]2,

T L
α,γJ(q, ρ+) = inf

(q−,ρ−)∈BLα,γ(q,ρ+)

{
q q−Aα

(
βLγ
(
ρ+, ρ−

))
+ γ̃J

(
q−, ρ−

)}
, (2.7)

where γ̃ = min(γ, 1/γ) and BLα,γ is defined, for (q, ρ+) in [0, 1]2,

BLα,γ(q, ρ+) :=

{(
q−, ρ−

)
∈ [0, 1]2 : q− ≥ max

{
q,Γα

(
γ̃ Γ−1

α (q)
)
,Γα

(
γ̃2 Γ−1

α (ρ+ q)
)}

ρ− ≥ max

{
γ̃,Γα

(
γ̃

1 + γ̃
Γ−1
α (ρ+ ρ−)

)}
and ρ−q− = q

}
,

Intuitively, we operate in the quantile space. The above is a dynamic program-

ming operator that given a reference quantile q and a ratio of quantiles ρ+ to the

left of q, yields a worst-case possible local contribution between the quantile q and 1.
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This worst-case possible contribution is obtained from a local contribution between

quantile q and a neighboring higher quantile q− (this contribution is driven by Propo-

sition 2.2 i.)) and a contribution from q− to 1, which is driven by our initial input to

the operator J .

It is important to note that as worst-case normalized contributions are con-

structed, the quantiles at play are constrained, and these constraints depend on both

γ and the class of distributions that the seller faces through α. We are now in a

position to state our result.

Proposition 2.3 (Left normalized contribution). Fix α in [0, 1], F ∈ Fα and γ > 0

such that γ 6= 1.

i.) The functional equation, T L
α,γJ = J admits a unique bounded solution Lα,γ.

Furthermore, for any bounded function J in W([0, 1]2),
(
T L
α,γ

)k
J converges to

Lα,γ as k grows to ∞.

ii.) Furtheremore

C (γ, 0, rF/γ;F )

opt(F )
≥


1

F (rF )
Lα,γ

(
F (rF ) , F (rF/γ)/F (rF )

)
, if γ < 1

1
F (rF )

Lα,γ

(
F (rF/γ) , F (rF )/F (rF/γ)

)
, if γ > 1.

The first point shows that the dynamic program considered admits a fixed point

Lα,γ and the latter can be obtained through value iteration. The second point estab-

lishes that this limit offers a low dimensional functional lower bound on the normal-

ized local contribution C (γ, 0, rF/γ;F )/opt(F ). In particular, quite notably, while

the previous object depends on the distribution F , the lower bound depends on F

only through two local quantiles, that at the optimal oracle price rF and that at rF/γ.

2

2Note that the last proposition provides a lower bound C (γ, 0, rF /γ;F ). Given Proposi-
tion 2.2 i.), another lower bound may be obtained by taking w = 0 and w′ = rF /γ. However,
this matches the distribution F only at 0 and rF /γ, whereas through the local contribution, we are
matching the distribution on the sequence r/γi, for i ≤ 1. Hence intuitively, by focusing on the local
contributions, the dynamic programming approach is expected to yield a tighter lower bound.
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2.5.2 Lower bound for contributions from samples higher

than rF/γ

Focusing on the right side of rF/γ, to propagate the local lower bound from an

interval to [rF/γ,∞), we apply a similar approach. We assume that we have already

developed a lower bound J(·) on the performance on any segment [rF/γ
j,∞) with

j ≥ 1 then we propagate by dividing the interval into a segment [rF/γ
j, rF/γ

j+1)

and the remainder [rF/γ
j+1,∞) (assuming γ < 1). For the segment [rF/γ

j, rF/γ
j+1),

we use the bound developed in Proposition 2.2 whereas for the remainder, we use

the bound obtained in the previous iteration, i.e., J(·). Then, taking the worst case

quantile at rF/γ
j+1 leads a new lower bound that is defined through the iteration of

a dynamic program.

More formally, let us introduce the following operator T H
α,γ :W([0, 1])→W([0, 1]),

such that for any ρ− in [0, 1],

T H
α,γJ(ρ−) = inf

ρ+∈BHα,γ(ρ−)

{
1{γ<1}Aα

(
βRγ
(
ρ+, ρ−, ρ−

))
+

1

γ
ρ+ ρ−J

(
ρ+
)}

, (2.8)

where

BHα,γ(ρ−) := {ρ+ ∈ [0, 1] : ρ+ ≤ γ and ρ+ ρ− ≤ γ2}.

This dynamic program is well defined since the functionAR
α is bounded by 1/γ and

ρ+ρ− ≤ γ2. This dynamic program formulation captures the intuition outlined above.

More precisely, the quantity ρ+ plays the role of the ratio of quantiles at rF/γ
j+1 and

rF/γ
j and ρ− plays the role of the ratio of quantiles at rF/γ

j and rF/γ
j−1. Moreover,

the first term in the operator T H
α,γ stems from the interval analysis developed in

Proposition 2.2 whereas the second stems from the bound of the previous iteration.3

Leveraging this intuition and formulation, we can show the following,

3Note that the operator here is specialized for γ < 1. For γ > 1, value iteration converges to zero
by construction of the dynamic program. It is possible to construct a recursion tailored to γ > 1
through a two dimensional dynamic program and such an approach would lead to a lower bound of
zero. For exposition purposes, we do not present this here.
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Proposition 2.4 (High samples normalized contribution). Fix α in [0, 1], F ∈ Fα

and γ > 0 such that γ 6= 1.

i.) The functional equation, T H
α,γJ = J admits a unique bounded solution Hα,γ and(

T H
α,γ

)k
J converges to Hα,γ as k grows to ∞ for any bounded J in W([0, 1]).

ii.) We have,

C (γ, rF/γ,∞;F )

opt(F )
≥ F (rF/γ) Hα,γ

(
F (rF/γ) /F (rF )

)
.

Iterations of the dynamic program considered converge to some well defined limit

Hα,γ. Moreover, as in the case of low samples, we are able to derive a lower bound on

the worst-case contribution for high values of the sample. Notably, this lower bound

captures the dependency of F only through the quantiles at rF and rF/γ.

We note here that a related propagation idea appeared in (Huang et al., 2015,

Lemma 5.8) where a lower bound is developed for MHR distributions. The propaga-

tion there is conducted on constants and the bound derived is not tailored to MHR

distributions as the bound applies to any regular distribution. In contrast, the bound

we derive propagates functionals on a suitable state-space, and the bound adapts to

the value of α under consideration. As we will see, this leads to significantly tighter

bounds.

2.5.3 Main lower bound on R(P ,Fα)

We now present the main result for the lower bound. Let us define ∆N , the simplex

of RN for a given N ≥ 1.

Theorem 2.1 (Parametric lower bound). Fix α in [0, 1], then

R(P ,Fα) ≥ sup
N≥1

sup
ζ∈∆N ,

γ∈(R+\{1})N

inf
q∗∈Q∗α

(qi,ρi)∈Qα,γi (q
∗)

1≤i≤N

N∑
i=1

ζi

[
1

q∗
Lα,γi

(
qi, ρi

)
+ q∗ρiHα,γi

(
ρi
) ]
,
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where the functions Lα,γ and Hα,γ are respectively the unique bounded solutions of

the functional equations Eq.(2.7) and Eq.(2.8) and

Q∗α := {q ∈ [0, 1] s.t. q ≥ α1/(1−α) and q > 0}

Qα,γ(q
∗) :=


{q∗} × BHα,γ(0), if γ < 1,

BLα,γ(q∗, 0), if γ > 1.

This result has a fundamental implication: the maximin problemR(P ,Fα) can be

lower bounded by a sequence of alternative maximin problems parameterized byN . In

an alternative maximin problem, the seller selects among multiplicative mechanisms

that puts mass on at most N parameters. And nature, rather than selecting from

an infinite dimensional space of distributions, now selects from a space with N + 1

dimensions. Nature’s problem is now one of selecting the quantile at the optimal

oracle price rF as well as N mechanism-specific quantiles.

The bound above is obtained by combining the results of Proposition 2.3 and

Proposition 2.4, while also imposing further constraints on the parameters of the

functionals in these two results. Such constraints are captured through the sets Q∗α

and Q∗α,γ.

2.6 Parametric Upper Bounds on R(P ,Fα)

In this section, we introduce a general class of distributions motivated by the lower

bound analysis. In particular, the bounds derived on the tails of any α-SR distribu-

tion, see Lemma 2.2, implied that the lower bounds derived were near tight for such

piece-wise generalized Pareto distributions.

For fixed 0 ≤ α ≤ 1, let us introduce the family of parametric distributions
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Fα(·|q0, q1, v̄) given by

F (v|q0, q1, v̄) =


Γα(Γ−1

α (q0)v), if 0 ≤ v < 1,

q0 Γα

(
Γ−1
α

(
q1
q0

)
(v − 1)

)
, if 1 ≤ v < v̄,

0, if v ≥ v̄.

(2.9)

with 0 ≤ q0 ≤ q1 ≤ 1 and v̄ > 1. This family is characterized by two pieces, one

from 0 to 1 and one from 1 to v̄ and may allow for a mass at v̄. Such piece-wise Γα

distributions have the shape of the lower bound in solid lines depicted in Figure 2.2.

At an intuitive level, the first piece from 0 to 1 counters mechanisms that put too much

weight on deflation, while the second piece from 1 to v̄, in conjunction potentially

with a mass at v̄ counters mechanisms that put too much mass on inflation.

Since such families (and generalizations of such families) were indirectly one of the

key building blocks of lower bounding the performance of deterministic mechanism

against any α-SR distributions, one would expect that the exact performance of any

mechanism against this family would lead to performance that has significant common

structure with the lower bounds derived.

Let us introduce two quantities L α,γ and H α,γ that play similar roles as Lα,γ

and Hα,γ in the lower bound. We define

L α,γ(q, ρ) :=


γAα (q, 0+, q, 0, 1, q, γ, q, 0, 1, 0, 0)

+2qγAα

(
q̃1(q,ρ,γ)

q
, 0+, ρ, 1

2
, 1, q, 2γ, ρ, 1

2
, 1, 0, 0

)
, if γ ≤ 1,

γ
q
Aα (q̃1(q, ρ, γ), 0+, q, 0, 1, q, γ, q, 0, 1, 0, 0) , if γ > 1,

with

q̃1(q, ρ, γ) =


Γα((1/γ) Γ−1

α (q)), if γ > 1,

q Γα

(
1−γ
γ

Γ−1
α (ρ)

)
, if γ ≤ 1.

The quantity L α,γ is driven by the same object that was central to the derivation

of Lα,γ in the lower bound, namely Aα. In particular, when γ < 1, the expression
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above is characterized by two terms, driven by the contribution from 0 to the optimal

oracle price rF and a second term stemming from the local contribution from rF to

rF/γ. These two contributions would correspond exactly to the lower bound of the

local contribution against any distribution on [0, rF ] and [rF , rF/γ]. In contrast to

the lower bound analysis, we do not divide further [0, rF ] into small contributions.

Similarly, we define a functional for the contribution of high values of the sample.

H α,γ(q, ρ) :=


2γ q̃1(q,ρ,γ)

qρ
Aα

(
0, 0+, ρ, 1

2
, q̃1(q,ρ,γ)

q
, ρ, γ, ρ, 1

2
, q̃1(q,ρ,γ)

q
, 1

2
γ, 1

2

)
, if γ ≤ 1,

γq̃1(q,ρ,γ)
ρ
Aα

(
q̃1(q,q,γ)

q
, 0+, q, 0, q̃1(q, ρ, γ), ρ, γ

2
, q, 0, q̃1(q, ρ, γ), 1/γ, 1

2

)
+2γ

ρ
Aα

(
0, 0+, ρ, 1

2
, 1, ρ, γ, ρ, 1

2
, 1, 1

2
γ, 1

2

)
, if γ > 1.

Proposition 2.5. The maximin ratio is upper bounded as follows

R(P ,Fα) ≤ sup
ψ∈M

inf
(q∗,ρ)∈Q̄α

Eψ
[

1

q∗
L α,γ(q

∗, ρ) + q∗ρH α,γ(q
∗, ρ)

]
,

with

Q̄α :=

{
(q∗, ρ) ∈ [0, 1]2 : q∗ ≥ α1/(1−α), (1− α) +

1

Γ−1
α (q∗)

≥ 1

Γ−1
α (ρ)

and ρ ≤ Γα(1)

}
.

This result implies that one may upper bound the maximin ratio R(P ,Fα) by an

alternative maximin ratio and the latter has a very similar structure as the maximin

ratio that lower bounded R(P ,Fα) (presented in Theorem 2.1). In particular, in the

new maximin problem, nature’s problem is now two-dimensional.

The proof of this result consists of three steps. First, we consider a subset of family

of distributions at hand where we set the upper support v̄ to∞ and show that under

the condition (1− α) + 1
Γ−1
α (q∗)

≥ 1
Γ−1
α (ρ)

the distribution is α-SR. In the second step,

leveraging α-SR, we show that under the second condition ρ ≤ Γα(1), the reserve

price is necessarily at v = 1. In the last step, we compute the lower bound based on

the explicit expressions of the distributions considered. Finally, the constraint on q∗

stems from the fact that F is in Fα.
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We note here that Cole and Roughgarden (2014) leverage a special case of the

family introduced in this section to quantify the worst case in a large sample regime

analysis. In the present case, the richer piece-wise structure emerges naturally from

our lower bound analysis.

2.7 Maximin ratio characterization: impossibility

results and near-optimal mechanisms

2.7.1 Tractable characterization of bounds

As mentioned earlier, the maximin ratio optimization problem is highly intractable.

The goal of the previous sections was to reduce the complexity of the problem by

bounding the maximin ratio through optimization problems over finite dimensional

spaces. Despite the notable complexity reduction, the optimization problems defined

are still intractable, involving dynamic programs over continuous spaces. A first

goal of the next sections is to develop tractable and provable bounds through a

judiciously chosen discretization of the space of quantiles and/or mechanisms. Given

these tractable bounds, we are then in a position to derive jointly values for upper

and lower bounds on the maximin ratio, as well as near-optimal mechanisms and

near-worst case families of distributions.

2.7.1.1 Upper bounds

In this section, we derive readily computable upper bounds based on the family

introduced in Section 2.6. For that, we need to ensure a valid upper bound for all

mechanisms. For fixed ε ≥ 0 and M > 0, we define a grid

GM
ε =


[0,M ] if ε = 0,{
k ε : 1 ≤ k ≤ bM/εc

} ⋃
{M} if ε > 0.
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Proposition 2.6. Fix α in [0, 1]. For any ε > 0 and M > 1, for any distribution F

in the set
{
F (·|q0, q1, v̄) s.t. v̄ > 1 and (q0, q1/q0) ∈ Q̄α

}
, we have

R(P ,Fα) ≤ max

[
max
γ∈GMε

(
1

q0

EF
[
γv F ((γ − ε) v)

])
, (1− F (1/M)) +R(δM , F )

]
.

Proposition 2.6 enables one to compute a family of tractable upper bounds. For

that, one just needs to select ε, M and a distribution in the parametric family, and

evaluate the right-hand-side above. There are three key steps behind this result.

First, we leverage the reduction shown in Proposition 2.1. Second, we show that if

we take an element from the family F (·|q0, q1, v̄) introduced in Section 2.6, one can

show that it is approachable by a sequence of distributions in Fα. Third, leveraging

the discretization in the space of multiplicative factors using the grid, we bound the

performance of any deterministic mechanism by a tractable function.

2.7.1.2 Lower bounds

While the lower bound presented in Theorem 2.1 provides a theoretical lower bound,

it is not a priori possible to evaluate it exactly as it requires computing the value

function over a continuous state-space. To obtain computationally tractable lower

bounds, we generalize here the bound of Theorem 2.1 in order to obtain a family of

tractable lower bounds that only require operating in a finite space. The key idea is

to discretize the quantile space while maintaining the lower bound structure, which

leads to dynamic programs over a finite state-space.

For ε > 0, we define a grid of the quantile space [0, 1] over which we will evaluate

the lower bound,

Gε =


[0, 1] if ε = 0,{
k ε : 1 ≤ k ≤ b1/εc

} ⋃
{1} if ε > 0.

First, we define counterparts of T L
α,γ and T H

α,γ in a discretized finite state-space.
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Normalized contributions of low samples. Let γ ∈ R++\{1}. We first define

a “generalized version” of βL to account for values of ε > 0. In particular we define

β̂Lγ,ε : R2 → R12 as

β̂Lγ,ε (η1, η2) :=


(η1, γ, η1 − ε, γ, 1, η2 − ε, 1, η1, γ, 1, γ, γ) , if γ ∈ (0, 1)

(η2, γ̃, η2 − ε, γ̃, 1, η1 − ε, 1, η2, γ̃, 1, γ̃, γ̃) , if γ > 1,

where γ̃ = min{γ, γ−1}.

Let us introduce the following operator T L
α,γ,ε : W(G 2

ε ) → W(G 2
ε ), such that for

any (q, ρ+) in G 2
ε ,

T L
α,γ,εJ(q, ρ+) = inf

(q−,ρ−)∈BLα,γ,ε(q,ρ+)

{
(q − ε)

(
q− − ε

)
Aα

(
β̂Lγ,ε

(
ρ+, ρ−

))
+ γ̃J

(
q−, ρ−

)}
,(2.10)

where for any (q, ρ+) in G 2
ε , BLα,γ,ε(q, ρ+) ⊂ Gε is defined as

BLα,γ,ε(q, ρ+) :=

{(
q−, ρ−

)
∈ G 2

ε :

q− ≥ max
{
q,Γα

(
γ̃ Γ−1

α (q − ε)
)
,Γα

(
γ̃2 Γ−1

α ((ρ+ − ε)(q − ε))
)}

ρ− ≥ max

{
γ̃,Γα

(
γ̃

1 + γ̃
Γ−1
α ((ρ+ − ε)(ρ− − ε))

)}
and (ρ− − ε)(q− − ε) ≤ q ≤ ρ−q−

}
.

We note here that when α = 0, the fact that the optimal quantile can be arbitrarily

close to zero leads to a challenge in the evaluation of the lower bound. In particular,

the discretized dynamic program for low values of the sample always leads to a value

of zero for T L
α,γ,εJ for the lowest quantile in the grid if one starts with an initial value

of zero. To counter this, we will develop an alternative computationally tractable

lower bound that does not rely on the operator T L
α,γ,ε. To that end, we define for all

(q, ρ) ∈ G 2
ε ,

L̃α,γ,ε(q, ρ) =



1−α
(q∗−ε)α−(q∗−ε)

∫ 1

q∗
γΓ−1

α (q) Γα (γΓ−1
α (q)) dq

+Γα (γΓ−1
α (q∗))Aα(β̂Lγ,ε (ρ, γ)), if γ < 1

1−α
(q∗−ε)α−(q∗−ε)

∫ 1

min{γq∗,1} γΓ−1
α (q) Γα

(
Γ−1
α (q∗)

Γ−1
α (γq∗)

Γ−1
α (q)

)
dq, if γ > 1
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For γ < 1, the latter function is obtained by loosely bounding the local contributions

of the segment [0, rF ] and [rF , rF/γ]. For α very close to 0, especially for the regular

family, the bound L̃α,γ,ε leads to a tractable and non-trivial bound.

Normalized contributions of high samples. Define a form of generalization of

βRγ by β̂Rγ,ε : R2 → R12 as β̂Rγ,ε (η1, η2) := (η1, γ, η2 − ε, γ, η2, η2 − ε, γ, η2, γ, η2 − ε, 1, γ) .

We now introduce the following operator T H
α,γ,ε : W(Gε) → W(Gε), such that for

any ρ− in Gε,

T H
α,γ,εJ(ρ−) = inf

ρ+∈BHα,γ,ε(ρ−)

{
Aα

(
β̂Rγ,ε

(
ρ+, ρ−

))
+

1

γ

(
ρ+ − ε

) (
ρ− − ε

)
J
(
ρ+
)}

,(2.11)

where BHα,γ,ε(ρ−) := {ρ+ ∈ Gε : ρ+ ≤ γ + ε and (ρ+ − ε) (ρ− − ε) ≤ γ2}.

Computationally tractable lower bounds. We are now in a position to state

our result.

Theorem 2.2. Fix α ∈ [0, 1]. For any ε ∈ [0, 1) and integer k > 0. Let J1 be

the zero function in W(Gε) and J2 be the zero function in W(G 2
ε ). Then, for any

multiplicative mechanism defined by N ≥ 1, γ ∈ RN
++ and ζ in the simplex of RN ,

R(P ,Fα) ≥ inf
q∗∈Q∗α,ε

(qi,ρi)∈Qα,γi,ε(q
∗)

1≤i≤N

N∑
i=1

ζi

{
max

{
1

q∗
(T L

α,γi,ε
J2)k (q∗, ρ) , L̃α,γi,ε(q

∗, ρ)

}

+(q∗ − ε) (ρ− ε) (T H
α,γi,ε

J1)k (ρ)

}
,

where

Q∗α,ε := {q ∈ Gε s.t. q ≥ α1/(1−α) and q > 0}

Qα,γ,ε(q
∗) :=


{q∗} × BHα,γ,ε(ε), if γ < 1,

BLα,γ,ε(q∗, ε), if γ > 1.

In other words, the above result provides, for any given α, a family of lower

bounds on R(P ,Fα) parametrized by k and ε and a mechanism in M. To obtain a

computable and valid lower bound on R(P ,Fα), it suffices to select a mechanism in
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M, apply the operators T L
α,γ,ε and T H

α,γ,ε k times starting from the null functions and

then take the minimum over the values of q∗ and ρi in Q∗α,ε.

We note that Theorem 2.2 provides a generalization of Theorem 2.1. While the

bound for ε = 0 is tighter, the result provides a family of tractable bounds through

positive values of ε.

2.7.2 Impossibility Results and Near-Optimal Mechanisms

Now we are in position to derive provable lower and upper bounds on the maximin

ratio for any value of α in (0, 1]. To get the tightest possible bounds as well as the

structure of near-optimal mechanisms and near-worst case families, we will jointly

evaluate the upper and lower bounds. In particular, we use the following procedure.

1) Using Proposition 2.6, for each value of α, by using a grid of the parameters char-

acterizing the set introduced in the proposition, we find the regions of the parameters

that gives the lowest upper bound. This provides an upper bound on R(P ,Fα). 2)

Against this worst case family using Proposition 2.6 we find the best multiplicative

factor(s) γ. 3) Using these best multiplicative factors, we evaluate the worst case

performance using Theorem 2.2, leading to a lower bound on R(P ,Fα).4

In Table 2.1, we report the provable bounds obtained by following the approach

described above as well as the structure of the near-optimal pricing strategies and

the near-worst case distributions. For the upper bound, we select M = 30 and a

discretization parameter ε = 5×10−4 and for the lower bound, we use a discretization

parameter ε = 2.5×10−4 and a number of iterations of k such that the value iteration

errors are in absolute value less than 10−4.

There are multiple insightful remarks that emerge from Table 2.1. First, quite

4Note that for α = 0, our impossibility results will imply that a near-optimal randomized strategy
is the deterministic strategy of posting the sample that yields 50%. However, we will also explore
randomized strategies that put some weight on inflation (in Appendix B.1, we prove that this is
necessary against regular distributions) to improve upon the best known randomized performance.
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Pricing Lower bound Upper bound Distribution parameters

α mechanism on R(P ,Fα) on R(P ,Fα) v̄ q0 q1

1 δ0.76 63.5% 64.8% ∞ 0.450 0.077

0.9 δ0.78 62.9% 63.9% ∞ 0.440 0.076

0.8 δ0.80 62.3% 62.9% ∞ 0.425 0.074

0.7 δ0.81 61.5% 62.0% ∞ 0.405 0.070

0.6 δ0.82 60.6% 61.1% ∞ 0.385 0.066

0.5 δ0.84 59.7% 60.2% ∞ 0.360 0.061

0.4 δ0.86 58.7% 59.1% ∞ 0.330 0.055

0.3 δ0.88 57.5% 57.9% ∞ 0.290 0.047

0.2 δ0.91 56.0% 56.4% ∞ 0.235 0.036

0.1 δ0.94 54.0% 54.3% ∞ 0.165 0.022

0 0.99 δ0.99 + 0.01 δ3 50.1% 51.1% 1.75 0.110 0.009

Table 2.1: Lower and Upper Bounds on the maximin ratio R(P ,Fα) for different
values of α. We also report the parameters of the mechanisms used for the lower
bounds and the distributions used in the upper bounds.

strikingly, our joint approach yields a very tight characterization of the maximin ratio

with the difference between the upper and lower bounds ranging from 0.3% up to at

most 1.3% across different values of α. In particular, the results demonstrate that the

family of distributions that we have constructed yield a near-worst case performance

against all mechanisms. As mentioned earlier, these “hard” cases emerged naturally

in our analysis of the lower bound. To the best of our knowledge, this class of “hard”

distributions were not introduced in previous literature.

It is worth noting that, to date, to the best of our knowledge, only upper bounds on

deterministic mechanisms were known in the literature. In particular, for regular dis-

tributions, it is known that no deterministic mechanism can have better competitive

ratio than 50% and for MHR distributions, it has been shown that no deterministic

mechanism can have a better competitive ratio than 68% (Huang et al., 2015). The

results in the present chapter are the first upper bounds on the more general class of

randomized mechanisms. For the regular class, our bound establishes that while no
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deterministic mechanism can do better than 50%, no randomized mechanism can do

better than 51.1%. The value of randomization cannot be too large against regular

distributions. Against MHR distributions, we show that no randomized mechanism

can do better than 64.8%.

It is also worth noting that the best lower bound to date for the case of MHR

distributions (α = 1) was 58.9% as presented in Huang et al. (2015). Our approach

leads to a significantly improved lower bound of 63.5% for MHR distributions. Fur-

thermore, our approach is not tailored to MHR distributions but also leads to a lower

bound for an arbitrary value of α in [0, 1]. In particular, our bound for the regular case

(α = 0), is 50.1%, whereas the best lower bound in the literature was 50% + 5× 10−9

given by Fu et al. (2015).

On the value of randomization. At a higher level, our results also have impli-

cations on the value of randomization against α-SR distributions. The conjunction of

the lower and upper bounds developed (together with the structure of near-optimal

mechanisms) implies that the value of randomization is limited. For all the values of

α considered, there always exists a deterministic mechanism in P that is within 1.3%

of the optimal randomized mechanism.

On the value of one sample. Our uniform analysis across different values of α

allows to understand the value of a sample as a function of the class of distribution.

In particular, our results imply that there is a gain of at least 12.4% from the regular

case (α = 0) to the MHR case (α = 1).

On the structure of near-optimal mechanisms. Furthermore, we are able

to characterize the structure of near-optimal mechanisms. As we observe, for all

values of α > 0, a near-optimal mechanism is one that deflates the sample, and

the amount of deflation appears to increase as α increases. This is in line with

the fact that the family of distributions contains distribution with lighter tails as

α increases. Finally, it is apparent that the structure of near-optimal mechanisms
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varies a lot as a function of α. While the approach above leads to sharp results

in a constructive fashion, it is possible to derive structural results that prove that

fundamentally different mechanisms are needed for the various classes considered. In

particular, it is possible to show that against regular distributions, any mechanism

that does not put weight on inflation (γ > 1) is necessarily suboptimal. In other

words, inflation is necessary against regular distribution. In stark contrast, against

MHR distributions, it is possible to show that one may restrict attention without loss

of optimality to mechanisms that do not put any weight on inflation. We provide a

formal statement of this result in Proposition B.1-1, along with a discussion on the

interplay of inflation and deflation in Appendix B.1.

2.8 Conclusion

In the present chapter, we analyze the fundamental problem of optimal pricing when

the seller does not know the exact distribution of values of the buyer but has access to

one sample from that unknown distribution. We follow a competitive ratio approach

where the seller picks a pricing mechanism, potentially randomized, to maximize the

worst case fraction of revenue generated compared to the oracle optimal revenue,

when the distribution of values is α-strongly regular. For this problem, we provide a

unified tractable approach to analyze the maximin ratio for any value of α in [0, 1].

Through this novel approach, we are able to characterize the structure of near-optimal

mechanisms as well as near-worst case families of distributions. In turn, we are able

to characterize the maximin ratio across different values of α up to 1.3%.

There are different natural avenues of future research. One potential direction

is to try to completely close the gap between the lower and upper bounds. While

the case of one sample is fundamental, another important direction is to analyze the

problem when the seller has access to more samples. The latter direction is very
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promising since it will allow to connect the low sample and asymptotic regimes.
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Chapter 3

Auctions in the Online Display Advertising Chain:

Coordinated vs Independent Campaign Management

3.1 Introduction

The online display advertising market has grown rapidly over the last ten years, from

less than $4.3 billion in 2005 to more than $23 billion in 2015 (Internet Advertising

Bureau, 2015). This growth has seen the emergence of a significant new channel

through which publishers can sell impressions to advertisers, in addition to the tra-

ditional guaranteed contracts. Publishers now auction off in real time impressions

allowing advertisers to have increased targeting abilities. This real time market is

known as the Real Time Bidding (RTB) market. In the RTB market, while a user is

loading a webpage with an advertising slot, the publisher may send information about

the user and the characteristics of the slot (e.g., position, length, width, etc.) to an

ad exchange (through Supplier Side Platforms). The ad exchange runs an auction in

which advertisers bid for the impression through intermediaries called Demand Side

Platforms (DSPs).12

DSPs play an important role for advertisers in providing technology to access the

RTB market, with important economies of scale. This role is well recognized and

1Figure C.5-1 in Appendix C.5 provides a high level illustration of the structure of the different
agents and links constituting the value chain in the RTB market.

2The DSPs in RTB have often grown naturally from being intermediaries referred to as Ad
Networks in the traditional guaranteed contracts market in which size enabled them to negotiate
better deals on behalf of buyers.
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understood. The focus of the present chapter is on the tactical role that DSPs play

in practice and their impact on the online display advertising value chain. Indeed,

a DSP typically manages in parallel campaigns of multiple advertisers and accesses

the values that the advertisers he represents have for a particular impression, leading

to some form of collusion. Depending on the auction mechanism in place, a DSP

will potentially have an incentive not to transmit multiple bids to the ad exchange,

even if many of the advertisers he represents would value the impression. The DSP

would want to limit the competition for the item being auctioned off. Consider the

following basic motivating example to illustrate some of the incentives at play given

the structure described above. A publisher sends an impression to an ad exchange

that runs a second price auction with reserve price set to be 3. Assume there is only

one DSP who is bidding on behalf of two advertisers. The first advertiser values the

impression at 5 whereas the second one values it at 4. How should the DSP bid?

Assuming that the DSP maximizes the surplus of his advertisers and coordinates

campaigns, he would try to limit competition and it is clear that the best strategy

of the DSP is to only submit one bid, the highest one, 5 on behalf of the first ad-

vertiser. In turn, the DSP would be allocated the item and the buyers’s side (DSP

plus advertisers) would make a surplus of 2 while the group of sellers (publisher plus

ad exchange) would generate revenues of 3. Let us compare this case to what would

have happened had the DSP managed the campaigns of the advertisers he represents

independently of each other. With such a constraint, he would have submitted a bid

on behalf of each advertiser equal to the advertiser’s value for the impression and the

resulting allocation would have been identical. However, the buyers’ surplus would

have been equal to 1 and the seller’s revenues would have amounted to 4. This simple

example already brings to the foreground fundamental questions on the DSPs impact

on the online display advertising value chain. How does the collusion induced by the

tactical role of intermediaries impact the participants in the value chain?
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3.1.1 Main questions and contributions

In the absence of collusion through intermediaries, i.e., when DSPs manage cam-

paigns of their advertisers independently of each other, it is well known that under

proper regularity assumptions, a second price auction with reserve price is an op-

timal mechanism for selling a single object (Myerson, 1981). We take this setting

as a benchmark, which we refer to as the “multi-bidding” case or the independent

campaign management case. With this baseline, we focus on the implications of co-

ordinated campaign management by DSPs in the bidding process on the value chain

when the seller uses a second price auction. The joint optimization creates a form of

collusion among buyers. The early work of McAfee and McMillan (1992) studied how

buyers could collude efficiently under an (first price) auction, and when analyzing the

seller’s response, illustrated through a numerical example with uniform valuations

that collusion could hurt not only the seller but also the buyers. In the present chap-

ter, we aim to understand and analyze if there exist systematic directional impacts

of collusion on the performance of the players in the value chain in a general market

with many intermediaries, and isolate the drivers of said impacts. In doing so, we also

aim to inform the debate about multi-bidding taking place in the online advertising

industry.

To shed light on the questions above, we develop a framework anchored around a

model with symmetric intermediaries and buyers for which the multi-bidding bench-

mark case is well understood. In particular, the main contributions of the present

chapter can be summarized as follows.

We analyze the impact of coordinated campaign management by DSPs on three

performance measures: the seller’s profit, the buyers’ side surplus (buyers and in-

termediaries) and the social welfare. We show that the presence of intermediaries

leads to an increase in the reserve price, and, as one would expect, always affects

negatively the seller’s profit. In addition, coordinated campaign management always
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negatively affects social welfare. While it is not possible to obtain a systematic direc-

tional conclusion for the impact on buyers across all market scenarios, we are able to

characterize the impact in two regimes with and without competition among inter-

mediaries. In those, we establish that the buyers (together with the intermediaries)

are also worse off when intermediaries coordinate campaigns for a broad set of market

characteristics. As result, a fundamental inefficiency is induced by the coordinating

role of the intermediaries and there is a potential for a Pareto improvement through

multi-bidding in the value chain.

In more detail, to characterize the impact on buyers, we consider two regimes that

we establish to be analytically tractable. We first analyze the impact on buyers for

the special case in which there is no competition among intermediaries: with a single

intermediary representing two buyers. We establish analytically that for the class

of Generalized Pareto distributions (that includes uniform and exponential distribu-

tions), the buyers (together with the intermediaries) are worse off when intermediaries

coordinate campaigns, as long as the coefficient of variation is not too small. Hence,

there is a potential for a pareto improvement through multi-bidding.

In the presence of competition among intermediaries, it is not clear if the ineffi-

ciency persists as the buyers’ surplus is affected by the response of the seller but also

by the competitive landscape. To gain tractability in a competitive environment, we

analyze the impact on buyers in a large market. In particular, we focus on an ap-

propriate asymptotic regime in which both the number of intermediaries and buyers

grow large while maintaining the competition level in the auction constant. In such

a regime, we derive an asymptotic upper bound on the impact on the buyers’ side

surplus for general distributions of values. Leveraging this upper bound, we then

establish that for the class of Generalized Pareto distributions, the buyers are again

negatively impacted by coordinated campaign management in a very broad range of

scenarios. In particular, this holds as long as the average number of advertisers that
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participate in the auction is moderate and the coefficient of variation of values is not

too small.

We also conduct a robustness analysis through numerical experiments for the

family of Beta and Gamma distributions for the buyers’ values and find a similar

insight to hold.

Implications. The present chapter highlights the two main forces at play for buy-

ers using intermediaries that leverage their tactical role in the bidding process and

coordinate bidding strategies as opposed to running all campaigns independently. On

the one hand, coordinated campaign management leads to a “myopic benefit of col-

lusion” by decreasing the competitiveness of the auction the buyer participates in.

On the other hand, coordinated campaign management leads the seller to react and

adjust its selling mechanism. The fundamental insight is that the impact of the latter

reaction of the seller, which leads to an increase in the reserve price, dominates, in a

very broad set of scenarios, the myopic benefit of collusion. In turn, buyers (together

with intermediaries) are worse off in a market with intermediaries that coordinate

campaigns. In other words, both the seller and the buyers’ side in the RTB value

chain suffer due to coordinated campaign management by DSPs. While DSPs play a

key technological role in reducing frictions and enabling access to the RTB market for

advertisers while providing economies of scale, the present research establishes that

coordinated campaign management taken in the bidding process may be detrimental

to the online display advertising value chain. Furthermore, the results above estab-

lish that independent campaign management and truthful submission of all bids by

DSPs, commonly referred to as “multi-bidding”, i.e., independent campaign manage-

ment, in the online advertising industry, leads to a Pareto improvement in the value

chain for a very broad range of environments. Sellers have been concerned about the

lack of transparency and visibility of all bids for some time (see, e.g., Mansour et al.

(2012), Kaplan (2012)), and the lack of thickness in the market, and have advocated
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for multi-bidding. Despite the appearance that multi-bidding might hurt advertisers

(as it would increase competition), the present chapter makes a case that, in fact,

advertisers may benefit from multi-bidding as an industry norm. More broadly, this

chapter exhibits a fundamental inefficiency in the online display advertising value

chain. Furthermore, the present chapter indicates that one may not be able to ad-

dress this inefficiency at the interface between the seller and the intermediaries under

a second price auction. One may need to tackle it at the interface between the ad-

vertisers and the DSPs and advertisers may want to require as an industry norm to

have their campaign managed independently of other buyers. While DSPs should

continue to play an important technological role, this chapter provides a rigorous

framework for a debate about multi-bidding and the role DSPs should play in the

bidding process.

Organization of the chapter. We next discuss the related literature. In Sec-

tion 3.2, we present the problem formulation. We quantify the impact of coordinated

campaign management on the seller’s profit and the social welfare in Section 3.3.

Sections 3.4-3.6 focus on the impact of this coordinated campaign management on

buyers. We conclude in Section 3.7. All proofs are presented in Appendix A and the

online appendix accompanying this chapter.

3.1.2 Literature review

Online advertising. Our chapter relates to the growing online advertising literature.

Muthukrishnan (2009) and Korula et al. (2016) review some of the research challenges

associated with the industry, such as the optimization of campaign delivery, (Roels

and Fridgeirsdottir, 2009; Ciocan and Farias, 2012; Balseiro et al., 2014; Hojjat et al.,

2016), the design of bidding strategies while learning valuations (Iyer et al., 2014) or

the study of contracting in the value chain. The latter has been studied under various

angles. For example, Balseiro and Candogan (2016) study the optimal contracting
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between intermediaries and budget constrained buyers. Feldman et al. (2010) focus

on the relation between the intermediaries and their buyers. Assuming that the

seller is running a second price auction with an eventual random reserve price, they

characterize the optimal contract between the intermediary and advertisers, given

that the intermediary is maximizing the difference between the payment received

from the buyers and the payment made to the seller. Balseiro et al. (2015b) study

the optimal contract when a network of intermediaries is present and analyze the

relation between the position in the network of an intermediary and the profit that

can be achieved as a function of the distribution of buyers. An analysis that relates

to the present work is the analysis of horizontal mergers of intermediaries. However,

the incentives at play are different as intermediaries maximize their own surplus and

we focus on a different question, the role that DSPs should play and the impact of

multi-bidding on the value chain. Also related in spirit is Hummel et al. (2016) who

study, under the assumption that the seller is running a second price auction, if the

seller could incentivize the intermediary to reveal his second value. Specifically, they

have shown that if the seller shares its revenue with the intermediaries then they

might reveal the second highest value in their book if they value the shared revenue

from the seller more than the utility of their advertisers. In the present chapter, the

intermediaries are assumed to act in order to maximize the surplus of the buyers they

represent and we abstract away from how the surplus is shared between buyers and

intermediaries. The latter ensures that the findings we obtain are not driven by any

misalignment of incentives between the intermediaries and the buyers. Especially, we

argue that the fundamental inefficiency, due to the lack of visibility of the second

value in the book of intermediaries may be tackled at the interface between the

intermediaries and the buyers in the form of an industry norm.

Collusion in auctions. Our work may be seen as studying the implication

of collusion when the seller is running a second price auction . In that sense, it
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relates to Graham and Marshall (1987) who study how the buyers could collude

efficiently when the seller is setting a second price auction. McAfee and McMillan

(1992) have also studied how the buyers could collude efficiently under the assumption

that the seller is using a first price auction. They have studied different types of

cartels: weak and strong; our model is more related to the weak cartels since no side

payment is possible, because the assignment set by the seller in our model cannot

be changed or manipulated by the intermediary. They considered only the presence

of one cartel while in our work we allow for competition among intermediaries. As

mentioned earlier, McAfee and McMillan (1992) provide a numerical example for

a specific distribution of values (standard uniform) in which collusion through one

cartel, under the first price auction, negatively affects its own buyers by the reaction

of the seller. In our chapter, we prove analytically, under a second price auction, that

such inefficiencies will be systematic in the case of more than one cartel and for a

general class of distributions. Furthermore, we elucidate a driver for the presence of

these inefficiencies through the coefficient of variation of values of buyers. For more

broad analysis of collusion, we also refer the reader to Pavlov (2008) and Che and Kim

(2009) who investigate what types of mechanisms could be used to counter collusion

when there is asymmetric information between the members of the same cartel (in

our model, motivated by online advertising, we do not assume any asymmetry among

the members of the same cartel.)

In our model each intermediary might represent many advertisers. In general,

since each intermediary could be seen as an agent with a multidimensional vector of

private values, a more general version of our problem in which one does not restrict

attention to second price auctions falls in the class of multidimensional mechanism

design. In particular, the seller’s problem would be, e.g., a special case of the model

analyzed in Belloni et al. (2010), albeit in a different context. It is well known that

in this class of problems, randomization could dominate take it or leave it prices
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(Thanassoulis (2004)) and the work of Haghpanah and Hartline (2014) provides suf-

ficient conditions for a posted price to be optimal. The practical appeal and the

adoption within the industry (Mansour et al. (2012)) of second price auctions to-

gether with the lack of clear understanding of the structure of an optimal solution

to the multi-dimensional mechanism design problem, lead to us to limit attention to

second price auctions in the present chapter.

Intermediation and efficiency in supply chains. Finally, there has been

significant research in supply chain structures and their implications on the chain

profits. From that perspective, our work also relates at a high level to this broad

stream. A study related in spirit to our study is Hu et al. (2013) that analyzes the

impact of pooling purchases on the the buyers’s profits and the strategic reaction this

induces on the seller side. See also, e.g., Adida et al. (2016), Yang and Babich (2014),

Belavina and Girotra (2012), Wu (2004) for recent studies of the role of intermediaries

in supply chains.

3.2 Problem Formulation

We consider one seller (ad exchange) with a single unit to sell (an impression), and

J intermediaries (DSPs). Each intermediary is representing K buyers (advertisers),

so in total there are J ×K buyers. The kth advertiser of intermediary j has a value

vkj for the unit. We assume that {vkj : j = 1, . . . , J, k = 1, . . . , K} are independent

and identically distributed (i.i.d.).

Each intermediary j is characterized by the vector of values vj = (v1
j , . . . ,v

K
j )

of the buyers he represents. We assume that the buyers provide truthfully their

values to the intermediary that represents them.3 Each intermediary is assumed to

maximize the surplus of the group of advertisers he represents. This is in line with

3The DSPs are often computing the value their advertisers have for impressions and hence have
access to those.
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intermediaries having a surplus sharing contract with advertisers. This objective is

also in line with the long term objective of DSPs in the marketplace as those aim

to retain their customers. Furthermore, with such an objective, the incentives of the

DSPs are fully aligned with the group of advertisers they represent. In other words,

the results we obtain are not driven by a misalignment of incentives between DSPs

and advertisers.

We assume a quasi-linear utility for the buyers, i.e., an advertiser’s utility is his

value for the impression (if he receives it) minus his payment. The vector vj is the

private information of intermediary j. We assume that the intermediaries do not

communicate between themselves.

Model of valuations. With many intermediaries and advertisers per interme-

diaries, the auctions could “degenerate” given the extreme competition that arises

when J × K is large. To avoid this degeneracy and to be able to analyze a mean-

ingful model with large values of J and K (which occurs, e.g., in the online display

advertising RTB market), we focus on a two step private value model in which each

buyer “matches” with the item with probability α ∈ (0, 1]. If a buyer matches, then

his valuation is drawn from a distribution F (·), otherwise his valuation for the item

is zero. As a result, the underlying new cumulative distribution of an advertiser’s

value is given by

Gα(x) = 1− α + α F (x). (3.1)

Intermediaries are ex-ante symmetric. However, an intermediary might represent,

ex-post, strictly less than K advertisers in the auction. One could consider K as

the total number of clients that an intermediary has in its portfolio. However, for a

particular item, only a portion of those clients are interested in bidding for the item.

Related models of valuations have been used recently in studies focusing on differ-

ent questions in the context of online advertising (Balseiro et al., 2015a; Mirrokni and

Nazerzadeh, 2015). These models are meant to capture a key feature of these mar-
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kets: there tends to be a large number of advertisers contracting with intermediaries

and the latter bids on their behalf; however, when a particular auction takes place,

there is only a moderate number of bids submitted. Mathematically, the matching

parameter α allows to control how much competition is present for a typical auction.

In the present chapter, we will be looking at two main regimes. First, we analyze

a setting without competition among intermediaries, in Section 3.4, where α = 1,

J = 1 and K = 2, to highlight the main intuition at play. Then we analyze a general

model, with competition among intermediaries in Section 3.5, in a large market. We

will take J and K large, α shrinking to zero, while ensuring that αJK is constant.

In the latter, there is a large number of players in the market but the number of

interested buyers per auction is constant and independent of the scale of the market.

The seller’s optimization problem. The seller can only contract with the

intermediaries and does not know the book values list vj behind each intermediary.

However, the number of advertisers K per intermediary, and the number of inter-

mediaries J and the distribution F are assumed to be common knowledge. Finally,

the seller has no value for the item and uses a second price auction4 to maximize its

expected revenue.

Assumptions. We will assume throughout that the support of the values S

is convex, contained in [0,∞), and that the values admit a density denoted by f ,

which is twice continuously differentiable and has increasing failure rate (IFR). These

are common assumptions in the auction literature and are satisfied for example for

Gamma, Beta and Generalized Pareto families for a wide range of parameters. We

will denote the complementary cumulative distribution function by F .

Notation. In what follows, we denote by v
[i]
1:J the ith highest value of the collection

of values {vkj : 1 ≤ j ≤ J ; 1 ≤ k ≤ K}. For each intermediary j, we denote the

4A second price auction or variations of it is one of the adopted norms in the online display
advertising industry Muthukrishnan (2009) and Mansour et al. (2012).
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order statistic of vj = (v1
j , . . . ,v

K
j ) by v

[1]
j , . . . ,v

[K]
j , where v

[k]
j ≥ v

[k+1]
j . In particular

v
[1]
j and v

[2]
j are the first and second highest values of intermediary j. Furthermore,

for v in S , we let

φ(v) = v − 1− F (v)

f(v)
(3.2)

denote the virtual value function. In the following sections, we use buyers (respec-

tively, intermediaries) and advertisers (respectively, DSPs) interchangeably given the

central application of the chapter.

3.2.1 Performance Metrics and Impact of Active Role of

Intermediaries

We track the following performance metrics when intermediaries are coordinating

campaigns of their buyers under an optimal second price auction: the revenue of the

seller Π∗co, the social welfare S∗co and the surplus of the buyers (along with the inter-

mediaries) U∗co, where the subscript co is mnemonic for the fact that these metrics

are evaluated when the intermediaries are coordinating the campaigns of the buy-

ers they represent (we introduce in a moment the multi-bidding/independent cam-

paign management benchmark). Let us denote by (w[1], ...,w[J ]) the order statistic

of (v
[1]
1 , ...,v

[1]
J ). In particular, w[1] is the highest value of the maximum that each in-

termediary has and w[2] is the second highest maximum among the maximum values

that each intermediary has. Note that w[1] = v
[1]
1:J , i.e., the maximum value among

the maximum values that each intermediary represents coincides exactly with the

maximum value of all advertisers. If there is only one intermediary, we define w[2]=0.

Note that given that the seller is using a second price auction with a reserve price r,

it is clear that the best response of an intermediary is to submit only one bid to rep-

resent the buyer with the highest value, i.e., intermediary j will only submit one bid

equal to v
[1]
j . Hence, the problem reduces to one in which the seller can be thought
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as facing J intermediaries, with each one representing only one “virtual buyer.” In

turn, we have

Π∗co = E[max{rco,w[2]} 1{w[1] ≥ rco}],

S∗co = E[w[1] 1{w[1] ≥ rco}],

U∗co = E[(w[1] −max{rco,w[2]})+],

where rco denotes the optimal reserve price set by the seller when the intermediaries

are coordinating the campaigns of the buyers they represent. In Section 3.3, we will

characterize explicitly rco.

Multi-bidding benchmark. To understand the impact of tactical campaign

coordination, we will consider the benchmark case in which intermediaries manage

the campaign of each buyer independently of the other buyers they represent (more

formally, the bid that they submit on behalf of a particular buyer cannot depend on

the actual values of other buyers). We refer to this benchmark as the multi-bidding

or independent campaign management case (we will use both terms interchangeably).

In this case, the problem of the seller reduces to a case akin to one in which

she is dealing directly with the buyers (and intermediaries are simply providing the

technology to potentially compute and submit the bids). Then, the problem reduces

to selling a single unit to J × K buyers with i.i.d values drawn according to F .

Under the IFR assumption we made on F , it is well known (Myerson, 1981) that an

optimal selling mechanism is given by a second price auction with reserve price rin,

where rin is the unique solution of φ(v) = 0 with φ(·) being the virtual value function

defined in (3.2). The subscript in is mnemonic for the fact the intermediaries are

managing campaigns independently. In particular, the good is allocated if and only

if at least one buyer has a bid above rin, in which case the buyer with the highest

bid is allocated the item and pays the maximum of the reserve price and the second

highest bid. Only a buyer who is allocated the item pays anything to the seller. We

93



recall that the second price auction is a truthful direct mechanism, i.e., it is optimal

for each buyer to submit its true value. In turn, the expected revenue of the seller,

the social welfare and the surplus of the buyers (advertisers and intermediaries) are

given by

Π∗in = E
[
max{rin,v[2]

1:J} 1{v
[1]
1:J ≥ rin}

]
,

S∗in = E
[
v

[1]
1:J 1{v

[1]
1:J ≥ rin}

]
,

U∗in = E
[
(v

[1]
1:J −max{rin,v[2]

1:J})
+
]
.

The objective of the chapter is to characterize the impact of coordinated campaign

management in the bidding process on the value chain. In particular, we will analyze

the three key quantities

Π∗co − Π∗in impact of coordinated campaign management on seller revenues,

S∗co − S∗in impact of coordinated campaign management on social welfare,

U∗co − U∗in impact of coordinated campaign management on buyers’ surplus.

3.3 Impact of Intermediaries Coordinating

Campaigns of their Buyers

3.3.1 Adjusted reserve price

We first characterize the impact of coordinated campaign management on the reserve

price set by the seller.

Lemma 3.1 (Adjusted Reserve Price). When the intermediaries are coordinating

campaigns of their own buyers, an optimal reserve for a second price auction on all

bids submitted is given by rco, uniquely defined through

rco =
1− (Gα(rco))

K

αKf(rco)(Gα(rco))K−1
.
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Furthermore, this price is strictly greater than the one in the independent campaign

management benchmark case, i.e.,

rco > rin.

Hence, when intermediaries are coordinating campaigns of their buyers, the seller

is not oblivious to this role and reacts by becoming more “demanding” towards the

intermediaries and increasing the minimum payment she is willing to accept. We

note that here, we assume that the incentives of intermediaries are perfectly aligned

with those of the buyers they represent, so the increase in reserve price does not stem

from double-marginalization. Rather, it is driven by the change in the distribution of

bids/values that the seller observes due to the coordination of campaigns. Now, the

seller sees only the maximum of the values of the buyers that a particular intermediary

represents.

3.3.2 Impact on the value chain

Seller’s profit and social welfare. The next result formalizes the fact that the

seller is negatively affected when intermediaries coordinate the campaigns of the buy-

ers they represent, and establishes that the latter practice also negatively affects the

social welfare.

Corollary 3.1 (impact on seller and social welfare). The coordinating role of DSPs

leads to a strict decrease in the seller’s revenues and in the social welfare, i.e.,

Π∗co < Π∗in ,

S∗co < S∗in .

The increase of the reserve price only mitigates the revenue losses stemming from

the collusion induced by intermediaries but does not allow her to fully recover the

revenues she would have obtained in a case with multi-bidding, i.e., Π∗co < Π∗in. The
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fact that the seller is hurt by the collusion is in line with intuition. Furthermore,

since the seller increases its reserve price from rin to rco, i.e., rco > rin, there is now

a lower probability that the item is sold hence the social welfare decreases. In turn,

the pie that the seller and buyers (together with the intermediaries) will be sharing

shrinks.

Buyers’ side surplus. Next, we analyze the effect on buyers’s side (buyers

together with intermediaries) and analyze the difference U∗co − U∗in.

To that end, we let Uin(r) denote the expected surplus of the buyers when the

seller uses a second price auction with a reserve price r and the intermediaries are

multi-bidding, i.e.,

Uin(r) = E
[(
v

[1]
1:J −max{v[2]

1:J , r}
)
1{v[1]

1:J ≥ r}
]
.

Note that U∗in = Uin(rin).

Similarly, we let Uco(r) denote the expected surplus of the buyers when the seller

uses a second price auction with a reserve price r and when the intermediaries are

coordinating campaigns of their buyers, i.e.,

Uco(r) = E
[
(w[1] −max{w[2], r})1{w[1] ≥ r}

]
.

Note that U∗co = Uco(rco).

With the notation above, the impact of collusion on buyers may be written as

U∗co − U∗in. In turn, this may decomposed as follows

U∗co − U∗in = MBC + S RI ,

where

MBC = Uco(rin)− Uin(rin),

S RI = Uco(rco)− Uco(rin).

The quantity MBC captures the benefits that the buyers receive stemming from

the intermediaries acting strategically, assuming the seller does not react. We refer
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to MBC as the “myopic benefit of collusion.” Clearly, for any market parameters,

one has MBC ≥ 0, i.e., if the seller does not respond to the coordinating role of

intermediaries and keeps the reserve price at rin, the buyers would benefit from such

coordination since competition is softened.

The quantity S RI represents the impact of the increase in reserve price on the

buyers when the intermediaries are coordinating campaigns of their buyers. We refer

to S RI as the “seller reaction” effect. It is also clear that S RI ≤ 0, i.e., the

buyers are negatively affected by the increase in reserve price from rin to rco.

The following proposition characterizes each quantity as a function of the market

primitives.

Proposition 3.1 (impact on buyers). The myopic benefit of collusion and the seller’s

response effect are given by

MBC =

∫ ∞
rin

(
JK(1− (Gα(x))JK−1)− (JK − 1)(1− (Gα(x))JK)

)
−
(
J(1− (Gα(x))JK−K)− (J − 1)(1− (Gα(x))JK)

)
dx,

S RI =

∫ rco

rin

[
J(1− (Gα(x))JK−K)

−(J − 1)(1− (Gα(x))JK)

]
−
[
(1− (Gα(x))JK)

]
dx.

Quantifying the impact of the coordinating role of DSPs on the buyers’ side surplus

is akin to quantifying which of MBC and S RI dominates and drives the sign

of U∗co − U∗in = MBC + S RI . Analyzing U∗co − U∗in based on the expressions in

Proposition 3.1 appears analytically intractable in general. In Section 3.4, we analyze

the case, without competition among intermediaries (one intermediary representing

two advertisers) in detail for a family of distributions, to develop the main intuition

and drivers of U∗co−U∗in. In Section 3.5, we analyze a general model with competition

among intermediaries, and characterize U∗co−U∗in in a “large market” in an appropriate

asymptotic regime.
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3.4 Impact on the Buyers’s Side: No

Competition Among Intermediaries

To highlight the main intuition and the main phenomena at play, we first consider

the case of one intermediary (J = 1) representing two advertisers (K = 2), when

the advertisers are always interested by the object (α = 1). We denote the order

statistic of the values of the two advertisers by v[1] and v[2] with v[1] ≥ v[2]. When

the intermediary is multi-bidding, meaning that the seller receives two bids v[1] and

v[2], the optimal mechanism is a second price auction with reserve price rin defined by

rin = (1 − F (rin))/f(rin). When the intermediary coordinates the bids of its buyers,

the optimal mechanism is a second price auction with reserve price rco defined by

rco = [1 − F 2(rco)]/[2 f(rco) F (rco)] and the seller receives only one bid equal the

highest value v[1].

To quantify the impact of collusion on buyers and the drivers of its sign, we will

be analyzing a family of value distributions that includes among other distributions

the uniform and exponential ones. In particular, we focus on the Generalized Pareto

Distribution parametrized by (σ, ξ) with σ > 0 and ξ ≤ 0 with distribution

Fξ(z) =


1− (1 + ξz

σ
)−1/ξ for ξ < 0

1− e−z/σ for ξ = 0

The support is given by [0,−σ/ξ] for ξ < 0 and [0,∞) for ξ = 0. In particular,

the standard uniform and exponential distributions belong to the family, the former

corresponding to (σ, ξ) = (1,−1) and the latter to (σ, ξ) = (1, 0). Any member of

the family satisfies the IFR property (since ξ ≤ 0). This family allows many possible

shapes and some distributions belonging to the family are depicted in Figure C.6.1 in

Appendix C.6. This family is attractive given its flexibility but also its tractability

in the context of auction design (see, e.g., Balseiro et al. (2015b)).
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Using Proposition 3.1, we can derive an expression for U∗co − U∗in as a function of

ξ. Indeed, we first note that rin admits a simple closed form expression,

rin =
σ

1− ξ
.

On the other hand, the reserve price rco is a solution of the following equation:

rco =
σ

2

(
1 +

ξ

σ
rco

)(
1 + Fξ(rco)

Fξ(rco)

)
.

Following Bulow and Roberts (1989), we focus on the quantiles. Let us introduce

q(x) := 1 − F (x), so we get that x = F−1(1 − q) and let us denote qin and qco the

quantiles corresponding to the reserve prices rin and rco respectively.

Proposition 3.2. Suppose that the distribution of values is given by a generalized

Pareto distribution with parameters (σ, ξ) with ξ ≤ 0. Then, the impact of campaign

coordination by the intermediary on the buyers’ side surplus is given by

U∗co − U∗in = σ

[
2

2− ξ
q2−ξ
in − 2

1− ξ
q1−ξ
in +

2

1− ξ
q1−ξ
co −

2

2− ξ
q2−ξ
in

]
,

where qin and qco are solutions to the following equations

qin = (1− ξ)
1
ξ ,

1

ξ
(1− qξco) =

2− qco
2(1− qco)

.

Proposition 3.2 provides a closed-form expression of U∗co−U∗in as a function of the

quantiles. The key challenge in analyzing U∗co − U∗in and its sign is associated with

the quantile in the coordinated campaigns case, qco, which does not admit a closed-

form expression. Furthermore, the proposition implies that for the generalized Pareto

family, the sign of U∗co − U∗in does not depend on the value of σ, so the sign depends

only on ξ. Furthermore, note that the coefficient of variation of values (the standard

deviation normalized by the mean) depends only on ξ, and is given by

CV (ξ) =
1√

1− 2ξ
.
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Hence, CV (ξ) is a one-to-one mapping and is increasing in ξ; as ξ spans (−∞, 0],

CV (ξ) spans (0, 1]. We will next analyze the sign of U∗co−U∗in as a function of CV (ξ),

as the latter is a more “physical” quantity than ξ.

Theorem 3.1. (impact of coordinated campaigns on buyers’s side) Suppose that the

distribution of values is given by a generalized Pareto distribution with parameters

(σ, ξ). Then there exists a threshold ρ in [0, 1/
√

3] such that buyers are worse-off in

a market with coordinated campaigns, i.e., U∗co − U∗in ≤ 0, whenever the coefficient of

variation of values CV (ξ) ≥ ρ.

The result implies that coordinated campaign management has a negative im-

pact on the buyers’s side (buyers together with the intermediaries) as long as the

coefficient of variation of values is not too small. In particular, the uniform and ex-

ponential distributions satisfy CV (ξ) ≥ ρ, (CV (−1) = 1/
√

3 and CV (0) = 1). The

proof of the previous theorem relies mainly on the fact that when the coefficient of

variation increases the seller becomes more “demanding”. In particular, in the proof,

we establish structural properties of the ratio of the quantiles qco/qin (as depicted in

Figure 3.2(b)) and how it dependens on the coefficient of variation. Leveraging these

properties, we construct a piecewise decreasing concave bound on U∗co − U∗in that is

negative on [1/
√

3, 1].

Initially, the motivation for coordinated campaigns is to reduce competition from

the advertisers represented by the same intermediary. By hiding the second value (and

lower values), the intermediary decreases the second value present in the marketplace.

This appears appealing to the advertisers given that the myopic benefit of collusion

MBC is always non-negative. However, the seller is not oblivious to this strategic

behavior of intermediaries and adjusts the reserve price given the new distribution of

values she faces. Not only the payment for the winner may increase but by increasing

its reserve price, the seller also allocates less often the item. These last two effects

lead to the negative effect that the seller might have on buyers (S RI ). Theorem 3.1

100



establishes that this effect dominates the myopic benefit of collusion in a broad range

of market scenarios. In particular, as long as there is non-trivial value discovery

involved (which corresponds to higher values of CV (ξ)), in which case auctions play

an important role, then the buyers will benefit from operating in a market in which

the intermediary is managing all campaigns independently and is multi-bidding.

Together with Corollary 3.1, Theorem 3.1 implies that coordinated campaigns

can have a negative impact across the value chain. In other words, multi-bidding by

an intermediary can lead to a Pareto improvement in the value chain as long as the

coefficient of variation of values is above a threshold. In the next section, we conduct

a numerical analysis for the different quantities to support our analytical insights

for the Generalized Pareto Distribution. We have also investigated numerically other

general classes of distributions (such as Beta or Gamma) and the same central insight

holds. There exists a threshold such that if the coefficient of variation exceeds that

threshold then both the seller and the buyers are negatively affected by operating in

a market with coordinated campaigns (see Section 3.6).

3.4.1 Numerical illustrations and Discussion

In Figure 3.1, we depict the social welfare, the seller’s profit and the buyers’ surplus

as a function of the coefficient of variation CV (ξ) of the values. We normalize the

mean of values to 1 by setting σ = 1− ξ.

We observe first that when CV (ξ) is close to zero, the role of the intermediary

(campaign coordination vs. multi-bidding) has little influence on the performance

metrics. Indeed, the values of the buyers are close to deterministic and the seller is

able to extract almost all the surplus independently of the nature of the intermediary’s

role. As CV (ξ) increases, the role of the intermediary becomes much more central

and significantly affects the seller and the social welfare. Seller’s revenue losses (Π∗co−

Π∗in)/Π
∗
in and social welfare losses (S∗co−S∗in)/S∗in are in the range of 7−8% for CV (ξ) ≥
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Figure 3.1: Social welfare, seller’s profit and buyers’ surplus as a function
of the coefficient of variation of values and the intermediary coordinating or inde-
pendently managing campaigns. The distribution of values are generalized Pareto
distributions with parameters (σ = 1 − ξ, ξ), and there is one intermediary and two
advertisers.

0.5.

In Figure 3.2, we zoom on the impact on buyers’s surplus U∗co − U∗in and analyze

in conjunction the optimal reserve prices rco and rin and the corresponding quantiles.

Note that here, once the expectation of values is normalized to 1, we have rin = 1 for

all values of ξ.
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Figure 3.2: (a) Impact of campaign coordination on buyers’ side surplus (b) Optimal
reserve prices and quantiles as a function of the coefficient of variation for generalized
Pareto distributions with parameters (σ = 1 − ξ, ξ) with one intermediary and two
buyers.

We observe that U∗co−U∗in is initially positive and negligible (both U∗co and U∗in are

“small” given that the seller extracts almost all the surplus when CV (ξ) is small),

crosses the zero axis at CV (ξ) ≈ 0.22 and then stays negative for all greater values

of CV (ξ). This is a picture proof of Theorem 3.1. In addition, we note that the

losses for the buyers (together with the intermediaries) (U∗co − U∗in)/U
∗
in amount to

about 7.9% for CV (ξ) = 1/
√

3 ≈ 0.58, which corresponds to the uniform distribution

and about 8.2% for CV (ξ) = 1, which corresponds to the exponential distribution.

The main driver of these losses is the increase in reserve price from rin to rco which

increases by 16% and 21%, respectively, in the latter two cases.

In other words, for the latter two cases of uniform and exponential distributions,

the move from coordinated campaigns in the bidding process to independent campaign

management, in which the campaign of each buyer is managed independently of other

campaigns, would lead to a Pareto improvement in the value chain with both the seller

and the buyers obtaining increases in performance in the range of 7 − 8.2%. At an
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intuitive level, as the coefficient of variation increases, there is more value discovery

involved, which pushes the seller to react more aggressively, and in turn amplifies the

fundamental inefficiency associated with campaign coordination in the value chain.

3.5 Impact on the Buyers’s Side: Competition

Among Intermediaries

In the previous section, we analyzed the case of one intermediary representing two

advertisers to highlight the main intuition and the main phenomena at play. In

practice, there would be multiple intermediaries and each will be representing a po-

tentially large number of buyers. The goal of this section is to analyze the impact of

coordinated campaigns on the buyers’s side U∗co − U∗in in such a general setting.

3.5.1 Large Market Approximation

We will analyze the impact of coordinated campaigns in a regime where both the

number of buyers and the number of intermediaries grow large while the probability

of any advertiser matching shrinks to zero such that the average number of advertisers

who have a positive value for the item auctioned off is constant, equal to some c > 0,

i.e., αJK = c. More precisely, we will assume that α and Kα are small, J and K are

large, while the average number of buyers having positive value for the item αJK = c

is constant.

In other words, in the regime we analyze, the competition in any given auction is

always ex-ante identical and fixed, independently of the scale of the network. This

ensures that the auctions do not degenerate and that the level of competition in the

auctions does not change with the number of intermediaries and advertisers.

From the seller’s perspective, if one fixes the reserve price for a moment, coor-

dinated campaigns leads to inefficiencies as soon as the same intermediary has both
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the highest value v
[1]
1:J and the second highest value v

[2]
1:J among all advertisers. Given

the structure of the network, the probability that such an event occurs is given by

K − 1

KJ − 1
.

As a result, in a large market, we expect coordinated campaigns to have an impact

of order O(1/J) on the various players in the value chain.

The next result shows, through upper and lower bounds that, indeed, the reserve

price rco approaches rin in the large market regime at rate (1/J).5

Lemma 3.2. For any α,K such that α ≤ 1/2 and αK < 1, the reserve price rco

satisfies

c

J

(F̄ (rin))
2

2f(rin)φ′(rin)
− (α + 3

c2

J2
)C1 ≤ rco − rin ≤

c

J
rine

1
1−α ,

where C1 is a constant depending only on the distribution F .

Next, we analyze the impact on buyers: U∗co −U∗in = MBC + S RI by deriving

upper bounds on the myopic benefit of collusion MBC and on the seller’s reaction

impact S RI .

Proposition 3.3 (Myopic benefit of collusion). The myopic benefit of collusion

MBC is upper bounded as follows

MBC ≤ ec/J

J

[
c2e−c

2

∫ ∞
rin

(y − rin)2F (y)f(y)dy

+

∫ ∞
rin

∫ ∞
x

(y − x)F (y)f(x)f(y)c3e−cF (x)dydx

]
+O(ln(JK)/J2).

This result shows that the MBC is indeed of order O(1/J) when ln(JK) = o(J).

The main idea behind the proof of the result is to condition on the number of matches

5The dependence of the reserve prices on the relevant parameters will be dropped to lighten
notation.
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and study the myopic benefit of collusion as a function of how the values of the

matches are distributed among intermediaries. While the proof deals with the general

case, the main ideas can be highlighted in the limiting regime, when K and J increase

to infinity. In that case, the distribution of the number of matches converges to a

Poisson distribution with mean c. Now, the myopic benefit of collusion is only strictly

positive if there are at least two matches for the winning intermediary and the latter

has the two highest values among all buyers.

If exactly two matches occur, which happens with probability c2e−c/2 under the

Poisson distribution, then these are at the same intermediary with probability (K −

1)/(KJ−1). In that case, at the first order, one can show that the market is reduced

to the exact setting studied in Section 3.4: one seller with a reserve price rin and

one intermediary representing two advertisers having a distribution F , so the myopic

benefit of collusion is E[(v[2] − rin)+] =
∫∞

0
(y − rin)+2F (y)f(y)dy. This is the driver

of the first term in the brackets in the bound in Proposition 3.3.

If there are strictly more than two matches, the myopic benefit of collusion is

diminished because of competition since a winning intermediary would be charged

eventually more than the reserve price rin. One can show that at the first order, if

an intermediary has the two highest values of buyers, then it is unlikely that he has

the third highest value among buyers. It means that the winning intermediary will

be, with high probability, charged the maximum of the third highest price and the

reserve price rin. It is this effect that drives the second term in the brackets in the

bound in Proposition 3.3.

Next, we derive an upper bound on the seller’s reaction impact S RI .

Proposition 3.4 (seller reaction impact). Suppose that α ≤ 1/2, J ≥ 3 and JK ≥

16 max{1, (ce)4}, then S RI is upper bounded as follows

S RI ≤ −crinf(rin)e
−cF (rin) (F (rin))

2

2f(rin)φ′(rin)
Kα +M(

√
αKα + α + (Kα)2),
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where M > 0 a constant that depends only on the distribution F and the average

number of matches c.

As mentioned earlier, the seller’s reaction is always non-positive. In the large

market regime, the challenge in evaluating S RI = Uco(rco) − Uco(rin) stems from

two main effects. First, the reserve price rco depends on parameters of the regime, in

particular, α and K, which govern the number of buyers that an intermediary might

represent in the marketplace. Second, the utility function Uco(·) at any value r > 0

is varying as a function of the parameters of the market, J , K, and α and needs

to be approximated in the large market regime. The proof leverages the limiting

distribution of matches to bound Uco(·) from a suitable approximation, which in

conjunction with the characterization of rco − rin derived in Lemma 3.2 leads to the

bound in the result.

Combining Propositions 3.3 and 3.4 leads to a general upper bound on U∗co − U∗in.

Theorem 3.2 (Upper bound on impact of coordinated campaigns on buyers’s side).

Suppose that α ≤ 1/2, J ≥ 3, JK ≥ 16 max{1, (ce)4} and that ln(K) = o(J). Then

the impact of coordinated campaigns on buyers is upper bounded as follows.

U∗co − U∗in ≤
1

J

[
c2e−c

2

∫ ∞
rin

(y − rin)2F (y)f(y)dy

+

∫ ∞
rin

∫ ∞
x

(y − x)F (y)f(x)f(y)c3e−cF (x)dydx

−c2 (F̄ (rin))
2

2f(rin)φ′(rin)
rinf(rin)e

−cF (rin)

]
+ o(1/J).

The bound above highlights the tension between the two effects taking place:

MBC and S RI . The sign of the bound is governed by which effect dominates.

The bound can be evaluated for any particular distribution and market parameters.
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We denote by ∆U∗ the asymptotic value of the upper bound of J(U∗co − U∗in), i.e.,

∆U∗ :=

[
c2e−c

2

∫ ∞
rin

(y − rin)2F (y)f(y)dy

+

∫ ∞
rin

∫ ∞
x

(y − x)F (y)f(x)f(y)c3e−cF (x)dydx

−c2 (F̄ (rin))
2

2f(rin)φ′(rin)
rinf(rin)e

−cF (rin)

]
.

In the next section, we will specialize the bound to the case of Generalized Pareto

distributions and then explore numerically the bound for other distributions.

3.5.2 Generalized Pareto distributions

In this section, we focus on the Generalized Pareto Distributions introduced in Section

3.4 and analyze the sign of the asymptotic upper bound on U∗co − U∗in, through ∆U∗,

as derived in Theorem 3.2. The next result shows that the main insight obtained in

the case of one intermediary and two advertisers carries over to this general model.

Theorem 3.3. (impact of coordinated campaigns on buyers’s side) Suppose that the

distribution of values is given by a generalized Pareto distribution with parameters

(σ, ξ). Then there exists c̄ > 0 such that for an average number of matches c < c̄,

there exists ρc in [0, 1) such that if the coefficient of variation of values CV (ξ) ≥ ρc,

then ∆U∗ ≤ 0.

Theorem 3.3 highlights that the coefficient of variation of values plays again a key

role in the general model with competition among intermediaries (as it did in the case

of one intermediary and two advertisers) to determine which effect dominates S RI

or MBC . In particular, when the coefficient of variation is sufficiently large, the

result implies that in the limiting “large market” regime, U∗co − U∗in ≤ 0, and hence,

the buyers’s side is negatively affected by coordinated campaigns. Since sellers are

always negatively affected by this coordination, independent campaign management

leads to a Pareto improvement in the value chain.
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Figure 3.3(a) depicts the value of ∆U∗ derived in Theorem 3.2, corresponding to

an asymptotic upper bound on U∗co − U∗in when J grows large. Figure 3.3(b) depicts

the limit of (rco − rin)/(αK) when J grows large, which we denote by ∆r.
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Figure 3.3: Impact of coordinated campaigns on the buyers’ side surplus and reserve
price as a function of the coefficient of variation and values of c ∈ {1, · · · , 7} for
generalized Pareto distributions with parameters (σ = 1−ξ, ξ) in the limiting regime.

Figure 3.3(a) provides a picture-proof of Theorem 3.3 but also enriches the result

with numerical values for the thresholds. As seen in the one intermediary and two

buyers case in Section 3.4, the negative impact on buyers is mainly due to the fact

that the seller reaction dominates the myopic benefit. This is mitigated under the

general model due to the competition among intermediaries. However the seller’s

impact can still be high compared to the myopic benefit of collusion. This reaction

of the seller is pictured in Figure 3.3(b). It shows that the seller increases his reserve

price with the coefficient of variation and with the average number of matched buyers.

Furthermore, if we focus only on markets where the competition is moderate, meaning

the average number of interested advertisers is less than four (c ≤ 4), then for almost

any coefficient of variation, coordinated campaigns in the market is always detrimental

to buyers’ side. This emphasizes the robustness of the insight obtained in the case

109



of one intermediary and two advertisers. In the next section, we will see that this

finding is also robust across different distributions of values for buyers.

3.6 Robustness Analysis

In Sections 3.4 and 3.5, we have shown formally that a Pareto improvement in the

value chain is possible under the class of Generalized Pareto distributions as long

as the coefficient of variation of values is not too small. In this section, we explore

numerically the same question across classes of distributions. In particular, we analyze

the Gamma and Beta distributions.

Each of these distributions are parametrized by two positive parameters. The

Gamma distribution, parameterized by a > 0, b > 0, has support in [0,∞[ and its

density for x ≥ 0 is given by

f(x) =
1

baΓ(a)
xa−1e−

x
b ,

where Γ(·) is the gamma function. The Beta distribution, parametrized by a > 0 and

b > 0, has support in [0, 1] and its density is given by for 0 ≤ x ≤ 1,

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1.

In general, both classes of function belong to the IFR class if their parameters

(a, b) are both greater than one. For each of these classes, we sample 1,000 pair of

parameters from [1, 10]2. We then compute the corresponding coefficient of variation

for that pair and the impact of coordinated campaigns on buyers U∗co − U∗in (or the

asymptotic upper bound ∆U∗). At the end of the procedure, we plot the 1,000 pairs

(CV,U∗co − U∗in) obtained in the process.

In Figure 3.4, we plot U∗co−U∗in for the case of one intermediary and two advertisers

for both the Beta and Gamma distributions.

110



0 0.2 0.4 0.6 0.8 1

−1

0

1

2

·10−2

Coefficient of Variation

U
∗ co
−
U
∗ in

(a) Beta distributions

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

Coefficient of Variation

U
∗ co
−
U
∗ in

(b) Gamma distributions

Figure 3.4: Impact of coordinated campaigns on the buyers’ side surplus as a function
of the coefficient of variation for Beta and Gamma distributions, with one interme-
diary and two buyers.

We observe that a similar result to Theorem 3.1 appears to hold for the Beta and

Gamma distributions. When the coefficient of variation is greater than a threshold (in

this case 0.4), then coordinated campaign management is detrimental for the buyers.
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Figure 3.5: Impact of coordinated campaigns on the buyers’ side surplus, under the
general model, as a function of the coefficient of variation and values of c ∈ {1, 3, 5}
for Beta and Gamma distributions.

In Figure 3.5, we plot the asymptotic upper bound ∆U∗ derived for the general

model analyzed in Section 3.5 for both the Beta and Gamma distributions. Figure 3.5

further emphasizes the robustness of the insights obtained in the previous sections

across a broad set of distributions. Indeed, we observe the coefficient of variation

is a key driver of the sign of U∗co − U∗in and that for moderate levels competition (as

measured by c), there exists a threshold such that the buyers’ side is always negatively

affected by the practice of coordinated campaign management when the coefficient

of variation exceeds this threshold.

3.7 Conclusion

The present chapter has analyzed the implications of the coordination of campaigns

implemented by intermediaries in the bidding process when these represent multiple

buyers. In particular, we have characterized the impact on the different parties in

the value chain. The seller’s revenues and the social welfare are always negatively
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affected. Notably, the buyers’s side is also negatively affected in a broad set of market

scenarios, which we characterize to be those with moderate competition and medium

to high values of the coefficient of variation of values.

In the online display advertising market, we emphasize here that we do not chal-

lenge the value of DSPs in the market. DSPs provide value to advertisers in different

ways. What we challenge in this chapter is the tactical role they play when coordi-

nating bids in the auctions, that leads to collusion among subsets of advertisers. This

chapter provides a framework to better understand and quantify the implications of

this coordination and anchor the debate about multi-bidding.

Many possible extensions can be considered, from the consideration of more gen-

eral models of values for buyers to include, e.g., common values, to the potential

analysis of markets with asymmetric players. Additionally, in the presence of inter-

mediaries, the seller faces a multi-dimensional mechanism design problem and the

question of understanding the performance of second price auctions compared to an

optimal mechanism is still open. More broadly, this chapter raises the important

question of whether it is possible to resolve the inefficiency identified in the online

display advertising value chain. The present chapter shows that advertisers them-

selves might have an incentive to advocate for independent campaign management as

an industry norm, to ensure that advertisers’ campaigns are always managed inde-

pendently of other advertisers represented by the same DSP. From that perspective,

a possible approach to this inefficiency is to tackle it at the interface between adver-

tisers and DSPs. Another possible avenue, which is also interesting from a research

perspective, is to investigate if this inefficiency can be mitigated at the interface be-

tween the seller and the DSPs through an adjustment of the selling mechanism to,

e.g., dynamic mechanisms across multiple items.
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Appendix A

Appendix for Chapter 1

A.1 Proofs for Section 1.3

Proof of Theorem 3.2. The goal of this proof is to show that we can focus on the

scale-free mechanisms without loss of optimality. More precisely, we will establish

that for any mechanism in m ∈M there exists a mechanism m̌ ∈Msf such that

inf
F∈F

R(m̌, F ) ≥ inf
F∈F

R(m,F ).

Consider a mechanism (x, t) inM. Consider F̃ ∈ F , with corresponding density

f̃ , and let θ > 0. By the scale invariance assumption on F , the distribution Fθ−1 also

belongs to F . This implies that for any θ > 0, by definition of the infinimum, we

have

R(m, F̃θ−1) ≥ inf
F∈F

R(m,F ). (A.1-1)

We first analyze R(m, F̃θ−1). By Lemma A.1-2, stated and proved after this result,

we have that the denominator of R(m, F̃θ) is given by

opt(F̃θ−1) = θ opt(F̃ ). (A.1-2)
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We next analyze the numerator of R(m, F̃θ−1). Using Lemma 1.1, we have

EF̃θ−1

[
2∑
i=1

ti(v1, v2)

]

=
2∑
i=1

EF̃θ−1

[
vi xi(vi, v−i)−

∫ vi

0

xi(l, v−i)dl

]

=
2∑
i=1

∫ ∞
0

∫ ∞
0

[
vi xi(vi, v−i)−

∫ vi

0

xi(l, v−i)dl

]
dF̃ (θ−1vi) dF̃ (θ−1v−i)

=
2∑
i=1

∫ ∞
0

∫ ∞
0

[
θvi xi(θvi, θv−i)−

∫ θvi

0

xi(l, θv−i)dl

]
dF̃ (ui) dF̃ (u−i)

=
2∑
i=1

∫ ∞
0

∫ ∞
0

θ

[
vi xi(θvi, θv−i)−

∫ vi

0

xi(θs, θv−i)ds

]
dF̃ (ui) dF̃ (u−i).

Hence, we have

EF̃θ−1

[
2∑
i=1

ti(v1, v2)

]
= θ

2∑
i=1

EF̃

[
vi xi(θvi, θv−i)−

∫ vi

0

xi(θs, θv−i)ds

]
.

and

R(m, F̃θ−1) =

∑2
i=1 EF̃

[
vi xi(θvi, θv−i)−

∫ vi
0
xi(θs, θv−i)ds

]
opt(F̃ )

We show in Lemma A.1-1 (stated and proved after this proof) that for any x in

M, there exists x̌i(·, ·), such that for any v1, v2 ≥ 0,

x̌i(v1, v2) := lim
θ↓0

xi(θv1, θv2)

Note that xi(θs, θv−i) ≤ 1 and hence by an application of the dominated conver-

gence theorem, we have∫ vi

0

xi(θs, θv−i)ds→
∫ vi

0

x̌i(s, v2)ds as θ ↓ 0.

Now note that

0 ≤ vi xi(θvi, θv−i)−
∫ vi

0

xi(θs, θv−i)ds ≤ vi,
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and EF̃ [vi] < ∞, since F̃ belongs to G. By another application of the dominated

convergence theorem, we have

lim
θ↓0

R(m, F̃θ−1) = lim
θ↓0

∑2
i=1 EF̃

[
vi xi(θvi, θv−i)−

∫ vi
0
xi(θs, θv−i)ds

]
opt(F̃ )

=

∑2
i=1 EF̃

[
vi x̌i(vi, v−i)−

∫ vi
0
x̌i(s, v−i)ds

]
opt(F̃ )

Note that x̌i(v1, v2) and the payments ť(v1, v2) = vi x̌i(vi, v−i) −
∫ vi

0
x̌i(s, v−i)ds is a

feasible mechanism. Indeed,

vi x̌i(v1, v2)− ťi(v1, v2) =

∫ vi

0

x̌i(s, v−i)ds ≥ 0,

and hence (IR) is satisfied.

vi x̌i(vi, v−i)− ťi(vi, v−i) = lim
θ↓0

∫ vi

0

xi(θs, θv−i)ds

= lim
θ↓0

[
vi xi(θvi, θv−i)− θ−1ti(θvi, θv−i)

]
≥ lim

θ↓0
θ−1 [θv′ixi(θv

′
i, θv−i)− ti(θv′i, θv−i)]

= v′ix̌i(v
′
i, v−i)− ťi(v′i, v−i),

where the last inequality follows from the fact that the initial mechanism m = (x, t)

is incentive compatible. Hence, we deduce that (IC) is satisfied for the the new

mechanism m̌ = (x̃, t̃). The probability constraints (AC) is clearly satisfied by x̃.

Hence, we have established that

lim
θ↓0

R(m, F̃θ−1) = R(m̌, F̃ ).

Taking the limit on the left-hand-side of (A.1-1) as θ ↓ 0, we obtain

R(m̌, F̃ ) = lim
θ↓0

R(m, F̃θ−1) ≥ inf
F∈F

R(m,F ).

Taking the infinimum over all F̃ in F , we obtain

inf
F∈F

R(m̌, F ) ≥ inf
F∈F

R(m,F ). (A.1-3)
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Note that m̌ belongs to Msf . Indeed,

x̌i(λv1, λv2) = lim
θ↓0

xi(θλv1, θλv2) = lim
γ↓0

xi(γv1, γv2) = x̌i(v1, v2).

Taking successively the supremum over all mechanisms m̌ in Msf , and then over all

mechanisms m in M in (A.1-3), we obtain

R(Msf ,F ) ≥ R(M,F ). (A.1-4)

Since the other inequality is trivial, we conclude that

R(Msf ,F ) = R(M,F ).

This finalizes the proof.

Lemma A.1-1. For any mechanism m = (x, t) in M, for any v1, v2 ≥ 0, and

i = 1, 2, xi(λvi, λv−i) admits a limit as λ ↓ 0.

Proof of Lemma A.1-1. Fix m = (x, t) in M, there exists ε > 0 such that

maxi=1,2{TV (xi, [0, ε]
2)} <∞.

Let us fix (vi, v−i). To show the result, we will first analyze the “variation” of the

function J(λ) := xi(λvi, λv−i) as a function of λ on [0, ε/max(vi, v−i)]. For that let

us fix an integer N ≥ 1 and a sequence of non-negative integer (λj)1≤j≤N such that

λj ≤ λj+1 ≤ ε/max(vi, v−i) for all j in 1, · · · , N − 1.

If we denote uj = (λjvi, λjv−i) then we have uj ≤ uj+1 ≤ (ε, ε). Since xi has a

bounded variation then

N−1∑
j=1

|J(λj+1)− J(λj)| =
N−1∑
j=1

|xi(uj+1)− xi(uj)| ≤ TV (xi, [0, ε]
2]) <∞,

Hence the function J(·) has a bounded total variation on [0, ε/max(vi, v−i)]. By

Jordan’s decomposition, see (Cohn, 2013, Proposition 4.4.2.), one can write J as

the difference between two monotone functions. In turn, the fact that a monotone

function admits a right limit at each point implies that xi(λvi, λv−i) admits a limit

as λ ↓ 0. This concludes the proof.
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Lemma A.1-2. For any distribution F in G, and θ > 0, we have opt(Fθ) =

θ−1 opt(F ).

Proof of Lemma A.1-2. The goal of this proof is to show that the optimal revenue

scales as we we scale the distribution.

Fix θ > 0 and F ∈ G. Let m = (x, t) denote a mechanism inM that is ε away from

optimal for problem (2.1), i.e., such that

EF

[
2∑
i=1

ti(v1, v2)

]
≥ opt(F )− ε.

Denote by mθ the mechanism characterized by the allocations and payments given

by

xθ(v1, v2) = x(θv1, θv2),

tθ(v1, v2) = θ−1t(θv1, θv2).

Note that for any i = 1, 2, v1, v2, v̂1, v̂2, we have

vi x
θ
i (v1, v2)− tθi (v1, v2) = θ−1 [θvi xi(θv1, θv2)− ti(v1, v2)] ≥ 0,

where the last inequality follows from the fact that m satisfies (IR). Hence mθ also

satisfies (IR). In addition, we have

vi x
θ
i (vi, v−i)− tθi (vi, v−i) = θ−1 [θvi xi(θvi, θv−i)− ti(θvi, θv−i)]

≥ θ−1 [θvi xi(θv̂i, θv−i)− ti(θv̂i, θv−i)]

= vi x
θ
i (v̂i, v−i)− tθi (v̂i, v−i),

where the inequality is consequence of the fact that m satisfies (IR). Hence, (IC) is

also satisfied. Finally, (AC) follows directly from the feasibility of the mechanism m.

We deduce that mθ is feasible for problem (2.1). Furthermore, its performance

when the distribution of values is Fθ satisfies
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EFθ

[
2∑
i=1

tθi (v1, v2)

]
= θ−1EFθ

[
2∑
i=1

ti(θv1, θv2)

]

= θ−1

2∑
i=1

∫ ∞
0

∫ ∞
0

ti(θv1, θv2) dF (θv1) dF (θv2)

= θ−1

2∑
i=1

∫ ∞
0

∫ ∞
0

ti(u1, u2) dF (u1) dF (u2)

= θ−1EF

[
2∑
i=1

ti(v1, v2)

]
≥ θ−1 [opt(F )− ε] .

We deduce that

opt(Fθ) ≥ θ−1 opt(F ).

Through a symmetric argument, we have that

opt(F ) ≥ θ opt(Fθ).

The result of the lemma follows and the proof is complete.

Proof of Lemma 1.2. We will exhibit a distribution, FB, for which the perfor-

mance of any scale-free mechanism can be arbitrarily close to zero. We will consider

a Bernoulli distribution, FB that put mass q > 0 at v = 1 and the remaining 1− q at

0, i.e.

P (v = 1) = 1− P (v = 0) = q.

Let us analyze the ratio for this distribution. Let us start by the denominator, i.e.

the optimal revenue of FB.

It is clear that given the structure of the distribution, it is suboptimal to charge

the winner a price different from 0 or 1. Hence the optimal mechanism is a posted

price equal to 1, hence the optimal revenue is given by

opt(FB) = 1 P
(
v[1] = 1

)
= q (2− q) .
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Now let us analyze the performance of a prior independent mechanism m = (x, t)

in Msf . We have

E [ti(vi, v−i)] = q2ti(1, 1) + q (1− q) (ti(1, 0) + ti(0, 1)) + (1− q)2 ti(0, 0).

From the incentive rational constraints, we have that an optimal mechanism nec-

essary verifies ti(0, 0) = ti(0, 1) = 0. From Lemma A.1-3, stated and proved after this

proof, we have that ti(1, 0) = 0. Hence we get that

2∑
i=1

E [ti(vi, v−i)] = q2 (t1(1, 1) + t2(1, 1)) .

Using the coupling and incentive rational constraints, we have that t1(1, 1)+t2(1, 1) ≤

1. Hence, we conclude that

2∑
i=1

E [ti(vi, v−i)] ≤ q2.

So from the previous analysis, we conclude that the performance of any mechanism

m = (x, t) in Msf is upper bounded as follows

R(m,FB) ≤ q2

q(2− q)
=

q

2− q
.

Hence, by taking the limit as q goes to 0, we conclude

R(M,G) = R(Msf ,G) = 0.

Lemma A.1-3. Consider any mechanism m = (x, t) in Msf . Then it must satisfy

that

ti(vi, 0) = 0 for any vi ≥ 0.

Proof of Lemma A.1-3. Let m = (x, t) a mechanism inMsf . Let vi ≥ 0, then we

have that ti(vi, 0) = vi ti(1, 0). So it is sufficient to show that ti(1, 0) = 0 to conclude

the result.
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Using the DSIC, we have that for any a > 0,

xi(1, 0)− ti(1, 0) ≥ xi(a, 0)− ti(a, 0).

Since m = (x, t) is a mechanism in Msf , then xi(1, 0) = xi(a, 0) and ti(a, 0) =

ati(1, 0), so we conclude that for any a > 0 that

(a− 1) ti(1, 0) ≥ 0,

so necessary, we conclude that ti(1, 0) = 0, hence ti(vi, 0) = vi ti(1, 0) = 0.

A.2 Proofs for Section 1.4

Proof of Proposition 1.1. Let us fix subclass F of the set of regular distributions

Freg. It is clear that since M′
sf ⊂Msf , then

R(M′
sf ,F ) ≤ R(Msf ,F ).

Let us show the reverse inequality. For that, we will proceed in two steps. We start

from an initial mechanism inMsf and approximate the allocations by a combination

of step functions (with corresponding payments). In second step, we will compare

the performance of the approximation to that of the original mechanism to conclude.

Step 1: Let us pick a symmetric mechanism (x, t) in Msf .

Let us fix an in integer N ≥ 2. Define

αn := inf
{
r ≥ 0 : x1(r, 1) ≥ n

N

}
, for n ∈ {1, · · · , N}.

Note that by symmetry, we have that αn = inf{r ≥ 0 : x2(1, r) ≥ n
N
}. Note also

that by the monotonicity of x1(·, 1), the sequence {αn}1≤n≤N is non-decreasing. We

define α0 := 0 and αN+1 :=∞.

For any vi, v−i ≥ 0, define

x̃i(vi, v−i) =


∑N

n=1
1
N
1{vi > αn v−i}, if vi 6= v−i,

x̃i(1
−, 1), if vi = v−i,
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where x̃i(1
−, 1) := lim

r↑1

∑N
n=1

1
N
1{r > αn}.

The allocation x̃ clearly has the scale-free property. Moreover by construction, we

have that for any vi ≥ 0,

0 ≤ x̃i(vi, v−i) ≤ 1,
2∑
i=1

x̃i(vi, v−i) ≤
2∑
i=1

xi(vi, v−i) ≤ 1 and x̃i(·, v−i) is non-decreasing.

and if we introduce the payment function t̃ corresponding to the allocation x̃, defined

by Lemma 1.1, then the mechanism (x̃, t̃) belongs to Msf . Moreover note that, by

construction and monotonicity of xi(·, 1), we have

x̃i(1
−, 1) = lim

r↑1

N∑
n=1

1

N
1{r > αn} ≤ xi(1

−, 1) ≤ xi(1, 1).

Since (x, t) is in Msf then by constraint (AC), we have that xi(1, 1) ≤ 1/2. Hence,

by construction, we have that (x̃, t̃) belongs to M′
sf .

Furthermore, note that for any 0 ≤ n ≤ N , we have for any l in (αn v−i, αn+1 v−i)

such that l 6= v−i,

x̃i(l, v−i) ≤ xi(l, v−i) ≤
1

N
+ x̃i(l, v−i). (A.2-5)

Indeed, if l in (αnv−i, αn+1v−i) \ {v−i}, then we have by construction

x̃i(l, v−i) =
n

N
and

n

N
≤ xi(l, v−i) ≤

n+ 1

N
,

where the inequalities follows from the definition of the sequence αn.

Step 2: Next, we compute the revenue of the original mechanism and that of the

new mechanism (x̃, t̃).

For any F ∈ F ⊂ Freg, we have that

EF [ti(vi, v−i)] = EF [xi(vi, v−i)φ(vi)]

=
N∑
n=0

EF [xi(vi, v−i) φ(vi) 1{αnv−i < vi < αn+1v−i} 1{v−i 6= vi}] .

The first equality is a classical result in the literature, see Myerson (1981). In the

second equality, we have used that the set

BN = {(vi, v−i) in R+×R+ : v−i = vi}∪
(
∪1≤n≤N{(vi, v−i) in R+ × R+ : αnv−i = vi}

)
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is such that P(BN) = 0 given that F admits a density. Hence we we get that (recalling

that rF denotes the optimal reserve price when the distribution is known to be F )

EF [ti(vi, v−i)]

=
N∑
n=0

EF [xi(vi, v−i)φ(vi)1{vi < rF}1{αnv−i < vi < αn+1v−i}1{v−i 6= vi}]

+EF [xi(vi, v−i)φ(vi)1{vi ≥ rF}1{αnv−i < vi < αn+1v−i}1{v−i 6= vi}]
(a)

≤
N∑
n=0

EF [x̃i(vi, v−i)φ(vi)1{vi < rF}1{αnv−i < vi < αn+1v−i}1{v−i 6= vi}]

+EF
[(
x̃i(vi, v−i) +

1

N

)
φ(vi)1{vi ≥ rF}1{αnv−i < vi < αn+1v−i}1{v−i 6= vi}

]
=

N∑
n=0

EF [x̃i(vi, v−i)φ(vi)1{αnv−i < vi < αn+1v−i}1{v−i 6= vi}]

+
1

N
EF [φ(vi)1{vi ≥ rF}1{αnv−i < vi < αn+1v−i}1{v−i 6= vi}] .

In (a) we have used that φ(vi) is non-negative for vi ≥ rF , non-positive for vi < rF

and the inequalities in (A.2-5).

Now using again the fact that P(BN) = 0, we have that

EF [ti(vi, v−i)] ≤ EF [x̃i(vi, v−i)φ(vi)] +
1

N
EF [φ(vi)1{vi ≥ rF}]

≤ EF [x̃i(vi, v−i)φ(vi)] +
1

N
EF
[
φ(v[1])1{v[1] ≥ rF}

]
= EF

[
t̃i(vi, v−i)

]
+

1

N
opt(F ),

in the last inequality, we have used the regularity of the distribution F and we recall

that v[1] := max{v1, v2}. Hence, we conclude that for any distribution F in F ,

EF
[∑2

i=1 ti(vi, v−i)
]

opt(F )
≤

EF
[∑2

i=1 t̃i(vi, v−i)
]

opt(F )
+

2

N

By taking the infimum over all distribution F in F , we get that for all N ≥ 2,

inf
F∈F

R(m,F ) ≤ inf
F∈F

R(m̃, F ) +
2

N

Taking the supremum over mechanisms in M′
sf and then Msf , and letting N ↑ ∞

leads to the result.
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Proof of Lemma 1.3. Fix α ≥ 0. We will mainly use the Portmanteau Theorem

to show the limits.

Suppose first that α 6= 1. Let M = max{supn≥1 v̄Fn , vF + 1}. Consider the

function h(v1, v2) = v2 1{v1 > αv2} 1{v1 ≤ M} 1{v2 ≤ M}. The function h is

bounded and continuous F × F -almost surely, where F × F is the product measure.

Indeed, h is discontinuous on the lines v1 = αv2, v1 = M and v2 = M , which have

F × F measure zero since α 6= 1 and M > vF . Hence by Corollary 1 and Theorem

25.12 in Billingsley (2008), we conclude that

lim
n↑∞

EFn [v21{v1 > v2}] = EFa [v21{v1 > αv2}] .

Suppose now that α = 1.

Since Fn admits a density, we have that

EFn [v21{v1 > v2}] =
1

2
(EFn [v21{v1 > v2}] + EFn [v11{v1 ≤ v2}]) =

1

2
EFn [min(v1, v2)] .

Note that the minimum of two independent values with cdf Fn admits a cdf given by

Fn(2−Fn). the fact that Fn converges weakly to F implies that Fn(2−Fn) converges

weakly to F (2 − F ), which is the cdf of the minimum of two independent values

with cdf F . By Corollary 1 and Theorem 25.12 in Billingsley (2008) applied to the

function 1
2
w1{w ≤ M}, we have that lim

n↑∞
1
2
EFn [min(v1, v2)] = 1

2
EF [min(v1, v2)], and

we conclude that

lim
n↑∞

EFn [v21{v1 > αv2}] =
1

2
EF [min(v1, v2)] .

This concludes the proof.

Proof of Proposition 1.2. Let us fix a mechanism in m = (x, t) in M′
sf . Then,

for i = 1, 2,

xi(vi, v−i) =
N∑
k=1

1

N
1{vi > γk v−i}1{vi 6= v−i}+ c 1{vi = v−i},
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for some N ≥ 1, γ ∈ RN and c ∈ [0, 1
2
].

We will establish that the worst-case performance of this mechanism against F is

upper bounded by the performance of an alternate mechanism m̃ ∈M′
sf againstW ′.

Fix an element F ∈W ′. By assumption, there exists a sequence Fn from elements in

F such that Fn weakly converges to F .

Step 1. We first establish that

lim inf
n↑∞

opt(Fn) ≥ opt(F ).

Let a = vF <∞. Note that Fn is regular and hence

opt(Fn) = max
y≥0

EFn
[
max{v[2], y}1{v[2] ≥ y}

]
.

In particular, we have for any y < a,

opt(Fn) ≥ EFn
[
v[2]1{v[2] ≥ y}

]
+ 2 y F n(y)

(
1− F n(y)

)
=

∫ ∞
y

x 2 fn(x)F n(x)dx+ 2 y F n(y)
(
1− F n(y)

)
=

[
−xF 2

n(x)
]∞
y

+

∫ ∞
y

F
2

n(x)dx+ 2 y F n(y)
(
1− F n(y)

)
=

∫ ∞
y

F
2

n(x)dx+ y F n(y)
(
2− F n(y)

)
≥ y F n(y)

(
2− F n(y)

)
.

By taking the lim inf we get that for any y < a,

lim inf
n↑∞

opt(Fn) ≥ x F (y)
(
2− F (y)

)
.

by taking the limit as y ↑ a

lim inf
n↑∞

opt(Fn) ≥ a F (a−)
(
2− F (a−)

)
= opt(F ).

where the last equality follows from Lemma A.2-4 (stated and proved after this proof).

Step 2. Next, we derive an asymptotic upper bound on the ratio R(m,Fn). Let

us define

I := {k ∈ [1, N ] : γk = 1}, I− := {k ∈ [1, N ] : γk < 1},

I+ := {k ∈ [1, N ] : γk > 1}.
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Note that since the distribution Fn admits a density, we have

R(m,Fn) =
N∑
k=1

1

N

2∑
i=1

EFn [γk v−i 1{vi > γk v−i}]
opt(Fn)

.

Using Step 1 in conjunction with Lemma 1.3, we have

lim sup
n↑∞

R(m,Fn)

=
1

lim infn↑∞ opt(Fn)

N∑
k=1

1

N

2∑
i=1

lim
n↑∞

EFn [γkv−i 1{vi > γkv−i}]

≤ 1

opt(F )

[∑
k∈I

1

N
EF [min{v1, v2}] +

∑
k∈I−∪I+

1

N

2∑
i=1

EF [γkv−i 1{vi > γkv−i}]

]
.

Noting that

EF [min{v1, v2}] = EF

[
2∑
i=1

v−i1{vi > v−i}+
1

2
v−i1{v−i = vi}

]
,

we deduce that

lim sup
n↑∞

R(m,Fn)

≤ 1

opt(F )

2∑
i=1

EF

 ∑
k∈[1,N ]

1

N
γkv−i 1{vi > γkv−i}+

|I |
2N

v−i1{v−i = vi}

 ,
where |S| represents the cardinality of a finite set S.

For any vi, v−i ≥ 0, we have that

1{vi > γkv−i}1{v−i = vi} = 1{γk < 1}1{v−i = vi}.

This implies that

lim sup
n↑∞

R(m,Fn)

≤ 1

opt(F )

2∑
i=1

EF
[ ∑
k∈[1,N ]

γkv−i
N

1{vi > γkv−i}1{v−i 6= vi}

+

(∑
k∈I−

1

N
γk +

|I |/2
N

)
v−i1{v−i = vi}

]
.
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Step 3: We now show that the upper bound above cane be expressed as the

performance of mechanism against F . Let us define the allocation x̃ for each vi, v−i ≥

0 as

x̃i(vi, v−i) =
∑

k∈[1,N ]

1

N
1{vi > γkv−i}1{v−i 6= vi}+

1

N

(
|I−|+ |I |

2

)
1{v−i = vi},

and t̃ its corresponding payment using Lemma A.2-5, and let m̃ = (x̃, t̃). We may

rewrite the previous inequalities as

lim sup
n↑∞

R(m,Fn) ≤
∑2

i=1 EF
[
t̃i(vi, v−i)

]
opt(Fa)

= R(m̃, Fa).

Since infF∈F R(m,F ) ≤ R(m,Fn) for any n, we deduce that

inf
F∈F

R(m,F ) ≤ inf
F∈W ′

R(m̃, F ). (A.2-6)

To conclude, we need to show that m̃ = (x̃, t̃) belongs to M′
sf . Let us first

start by showing that it belongs to Msf . Note that for any vi 6= v−i, we have

x̃i(vi, v−i) = xi(vi, v−i) and that the allocation x̃i(·, v−i) is non decreasing on [0, v−i]

and on [v−i,∞) for fixed v−i ≥ 0. Furthermore,

lim
vi↑v−i

x̃i(vi, v−i) = lim
vi↑v−i

∑
k∈[1,N ]

1

N
1{γkv−i < vi} =

|I−|
N

lim
vi↓v−i

x̃i(vi, v−i) = lim
vi↓v−i

∑
k∈[1,N ]

1

N
1{γkv−i < vi} =

|I−|+ |I |
N

.

In turn, this implies that

x̃i(vi, vi) =
1

2

(
lim
vi↑v−i

x̃i(vi, v−i) + lim
vi↓v−i

x̃i(vi, v−i)

)
.

We conclude that xi(·, v−i) is non decreasing, for fixed v−i ≥ 0 and that x̃i(vi, vi) ≤ 1.

Let us show that x̃(vi, vi) ≤ 1/2. For that, let us introduce the following indices

k̄ := arg max{k ∈ [1, N ] : γk < 1}, k := arg min{k ∈ [1, N ] : γk > 1},

γ :=
1

2

(
1 + min(γk,

1

γk̄
)

)
.
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By construction, we have that γ > 1, γ < γk, for all k ∈ I+, γ γj < 1, for all j ∈ I−.

This implies that

x1(γ, 1) + x2(γ, 1) =
∑

k∈[1,N ]

1

N

(
1{γ > γk}+ 1{1 > γkγ}

)
=

1

N

(
|I |+ 2|I−|

)
.

Given that m belongs to Msf , we have that x1(γ, 1) + x2(γ, 1) ≤ 1. In turn, we

have

x̃i(vi, vi) =
1

N

(
|I−|+ |I |

2

)
≤ 1

2
.

Hence, we have etablished that for all vi, v−i ≥ 0,

0 ≤ x̃i(vi, v−i) ≤ 1,
2∑
i=1

x̃i(vi, v−i) ≤ 1, x̃i(·, v−i) is non-decreasing,

1

N

(
|I−|+ |I |

2

)
≤ 1

2
.

We conclude that m̃ belongs toM′
sf . Returning to (A.2-6), and taking the supremeum

over mechanisms m and m̃, we obtain

R(M′
sf ,F ) ≤ R(M′

sf ,W ′).

This concludes the proof.

Lemma A.2-4. Fix a distribution F in W . Then,

� For any mechanism m = (x, t) ∈M, the revenues generated by m are given by

2∑
i=1

EF [ti(vi, v−i)] = a F (a−)
2∑
i=1

∫ a

0

xi(a, v−i)dF (v−i)

+

∫ a

0

∫ a−

0

xi(vi, v−i)φF (vi)f(vi)dvidF (v−i),

where a = vF , i.e. the upper support of F .

� The optimal revenue that the seller could achieve is given by

opt(F ) = a F (a−) (2− F (a−)).
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Proof of Lemma A.2-4. We show the first point then we leverage it to show the

second point.

Recall that by the envelope theorem, Lemma 1.1, we have that

2∑
i=1

EF [ti(vi, v−i)] =
2∑
i=1

EF [vixi(vi, v−i)]− EF
[∫ vi

0

xi(l, v−i)dl

]
.

Let us start by analyzing the last term. For that, using integration by parts, we have

EF
[∫ vi

0

xi(l, v−i)dl

]
=

∫ a

0

∫ a

0

∫ vi

0

xi(l, v−i)dldF (vi)dF (v−i)

=

∫ a

0

∫ a−

0

∫ vi

0

xi(l, v−i)dlf(vi)dvidF (v−i) + F (a−)

∫ a

0

∫ a

0

xi(l, v−i)dldF (v−i)

=

∫ a

0

∫ a−

0

(∫ vi

0

xi(l, v−i)dl

)[
−F
]′

(vi)dvidF (v−i)

+F (a−)

∫ a

0

∫ a

0

xi(l, v−i)dldF (v−i).

Let us focus on the first term. By integration by parts, we have∫ a

0

∫ a−

0

(∫ vi

0

xi(l, v−i)dl

)[
−F
]′

(vi)dvidF (v−i)

=

∫ a

0

[(∫ vi

0

xi(l, v−i)dl

)
(−F )(vi)

]vi=a−
vi=0

dF (v−i)

+

∫ a

0

∫ a−

0

xi(vi, v−i)F (vi)dvidF (v−i)

= −
∫ a

0

∫ a

0

xi(l, v−i)dlF (a−)dF (v−i) +

∫ a

0

∫ a−

0

xi(vi, v−i)F (vi)dvidF (v−i)

= −F (a−)

∫ a

0

∫ a

0

xi(l, v−i)dldF (v−i) +

∫ a

0

∫ a−

0

xi(vi, v−i)F (vi)dvidF (v−i).

Hence by combining the last result with the previous one, we get that,

EF
[∫ vi

0

xi(l, v−i)dl

]
=

∫ a

0

∫ a−

0

xi(vi, v−i)F (vi)dvidF (v−i).
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So the total revenue is given by

2∑
i=1

EF [ti(vi, v−i)]

=
2∑
i=1

EF [vixi(vi, v−i)]− EF
[∫ vi

0

xi(l, v−i)dl

]
,

=
2∑
i=1

EFa [vixi(vi, v−i)]−
∫ a

0

∫ a−

0

xi(vi, v−i)F (vi)dvidF (v−i),

=
2∑
i=1

∫ a

0

∫ a

0

vi xi(vi, v−i)dF (vi)dF (v−i)−
∫ a

0

∫ a−

0

xi(vi, v−i)F (vi)dvidF (v−i),

=
2∑
i=1

F (a−)

∫ a

0

a xi(a, v−i)dF (v−i) +

∫ a

0

∫ a−

0

xi(vi, v−i)φFa(vi)f(vi)dvidF (v−i).

Hence we conclude the first point, i.e.

2∑
i=1

EF [ti(vi, v−i)] =
2∑
i=1

F (a−)

∫ a

0

axi(a, v−i)dF (v−i)

+

∫ a

0

∫ a−

0

xi(vi, v−i)φF (vi)f(vi)dvidF (v−i). (A.2-7)

Now let us try to characterize the optimal revenue leveraging the previous expres-

sion.

Since F is in W , then for all vi < a, φFa(vi) ≤ 0. In turn, setting xi(vi, v−i) = 0 for

all vi < a and for all v−i < a, xi(a, v−i) = 1 and xi(a, a) = 1/2 maximizes point-wise

the expressions in the integrals in (A.2-7). This mechanism is clearly feasible (corre-

sponding to a posted price of a to both buyers and when both buyers are willing to
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buy, the seller allocates uniformly). Moreover, the corresponding revenue is given by

2∑
i=1

EF [ti(vi, v−i)]

=
2∑
i=1

F (a−)

∫ a

0

a xi(a, v−i)dF (v−i) +

∫ a

0

∫ a−

0

xi(vi, v−i)φFa(vi)f(vi)dvidF (v−i)

=
2∑
i=1

a F (a−)

(∫ a−

0

1 dF (v−i) +
1

2
F (a−)

)
+ 0

=
2∑
i=1

a F (a−)

(
1− F (a−) +

1

2
F (a−)

)
= a F (a−)

(
2− F (a−)

)
.

Hence, we get the second result.

Proof of Proposition 1.3. Fix a mechanism m = (x, t) in M′
sf ⊂ Msf . Let

m̃ = (x̃, t̃) with x̃i(vi, v−i) = xi(vi, v−i)1{vi ≥ v−i}, for i = 1, 2 and vi, v−i ≥ 0 (and

t̃ its corresponding payment using Lemma 1.1). The proof is organized as follows.

In step 1, we establish that m̃ belongs to Mmax
sf . In step 2, we establish that m̃

dominates m against any distribution in W and deduce the result.

Step 1. We first establish that m̃ ∈Mmax
sf . We have that

x̃i(vi, v−i) = xi(vi, v−i)1{vi ≥ v−i}

=
N∑
k=1

1

N
1{vi > γk v−i}1{vi 6= v−i}1{vi ≥ v−i}+ c 1{vi = v−i}1{vi ≥ v−i}

=
N∑
k=1

1

N
1{vi > γk v−i}1{vi > v−i}+ c 1{vi = v−i}

=
N∑
k=1

1

N
1{vi > max(γk, 1) v−i}1{vi 6= v−i}+ c 1{vi = v−i}.

It follows that m̃ ∈Mmax
sf by setting αn := max(γn, 1).

Step 2. We next establish that for any F ∈W ,

R(m,F ) ≤ R(m̃, F ). (A.2-8)
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By Lemma A.2-4, stated and proved right before this proof, the total revenue of

the mechanism m when nature picks the distribution Fa is given by

2∑
i=1

EF [ti(vi, v−i)] = aF (a−)
2∑
i=1

∫ a

0

xi(a, v−i)dF (v−i)

+

∫ a

0

∫ a−

0

xi(vi, v−i)φF (vi)f(vi)dvidF (v−i).

Similarly, the revenues of m̃ against F are given by

2∑
i=1

EF
[
t̃i(vi, v−i)

]
= aF (a−)

2∑
i=1

∫ a

0

x̃i(a, v−i)dF (v−i)

+

∫ a

0

∫ a−

0

x̃i(vi, v−i)φFa(vi)f(vi)dvidF (v−i).

Note that

aF (a−)

∫ a

0

xi(a, v−i)dF (v−i) = aF (a−)

∫ a

0

x̃i(a, v−i)dF (v−i)∫ a

0

∫ a−

0

xi(vi, v−i)φF (vi)f(vi)dvidF (v−i) ≤
∫ a

0

∫ a−

0

x̃i(vi, v−i)φF (vi)f(vi)dvidF (v−i),

where the first equality follows from that the fact that by construction for any vi ≥

v−i, we have that xi(vi, v−i) = x̃i(vi, v−i); the second inequality follows from the fact

that x̃i(·, ·) ≤ xi(·, ·) and that for any vi < a, we have φF (vi) ≤ 0 since F belongs to

W ′. In turn, we conclude that (A.2-8) holds. This implies that

R(M′
sf ,W ′) ≤ R(Mmax

sf ,W ′).

Since Mmax
sf ⊂M′

sf , the proof is complete.

Lemma A.2-5. If m = (x, t) in M′

sf , then there exist N ≥ 1, γ ∈ [0,∞)N and

c ∈ [0, 1/2] such that for all vi, v−i ≥ 0, we have

� The allocation is given by

xi(vi, v−i) =
N∑
k=1

1

N
1{vi > γk v−i}1{vi 6= v−i}+ c 1{vi = v−i}
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� The payment is given by

ti(vi, v−i) =
N∑
k=1

1

N
γk v−i 1{vi > γk v−i}1{vi 6= v−i}

+

(
c+

1

N

∑
k∈I−

γk −
1

N
|I −|

)
v−i 1{vi = v−i},

where I − = {k : γk < 1} and |I −| represents the cardinality of I −.

Note that if m = (x, t) is in Mmax
sf then |I −| = 0

Proof of Lemma A.2-5. We will show the result forM′

sf , the proof forMmax
sf is

very similar.

Fix m = (x, t) in M′

sf , then by definition, there exist N ≥ 1, γ ∈ [0,∞)N and

c ∈ [0, 1/2] such that for all vi, v−i ≥ 0, we have

xi(vi, v−i) =
N∑
k=1

1

N
1{vi > γk v−i}1{vi 6= v−i}+ c 1{vi = v−i}.

By Lemma 1.1, we have that for all vi 6= v−i,

ti(vi, v−i) = vi xi(vi, v−i)−
∫ vi

0

xi(l, v−i)dl

=
N∑
k=1

1

N
vi 1{vi > γk v−i} −

∫ vi

0

1{l > γk v−i}dl

=
N∑
k=1

1

N
vi 1{vi > γk v−i} − (vi − γk v−i)1{vi > γk v−i}

=
N∑
k=1

1

N
γk v−i1{vi > γk v−i},

hence we conclude that for all vi 6= v−i, that the payment is given by

ti(vi, v−i) =
N∑
k=1

1

N
γk v−i1{vi > γk v−i},

Moreover for vi = v−i, we have by Lemma 1.1

ti(vi, v−i) = vi xi(vi, v−i)−
∫ vi

0

xi(l, v−i)dl = c vi −
1

N

∑
k∈I−

∫ vi

0

1{l > γk vi}dl
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Hence we get that

ti(vi, v−i) = c vi −
1

N

∑
k∈I−

(1− γk)vi = vi

(
c− |I

−|
N

+
1

N

∑
k∈I−

γk

)
.

This concludes the proof.

Proof of Theorem 1.2. The result is consequence of earlier results. Indeed, we

have

R(M,F )
(a)
= R(Msf ,F )

(b)
= R(M′

sf ,F )
(c)

≤ R(M′
sf ,W ′)

(d)
= R(Mmax

sf ,W ′),

where (a) follows from Theorem 3.2, (b) from Proposition 1.1, (c) from Proposition 1.2

in conjunction with the assumption that any element in W ′ admits a sequence in F

that weakly converges to it; and (d) from Proposition 1.3.

A.3 Proofs of Section 1.5

Proof of Theorem 1.3. In this proof, we will use the family of distributionsWreg ⊂

W defined as follows:

Wreg := {Fa : a > 0},

where

Fa(v) =


1− 1

v+1
, if v < a,

1 , if v ≥ a,

In Lemma B.6-2, stated and proved following this proof, we establish that any element

in Wreg can be “approached” by a sequence in Freg, i.e., a sequence of elements in

Freg converges weakly to the element. In turn, using Theorem 1.2 in conjunction

with Lemma B.6-2, we have that

R(M,Freg) ≤ R(Mmax
sf ,Wreg).
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We next bound R(Mmax
sf ,Wreg). Let us fix a > 0 and a mechanism m = (x, t) in

Mmax
sf . We will bound R(m,Fa). For some N ≥ 1, γ ∈ [1,∞)N and c ∈ [0, 1/2], by

Lemma A.2-5, stated proved at the end of this section, the payments are given by

ti(vi, v−i) =
N∑
k=1

1

N
γkv−i1{vi > γk v−i}1{vi 6= v−i}+ cv−i1{vi = v−i},

for i = 1, 2 and vi, v−i ≥ 0.

Note that since γk ≥ 1, we have 1{vi > γk v−i}1{vi 6= v−i} = 1{vi > γk v−i}.

We first derive a close form expression for
∑2

i=1 EFa [ti(vi, v−i)]. We have

2∑
i=1

EFa [ti(vi, v−i)] =
2∑
i=1

N∑
k=1

1

N
EFa [γk v−i1{vi > γk v−i}] + 2caq2

a,

where qa = 1/(1 + a).

Note that

EFa [γk v−i 1{vi > γk v−i}] =

∫ a

0

∫ a

0

γk v−i 1{vi > γk v−i}dFa(vi)dFa(v−i)

=

∫ (a/γk)−

0

γk v−i F a(γkv−i)dFa(v−i)

=

∫ 1

F ((a/γk)−)

γk(1− q)
q + γk(1− q)

dq,

where the last equality follows from a change of variable q = F a(v−i) = 1/(1 + v−i).

Suppose γk = 1. Note that F (a−) = 1/(1 + a) = qa. Then we have that

EFa [γv−i1{vi > γv−i}] =

∫ 1

qa

(1− q) dq =
1

2
(1− qa)2.

Suppose γk > 1. Let q̄ = F (a/γk). We have that

EFa [γkv−i1{vi > γkv−i}] = γk

∫ 1

q̄

1− q
γk (1− q) + q

dq

= γk

∫ 1

q̄

(
1

γk − 1
− 1

γk − 1

1

q (1− γk) + γk

)
dq

= γk

∫ 1

q̄

(
1

γk − 1
+

1

(γk − 1)2

1− γk
q (1− γk) + γk

)
dq

= γk

[
1− q̄
γk − 1

− 1

(γk − 1)2 ln (q̄ (1− γk) + γk)

]
.
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Let us now compute q̄. We have

q̄ = F (a/γk) =
1

1 + a/γk
=

γk
γk + a

=
γk qa

1− qa + γk qa
,

where we have used the fact aqa = a/(a + 1) = 1 − qa. So we conclude from the

previous computation that when γk > 1,

EFa [γkv−i1{vi > γkv−i}]

= γk

[
1− q̄
γk − 1

− 1

(γk − 1)2 ln (q̄ (1− γk) + γk)

]
= γk

[
1

γk − 1

1− qa
1− qa + γkqa

− 1

(γk − 1)2 ln

(
γk

1− qa + γkqa

)]
.

Recall that by Lemma A.2-4, opt(Fa) = a qa (2− qa) = (1− qa)(2− qa), hence

EFa [γv−i1{vi > γv−i}]
opt(Fa)

=


γ 1

1−qa
1

2−qa

[
1

γ−1
1−qa

1−qa+γqa
− 1

(γ−1)2
ln
(

γ
1−qa+γqa

)]
, if γ > 1

1
2

1−qa
2−qa , if γ = 1.

Let us denote I = {k : γk > 1}. We have

R(m,Fa)

=

∑2
i=1 EFa [ti(vi, v−i)]

opt(Fa)

=
N − |I |
N

1− qa
2− qa

+2
∑
k∈I

1

N
γk

1

1− qa
1

2− qa

[
1

γk − 1

1− qa
1− qa + γkqa

− 1

(γk − 1)2 ln

(
γk

1− qa + γkqa

)]
+2 c

qa
2− qa

=
N − |I |
N

1

2− qa

+2
∑
k∈I

1

N
γk

1

1− qa
1

2− qa

[
1

γk − 1

1− qa
1− qa + γkqa

− 1

(γk − 1)2 ln

(
γk

1− qa + γkqa

)]
+

(
2 c− N − |I |

N

)
qa

2− qa
.
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Noting that c ≤ 1/2, we have

R(m,Fa)

≤ N − |I |
N

1

2− qa

+2
∑
k∈I

1

N
γk

1

1− qa
1

2− qa

[
1

γk − 1

1− qa
1− qa + γkqa

− 1

(γk − 1)2 ln

(
γk

1− qa + γkqa

)]
+
|I |
N

qa
2− qa

,

The bound in the theorem follows and the proof is complete.

Lemma A.3-1. For each a > 0, there is a sequence {Fn : n ≥ 1} in Freg that

convergences weakly to Fa defined in (1.7), such that there exists Ma > a such that

for all n, Fn(Ma) = 1.

Proof of Lemma B.6-2. Fix a > 0. The proof will be constructive in that we will

explicitly exhibit a sequence Fn that satisfies the properties in the result.

Step 1. We first construct the sequence and characterize its weak limit.

a) Let n ≥ 2, and define for x ≥ 0,

gn(x) = 1 + x−
(x
a

)n
.

Note that there exists a unique xn ≥ 0 such that gn(xn) = 0. Indeed, gn is differen-

tiable with derivative given by g′n(x) = 1− n xn−1/an, hence gn is strictly increasing

on [0, (an/n)1/(n−1)) and strictly decreasing on ((an/n)1/(n−1) ,+∞[. Since gn(0) = 1

and lim
x↑∞

gn(x) = −∞ there exists a unique xn s.t. gn(xn) = 0. Furthermore, noting

that gn(a) = a > 0, we have that

xn > a, n ≥ 2.

Define the sequence of cumulative distribution functions Fn

Fn(x) =


1− exp

(
−
∫ x

0
1

gn(t)
dt
)

, if x < xn,

1 , if x ≥ xn.

(A.3-1)
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Step 2. We next establish that Fn belongs to Freg and that the sequence converges

weakly to Fa.

We first show that the sequence xn is decreasing and is lower bounded by a. The

fact that xn > a implies that

gn+1(xn) = 1 + xn − (xn/a)n+1 < 1 + xn − (xn/a)n = gn(xn) = 0.

In turn, by definition of xn+1, we get that

xn < xn+1.

Hence for all n ≥ 2, xn < x2. Setting Ma = x2, we have Ma > a and Fn(Ma) = 1 for

all n ≥ 2.

Since xn is decreasing and lower bounded by a, it necessarily converges to some

limit l ≥ a. If l > a then for n sufficiently large, we would have xn ≥ (1/2) (l + a)

implying that gn((1/2) (l + a)) ≥ 0. However limn↑∞ gn((1/2) (l + a)) = −∞, which

is a contradiction. We conclude that necessarily lim
n↑∞

xn = a.

Note also that for x ≥ 0, gn is a polynomial with root xn, and no root in [0, xn].

Since g′n(xn) 6= 0, then necessarily the multiplicity of xn is one, so we can find a

polynomial function Qn such that gn(x) = (xn − x)Q(x) and for all x ∈ [0, xn]

we have Qn(x) > 0. In turn, by the Weierstrass extreme value theorem, we have

An := infx∈[0,xn] Qn(x) ∈ (0,∞) and Bn := supx∈[0,xn] Qn(x) ∈ (0,∞). and and we

can find Bn, An > 0 such that for all x ∈ [0, xn], we have An ≤ Qn(x) ≤ Bn.

For x ∈ [0, xn), we have

1

An
ln

(
xn − x
xn

)
≤ −

∫ x

0

1

gn(t)
dt ≤ 1

Bn

ln

(
xn − x
xn

)
,

and we deduce that

lim
x↑xn

exp

(
−
∫ x

0

1

gn(t)
dt

)
= 0. (A.3-2)
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We deduce that Fn defined in (B.6-7) has no atoms. Furthermore, its virtual value

function is given by

φn(x) =
(x
a

)n
− 1.

which is clearly non-decreasing on [0, xn). Hence, Fn belongs to Freg.

Step 3. Let us establish that Fn converges weakly to Fa. The points of continuity

of Fa are R+ \ {a}. Fix x < a. we have lim
n↑∞

(x/a)n = 0. Hence for all x < a, using

the Dominated Convergence Theorem, we have lim
n↑∞

Fn(x) = Fa(x). Fix x > a. Since

xn converges to a, there exists N such that for all n ≥ N, we have x > xn, hence for

all n ≥ N , Fn(x) = Fa(x) = 1. We conclude that Fn weakly converges to Fa.

Proof of Proposition 1.4. Let F be a distribution in Freg and m = (x, t) be a

mechanism Mmax
sf . By Lemma A.2-5, the revenue of the mechanism m when nature

picks F is given by

E

[
2∑
i=1

ti(vi, v−i)

]
= E

[
N∑
k=1

1

N
γk v−i 1{vi > γk v−i}1{vi 6= v−i}+ c v−i 1{vi = v−i}

]

=
N − |I |
N

EF
[
v[2]

]
+ 2

∑
k∈I+

1

N

∫ ∞
0

Rev(γkv)f(v)dv,

where Rev(v) := vF̄ (v), the last equality follows from symmetry and the fact that

the set {(vi, v−i) : vi = v−i} has measure zero with respect to the F−measure, since

F has a density.

Let us start by analyzing the contribution of any of the terms in sum. We have∫ ∞
0

Rev(γkv)f(v)dv
(a)
=

[
−Rev(γkv)F (v)

]v=∞
v=0

+

∫ ∞
0

γk Rev
′(γkv)F (v)dv

(b)
=

∫ ∞
0

γk Rev
′(γkv)F (v)dv

(c)
=

∫ ∞
0

Rev′(v) F (v/γk)dv,

where (a) follows by integration by parts; (b) follows from the fact thatRev(γk 0)F (0) =

0 (since Rev(0) = 0) and lim
v→∞

Rev(γkv)F (v) = 0 (since Rev(γkv)F (v) ≤ Rev(rF )F (v)
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and lim
v→∞

F (v) = 0; (c) follows from a change of variable. In turn, by decomposing

the last integral, we get that∫ ∞
0

Rev(γkv)f(v)dv =

∫ rF

0

Rev′(v)F (v/γ)dv +

∫ ∞
rF

Rev′(v)F (v/γ)dv

=

∫ 1

qF

(−Rev′(q))F
(
F−1(1− q)

γk

)
dq +

∫ ∞
rF

Rev′(v)F (v/γ)dv,

where the last equality follows from the change of variable q = F (v) and noting

that that Rev′(v) = f(v) (−Rev′(q)), where here we abuse notation and denote

Rev(q) = qF−1(1− q).

For v ≥ rF , we have Rev′(v) ≤ 0 and F (v/γk) ≤ F (rF/γk). Hence, we have∫ ∞
rF

Rev′(v)F (v/γ)dv ≥ −F (rF/γ)Rev(qF ) ≥ − γk qF
1 + (γk − 1) qF

E
[
v[2]

]
,

where for the last inequality, we have used Lemma A.3-2, stated and proved after

this proof.

For q ≥ qF , we have Rev′(q) ≤ 0 since F belongs to Freg and by (Fu et al., 2015,

Lemma 4), F (F−1(1− q)/γk) ≥ γkq/(1 + (γk − 1) q) and hence∫ 1

qF

(−Rev′(q))F
(
F−1(1− q)

γk

)
dq

≥
∫ 1

qF

(−Rev′(q)) γk q

1 + (γk − 1) q
dq

= (1− qF )

(
γk

γk − 1

)∫ 1

qF

(−Rev′(q))
[
1− 1

1 + (γk − 1) q

]
dq

1− qF
.

Since F is regular, Rev(q) is concave, so Rev′(q) is decreasing. Noting that

(1− 1/(1 + (γk − 1) q))

is increasing, then by (Ross, 1996, Proposition 7.2.1), we have∫ 1

qF

(−Rev′(q))
[
1− 1

1 + (γk − 1) q

]
dq

1− qF

≥
(∫ 1

qF

[
1− 1

1 + (γk − 1) q

]
dq

1− qF

)(∫ 1

qF

(−Rev′(q)) dq

1− qF

)
=

1

(1− qF )2

[
1− qF −

1

γk − 1
ln

[
γk

1 + (γk − 1)qF

]]
Rev(qF ).
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In turn, we deduce that∫ ∞
0

Rev(γkv)f(v)dv

≥ γk
γk − 1

1

1− qF

[
1− qF −

1

γk − 1
ln

[
γk

1 + (γk − 1)qF

]]
Rev(qF )

− γk qF
1 + (γk − 1) qF

E
[
v[2]

]
≥ γk

γk − 1

1

1− qF

[
1− qF −

1

γk − 1
ln

[
γk

1 + (γk − 1)qF

]]
opt(F )

2

− γk qF
1 + (γk − 1) qF

E
[
v[2]

]
,

where for the last inequality, we used that Rev(qF ) ≥ opt(F )/2. and the fact that

1− qF − 1
γk−1

ln
[

γk
1+(γk−1)qF

]
≥ 0.

The performance of mechanism m against the distribution F is given by

R(m,F )

=
N − |I+|

N

EF
[
v[2]

]
opt(F )

+ 2
∑
k∈I+

1

N

∫∞
0
Rev(γkv)f(v)dv

opt(F )

≥ N − |I+|
N

EF
[
v[2]

]
opt(F )

+
∑
k∈I+

1

N

[
γk

γk − 1

(
1− qF −

1

γk − 1
ln

[
γk

1 + (γk − 1)qF

])
1

1− qF

− γk qF
1 + (γk − 1) qF

2E
[
v[2]

]
opt(F )

]
≥

[
1−

∑
k∈I+

1

N

(
1 +

2 γk qF
1 + (γk − 1) qF

)] EF
[
v[2]

]
opt(F )

+
∑
k∈I+

1

N

[
γk

γk − 1

(
1− qF −

1

γk − 1
ln

[
γk

1 + (γk − 1)qF

])
1

1− qF

]
.

Since 2 γk qF/(1 + (γk − 1) qF ) ≤ 2, and |I+|/N ≤ 1/3 by assumption, we have

1−
∑
k∈I+

1

N

(
1 +

2 γk qF
1 + (γk − 1) qF

)
≥ 1− 3|I+|

N
≥ 0.

On the other side, using (Fu et al., 2015, Corollary 1), we also have that

EF
[
v[2]

]
opt(F )

≥ 1

2− qF
.
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In turn, we have

R(m,F )

≥

[
1−

∑
k∈I+

1

N

(
1 +

2 γk qF
1 + (γk − 1) qF

)]
1

2− qF

+
∑
k∈I+

1

N

[
γk

γk − 1

(
1− qF −

1

γk − 1
ln

[
γk

1 + (γk − 1)qF

])
1

1− qF

]
=

N − |I+|
N

1

2− qF

+
∑
k∈I+

1

N

[
γk

γk − 1

(
1− qF −

1

γk − 1
ln

[
γk

1 + (γk − 1)qF

])
1

1− qF

− 2 γk qF
1 + (γk − 1) qF

1

2− qF

]
.

Rearranging terms, one obtains the bound in the result and this concludes the proof.

Lemma A.3-2. For any distribution F in Freg, we have

EF [v[2]] = 2

∫ 1

0

Rev(q)dq, (A.3-3)

Rev(qF )F
(rF
α

)
≤ α qF

1 + (α− 1) qF
E
[
v[2]

]
for any α ≥ 1. (A.3-4)

Proof of Lemma A.3-2. We will show each claim separately. Let us fix F in Freg.

We first prove (A.3-3). We have,

EF [v[2]] =

∫ ∞
0

2 Rev(v)f(v)dv =

∫ 1

0

2 Rev(q)dq,

where the last equality follows from the the change of variable q = F (v), i.e. v =

F−1(1− q) and noting that f(v)dv = −dq.

We next establish (A.3-4). Let us denote q̄ = F ( rF
α

), we have

Rev(q̄) = q̄
rF
α

= q̄
Rev(qF )

α qF
,

now using the concavity of Rev(q), since F is in Freg, the area below the curve of

Rev(q) when q ∈ [qF , 1] is greater than the area of the quadrilateral defined by the
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following points {(1, 0), (q̄, Rev(q̄)), (qF , Rev(qF )), (qF , 0)},∫ 1

qF

Rev(q)dq

≥ (q̄ − qF )Rev(q̄) +
1

2
(1− q̄)Rev(q̄) +

1

2
(q̄ − qF ) (Rev(qF )−Rev(q̄))

= q̄Rev(q̄)− qFRev(q̄) +
1

2
Rev(q̄)− q̄

2
Rev(q̄)

+
q̄

2
Rev(qF )− q̄

2
Rev(q̄)− qF

2
Rev(qF ) +

qF
2
Rev(q̄).

Hence,∫ 1

qF

Rev(q)dq ≥ −qFRev(q̄) +
1

2
Rev(q̄) +

q̄

2
Rev(qF )− qF

2
Rev(qF ) +

qF
2
Rev(q̄)

= −qF
2
Rev(q̄) +

1

2
Rev(q̄) +

q̄

2
Rev(qF )− qF

2
Rev(qF )

= − q̄

2α
Rev(qF ) +

q̄

2 α qF
Rev(qF ) +

q̄

2
Rev(qF )− qF

2
Rev(qF ).

So we conclude that∫ 1

qF

Rev(q)dq ≥ q̄Rev(qF )
1

2

[
− 1

2α
+

1

2 α qF
+

1

2

]
− qF

2
Rev(qF )

= q̄Rev(qF )
(−qF + 1 + αqF )

2 α qF
− qF

2
Rev(qF )

= q̄Rev(qF )
(1 + (α− 1) qF )

2 α qF
− qF

2
Rev(qF ).

Hence,

q̄Rev(qF ) ≤ α qF
1 + (α− 1) qF

[
2

∫ 1

qF

Rev(q)dq + qFRev(qF )

]
=

α qF
1 + (α− 1) qF

[
E
[
v[2]

]
+ qFRev(qF )− 2

∫ qF

0

Rev(q)dq

]
.

Moreover, using the concavity of Rev(q), the area of the triangle of vertices

{(0, 0), (qF , Rev(qF )), (qF , 0)} is less the area than of the curve Rev(q) between [0, qF ].

So we get that ∫ qF

0

Rev(q)dq ≥ 1

2
qF Rev(qF ),

hence

qFRev(qF )− 2

∫ qF

0

Rev(q)dq ≤ 0,
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so we conclude that

Rev(qF )F
(rF
α

)
≤ α qF

1 + (α− 1) qF
E
[
v[2]

]
.

The proof is complete.

A.4 Proofs for Section 1.6

Proof of Theorem 1.4. The proof follows initially the same structure of the proof

of Theorem 1.3. However, there are two main differences. We will be considering a

different limiting worst case family, Wmhr. Furthermore, we will be able to upper

bound the performance by establishing that the best achievable performance against

Wmhr is that of a second price auction.

Let us introduce, Wmhr ⊂W defined as follows,

Wmhr := {Fa,b, : a ≥ b > 0},

where

Fa,b(v) =


1− exp

(
− v
a

)
, if v < b,

1 , if v ≥ b,

In Lemma A.4-1, stated and proved following this proof, we establish that any element

in Wmhr can be “approached” by a sequence in Fmhr, i.e., a sequence of elements in

Fmhr converges weakly to the element. In turn, using Theorem 1.2 in conjunction

with Lemma A.4-1, we have

R(M,Fmhr) ≤ R(Mmax
sf ,Wmhr).

We next bound R(Mmax
sf ,Wmhr). Let us fix a ≥ b > 0 and a mechanism in

m = (x, t) in Mmax
sf . We will bound R(m,Fa,b). For some N ≥ 1, γ ∈ [1,∞)N and

c ∈ [0, 1/2], using Lemma A.2-5, the payments are given by

ti(vi, v−i) =
N∑
k=1

1

N
γk v−i 1{vi > γk v−i}1{vi 6= v−i}+ c v−i 1{vi = v−i},
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for i = 1, 2, and vi, v−i ≥ 0.Note that since γk ≥ 1, we have 1{vi > γkv−i}1{vi 6= v−i} =

1{vi > γk v−i}.

We first derive a close form expression for
∑2

i=1 EFa,b [ti(vi, v−i)]. We have

2∑
i=1

EFa,b [ti(vi, v−i)] =
2∑
i=1

N∑
k=1

1

N
EFa,b [γk v−i 1{vi > γk v−i}] + 2 c b q2

a,b,

where qa,b = e−b/a. Recall that by Lemma A.2-4, opt(Fa,b) = b qa,b (2− qa,b), hence

we have that

R(m,Fa,b) =
2∑
i=1

N∑
k=1

1

N

1

b qa,b (2− qa,b)
EFa,b [γk v−i 1{vi > γk v−i}] + 2 c

qa,b
2− qa,b

.

Note that

EFa,b [γk v−i 1{vi > γk v−i}] =

∫ b

0

∫ b

0

γk v−i 1{vi > γk v−i}dFa,b(vi)dFa,b(v−i)

=

∫ (b/γk)−

0

∫ b

0

γk v−i 1{vi > γk v−i}dFa,b(vi)dFa,b(v−i)

=

∫ (b/γk)−

0

γk v−i F a,b(γkv−i)dFa,b(v−i)

=

∫ (b/γk)−

0

γk
v

a
exp(−γkv/a) exp(−v/a)dv

=

∫ (b/γk)−

0

γk
v

a
exp(− (γk + 1) v/a)dv,

By integration by parts, we get

EFa,b [γkv−i1{γkv−i < vi}]

=

[
γkv

−1

γk + 1
exp(−(γk + 1)

v

a
)

]v=b/γk

v=0

+
γk

γk + 1

∫ (b/γk)−

0

exp(−(γk + 1)
v

a
)dv

=
−b

γk + 1
exp

(
−γk + 1

γk

b

a

)
− γk

(γk + 1)2
a
[
exp(−(γk + 1)

v

a
)
]v=b/γk

v=0

= a

(
γk

(γk + 1)2
− 1

γk + 1

(
γk

γk + 1
+
b

a

)
exp

(
−γk + 1

γk

b

a

))
.

Since b/a = − ln(qa,b), and c ≤ 1/2, we obtain

R(m,Fa,b) ≤
2∑
i=1

N∑
k=1

1

N

1

qa,b(2− qa,b) ln(1/qa,b)
Ψ(γk, qa,b) +

qa,b
2− qa,b

, (A.4-1)
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where ψ : [1,∞)× [e−1, 1]→ R is defined as

Ψ(α, q) :=
α

(α + 1)2
− 1

α + 1

(
α

α + 1
+ ln(1/q)

)
q1+ 1

α . (A.4-2)

Next we further simplify the bound. To that end, we will establish that for any q

in [e−1, 1] Ψ(α, q) is non-increasing in α on [1,∞). Note first that Ψ(α, 1) = 0, which

is non-decreasing for α ≥ 1. Furthermore, note that

∂2Ψ

∂α∂q
(α, q) =

∂

∂α

(
− 1

α
q1/α ln(1/q)

)
=

1

α2
q1/α

(
1 +

1

α
ln(q)

)
ln(1/q) ≥ 1

α2
q1/α

(
1− 1

α

)
ln(1/q) ≥ 0,

where in the previous to last inequality, we used that q ≥ e−1 and in the last inequality,

we used that α ≥ 1. By the Schwarz’s theorem, we conclude that ∂Ψ
∂α

(α, ·) is non-

decreasing, anf hence for any q in [e−1, 1], we have that

∂Ψ

∂α
(α, q) ≤ ∂Ψ

∂α
(α, 1) = 0.

In turn, we obtain that Ψ is non-increasing in α on [1,∞).

Returning to Eq. (A.4-1) and leveraging the above, we have that

Ψ(γk, qa,b) ≤ Ψ(1, qa,b),

and hence the performance of any mechanism in Mmax
sf is bounded as follows

R(m,Fa,b) ≤
1

qa,b(2− qa,b) ln(1/qa,b)

(
1

2
−
(

1

2
+ ln(1/qa,b)

)
q2
a,b

)
+

qa,b
2− qa,b

=
1

2

1− q2
a,b

qa,b(2− qa,b) ln(1/qa,b)
−

q2
a,b ln(1/qa,b)

qa,b(2− qa,b) ln(1/qa,b)
+

qa,b
2− qa,b

=
1

2

1− q2
a,b

qa,b(2− qa,b) ln(1/qa,b)
.

Recalling that qa,b spans [e−1, 1], this concludes the proof.

Lemma A.4-1. For each distribution F in Wmhr, there exists a sequence Fn in

Fmhr that convergences weakly to F , such that there exists M > 0 such that for all

n, Fn(M) = 1.
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Proof of Lemma A.4-1. Fix F in Wmhr. Then there exists a ≥ b > 0, such that

F (v) =


1− exp(− v

a
) if v < b,

1 if v ≥ b.

The proof will be constructive in that we will explicitly exhibit a sequence Fn that

satisfies the properties in the result.

Step 1. We first construct the sequence and analyze it. Let n ≥ 1, and define

for v ≥ 0

gn(v) = a
(

1−
(v
b

)n)
, for 0 ≤ v ≤ b.

Define the sequence of cumulative distribution functions Fn

Fn(v) =


1− exp

(
−
∫ v

0
1

gn(u)
du
)

, if v < b,

1 , if v ≥ b.

(A.4-3)

Note that Fn(a) = 1, for all n ≥ 1, so we can set M := a.

Step 2. We next establish that Fn belongs to Fmhr and that the sequence con-

verges weakly to F . For that let us show that Fn has no mass at v = b.

Since for any 0 ≤ v < b and 0 ≤ u ≤ v, we have that

1

gn(u)
=

1

a

1

1− u/b
1∑n−1

i=0 (u/b)i
≥ 1

na

1

1− u/b
,

where the last inequality follows from the fact that 0 ≤ u ≤ b. Hence, we conclude

that for all v < b,

−
∫ v

0

1

gn(u)
du ≤ −

∫ v

0

1

an

1

1− u/b
du = − b

an
ln(1− v/b),

thus for all v < b, the cumulative distribution Fn is lower bounded as follows

Fn(v) ≥ 1−
(

1− v

b

) b
an
,

158



by taking the limit, we conclude that lim
v↑b

Fn(v) = 1, hence Fn does not have any

mass. Furthermore its hazard rate is given by

a−1/
(

1−
(v
b

)n)
, for v < b.

which is clearly non-decreasing on the support of Fn. Hence, Fn belongs to Fmhr.

Let us check that Fn converges weakly to F . The points of continuity of F are

R+\{b}. For all v < b, we have lim
n↑∞

(v/b)n = 0. Hence, by the dominated convergence

theorem, for all v < b, we have lim
n↑∞

Fn(v) = F (v). For v > b, we have that for all

n ≥ 1, Fn(v) = F (v) = 1. The result follows.

Proof of Proposition 1.5. The goal of this proof is to lower bound the perfor-

mance of the second price auction. For that, we will bound the difference between

the optimal revenue and the expected value of the second highest value leveraging

the MHR property. Fix any F in Fmhr. We have

opt(F )− E[v[2]]

= E[v[2]1{v[2] ≥ rF}] + 2rF qF (1− qF )−
[
E[v[2]1{v[2] ≥ rF}] + E[v[2]1{v[2] < rF}]

]
= 2rF qF (1− qF )− E[v[2]1{v[2] < rF}]

= 2rF qF (1− qF )− 2

∫ rF

0

vF (v)f(v)dv

= 2rF qF (1− qF )− 2

∫ 1

qF

Rev(q)dq,

where the last equality follows from a change of variable q = F (v). We next lower

bound Rev(q) = qF−1(1−q) on [qF , 1]. For that, we use a classical result in reliability

theory: (Barlow and Proschan, 1975, Chapter 4, Theorem 2.18). Namely, for any dis-

tribution with increasing hazard rate, we have that for each λ > 0, F (v)− exp{−λv}

has at most one change of sign and if one change of sign occurs, it occurs from + to

−. In particular, letting λ = − ln(qF )/rF , we have that F (rF ) = exp(−λrF ), i.e., the
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crossing occurs at rF and hence

F (v) ≥ exp{−λv}, for all v ≤ rF .

In turn, moving to the quantile space, with q = F (v), we have

q ≥ exp{(ln(qF )/rF )F−1(1− q)} for all q ≥ qF .

Taking the log, and multiplying q, we obtain

q ln(q)
rF

ln(qF )
≤ qF−1(1− q) = Rev(q) for all q ≥ qF .

In turn, we have∫ 1

qF

Rev(q)dq ≥ rF
ln(qF )

∫ 1

qF

q ln(q)dq =
rF

ln(qF )

[
1

2

[
q2 ln(q)

]1
qF
− 1

2

∫ 1

qF

qdq

]
=

rF
ln(qF )

[
−1

2
q2
F ln(qF )− 1

4

(
1− q2

F

)]
= −1

2
rF q

2
F −

1

4

rF (1− q2
F )

ln(qF )
.

We deduce that

opt(F )− E[v[2]] ≤ 2rF qF (1− qF ) + rF q
2
F +

1

2

(1− q2
F )

ln(qF )

= rF qF (2− qF ) +
1

2

rF (1− q2
F )

ln(qF )
,

and hence

E[v[2]]

opt(F )
≥ 1−

rF qF (2− qF ) + 1
2

rF (1−q2F )
ln(qF )

opt(F )
.

Using the argument in the proof of (Fu et al., 2015, Corollary 1), we have that

opt(F ) ≥ Rev(qF )(2− qF ) = rF qF (2− qF ). Note that the latter is the revenue of the

mechanism that offers a posted price of rF to the maximum value buyer. In turn,

this implies that

E[v[2]]

opt(F )
≥ −1

2

1− q2
F

qF (2− qF ) ln(qF )
.
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Proof of Theorem 1.5. This is a direct consequence of Theorem 1.4 and Proposi-

tion 1.5. Indeed, we have

inf
q∈[e−1,1]

1− q2

2 q (2− q) ln(1/q)

(a)

≤ inf
F∈Fmhr

R(mspa, F )

≤ R(M,Fmhr)
(b)

≤ inf
q∈[e−1,1]

1− q2

2 q (2− q) ln(1/q)
,

where (a) follows from Proposition 1.5 and (b) follows from Theorem 1.4. Hence, we

conclude the result. For the numerical evaluation of the infinimum, we took a grid of

the interval [e−1, 1] with step size 10−6.

A.5 Proofs for Section 1.7.1

Proof of Proposition 1.6. In this proof, we analyze the upper bound then we

analyze the lower bound.

Upper bound We will first show the upper bounds, for that note the following that

we can decompose the worst case performance as either two buyer case, i.e. K = 2

or at least three buyers, i.e. K ≥ 3, formally

R̃(M̃,F ) = sup
m∈M̃

min

(
inf
F∈F

R2(m,F ), inf
K≥3

inf
F∈F

RK(m,F )

)
. (A.5-1)

Hence, we conclude that

R̃(M̃,F ) ≤ R(M,F ). (A.5-2)

We conclude that all the upper bounds developed in the previous sections can still

be applied, hence we get the upper bounds.

Lower bound For the lower bound, note that from (A.5-1) that we can control the

case of two buyers using our previous results whereas now we need some lower bound
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performance on a mechanisms when the number of players is greater than 2. For that

we use we will use the implication of a result shown in (Fu et al., 2015, Corollary 1).

Lemma A.5-1. For any number of buyers K ≥ 2 and a distribution F in Freg then

the performance of second price auction without a reserve price is bounded as follows,

RK(mspa, F ) ≥ max

(
1− (1− qF )K−1

1− (1− qF )K
,
K − 1

K

)
,

where qF = F̄ (rF ) is the oracle optimal quantile.

Now we will treat the case of regular and mhr class of distributions separately.

Let us start by the latter.

One can show that the function 1−(1−qF )K−1

1−(1−qF )K
is non-decreasing in K and qF . By

Hartline et al. (2008), we know that for any distribution F in Fmhr, we have that

qF ≥ e−1. Hence we conclude that for any F in Fmhr and K ≥ 3 we have

RK(mspa, F ) ≥ 1− (1− e−1)2

1− (1− e−1)3
≥ 80%,

By Theorem 1.5, we have that

inf
F∈Fmhr

R2(mspa, F ) ≈ 71.53%,

Hence by (A.5-1), we get that

R̃(M̃,F ) ≥ inf
F∈Fmhr

R2(mspa, F ).

and the analysis of the upper bound in particular, (A.5-2), we get that

R̃(M̃,F ) = inf
F∈Fmhr

R2(mspa, F ) ≈ 71.53%.

Now let us now analyse the performance against the regular class of distributions.

For that let us consider the following mechanism if there are two buyers, i.e. K = 2,

then the seller uses the mechanism, we proposed in Section 1.5.3 and if K ≥ 3 the

seller uses a second price auction. For such mechanism the seller would make at least
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51.9% when there are two buyers and get 2/3 when there are at least three buyers

based on Lemma A.5-1. Using (A.5-1), we conclude the result.

163



Appendix B

Appendix for Chapter 2

B.1 The Interplay of Inflation and Deflation

A simple heuristic. A natural heuristic analyzed in the literature (see Huang

et al. (2015) and Fu et al. (2015)) is simply to “post your sample”, namely not use

any deflation or inflation and just use γ = 1 with probability one. It is well known

that for regular and MHR distributions, the competitive ratio of such a heuristic is

50%. The key idea is that the sample is equally likely to be above or below the

willingness to pay of a new customer and for a random variable with support [s, s],

with s = s + o(s), i.e., with a very small variability, the optimal revenue is at least

s. For such a family, post your sample collects half of s + o(s) and the ratio of

performances is of order 1/2 + o(1). Hence relying only on post your sample may not

lead to optimal performance, and the need for inflation and deflation arises.

The necessity of deflation. Against the family of distributions described above

(with support [s, s], with s = s+o(s)), as a matter of fact any mechanism that puts all

mass on multiplicative factors γ > 1 would actually perform arbitrarily poorly. This

failure could be mitigated by putting some weight on deflation for some γ < 1. Indeed,

in such a case, if γs ≤ s and γ > 1/2, then the deflation mechanism guarantees a

fraction γ > 1/2 of the optimal revenues. In particular, the argument above implies

that any mechanism that does not have some weight on deflation will be suboptimal

against Fα (as any such family contains distributions with the properties outlined).
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The selective need for inflation. While we have seen above that some positive

weight on deflation is necessary (for all values of α), the role of inflation is more

subtle. Let M≤1 := {Ψ ∈M : Ψ(s|s) = 1} denote mechanisms in M that do not

put any mass on inflation.

Proposition B.1-1 (the role of inflation). i.) Against regular distributions (α =

0), any mechanism that does not put any mass on inflation is suboptimal, i.e.,

R(M≤1,F0) < R(P ,F0).

ii.) Let F̃1 denote the set of MHR distributions (α = 1) with bounded support and

continuous density f on the support S . Against such distributions, it is suffi-

cient to focus on mechanisms that do not put any mass on inflation, i.e.,

R(M≤1, F̃1) = R(P , F̃1).

Part i.) follows from Fu et al. (2015) in conjunction with formalizing that a mecha-

nism with no mass on inflation cannot do better than 50%. In particular, this implies

that while inflation will lead to arbitrarily poor performance against distributions

that have little variation (such as those exhibited in the post your sample discussion

above), any mechanism that does not put some mass on inflation will be suboptimal

against regular distributions.

Part ii.) establishes that against a large subclass of MHR distributions, inflation is

actually not necessary and one may focus on the classM≤1 without loss of optimality.

This highlights the subtle and different role of inflation across different values of α.

In contrast to deflation, inflation is not needed “across the board”. The proof of part

ii.) of Proposition B.1-1 is based on establishing that the strategy that posts the

sample s always dominates any strategy that inflates by any amount. In particular,

this implies that we can always exclude inflation and restrict to deflation or post your

sample without loss of optimality. We conjecture that this is also true for the entire
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MHR class F1; the assumptions of continuity of the density and boundedness of the

support are made for technical reasons to allow for an exchange of the integral and

derivative operators in the proof.

Intuitively, MHR distributions have little variation, since their coefficient of vari-

ation is always less than one (Barlow and Proschan, 1975), and their optimal oracle

price is sufficiently far from the upper support. Indeed, for any distribution F in the

MHR class F1, it has been established that F (rF ) ≥ e−1 (Hartline et al., 2008). This

means that there is significant mass above the optimal oracle posted price, which sug-

gests that the benefits of any mass on inflation may be limited. Proposition B.1-1ii.)

establishes that there is actually no benefit for a large subclass of MHR distributions.

B.2 Proofs for Section 2.3

Proof of Proposition 2.1. Let us fix α in [0, 1]. Clearly, R(M,Fα) ≤ R(P ,Fα)

since M ⊂ P . We next establish that R(M,Fα) ≥ R(P ,Fα). Fix ε > 0. We will

establish that R(M,Fα) ≥ R(P ,Fα) − ε. By definition of the supremeum, there

exists Ψ ∈ P such that

inf
G∈Fα

R(Ψ, G) ≥ R(P ,Fα)− ε.

Fix an arbitrary F ∈ Fα and for any integer n, let Fn(·) = F (n·) denote the scaled

version of F . Note that Fn belongs to Fα since φFn(v)−αv = (1/n) (φF (nv)−αnv),

for all v ≥ 0. By definition of the infinimum, we have that,

R(Ψ, Fn) ≥ inf
G∈Fα

R(Ψ, G) ≥ R(P ,Fα)− ε. for all n ≥ 1. (B.2-1)
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Next, we re-express R(Ψ, Fn).

R(Ψ, Fn) =
1

opt(Fn)

∫ ∞
0

∫ ∞
0

pF n(p) dΨ(p|s) dFn(s)

=
1

opt(Fn)

∫ ∞
0

∫ ∞
0

pF (n p) dΨ
(
p | u

n

)
dF (u)

=
1

opt(F )

∫ ∞
0

∫ ∞
0

npF (n p) dΨ
(
p | u

n

)
dF (u)

=
1

opt(F )

∫ ∞
0

∫ ∞
0

ζF (ζ) dΨ

(
ζ

n
| u
n

)
dF (u).

The second equality follows from a change of variable u = ns, the third follows from

the fact that opt(Fn) = n−1opt(F ); and the fourth equality follows from another

change of variable ζ = np.

Hence, plugging into Eq. (B.2-1) and taking the limit over n, we get that

lim inf
n→∞

1

opt(F )

∫ ∞
0

∫ ∞
0

ζF (ζ) dΨ

(
ζ

n
| u
n

)
dF (u) ≥ R(P ,Fα)− ε.

Let us analyze the limiting term. For each u ≥ 0, we have, by integrations by parts,∫ ∞
0

ζF (ζ) dΨ

(
ζ

n
| u
n

)
(a)
=

[
ζF (ζ) Ψ

(
ζ

n
| u
n

)]ζ=∞
ζ=0

−
∫ ∞

0

(
ζF (ζ)

)′
Ψ

(
ζ

n
| u
n

)
dζ

(a′)
= −

∫ ∞
0

(
ζF (ζ)

)′
Ψ

(
ζ

n
| u
n

)
dζ,

where in (a’), we have used the fact that Ψ
( ·
n
| u
n

)
is in [0, 1] and the fact that

0 F̄ (0) = limζ→∞ ζF̄ (ζ) = 0. The latter follows from the fact that for any a > 0,

aF (a) =
∫ a

0
F (v)dv−E [v1{v ≤ a}]. On the one hand, by the dominated convergence

theorem lim
a↑∞

E [v1{v ≤ a}] = E [v] and on the other hand, we have that
∫∞

0
F (v)dv =

E [v] (see Ross (1996)), since E [v] is finite because F is in G. We conclude that

lim
a↑∞

aF (a) = 0.

By the well-behaved assumption around zero, c.f. Definition 2.1, we have that

there exists a mechanism Ψ∞ such that for all u, q ≥ 0

lim
n→∞

Ψ
( q
n
| u
n

)
= Ψ∞(q|u),
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Furthermore, note that∫ ∞
0

|
(
ζF (ζ)

)′ |dq =

∫ rF

0

(
ζF (ζ)

)′
dq −

∫ ∞
rF

(
ζF (ζ)

)′
dq = 2 opt(F ).

By the dominated convergence theorem, we obtain

lim
n→∞

∫ ∞
0

ζF (ζ) dΨ

(
ζ

n
| u
n

)
(b)
= −

∫ ∞
0

(
ζF (ζ)

)′
Ψ∞ (ζ | u) dζ

(c)
=

∫ ∞
0

ζF (ζ) dΨ∞ (ζ | u) ,

where for (c), we used the same integration by parts as in the two previous equalities

(a) and (a′).

Now using the dominated convergence theorem again, we get that

lim
n→∞

1

opt(F )

∫ ∞
0

∫ ∞
0

ζF (ζ) dΨ

(
ζ

n
| u
n

)
dF (u)

=
1

opt(F )

∫ ∞
0

lim
n→∞

∫ ∞
0

ζF (ζ) dΨ

(
ζ

n
| u
n

)
dF (u)

=
1

opt(F )

∫ ∞
0

∫ ∞
0

ζF (ζ) dΨ∞ (ζ | u) dF (u)

= R(Ψ∞, F ).

In turn, we have for all F ∈ Fα,

R(Ψ∞, F ) ≥ R(P ,Fα)− ε.

Fix s, p > 0 and θ > 0. It is clear that Ψ∞(·|s) is non-decreasing and in [0, 1], for

any s in [0,∞). Moreover, we have that

Ψ∞(p|s) = lim
n→∞

Ψ
(p
n
| s
n

)
= lim

n→∞
Ψ

(
θp

n
| θs
n

)
= Ψ∞(θp|θs), (B.2-2)

Now let us further reduce the expression of the performance of Ψ∞. For F in Fα,
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we have

R(Ψ∞, F ) =
1

opt(F )

∫ ∞
0

∫ ∞
0

pF (p) dΨ∞(p|s) dF (s)

(a)
=

1

opt(F )

∫ ∞
0

∫ ∞
0

γsF (γs) dΨ∞(γs|s) dF (s)

(b)
=

1

opt(F )

∫ ∞
0

∫ ∞
0

γsF (γs) dΨ∞(γ|1) dF (s)

(c)
=

1

opt(F )

∫ ∞
0

∫ ∞
0

γsF (γs) dF (s) dΨ∞(γ|1)

(d)

≤ 1

opt(F )

∫ ∞
0

∫ ∞
0

γsF (γs) dF (s)
dΨ∞(γ|1)∫∞

0
dΨ∞(ζ|1)

,

where in (a) we have used a change of variable p = γs; in (b), we have used Eq.

(B.2-2); in (c), we have used Tonelli’s Theorem; in (d) we have used the fact that

Ψ∞(·|1) is in [0, 1].

By taking the infinimum over all distributions then we conclude that for all ε > 0

inf
F∈Fα

R(Ψ̃∞, F ) ≥ R(P ,Fα)− ε,

with Ψ̃∞(p|s) = Ψ∞(p
s
|1)/

∫∞
0
dΨ∞(γ|1). Since Ψ̃∞ ∈ M and ε was arbitrary, we

obtain that R(M,Fα) ≥ R(P ,Fα). The proof is complete.

B.3 Proofs for Section 2.4

Proof of Lemma 2.1. We will show each point separately.

i). Noting that H̃−1
l is non-increasing, the fact that H̃l lower bounds F on [w,w′]

implies that for all v in [w,w′],

v ≥ H̃−1
l

(
F (v)

)
. (B.3-1)

Furthermore note that by the assumption that H̃l(w) = F (w) and H̃l(w
′) = F (w′),

hence the composition of functions H̃−1
l

(
F (·)

)
maps [w,w′] into [w,w′]. So the left-

hand side above always belongs to [w,w′] when v ∈ [w,w,′ ].
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Now, by assumption, the revenue uF (u) curve is non-decreasing for u in [γw, γw′]

and hence γvF (γv) is non-decreasing for v in [w,w′]. Leveraging the latter point and

the inequality (B.3-1), we deduce that

γv F (γv) ≥ γ H̃−1
l

(
F (v)

)
F
(
γ H̃−1

l

(
F (v)

))
.

Using now the fact that H̃−1
l

(
F (·)

)
belongs to [w,w′] and that Hl lower bounds F

on [γw, γw′], we obtain

γ H̃−1
l

(
F (v)

)
F
(
γ H̃−1

l

(
F (v)

))
≥ γ H̃−1

l

(
F (v)

)
Hl

(
γH̃−1

l

(
F (v)

))
.

In turn, we have∫ w′

w

γvF (γv)f(v)dv ≥
∫ w′

w

γ H̃−1
l

(
F (v)

)
Hl

(
γH̃−1

l

(
F (v)

))
f(v)dv

=

∫ qw

qw′

γ H̃−1
l (q) Hl

(
γH̃−1

l (q)
)
dq.

where the last equality follows from change of variable q = F (v). This completes the

proof of the first point.

ii). Let us now show the second point. By assumption, we have

F (v) ≥ Hl(v) if γw ≤ v ≤ γw′, (B.3-2)

F (v) ≤ Hu(v) if w ≤ v ≤ w′. (B.3-3)

In particular, Eq.(B.3-2) implies that∫ w′

w

γvF (γv)f(v)dv ≥
∫ w′

w

γvHl(γv)f(v)dv.

In addition, Eq.(B.3-3) implies that

v ≤ min
(
w′, H−1

u

(
F (v)

))
, w ≤ v ≤ w′. (B.3-4)

By assumption iii.), H−1
u

(
F (v)

)
maps [w,+∞) to [w,+∞) and by assumption ii.),

vHl(v) is non-increasing on [γw,+∞) and hence

γvH(γv) ≥ γmin
(
w′, H−1

u

(
F (v)

))
Hl

(
γmin

(
w′, H−1

u

(
F (v)

)))
.
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We deduce that∫ w′

w

γvF (γv)f(v)dv ≥
∫ w′

w

γmin
(
w′, H−1

u

(
F (v)

))
Hl

(
γmin

(
w′, H−1

u

(
F (v)

)))
f(v)dv

=

∫ qw

qw′

γmin
(
w′, H−1

u (q)
)
Hl

(
γmin

(
w′, H−1

u (q)
))
dq,

where in the last equality, we performed the change of variable q = F (v). This

completes the proof.

Proof of Lemma 2.2 . Fix α ∈ [0, 1], and F in Fα.

Let us define introduce the inverse function of Γα, denoted by Γ−1
α (·), is well

defined and for q in (0, 1] is given by

Γ−1
α (q) =


(
q−(1−α) − 1

)
(1− α)−1 if α ∈ (0, 1]

− ln(q) if α = 1.

Step 1. Fix ξ > 0, We first establish the following holds.

� If the set S := {v : F (v) = Γα(ξv)} is empty then for all v ≥ 0, we have

F (v) ≥ Γα(ξv).

� If the set S is non-empty then for all u in S and v ≥ 0, we have

F (v) ≥ Γα(ξv), if v ≤ u,

F (v) ≤ Γα(ξv), if v ≥ u.

In other words, the difference F (v) − Γα(ξv) has at most one change of sign and if

one change of sign occurs, it occurs from + to −. If α = 1, the result follows from

(Barlow and Proschan, 1975, Chapter 4, Theorem 2.18), since the MHR class is a

subclass of the increasing failure rate in average (IFRA) class of distributions.

We next generalize the line of arguments used for α = 1. Note that Γα(·) is a

bijection, hence its inverse is well defined Γ−1
α (·) and moreover by (Schweizer and
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Szech, 2016, Proposition 1 and Lemma 1), we have that f(u)/F
1+(1−α)

(u) is non

decreasing in u and that

Γ−1
α (F (v)) =

∫ v

0

f(u)

F
1+(1−α)

(u)
du,

Hence Γ−1
α (F (·)) is convex. Since Γ−1

α (F (0)) = 0, then by convexity we get that

Γ−1
α (F (v))

v

is non-decreasing in v. Define for each ξ > 0 the sets

Eξ =

{
v :

Γ−1
α (F (v))

v
= ξ

}
S =

{
v : F (v) = Γα(ξv)

}
.

Note that S is non-empty if and only if Eξ is also non-empty.

If the set Eξ is empty then since Γ−1
α (F (v))

v
is non-decreasing, then necessarily we

S is empty and we get the result.

If the set Eξ is non-empty, then, since Γ−1
α (F (v))

v
is non-decreasing, then for all u in

Eξ, we have

Γ−1
α (F (v))

v
≤ ξ, if v ≤ u

Γ−1
α (F (v))

v
≥ ξ, if v ≥ u.

based on the latter inequalities and the fact that Γα is decreasing we conclude the

first step.

Step 2. Define the ccdf G as follows

G(u) =
F (u+ w)

qw
, u ≥ 0.

Note that G = 1−G is an element Fα. Note also G(u)−Γα

(
Γ−1
α

(
qw′
qw

)
u/(w′ − w)

)
equals zero when u = w′−w, hence the set S = {v : G(v) = Γα

(
ξ̃v
)
} is non-empty.
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Using step 1, we deduce that

G(u) ≥ Γα

(
Γ−1
α

(
qw′

qw

)
u/(w′ − w)

)
, 0 ≤ u ≤ w′ − w,

G(u) ≤ Γα

(
Γ−1
α

(
qw′

qw

)
u/(w′ − w)

)
u ≥ w′ − w.

Conducting a change of variable v = u+ w, we obtain the desired result.

Proof of Proposition 2.2. i.) We first note that an application of Lemma 2.2

yields that

F (v) ≥ qw Γα

(
Γ−1
α

(
qw′

qw

)
v − w
w′ − w

)
, v ∈ [w,w′], (B.3-5)

F (u) ≥ qγw Γα

(
Γ−1
α

(
qγw′

qγw

)
v − γw
γw′ − γw

)
, v ∈ [γw, γw′]. (B.3-6)

Since w′ ≤ rF/γ, the revenue curve vF (v) is non-decreasing on [0, γw′]. Hence the

first condition of Lemma 2.1 is satisfied. On the other hand, the remaining conditions

of Lemma 2.1 are satisfied by using (B.3-5) and (B.3-6) and setting

H̃l(v) := Γα

(
Γ−1
α

(
qw′

qw

)
v − w
w′ − w

)
,

Hl(v) := qγw Γα

(
Γ−1
α

(
qγw′

qγw

)
v − γw
γw′ − γw

)
.

Lemma 2.1 implies that∫ w′

w

γvF (γv)f(v)dv ≥
∫ qw

qw′

γ H̃−1
l (q) Hl

(
γH̃−1

l (q)
)
dq.

Note that

H̃−1
l (q) = w + (w′ − w)

Γ−1
α

(
q
qw

)
Γ−1
α

(
qw′
qw

)
= w′

 w

w′
+
(

1− w

w′

) Γ−1
α

(
q
qw

)
Γ−1
α

(
qw′
qw

)
 = w′ uα

(
1,
qw′

qw
,
w

w′
,
q

qw

)
,

since for any q ≤ qw and θ in [0, 1], we have

θ + (1− θ)
Γ−1
α

(
q
qw

)
Γ−1
α

(
qw′
qw

) ≤ 1.
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By substituting all functions explicitly, we get that∫ w′

w

γvF (γv)f(v)dv

≥ γw′qγw

∫ qw

qw′

uα

(
1,
qw′

qw
,
w

w′
,
q

qw

)
Γα

Γ−1
α

(
qγw′

qγw

) γw′uα

(
1,

qw′
qw
, w
w′
, q
qw

)
− γw

γw′ − γw

 dq

= γw′qγwqw

∫ 1

qw′/qw

uα

(
1,
qw′

qw
,
w

w′
, s

)
Γα

Γ−1
α

(
qγw′

qγw

) uα

(
1,

qw′
qw
, w
w′
, s
)
− w

w′

1− w
w′

 ds

= γw′qγwqw Aα

(
qw′

qw
, 1,

qw′

qw
,
w

w′
, 1,

qγw′

qγw
, 1,

qw′

qw
,
w

w′
, 1,

w

w′
,
w

w′

)
.

ii.) Next we analyze the case when rF/γ ≤ w < w′. The proof follows a similar

structure, but now we apply Lemma 2.2 by exhibiting appropriates functions that

verify the required conditions. Using Lemma 2.2, we have for any w ∈ [0, w),

F (v) ≤ qw Γα

(
Γ−1
α

(
qw
qw

)
v − w
w − w

)
=: Hu(v), v ∈ [w,w],

F (v) ≥ qγw Γα

(
Γ−1
α

(
qγw′

qγw

)
v − γw
γw′ − γw

)
=: Hl(v), v ∈ [γw, γw′].

By Lemma B.7-1, that is stated and proved is Appendix B.7, the function vHl(v) is

non-increasing on [γw,∞). In turn, Lemma 2.2 implies that∫ w′

w

γvF (γv)f(v)dv ≥
∫ qw

qw′

γH−1
u (q)Hl

(
γH−1

u (q)
)
dq.

Note that

H−1
u (q) = w

w
w

+
(

1− w

w

) Γ−1
α

(
q
qw

)
Γ−1
α

(
qw
qw

)
 =: w ũα

(
qw
qw
,
w

w
,
q

qw

)
.
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So we deduce that∫ w′

w

γvF (γv)f(v)dv

≥ γqγw

∫ qw

qw′

min

(
w′, wũα

(
qw
qw
,
w

w
,
qw
qw
s

))

Γα

Γ−1
α

(
qγw′

qγw

) γmin
(
w′, wũα

(
qw
qw
, w
w
, qw
qw
s
))
− γw

γw′ − γw

 dq

= γwqγwqw

∫ 1

qw′/qw

uα

(
w′

w
,
qw
qw
,
w

w
,
qw
qw
s

)

Γα

Γ−1
α

(
qγw′

qγw

)
w

w′

uα

(
w′

w
, qw
qw
, w
w
, qw
qw
s
)
− 1

1− w
w′

 ds.

Setting w = γ̃w, with γ̃ = w
w′

, and w′ = γ̃w, we obtain∫ w′

w

γvF (γv)f(v)dv

≥ γwqγwqw

∫ 1

qw′/qw

uα

(
w′

w
,
qw
qγ̃w

, γ̃,
qw
qγ̃w

s

)

Γα

Γ−1
α

(
qγw′

qγw

)
w

w′

uα

(
w′

w
, qw
qγ̃w

, γ̃, qw
qγ̃w

s
)
− 1

1− w
w′

 ds

= γwqγwqw Aα

(
qw′

qw
,
w

w′
,
qw
qγ̃w

, γ̃,
qw
qγ̃w

,
qγw′

qγw
,
w

w′
,
qw
qγ̃w

, γ̃,
qw
qγ̃w

, 1,
w

w′

)
.

B.4 Proofs for Section 2.5

The proof of Proposition 2.3 follows from taking ε = 0 and applying Proposition B.6-

1 and Proposition B.6-2.

The proof of Proposition 2.4 follows from taking ε = 0 and applying Proposition B.6-

3 and Proposition B.6-4.

The proof of Theorem 2.1 follows from taking ε = 0 in Theorem 2.2 and letting

k ↑ ∞.
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B.5 Proofs for Section 2.6

Proof of Proposition 2.5. The proof is divided into three steps:

1. In the first step, we show that the maximin ratio is upper bounded as follows

R(P ,Fα) ≤ R(M,FW
α ),

where

FW
α =

{
F (·|q0, q1,∞) : (q0, q1) ∈ [0, 1]2 : q1 ≤ q0 ≤ 1

and (1− α) +
1

Γ−1
α (q0)

≥ 1

Γ−1
α (q1/q0)

}
.

Note that we focuses only on the unbounded support distributions of the family

introduced in Section 2.6.

2. Second, we show that under the conditions stated in the proposition for any F

in FW
α , we have the optimal reserve price is achieved at v = 1 and opt(F ) = q0.

3. Finally, we show that the main inequality.

Step 1. Let us start by showing the first point. Fix (q0, q1) in Qα and F (·|q0, q1)

in FW , its (1− α)−virtual value function is given by

φαF (v) =


− 1

Γ−1
α (q0)

, if v < 1,

(1− α)− 1
Γ−1
α (q1/q0)

, if v > 1.

Since F in FW then (1− α)− 1
Γ−1
α (q1/q0)

≥ − 1
Γ−1
α (q0)

is clearly non-decreasing on R+ .

Hence, F belongs to Fα. So we conclude that FW
α ⊂ Fα. In turn, we get

R(P ,Fα) = R(M,Fα) ≤ R(M,FW
α ).

Step 2.

Let us now move to the second point. Fix (q0, q1) in Qα and F (·|q0, q1) in FW ,

v = 1 is the optimal reserve price of F , i.e. opt(F ) = F (1) = q0. The proof is a direct

implication of the following Lemma stated here and shown below.
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Lemma B.5-1. Fix two scalars β ≥ 0 and w ≥ 0. The revenue function vΓα (β (v − w))

for v ≥ w attains its maximum at

r = max

(
1− (1− α)βw

βα
,w

)
.

Given this Lemma, then

1 ≤ 1

αΓ−1
α (q0)

makes sure that v = 1 is below the reserve price of the first piece. This is equivalent

to

q0 ≥ α1/(1−α).

Whereas on the side, based on Lemma B.5-1, the condition

1 ≥ 1− (1− α)β1

β1α
.

makes sure that v = 1 is above the reserve price of the second piece, with β1 =

Γ−1
α

(
q1
q0

)
. This is equivalent to the fact that

q1 ≤ q0Γα(1).

As a conclusion and by α-SR, we get that v = 1 is necessarily the reserve price.

Step 3. Let us now move to the third point. For that note that we can compute

the inverse of the CCDF which is given by

v(q) =


Γ−1
α (q)/Γ−1

α (q0), if q > q0,

Γ−1
α

(
q
q0

)
/Γ−1

α

(
q1
q0

)
+ 1, if q ≤ q0,

which can be rewritten as

v(q) =


uα(0+, q0, 0, q), if q > q0,

2 uα(0+, q1/q0, 1/2, q/q0), if q ≤ q0,
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Let us fix γ > 0, let us denote q̃1 = F̄ (1/γ). We will analyze the case of deflation,

i.e. γ ≤ 1 then the case of inflation, i.e. γ > 1 separately.

Deflation. Let us assume that γ ≤ 1. We first decompose the bound into three

terms

R(δγ, F ) =
1

opt(F )
[C (γ, 0, rF ;F ) + C (γ, rF , rF/γ;F ) + C (γ, rF/γ,∞;F )]

=
1

q0

[C (γ, 0, 1;F ) + C (γ, 1, 1/γ;F ) + C (γ, 1/γ,∞;F )] ,

where δγ was defined in Eq.(2.4).

Let us analyze each term separately. Let us start by the first term, by analyzing

the quantity in the quantile space, we get,

C (γ, 0, 1;F ) =

∫ 1

q0

γuα(0+, q0, 0, q)Γα
(
Γ−1
α (q0) γuα(0+, q0, 0, q)

)
dq

= γAα

(
q0, 0

+, q0, 0, 1, q0, γ, q0, 0, 1, 0, 0
)

Now let us move to the second term, we have

C (γ, 1, 1/γ;F )

=

∫ q0

q̃1

2γ uα(0+,
q1

q0

, 1/2, q/q0)Γα

(
Γ−1
α (q0) γ2 uα(0+,

q1

q0

, 1/2, q/q0)

)
dq

= q0

∫ 1

q̃1/q0

γ2 uα(0+,
q1

q0

, 1/2, q)Γα

(
Γ−1
α (q0) γ2 uα(0+,

q1

q0

, 1/2, q)

)
dq

= 2γq0 Aα

(
q̃1/q0, 0

+,
q1

q0

, 1/2, 1, q0, 2γ,
q1

q0

, 1/2, 1, 0, 0

)
where in the second equality follows from change of variable.

Now let us move to the third and last term,

C (γ, 1/γ,∞;F )

= 2

∫ q̃1

0

γ uα(0+,
q1

q0

, 1/2, q/q0)Γα

(
Γ−1
α

(
q1

q0

)(
2γ uα(0+,

q1

q0

, 1/2, q/q0)− 1

))
dq

=

∫ q̃1

0

2γ uα(0+,
q1

q0

, 1/2, q/q0)Γα

(
Γ−1
α

(
q1

q0

)
γ
uα(0+, q1

q0
, 1/2, q/q0)− 1/2γ

1− 1/2

)
dq

= 2γ q̃1Aα

(
0, 0+,

q1

q0

, 1/2, q̃1/q0,
q1

q0

, γ,
q1

q0

, 1/2, q̃1/q0, 1/2γ, 1/2

)
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Inflation. Let us now analyze the case γ > 1. Using a similar decomposition of

the performance as in the deflation case, we have

R(δγ, F ) =
1

opt(F )
[C (γ, 0, rF/γ;F ) + C (γ, rF/γ, rF ;F ) + C (γ, rF ,∞;F )]

=
1

q0

[C (γ, 0, 1/γ;F ) + C (γ, 1/γ, 1;F ) + C (γ, 1,∞;F )] .

As in the deflation case, let us analyze each term separately. Let us start by the first

term, by analyzing the quantity in the quantile space, we get,

C (γ, 0, 1/γ;F ) =

∫ 1

q̃1

γuα(0+, q0, 0, q)Γα
(
Γ−1
α (q0) γuα(0+, q0, 0, q)

)
dq

= γAα

(
q̃1, 0

+, q0, 1, q0, γ, q0, 0, 1, 0, 0
)

Now let us move to the second term, we have

C (γ, 1/γ, 1;F )

=

∫ q̃1

q0

γuα(0+, q0, 0, q)q0 Γα

(
Γ−1
α

(
q1

q0

)(
γuα(0+, q0, 0, q)− 1

))
dq

= γ q0 q̃1

∫ 1

q0/q̃1

uα(0+, q0, 0, q̃1q)Γα

(
Γ−1
α

(
q1

q0

)(
γuα(0+, q0, 0, q̃1q)− 1

))
dq

= γ q0 q̃1 Aα

(
q0/q̃1, 0

+, q0, 0, q̃1, q1/q0, γ/2, q0, 0, q̃1, 1/γ, 1/2
)

where the first equality follows from a change of variable.

Now let us move to the third and last term,

C (γ, 1,∞;F )

=

∫ q0

0

2 γ uα(0+,
q1

q0

, 1/2, q/q0)Γα

(
Γ−1
α

(
q1

q0

)(
2γ uα(0+,

q1

q0

, 1/2, q/q0)− 1

))
dq

=

∫ q0

0

2γ uα(0+,
q1

q0

, 1/2, q/q0)Γα

(
Γ−1
α

(
q1

q0

)
γ
uα(0+, q1

q0
, 1/2, q/q0)− 1/2γ

1− 1/2

)
dq

= 2γ q0Aα

(
0, 0+,

q1

q0

, 1/2, 1,
q1

q0

, γ,
q1

q0

, 1/2, 1, 1/2γ, 1/2

)
where the third equality follows from a change of variable.

Finally, we get the result by combining all the terms and making the following

change of variable ρ = q1/q0.
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Proof of Lemma B.5-1. First, note that the distribution Γα (β (v − w)) for v ≥ w

is α-SR. Its virtual value function is given by

ψ(v) = v − Γα (β (v − w))

−Γ′α (β (v − w))
= v − 1 + (1− α)β (v − w)

β
= αv − 1− (1− α)βw

β
.

Since the virtual value function achieves its maximum at v = (1− (1− α)βw)/βα,

then we get the result since necessarily v ≥ w.

B.6 Proofs of Section 2.7

Throughout, we fix ε ≥ 0. We first remind the definition of a grid of quantile values

Gε =


[0, 1] if ε = 0,{
k ε : 1 ≤ k ≤ b1/εc

} ⋃
{1} if ε > 0.

For any x in [0, 1], we define π(x) to be the right-projection of x on the grid Gε, i.e.,

π(x) := inf{y ∈ Gε : x ≤ y}.

B.6.1 General tractable lower bound

B.6.1.1 Tractable Lower bound for contributions from samples lower

than rF/γ

Proposition B.6-1. Fix ε ≥ 0, α ∈ [0, 1] and γ ∈ R++ \ {1}. The functional

equation, T L
α,γ,εJ = J introduced in (2.10) admits a unique bounded solution Lα,γ,ε.

Furthermore, for any bounded function J in W(G 2
ε ),

(
T L
α,γ,ε

)k
J converges to Lα,γ,ε

as k grows to ∞.

Proof of Proposition B.6-1. We focus on the properties of recursion (2.10). Fix

an admissible policy µ : G 2
ε → G 2

ε such that (µ1(q, ρ+), µ2(q, ρ+)) ∈ BLα,γ,ε(q, ρ+)

for all (q, ρ+) ∈ G 2
ε . Define the operator T L,µ

α,γ,ε : W(G 2
ε ) → W(G 2

ε ) as follows. For
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(q, q+) ∈ G 2
ε ,

(T L,µ
α,γ,εJ)(q, q+)

= (q − ε)
(
µ1(q, ρ+)− ε

)
Aα

(
β̂Lγ,ε

(
ρ+, µ2(q, ρ+)

))
+ γ̃J

(
µ1(q, ρ+), µ2(q, ρ+)

)
.

Note that for any (q, q+) ∈ G 2
ε , by Lemma B.7-5, we have thatAα

(
β̂Lγ,ε (ρ+, µ2(q, ρ+))

)
is bounded above by 1. Moreover, q, ρ+ and µ1(q, ρ+) as well as µ2(q, ρ+) belong to

[0, 1]. We deduce that for any bounded functions J inW(G 2
ε ), T L,µ

α,γ,εJ is also bounded.

Furthermore we have for any J, J ′ and µ(·, ·),

T L,µ
α,γ,εJ(q, ρ+)− T L,µ

α,γ,εJ
′(q, ρ+) = γ̃

[
J(µ1(q, ρ+), µ2(q, ρ+))− J ′(µ1(q, ρ+), µ2(q, ρ+))

]
.

We deduce that

‖T L,µ
α,γ,εJ − T L,µ

α,γ,εJ
′‖ ≤ γ̃‖J − J ′‖,

where the norm denotes the sup norm in the space of bounded functions. Since γ̃ < 1,

T L
α,γ,ε is a contraction operator. (Bertsekas, 2013, Proposition 2.1.1) implies that

T L
α,γ,εJ = J admits a unique solution Lα,γ,ε. Furthermore, Lα,γ,ε can be computed

through value iteration. We have, starting with any bounded J ,

Lα,γ,ε = lim
k→∞

(
T L
α,γ,ε

)k
J.

This completes the proof.

Proposition B.6-2. Fix ε ≥ 0, α ∈ [0, 1], γ ∈ R++ \{1}, and F ∈ Fα. Furthermore,

let

rj :=
rF
γ̃j
, qj := F (rj) , and q̂j := π(qj), j ∈ Z. (B.6-1)

i.) The operator T L
α,γ,ε preserves the following property

1

opt(F )

∫ rj

0

γvF̄ (γv)f(v)dv ≥ γ

q0γ̃j
J

(
q̂j+α̃, π

(
qj+1+α̃

qj+α̃

))
, (B.6-2)

where j ≤ 1 and α̃ = −1{γ ∈ [0, 1]}.
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ii.) Furthermore, we have

1

opt(F )

∫ rj

0

γvF (γv)f(v)dv ≥ γ

q0γ̃j
Lα,γ,ε

(
q̂j+α̃, π

(
qj+1+α̃

qj+α̃

))
, j ≤ 1,

where Lα,γ,ε is the unique fixed point of T L
α,γ,εJ = J .

Proof of Proposition B.6-2. i.) We first establish a property preserved by the

operator T L
α,γ,ε defined in (2.10). Suppose that a bounded function J satisfies Eq.

(B.6-2) and Fix j ≤ 1. We have, by decomposing the integral,

1

opt(F )

∫ rj

0

γvF̄ (γv)f(v)dv

=
1

opt(F )

∫ rj

rj−1

γvF̄ (γv)f(v)dv +
1

opt(F )

∫ rj−1

0

γvF̄ (γv)f(v)dv.

We have

1

opt(F )

∫ rj

rj−1

γvF̄ (γv)f(v)dv

(a)

≥ γ
qj+α̃qj−1+α̃

q0 γ̃j
Aα

(
βLγ̃

(
qj
qj−1

,
qj+1−2α̃

qj−2α̃

))
(b)

≥ γ
qj+α̃qj−1+α̃

q0 γ̃j
Aα

(
β̂Lγ,ε

(
π

(
qj+1+α̃

qj+α̃

)
, π

(
qj+α̃
qj−1+α̃

)))
,

where (a) follows from an application of Proposition 2.2i.) with w = rj−1 and w′ = rj

and (b) follows from the monotonicity established in Lemma B.7-2.

From the assumption that (B.6-2) is true for the function J , we also have

1

opt(F )

∫ rj−1

0

γvF̄ (γv)f(v)dv ≥ γ

q0 γ̃j−1
J

(
q̂j−1+α̃, π

(
qj+α̃
qj−1+α̃

))
.
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In turn, we get

1

opt(F )

∫ rj

0

γvF̄ (γv)f(v)dv

≥ γ
qj+α̃qj−1+α̃

q0γ̃j
Aα

(
β̂Lγ,ε

(
π

(
qj+1+α̃

qj+α̃

)
, π

(
qj+α̃
qj−1+α̃

)))
+

γ

q0γ̃j−1
J

(
q̂j−1+α̃, π

(
qj+α̃
qj−1+α̃

))
≥ γ

(q̂j+α̃ − ε) (q̂j−1+α̃ − ε)
q0γ̃j

Aα

(
β̂Lγ,ε

(
π

(
qj+1+α̃

qj+α̃

)
, π

(
qj+α̃
qj−1+α̃

)))
+

γ

q0γ̃j−1
J

(
q̂j−1+α̃, π

(
qj+α̃
qj−1+α̃

))
=

γ

q0γ̃j

[
(q̂j+α̃ − ε) (q̂j−1+α̃ − ε)Aα

(
β̂Lγ,ε

(
π

(
qj+1+α̃

qj+α̃

)
, π

(
qj+α̃
qj−1+α̃

)))
+γ̃J

(
q̂j−1+α̃, π

(
qj+α̃
qj−1+α̃

))]
≥ γ

q0γ̃j
inf

q−,ρ−∈

BLα,γ,ε
(
q̂j+α̃,π

(
qj+1+α̃
qj+α̃

))
[

(q̂j+α̃ − ε)
(
q− − ε

)
Aα

(
β̂Lγ,ε

(
π

(
qj+1+α̃

qj+α̃

)
, ρ−
))

+γ̃J
(
q−, ρ−

) ]
=

γ

q0γ̃j
(
T L
α,γ,εJ

)(
q̂j+α̃, π

(
qj+1+α̃

qj+α̃

))
,

where the last inequality is a consequence of the fact that
(
q̂j−1+α̃, π

(
qj+α̃
qj−1+α̃

))
be-

longs to BLα,γ,ε (q̂j+α̃, π (qj+1+α̃/qj+α̃)), a fact established in Lemma B.7-4. Since the

above was true for any j ≤ 1, we have established that Eq. (B.6-2) holds for T L
α,γ,εJ .

ii.) Now starting with J = 0, and applying repeatedly the argument above leads

to the following: For any k ≥ 1,

1

opt(F )

∫ rj

0

γvF (γv)f(v)dv ≥ γ

q0 γ̃j
(
(T L

α,γ,ε)
kJ
)(

q̂j+α̃, π

(
qj+1+α̃

qj+α̃

))
, j ≤ 1.

Furthermore, by Proposition B.6-1,
(
T L
α,γ,ε

)k
J converges to Lα,γ as k grows to ∞.

Hence, for any j ≤ 1,

1

opt(F )

∫ rj

0

γvF (γv)f(v)dv ≥ γ

q0 γ̃j
Lα,γ,εJ

(
q̂j+α̃, π

(
qj+1+α̃

qj+α̃

))
.

This concludes the proof.
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As mentioned in the main text, for α = 0, the discretized lower bound leads to the

trivial bound of zero. This is due to the fact the quantile at the the optimal price can

be arbitrarily small. Hence there is a need to develop a bound for this case that do

not use the a dynamic program and is still gives good performance. More formally,

we show the following,

Corollary B.1. Fix ε ∈ [0, 1) and a distribution F in Fα, we have

1

opt(F )
C (γ, 0, rF/γ;F ) ≥ L̃α,γ,ε(q

∗, ρ),

where q∗ = π(F̄ (rF )) and ρ = π(F̄ (rF/γ)/F̄ (rF )) and

L̃α,γ,ε(q, ρ) =



(1−α)
(q∗−ε)α−(q∗−ε)

∫ 1

q∗
γΓ−1

α (q) Γα (γ Γ−1
α (q)) dq

+Γα (γΓ−1
α (q∗))Aα(β̂Lγ,ε (ρ, γ)), if γ < 1

(1−α)
(q∗−ε)α−(q∗−ε)

∫ 1

min{γq∗,1} γΓ−1
α (q) Γα

(
Γ−1
α (q∗)

Γ−1
α (γq∗)

Γ−1
α (q)

)
dq, if γ > 1.

Proof of Corollary B.1. Let us start by the deflation, i.e. the first case. For that,

let us fix γ < 1, we have

1

opt(F )
C (γ, 0, rF/γ;F ) =

1

opt(F )
[C (γ, 0, rF ;F ) + C (γ, rF , rF/γ;F )] ,

Let us lower bound each term. Let us start by the first term. by Proposition 2.2, we

have

C (γ, 0, rF ;F )

opt(F )
≥ γ

rF
opt(F )

Aα(βLγ
(
F̄ (rF ), F̄ (γrF )

)
).

By Lemma B.7-4, we have

F̄ (γrF ) ≥ Γα
(
γ Γ−1

α (F̄ (rF ))
)

and F̄ (rF )/F̄ (γrF ) ≥ γ. (B.6-3)

then we get that using the monotonicity of Γα(·) that

C (γ, 0, rF ;F )

opt(F )
≥ γ

rF
opt(F )

Aα(βLγ
(
F̄ (rF ),Γα

(
γ Γ−1

α (F̄ (rF ))
))

)

= γ
1

F̄ (rF )Γ−1
α

(
F̄ (rF )

) ∫ 1

F̄ (rF )

Γ−1
α (q) Γα

(
γ Γ−1

α (q)
)
dq,
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since F in Fα, by Cole and Roughgarden (2014), we have that F̄ (rF ) ≥ α1/(1−α) and

also since the function qΓ−1
α (q) is non-increasing on [α1/(1−α), 1] then we conclude that

(q∗ − ε)Γ−1
α (q∗ − ε) ≥ F̄ (rF )Γ−1

α

(
F̄ (rF )

)
,

hence, we get that

C (γ, 0, rF ;F )

opt(F )
≥ γ

1

(q∗ − ε)Γ−1
α (q∗ − ε)

∫ 1

F̄ (rF )

Γ−1
α (q) Γα

(
γ Γ−1

α (q)
)
dq

= γ
1− α

(q∗ − ε)α − (q∗ − ε)

∫ 1

q∗
Γ−1
α (q) Γα

(
γ Γ−1

α (q)
)
dq,

For the second term, by Proposition 2.2, we have that

C (γ, rF , rF/γ;F )

opt(F )
≥ F̄ (γrF )Aα(βLγ

(
F̄ (rF/γ)/F̄ (rF ), F̄ (rF )/F̄ (γrF )

)
).

Now using Eq.(B.6-3) and Lemma B.7-3, we get

C (γ, rF , rF/γ;F )

opt(F )
≥ Γα

(
γ Γ−1

α (F̄ (rF ))
)
Aα(βLγ

(
F̄ (rF/γ)/F̄ (rF ), γ

)
)

= Γα
(
γ Γ−1

α (q∗)
)
Aα(β̂Lγ,ε (ρ, γ)).

Hence we conclude the first point.

For γ > 1, by Proposition 2.2, we have

C (γ, 0, rF/γ;F )

opt(F )
≥ rF

opt(F )
Aα

(
βL0
(
F̄ (rF/γ), F̄ (rF )

))
.

By Lemma B.7-4, we have

F̄ (rF/γ) ≥ Γα
(
γ−1 Γ−1

α (F̄ (rF ))
)

and F̄ (rF )/F̄ (γ−1rF ) ≥ γ−1,

and using the monotonicity of the function Γ−1
α (·), we get if γF̄ (rF ) ≤ 1,

Aα

(
βL0
(
F̄ (rF/γ), F̄ (rF )

))
≥

∫ 1

γF̄ (rF )

γ
Γ−1
α (q)

Γ−1
α (F̄ (rF ))

Γα

(
Γ−1
α

(
F̄ (rF )

)
Γ−1
α

(
γ F̄ (rF )

) Γ−1
α (q)

)
dq.
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Using the same arguments as in the deflation, we get that

C (γ, 0, rF/γ;F )

opt(F )

≥ (1− α)

(q∗ − ε)α − (q∗ − ε)

∫ 1

γF̄ (rF )

γ Γ−1
α (q) Γα

(
Γ−1
α

(
F̄ (rF )

)
Γ−1
α

(
γ F̄ (rF )

) Γ−1
α (q)

)
dq.

Moreover the function q → Γ−1
α (q)

Γ−1
α (γ q)

is non-decreasing and since Γα is non increasing

we conclude that

C (γ, 0, rF/γ;F )

opt(F )
≥ 1− α

(q∗ − ε)α − (q∗ − ε)

∫ 1

γq∗
γ Γ−1

α (q) Γα

(
Γ−1
α (q∗)

Γ−1
α (γ q∗)

Γ−1
α (q)

)
dq.

This concludes the proof.

B.6.1.2 Tractable Lower bound for contributions from samples higher

than rF/γ

Proposition B.6-3. Fix ε ≥ 0, α ∈ [0, 1] and γ ∈ (0, 1). The functional equation,

T H
α,γ,εJ = J admits a unique bounded solution Hα,γ,ε and

(
T H
α,γ,ε

)k
J converges to

Hα,γ,ε as k grows to ∞ for any bounded J in W(Gε).

Proof of Proposition B.6-3. Fix an admissible policy µ : G 2
ε → Gε such that

µ(ρ−) ∈ BHα,γ,ε(ρ−) for all ρ− ∈ Gε. We define the mapping T H,µ
α,γ,ε : W(Gε) → W(Gε)

such that for all ρ− ∈ Gε,

(T H,µ
α,γ,εJ)(ρ−) = Aα

(
β̂Rγ,ε

(
µ(ρ−), ρ−

))
+

1

γ

(
µ(ρ−)− ε

) (
ρ− − ε

)
J
(
µ(ρ−)

)
.

Note that Aα

(
β̂Rγ,ε(·, ·)

)
is bounded above by 1/γ by Lemma B.7-5 and that the

quantity (µ(ρ−)− ε) (ρ− − ε) is also bounded by γ2 since µ(ρ−) ∈ BHα,γ,ε(ρ−) . We

deduce that for all bounded functions J in W(Gε), both T H,µ
α,γ,εJ and T H

α,γ,εJ are also
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bounded. Furthermore we have for any J, J ′ bounded functions and µ(·),

T H,µ
α,γ,εJ(ρ−)− T H,µ

α,γ,εJ
′(ρ−) =

1

γ

(
µ(ρ−)− ε

) (
ρ− − ε

) [
J(µ(ρ−))− J ′(µ(ρ−))

]
≤ 1

γ
γ2
[
J(µ(ρ−))− J ′(µ(ρ−))

]
≤ γ

[
J(µ(ρ−))− J ′(µ(ρ−))

]
,

where we have used that µ(ρ−) belongs to BHα,γ,ε(ρ−). We deduce (where the norm

denotes the sup norm in the space of bounded functions)

‖T H,µ
α,γ,εJ − T H,µ

α,γ,εJ
′‖ ≤ γ‖J − J ′‖.

Since γ < 1, T H,µ
α,γ,ε is a contraction operator. Using (Bertsekas, 2013, Proposition

2.1.1), T H
α,γ,εJ = J admits a unique solution Hα,γ,ε. Furthermore, Hα,γ,ε can be

computed through value iteration. We have, starting with any bounded J ,

Hα,γ,ε = lim
k→∞

(
T R
ε

)k
J.

This completes the proof.

Proposition B.6-4. Fix ε ≥ 0, α ∈ [0, 1], γ ∈ (0, 1) and F ∈ Fα. Furthermore, let

rj := rF/γ
j and qj := F (rj) , j ∈ Z.

i.) The operator T H
α,γ,εJ preserves the following property

1

opt(F )

∫ ∞
rj

γvF (γv)f(v)dv ≥ qjqj−1

q0 γj−1
J

(
π

(
qj
qj−1

))
, (B.6-4)

for j ≥ 1.

ii.) Furthermore, we have

1

opt(F )

∫ ∞
rj

γvF (γv)f(v)dv ≥ qjqj−1

q0 γj−1
Hα,γ,ε

(
π

(
qj
qj−1

))
, j ≥ 1,

where Hα,γ,ε is the unique fixed point of T H
α,γ,εJ = J .
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Proof of Proposition B.6-4. This proof follows the same structure as that of

Proposition B.6-2.

i.) Suppose Eq. (B.6-4) is true for some bounded function J and fix j ≥ 1. We

have, by decomposing the integral,

1

opt(F )

∫ ∞
rj

γvF (γv)f(v)dv

=
1

opt(F )

∫ rj+1

rj

γvF (γv)f(v)dv +
1

opt(F )

∫ ∞
rj+1

γvF (γv)f(v)dv.

In turn, focusing on the first term, we have

1

opt(F )

∫ rj+1

rj

γvF (γv)f(v)dv
(a)

≥ qj qj−1

q0 γj−1
Aα

(
βRγ

(
qj+1

qj
,
qj
qj−1

,
qj
qj−1

))
(b)

≥ qjqj−1

q0 γj−1
Aα

(
β̂Rγ,ε

(
π

(
qj+1

qj

)
, π

(
qj
qj−1

)))
.

where (a) follows from an application of Proposition 2.2ii.) with w = rj and w′ = rj+1;

and (b) follows from the monotonicity properties established in Lemma B.7-2.

Now combining the above and (B.6-4), we have

1

opt(F )

∫ ∞
rj

γvF (γv)f(v)dv

≥ qjqj−1

q0 γj−1
Aα

(
β̂Rγ,ε

(
π

(
qj+1

qj

)
, π

(
qj
qj−1

)))
+
qj+1qj
q0 γj

J

(
π

(
qj+1

qj

))
=

qj qj−1

q0 γj−1

[
Aα

(
β̂Rγ,ε

(
π

(
qj+1

qj

)
, π

(
qj
qj−1

)))
+

1

γ

qj+1

qj−1

J

(
π

(
qj+1

qj

))]
.
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Hence, we have

1

opt(F )

∫ ∞
rj

γvF (γv)f(v)dv

≥ qjqj−1

q0γj−1

[
Aα

(
β̂Rγ,ε

(
π

(
qj+1

qj

)
, π

(
qj
qj−1

)))
+

1

γ

qj+1

qj

qj
qj−1

J

(
π

(
qj+1

qj

))]
,

≥ qjqj−1

q0γj−1

[
Aα

(
β̂Rγ,ε

(
π

(
qj+1

qj

)
, π

(
qj
qj−1

)))
+

1

γ

(
π

(
qj+1

qj

)
− ε
)(

π

(
qj
qj−1

)
− ε
)
J

(
π

(
qj+1

qj

))]
,

≥ qjqj−1

q0γj−1
inf

ρ+∈BHα,γ,ε
(
π

(
qj
qj−1

))
{
Aα

(
β̂Rγ,ε

(
ρ+, π

(
qj
qj−1

)))

+
1

γ

(
ρ+ − ε

)(
π

(
qj
qj−1

)
− ε
)
J
(
ρ+
)}

=
qjqj−1

q0γj−1
(T H

α,γ,εJ)

(
π

(
qj
qj−1

))
,

where for the second inequality, we used the definition of the projection operator

π; and for the last inequality, we used the fact established in Lemma B.7-4 that

π
(
qj+1

qj

)
belongs to BHα,γ,ε

(
π
(

qj
qj−1

))
. Since the above was for any j ≥ 1, we have

hence established that T H
α,γ,εJ satisfies Eq. (B.6-4).

ii.) Now starting with J = 0, and applying repeatedly the argument above leads

to the following. For any k ≥ 0,

1

opt(F )

∫ ∞
rj

γvF (γv)f(v)dv ≥ qjqj−1

q0 γj−1

((
T H
α,γ,ε

)k
J
)(

π

(
qj
qj−1

))
Furthermore, by Proposition B.6-3, T H

α,γ,εJ = J admits a unique bounded solution

Hα,γ,ε and
(
T H
α,γ,ε

)k
J converges to Hα,γ,ε as k grows to ∞. Hence, we conclude that

for any j ≥ 1,

1

opt(F )

∫ ∞
rj

γvF (γv)f(v)dv ≥ qjqj−1

q0 γj−1
Hα,γ,ε

(
π

(
qj
qj−1

))
.

This concludes the proof.
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B.6.1.3 Main lower bound

Proof of Theorem 2.2. Fix γ > 0, such that γ 6= 1. We have for any distribution

in Fα,

R(δγ, F ) =
1

opt(F )
C (γ, 0, rF/γ;F ) +

1

opt(F )
C (γ, rF/γ,∞;F ).

We have by Proposition B.6-2, in particular the first point, Eq.(B.6-2), with j =

−1− 2α̃ and iterate k times,

1

opt(F )
C (γ, 0, rF/γ;F ) =

1

opt(F )

∫ rF /γ

0

γvF̄ (γv)f(v)dv

≥ 1

q0

(T L
α,γ,εJ2)k

(
q̂−1−α̃, π

(
q−α̃
q−1−α̃

))
,

where α̃ = −1{γ ∈ [0, 1]}.

By Corollary B.1, we have

1

opt(F )
C (γ, 0, rF/γ;F ) ≥ L̃α,γ,ε

(
q0, π

(
q−α̃
q−1−α̃

))
By combining the last two results, we get that

1

opt(F )
C (γ, 0, rF/γ;F )

≥ max

{
1

q0

(T L
α,γi,ε

J2)k
(
q0, π

(
q−α̃
q−1−α̃

))
, L̃α,γ,ε

(
q0, π

(
q−α̃
q−1−α̃

))}
.

Now let us analyze the remaining term, we have by Proposition B.6-4,

1

opt(F )
C (γ, rF/γ,∞;F ) ≥ (q0 − ε)

(
π

(
q−α̃
q−1−α̃

)
− ε
)

(T H
α,γi,ε

J1)k
(
π

(
q−α̃
q−1−α̃

))
.

Hence, we conclude that

R(δγ , F ) ≥ max

{
1

q0
(T Lα,γi,εJ2)k

(
q0, π

(
q−α̃
q−1−α̃

))
, L̃α,γ,ε

(
q0, π

(
q−α̃
q−1−α̃

))}
+(q0 − ε)

(
π

(
q−α̃
q−1−α̃

)
− ε
)

(T Hα,γi,εJ1)k
(
π

(
q−α̃
q−1−α̃

))
.
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By taking average over randomized values of γ and by Lemma B.7-4, we have(
q̂−1−α̃, π

(
q−α̃
q−1−α̃

))
∈ Qα,γ,ε(q0),

and by Cole and Roughgarden (2014), we have q0 ≥ α1/(1−α) then, we conclude the

result.

B.6.2 Evaluation of the upper bound

We fix ε ≥ 0 and M > 0. We define a grid of [0,M ]

GM
ε =


[0,M ] if ε = 0,{
k ε : 1 ≤ k ≤ bM/εc

} ⋃
{M} if ε > 0.

For any x in [0,M ], we define π(x) to be the right-projection of x on the grid Gε, i.e.,

πM(x) := inf{y ∈ GM
ε : x ≤ y}.

Proof of Proposition 2.6. . We show the result in two main steps:

1. First we show the following Lemma,

Lemma B.6-1. We have

R(P ,Fα) ≤ R(M, F̄W
α ),

where

F̄W
α =

{
F (·|q0, q1, v̄) s.t. v̄ > 1 and (q0, q1) ∈ [0, 1]2 with q1 ≤ q0 ≤ 1

and 1− α +
1

Γ−1
α (q0)

≥ 1

Γ−1
α (q1/q0)

}
.

In particular, for any F in F̄W
α and ψ in M, we have

inf
F̃∈Fα

R(ψ, F̃ ) ≤ R(ψ, F )
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2. Then we leverage and the projection to derive the upper bound.

The proof of Lemma B.6-1 is deferred at the end of this proof. Now, let us show

the second point for that. Fix a distribution F in{
F (·|q0, q1, v̄) s.t. v̄ > 1 and (q0, q1) ∈ [0, 1]2 with q1 ≤ q0 ≤ 1,

1− α +
1

Γ−1
α (q0)

≥ 1

Γ−1
α (q1/q0)

and q1/q0 ≤ Γα(1)

}
.

In this case, we can show as in step 2 of Proposition 2.5, the optimal price is rF = 1

and the optimal revenue is given by opt(F ) = q0.

Let us fix γ > 0. The goal here is to upper bound the performance of the pricing

strategy δγ, i.e. R(δγ, F ). To do so, there are two cases either γ ≤M or γ > M.

Case: γ ≤ M. Then the performance of the mechanism δγ can be rewritten as

follows,

R(δγ, F ) =
1

q0

EF
[
γvF (γv)

]
≤ 1

q0

EF
[
πM(γ)v F (

(
πM(γ)− ε

)
v)
]
,

where the last inequality is a direct implication of the fact that γ ≤ πM(γ).

Case: γ > M. In this case, we have,

R(δγ, F ) =
1

q0

∫ ∞
0

γvF (γv)f(v)dv =
1

q0

∫ 1/M

0

γvF (γv)f(v)dv +
1

q0

∫ ∞
1/M

γvF (γv)f(v)dv.

Let us now bound each term in the expression above. Let us start by the first

one. We have γvF (γv) ≤ opt(F ) = q0 hence we conclude that

1

q0

∫ 1/M

0

γvF (γv)f(v)dv ≤ (1− F (1/M)).

Now, let us bound the second term. For any v ≥ 1/M , we have M v ≥ 1 = rF

and since γ ≥M, then γv ≥M v ≥ rF . By the monotinicity of the revenue curve we

have,

1

q0

∫ ∞
1/M

γvF (γv)f(v)dv ≤ 1

q0

∫ ∞
1/M

MvF (Mv)f(v)dv ≤ R(δM , F )
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Hence we conclude that for any γ > M , we have

R(δγ, F ) ≤ (1− F (1/M)) +R(δM , F ).

Based on the two cases, we get that

sup
γ>0

R(δγ, F ) ≤ max

[
max
γ∈GMε

(
1

q0

EF
[
γv F ((γ − ε) v)

])
, (1− F (1/M)) +R(δM , F )

]
.

Since F is in F̄W
α , by the first step of the proof in particular Lemma B.6-1 we get

that

R(P ,Fα) ≤ R(M, F̄W
α ) = sup

ψ∈M
inf

G∈F̄Wα
EψR(δγ, G) ≤ sup

ψ∈M
EψR(δγ, F )

≤ sup
γ≥0

R(δγ, F ),

hence, we get the result.

Proof of Lemma B.6-1. The proof is organized around multiple steps. In a first

step, we show through Lemma B.6-2 that we can approach the family F̄W
α by a

sequence in Fα. In second step, we show that we can rate the limit of the performance

as the performance of the limit. Then we conclude the result in the last step.

Step 1. We first establish that any element FW
α can be approached by a sequence

of elements of Fα.

Lemma B.6-2. Fix 0 ≤ α ≤ 1 and FW
α in FW

α . If

(1− α) +
1

Γ−1
α (q0)

≥ 1

Γ−1
α (q1/q0)

, (B.6-5)

then there exists a sequence {Fn : n ≥ 1} in Fα that convergences weakly to FW
α , such

that there exists M > v1 such that for all n, Fn(M) = 1.

Step 2. Fix γ > 0 We next establish that any mechanism δγ inM, the worst-case

performance of this mechanism against Fα is upper bounded by the performance of

an alternate mechanism m̃ ∈M against FW
α .
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For any distribution F in F ⊂ Fα, we have

R(δγ, F ) =
EF [γs 1{v ≥ γs}]

opt(F )
.

Fix an element F ∈ FW
α . By assumption, there exists a sequence Fn from elements

in Fα such that Fn weakly converges to F .

Step 2a). We first establish that

lim inf
n↑∞

opt(Fn) ≥ opt(F ).

Let a = vF < ∞. Note that opt(Fn) = maxv≥0 vF n(v). In particular, we have for

any y < a,

opt(Fn) ≥ y F n(y).

By taking the lim inf we get that for any y < a,

lim inf
n↑∞

opt(Fn) ≥ y F (y).

by taking the limit as y ↑ a, we conclude that that for any v ≤ a

lim inf
n↑∞

opt(Fn) ≥ v F (v),

hence, we conclude that

lim inf
n↑∞

opt(Fn) ≥ opt(F ) = max
v≥0

v F (v),

Step 2b). Next, we derive an asymptotic upper bound on the ratio R(δγ, Fn).

Note that (Allouah and Besbes, 2018, Lemma 2) implies that for any ζ ≥ 0,

lim
n↑∞

EFn [v21{v1 > ζv2}] ≤


EF [v21{v1 > ζv2}] , if ζ 6= 1,

EF [min(v1, v2)] if ζ = 1.

(B.6-6)

Using Step 1 in conjunction with (B.6-6), we have

lim sup
n↑∞

R(δγ, Fn) =
1

lim infn↑∞ opt(Fn)
lim
n↑∞

EFn [γs 1{v > γs}]

≤ 1

opt(F )
[1{γ = 1}EF [min{s, v}] + 1{γ 6= 1}EF [γs 1{v > γs}]] .
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Noting that

EF [min{s, v}] = EF
[
s1{v > s}+

1

2
s1{s = v}

]
,

we deduce that

lim sup
n↑∞

R(δγ, Fn) ≤ 1

opt(F )
EF
[
γs 1{v > γs}+

1{γ = 1}
2

s1{s = v}
]

≤ 1

opt(F )
EF [γs 1{v ≥ γs}]

= R(δγ, F ).

Hence, we get that for all γ > 0

lim sup
n↑∞

R(δγ, Fn) ≤ R(δγ, F ).

Using Reverse Fatou’s Lemma (since R(δγ, Fn) ≤ 1) in conjunction with Eq.(2.4),

we get that for all ψ in M that

lim sup
n↑∞

R(ψ, Fn) ≤ R(ψ, F ).

By taking the infinimun over distribution and supremeum over mechanisms, we

conclude the proof.

Proof of Lemma B.6-2. Let us fix q0, q1 and v̄ <∞ such that F
W

α = F (·|q0, q1, v̄)

is in F̄W
α . Let us denote β0 = Γ−1

α (q0) and β1 = Γ−1
α (q1/q0).

The proof will be constructive in that we will explicitly exhibit a sequence Fn that

satisfies the properties in the result.

Step 1. We first construct the sequence and characterize its weak limit.

a) Let n ≥ 2, and define for x ≥ 1,

gn(x) = (1− α)(x− 1) +
1

β1

− 1

2β1

(
x− 1

v̄ − 1

)n
.

Note that there exists a unique xn ≥ 0 such that gn(xn) = 0. Indeed, gn is dif-

ferentiable with derivative given by g′n(x) = 1 − α − n (x − 1)n−1/2β1(v̄ − 1)n,

hence gn is strictly increasing on [1, 1 + (2(1− α)β1(v̄ − 1)n/n)1/(n−1)) and strictly
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decreasing on (1 + (2(1− α)β1(v̄ − 1)n/n)1/(n−1) ,+∞). Since gn(1) = 1/β1 > 0 and

lim
x↑∞

gn(x) = −∞ there exists a unique xn in [1,∞) s.t. gn(xn) = 0. Furthermore,

noting that gn(v̄) ≥ 1/2β1 > 0, we have that

xn > v̄, n ≥ 2.

Define the sequence of cumulative distribution functions Fn

F n(x) =


Γα(β0x), if x < 1,

q0 exp
(
−
∫ x

0
1

gn(t)
dt
)

, if 1 < x < xn,

0 , if x ≥ xn.

(B.6-7)

Step 2. We next establish that Fn belongs to Fα and that the sequence converges

weakly to F
W

α .

We first show that the sequence xn is decreasing and is lower bounded by v̄. The

fact that xn > v̄ implies that

gn+1(xn) = (1− α)(xn − 1) +
1

β1

− 1

2β1

(
xn − 1

v̄ − 1

)n+1

< (1− α)(xn − 1) +
1

β1

− 1

2β1

(
xn − 1

v̄ − 1

)n
= gn(xn) = 0.

In turn, by definition of xn+1, we get that

xn < xn+1.

Hence for all n ≥ 2, xn < x2. Setting M = x2, we have M > v̄ and Fn(M) = 1 for

all n ≥ 2.

Since xn is decreasing and lower bounded by v̄, it necessarily converges to some

limit l ≥ v̄. If l > v̄ then for n sufficiently large, we would have xn ≥ (1/2) (l + v̄)

implying that gn((1/2) (l + v̄)) ≥ 0. However limn↑∞ gn((1/2) (l + v̄)) = −∞, which

is a contradiction. We conclude that necessarily lim
n↑∞

xn = v̄.
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Note also that for x ≥ 1, gn is a polynomial with root xn, and no root in [1, xn].

Since g′n(xn) 6= 0, then necessarily the multiplicity of xn is one, so we can find a

polynomial function Qn such that gn(x) = (xn − x)Q(x) and for all x ∈ [1, xn]

we have Qn(x) > 0. In turn, by the Weierstrass extreme value theorem, we have

An := infx∈[1,xn] Qn(x) ∈ (0,∞) and Bn := supx∈[1,xn] Qn(x) ∈ (0,∞). and and we

can find Bn, An > 0 such that for all x ∈ [0, xn], we have An ≤ Qn(x) ≤ Bn.

For x ∈ [0, xn), we have

1

An
ln

(
xn − x
xn

)
≤ −

∫ x

0

1

gn(t)
dt ≤ 1

Bn

ln

(
xn − x
xn

)
,

and we deduce that

lim
x↑xn

exp

(
−
∫ x

0

1

gn(t)
dt

)
= 0. (B.6-8)

We deduce that Fn defined in (B.6-7) has no atoms. Furthermore, its (1−α)−virtual

value function is given by

φ1−α
n (x) =


−1/β0, if x < 1,

1− α− 1/β1 , if 1 < x < xn.

Since F
W

α is in F̄W
α then 1− α− 1/β1 ≥ −1/β0 is clearly non-decreasing on [0, xn) .

Hence, Fn belongs to Fα.

Step 3. Let us establish that F n converges weakly to F
W

α . The points of con-

tinuity of F
W

α are R+ \ {v̄}. Fix 1 ≤ x < v̄, we have lim
n↑∞

1
2β1

(
x−1
v̄−1

)n
= 0. Hence for

all x < v̄, using the Dominated Convergence Theorem, we have lim
n↑∞

F n(x) = F
W

α (x).

Fix x > v̄. Since xn converges to v̄, there exists N such that for all n ≥ N, we have

x > xn, hence for all n ≥ N , F n(x) = F
W

α (x) = 1. We conclude that F n weakly

converges to F
W

α .
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B.7 Proofs of Auxiliary Results

Proof of Proposition B.1-1. We show each point separately.

i). First note that the results of Fu et al. (2015) imply that R(M,F0) > 1/2. We

next establish that R(M≤1,F0) ≤ 1/2.

Let us consider the following distribution

F (v) =


1/(1 + v), if 0 ≤ v ≤ 1,

1, if v > 1.

Note that opt(F ) = 1/2. Furthermore, remark that F (·) = F (·|q0, q1, v̄), belongs

to the family introduced in (2.9), with q0 = 1/2, q1 = 0 and v̄ = 1. In turn, by

applying Lemma B.6-1 for any ψ in M≤1, we have

inf
F̃∈F0

R(ψ, F̃ ) ≤ R(ψ, F )

= 2

∫ 1

0

∫ 1

0

γsF̄ (γs)dF (s)dψ(γ)

= 2

∫ 1

0

∫ 1

0

γs

1 + γs
dF (s)dψ(γ)

≤ 2EF
[

s

1 + s

]
=

1

2
,

where the last inequality follows from the monotonicity of v/(1 + v). Hence against

this specific distribution F , post the sample or the identity dominates weakly any

level of deflation. This concludes the proof of i.).

ii). Let us now move to the second point. For that, let F be a distribution in F̃1,

which is a subset of the MHR class of distribution F1, and S its support and we let

s = inf{S } and s = sup{S }.

Let us fix a pricing mechanism Ψ(p|s) inM. Then there exists ψ(·) in D, such that

Ψ(p|s) = ψ(p/s). According to (2.3), the revenue generated by such a mechanism is
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given by ∫ ∞
0

(∫ ∞
0

γs F̄ (γs)dF (s)

)
dψ(γ).

Define for all γ ≥ 0,

g(γ) :=

∫ ∞
0

γv F (γv)f(v)dv.

We will establish that g is differentiable and g′(γ) ≤ 0, for all γ ≥ 1. In other

words, any mechanism that puts positive mass on inflation levels γ > 1 is domi-

nated by an alternative mechanism that transfers this mass to γ = 1. We have by

assumption that s := sup{S } <∞. Defining

h(γ, v) = γv F (γv)f(v),

we get that

g(γ) =

∫ s/γ

s

h(γ, v)dv.

Note that, for γ ≥ 1, h(γ, v) is differentiable with respect to γ for all v ∈ [s, s/γ]

and its partial derivative with respect to γ is continuous with respect to both argu-

ments, given by

∂

∂γ
h(γ, v) =

(
vF (γv)− γv2f(γv)

)
f(v).

In turn, using Leibniz integral rule, the function g is differentiable on [1,∞) and its

derivative is given

g′(γ) =

∫ s/γ

s

∂

∂γ
h(γ, v)f(v)dv − 1

γ2
sF (s)f(s/γ).

Hence, we get that for all γ ≥ 1

g′(γ) ≤
∫ ∞

0

(
vF (γv)− γv2f(γv)

)
f(v)dv

=

∫ ∞
0

f(v) v
(
F (γv)− γvf(γv)

)
dv

=

∫ s/γ

s

f(v)

F (v)

F (v)

F (γv)
v F (γv)

(
vF (γv)

)′
dv.
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Note that the function f/F is monotone non-decreasing on (0,∞) by the assumption

that F ∈ F1 and hence is differentiable almost everywhere. In turn, integration by

parts leads to

g′(γ) ≤ 1

2

[
f(v)

F (v)

F (v)

F (γv)

(
vF (γv)

)2
]s/γ
s

− 1

2

∫ s/γ

s

(
f(v)

F (v)

F (v)

F (γv)

)′ (
v F (γv)

)2
dv

= −1

2

∫ s/γ

s

(
f(v)

F (v)

F (v)

F (γv)

)′ (
v F (γv)

)2
dv. (B.7-1)

We next analyze F (v)/F (γv). For that let us introduce the following function, for

z, t ≥ 0,

φ(t, z) :=
F (z + t)

F (t)
.

It is clear that φ(t, ·) is differentiable almost everywhere and ∂φ
∂z
≤ 0. Furthermore,

since F ∈ F1, φ(·, z) is monotone non-increasing (see, e.g., Ross (1996)) and almost

everywhere we have ∂φ
∂t
≤ 0. Noting that

F (γv)/F (v) = φ(v, (γ − 1)v),

we have have, almost everywhere on [0, s/γ],

∂

∂v

(
F (γv)

F (v)

)
=

∂φ

∂t
(v, (γ − 1)v) + (γ − 1)

∂φ

∂z
(v, (γ − 1)v).

The latter is non-positive for all γ ≥ 1 given that the partial derivatives are non-

positive. So F (γv)/F (v) is non-increasing in v. Hence, F (v)/F (γv) is non-decreasing

in v.

Thus, the function (f(v)/F (v)) (F (v)/F (γv)) is non-decreasing and(
f(v)

F (v)

F (v)

F (γv)

)′
≥ 0.

Since

g′(γ) ≤ −
∫ ∞

0

(
f(v)

F (v)

F (v)

F (γv)

)′ (
v F (γv)

)2
dv.
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Using (B.7-1), we conclude that g′(γ) ≤ 0 for all γ ≥ 1. In turn, we conclude that

g(1) ≥ g(γ) for all γ ≥ 1. In particular, we get that for all F in F̃1,∫ ∞
0

(∫ ∞
0

γs F̄ (γs)dF (s)

)
dψ(γ)

≤
∫ 1

0

(∫ ∞
0

γs F̄ (γs)dF (s)

)
dψ(γ) +

∫ ∞
1

(∫ ∞
0

s F̄ (s)dF (s)

)
dψ(γ).

In other words, that for all F in F̃1,

R(ψ, F ) ≤ R(ψ̃, F ),

where for all γ ≥ 0,

ψ̃(γ) =


ψ(γ), if γ < 1,

1, if γ ≥ 1,

Since Ψ̃(p|s) = ψ̃(p/s) is in M≤1, we conclude the result.

Lemma B.7-1. Fix a distribution F in Fα and w < w′. Suppose that w > rF . Then

the function v 7→ v Γα

(
Γ−1
α

(
qw′
qw

)
v−w
w′−w

)
is non-increasing on [w,∞).

Proof of Lemma B.7-1. Fix a distribution F in Fα, let us define the following

distribution through its ccdf, for all v ∈ [w,∞)

G(v) =


1, if v ∈ [0, w),

Γα

(
Γ−1
α

(
qw′
qw

)
v−w
w′−w

)
, if v ≥ w.

Note that G belongs to Fα, hence its revenue curve is unimodal. We also note

that

wF (w) = qwwG(w)

and moreover by Lemma 2.2, we have that for all v in [w,w′],

vF (v) ≥ qw v G(v).
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Using the fact that the revenue curve of F is non-increasing on [w,∞) since w ≥ rF ,

we have that for all v in [w,w′],

qwv G(v) ≤ v F (v) ≤ wF (w) = qw w G(w).

On the other side, since the revenue curve of G is unimodal, then necessarily its

revenue curve is non-increasing on [w,∞).

Lemma B.7-2. For η in [0, 1]12. The function Aα (η) defined in Eq. (2.7) has the

following monotonicity properties

� Aα (η) is non-increasing in η1, η5 and η8.

� Aα (η) is non-decreasing in η3, η6 and η10.

Proof of Lemma B.7-2. We verify each property separately. We analyze only our

case of interest which is η in [0, 1]12.

Since the integrand is non-negative, the function Aα (η) is non-increasing in η1.

Note now that the function Γα(·) is continuous and non-decreasing. A direct

implication is that Aα (η) is non-decreasing in η6.

Also given that the function Γα(·) is non-decreasing, the function uα (β0, β1, β2, β3q)

(defined in Eq. (2.7)) is non-decreasing in β1 and non-increasingin β3. Hence Aα (η)

is non decreasing in η3 and η10 and non-increasing in η5 and η8. This completes the

proof.

Lemma B.7-3. The following inequalities hold

Aα

(
βLγ̃

(
qj
qj−1

,
qj+1−2α̃

qj−2α̃

))
≥ Aα

(
β̂Lγ,ε

(
π

(
qj+1

qj

)
, π

(
qj
qj−1

)))
,

and

Aα

(
βR

(
qj+1

qj
,
qj
qj−1

,
qj
qj−1

))
≥ Aα

(
β̂Rγ,ε

(
π

(
qj+1

qj

)
, π

(
qj
qj−1

)))
.
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Proof of Lemma B.7-3. We first note that from the definition of the projector

operator, we have for i in {j − 2, j − 1, j},

π

(
qi+1

qi

)
− ε ≤ qi+1

qi
≤ π

(
qi+1

qi

)
.

For the left term, we have

Aα

(
βLγ̃

(
qj
qj−1

,
qj+1−2α̃

qj−2α̃

))
= Aα

(
qj
qj−1

, 1,
qj
qj−1

, γ, 1,
qj+1−2α̃

qj−2α̃

, 1,
qj
qj−1

, γ, 1, γ, γ

)
≥ Aα

(
π

(
qj
qj−1

)
, 1, π

(
qj
qj−1

)
− ε, γ, 1, π

(
qj+1−2α̃

qj−2α̃

)
− ε, 1, π

(
qj
qj−1

)
, γ, 1, γ, γ

)
= Aα

(
β̂Lγ,ε

(
π

(
qj+1+α̃

qj+α̃

)
, π

(
qj+α̃
qj−1+α̃

)))
,

where the last inequality follows from the monotonicity properties established in

Lemma B.7-2.

Similarly, we have

Aα

(
βR

(
qj+1

qj
,
qj
qj−1

,
qj
qj−1

))
= Aα

(
qj+1

qj
, γ,

qj
qj−1

, γ,
qj
qj−1

,
qj
qj−1

, γ,
qj
qj−1

, γ,
qj
qj−1

, 1, γ

)
≥ Aα

(
β̂Rγ,ε

(
π

(
qj+1

qj

)
, π

(
qj
qj−1

)))
,

where the last inequality follows from the monotonicity properties established in

Lemma B.7-2.

Lemma B.7-4. i.) If j ≤ 1 and γ < 1, then for any (q̂j−1, π (qj/qj−1)) is in

BLα,γ,ε (q̂j, π (qj+1/qj)) .

ii.) If j ≥ 1 and γ < 1, then π
(
qj+1

qj

)
belongs to BHα,γ,ε

(
π
(

qj
qj−1

))
.

Proof of Lemma B.7-4. i.) First note that by the unimodality of the revenue

curve and the optimality of rF = r0, we have rj−1 qj−1 ≤ rj qj for j ≤ 0, since
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rj−1 ≤ rj ≤ rF . Hence, qj−1 ≤ qj/γ, hence qj/qj−1 ≥ γ. By definition π(·), we get

π(qj/qj−1) ≥ γ.

For the left side of the second point, by Lemma 2.2 and picking consecutively

(w,w′) = (0, rj) and (w,w′) = (0, rj+1) we get that

qj−1 ≥ max
(
Γα
(
γ Γ−1

α (qj)
)
,Γα

(
γ2 Γ−1

α (qj+1)
))
,

So by definition of π(·) and monotonicity of Γα, we get

q̂j−1 ≥ max

(
Γα
(
γ Γ−1

α (q̂j − ε)
)
,Γα

(
γ2 Γ−1

α (q̂j − ε)
(
π

(
qj+1

qj

)
− ε
)))

.

The last condition is direct consequence of the fact that qj+1 = qj
qj+1

qj
and the mono-

tonicity of π(·).

By using Lemma 2.2, with w = rj−1, w′ = rj+1 and u = rj we get that

qj ≥ qj−1Γα

(
Γ−1
α (qj+1/qj−1)

rj − rj−1

rj+1 − rj−1

)
,

hence we get

qj
qj−1

≥ Γα

(
γ

1 + γ
Γ−1
α ((qj+1/qj) (qj/qj−1))

)
,

by projecting on the grid and using the monotonicity of Γα, we get that

π

(
qj
qj−1

)
≥ Γα

(
Γ−1
α

(
γ

1 + γ
(π (qj+1/qj)− ε) (π (qj/qj−1)− ε)

))
,

This concludes the first case when j ≤ 0.

Let us now move to the second case which is j ≥ 1. In this case using the

monotinincity of the revenue curve, we have rj+1 qj+1 ≤ rj qj ≤ rj−1 qj−1 since

rj+1 ≥ rj ≥ rj−1 ≥ rF , for j ≥ 1. So, we get that, qj+1/qj ≤ γ and qj+1/qj ≤ γ2,

hence we conclude that

π (qj+1/qj) ≤ γ + ε and (π (qj+1/qj)− ε) (π (qj/qj−1)− ε) ≤ γ2,

hence we get the result.
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Lemma B.7-5. Fix α ∈ [0, 1], γ ∈ (0, 1) and ε ≥ 0. For any ρ− and ρ+ in Gε, we

have

Aα

(
β̂Lγ,ε

(
ρ+, ρ−

))
≤ 1, and Aα

(
β̂Rγ,ε

(
ρ+, ρ−

))
≤ 1

γ
.

Proof of Lemma B.7-5. We will show each point separately. By using the explicit

expression of A and the fact that ccdf Γα is at most 1, we get that

Aα

(
β̂Lγ,ε

(
ρ+, ρ−

))
≤

∫ 1

ρ+
uα(0+, ρ+ − ε, γ, t)dt.

Moreover since uα(0+, ρ+− ε, γ, t) ≤ 1, for any t ≥ ρ+ then we conclude that for any

ρ+ ∈ Gε,

Aα

(
β̂Lγ,ε

(
ρ+, ρ−

))
≤ 1.

By using the expression of A and β̂Rγ,ε and the definition of the minimum also that

that Γα is a ccdf, we have

Aα

(
β̂Lγ,ε

(
ρ+, ρ−

))
≤
∫ 1

ρ−

1

γ
dq ≤ 1

γ
.

205



Appendix C

Appendix for Chapter 3

C.1 Proofs of Section 3.3

Proof of Lemma 3.1

The distribution of the value of the virtual buyer corresponding to an intermediary

is the distribution of the maximum of the values of the buyers that the intermediary

was representing initially, i.e., (Gα)K . We first ensure that the distribution Gα has

an increasing failure rate (IFR) and that the distribution of the maximum has also

an increasing failure rate. Then we characterize the optimal reserve price rco.

It is clear that Gα admits a density on S \ {0}. Let x ≥ 0, for all t > 0 we have

Ḡα(x+ t)

Ḡα(t)
=

F̄ (x+ t)

F̄ (t)
.

Since F has an increasing failure rate, then F̄ (x+ t)/F̄ (t) is decreasing in t, fol-

lowing (Barlow and Proschan, 1975, Definition 1.1, Section 3). We conclude that

Ḡα(x+ t)/Ḡα(t) is also decreasing in t implying that Gα is IFR.

Lemma C.1-1 (Preservation of IFR property by maximum operator). Consider a set

of n i.i.d. random variables drawn from a distribution with increasing failure rate.

Then the distribution of the maximum of these n variables has also an increasing

failure rate.

The proof of the latter result is deferred to Appendix C.4. In turn, the virtual
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value function of the maximum value of an intermediary

v − 1−GK
α (v)

Kαf(v)GK−1
α (v)

is increasing. We deduce that the optimal reserve price rco is uniquely defined as

rco =
1−GK

α (rco)

Kαf(v)GK−1
α (rco)

.

We next establish that rco > rin. We have that for any v ∈ S ,

1−GK
α (v)

Kαf(v)GK−1
α (v)

=
1− F (v)

f(v)

∑K−1
i=0 Gi

α(v)

KGK−1
α (v)

,

and hence,

1−GK
α (v)

Kαf(v)GK−1
α (v)

≥ 1− F (v)

f(v)
,

where the last inequality is strict if F (v) < 1. Recall that rco and rin are the unique

solution of the following equations

rco =
1−GK

α (rco)

Kαf(v)GK−1
α (rco)

,

rin =
1− F (rin)

f(rin)
,

Using the fact the distribution F has an increasing failure rate, we deduce that rco is

always such that rco > rin. In particular, the strict inequality is a consequence of the

fact we always have F (rin) < 1. (Indeed, it is clear that rin > 0 and f(rin) > 0 and

hence F (rin) = 1− rinf(rin) < 1.) This completes the proof.

Proof of Corollary 3.1

We first establish that Π∗co < Π∗in.

Π∗co = E [max{rco,w2} 1{w1 ≥ rco}] = E
[
max{rco,w2} 1{v[1]

1:J ≥ rco}
]
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since w1 = v
[1]
1:J . In turn, we have

Π∗co
(a)
< E

[
max{rco,v[2]

1:J} 1{v
[1]
1:J ≥ rco}

]
≤ max

r≥0
E
[
max{r,v[2]

1:J} 1{v
[1]
1:J ≥ r}

]
(b)
= E

[
max{rin,v[2]

1:J} 1{v
[1]
1:J ≥ rin}

]
= Π∗in,

where (a) follows since v
[2]
1:J ≥ w2 and the strict equality follows from the fact that

v
[2]
1:J > w2 > rco occurs with positive probability. Finally, (b) follows from the fact

that rin is the optimal reserve price when the intermediaries are multi-bidding.

Next, we establish that S∗co < S∗in.

S∗co = E[w[1] 1{w[1] ≥ rco}] = E[v
[1]
1:J 1{v

[1]
1:J ≥ rco}] < E[v

[1]
1:J 1{v

[1]
1:J ≥ rin}],

where the second equality follows from w1 = v
[1]
1:J and the inequality follows from the

fact that rco > rin. This concludes the proof.

Proof of Proposition 3.1

We first characterize S∗co,Π
∗
co, S

∗
in, Π∗in. Second, we derive explicitly the myopic benefit

of collusion MBC , then we characterize U∗co−U∗in, then we conclude with a derivation

for S RI .

The social welfare when the intermediary is coordinating campaigns is given by

S∗co = E[v
[1]
1:J 1{v

[1]
1:J ≥ rco}]

=

∫ ∞
rco

xJKαf(x)(Gα(x))JK−1dx

= −
[
x[1− (Gα(x))JK ]

]∞
rco

+

∫ ∞
rco

[1− (Gα(x))JK ]dx

= rco[1− (Gα(rco))
JK ] +

∫ ∞
rco

[1− (Gα(x))JK ]dx.

Similarly, the social welfare when the intermediary is multi-bidding is given by

S∗in = E[v
[1]
1:J 1{v

[1]
1:J ≥ rin}] = rin[1− (Gα(rin))

JK ] +

∫ ∞
rin

[1− (Gα(x))JK ]dx.
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Next we compute the revenue of the seller.

Π∗in = E
[

max(v
[2]
1:J , rin)1{v

[1]
1:J ≥ rin}

]
= rinP(v

[1]
1:J ≥ rin ≥ v

[2]
1:J) + E

[
v

[2]
1:J1{v

[2]
1:J ≥ rin}

]
= rin JKḠα(rin)(Gα(rin))

JK−1 +

∫ ∞
rin

xJK(JK − 1)(Gα(x))JK−2Ḡα(x)αf(x)dx.

Through integration by parts applied to the last term we obtain∫ ∞
rin

x JK(JK − 1)(Gα(x))JK−2Ḡα(x)αf(x)dx

= −
[
x

(
JK(1− (Gα(x))JK−1)− (JK − 1)(1− (Gα(x))JK)

)]∞
rin

+

∫ ∞
rin

(
JK(1− (Gα(x))JK−1)− (JK − 1)(1− (Gα(x))JK)

)
dx

= rin

(
JK(1− (Gα(rin))

JK−1)− (JK − 1)(1− (Gα(rin))
JK)

)
+

∫ ∞
rin

(
JK(1− (Gα(x))JK−1)− (JK − 1)(1− (Gα(x))JK)

)
dx.

We deduce that

Π∗in

= rin[1− (Gα(rin))
JK ] +

∫ ∞
rin

(
JK(1− (Gα(x))JK−1)− (JK − 1)(1− (Gα(x))JK)

)
dx.

Let us define H(x) := (Gα(x))K and h(x) = K αf(x) (Gα(x))K−1. Let us com-

pute Πco(r) the seller’s revenue at any point r when the intermediary is coordinating

campaigns.

Πco(r) = E
[

max(w[2], r)1{w[1] ≥ r}
]

= r P(w[1] ≥ r ≥ w[2]) + E
[
w[2]1{w[2] ≥ r}

]
= r J(1−H(r))(H(r))J−1 +

∫ ∞
r

xJ(J − 1)(H(x))J−2(1−H(x))h(x)dx.
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Applying a similar reasoning as earlier through integration by parts for the last term

leads to ∫ ∞
r

xJ(J − 1)(H(x))J−2(1−H(x))

= r

(
J(1− (H(r))J−1)− (J − 1)(1− (H(r))J)

)
+

∫ ∞
r

(
J(1− (H(x))J−1)− (J − 1)(1− (H(x))J)

)
dx,

So we conclude that

Πco(r)

= r[1− (H(r))J ] +

∫ ∞
r

(
J(1− (H(x))J−1)− (J − 1)(1− (H(x))J)

)
dx

= r[1− (Gα(r))JK ] +

∫ ∞
r

(
J(1− (Gα(x))JK−K)− (J − 1)(1− (Gα(x))JK)

)
dx.

Thus the optimal seller’s revenue is given by

Π∗co = rco[1− (Gα(rco))
JK ] +

∫ ∞
rco

(
J(1− (Gα(x))JK−K)− (J −1)(1− (Gα(x))JK)

)
dx.

Given the above, we can derive the myopic benefit.

MBC = Uco(rin)− Uin(rin)

= E[(max(rin,v
[2]
1:J)−max(rin,w

[2]))1{w[1] ≥ rin}]

= Π∗in − Πco(rin)

=

∫ ∞
rin

(
JK(1− (Gα(x))JK−1)− (JK − 1)(1− (Gα(x))JK)

)
−
(
J(1− (Gα(x))JK−K)− (J − 1)(1− (Gα(x))JK)

)
dx.

Using the fact that the impact on the buyers is given by U∗co − U∗in = S∗co − Π∗co −
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(S∗in − Π∗in), we obtain

U∗co − U∗in

= S∗co − Π∗co −
(
S∗in − Π∗in

)
=

∫ ∞
rin

[
JK(1− (Gα(x))JK−1)− (JK − 1)(1− (Gα(x))JK)

]
dx

−
∫ ∞
rco

[
J(1− (Gα(x))JK−K)− (J − 1)(1− (Gα(x))JK)

]
dx−

∫ rco

rin

(1− (Gα(x))JK)dx

So we obtain the seller’s reaction

−S RI =

∫ rco

rin

(1− (Gα(x))JK)−
[
J(1− (Gα(x))JK−K)− (J − 1)(1− (Gα(x))JK)

]
dx.

This concludes the proof.

C.2 Proofs of Section 3.4

Proof of Proposition 3.2

Fix ξ < 0. For 0 ≤ q ≤ 1, the corresponding value z(q) corresponding to the quantile

q and its derivative are given by:

z(q) = −σ
ξ

(1− q−ξ), (C.2-1)

z′(q) = −σq−ξ−1.

Let us now characterize the optimal reserve prices and their corresponding quan-

tiles. As mentioned earlier rin verifies rin = (1−Fξ(rin))/fξ(rin) = σ(1 + ξ
σ
rin). Hence

rin = σ
1−ξ and using (C.2-1), we get

qin = (1− ξ)
1
ξ .

On the other hand, rco verifies the following rco = (1− F 2(rco))/(2 f(rco) F (rco)).

Using (C.2-1), we get

σ

ξ
(1− q−ξco ) =

qco(2 + qco)

2 ( 1
σ
qξ+1
co ) (1− qco)

,
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so we obtain

1

ξ
(1− qξco) =

2− qco
2(1− qco)

.

Using Proposition 3.1 with J = 1 and K = 2, we get that

U∗co − U∗in =

∫ ∞
rin

F (x)2dx−
∫ rco

rin

(1− F 2(x))dx

(C.2-1)
=

∫ qin

0

q2(σq−ξ−1)dq −
∫ qin

qco

(1− (1− q)2)(σq−ξ−1)dq

= σ

([
q2−ξ

2− ξ

]qin
0

− 2

[
q1−ξ

1− ξ

]qin
qco

+

[
q2−ξ

2− ξ

]qin
qco

)

= σ

[
2

2− ξ
q2−ξ
in − 2

1− ξ
q1−ξ
in +

2

1− ξ
q1−ξ
co −

1

2− ξ
q2−ξ
co

]
.

This completes the proof.

Proof of Theorem 3.1

Here we assume that ξ ∈ [−1, 0]. We will construct an upper bound on U∗co − U∗in,

which we will show is piecewise-concave and decreasing on the intervals [−1,−0.5]

and [−0.5, 0]. We then establish that this upper bound is negative on those intervals.

In the proof, we will sometimes drop the dependence of some quantities on ξ to lighten

the notation.

We have

U∗co − U∗in = σ

[
2

2− ξ
q2−ξ
in − 1

2− ξ
q2−ξ
co −

2

1− ξ
q1−ξ
in +

2

1− ξ
q1−ξ
co

]
= σ q1−ξ

in

[
qin

2− ξ

(
2−

(
qco
qin

)2−ξ
)
− 2

1− ξ

(
1−

(
qco
qin

)1−ξ
)]

≤ σ q1−ξ
in

[
e(−

2
2−ξ+γ(ξ))

2− ξ

(
2−

(
qco
qin

)2−ξ
)
− 2

1− ξ

(
1−

(
qco
qin

)1−ξ
)]

.

In the last inequality, we have used for all ξ < 0, qin = exp{ξ−1 ln(1 − ξ)} ≤

exp{−2/(2 − ξ) + γ(ξ)}, with γ(ξ) := (2/5− ln(3/2))1{ξ≤−0.5}. (We note that

γ(ξ) ≤ 0.). The inequality follows from the fact that ln(1 + x) ≥ 2x/(2 + x)− γ(−x)
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for x ≥ 0 and the fact that −1 ≤ ξ < 0. We introduce the following function h(·, ·),

h(ξ, x) =
e−

2
2−ξ+γ(ξ)

2− ξ
(2− x2−ξ)− 2

1− ξ
(1− x1−ξ) for − 1 ≤ ξ ≤ 0 and 0 ≤ x ≤ 1.

In turn, we have

U∗co − U∗in ≤ σ q1−ξ
in h

(
ξ,
qco(ξ)

qin(ξ)

)
. (C.2-2)

The upper bound on U∗co − U∗in is driven by the function h and the ratio qco/qin. The

next two results present properties of h and the quantiles and their ratio.

Lemma C.2-2. For any x ∈ [0, 1], h(·, x) is concave on [−1,−0.5] and on (−0.5, 0];

for any ξ ∈ [−1, 0], h(ξ, ·) is increasing.

Lemma C.2-3. The following properties hold.

i.) The quantiles qin(ξ) and qco(ξ) are decreasing with ξ on (−∞, 0).

ii.) For any ξ ≤ 0, the ratio of quantiles satisfies

qco(ξ)

qin(ξ)
≤ α(ξ, qco),

where for all non-positive ξ, y, α(ξ, y) = exp{− (((2/y)− 1) (1− ξ)− 1)−1}.

Moreover α(ξ, y) is decreasing with respect to ξ and decreasing with respect to y.

This lemma characterizes how the quantiles change with the respect to the coef-

ficient of variation (which admits a one-to-one relationship with ξ). Furthermore, it

characterizes the relation ratio of the quantiles and suggests through an upper bound

that as the coefficient of variation increases, the seller’s reaction becomes more pro-

nounced in the sense that (the bound on) qco/qin decreases.

Using the bound above in conjunction with (C.2-2), we obtain that on any interval

[ξ, ξ], we have for all ξ ∈ [ξ, ξ],

U∗co − U∗in ≤ σ q1−ξ
in h (ξ, α(ξ, qco(ξ))) ≤ h

(
ξ, α(ξ, qco(ξ))

)
≤ h

(
ξ, α(ξ, qco(ξ))

)
,(C.2-3)
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where the second inequality follows from the fact that h is nondecreasing with respect

to its second argument and α is nonincreasing with respect to its first argument; in

the third inequality, we used the fact that α is nonincreasing with respect to its

second argument and qco(ξ) is nonincreasing in ξ. In the next result, we analyze

h (ξ, α(−1, qco(−0.5))) and h (ξ, α(−0.5, qco(0))).

Lemma C.2-4. We have that h (ξ, α(−1, qco(−0.5))) < 0 on all ξ ∈ [−1,−0.5] and

h (ξ, α(−0.5, qco(0))) < 0 on all ξ ∈ (−0.5, 1].

Using this result and the bound (C.2-3) for [ξ, ξ] = [−1,−0.5] and [ξ, ξ] = [−0.5, 0],

we obtain

U∗co − U∗in < 0 for all ξ in [−1, 0].

This completes the proof.

C.3 Proofs of Section 3.5

Proof of Proposition 3.3

The proof is organized into two main steps. We first bound the MBC by conditioning

on the number of matches and how they are distributed between intermediaries. This

leads to a bound composed of two terms, which we bound separately to obtain a final

bound on MBC .

Step 1. For i = 1, . . . , K, let

Ei = {ω : w[2] = v
[i+1]
1:J } (C.3-4)

denote the event that the intermediary with the highest value has all the ith highest

values but does not uniquely have the (i + 1)st value. Let M denote the number of
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matches. Note that conditional on M = m matches, {Ei : 1 ≤ i ≤ min{K,m}} is a

partition of the probability space. We have

MBC (C.3-5)

= Uco(rin)− Uin(rin)

= E
[
(v

[1]
1:J −max{w[2], rin})1{v[1]

1:J ≥ rin}
]
− E

[
(v

[1]
1:J −max{v[2]

1:J , rin})1{v
[1]
1:J ≥ rin}

]
= E

[
(max{v[2]

1:J , rin} −max{w[2], rin})1{v[1]
1:J ≥ rin}

]
.

Conditioning on the events {Ei : 1 ≤ i ≤ min{K,m}}, we obtain

MBC (C.3-6)

=
KJ∑
m=0

min(K,m)∑
i=1

E
[
(max{v[2]

1:J , rin} −max{w[2], rin})1{v[1]
1:J ≥ rin}|Ei,M = m

]
P(Ei|M = m)P(M = m)

=
KJ∑
m=2

min(K,m)∑
i=2

E
[
(max{v[2]

1:J , rin} −max{v[i+1]
1:J , rin})1{v[1]

1:J ≥ rin}|Ei,M = m
]

P(Ei|M = m)P(M = m)

=
KJ∑
m=2

min(K,m)∑
i=2

E
[
max{v[2]

1:J , rin} −max{v[i+1]
1:J , rin}|M = m

]
P(Ei|M = m)P(M = m),

where the last equality follows from the fact that if v
[2]
1:J ≥ rin, then v

[1]
1:J ≥ rin by

definition, and (max{v[2]
1:J , rin} − max{v[i+1]

1:J , rin})1{v[1]
1:J ≥ rin} = max{v[2]

1:J , rin} −

max{v[i+1]
1:J , rin}; if v

[2]
1:J ≤ rin, then max{v[2]

1:J , rin} −max{v[i+1]
1:J , rin} = 0. In turn, we

have

MBC (C.3-7)

=
K∑
i=2

KJ∑
m=i

E
[
max{v[2]

1:J , rin} −max{v[i+1]
1:J , rin}|M = m

]
P(Ei|M = m)P(M = m)

=
KJ∑
m=2

E
[
max{v[2]

1:J , rin} −max{v[3]
1:J , rin}|M = m

]
P(E2|M = m)P(M = m)

+
K∑
i=3

KJ∑
m=i

E
[
max{v[2]

1:J , rin} −max{v[i+1]
1:J , rin}|M = m

]
P(Ei|M = m)P(M = m),

215



Step 2. In this step we analyze each term in the RHS of (C.3-7). Let us first ana-

lyze the probability of events E1 and E2. For m ≥ 2, the quantity 1− P(E1|M = m)

represents the probability that the buyers that have the two highest values are repre-

sented by the same intermediary. Given the ex-ante symmetry across intermediaries,

we have:

P(E1|M = m) = 1− K − 1

JK − 1
. (C.3-8)

For m ≥ 3, given that the buyers that have the two highest values are represented

by the same intermediary, the probability that the latter has also the third value is

given by K−2
JK−2

, then we can conclude that

P(E2|M = m) =
K − 1

JK − 1

(
1− K − 2

JK − 2

)
. (C.3-9)

Since for M = 2 matches, {E1, E2} is a partition of the probability space. we

have P(E2|M = 2) = 1− P(E1|M = 2), so using (C.3-8), we get

P(E2|M = 2) =
K − 1

JK − 1
. (C.3-10)

Step 2.1 We first analyze the second sum in the RHS of (C.3-7). We have

E
[
max{v[2]

1:J , rin} −max{v[i+1]
1:J , rin}|M = m

]
≤ E

[
(v

[1]
1:J − rin)

+|M = m
]

≤ E
[
v

[1]
1:J |M = m

]
(a)

≤ EF [V ]
m∑
k=1

1

k

≤ EF [V ]
JK∑
k=1

1

k

(b)

≤ EF [V ] (1 + ln (JK)) ,

where in (a) we used a result from Barlow (1965) for IFR random variables and in

(b) we used that
∑n

k=1 1/k ≤ (1 + ln(n)) for any n ≥ 1.
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In turn, we have that

K∑
i=3

KJ∑
m=i

E
[
max{v[2]

1:J , rin} −max{v[i+1]
1:J , rin}|M = m

]
P(Ei|M = m)P(M = m)

≤ (ln(JK) + 1)EF [V ]
K∑
i=3

KJ∑
m=i

P(Ei|M = m)P(M = m)

= (ln(JK) + 1)EF [V ]
KJ∑
m=3

min{K,m}∑
i=3

P(Ei|M = m)P(M = m)

= (ln(JK) + 1)EF [V ]
KJ∑
m=3

min{K,m}∑
i=3

P(Ei|M = m)P(M = m)

= (ln(JK) + 1)EF [V ]
KJ∑
m=3

(1− P(E1|M = m)− P(E2|M = m))P(M = m).

Using (C.3-8) and (C.3-9), we have

1− P(E1|M = m)− P(E2|M = m) =
K − 1

JK − 1

K − 2

JK − 2
≤ 1

J2
.

We hence have

K∑
i=3

KJ∑
m=i

E
[
max{v[2]

1:J , rin} −max{v[i+1]
1:J , rin}|M = m

]
P(Ei|M = m)P(M = m)

≤ 1

J2
(ln(JK) + 1)EF [V ].

Step 2.2 Now we analyze the first sum in the RHS (C.3-7). We have

KJ∑
m=2

E
[
max{v[2]

1:J , rin} −max{v[3]
1:J , rin}|M = m

]
P(E2|M = m)P(M = m)

=
K − 1

JK − 1
E
[
max{v[2]

1:J , rin} − rin|M = 2
]
P(M = 2) +

K − 1

JK − 1(
1− K − 2

JK − 2

) KJ∑
m=3

E
[
max{v[2]

1:J , rin} −max{v[3]
1:J , rin}|M = m

]
P(M = m),

where we have used (C.3-9) and (C.3-10).

Noting that M has a Binomial distribution with success probability α = c/(JK),
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we have

P(M = m) =

(
JK

m

)
αm(1− α)JK−m

=
JK . . . (JK −m+ 1)

m!

cm

(JK)m

(
1− c

JK

)JK−m
=

JK . . . (JK −m+ 1)

(JK)m
e(JK−m) ln(1− c

JK
) c
m

m!
.

Note that (JK −m) ln(1− c/JK) ≤ − c
JK

(JK −m) = −c+ mc
KJ
≤ −c+ c

J
, since

m ≤ K ≤ JK. Hence one may bound P(M = m) as follows

P(M = m) ≤ cm

m!
e−c+

c
J . (C.3-11)

Hence, we have that

KJ∑
m=3

E
[
max{v[2]

1:J , rin} −max{v[3]
1:J , rin}|M = m

]
P(M = m)

=
KJ∑
m=3

∫ ∞
rin

∫ y

rin

(y −max{x, rin})
m!

(m− 3)!
(F (x))m−3F (y)f(x)f(y)dxdyP(M = m)

≤
KJ∑
m=3

∫ ∞
rin

∫ y

rin

(y −max{x, rin})
m!

(m− 3)!
(F (x))m−3F (y)f(x)f(y)dxdy

cm

m!
e−c+

c
J

= e−c+
c
J c3

∫ ∞
rin

∫ y

rin

(y −max{x, rin})

(
KJ∑
m=3

cm−3

(m− 3)!
(F (x))m−3

)
F (y)f(x)f(y)dxdy

≤ e−c+
c
J c3

∫ ∞
rin

∫ y

rin

(y −max{x, rin}) ecF (x)F (y)f(x)f(y)dxdy

= e−c+
c
J c3

∫ ∞
rin

ecF (x))f(x)

(∫ ∞
x

(y − x)F (y)f(y)dy

)
dx.

On another hand, we have

E
[
max{v[2]

1:J , rin} − rin|M = 2
]
≤

∫ ∞
rin

(y − rin)2F (y)f(y)dy
c2

2
e−c+c/J

≤ e−c+c/Jc2

∫ ∞
rin

(y − rin)F (y)f(y)dy.

218



So we conclude that

KJ∑
m=2

E
[
max{v[2]

1:J , rin} −max{v[3]
1:J , rin}|M = m

]
P(E2|M = m)P(M = m)

≤ e−c+c/J

J

[
c2

∫ ∞
rin

(y − rin)F (y)f(y)dy

+c3

∫ ∞
rin

ecF (x)f(x)

(∫ ∞
x

(y − x)F (y)f(y)dy

)
dx

]
.

Step 3 Combining all the previous steps we obtain

MBC ≤ c2ec/J

J

[ ∫ ∞
rin

(y − rin)F (y)f(y)e−cdy

+c

∫ ∞
rin

∫ ∞
x

(y − x) e−cF (x)f(x)F (y)f(y)dydx

]
+O(ln(JK)/J2).

This completes the proof of Proposition 3.3.

Proof of Proposition 3.4

We aim to lower bound

−S RI = Uco(rin)− Uco(rco(α,K)).

In the proof, we will sometimes use the shorthand notation rco for rco(α,K) to avoid

cluttering the exposition. The proof is organized around four steps. First, we show

that Uco(r) is differentiable and characterize its derivative. Second, we investigate

the derivative of the utility at rco. Third, we bound the difference in reserve prices

rco(α,K)−rin. In a last step, we conclude by combining the various bounds to obtain

a lower bound on −S RI . The proofs of some auxiliary results are deferred to

Appendix C.4.

We denote F
(j)
co the distribution of the jth highest value among intermediaries and

by f
(j)
co the corresponding density on (0,+∞). Similarly, we denote by F

(j)
in and f

(j)
in

the corresponding functions for the jth highest value among all buyers.
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Step 1. We first establish that the buyers’ surplus Uco(·) is differentiable and char-

acterize its derivative.

Lemma C.3-5 (derivative of Uco). The buyers’ surplus Uco(·) is twice differentiable

on the interior of the support with derivative given by

U ′co(r) = −P{w[2] ≤ r ≤ v
[1]
1:J} for any r > 0.

Furthermore, if the probability of a match α ≤ 1 and the number of intermediaries

J ≥ 3 then

|U ′′co(r)| ≤ 3cf(r) for any r > 0.

Note that the derivations in the proof of Lemma C.3-5 also allow to conclude that

U ′co(rco) = S ′co(rco)− Π′co(rco) = S ′co(rco) = −rcof (1)
co (rco).

In turn, one may apply Taylor’s theorem to deduce that for any r ∈ S ∩ [rin,∞[,

there exist r̃ ∈ S ∩ [rin,∞[ such that

Uco(r)− Uco(rco) = U ′co(rco)(r − rco) +
U ′′co(r̃)

2
(r − rco)2

= −rcof (1)
co (rco)(r − rco) +

U ′′co(r̃)

2
(r − rco)2. (C.3-12)

Step 2. We next analyze f
(1)
co (·). We first note that f

(1)
in (r) = f

(1)
co (r) for any r ∈

S \{0} since the maximum value among all buyers v
[1]
1:J coincides with the maximum

value among all intermediaries w[1]. The following lemma derives a lower bound on

f
(1)
in (r).

Lemma C.3-6. For any r ∈ S \ {0}, the density of v
[1]
1:J is bounded below as follows

f (1)
co (r) = f

(1)
in (r) ≥ cf(r)e−c(F̄ (r)) − cf(r)

(
18c2 + 2

2
√
JK − 1

)
,

if we assume that 4
√
JK ≥ 2ce and 4

√
JK ≥ 2.

220



So the derivative of the utility is bounded by

U ′co(rco) ≤ −crcof(rco)e
−cF̄ (rco) + crcof(rco)

(
18c2 + 2

2
√
JK − 1

)
, (C.3-13)

Step 3. Next, we analyze rco(α,K).

Proposition C.3-1 (reserve price - Lemma 3.2). For any α,K such that α ≤ 1/2

and αK < 1, the reserve price rco(α,K) satisfies

Kα
(F̄ (rin))

2

2f(rin)φ′(rin)
− (α + 3(Kα)2)C1 ≤ rco(α,K)− rin ≤ Kα rine

1
1−α ,

where C1 is a constant depending only on the distribution F .

Step 4. Combining (C.3-12), Lemma C.3-5, (C.3-13) and Proposition C.3-1, we

have

−S RI

= −rcof (1)
co (rco)(rin − rco) +

1

2
U ′′co(r̃)(rin − rco)2

≥ c rcof(rco)e
−cF̄ (rco)

[
1− 18c2 + 2

2
√
JK − 1

ecF̄ (rco)

] [
αK(F̄ (rin))

2

2f(rin)φ′(rin)
− (α + 3(Kα)2)C1

]
−3c

2
(Kα)2r2

inf(r̃)e
2

1−α

≥ crcof(rco)e
−cF̄ (rco) (F̄ (rin))

2

2f(rin)φ′(rin)
αK −R1,

where

R1

=
18c2 + 2

2
√
JK − 1

ec
[
αK

(F̄ (rin))
2

2f(rin)φ′(rin)

]
+ (α + 3(Kα)2)C1 +

3c

2
(Kα)2r2

inf(r̃)e
2

1−α

=

(
18c2 + 2

2
√
JK − 1

ec
[

(F̄ (rin))
2

2f(rin)φ′(rin)

])
αK + (α + 3(Kα)2)C1

+

(
3c

2
r2
inf(r̃)e

2
1−α

)
(Kα)2

=

(
(18c2 + 2)

√
JK

2
√
JK − 1

ec
[

(F̄ (rin))
2

2f(rin)φ′(rin)

])√
cαKα

+(α + 3(Kα)2)C1 +

(
3c

2
r2
inf(r̃)e

2
1−α

)
(Kα)2.
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We consider the following function rf(r) exp{−cF̄ (r)}, given that f has a continuous

derivative bounded around rin then the latter has a continuous derivative bounded at

rin using Taylor expansion, we get that there exist constants C2 and C3 such that

crcof(rco)e
−cF̄ (rco) ≥ crinf(rin)e

−cF (rin) − C2(rco − rin)
(a)

≥ crinf(rin)e
−cF (rin) − C2Kα rine

1
1−α

f(r̃) ≤ C3

where in (a), we have used the RHS inequality in Proposition C.3-1. So we conclude

that

−S RI ≥ crinf(rin)e
−cF (rin) (F̄ (rin))

2

2f(rin)φ′(rin)
Kα−R2,

with

R2 = C2rine
1

1−α
(F̄ (rin))

2

2f(rin)φ′(rin)
(αK)2 +R1.

If we denote

C4

:= 5 max

{
C2e

2rin(F̄ (rin))
2

2f(rin)φ′(rin)
,

(√
c
(
18c2 + 2

)
ec
[

(F̄ (rin))
2

2f(rin)φ′(rin)

])
, C1,

(
3c

2
r2
inC3e

4

)}
,

then if α ≤ 1/2 and 4
√
JK ≥ 2ce and 4

√
JK ≥ 2 and J ≥ 3, we get

|R2| ≤ C4

(√
αKα + α + (Kα)2

)
.

This completes the proof of Proposition 3.4.

Proof of Theorem 3.3

For this proof, we simplify first the expression of the bound in Theorem 3.2 and then

compute in closed each term of the simplified bound for the case of Generalized Pareto

distributions. In turn, we find explicitly the root of the simplified bound (i.e. where
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the bound is 0). Then we study the relation between this root and the coefficient of

variation to conclude the result.

Let us first analyze the main terms in the upper bound derived in Theorem 3.2,

we have

∫ ∞
rin

∫ ∞
x

(y − x)F (y)f(x)f(y)c3e−cF (x)dydx

≤
∫ ∞
rin

∫ ∞
x

(y − rin)F (y)f(x)f(y)c3e−cF (x)dydx

=

∫ ∞
rin

(y − rin)F (y)f(y)c2
[
e−cF (x)

]x=y

x=rin
dy

=

∫ ∞
rin

(y − rin)F (y)f(y)c2(e−cF (y) − e−cF (rin))dy.

So we get that

c2e−c

2

∫ ∞
rin

(y − rin)2F (y)f(y)dy +

∫ ∞
rin

∫ ∞
x

(y − x)F (y)f(x)f(y)c3e−cF (x)dydx

≤ c2

∫ ∞
rin

(y − rin)F (y)f(y)(e−c + e−cF (y) − e−cF (rin))dy

(a)

≤ c2

∫ ∞
rin

(y − rin)F (y)f(y)dy

=
c2

2

[
−(y − rin)F (y)2

]y=∞
y=rin

+
c2

2

∫ ∞
rin

F (x)2dx

(b)
=

c2

2

∫ ∞
rin

F (x)2dx,

where in (a), we have used that (e−c + e−cF (y) − e−cF (rin)) ≤ 1 for all y ≥ rin and in

(b), we have used the Markov inequality, since for x ≥ rin∣∣∣∣12 ((x− rin)+
)
F (x)2

∣∣∣∣ ≤ ((x− rin)+) (E[V ])2

x2
≤ (E[V ])2

x
→x→∞ 0.

Hence, we have

U∗co − U∗in ≤
1

J

c2

2

[ ∫ ∞
rin

F (x)2dx− (F̄ (rin))
2

φ′(rin)
rine

−cF (rin)

]
+ o(1/J).

Let us analyze the main term of the previous bound as a function of ξ. As computed

in Section 3.4, we have qin = (1 − ξ)
1
ξ . Let us now compute explicitly each term in
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the bound. ∫ ∞
rin

F (x)2dx =

∫ qin

0

q2 dq

f(F−1(1− q))

=

∫ qin

0

q2(q−ξ−1)dq

=

∫ qin

0

q1−ξdq

=
q2−ξ
in

2− ξ
=

(1− ξ)
2−ξ
ξ

2− ξ
,

and

rinF (rin)
2

φ′(rin)
=

1
1−ξ ((1− ξ)

1
ξ )2

(1− ξ)
= (1− ξ)

2−2ξ
ξ .

By combining the two previous equations, we get that the main term of the previous

bound is

c2

2

[ ∫ ∞
rin

F (x)2dx−(F̄ (rin))
2

φ′(rin)
rine

−cF (rin)

]
=

1

(2− ξ)(1− ξ)

(
(1− ξ)− (2− ξ)e−c(1−ξ)

1
ξ

)
.

Since ξ ≤ 0 then the sign of the RHS is the sign of the following quantity

γ(ξ, c) := (1− ξ)− (2− ξ)e−c(1−ξ)
1
ξ
.

The function γ(ξ, c) is increasing in c and the value at c = 0 is −1. This implies that

for an ξ ≤ 0, there exists a threshold cξ such that for all c ≤ cξ, U
∗
co − U∗in ≤ 0. Let

us look in details to the threshold cξ for which γ(ξ, c) = 0, i.e., exp{−cξ(1− ξ)1/ξ} =

(1− ξ)(2− ξ). We can solve for cξ to obtain

cξ = −(1− ξ)
−1
ξ ln

(
1− ξ
2− ξ

)
.

Since (1−ξ)
−1
ξ and − ln(1−ξ

2−ξ ) are increasing positive functions in ξ then cξ is increasing

with ξ. Hence, the maximum value c̄ of the threshold cξ is reached when ξ → 0−.

Fix any c < c̄, since the function that maps the ξ to the threshold cξ is strictly

increasing and continuous in ξ, there exists ξc such that cξc = c. In turn, we have for

all ξ ≥ ξc, we have γ(ξ, c) ≤ 0. Recall that ξ = (CV 2 − 1)/(2CV 2) is increasing in
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the coefficient of variation CV , so we conclude that there is corresponding threshold

(τc := 1/
√

1− ξc) on the coefficient of variation, such that for all CV ≥ τc, we have

U∗co − U∗in ≤ 0. This completes the proof.

C.4 Proofs of auxiliary results

Proof of Lemma C.1-1

Let n ≥ 2 and X1, X2, ..., Xn be i.i.d. random variables drawn from an IFR distribu-

tion F and define M = max(X1, X2, ..., Xn). The cumulative distribution function of

M is (F )n. If F (x) = 0, then the hazard rate is given by zero and if F (x) > 0, the

hazard rate is given by

λM(x) =
n f(x) (F (x))n−1

1− (F (x))n
=

n f(x) (F (x))n−1

F (x) (1 + F (x) + ...+ (F (x))n−1)

= n
f(x)

1− F (x)

1

1 + 1
F (x)

+ ...+ 1
(F (x))n−1

·

Note that f(x)/F (x) is non-decreasing since by assumption F is IFR. In addition

the fact that F is non-decreasing and non-negative implies that 1 + 1/F (x) + . . . +

1/(F (x))n−1 is non-increasing. In turn, (1 + 1/F (x) + . . . + 1/(F (x))n−1)−1 is seen

to be non-decreasing. We deduce that λM(·) is non-decreasing. This concludes the

proof.

Proof of Lemma C.2-2

Fix ξ in [−1, 0]. We first prove that h(ξ, ·) is increasing for x ∈ [0, 1]. Indeed,

∂h(ξ, x)

∂x
= −e−

2
2−ξ+γ(ξ)x1−ξ + 2x−ξ = x−ξ(2− e−

2
2−ξ+γ(ξ)x) ≥ 0,

where in the last inequality, we used the fact that ξ ≤ 0, x ∈ [0, 1] and γ(ξ) ≤

0. Next, we prove that h is concave with respect to the first component on the

intervals [−1. − 0.5] and (−0.5, 0). For that we will show that the second partial
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derivative w.r.t to ξ of h is increasing w.r.t x, and then show that its maximum value

at x = 1 is negative. It is clear that h is infinitely differentiable in the considered

intervals [−1.− 0.5] and (−0.5, 0). Applying Schwartz’s theorem to switch the order

of derivatives yields

∂3h(ξ, x)

∂x∂2ξ

=
∂3h(ξ, x)

∂2ξ∂x

=
∂2

∂2ξ

(
x−ξ(2− e−

2
2−ξ+γ(ξ)x)

)
= ln2(x)x−ξ(2− e−

2
2−ξ+γ(ξ)x)− ln(x)

4x

(2− ξ)2
x−ξe−

2
2−ξ+γ(ξ) +

4x(1− ξ)
(2− ξ)4

x−ξe−
2

2−ξ+γ(ξ).

Since ξ ≤ 0 and 0 ≤ x ≤ 1 and γ(ξ) ≤ 0, we have that

∂3h(ξ, x)

∂x∂2ξ
≥ 0.

In turn, this implies that

∂2h(ξ, x)

∂2ξ
≤ ∂2h(ξ, 1)

∂2ξ
=

2e−
2

2−ξ+γ(ξ)

(2− ξ)5
(ξ2 − 2).

The right-hand-term above is non-positive for all ξ ∈ [−1, 0] so we conclude that

h(·, x) is concave on the intervals [−1. − 0.5] and (−0.5, 0). This completes the

proof.

Proof of Lemma C.2-3

i.) Let us show that the quantiles qin and qco are decreasing with ξ.

For all ξ < 0, qin = (1− ξ)1/ξ is differentiable and its derivative is given by

∂qin
∂ξ

=
∂

∂ξ
(e

ln(1−ξ)
ξ ) =

qin
ξ2

(
− ξ

1− ξ
− ln(1− ξ)

)
=

qin
ξ2

(
1− 1

1− ξ
+ ln(

1

1− ξ
)

)
.

Since for all x > 0 we have ln(x) ≤ x− 1 then we conclude that ∂qin/∂ξ ≤ 0.

Let us now show that qco is decreasing. We consider the following function for all

ξ ≤ 0 and 0 < q < 1.

G(q, ξ) = 1− qξ − ξ

2

2− q
1− q

.
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We have G(qco, ξ) = 0 and G(·, ·) is differentiable so by the implicit function

theorem, qco is differentiable with respect to ξ with derivative given by

∂qco
∂ξ

= −
∂G
∂ξ

∂G
∂q

.

We have

∂G

∂q
(qco, ξ) = −ξ

(
qξ−1
co +

1

2(1− qco)2

)
∂G

∂ξ
(qco, ξ) = − ln(qco)q

ξ
co −

1

2

2− qco
1− qco

(a)
= − ln(qco)q

ξ
co −

1

ξ
(1− qξco)

=
qξco
ξ

(
ln(q−ξco )− (q−ξco − 1)

)
,

where in (a), we used the fact that G(qco, ξ) = 0. It is clear that ∂G/∂q > 0. Since

ξ < 0 and since ln(x) ≤ x − 1 for all x > 0, we also observe that ∂G/∂ξ > 0. We

conclude that ∂qco/∂ξ < 0.

ii.) Recalling that qin = (1 − ξ)1/ξ and (1/ξ)(1 − qξco) = (2 − qco)/(2(1 − qco)), we

have

[qin(ξ)]
ξ − [qco(ξ)]

ξ = 1− ξ −
(

1− ξ

2

2− qco
1− qco

)
=

ξ

2

qco
1− qco

.

Note that for ξ ∈ [−1, 0],

ξ

2

(qco(ξ))
1−ξ

1− qco(ξ)
=

(1− (qco(ξ))
ξ)(qco(ξ))

1−ξ

2− qco(ξ)

=
((qco(ξ))

−ξ − 1)qco(ξ)

2− qco(ξ)
≥ −qco(ξ) ≥ −qin(ξ)

≥ −qin(−1) > −1,

so we conclude that

qin(ξ) = qco(ξ)

(
1 +

ξ

2

(qco(ξ))
1−ξ

1− qco(ξ)

) 1
ξ

≥ qco(ξ) exp

{
(qco(ξ))

1−ξ

2(1− qco(ξ))

}
,
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where in the last inequality we used that ξ < 0 and that ln(1 +x) ≤ x for all x > −1.

In turn, we obtain

qco(ξ)

qin(ξ)
≤ exp

{
(qco(ξ))

−ξ −qco(ξ)
2(1− qco(ξ))

}
.

We recall that (1/ξ)(1− qξco) = (2− qco)/(2(1− qco)), so

q−ξco =

(
1 +

(
−ξ

2

)(
1 +

1

1− qco

))−1

,

Hence

(qco)
−ξ −qco

2(1− qco)
=

(
1 +

(
−ξ

2

)(
1 +

1

1− qco

))−1( −qco
2(1− qco)

)
= −1

2

(
1− qco
qco

+

(
−ξ

2

)(
1− qco
qco

+
1

qco

))−1

= −1

2

((
2

qco
− 1

)(
1− ξ

2

)
− 1

2

)−1

= −
((

2

qco
− 1

)
(1− ξ)− 1

)−1

.

So we conclude that

qco(ξ)

qin(ξ)
≤ α(ξ, qco),

where

α(ξ, y) := exp

{
−
((

2

y
− 1

)
(1− ξ)− 1

)−1
}
.

Since 0 ≤ qco ≤ 1 it is clear that α(ξ, y) is decreasing with respect to ξ. Let us now

show that α is nonincreasing with respect to y. The function

− ((2z − 1) (1− ξ)− 1)−1 for z ≥ 1,

is nondecreasing in z for all ξ. Since 1/y is non-increasing in y, we conclude that

α(ξ, y) is nonincreasing with respect to y. This concludes the proof.
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Proof of Lemma C.2-4

We first find approximations for qco(0) and qco(−0.5).

Consider ξ = 0. The virtual value function of the maximum of two exponential

random variables in terms of quantiles is given by

φ(q) = − ln(q)− 2− q
2(1− q)

.

We recall that the latter is non increasing and the optimal quantile qco verifies φ(qco) =

0 and we have φ(0.29) > 0 which means that qco(0) > 0.29.

For ξ = −1
2
, the quantile verifies that

1− q− 1
2

−1
2

=
2− q

2(1− q)
,

which can be re written as

−5q
√
q + 4q + 6

√
q − 4 = 0,

so
√
qco verifies a third degree equation. The latter can be solved exactly using

Cardano’s method. It has three roots, and only one belongs to the interval [0, 1].

The latter is bounded as follows

0.369 ≤ qco(−0.5) ≤ 0.37.

The derivative of h(·, x) on [−1, 0] \ {−0.5} is given by

∂h(ξ, x)

∂ξ
=

e
2
ξ−2

+γ(ξ)
(
2− x2−ξ)

(ξ − 2)2
+

2x1−ξ log(x)

ξ − 1

−e
2
ξ−2

+γ(ξ)x2−ξ log(x)

ξ − 2
−

2
(
xξ − x

)
x−ξ

(ξ − 1)2
+
e

2
ξ−2

+γ(ξ)
(
4xξ − 2x2

)
x−ξ

(ξ − 2)3
.

Now we have all ingredients to evaluate the right partial derivatives at ξ =

−0.5, x = α(−0.5, 0.29) and ξ = −1, x = α(−1, 0.369), we find that both are negative.

Given that h(·, x) is concave on the intervals [−1,−0.5] and (−0.5,−1], we deduce
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that h (·, α(−0.5, 0.29)) is decreasing on [−0.5, 0] and h (·, α(−1, 0.369)) is decreasing

on [−0.5,−1].

Hence we get that for any ξ ∈ (−0.5, 0],

h(ξ, α(−0.5, qco(0))) ≤ h(ξ, α(−0.5, 0.29)) ≤ lim
ξ↓−0.5+

h(ξ, α(−0.5, 0.29)) < 0.

Similarly, for any ξ ∈ [−1,−0.5],

h(ξ, α(−1, qco(−0.5))) ≤ h(ξ, α(−1, 0.369)) ≤ h(−1, α(−1, 0.369)) < 0.

The proof is complete.

Proof of Lemma C.3-5

Recall the expression for Gα(·) given in (3.1). For any x ≥ 0, we denote the distribu-

tion function of the maximum of each intermediary by H(x), i.e., H(x) := (Gα(x))K .

For any r > 0,

Uco(r) = E
[
(v

[1]
1:J −max{w[2], r})+

]
= E

[
(v

[1]
1:J −max{w[2], r})1{v[1]

1:J ≥ r}
]

= E
[
v

[1]
1:J1{v

[1]
1:J ≥ r}

]
− E

[
w[2]1{w[2] ≥ r}

]
− r E

[
1{w[2] < r}1{v[1]

1:J ≥ r}
]

= h1(r)− h2(r)− h3(r),

where

h1(r) := E
[
v

[1]
1:J1{v

[1]
1:J ≥ r}

]
,

h2(r) := E
[
w[2]1{w[2] ≥ r}

]
,

h3(r) := r E
[
1{w[2] < r}1{v[1]

1:J ≥ r}
]
.

We next compute the derivative of the functions hi(r), i = 1, 2, 3. Note that for

i = 1, 2,

hi(r) =

∫ 1

r

v dF (i)
co (v),
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and hence hi(r) is differentiable at any r > 0 and

h′i(r) = −r f (i)
co (r).

Note that

F (1)
co (r) = [H(r)]J , f (1)

co (r) = JH ′(r)[H(r)]J−1,

F (2)
co (r) = [H(r)]J + J [H(r)]J−1(1−H(r)),

f (2)
co (r) = J(J − 1)H ′(r)(1−H(r))[H(r)]J−2.

We now turn to h3(r).

h3(r) = r E
[
1{w[2] < r}1{v[1]

1:J ≥ r}
]

= r J H(r)J−1(1−H(r)).

h3(r) is differentiable since f is twice differentiable and furthermore,

h′3(r)

= J H(r)J−1(1−H(r)) + r J (J − 1)H ′(r)H(r)J−2 (1−H(r))− r J H ′(r)H(r)J−1

= J H(r)J−1(1−H(r)) + rf (2)
co (r)− rf (1)

co (r)

= J H(r)J−1(1−H(r))− h′2(r) + h′1(r).

By combining the result of the three previous terms, we obtain that Uco(r) is

differentiable for r > 0 with derivative given by

U ′co(r) = h′1(r)− h′2(r)− h′3(r) = −J H(r)J−1(1−H(r)) = −P
{

w[2] ≤ r ≤ v
[1]
1:J

}
.

Next, we compute U ′′co(r) then try to bound it. U ′co is differentiable for r > 0 and

the second derivative is given by

U ′′co(r) = JH ′(r)[H(r)]J−1 − J(J − 1)H ′(r)(1−H(r))[H(r)]J−2

= JH ′(r)[H(r)]J−2 [H(r)− (J − 1)(1−H(r))]

= JH ′(r)[H(r)]J−2 [1− J(1−H(r))]
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Since H ′(r) = Kαf(r)(Gα(r))K−1, and αJK = c, we have

U ′′co(r) = cf(r)[Gα(r)]KJ−K−1 [1− J(1−H(r))] .

We get that

|U ′′co(r)| ≤ cf(r)
[
1 + [Gα(r)]KJ−K−1J(1− [Gα(r)]K)

]
.

Since (1− [Gα(r)]K) ≤ −K ln(1− α(1− F (r))) and −x ln(x) ≤ e−1 for all x ≥ 0

then we get that

[Gα(r)]KJ−K−1J(1− [Gα(r)]K)

≤ JK

JK −K − 1

(
(1− α(1− F (r)))JK−K−1

) (
− ln((1− F (r)))JK−K−1)

)
≤ JK

JK −K − 1
e−1

=
c

c−Kα− α
e−1.

So we conclude that if J ≥ 3

|U ′′co(r)| ≤ cf(r)

[
1 +

c

c−Kα− α
e−1

]
≤ cf(r)

[
1 +

c

c− 2Kα
e−1

]
(a)
= cf(r)

[
1 +

J

J − 2
e−1

]
(b)

≤ cf(r)
[
1 + 3e−1

]
≤ 3cf(r),

where in (a) we have used that c = JKα and in (b) we have used that J ≥ 3. This

completes the proof.

Proof of Lemma C.3-6

Note that the distribution of the maximum v
[1]
1:J can be written as follows

f
(1)
in (r) =

JK∑
m=1

f
(1)
in (r|M = m)P (M = m) = f(r)

JK∑
m=1

mFm−1(r)P (M = m) .
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The focus of this proof is to bound the probability of matching P (M = m) . Since M

has a Binomial distribution with success probability α = c/(JK), then

P(M = m) =

(
JK

m

)
αm(1− α)JK−m =

JK!

m!(JK −m)!

cm

(JK)m

(
1− c

JK

)JK−m
=

JK!

(JK −m)!(JK)m

(
1− c

JK

)JK−m cm

m!
.

On one hand, using the fact that c/JK = α < 1 and the fact that ln(1 + x) ≥

x/(1 + x) for all x > −1, we have(
1− c

JK

)JK−m
≥

(
1− c

JK

)JK
= eJK ln(1−c/(JK)) ≥ e−c/(1+c/JK) ≥ e−c.

Let us note d = 4
√
JK. For any m ≤ d we have

JK · · · (JK −m+ 1)

(JK)m
≥
(
JK −m+ 1

JK

)m
≥
(
JK −m+ 1

JK

)d
≥

(
JK − d+ 1

JK

)d
.

Furthermore using the fact that ln(1+x) ≥ x/(1+x) for all x > −1 and ex ≥ 1+x

for all x, we have(
JK − d+ 1

JK

)d
= ed ln(1− d−1

JK
) ≥ e

−d(d−1)
JK−d+1 ≥ 1− d(d− 1)

JK − d+ 1
≥ 1− d2

d4 − d+ 1
.

So we conclude that the probability of matching is lower bounded as follows for

any m ≤ d:

P(M = m) ≥ cm

m!
e−c(1− d2

d4 − d+ 1
).

Using the above, we get a lower bound on the density of the maximum

f
(1)
in (r) =

JK∑
m=1

f
(1)
in (r|M = m)P (M = m)

= f(r)
JK∑
m=1

mFm−1(r)P (M = m)

≥ f(r)
d∑

m=1

mFm−1(r)P (M = m)

≥
(

1− d2

d4 − d+ 1

)
(cf(r)e−c)

d∑
m=1

Fm−1(r)
cm−1

(m− 1)!

=

(
1− d2

d4 − d+ 1

)
(cf(r)e−c)

(
ecF (r) −

∞∑
m=d

(F (r)c)m

m!

)
.
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To conclude the proof, now we will bound the remainder
∑∞

m=d
(F (r)c)m

m!
.

Let Z be a random variable with Poisson distribution with mean cF (r) and let

t = ln( d
cF (r)

), then by Chernoff bound we get

+∞∑
m=d

(cF (r))m

m!
= ecF (r)P{Z ≥ d} ≤ ecF (r)ecF (r)(et−1)−td

= ecF (r)et−td

= ed−d ln( d
cF (r)

)

=

(
ecF (r)

d

)d
≤

(
c e

d

)d
.

We conclude that

f
(1)
in (r) ≥

(
1− d2

d4 − d+ 1

)
(cf(r)e−c)

(
ecF (r) −

(c e
d

)d)
= cf(r)e−c(F̄ (r)) −

[
cf(r)e−c

(c e
d

)d
+
d2cf(r)e−c

(
ecF (r) −

(
c e
d

)d)
d4 − d+ 1

]
≥ cf(r)e−c(F̄ (r)) −

[(c e
d

)d
cf(r)e−c +

d2

d4 − d+ 1
cf(r)e−cF̄ (r)

]
≥ cf(r)e−c(F̄ (r)) − cf(r)

[(c e
d

)d
+

d2

d4 − d+ 1

]
.

If we assume that d ≥ 2ce and d ≥ 2 , then we get that

(c e
d

)d
≤ (ce)2

d2

(
1

2

)d−2

≤ (ce)2

d2
≤ 18c2

2d2 − 1
,

d2

d4 − d+ 1
≤ 1

d2 − 1
d

≤ 2

2d2 − 1
.

We conclude that

f
(1)
in (r) ≥ cf(r)e−c(F̄ (r)) − cf(r)

(
18c2 + 2

2d2 − 1

)
.

This completes the proof.
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Proof of Proposition C.3-1

The goal of this proof is to bound the difference rco − rin from both sides. In a first

step, we will bound the difference from above then in a second step, we will bound it

from below. In the whole proof, we assume that α < 1 and αK < 1.

Step 1. Upper bound rco − rin

Let

φα,K(v) := v − 1− (G(v))K

αKf(v)(G(v))K−1
.

rin is the unique solution to φF (v) = v−(1−F (v))/f(v). Note that for any v > 0 ∈ S

1−GK(v)

αKf(v)GK−1(v)
=

1− F (v)

f(v)

∑K−1
i=0 Gi(v)

KGK−1(v)
≥ 1− F (v)

f(v)
,

where the last inequality follows from the fact that G(v) ≤ 1. On another hand, we

have

1−GK(v)

αKf(v)GK−1(v)
=

1− F (v)

f(v)

∑K−1
i=0 Gi(v)

KGK−1(v)

≤ 1− F (v)

f(v)

1

GK−1(v)
≤ 1− F (v)

f(v)

1

(1− α)K
.

We deduce that

φF (v) +

(
1− 1

(1− α)K

)
1− F (v)

f(v)
≤ φα,K(v) ≤ φF (v).

Both the right-hand-side and the left-hand-side are monotonically increasing by the

IFR assumption on F . Let r̃in denote the unique solution to

φ̃(v) := φF (v) +

(
1− 1

(1− α)K

)
1− F (v)

f(v)
= 0.

We have that

rin ≤ rco ≤ r̃in.
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Furthermore, we have

0−
(

1− 1

(1− α)K

)
rin = φ̃(r̃in)− φ̃(rin)

= r̃in − rin −
1

(1− α)K

(
1− F (r̃in)

f(r̃in)
− 1− F (rin)

f(rin)

)
≥ r̃in − rin,

and hence

0 ≤ rco − rin ≤
(

1

(1− α)K
− 1

)
rin.

We have for all α < 1,

(1− α)−K = e−K ln(1−α)
(a)

≤ e
Kα
1−α ≤ e

Kα
1−α

(b)
= 1 +

Kα

1− α
ex̃ ≤ 1 +

Kα

1− α
e

1
1−α ,

where in (a), we have used the fact that for all x > −1 we have x
1+x
≤ ln(1 + x) and

α < 1. While in (b), we have used the fact by the Taylor expansion of ex around

0 at the point Kα
1−α , there exists 0 ≤ x̃ ≤ Kα

1−α ≤
1

1−α -(because αK < 1)- such that

e
Kα
1−α = 1 + Kα

1−αe
x̃.

We conclude that that for α < 1 and Kα < 1

0 ≤ rco − rin ≤
Kα

1− α
rin e

1
1−α . (C.4-14)

This concludes the first step.

Step 2. The goal of this step is to find a lower bound of order Kα on the difference

rco − rin. By definition, rco is the unique solution to the following equation

rco =
1− (Gα(rco))

K

αKf(v)(Gα(rco))K−1
.

Note that for any k ≥ 0, we have Gk
α(v) = exp

{
k ln(1− αF̄ (v))

}
and hence, using

the fact that for all 0 ≥ x > −1, ln(1 + x) ≤ x, we have

Gk
α(v) ≤ exp

{
−kαF̄ (v)

}
.
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In turn, using the fact that for all x ≤ 0, exp(x) ≤ 1 + x+ x2/2, we have

Gk
α(v) ≤ 1− kαF̄ (v) + (kα)2(F̄ (v))2/2.

We hence have for αK < 1,

rco ≥
KαF̄ (rco)−K2(αF̄ (rco))

2/2

αKf(rco)
[
1− (K − 1)αF̄ (rco) + ((K − 1)αF̄ (rco))2/2

]
=

F̄ (rco)−Kα(F̄ (rco))
2/2

f(rco)
[
1− (K − 1)αF̄ (rco) + ((K − 1)αF̄ (rco))2/2

]
(a)

≥ F̄ (rco)−Kα(F̄ (rco))
2/2

f(rco)

[
1 + α(K − 1)F̄ (rco)−

((K − 1)αF̄ (rco))
2

2

]
=

F̄ (rco)

f(rco)

[
1 + α(K − 1)F̄ (rco)

]
− αK(F̄ (rco))

2

2f(rco)

[
1 + α(K − 1)F̄ (rco)

]
+R1,

where

R1 = −((K − 1)αF̄ (rco))
2

2f(rco)

[
F̄ (rco)−Kα(F̄ (rco))

2/2
]
.

The inequality (a) falls from the fact that (K − 1)αF̄ (rco) < 1 and for all 0 ≤ x ≤ 1,

we have x(1− x/2) ≤ 1/2 and for x ≤ 1
2
, we have 1

1−x ≥ 1 + x.

Using the fact that α ≤ αK < 1 and F̄ (rco) ≤ 1 and the distribution is IFR then

the remainder verifies |R1| ≤ 2 F̄ (rin)
f(rin)

(αK)2.

So far we have shown that rco verifies the following:

rco

≥ F̄ (rco)

f(rco)

[
1 + α(K − 1)F̄ (rco)

]
− αK(F̄ (rco))

2

2f(rco)

[
1 + α(K − 1)F̄ (rco)

]
− F̄ (rin)

f(rin)
(αK)2

=
F̄ (rco)

f(rco)
+ αK

(F̄ (rco))
2

2f(rco)
− α(F̄ (rco))

2

f(rco)
− α2K(K − 1)

(F̄ (rco))
3

2(f(rco))2
− F̄ (rin)

f(rin)
(αK)2

≥ F̄ (rco)

f(rco)
+ αK

(F̄ (rco))
2

2f(rco)
− αF̄ (rco)

f(rco)
− (Kα)2 (F̄ (rco))

2

2(f(rco))2
− F̄ (rin)

f(rin)
(αK)2

≥ F̄ (rco)

f(rco)
+ αK

(F̄ (rco))
2

2f(rco)
− αF̄ (rin)

f(rin)
− (Kα)2 (F̄ (rin))

2

2(f(rin))2
− F̄ (rin)

f(rin)
(αK)2,

where in the last two inequalities, we have used the fact that F̄ (rco) ≤ 1 and the

monotonicity of the hazard rate and that rco ≥ rin.
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Noting that F̄ /f = v − φ(v), we have, using a Taylor expansion that there exists

r̃ ∈ [rin, rco] such that

F̄ (rco)

f(rco)
=

F̄ (rin)

f(rin)
+ (1− φ′(rin))(rco − rin)− (1/2)φ′′(r̃)(rco − rin)2

There exists C1 such that φ′′ ≤ C1 because f is twice continuously differentiable,

and f(rin) > 0, so φ(·) is twice continuously differentiable so its second derivative is

bounded around rin. In turn, we get that

F̄ (rco)

f(rco)
≥ F̄ (rin)

f(rin)
+ (1− φ′(rin))(rco − rin)− (1/2)C1(rco − rin)2.

Similarly, we have for some other r̃ ∈ [rin, rco]

(F̄ (rco))
2

f(rco)
=

(F̄ (rin))
2

f(rin)
+ (rco − rin)H ′(r̃) ≥

(F̄ (rin))
2

f(rin)
− C2(rco − rin),

where H(r) = (F̄ (r))2

f(r)
and |H ′(r̃)| ≤ C2, such C2 exists since, F is twice differentiable

and f(rin) > 0 so H ′(·) is twice differentiable and bounded around rin.

By combining the last two bounds, we get that rco verifies the following:

rco ≥
F̄ (rco)

f(rco)
+ αK

(F̄ (rco))
2

2f(rco)
− αF̄ (rin)

f(rin)
− (Kα)2 (F̄ (rin))

2

(f(rin))2
− F̄ (rin)

f(rin)
(αK)2

≥ F̄ (rin)

f(rin)
+ (1− φ′(rin))(rco − rin) + αK

(F̄ (rin))
2

2f(rin)
+R2

= φ′(rin)rin + rco(1− φ′(rin)) + αK
(F̄ (rin))

2

2f(rin)
+R2,

where

R2 = − F̄ (rin)

f(rin)
(αK)2−αKC2

2
(rco−rin)−(1/2)C1(rco−rin)2−αF̄ (rin)

f(rin)
−(Kα)2 (F̄ (rin))

2

(f(rin))2
.

Let us assume that α ≤ 1/2. If we denote M1 := rin
φ′(rin)

max(2, rin, 2C1e
4, C2e

2)

and using (C.4-14), we get that |R2| ≤ (α + 3(Kα)2)M1φ
′(rin). So we conclude that

φ′(rin)rco ≥ φ′(rin)rin + αK
(F̄ (rin))

2

2f(rin)
− (α + 3(Kα)2)M1φ

′(rin).

So

rco ≥ rin + αK
(F̄ (rin))

2

2f(rin)φ′(rin)
− (α + 3(Kα)2)M1,

The result follows.
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C.5 Illustration of the Online Display
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Figure C.5-1: High level overview of basic actors and communication links in the real
time bidding market.

C.6 Generalized Pareto distributions
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Figure C.6.1: The density function for generalized Pareto distributions for different
parameters of ξ when σ = 1− ξ.
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