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Abstract 

 

The purpose of the study was to determine whether steady state exercise (SSE) or high intensity 

interval exercise (HIIE) would better improve energy expenditure (EE) during 90 minutes of 

excess post exercise oxygen consumption (EPOC) while attempting to match EE between both 

exercise protocols.  We also wanted to examine physiological changes during post exercise 

measurements, which included VO2, RER, VE and HR.  Twelve males aged between 19 and 24 

were assigned to the SSE and HIIE conditions.  A VO2max and a 30s-all-out sprint set at 150% of 

maximum workload was performed on a cycling ergometer interspersed by 5 minutes to ensure 

sufficient recovery time.  Participants randomly completed SSE or HIIE followed by 90 minutes 

of EPOC.  A gross efficiency (GE) of 18% was used in order to best quantify the anaerobic 

attributable EE during the HIIE in order to estimate total EE.  Our results indicate that the HIIE 

expended less EE than SSE and from our pre-test EE estimations (p<0.05).  With that being said, 

HIIE was able to generate a greater EE during EPOC in comparison to SSE, while utilizing more 

grams of fat during post exercise measurements (p<0.05).  There was no significant difference 

between both protocols when adding exercise and EPOC EE.  Physiological markers such as VO2 

(L.min-1), VE (L.min-1) and HR were significantly greater in HIIE during EPOC.  To conclude, 

our findings indicate that HIIE is a time efficient workout able to expend more EE, utilize more 

fat and have greater physiological responses during EPOC when compared to SSE. 
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1. Introduction 
 

Physical activity has been positively correlated with physical and mental health-related 

quality of life (Bize, Johnson, & Plotnikoff, 2007).  However, evidence suggest that 85% of 

Canadians fail to meet the physical activity recommendations (Colley et al., 2011a).  As of 2017, 

as many as 49.2% and 67.7% of adults ranging from 18-34 and 35 to 49 years of age, 

respectfully, self-reported and categorized themselves as obese or overweight (Statistics Canada, 

2018).  This lack of exercise increases the risk of mortality, which progressively increases with 

rising BMI values that range above 30 (Calle, Thun, Petrelli, Rodriguez, & Heath, 1999; Gu, He, 

& Duan, 2006; Jee et al., 2006).  Physiological repercussions in response to obesity include 

metabolic inflammatory markers that can give rise to atherosclerosis, hypertension, type-II 

diabetes, impaired glucose tolerance as well as dyslipidemia characterized by elevated 

triglycerides, low HDL-cholesterol and a small LDL particle phenotype (Lamarche, Lemieux, & 

Després, 1999; Lee, Blair, & Jackson, 1999; Tchernof et al., 1996).  Obesity has also been 

associated with various forms of cancers (Renehan, Tyson, Egger, Heller, & Zwahlen, 2008), 

psychological and social burdens (Colles, Dixon, & O’Brien, 2008; Dixon, Dixon, & O’Brien, 

2003; Wadden et al., 2006) as well as depression in older individuals with poor health, chronic 

disease and functional disabilities (Onyike, Crum, Lee, Lyketsos, & Eaton, 2003; Roberts, 

Deleger, Strawbridge, & Kaplan, 2003).  

 

The Canadian Society for Exercise Physiology and the U.S. Department of Health and 

Human Services both recommend that adults should achieve 150 minutes of moderate to 

vigorous exercise per week in order to obtain health benefits (Donnelly et al., 2009; Tremblay et 
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al., 2011).  However, many Canadians fail to meet these recommendations (Colley et al., 2011b) 

with lack of time (Kimm et al., 2006; Stutts, 2002) and access to facilities being the two major 

factors for inactivity (Booth et al., 2000; Sherwood & Jeffery, 2000).  Alternatively, short but 

very intense exercise can potentially provide health benefits in a time efficient manner (Keating 

et al., 2014).  Compared to traditional continuous exercise, high intensity interval training (HIIT) 

has been shown to have similar or greater cardiovascular and metabolic benefits in healthy 

populations despite having a smaller training volume (Keating et al., 2014).  These benefits 

include an increase in cardiorespiratory fitness (Babraj et al., 2009; Burgomaster et al., 2008; 

Ciolac, Bocchi, Bortolotto, Carvalho, & Greve, 2010; MacPherson, Hazell, Olver, Paterson, & 

Lemon, 2011; Nybo et al., 2010; Trapp, Chisholm, Freund, & Boutcher, 2008), improved work 

capacity (Burgomaster, Hughes, Heigenhauser, Bradwell, & Gibala, 2005) and insulin sensitivity 

(Babraj et al., 2009; Ciolac et al., 2010; Trapp et al., 2008).  The benefits of HIIT are reportedly 

similar for overweight/obese men, notably an increase in VO2max and resting fat oxidation, 

improvement in insulin sensitivity and decrease in systolic blood pressure (Whyte, Gill, & 

Cathcart, 2010).  Interestingly, this particular type of training had beneficial results in populations 

with coronary artery disease, congestive heart failure, middle aged adults with metabolic 

syndrome and obese individuals as it revamped their cardiorespiratory fitness (Moholdt et al., 

2009; Munk, Staal, Butt, Isaksen, & Larsen, 2009; Warburton et al., 2005; Wisloff et al., 2007).  

 

Energy intake that exceeds energy expenditure (EE) results in a positive energy balance 

that can consequently lead to weight gain (Thyfault et al., 2004).  Therefore, EE that occurs from 

exercise can lead to a daily negative energy balance hence, weight loss.  Measuring EE during 

steady state exercise is precisely done with the use of a gas analyzer as it measures energy 

derived from the aerobic system.  On the other hand, high intensity exercise above 100% work 
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max (Wmax) relies mainly on the anaerobic system making it difficult to quantify its EE since 

there is no gold standard method to confidently quantify it.  Different methods have been 

introduced over the years in order to estimate anaerobic attributable EE, such as the blood lactate 

concentrations (BLC), the O2 deficit more commonly known as the Accumulated Oxygen Deficit 

(AOD), the Excess Post Exercise Oxygen Consumption (EPOC) and the Gross Efficiency (GE) 

method. 

 

This review of literature will elaborate on the health benefits of exercise, the different 

energy systems that are mobilized during physical activity, measures by which energy 

expenditure can be quantified whether it is derived from the aerobic or anaerobic pathway and the 

physiological benefits that emanate from continuous and high intensity interval training/exercise.  

It will also review recent literature to explore which of these two exercise protocols (i.e. 

continuous vs interval) is optimal for post exercise energy expenditure. 
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2. Literature review 
 

2.1 Physical activity  
 

Physical activity is defined as “bodily movement that is produced by the contraction of 

skeletal muscle and that substantially increases energy expenditure” (Physical activity and health: 

a report of the Surgeon General, 1996).  Increasing EE is crucial to maintain a healthy lifestyle as 

it influences energy balance and body composition.  It can also decrease the risk of 

cardiovascular disease, stroke, type II diabetes, as well as colon and breast cancers (Miles, 1996).  

On the other hand, physical inactivity, which is defined as “a state in which bodily movement is 

minimal and energy expenditure approximates the resting metabolic rate” (Bianchini, Kaaks, & 

Vainio, 2002) leads to a positive energy balance.  To clarify, energy intake exceeding EE over a 

period of time is the foundation of weight gain (Thyfault et al., 2004).  Being overweight or 

obese is categorized as having a body mass index (BMI) ranging from 25-29.9 kg.m-2 and 30 

kg.m-2 +, respectively (Donnelly et al., 2009).  Detrimental health consequences can arise from 

having excessive levels of body fat such as; heart disease, hypertension, diabetes, some forms of 

cancer along with psychosocial and economic difficulties (Gortmaker, Must, Perrin, Sobol, & 

Dietz, 1993; Mokdad et al., 2003; Must et al., 1999).  A large waist circumference along with 

high visceral fat has been strongly associated with increased risk of mortality in middle-aged men 

and women (De Koning, Merchant, Pogue, & Anand, 2007; Reis et al., 2009), whereas a greater 

proportion of fat free mass is correlated with a lower risk of all-cause mortality (Bigaard et al., 

2005; Heitmann, Erikson, Ellsinger, Mikkelsen, & Larsson, 2000).   

The prevalence of obesity over the last several decades has been steadily rising at 

unprecedented levels (Flegal, 2012). One underlying cause behind this escalation is the greater 
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consumption of high caloric (sugar) and fat-laden foods, which are not only affordable but also 

easily accessible (Rolls, 2003).  Physical inactivity has also been shown to be a relevant cause of 

obesity.  Of concern is the fact that many adults do not meet the recommended levels of exercise 

(Macera et al., 2003).  According to the Canadian Society for Exercise Physiology and the U.S 

Department of Health and Human Services, 150 minutes of moderate to vigorous exercise per 

week should be completed if one wishes to obtain health benefits (Donnelly et al., 2009; 

Tremblay et al., 2011).  However, lack of time is often cited as the most common reason for 

inactivity in patients with chronic conditions as well as those at risk of cardio-metabolic disease 

(Gibala & Little, 2010; Gibala, Little, Macdonald, & Hawley, 2012).  A potential solution to 

overcome the confines of time is high intensity interval training/exercise (HIIT/HIIE), which 

condenses a full workout into 15-20 minutes of exercise.  This genre of exercise will be discussed 

in more detail later in this literature review. 

 

2.2 Exercise 

  

2.2.1 Anaerobic 

 

Physical fitness cannot be merely summarized by maximal oxygen consumption alone.  

Speed, strength and maximal power are all determinant factors of athletic activities derived from 

the anaerobic metabolism.  This powerful yet limited energy system is divided into alactic and 

lactic components (Vandewalle, Péerès, & Monod, 1987).  The alactic system creates the shortest 

and strongest muscle contraction and predominates during the first 10 seconds of high intensity 

exercise (Serresse, Lortie, Bouchard, & Boulay, 1988).  The energy source of this immediate 
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muscle contraction is generated from ATP and phosphocreatine, which are directly stored in the 

muscle cell (Jacobs, Tesch, Bar-Or, Karlsson, & Dotan, 1983).  A non-invasive biopsy to 

visualize ATP and creatine phosphate that is also based on muscle energetics has been developed 

from the application of 31P magnetic resonance spectroscopy (Meyer, Kushmerick, & Brown, 

1982; Chance et al., 1986; Blei, Conley, & Kushmerick, 1993a; Blei, Conley, Odderson, 

Esselman, & Kushmerick, 1993b; McCully, Fielding, Evans, Leigh, & Posner, 1993),  which 

emits a radio-frequency within a magnetic field providing a unique view of ATP turnover and 

creatine phosphate (Conley, Cress, Jubrias, Esselman, & Odderson, 1995).  

 

Anaerobic glycolysis is the second system which breaks down carbohydrates, mainly in 

the form of muscle glycogen, resulting in pyruvic acid followed by lactic acid (Gastin, 2001).  

The glycolytic system is mobilized when the exercise demand exceeds ATP-PC stores and has 

been found to peak between the 16th and 30th second of intense exercise (Jacobs et al., 1983; 

Serresse et al., 1988).  Maximal anaerobic power has been found in exercise lasting as much as 

90 seconds when performed on a cycling ergometer with a resistance set at 0.1 kp/kg (Serresse, 

Simoneau, Bouchard & Boulay, 1991).   

 

During high intensity exercise (e.g. HIIE) fast twitch motor units are recruited for 

relatively short durations (Enoka & Duchateau, 2008; Scott, 2011), however, these muscles fibres 

are less efficient and easily fatigued (Sargeant, 1994).  The result is the attenuation of the 

anaerobic capacity through depletion of ATP-PC stores in the  muscle and blood lactate 

accumulation (Hermansen & Vaage, 1977; Hultman & Sjoholm, 1983; Karlsson & Saltin, 1970; 

Medbø & Tabata, 1989; Sahlin, Harris, & Hultman, 1975).  It is imperative to note that all three 

energy systems (i.e. alactic, glycolytic and aerobic) are sequentially interconnected in order to 
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efficiently deliver the necessary energy into working muscles (Gastin, 2001).  Single bouts of 

dynamic high intensity exercise lasting 6s (Péronnet & Thibault, 1989), 30s (Calbet, Havarren, & 

Dorado, 1997), 60s (Withers, Ploeg, & Finn, 1993) and 90s  (Gastin & Lawson, 1994) have all 

shown to have aerobic contributions ranging from 5%, 23%, 47% and 58%, respectively.  Not 

only is the oxidative pathway relevant during intense exercise but it can also be utilized for the 

removal of lactic acid and for the resynthesis of phosphocreatine (Linossier, Denis, Dormois, 

Geyssant, & Lacour, 1993). 

 

2.2.2 Aerobic 

 

Aerobic capacity is the product of the body’s ability and efficiency to supply oxygen to 

the skeletal muscles via the cardiorespiratory system in order to create energy (McArdle, Katch & 

Katch, 2010).  This process uses carbohydrates, fats and in some circumstances proteins when 

oxygen is present and provides large amounts of ATP (Gastin, 2001) however, it is rate-limited 

by the oxidative phosphorylation efficiency and by the respiratory and cardiovascular systems’ 

ability to deliver the oxygen to the working muscles (Gastin, 2001).  The energy produced by the 

aerobic system can be calculated by steady-state O2 uptake measurements and is considered the 

gold standard in the estimation of exercise-energy expenditure (Scott, Leighton, Ahearn, & 

McManus, 2011).  Energy released from the breakdown of carbohydrates and fats in the presence 

of oxygen is directly related with whole-body aerobic production of ATP (Åstrand, 1981).  For 

every litre of oxygen consumed (standard temperatures, pressure and density) roughly 20kJ of 

energy is produced (Gastin, 2001; Scott, 1998).  The respiratory exchange ratio (RER) enables us 

to determine the proportion of carbohydrates and fats that are utilized to provide the indirect 
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measurement of aerobic energy generated (Gastin, 2001).  Lactate production can occur during 

light aerobic exercise where it is oxidized and utilized in the Krebs cycle.  When lactate 

production is equivalent to its removal, and its concentration remains constant, VO2 can represent 

whole body EE (di Prampero & Ferretti, 1999). 

 

Metabolic and physiological adaptations in response to exercise depend on the intensity, 

duration and frequency of exercise training sessions.  Endurance training causes adaptations in 

the pulmonary, cardiovascular and neuromuscular system, which improve the delivery of oxygen 

to the mitochondria, consequently enhancing aerobic metabolism within the muscle cells (Jones 

& Carter, 2000).  Training programs on recreationally active participants involving as little as 3-5 

weekly sessions of 20-30 minutes of aerobic training have been shown to increase adult male and 

female’s VO2max by 10% over a 6 week period (Carter, Jones, & Doust, 1999).  Gormley et al. 

(2008) had 61 young adults free of cardiovascular disease matched for their sex and VO2max.  

They were randomly assigned to perform at 50%, 75% 95% of their VO2 reserve for 6 weeks 

while having their EE controlled throughout.  They found that each group had a significantly 

greater VO2max after the training period, but more importantly, the higher intensity exercise was 

more effective for improving VO2max.  Another adaptation resulting from aerobic training is 

change in skeletal muscle substrate metabolism (Holloszy & Coyle, 1984).  For example, 

Chesley, Heigenhauser, & Spriet (1996) and Green et al. (1992) found that cycling at 65-67% 

VO2max for 2 hours over the course of  5-7 days decreased the rate of glycogen degradation and 

lactate production when exercise intensities were consistent throughout the training program.   

 

Aerobic exercise has also been shown to increase resting fat oxidation in young healthy, 

trained, and elderly individuals (Calles-Escandon, Goran, O’Connell, Nair, & Danforth Jr, 1996; 
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Poehlman, Gardner, Arciero, Goran, & Calles-Escandon, 1994; Romijn, Klein, Coyle, Sidossis, 

& Wolfe, 1993).  There is evidence suggesting a greater post exercise energy expenditure when 

subjects exercised at 70% VO2max (20, 40 & 80 minutes) where longer exercise durations led to a 

greater post exercise EE (Bahr, Ingnes, Vaage, Sejersted, & Newsholme, 1987).  Although 

exercise duration is a key factor when measuring EPOC (Bahr et al., 1987), relative intensity of 

exercise has been shown to influence physiological responses (Jones & Poole, 2005; Poole, 

Ward, Gardner, & Whipp, 1988; Whipp & Wasserman, 1972; Wilkerson, Koppo, Barstow, & 

Jones, 2004). 

 

2.2.3 VO2 Slow Component 

 

Steady state exercise performed at a constant resistance, below the lactate threshold (LT), 

will result in a stable VO2 within 3 minutes (Whipp & Wasserman, 1972; Whipp, Ward, 

Lamarra, Davis, & Wasserman, 1982).  Once exercise intensity surpasses LT, additional O2 

requirements are necessary and continue to rise until they reach a peak value (i.e. VO2max) or 

exhaustion.   The difference in VO2 found between exercise exceeding 3 minutes above LT 

values and VO2max is characterized as the VO2 slow component, not to be confused with the more 

modest VO2 drift (Barstow, 1994; Casaburi, Storer, Ben-Dov, & Waserman, 1987; Gaesser, 

1994; Poole et al., 1991; Whipp, 1994).  LT is identified by an increase in blood lactate and 

abrupt changes in the respiratory exchange ratio (RER), which is closely related but not 

interchangeable with the ventilatory threshold (Coyle, Coggan, Hopper, & Walters, 1988; Ivy, 

Withers, Van Handel, Elger, & Costill, 1980; Power, Dodd, & Garner, 1984).  If the workload is 

performed above the LT and below the critical power (CP), steady VO2 is delayed (Poole et al., 
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1988; Whipp & Wasserman, 1972; Wilkerson et al., 2004), and the VO2 value would be greater 

than the predicted VO2 gathered from the sub-LT VO2.  CP is known as the maximal amount of 

sustained exercise for a prolonged duration (Jones, Vanhatalo, Burnley, Morton, & Poole, 2010), 

whereas work done above CP would not result in a steady state, but rather, a continuous rise until 

VO2max is attained (Poole et al., 1988; Whipp & Wasserman, 1972).  Exercise intensity domains 

such as “moderate” (<LT), “heavy” (>LT yet < CP), and “severe” (>CP) were named from VO2 

fluctuations (Poole et al., 1988; Wilkerson et al., 2004).  Numerous studies have indicated that 

muscular contractions are a contributing factor to the pulmonary VO2 slow component (Koga et 

al., 2005; Krustrup, Jones, Wilkerson, Calbet, & Bangsbo, 2009; Poole et al., 1991).  More 

specifically, the additional muscle fiber recruitment and the transition towards type II muscle 

fiber recruitment has a significant role on the VO2 slow component during constant work exercise 

(Jones et al., 2011).  

 

Cardiovascular drift (VO2 drift) also ensues roughly 10 minutes into prolonged moderate 

intensities ranging from 50-75% VO2max in a neutral or warm environment (Ekelund, 1967; 

Johnson & Rowell, 1975).  This process is characterized by a gradually decreasing stroke 

volume, pulmonary and systemic mean arterial pressure accompanied with an increase in heart 

rate in order to maintain an appropriate cardiac output (Ekelund, 1967; Rowell, 1987). 

 

2.2.4 High Intensity Interval Exercise  

 

As many as 85% of Canadians fail to meet the minimum physical activity recommended 

by the Canadian Society for Exercise Physiology (CSEP) (Colley et al., 2011b) with lack of time 
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being the predominant reason (Trost, Owen, Bauman, Sallis, & Brown, 2002).  A time efficient 

solution to this problem is high-intensity interval training/exercise (HIIT/HIIE), which can be 

defined as brief, repeated bursts of intense exercise close to VO2max (i.e., ≥ 90%) separated by 

periods of low intensity exercise.  Low volume HIIE is characterised by training sessions that 

consist of ≤10 minutes of intense exercise within a 30-minute window including warm-up, 

recovery periods and a cool down (Gibala & McGee, 2008; Gillen & Gibala, 2014).  This type of 

exercise may be as effective as the traditional prolonged continuous training while having similar 

health benefits in addition to having a reduced time commitment (Gillen & Gibala, 2014). The 

health benefits that arise from interval training include the improvement of muscular strength 

(Kraemer, Ratamess, & French, 2002; Hass, Feigenbaum, & Franklin, 2001), muscular endurance 

(Mazzetti et al., 2000), an increase in bone mass along with a reduction in blood pressure and 

body fat (Kraemer et al., 2002).    

 

Different variations of HIIE protocols can be applied in order to obtain health benefits.  

Trapp et al. (2008) conducted a study on young women where they trained for 15 weeks 

performing 8-second all-out sprints followed by 12 seconds of active recovery for 20 minutes.  

Their findings included a decrease in whole-body abdominal and trunk fat mass accompanied 

with an increase in their VO2max, whole-body leg and trunk fat free mass.  Overweight young men 

completed this same training regimen in a 12-week period, which led to whole-body fat mass 

reduction along with an increase in fat oxidation, and lean mass in the legs and trunk (Heydari, 

Freund, & Boutcher, 2012).     

 

One of the most common HIIE protocols is the Wingate Test, which consists of 30s all-

out cycling set with a high resistance.  Repeating this workout six times, varying from 4 to 7 
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repetitions, over the course of two weeks has been shown to increase skeletal muscle oxidative 

capacity (Burgomaster, Heigenhauser, & Gibala, 2006; Burgomaster et al., 2005; Gibala et al., 

2006) in healthy subjects who were previously sedentary or physically active.  The Wingate 

protocol also improved subjects VO2max (Astorino, Allen, Roberson, & Jurancich, 2012; Hazell, 

MacPherson, Gravelle, & Lemon, 2010; Whyte et al., 2010) and resting fat oxidation 24h post-

exercise (Whyte et al., 2010).  Babraj et al. (2009) and Metcalfe, Babraj, Fawkner, & Vollaard 

(2012) have shown that short-term Wingate-based HIIT protocols improved insulin sensitivity as 

measured using an oral glucose tolerance test in young healthy men.  Similar results were found 

in overweight and obese individuals (Whyte et al., 2010), along with recreationally active men 

and women using the gold standard hyperinsulinemic euglycemic clamp method with the same 

exercise protocol (Richards et al., 2010).  Prolonging this same workout to 6-weeks induced an 

increase in the individuals’ VO2max  (Astorino et al., 2012; Burgomaster et al., 2007, 2008), as 

well as an elevation in whole body fax oxidation, resting muscle glycogen content (Burgomaster 

et al., 2008) and cardiovascular and skeletal muscle remodelling that is observed with traditional 

endurance training programs.  In other words, short-term HIIT was found to produce outcomes 

similar to those resulting from prolonged exercise despite having a 90% difference in training 

volume (Burgomaster et al., 2007, 2008).   

 

Although all-out HIIT protocols can be very effective, it can be impractical for some 

individuals, as it requires a sizable amount of motivation.  For this reason, studies were done to 

examine participants’ physiological adaptations to HIIT at submaximal intensities.  Multiple 

studies report training protocols using 60 seconds of cycling at 85-90% of HRmax interspersed 

with 60 seconds of active recovery. Physiological improvements from this type of training were 

found in young healthy individuals (Little, Safdar, Wilkin, Tarnopolsky, & Gibala, 2010), 
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overweight/obese individuals (Gillen, Percival, Ludzki, Tarnopolsky, & Gibala, 2013), in 

previously sedentary adults (Hood, Little, Tarnopolsky, Myslik, & Gibala, 2011), in patients with 

coronary artery disease (Currie, Dubberley, McKelvie, & Macdonald, 2013) and in subjects with 

type II diabetes  (Little et al., 2011a).  Furthermore, two weeks of HIIT has been shown to 

increase time trial performance, maximal workload and glycemic control in type II diabetes 

patients (Little et al., 2011a).  Hood et al., (2011) Little, Gillen, & Percival (2011b), and Little et 

al. (2010) have all shown that an increase of maximal activity of citrate synthase and cytochrome 

c oxidase can occur from only 2 weeks of HIIT training.  “Citrate synthase is one of the key 

regulatory enzymes in the energy-generating metabolic pathway that catalyzes the condensation 

of oxaloacetate and acetyl coenzyme A to form citrate in the tricarboxylic acid cycle” (Siu, 

Donley, Bryner, & Alway, 2003, p.555).  Little et al. (2010) found that cycling training increased 

citrate synthase, which is likely to improve exercise performance as it would enable individuals 

to work at a higher metabolic rate.  The physiological response to an increase of cytochrome c 

levels is an augmentation in the capacity to oxidize pyruvate and fatty acids and to generate ATP 

(Freyssenet, Di Carlo, & Hood, 1999; Holloszy & Coyle, 1984; Swallow, Garland, Carter, Zhan, 

& Sieck, 1998). 

 

Findings from Gillen, Little, Punthakee, Tarnopolsky & Gibala (2012) suggest that 6 

weeks of 10 x 60 seconds of HIIT at 90% HRmax led to a reduced 24 hour blood glucose 

concentration immediately after a single session of exercise.  They also found that subjects’ 

VO2max, work load max, maximal activity of citrate synthase, glucose transporter 4 content, leg 

and gynoid fat-free mass all increased after the training program.  Individuals suffering from 

coronary artery disease took part in a cycling training regimen that consisted of 10 x 60 second 

sessions twice a week for 12 weeks.  In this case, low-volume HIIT led to an increased VO2max 
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and brachial artery flow mediated dilation (Currie et al., 2013).  The results from the HIIT group 

were similar to the continuous group (cycled at 58% of peak power output (PO) for 30-50 

minutes) despite having a smaller training volume.  Improvements in body composition and 

fitness were found in overweight/obese women during a 6-week program that consisted of 10 x 

60s cycling bouts set at ~90%HRmax (Gillen et al., 2013).  Whyte et al. (2010) found that 6 

sessions of sprint training over the course of 2 weeks led to an increase in subjects VO2max, mean 

PO, insulin sensitivity, resting fat oxidation and reduced systolic blood pressure in 

overweight/obese men.  Prolonging the exercise to 12 weeks led to an increase in VO2max, trunk 

and leg fat-free mass and a decrease in total, abdominal, trunk and visceral fat of young 

overweight males (Heydari et al., 2012).   

 

Aerobic EE is easily quantified because there is a direct correlation between VO2 

measured at the mouth and whole-body ATP production through the combustion of 

carbohydrates and fats (Åstrand, 1981).  However, methods to quantify anaerobic energy 

production are less precise considering anaerobic ATP production is an intracellular process 

(Gastin, 2001).  Methods that have been introduced to estimate anaerobic energy release include 

blood lactate measurements, oxygen debt, oxygen deficit and gross efficiency.   

 

2.2.5 Blood Lactate 

 

During relatively intense exercise, there is an inadequate oxygen supply to the 

mitochondria, which initiates anaerobic glycolysis in order to provide the muscle with sufficient 

contractile energy.  The by-product of this physiological mechanism results in lactic acid 
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(Wasserman, Beaver, & Whipp, 1990).  As the intensity increases, lactate production surpasses 

its excretion and/or its utilisation in the muscle partly due to blood flow deviations from lactate 

removal sites such as non-exercising muscles, liver, kidneys and the heart (Brooks et al., 1991; 

Karlsson & Jacobs, 1982).  Working muscles naturally contribute to the elevation of circulating 

BLC, but as the exercise continues, these muscles are able to consume and oxidize the lactate 

(Brooks et al., 1991).  This process is known as the lactate shuttle mechanism (Brooks, 1985), 

which suggest that lactic acid increment in the blood is reciprocal with the total number of 

muscle fibers recruited in conjunction with the intensity of muscle activation (Stainsby & Brooks, 

1990).  The lactate shuttle mechanism assumes that lactate production occurs more in fast twitch 

muscles fibers, which then circulates to other fast-twitch or slow twitch fibers where it is 

converted into pyruvate.  This substrate is then able to convert into acetyl-CoA enabling its entry 

into the citric acid cycle for aerobic energy metabolism.  The lactate shuttle is an efficient system 

considering it can use the by-product of glycogenolysis from one cell in order to create fuel for 

another cell.  Therefore, muscles are not only a site of lactate production, but also play an 

essential role in its removal via oxidation (Brooks, 2000; Gladden, 2008; Hashimoto & Brooks, 

2008).  The Cori cycle, on the other hand, is able to gather lactate from working muscles, 

transport it to the liver where it is transformed into glucose or stocked as glycogen following 

intense exercise (Sumida, Urdiales, & Donovan, 1993). 

 

Lactate production increases due to anaerobic energy metabolism initiated by deficiencies 

in aerobic energy metabolism, known as anaerobic threshold (Davis, Vodak, Wilmore, Vodak, & 

Kurtz, 1976).  Contrary to popular belief, lactate can be utilized under fully aerobic conditions, 

most notably when there are high levels of glycogenolysis and glycolysis (Brooks, 2002; 

Richardson, Noyszewski, Leigh, & Wagner, 1998).  As previously mentioned, the lactate 
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threshold occurs once there is an increment in exercise intensity where BLC increases 

accordingly (Svedahl & MacIntosh, 2003).  The onset of blood lactate accumulation (OBLA), 

also known as individual anaerobic threshold, occurs once BLC reaches 4mmol/L (Sjödin & 

Jacobs, 1981; Svedahl & MacIntosh, 2003).  Muscle lactate concentrations (MLC) and BLC have 

been found to be similar near rest and during submaximal exercise until ~60% VO2max  (Knuttgen 

& Saltin, 1972).  Exercise above this intensity leads to a sudden increase in MLC two to three 

times that of BLC, notably known as the anaerobic threshold (Chwalbinska-Moneta, Robergs, 

Costill, & Fink, 1989).  The degree of changes in post-exercise measurements of BLC is 

dependent on the intensity and duration of the exercise (Ali, Bhatti, Khan, & Jan, 2004).  That 

being said, Gollnick, Bayly, & Hodgson (1986) found that BLC peaked 5 minutes after the 

termination of intense exercise indicating that BLC and MLC are not interchangeable measures.  

 

Although BLC may represent the extent of glycolysis, it cannot be utilized to estimate 

lactate in the working muscles since BLC is the product of various exchanges and transport 

processes occurring between blood and numerous tissues and organs during exercise (Cabrera, 

Saidel, & Kalhan, 1999).  Gathering lactate information from working muscles would be quite 

difficult as it would require biopsies every few seconds.  This method would still fall short of 

providing any information from the alactic energy system (Jacobs & Kaiser, 1982; Karlsson, 

1971; Medbø, 1993; Tesch, Daniels, & Sharp, 1982).  Blood samples, on the other hand, can be 

taken from the participant pre-or post-exercise making it quite convenient and also affordable to 

measure lactate levels.  Monitoring the BLC during training sessions can indicate the level of 

physical stress individuals are experiencing during exercise (Norton, Norton, & Sadgrove, 2010).  
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Although it is quite evident that lactate production increases with exercise intensities, its 

removal from the blood is dependent of the fitness level as well as the metabolic rates making it 

inappropriate to use BLC to estimate lactate production (Donovan & Brooks, 1983).  Bangsbo et 

al. (1990) suggests that by the time lactate is evenly distributed in various aqueous compartments 

of the body, a large portion of it is already metabolized.  Despite the fact that BLC reflects the 

anaerobic metabolism during intense exercise, it is inadmissible to use this method in order to 

compare the anaerobic capacity between different subjects (Gastin, 1994).  Specifically, BLC 

should not be used to presume an increase in the glycolytic potential following sprint-training 

(Gastin, 1994). 

 

2.2.6 O2 debt/EPOC 

 

Another method used to assess anaerobic energy expenditure is to measure EPOC, 

previously known as oxygen debt.  EPOC represents the amount of O2 consumed during post-

exercise measurements that exceed the resting values.  The oxygen debt hypothesis predicts that 

the volume of O2 consumed after the exercise is correlated to the metabolism of lactate during 

post-exercise recovery (Hill & Lupton, 1923).  Margaria, Edwards, & Dill (1933) modified the 

hypothesis by dividing O2 debt into two categories alactic and lactic components.  However, the 

use of oxygen debt has been questioned and discredited by several authors (Hermansen, 1969; 

Vandewalle et al., 1987).  Bangsbo et al. (1990) found that O2 debt, whether it was measuring an 

active muscle or the entire body, markedly overestimated the anaerobic energy release.  The by-

products of exercise consists of elevated VO2, lactate production as well as numerous factors that 

stimulate mitochondrial respiration, consequently impairing EPOC’s ability to precisely estimate 
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the anaerobic EE (Gaesser & Brooks, 1984; Rieu, Duvallet, Scharapan, Thieulart, & Ferry, 

1988).  An increase in post exercise VO2 (i.e. EPOC) is the result of ATP and PCr resynthesis, 

lactate to glycogen resynthesis, the oxidation of lactate into energy metabolism, the restoration of 

oxygen into myoglobin and hemoglobin.  Thermogenic effects of elevated core temperatures and 

hormones (catecholamines), effects of an elevated heart rate, an increment of ventilation as well 

as the body’s energy needs to return to homeostasis can also increase EPOC (Bangsbo et al., 

1990; Gaesser & Brooks, 1984; McArdle et al., 2010).  Many factors are related to EPOC but the 

exact underlying mechanisms remain unclear (Tahara et al., 2008).  Gaesser & Brooks (1984) 

have recommended the use of the term EPOC instead of oxygen debt to avoid any confusion 

between the elevations in metabolic rate above resting levels after exercise.  Moderate exercise 

intensities rely mainly on the aerobic system whereas high intensity exercise (supramaximal 

exercise) exceeds the rate of ATP produced by the oxidative system and is therefore heavily 

dependent of the anaerobic system (Medbø & Tabata, 1989).  In essence, contributions of 

different energy systems are dependent on the exercise intensity and duration.  In relation to 

EPOC, intensity and duration of the exercise both influence the magnitude of the VO2 during 

post-exercise recovery (Børsheim & Bahr, 2003).  The energy that is borrowed from energy 

expenditure reserves are paid back in extensive O2 uptake during the recovery phase (Brooks, 

Fahey, & White, 1996; Gaesser & Brooks, 1984).  Oxidative EE is measured from the VO2 

(L.min-1) multiplied by the RER, which amounts to an energy equivalent value measured in KJ.  

The RER is the CO2 produced divided by steady state O2 consumed and typically results in 

values ranging between 0.70 (total fat oxidation) and 1.00 (total glucose oxidation) {Appendix 

10.1} (Ferrannini, 1988; Scott, 2011).  
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2.2.7 O2 deficit 

 

As previously mentioned, there are several methods to estimate the maximal         

anaerobic capacity during various types of exercise.  One of the most frequently used methods is 

the maximal accumulated oxygen deficit (MAOD).  The MAOD is based on the linear 

relationship between treadmill speed or cycling PO and VO2 (Medbø et al., 1988; Medbø & 

Tabata, 1989, 1993).  The accumulated VO2 demand is calculated by multiplying the 

supramaximal exercise duration (roughly 2-3 minutes) by the predicted VO2 demand (Noordhof, 

Skiba, & de Koning, 2013a).  Subsequently, the MAOD can be determined by subtracting the 

oxygen uptake measured during the supramaximal exercise from the accumulated VO2 demand 

(Medbø et al., 1988).   A review done by Noordhof, de Koning, & Foster (2010) evaluated the 

procedures and outcomes of studies that used oxygen deficits as a method to determine the 

anaerobic capacity.  Even though MAOD is the most commonly used approach to determine 

anaerobic capacity, that does not imply that it is a flawless method (Bangsbo, 1992, 1996; 

Noordhof et al., 2010).  Findings from Bangsbo (1992, 1996) states that using a linear 

relationship between exercise intensity and VO2 in order to determine anaerobic capacity may be 

unwise.  The MAOD method must begin with relatively short submaximal exercise in order to 

construct a linear PO and VO2 relationship (Bangsbo, 1996; Buck & McNaughton, 1999; 

Noordhof, Vink, de Koning, & Foster, 2011).  Non-linear relationships between the PO and VO2 

could easily occur if the submaximal exercises are too intense, which would provoke a secondary 

VO2 spike also known as VO2 slow component.  Based on Maxwell & Nimmo (1996), 8-10 

minutes of submaximal exercise is the appropriate time to properly assess the treadmill speed-

VO2 relationship.  Noordhof et al. (2010) proposed 10x4 minute submaximal exercise bouts 

distributed between 30-90% VO2max along with a fixed y-intercept in order to construct a linear 
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PO-VO2 relationship.  Using horizontal running or cycling at a fixed PO and low pedalling 

frequency is advised as it minimizes the VO2 slow component.  This would then enable the 

determination of the MAOD during a supramaximal exercise protocol, thus creating a more valid 

PO-VO2 relationship resulting in reliable data (Noordhof et al., 2010). 

 

 Tabata et al. (1997) concluded that HIIE can be used to determine the anaerobic capacity.  

The MAOD of HIIE was calculated by subtracting the difference between the VO2 demand at rest 

and the VO2 during active resting periods from the VO2 deficit of each exercise bout.  The 

determination of anaerobic capacity depends on the duration of the intervals along with the 

duration of resting periods (Tabata et al., 1997).  However, is the MAOD method a valid protocol 

in determining the anaerobic capacity?  Bangsbo et al. (1990) assessed the validity of the MAOD 

method as they compared the MAOD attained by untrained males during supramaximal, constant 

intensity, one-legged knee-extensions where only the quadriceps muscles were activated.  A 

muscle biopsy of the activated muscle was used to help determine changes in ATP, creatine 

phosphate, inosine monophosphate and lactate concentrations.  In addition, lactate efflux and 

VO2 of the quadriceps was estimated from measurements of blood flow and the femoral arterial-

venous difference for lactate and oxygen.  Bangsbo et al. (1990) concluded that the MAOD is a 

quantitative expression of the anaerobic capacity when exercising a single muscle group.  Green, 

Dawson, Goodman, & Carey (1996) also examined the validity of the MAOD method in well-

trained male cyclist by examining the relationship between MAOD, the amount of anaerobic 

ATP produced, and measures of the anaerobic potential of muscles.  They concluded that the 

estimates of muscle anaerobic ATP production or anaerobic potential were not related to the 

accumulated O2 deficit.  The use of the VO2 power regression to estimate the energy demand of 

intense cycling is the predicted primary source of error in the O2 deficit method.  Medbø & 
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Tabata (1993) found a strong correlation between the rates of anaerobic ATP turnover in active 

muscles along with the anaerobic energy production in the entire body measured by the MAOD 

method.  Medbø & Tabata (1993) took a similar approach to Green et al. (1996) methods, where 

they gathered ATP, PCr and lactate concentrations from a muscle biopsy in the M. Vastus 

Lateralis after intense cycling bouts.  However, Medbø & Tabata (1993) and Green et al. (1996) 

both used different equations, which did not account for the amount of lactate released in the 

blood.  Considering lactate release can represent between 5% to 38% of total anaerobic ATP 

production, Bangsbo (1996), Green et al. (1996) and Medbø & Tabata (1993) all underestimated 

the amount of anaerobic ATP produced during their exercise protocols.  It is also unknown if the 

measured muscle metabolite concentrations represent a single or a whole group of muscles 

(Medbø, 1996), which weakens Green et al. (1996) and Medbø & Tabata's (1993) results as the 

active muscle mass is unknown during whole-body exercise.  According to Noordhof et al. 

(2010), the most precise assessment of anaerobic energy yield has been conducted by Bangsbo et 

al. (1990) as they used an intense dynamic knee-extension exercise.  Their results conclude that 

isolating a specific group of muscles is the most valid way of determining the anaerobic capacity 

when using the MAOD method. 

 

Relatively short submaximal exercise bouts are ideal for a construction of linear PO and 

VO2 relationship, as a secondary increase will arise after 3 minutes of exercise at the highest 

submaximal exercise intensities.  Noordhof et al. (2010) recommend ten submaximal exercise 

tests at intensities evenly distributed between 30% and 90% VO2max.  Increasing the duration of 

submaximal exercise bouts results in increasing values of VO2 demand and MAOD (Bangsbo, 

1992, 1996; Buck & McNaughton, 1999; Maxwell & Nimmo, 1996).  Using a linear relationship 

between exercise intensity and VO2 for the determination of anaerobic capacity is not suggested 
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according to the conclusions of Bangsbo (1992) and Bangsbo (1996).  With that being said, 10x4 

minutes of submaximal exercise bouts with a fixed y-intercept have been found to construct a 

solid PO and VO2 relationship as it enables a steady-state VO2 and excludes the effect of the VO2 

slow component at intensities above lactate threshold (Bickham, Le Rossignol, Gibbons, & 

Russell, 2002; Noordhof et al., 2010).  Despite these explicit methods, Bangsbo (1996) and 

Noordhof et al. (2010) have concluded that it is difficult to validate the proper use of linear 

relationship between exercise intensity and VO2 in order to establish the anaerobic capacity. 

 

2.2.8 Gross Efficiency 

 

Gross efficiency (GE) has been defined as the ratio of work produced to the total metabolic 

energy cost (Joyner & Coyle, 2008).  In other words, mechanical work (kJ) divided by total 

metabolic cost (kJ) results in a GE ratio.  In order to establish someone’s GE, the subject 

performs a steady-state submaximal exercise where their GE can be determined before the start 

of a supramaximal exercise bout (Noordhof et al., 2013a).  The metabolic power input (PI) can be 

calculated from the VO2 (l/min-1) and the oxygen equivalent (Garby & Astrup, 1987; van Ingen 

Schenau & Cavanagh, 1990) PI = VO2 x (4940 x RER x 16,040).  Anaerobic EE can be 

estimated, if GE is known, as it uses the aerobically attributable mechanical power and subtracts 

it from the total power produced, resulting in the anaerobically attributable mechanical power (de 

Koning, Noordhof, Lucia & Foster, 2012).  In essence, mechanical work (kJ) divided by GE (%) 

equals total metabolic cost (kJ).  Anaerobic EE can then be estimated by subtracting aerobically 

attributable EE from total metabolic cost. Keep in mind that PO, VO2, RER and GE must be 

known variables.  High intensity exercises such as time trials (Foster et al., 2004; Foster et al., 
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2003) and/or constant PO bouts (Noordhof et al., 2011) can be used to estimate the anaerobic 

power.  Recent research has shown that a linear relationship between work rate and EE appears to 

be consistent, (Ettema & Lorås, 2009; de Koning et al., 2012) and that GE decreases during 

submaximal (60% VO2max) (Passfield & Doust, 2000) and supramaximal exercise (de Koning et 

al., 2012).  The decrease in GE during prolonged submaximal and supramaximal exercise is 

correlated with fatigue and appears to be dependent on the length and intensity of the exercise 

protocol (Noordhof, Mulder, Malterer, Foster, & de Koning, 2013b).  The GE can be 

underestimated if it is determined at an intensity significantly lower than the ventilatory threshold 

leading to an overestimation of the anaerobically attributable energy (Noordhof et al., 2013b).  

When the GE is predicted during graded exercise, it seems that the length of the exercise stages is 

relevant as the GE is significantly overestimated during the 1st minute of the exercise stages in 

comparison with the GE measured during 3 or 6-minute stages (de Koning et al., 2012).  

Repeated sprints can alter the GE since efficiency is also influenced by the duration of the 

recovery (Bailey, Vanhatalo, Wilkerson, Dimenna, & Jones, 2009; Burnley, Doust, & Jones, 

2006).  Constant GE during heavy exercise may be questionable as it can easily underestimate the 

anaerobic EE (de Koning et al., 2013; Noordhof et al., 2013a).  With the use of back-

extrapolation, de Koning et al. (2013) found that GE diminished from 18.3% to 15.8% after 4 

minutes of cycling at 100% of peak PO.  Near the end of the exercise, the 15.8% GE lead to a 

32% larger anaerobic contribution then GE set at 18.3%.  During 30s Wingate, efficiencies of 

16.2% (Serresse et al., 1988), 18.5%  (Smith & Hill, 1991), 22% (Davies & Sandstrom, 1989) 

and 25% (Gaesser & Brooks, 1975; Kavanagh & Jacobs, 1988) have been used.  Any value 

utilized is a best guess since efficiency or economy can only be precisely measured during SS 

exercise (Smith & Hill, 1991).  With that being said, previous studies (Davies & Sandstrom, 
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1989; de Koning et al., 2013; Gaesser & Brooks, 1975; Kavanagh & Jacobs, 1988; Serresse et al., 

1988; Smith & Hill, 1991) suggest that 18% is an acceptable GE value to use during 30s sprints.  

 

2.3 Steady State vs High Intensity Interval Exercise 

 

HIIE is defined as brief and repeated burst of intense exercise with low intensity resting 

periods, whereas low volume HIIE consists of less than 10 minutes of intense exercise within a 

30 minute window (Gillen & Gibala, 2014).  Benefits that come from this type of training 

includes increase in whole-body fat oxidation during exercise (Rakobowchuk et al., 2008), 

VO2max (Gillen et al., 2013), resting fat oxidation (Trapp et al., 2008) along with reductions in 

whole-body and abdominal fat mass (Gillen et al., 2013), decreases in arterial stiffness, systolic 

and diastolic blood pressure (Heydari et al., 2012).  Steady state exercise (SSE), also known as 

aerobic exercise, is defined as intensities varying from 60% of one’s heart rate max for a duration 

exceeding 20 minutes.  This type of training leads to multiple physiological adaptations, which 

include the enhancement of the individuals physical fitness and recovery rate (Sloan et al., 2011), 

VO2max (Hottenrott, Ludyga, & Schulze, 2012), endurance capacity (Green, Ball-Burnett, Symon, 

Grant, & Jamieson, 1995) along with a decrease in body fat (Hottenrott et al., 2012).   

 

There has been some controversy in recent years when comparing the physiological 

adaptations from HIIT and steady state training (SST).  Results from Keating et al. (2014) 

suggest that SST is more effective for improving fat oxidation compared to HIIT in overweight 

adults.  Hazell, Olver, Hamilton, & Lemon (2012) focused their study on young men and had 

them complete either four 30s sprints on a cycling ergometer (25-minute total duration) or 30 
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minutes of SS cycling at ~70% of their VO2 max (37-minute total duration) three times per week 

for six weeks.  Their findings indicate that EE of a single HIIT is typically lower than SST due to 

the total exercise duration, in other words, less oxygen was consumed during the HIIT protocol.  

Nybo et al. (2010) compared interval running to SS running in thirty-six untrained physically 

inactive men.  The HIIT group completed five sets of 2 minute intervals above 95% of HRmax 

over a 12 week period while the SS group perfomed 60 minutes of running at 80% of HRmax 

(~65% VO2max).  Participants were supposed to complete three exercise sessions per week; 

however, the HIIT and SS group averaged 2 and 2.5 weekly sessions, respectively, due to injuries 

(i.e. shin splints).   On the other hand, Burgomaster et al. (2008) and Nalcakan (2014) both had 

very similar approaches and found that HIIT and SST lead to similar adaptations such as an 

increment in mitochondrial markers for skeletal muscle CHO and lipid oxidation (Burgomaster et 

al., 2008), increase in VO2max and decrease in body fat and waist circumference (Nalcakan, 2014) 

.  This is interesting considering  that results come from 6 weeks of training where weekly time 

commitment differed from 1.5h to 4.5h in the HIIT and SS group, respectively (Burgomaster et 

al., 2008).  No differences were found in obese children, as both HIIT and SS increased their 

VO2max, peak velocity during maximal graded cardiorespiratory test, improved insulinemia levels 

and BMI (Corte de Araujo et al., 2012).  Unlike Keating et al. (2014), Hazell et al. (2012) and 

Nybo et al. (2010) found that HIIT is a more productive method for obtaining health benefits 

when compared to SST.  Trapp et al. (2008) compared SST and HIIT in young woman during a 

15-week workout program on a cycling ergometer.  The HIIT group performed 8s sprints 

followed by 12s of active recovery, repeated for 20 minutes compared to the 40-minute SS 

exercise performed at 60% VO2max.  Although both exercise protocols led to cardiovascular 

adaptations, HIIT was more effective for decreasing fasting insulin levels, reducing total body 

mass, fat mass and trunk fat, but it did so in half the time.  A significant rise of catecholamines is 
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found during intense exercise unlike SST, which results in an increase of epinephrine and 

norepinephrine (Zouhal, Jacob, Delamarche, & Gratas-Delamarche, 2008).  The release of 

catecholamines, but more importantly epinephrine, has been shown to drive lipolysis, which is 

responsible for fat release from subcutaneous and intramuscular fat stores (Issekutz & Recent, 

1978).  HIIT was also compared to SST in a sample of diabetic participants (16 males, 29 

females) for a duration of 12 weeks (Mitranun, Deerochanawong, Tanaka, & Suksom, 2014).  

Although both protocols resulted in significant improvements, HIIT was more effective for 

improving VO2max, vascular functions along with peak diameter of the brachial artery.   Matsuo et 

al. (2014) wanted to determine which exercise protocol could improve the participants’ 

cardiorespiratory capacity and/if it would have an effect on their left ventricular mass.  Their 

approach was unique as they compared sprint interval training with the traditional continuous 

exercise, but integrated high intensity aerobic exercise.  Forty-two sedentary men took part in 8 

weeks of training five times per week and were divided into one of three groups.  The sprint 

interval, high intensity aerobic and SS group spent on average 5 minutes (100kcal), 13 minutes 

(180kcal) and 40 minutes (360kcal), respectively, on a cycling ergometer during each of their 

exercise sessions.  Despite having an inferior EE and time commitment, sprint interval training 

and high intensity aerobic training both led to an increase in left ventricular mass.  Matsuo et al., 

(2014)  suggest that exercise intensity rather than duration and volume can improve VO2max, 

considering the aerobic interval group in their study had a significant increase in oxygen 

consumption when compared to the SS protocol.  O’Donovan et al. (2005) compared interval and 

continuous training protocols to assess the effect of intensities on cardiorespiratory fitness and 

coronary heart disease in sedentary men.  They randomly assigned the subjects into a control, SS 

or HIIT group while matching EE between both exercise protocols.  EE was determined from 

VO2, assuming an energy cost of 5kcal/L of oxygen with an end goal of 400 kcal per session.  
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For example, SS would take 44 minutes while HIIT would require 30 minutes of exercise to 

reach 400kcal.  Participants performed their exercise three times per week for 24 weeks at 60% 

and 80% of their VO2max in either the SS or HIIT group, respectively.  O’Donovan et al. (2005) 

found that HIIT was more effective for improving cardiorespiratory fitness while having equal 

energy cost. 

 

 Williams et al. (2013) analyzed an acute response of 60 minutes of SSE compared to four 

30s Wingate test interspersed by 4.5 minutes of active recovery within young men.  They 

concluded that there was no significant difference between SSE and HIIE during 3 hours of 

EPOC.  However, with the use of a gas analyzer, they found that SSE had a greater EE above 

baseline levels when combining exercise and EPOC (~560 Kcal) compared to HIIE (~85 Kcal).  

Malatesta, Werlen, Bulfaro, Chenevière, & Borrani (2009) also compared HIIE with SSE and 

gathered 3 hours of post exercise data.  The interval training consisted of 60s of cycling at 80% 

Wmax with 60s of active recovery at 40% Wmax while SSE was performed at a relative intensity of 

45% VO2max for 60 minutes.  This protocol was unique considering they matched the mechanical 

work output between both exercise protocols and found that fat oxidation during EPOC did not 

differ but was significantly greater than the control group.  Both isoenergetic exercises varied in 

intensity but had a similar shift towards fat utilization during EPOC.  Williams et al. (2013) and 

Malatesta et al. (2009) findings support the notion that EE from the actual exercise is the primary 

factor that will lead to a decrease in body mass.  

Studies completed  by Keating et al. (2014), Nybo, Sundstrup, Jakobsen, Mohr, Hornstrup, 

Simonsen, et al. (2010), Burgomaster et al. (2008),  Nalcakan, (2014), Matsuo et al. (2014), Corte 

de Araujo et al. (2012) and Williams et al. (2013) all compared either interval training/exercise 

with SS training/exercise but did not match EE between both exercise groups.  Other authors 
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such as, Trapp et al. (2008), Mitranun et al. (2014), O’Donovan et al. (2005), Malatesta et al. 

(2009) all matched the EE between the HIIT/HIIE and SST/SSE protocol but did not take into 

account the anaerobic attributable EE. 
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3. Purpose and Hypothesis 

 

The question remains, which exercise would lead to a greater EE during post exercise 

measurements when both protocols are equicaloric.  The purpose of this research is to determine 

whether SSE or HIIE will better improve EE during EPOC when both exercise protocols are 

matched for exercise EE.  This will allow us to parcel out the effect of exercise intensity.  We 

hypothesized that HIIE set at 150% of Wmax will result in greater EPOC than SSE lasting 45 

minutes performed at 60% of VO2max with both protocols having matched exercise EE. 
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4. Methods 

 

4.1 Participants:  

 

The study consisted of 12 males free of heart and lung disease aged between 19 and 24.  

All elite athletes were excluded from this study considering they would likely respond differently 

to the exercise protocols.  Prior to any testing, each participant completed a PAR-Q test and 

provided informed consent.  The design and methods of this study were approved by the 

University Research Ethics Board. 

 

4.2 Experimental design 

 

 
 

Figure 1: Experimental design 

Day 1

•12 male particiapnts (19-24 years of age)
•Consent form & Par Q test

•Baseline Metabolism
•Skinfold measurements

Day 2

•VO2max & 30s sprint

Day 3 & 4 
(randomized)

•SSE
•HIIE
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4.2.1 Day 1: Preliminary measurements 

 

Subjects were advised to avoid any strenuous exercise two days prior to collecting 

preliminary measurements and exercise protocols.  Participants were asked to fast 10 hours prior 

to any basal metabolic rate testing.  After completing the consent form and PAR-Q test, the 

participant’s resting heart rate, blood pressure, weight (kg) and height (cm) were measured.  The 

basal metabolism was then measured using a gas analyser (VIASYS) while participants laid in a 

supine position for 30 minutes.  Data from the last 10 minutes was utilized for analysis since it 

better represents the participants’ basal metabolism.  A skinfold caliper was used to measure 

skinfold in triplicate at each of the following sites: right abdomen, iliac crest, triceps, and the 

thigh.  The mean value of each site was used and applied to the Jackson & Pollock 4-site Caliper 

in order to estimate the percentage of body fat (Jackson & Pollock, 1978). 

 

4.2.2 Day 2: VO2max & 30s sprint 

 

Prior to the test to exhaustion, participants were informed that they could stop cycling at 

any time.  They were also informed to maintain a 70 to 80 rpm pace and if they failed to do so, 

the test to exhaustion would be terminated.  The resistance was set at 75W and increased by 25W 

every 5 minutes.  These 5 minute durations are required according to Noordhof et al. (2010) to 

construct a solid PO and VO2 relationship.  When the subjects’ HR approached 75-80% of their 

estimated HRmax (using the Karvonen formula), the intervals were minimized to 2 instead of 5 

minutes in order to reach maximal PO.  With the use of the Breeze Suite software, a MGC 

Diagnostics gas analyzer, a heart rate monitor and a facemask to support the gas analyzer, we 
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were able to collect data for numerous variables such as; VO2 (ml.kg-1.min-1), VO2 (ml.min-1),  

VCO2 (ml.min-1), Respiratory Exchange Ratio {RER}, VE (L.min-1) and HR (bpm).  Following 

the VO2max, the participants kept cycling at 40% of their Wmax.  Five minutes post VO2max, 

participants performed a 30s-all-out sprint at 150% Wmax.  This exercise protocol had a duration 

of 4 minutes, where the first two minutes consisted of cycling at 40% Wmax at a rpm between 70-

80.  Subjects then cycled at 150% Wmax for 30s while keeping the rpm no higher than 145.  We 

began to increase the resistance 5 seconds prior to the sprint since the ergometer could only 

increase the resistance by 25W.  For the following 1.5 minutes, the participants cycled at 40% 

Wmax while keeping their rpm between 70 and 80. 

 

4.2.3 Days 3 & 4: Exercise protocols 

 

Following day 2, subjects randomly performed either SSE or HIIE protocols interspersed 

by at least 2 days.  Both exercise protocols had a 5-minute warm up and cool down set at 40% 

Wmax.  Data from the 5-minute cool down was integrated as a part of the 90 minutes of EPOC.  

 

SSE was conducted at a resistance corresponding to the participant’s 60% VO2max.  For 

example, if 60%VO2max occurred at 125W during the VO2max, the SSE protocol would begin at 

125 watts.  Taking into account the effects of cardiovascular drift, we had to diminish the 

resistance during the course of SSE in order to keep participants’ VO2 at 60%.  The mean 

resistance for 60% VO2max was 124 ± 15 Watts.  We estimated the SSE EE (EESSE) by taking 

VO2 (l/min-1) and RER values from the VO2max exercise protocol.  By multiplying the VO2 (l/min-

1) by the equivalent kilojoules found at a given RER and then multiplying by 45 minutes we were 
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able to quantify the estimated EE (e.g. 2.1 (LO2.min-1) * 20.25 KJ/LO2 (RER = 0.83) * 45 

minutes = 1,913 Kilojoules) {Annexe 1}.   

 

The HIIE protocol consisted of 30s all-out sprints with 60 seconds of active recovery.  

The intensities were set at 150% and 40% of the Wmax established from the VO2max (Annex 2).  If 

the test to exhaustion was terminated at 300 watts, the HIIE protocol would consist of 30s sprints 

at 450 watts with 60s of active recovery set at 120 watts.  The mean resistance during the 30s 

sprints was 346 ± 32 Watts.  The 30s all out sprint performed 5 minutes after the VO2max helped 

to inform the EE attributable to aerobic pathways.  We were able to estimate the anaerobic and 

aerobic energy pathway contributions during the 30s all out sprint with the use of a GE set at 

18% along with the AOD at a relative resistance (EEsprint).  Total metabolic energy equals 

mechanical work (450w * 30s = 13.5 kJ) divided by 18% (GE).  By combining the EEsprint with 

that from the active recovery we could estimate the EE of one HIIE repetition (EEHIIE).  The 

number of repetitions that each participant had to complete in a HIIE protocol was found by 

dividing the EESS by the EEHIIE, which was performed after the VO2max.  Only the GE method 

was used to quantify the number of HIIE repetitions.    

 

4.3 Measurements 

 

4.3.1 EPOC 

 

After both exercise protocols, each individual remained seated while the ‘breath by 

breath’ measurements were collected for 90 minutes EPOC.  With the use of the gas analyzer 
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(MGC Diagnostics) attached to the face, all the dependant variables (VO2 (relative/absolute), 

VCO2, RER, VE and HR) were recorded.  The EE from EPOC (EEEPOC) was calculated by 

averaging the data in 5 minute intervals and multiplying the mean of the VO2 and energy 

equivalent derived from RER.  The sum of all these averages was used to find the EEEPOC for 90 

minutes.  To analyze the subsequent changes over time, EPOC was divided into 18 time intervals 

(5 minute averages over 90 minutes). 

 

4.3.2 Blood lactic acid 

 

The blood lactic acid was measured prior to (BLCP) and halfway through (BLCH) the 

exercise protocol as well as immediately after (BLC0), 3 minutes (BLC3) and 5 minutes (BLC5) 

following the HIIE protocol.  We pricked either the index or the digitus medius with a BD 

Microtainer Contact-Activated Lancet to collect the blood drops.  The blood was then collected 

with a Lactate Pro Test Strip and analyzed using a ARKRAY Blood Lactate Test Meter.  

 

4.3.3 Substrate utilization 

 

The average VO2 and RER during EPOC for each individual were determined.  The mean 

RER value determined the quantity of grams of fat and carbohydrates utilized per liter of 

O2/minute.  The energy equivalent for a given RER was multiplied by the mean VO2 then again 

by 90 minutes to determine how much fat and carbohydrates each individual expended during 

EPOC.  For example, a mean VO2 of 0.85L and RER of 0.84 would entail the use of 537mg of 

carbohydrates and 280mg of fat per L/O2.  Multiplying the mg of sugar and fat by 0.85, 
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multiplying it again by 90 minutes and dividing it by 1000 would translate to a usage of 41.08g 

of carbohydrates and 21.42g of fat during 90 minutes of EPOC. 
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5. Results 

 

Statistical analysis was completed with the IBM SPSS Statistics 20 software.  A paired 

samples T-test was used to compare gross and net exercise EE during EPOC, the combined 

exercise and post exercise EE along with net exercise fat and carbohydrate utilization 

during EPOC.  A one-way repeated measures ANOVA was used to compare exercise EE, 

anaerobic and aerobic pathways during HIIE (14 intervals), BLC, gross fat and 

carbohydrate utilization during EPOC as well as  VO2, RER, HR, VE and EE, which were 

further divided into 5 minute intervals during EPOC.  A Bonferroni post-hoc test was then 

used to identify where the differences occurred during measurements. 

 

Table 1: Subject characteristics 

Variables MEANS Standard Deviation 

Age 23  1.21 

Height (cm) 176.33  7.35 

Weight (kg) 82.89  12.82 

BMI 26.61  3.37 

Resting HR 60.25  8.7 

Maximal HR 188.67  11.65 

Systolic Blood Pressure (mmHg) 113.83  9.96 

Diastolic Blood Pressure (mmHg) 74.83  8.42 

Body fat % 15.14  4.55 

VO2 max (l/min-1)  3.55  0.46 

VO2 max (ml/kg-1/min-1) 43.12  4.00 

 

A significant difference between the exercise protocols in regards to energy (kJ) was 

identified {F (1.294, 14.229) = 8.454, p < 0.01}.  These differences occurred between the HIIE 

protocol (M = 2040 kJ, SD = 212 kJ) and SSE (M = 2173 kJ, SD = 244 kJ) where the mean 
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differed by 133 kJ (Figure 2).  Relatively speaking, SSE expended roughly 6% more energy 

compared to HIIE. 

 
Figure 2: Exercise energy expenditure during HIIE, SSE and theoretical EE estimations. 

† = significantly different from HIIE (P < 0.05)  

 

Significant differences between the anaerobic and aerobic systems in regards to absolute 

and relative energy contributions was identified {F (1.000, 11.000) = 35.724, p < 0.01} (Figure 

3A) and {F (1.000, 11.000) = 37.352, p < 0.01} (Figure 3B), respectively.  These differences 

occurred at each repetition during the HIIE protocol.  The anaerobic system provided 60% of the 

energy during the first interval but rapidly declined as the aerobic system was the predominant 

source of energy for the remaining 13 intervals. 
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A 

 
B 

 
Figure 3: The absolute (A) and relative (B) value of aerobic (--) EE and anaerobic (-) EE for 

each HIIE repetition. 

X = Anaerobic contributions are significantly different from aerobic contributions (P < 0.05).  

 

A significant difference was found between BLC measurements {F (1.764, 14.113) = 

87.492, p < 0.01} (Figure 4).  Pre-Test BLC differed from the other four measurements (P<0.05).  

These results indicated a large portion of the energy was derived from anaerobic pathways during 

HIIE.  Another significant difference was identified between 0 Min Post and 5 Min Post BLC (p 

< 0.05).  BLC gathered immediately after the HIIE protocol was significantly greater than the 

BLC gathered 5 minutes post exercise.  
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Figure 4: Blood lactate concentrations measured at pre HIIE, halfway through, 0-minute post, 3-

minute post and 5-minute post exercise. 

† = significantly different from Pre-Test (P<0.05) 

* = significantly different from 5-minute post (P<0.05) 

 

A signicant differences between gross and net EE during post exercise measurments 

following HIIE and SSE.  The interval exercise had a greater gross EE (993 kJ) during 90 

minutes of EPOC as opposed to SSE (848 kJ) , {t(11) = 4.221, p < 0.01} (Figure 5).  The net 

effect of exercise (total EE – basal metabolism) remained significantly greater for HIIE, {t(11) = 

4.221, p < 0.01}. 
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Figure 5: Post exercise EE above basal metabolism for HIIE and SSE during 90 minutes of 

EPOC. 

† = Net exercise EE is significantly different from SSE (P < 0.05) 

* = Gross EE  is significantly different from SSE (P < 0.05). 

     

A significant difference occurred between HIIE and SSE during 90 minutes of EPOC in 

regards to VO2 (Figure 6A), HR and VE (Figure 6B).  The exercise protocols elicited a 

significant difference between VO2 {F (2, 22) = 121.515, p < 0.01}, HR {F (2, 22) = 77.410, p < 

0.01} and VE {F (2, 22) = 129.038, p < 0.01}.  The RER between exercises was not significantly 

different during EPOC, {F (1.195, 13.148) = 3.785, p > 0.05}.  Both exercise protocols 

maintained a significantly greater VO2 during the entire 90 minutes when compared to the Basal 

Metabolism (Figure 6A). The interval exercise was able to maintain a greater VO2 for the first 45 

minutes post exercise in comparison to SSE.   

 

The high intensity interval protocol was associated with significantly greater HR then 

Basal Metabolism throughout the entire 90 minutes of EPOC.  HIIE also differed from SSE as it 

was significantly higher throughout the entire post-exercise protocol with the exception of minute 
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30.  SSE HR exceeded Basal Metabolism HR values for the full length of EPOC, aside from the 

20th minute (Figure 6B).  HIIE also generated a significantly greater VE during the first 45 

minutes when compared to SSE, while the VE for both exercise protocols surpassed that of Basal 

Metabolism levels throughout the entire 90 minutes. 
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B 

 
 

Figure 6: Post exercise VO2 and RER (A) and VE and HR (B) over 90 minutes averaged in 5-

minute intervals. 

◇= HIIE is significantly different from SSE (P < 0.05).     

X = Basal Metabolism is significantly different from HIIE and SSE (P < 0.05).     

➕= Basal Metabolism is significantly different from HIIE (P < 0.05).     

 

A significant difference was found between HIIE and SSE during EPOC, {F (1.000, 

11.000) = 17.520, p < 0.01}.  These differences occurred during the first 45 minutes of EPOC 

(P<0.05), where HIIE expended more energy than SSE (Figure 7).  No differences were found 

during the second half of EPOC.  
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Figure 7: Post exercise EE over the course of 90 minutes averaged in 5-minute intervals. 

X = HIIE is significantly different from SSE (P < 0.05).    

   

A significant difference between HIIE (3033 ± 321 KJ) and SSE (3021 ± 399 KJ) ensued 

when combining the exercise and post exercise EE, {t (11) = 0.180, p > 0.05} (Figure 8).  HIIE 

utilized less energy during exercise but was able to expend more energy than SSE during EPOC, 

thus making their total EE equivalent.  

 

Figure 8: Total exercise EE and post exercise EE from HIIE and SSE. 
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A significant difference was identified in regards to post exercise fat utilization between 

exercise protocols, {F (2,22) = 69.397, p < 0.01}.  Differences (P<0.05) were found between 

each protocol where HIIE expended 26% and 66% more fat above SSE and Basal Metabolism, 

respectively (Figure 9).  No significant differences were found in post exercise carbohydrate 

utilization between exercise protocols, {F (2, 22) = 2.574, p > 0.05}. 

 

 

Figure 9: Fats and carbohydrates utilized during 90 minutes of EPOC. 

* = HIIE is significantly different from SSE (P < 0.05).     

† = HIIE & SSE are significantly different from Basal Metabolism (P < 0.05).    

 

A significant difference was found between net fat utilization during post exercise 

measurements.  HIIE net fat (11.2g) utilization during EPOC was significantly greater than SSE 

(6.8g), {t (11) = 4.249, p < 0.01} (Figure 10).  No significant differences occurred in terms of net 
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carbohydrate expenditure between both exercise protocols during EPOC, {t (11) = -0.415, p > 

0.05}. 

 

 

Figure 10: Net exercise fat and carbohydrate utilization during 90 minutes of EPOC (N=11).  

* = HIIE is significantly different from SSE (P < 0.05).    
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6. Discussion 

 

The primary aim of this study was to establish whether SSE or HIIE would generate a 

greater EPOC while matching exercise EE between both protocols.  We also wanted to analyze 

the effects of these exercise protocols on physiological parameters, such as VO2, RER, VE and 

HR over the course of 90 minutes of post exercise measurements.  Our methodological approach 

differed from many prior studies considering we quantified both the aerobic and anaerobic 

attributable EE in order to attempt to have two equicaloric exercise protocols, which would 

enable us to parcel out the effect of exercise intensity. Many authors compared high intensity 

exercise/training with SSE/SST but did not match exercise EE (Burgomaster et al., 2008; Corte 

de Araujo et al., 2012; Keating et al., 2014; Matsuo et al., 2014; Nalcakan, 2014; Nybo et al., 

2010; Tucker, Angadi, & Gaesser, 2016; Williams et al., 2013), whereas others matched both 

exercise protocols but neglected the anaerobic attributable EE by simply measuring the aerobic 

system via indirect calorimetry (Malatesta et al., 2009; Mitranun et al., 2014; O’Donovan et al., 

2005; Trapp et al., 2008).  It is important to mention that our subjects’ characteristics greatly 

resembled those from previous studies that evaluated the effects of HIIE/HIIT (Greer, 

Sirithienthad, Moffatt, Marcello, & Panton, 2015; Malatesta et al., 2009; Matsuo et al., 2014; 

Nalcakan, 2014; Tucker et al., 2016; Williams et al., 2013).  We attempted to match SSE EE with 

HIIE EE prior to the actual exercise protocols using data from the subjects’ VO2max, 30s sprint 

and the 60s-recovery phase.  Our results indicated that we accurately predicted both HIIE (2040 ± 

212 kJ) and SSE (2173 ± 244 kJ) to our pre exercise estimations (2145 ± 270 kJ) as no significant 

differences were identified.  With that being said, HIIE and SSE EE did differ from one another 

(Figure 2).   
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Anaerobic contributions can be estimated with the use of the GE method as it measures 

the attributable aerobic mechanical power and subtracts it from total PO resulting in anaerobic 

attributable mechanical power (Noordhof et al., 2013a).  The GE in constant loading during 

submaximal exercise is calculated by dividing the measured mechanical PO by the calculated 

metabolic rate (Nalcakan, 2014).  Exercise above the anaerobic threshold leads to a negative 

relationship between GE and work rate, which indicates that a decreasing GE leads to a greater 

exercise EE (Luhtanen, Rahkila, Rusko, & Viitasalo, 1987).   For example, anaerobic EE is found 

by subtracting the aerobic attributable energy from the PO.  The PO is found by multiplying the 

resistance (Watts = joules/second) by the sprint duration, then multiplied by 100 and divided by 

the GE.  If that GE value is lowered, it would imply that the PO will be greater than a PO which 

utilized a higher GE.  Assuming that the aerobic EE remains constant, the anaerobic attributable 

EE will increase in order to respond to a greater energy demand from the body.  GE has been 

shown to decrease during submaximal exercise set at 60% VO2max (Passfield & Doust, 2000), 

during maximal time-trials where its reduction was negatively related to race distance (Noordhof, 

Mulder, Malterer, Foster, & de Koning, 2015), during 3-minutes of intense exercise at a constant 

intensity (Saltin, Bangsbo, Krustrup, & Krustrup, 2001) and after 4 minutes of 100% peak PO 

where GE diminished from 18.3% to 15.8% (de Koning et al., 2013).    However, there is a 

possibility that the usage of a constant GE of 18% is actually an inferior percentage to what may 

have transpired during exercise.  Considering 16-24% are reasonable GE values during a 30-s 

Wingate (Smith & Hill, 1991), it is plausible to assume that our GE value was simply too high, 

which would imply that our HIIE EE values are inferior to their absolute values.  de Koning et 

al.(2013) compared the aerobic and anaerobic PO for a constant and decreasing GE during 

cycling exercises.  They found that energy generated from anaerobic pathways were more 
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elevated with decreasing GE compared to constant GE conditions.  Considering that a decreasing 

GE increases total exercise EE, the anaerobic attributable EE would increase if VO2max was 

attained.  Shorter races with greater PO have been shown to have a lower GE accompanied by a 

larger decline in terms of percentage when compared to longer distances.  This can be 

rationalized by greater homeostatic disturbances due to incremental physiological demands, thus 

a higher PO and lower GE (Noordhof et al., 2015).   

 

The approach in the current study consisted of 18% GE since many authors such as 

Serresse et al. (1988), Smith & Hill (1991), Davies & Sandstrom (1989), Kavanagh & Jacobs 

(1988) and Gaesser & Brooks (1975) used similar GE for the 30s Wingate protocol.  Similar to 

Bogdanis, Nevill, Boobis & Lakomy (1996), our results reveal that energy contributions rely 

mainly on the anaerobic system during the first 30s of supramaximal cycling, however, we 

noticed an energy shift towards the aerobic system throughout the repetitions (Figure 3A).  It is 

important to mention that our exercise protocol had a mean PO of 346W (140% Wmax) with only 

60s of active recovery.  The anaerobic system represented 59.56% of the attributable energy 

during the first repetition and steadily dwindled to 38.12% during the fourteenth repetition 

(Figure 3B).  Although the individuals were dependent of the aerobic system near the end of their 

respective workouts, BLC were similar at the midpoint and after the last repetition revealing that 

anaerobic pathways were still active throughout the entire workout.  When comparing SSE and 

HIIE, it is imperative that BLC is measured in order to confirm the contributions of anaerobic 

pathways to EE. 

 

The anaerobic system is comprised of two energetic pathways known as the alactic and 

lactic system.  Together, they are able to provide sufficient energy during the first 6 seconds of 
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sprint exercise where as much as 50% of that energy is derived from ATP-PC (Lakomy, 2000).  

Nonaerobic breakdown of carbohydrates and glycogen succeeds the exhausted ATP-PC system 

resulting in lactic acid (Gastin, 2001), which subsequently increases throughout the body due to 

metabolic acidosis (Sahlin, 1978).  For this reason, BLC was measured during pre-test, halfway 

through, immediately after, 3 and 5minutes post exercise of the HIIE protocol.  BLC has been 

shown to peak 6 minutes following the completion of repeated 30s sprint (13.6 ± 0.9 mmol.L-1) 

(Bogdanis, Nevill, Boobis, Lakomy, & Nevill, 1995).  Our results reveal that BLC0 (13.00± 2.54 

mmol.L-1) was greater than BLC5 (10.83± 2.69 mmol.L-1) (Figure 4), which is in accordance 

with Williams et al. (2013) as they found a BLC0 of 12.8 ± 1.9 mmol.L-1 after four 30s Wingate 

tests.  An analysis done by di Prampero & Ferretti (1999) focused on energy release deriving 

from the anaerobic pathways during supramaximal exercise.  Their findings support the original 

notion developed by Margaria et al. (1933),  confirming that the alactic and lactic systems 

provide the necessary energy for exercises that surpass the aerobic capacity. 

 

Many studies have confirmed that exercise duration effects EPOC length, whereas 

exercise intensity plays a large role on the magnitude and duration of post exercise EE (Bahr & 

Sejersted, 1991; Gore & Withers, 1990; Laforgia, Withers, & Gore, 2006; Sedlock, Fissinger, & 

Melby, 1989).  Low exercise intensities and/or low exercise duration has been typically related to 

small and short lasting EPOC, whereas more prolonged and abundant EPOC have been observed 

after strenuous exercise (Børsheim & Bahr, 2003).  Furthermore, exercise surpassing 50-60% 

VO2max has resulted in an elevated EPOC  (Børsheim & Bahr, 2003; Laforgia et al., 2006), which 

can last up to 14 hours (Knab et al., 2011; Ohkawara, Tanaka, Ishikawa-takata, & Tabata, 2008).  

Studies that have compared HIIE and SSE have shown that both protocols led to elevated EPOC 

from 1, 8, 21 and even 24h post exercise (Cunha, Midgley, Mcnaughton, & Farinatti, 2016; Greer 
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et al., 2015; Hazell et al., 2012; Laforgia, Withers, Shipp, & Gore, 1997; Skelly et al., 2014).  

Yet, there is still scepticism (Hazell et al., 2012; Matsuo et al., 2012; Williams et al., 2013).  A 

study conducted by Greer et al. (2015) compared isocaloric bouts of HIIE, SSE and resistance 

training to establish which of these protocols would lead to a greater EPOC.  They began with a 

45-minute circuit training session while using indirect calorimetry to measure EE.  The SSE and 

HIIE followed the circuit training and continued until the exercise protocols attained the EE 

measured from the resistance training.  The exercise EE was determined by means of the Weir 

equation.  They claim that resistance training and HIIE had a greater EPOC than SSE up to 21hr 

post exercise.  The current study analyzed 90 minutes of EPOC following HIIE and SSE.  The 

net interval exercise (513 kJ) expended 28% more energy than the net SSE (368 kJ) during post 

exercise measurements (Figure 5) despite utilizing less energy during exercise.  These findings 

differ from Malatesta et al. (2009) as they found no significant difference in post exercise EE 

during the 3 hours of EPOC.  They claim to have matched EE between SSE and HIIE, yet they 

did not consider the anaerobic EE generated from their 60s repeated sprints.  Our methods 

differed from Malatesta et al. (2009) in regards to exercise intensity and sprint durations.  During 

HIIE, our subjects were exposed to 150% Wmax as opposed to their submaximal intensity of 80% 

Wmax.  This can explain why Malatesta et al. (2009) did not find a difference between post 

exercise EE for SSE compared to the HIIE protocol, which supports the notion that higher 

intensity exercise generates a greater EPOC. 

  

Figure 6A illustrates 90 minutes of EPOC subdivided into 5 minute intervals.  The VO2 

values for HIIE were found to be significantly different from SSE throughout the 5 minute 

intervals of EPOC.  According to the non-protein respiratory quotient (Appendix 10.1), a higher 

VO2 value results in a higher energy expenditure (Appendix 10.1).  Although both protocols had 
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a higher VO2 than baseline measures for the entire 90 minutes, HIIE VO2 was significantly 

greater than SSE for the first 45 minutes of EPOC.  This VO2 increment can be explained as a 

result of ATP and PCr resynthesis, lactate to glycogen resynthesis, the oxidation of lactate and 

contribution to energy metabolism, the restoration of oxygen into myoglobin and hemoglobin, 

thermogenic effects of elevated core temperatures, thermogenic effects of hormones 

(catecholamines), effects of elevated heart rate, ventilation and other physiologic functions as 

well as the energy needs that are associated with the body’s return to homeostasis (Bangsbo et al., 

1990; Gaesser & Brooks, 1984; McArdle et al., 2010).   

 

Heightened sympathetic activity occurs during HIIE, which in turn impairs the 

parasympathetic system due to the consistent elevation of adrenergic factors and local 

metabolites during recovery (e.g., epinephrine, norepinephrine, and venous blood lactate) 

(Buchheit & Laursen, 2007).  The anaerobic contributions of HIIE has been found to be the main 

factor that leads to the delayed reactivation of the parasympathetic system (Buchheit & Laursen, 

2007), which has been shown to affect the sinus node during the first hour of post exercise 

measurements when compared to SSE (Mourot, Bouhaddi, & Tordi, 2004).  This reasoning can 

explain why HIIE was associated with a greater HR than SSE during 90 minutes of EPOC 

(Figure 6B).  HIIE also had a significantly greater VE during the first 45 minutes of EPOC when 

compared to SSE (Figure 6B).   

The VE correlates to the subjects’ VO2, which is notably known as ventilatory equivalent 

(VE/VO2).  Farrell & Ivy (1987) proposed that increases in VE/VO2 during incremental test to 

exhaustion is not caused by BLC, but rather, closely correlated with the metabolic rate of active 

muscles (Farrell & Ivy, 1987).  Our findings also indicate that HIIE had a significantly greater EE 

compared to SSE for the first 45 minutes of EPOC (Figure 7).  These results support statements 
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from Bahr & Sejersted (1991), Gore & Withers (1990), Laforgia et al. (2006) and Sedlock et al. 

(1989), which postulate that exercise intensity plays a larger role than duration on the magnitude 

and lenght of EPOC.  

 

Similar to our study, Tucker et al. (2016) found that sprint interval exercise (six 30s-

wingates) led to a greater EPOC and fat oxidation than SSE and high intensity aerobic exercise 

(HIAE) during 3h of post exercise measurements.  However, when they added exercise and 

EPOC EE, they found that SIE was significantly lower than SSE and HIAE.  When we added the 

sum of exercise and EPOC EE, we found that HIIE (3033 ± 321 kJ) and SSE (3021 ± 399 kJ) did 

not differ from one another (Figure 8).  Williams et al. (2013) found no difference in EE during 

EPOC for both exercise protocols, but when they added the exercise EE and EPOC EE they 

found that the EE for SSE was greater than that of HIIE.  Their SSE protocol expended ~560 

kilocalories above baseline (exercise + EPOC), whereas HIIE only surpassed baseline measures 

by ~85 kilocalories.  Although Greer et al. (2015), Williams et al. (2013) and Tucker et al. (2016) 

findings are interesting, they did not match exercise EE since they used indirect calorimetry to 

measure exercise EE and omitted the anaerobic contributions.   

 

A key determinant of indirect calorimetry is the determination of carbohydrates and fat 

oxidization ratio with the use of a table of non-protein respiratory quotient (Appendix 10.1).  This 

table illustrates, for a given ratio, the percentage and quantity (mg) of sugars and fats utilized per 

liter of O2.  RER begins at 0.7 where 100% of its energy is derived from fat stores and 

progressively translates to 100% sugar usage when RER is equal or greater than 1.0.  During 

EPOC, we found a significant difference in total fat (grams) utilization between HIIE (16.99 ± 

3.14), SSE (12.59 ± 3.75) and Baseline (5.77 ± 2.95) (Figure 9).  This fat utilization can be 
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rationalized by an increase in catecholamine (Boutcher, 2010), especially epinephrine, which has 

been shown to drive lipolysis and is responsible for the release of fat from subcutaneous and 

intramuscular fat store (Issekutz & Recent, 1978).  This is in accordance with Zouhal et al. (2008) 

as they found HIIE leads to a significantly greater catecholamine (epinephrine/norepinephrine) 

response compared to SSE.  

 

Studies have assessed HIIT over the course of 6 to 15 weeks and found that this type of 

exercise leads to reductions in fat mass (Gillen et al., 2013; Heydari, Boutcher, & Boutcher, 

2013; Tjonna et al., 2009; Trapp et al., 2008).  Other authors such as Greer et al. (2015), Martins 

et al. (2016) and Mitranun et al. (2014) had methodical approaches that matched the EE between 

both protocols.  Over a 12-week period, improvements were found in body composition, aerobic 

fitness (Martins et al., 2016; Mitranun et al., 2014), body fat % in comparison to pre-training 

phases (Mitranun et al., 2014) but no significant differences in fat loss between both exercise 

protocols (Martins et al., 2016).  Our results differ as we found that one session of interval 

exercise led to greater fat oxidation during 90 min of EPOC.  Intermittent exercise was able to 

utilize more grams of fat in order to replenish the energy consumed during exercise (Figure 9).  

Differences in fat utilization between HIIE and SSE remained once we subtracted the basal 

metabolism from 90 minutes of EPOC (Figure 10).  Similar to our findings, Greer et al. (2015) 

found that high-volume resistant exercise and high intensity intermittent aerobic exercise led to 

greater post exercise EE compared to SSE as subjects burned an extra 12kcal/h between the 12h 

and 21h of EPOC.  
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7. Conclusion 

 

Although Greer et al. (2015), Martins et al. (2016) and Mitranun et al. (2014) attempted to 

have two iso-caloric exercise protocols, they quantified the EE with the use of indirect 

calorimetry, which only measures the aerobic attributable EE.  Our methodological approach is 

unique as we attempted to match EE between HIIE and SSE with the use of the GE method to 

determine whether intensity or duration would lead to a greater EPOC. 

  

In summary, our study found that HIIE was a more efficient way to burn energy and fat 

stores during 90 minutes of EPOC.  Although HIIE used less energy during the exercise, it was 

able to exceed SSE EE during 90-minutes of EPOC in addition to being 44% more time efficient.  

These findings are interesting and should be further explored in a training program where HIIE 

and SSE EE are properly controlled in order to determine the long-term effects of this type of 

training.  With lack of time being the underlying restraint for attaining ideal levels of physical 

activity and associated health benefits (Kimm et al., 2006; Stutts, 2002), HIIE is a promising 

method to promote fat loss for those who want to avoid spending excessive hours in the gym.  

Although our study consisted of young and healthy individuals, clinicians should be aware that 

our HIIE protocol was very challenging and required considerable amounts of motivation.   
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8. Limitations and Future Research 

 

Three subjects fell one repetition short of their pre-established interval feat, which would 

naturally increase the mean HIIE EE.  We also believe that our HIIE EE was inferior to our 

estimations and to the SSE protocol as a result of using a constant GE throughout the repetitions 

as opposed to a decreasing GE.  Even though 12 subjects participate in this study, the addition of 

more participants may have led to more significant differences.  In regards to future research, it 

would be interesting if fat and carbohydrate utilization could be measured during SSE and HIIE 

exercise.  In our study, interval exercise was able to utilize less energy during exercise succeeded 

by a greater EPOC EE all while utilizing more fat.  Once we added exercise and EPOC EE, no 

significant differences were noted between the exercise protocols.  We understand that it would 

be quite difficult to quantify the macronutrients used during HIIE due to the fluctuating anaerobic 

system.  Nonetheless, it would be interesting to see how the body manipulates the use of its 

macronutrients for energy, and perhaps no differences would occur in terms of fat usage from the 

start of exercise to the end of EPOC. 
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9. Annex 

 

Annex I: The estimated SSE EE 

 

The energy expenditure from steady state exercise performed at 60% VO2max for 45 

minutes can be calculated with gas analyzers.  If the individuals VO2max was 3.5 L/min, we 

multiplied it by 60% giving us roughly 2.1 L/min.  The resistance from his VO2max at that 

particular time was the resistance used to begin the 45-minute exercise.  Over time his VO2 

eventually increased therefore, we decreased the resistance to keep his VO2 at 3.5 L/min.  In 

order to estimate the EE during the training sessions, the RER and VO2 (L/min) values found at 

60% of their max was used to determine the targeted value.  For example, a VO2 of 2.1 L/min 

with an RER of 0.83 leads to an EE of 1,913 kJ.  This was found by multiplying 2.1 L/min by the 

value of Kjoules found at a RER of 0.83 (Appendix III), which is equivalent to 20.25 

Kjoules/LO2 and then multiplied that by 45 minutes.  2.1 L/min * 20.25 Kjoules/LO2 * 45 

minutes = 1,913 Kjoules.  
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Annex II: The estimated HIIE EE 

 

The intensities were set at 150% and 40% of their wattage established from their VO2max.  

If their max resistance from their VO2max was 300W, they cycled at 450W for 30s followed by an 

active recovery set at 120 watts (300 * 1.5 = 450W & 300 * 0.4 = 120W).  Cycling at 450 watts 

for 30s leads to 13.5 KJ of mechanical work.  Considering cycling at 450W is equivalent to 

450J/s, we multiplied that by 30s, which gave us 13,500 Joules or 13.5KJ.  Total metabolic 

energy (kJ) equals mechanical work divided by GE.  Dividing 13.5 by 18% (GE) results in total 

metabolic energy (kJ).  This means that during a single 30s sprint at 450watts, a total of 75KJ is 

used.  The recovery rate (40% of their VO2max) averages out to a VO2 of 3.5 L/min with an RQ of 

1.00 (Appendix III) for 60 seconds; this will account for 73.96 KJ (3.5L/min * 21.13 KJ {RQ at 

1.00} = 73.96KJ).  Every HIIT repetition will account for 61.5 KJ + 73.96 KJ giving us 135.46 

KJ.  Understanding that our goal is to reach 1913 KJ to match SSE, it will take ~14 repetitions to 

do so (1913KJ / 135.46KJ = 14.12 reps). 
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10. Appendices 

 

Appendices I: Consent form  

 
Comparing the physiological effects of high 

intensity interval training versus steady state 
exercise training with similar energy expenditures 

 
 

Principal Investigators:  
Research student: Sébastien Leroux, B. Sc MHK Candidate 
Thesis supervisor: Dr. Olivier Serresse 
   

  
  
Contact Information: 705-919-4429 
 

Email: sr_leroux@laurentian.ca 

______________________________________________________________________ 
 
INFORMED CONSENT 
 
You are being asked to consider participating in a research study.  A research study is a way of 

gathering information on a treatment, procedure or program or to answer a question about 

something that is not well understood.  This form explains the purpose of this research study, 

provides information about the study procedures, possible risks and benefits, and the rights of 

participants.  

 

Please read this form carefully and ask any questions you may have. The researcher will explain 

this form and all information concerning the study to you verbally. Please ask the researcher to 

clarify anything you do not understand or would like to know more about.  Make sure all your 
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questions are answered to your satisfaction before deciding whether to participate in this 

research study.   

 

Participating in this study is your choice (voluntary). You have the right to choose not to 

participate, and you have the right to withdraw from the study and stop your participation at 

any time. If you decide to stop participating, your data will be removed and there will be no 

consequences to you or the services you receive. 

 

INTRODUCTION 

Many adults who do not live an active lifestyle state that lack of time is the limiting factor to a 

healthier lifestyle.  Steady state exercise (SS) is a common way to lose weight and improve your 

health, but over the last couple of years high intensity interval training (HIIT) has become very 

popular due to its shot duration of exercise. 

 
 
WHY IS THIS STUDY BEING DONE? 
 
The purpose of this research is to determine if 45 minutes of steady state exercise or ~20 

minutes of HIIT will lead to higher energy expenditure. 

 
WHAT WILL HAPPEN DURING THIS STUDY? 

 
You will first need to fill in a PAR-Q test prior to the testing in order to determine whether or 

not you are capable of performing the exercises.  Your body mass index (BMI, mass in kg/ 

height in m2) will be measured and if it surpasses 29 you will not be eligible to take part in this 

study.  If you choose to accept, you will need to take part in various exercise protocols and data 

collection, which includes the collection of blood samples. 
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The exercise protocols & data collection 

1st session (Total duration: 2 hours)   

• Test 1: After an overnight fast you will visit the laboratory first thing in the morning 

between 8-10am.  You will lie on your back for 30 minutes with a gas analyzer fixed to 

your mouth to analyze your resting metabolism.  

• Test 2:  Following the resting metabolism measurements I will measure your body fat 

distribution with the use of a hydrostatic tank and skinfold calliper.  

• Test 3:  After these first two test you’ll have the opportunity to grab a bite to eat.  You 

will then return to the lab (~2 hours later) to complete a VO2max on a cycling ergometer.   

• Test 4:  Following the VO2max you’ll have 20 minutes to wander around the laboratory in 

order to recuperate.  You will then get back on the bike to perform a 30s sprint at 150% 

of your maximal resistance.  

 

Your oxygen consumption, respiratory ventilation and heart rate will all be measured during 

these tests.  Micro blood samples will also be gathered in this study.  The collection of blood will 

be done prior (t0) and immediately after (t1) the exercise protocols along with 3 (t2) and 5 

minutes (t3) after the termination of the exercise.  A blood lactate analyzer will measure the 

collected blood sample.  Once measured, the blood will be disposed of in a in a biohazard 

disposal. 

 

2nd & 3rd session:  These sessions will be organized following your initial visit and set to fit 

your schedule.  They will occur in a randomized order and interspersed by at least one day and 

will not require an overnight fast.  You will have to take part in 45 minutes of SS at 60% of your 



 61 

VO2max and ~20 minutes of HIIT exercise protocol.  You will cycle at 150% of your maximal 

resistance for 30s followed by 60s of active recovery set at 40% of your VO2max.  The HIIT 

session will have an estimated 10 to 15 repetitions.  Your oxygen consumption will be 

measured for 90 minutes after the end of your exercise.  

 
 
WHAT ARE THE RISKS OR HARMS OF PARTICIPATING IN THIS STUDY?  

 
There are potential risks to this study considering you will be exercising for an extended period 

of time and at a relatively high intensity.  Potential side affects include an increase in sweating, 

dehydration, dizziness or risk of exhaustion.  If any of these complications occur and you start 

to feel uncomfortable, you have the right to end the exercise.  Lab technicians with first aid and 

CPR training will be present during the exercises.  After the exercise protocols are completed 

you will be obligated to stay in the laboratory for at least 30 minutes to make sure your heart 

rate decreases and that your aren’t exhausted.  You can also withdrawal from this research at 

any given time.  If you are dissatisfied after any of these tests you can contact Dr. Serresse or 

myself via e-mail or by telephone. 

 

 
Potential Benefits  
 
Your involvement in this study can possibly answer whether short lasting high intensity 

workouts burn more calories than long lasting steady state exercise.  The results from this 

study can be quite relevant to the scientific community as they can be used in future studies.  

Your participation in this study will also come with physiological improvements, as it will lead 

to a healthier cardiovascular system. 
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HOW WILL MY INFORMATION BE KEPT CONFIDENTIAL? 
 
The data collected, which will be kept secured on a computer, will help us conclude whether 

HIIT or SS if more effective for burning calories during post-exercise measurements.  Only with 

your consent will we be able to use the collected findings for the production, oral presentation 

and publication of my thesis.  Your identity will not be disclosed at any point and time.  

 
INFORMATION ABOUT THE STUDY RESULTS 
 
Once the data is collected and analyzed you will have the right to review the summary of the 

results.  If you would like to receive the data you can contact me via e-mail or through my cell 

phone. 

 
WHAT ARE THE RIGHTS OF PARTICIPANTS IN A RESEARCH STUDY? 
 
If there is any problem or if you have any questions regarding this study you can contact Dr. 

Serresse at 705-675-1151 ext: 1085 or at oserresse@laurentian.ca.  If you have any questions 

about the ethical conduct of this research feel free to contact Research Ethics Officer: 

Laurentian University Research Office. E-mail: ethics@laurentian.ca. Telephone: 705-675-1151 

ext 3213.   

 
 
 
 
 

DOCUMENTATION OF INFORMED CONSENT 
 

You will be given a copy of this informed consent form after it has been signed and dated by you 

and the study staff. 

 

Full Study Title:  

mailto:oserresse@laurentian.ca
mailto:ethics@laurentian.ca
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Comparing the physiological effects of high intensity interval training versus steady state 

exercise training with similar energy expenditures 

Name of Participant:  ________________________________________ 

 

Participant/Substitute decision-maker 

By signing this form, I confirm that: 

• This research study has been fully explained to me and all of my questions answered to my 

satisfaction 

• I understand the requirements of participating in this research study 

• I have been informed of the risks and benefits, if any, of participating in this research study 

• I have been informed of the rights of research participants 

• I have read each page of this form 

 

___________________________        ____________________________        _____________________ 
Name of participant/                     Signature           Date 
(print)             
 
 
 
 
____________________________        ____________________________        _____________________ 
Name of Person            Signature            Date 
administering              
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Appendices II: Par-Q Test 
 

 

 



 65 

Appendices III: Respiratory quotient 
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