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ABSTRACT

Electromagnetic exploration methods have important applica-
tions for geologic mapping and mineral exploration in igneous
and metamorphic terranes. In such cases, the earth is often
largely resistive and the most important interaction is between
a conductor of interest and a shallow, thin, horizontal sheet rep-
resenting glacial tills and clays or the conductive weathering
products of the basement rocks (both of which are here termed
the “conductive overburden”). To this end, we have developed a
theory from which the step and impulse responses of a sphere
interacting with conductive overburden can be quickly and ef-
ficiently approximated. The sphere model can also be extended
to restrict the currents to flow in a specific orientation (termed
the dipping-sphere model). The resulting expressions are called
semianalytical because all relevant relations are developed ana-
lytically, with the exception of the time-convolution integrals.
The overburden is assumed to not be touching the sphere, so
there is no galvanic interactions between the bodies. We make
use of the dipole sphere in a uniform field and thin sheet approx-
imations; however, expressions could be obtained for a sphere in

a dipolar (or nondipolar) field using a similar methodology. We
have found that there is no term related to the first zero of the
relevant Bessel function in the response of the sphere alone.
However, there are terms for all other zeros. A test on a synthetic
model shows that the combined sphere-overburden response can
be reasonably approximated using the first-order perturbation of
the overburden field. Minor discrepancies between the approxi-
mate and more elaborate numerical responses are believed to be
the result of numerical errors. This means that in practice, the
proposed approach consists of evaluating one convolution inte-
gral over a sum of exponentials multiplied by a polynomial
function. This results in an extremely simple algorithmic imple-
mentation that is simple to program and easy to run. The pro-
posed approach also provides a simple method that can be used
to validate more complex algorithms. A test on field data ob-
tained at the Reid Mahaffy site in Northern Ontario shows that
our approximate method is useful for interpreting electromag-
netic data even when the background is thick. We use our ap-
proach to obtain a better estimate of the geometry and physical
properties of the conductor and evaluate the conductance of the
overburden.

INTRODUCTION

Discrete conductor models have important applications for inter-
pretation of data acquired using electromagnetic geophysical meth-
ods. Common models include the plate and sphere, which are
commonly used for interpretation of borehole, ground, and airborne
electromagnetic (BHEM, GEM, and AEM) data (Dyck et al., 1981;
Dyck and West, 1984; Lamontagne et al., 1988; Macnae et al.,
1998; Schaa, 2010; Smith and Wasylechko, 2012; Fullagar et al.,
2015; Macnae, 2015; Vallée, 2015). In particular, the free-space
discrete conductor model is attractive, especially in resistive envi-

ronments such as large crystalline terranes due to the ease of com-
putation (Annan, 1974; Smith and Lee, 2001). One of the simplest
and most versatile of such models is the dipolar sphere in a uniform
field, for which the secondary magnetic field can be calculated us-
ing a sum of exponentially decaying functions, where each term in
the sum is related to a pole in the complex-frequency plane (Smith
and Lee, 2001). This model provides a means to easily estimate the
response of bodies of variable size, position, and conductivity. As
well, the current at the sphere can be constrained to flow in a speci-
fied direction, so that computing the response of bodies of variable
orientation is straightforward (Smith and Lee, 2002). This dipping-
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sphere model is used by Desmarais and Smith (2015a, 2015b) to
develop GEM interpretation methods.
If the geology can be explained using a background or overbur-

den that is conductive, free-space models may be inappropriate for
modeling of electromagnetic data. Techniques exist for calculating
the response of a discrete conductor interacting with other conduc-
tive bodies (Singh 1973; Lee, 1975, 1983; Ward and Hohmann,
1987; Bartel and Becker, 1988; Newman and Hohmann, 1988;
Raiche and Sugeng, 1989; Walker and West, 1991). More specifi-
cally, the problem of a discrete conductor in a conductive medium is
well-studied for electromagnetic applications in marine or other
conductive environments (Wait, 1953; Song, 1993; San Filipo and
Won, 2005; Shubitidze, 2011). Although these methods are gener-
ally based on integral forms of Maxwell’s equations or solutions of
Maxwell’s equations in the frequency-wavenumber domain. Hence,
they result in numerical implementations that are not used routinely
for interpreting mineral exploration data.
Here, we are interested in the case of a discrete conductor em-

bedded in a resistive environment because this is an important
case for geologic mapping and mineral exploration in igneous
and metamorphic terranes, where the background is resistive. In
such cases, the interaction between the discrete conductor and a thin
horizontal conductive sheet (representing an upper layer of glacial
till or clay or a conductive weathering product) is often most
important (Dyck and West, 1984; Xie et al., 1998). This problem
is very relevant to mineral exploration and for such purposes, Liu
and Asten (1993) have developed a theory for estimating the re-
sponse of a wire loop interacting with conductive overburden. Their
method assumes that the measurement at the receiver follows an
ansatz, whereby the total field is written as a sum of the following
form:

H ¼ Hob þ
X∞
n¼1

Hn ≈Hob þH1; (1)

where the first term Hob is the field from the overburden measured
at the receiver, and higher-order terms are progressively weaker
fields, which account for interaction between the overburden and
the wire loop; H1 is the field from the wire loop induced by Hob;
H2 is the field from the overburden induced by H1; H3 is the field
from the wire loop induced by H2; and so on. Liu and Asten (1993)
find that the total field H can be reasonably approximated using
only Hob and H1. The advantage of this approximation is that it
results in calculations that are highly efficient, when compared to
conventional methods. In fact, they find that the computation times
were roughly 100 times faster than methods based on integral equa-
tions. However, one weakness of their model is the need to readjust
empirically determined tuning parameters when the orientation and
size of the wire loop varies.
Here, we aim to develop a theory for computing the time-domain

electromagnetic response of a sphere under conductive overburden
based on the ansatz introduced by Liu and Asten (1993). We envis-
age that this will provide the optimal method for estimating electro-
magnetic responses of discrete conductors in large metamorphic
and igneous terranes, such as the Canadian Shield. The sphere is
assumed not to be touching the overburden, so there can be no chan-
neling of overburden currents into the sphere. We are interested in
finding a fast and robust solution. To this end, we make use of the

dipolar sphere in a uniform field model. However, generalization to
a sphere in a dipolar (or nondipolar) field is straightforward. Here,
no empirically derived tuning parameters are required and the dip-
ping-sphere model is able to model plate-like bodies (Smith and
Lee, 2001).

METHODOLOGY

Field of the overburden alone

Consider a transmitter consisting of a current-carrying loop. For
AEM purposes, in which the height of the transmitter is much larger
than the size of the loop, we can approximate the loop as a magnetic
dipole. For GEM purposes, the transmitter could be represented
using many magnetic dipoles (Desmarais and Smith, 2015a).
The current at the transmitter is shut-off at time t ¼ 0, at which
point a time-varying magnetic field radiates everywhere in space.
This magnetic field creates secondary currents in the overburden,
which in turn generates a secondary-magnetic field. Here, we
will assume that the overburden is sufficiently thin so that its
electromagnetic properties can be described using a product of
its conductivity and thickness (or conductance) σs. This is a good
approximation in trying to describe the uppermost conductive layer
because the width of this layer is generally much smaller than other
system dimensions. The secondary field of the overburden Hob can
be described using the receding-image solution of Grant and West
(1965, p. 500):

Hob ¼ −
uðtÞ
4π

�
∇rx

�
mtx · ∇tx

�
ðrxrx − rxtxÞ2 þ ðryrx − rytxÞ2

þ
�
rzrx � rztx �

2t
μoσs

�
2
�
−1
2

��
; (2)

where “⋅” is the dot product, rrx ¼ ½rxrx; ryrx; rzrx� is the receiver po-
sition and rtx ¼ ½rxtx; rytx; rztx� ¼ ½0; 0; d� is the transmitter position, in
which d is the vertical distance from the transmitter to the overbur-
den. The transmitter magnetic dipole moment vector is mtx, uðtÞ is
the Heaviside-step-on function with uð0Þ ¼ 1, μo is the vacuum per-
meability, ∇rx and ∇tx are the gradient operators acting on the
receiver and transmitter coordinates, respectively. The plus and minus
signs are used for receiver positions above or below the overburden.
Here, we evaluate the gradients contained in Hob analytically. The
resulting magnetic field expressions and its time derivative can be
found in Appendix A (equations A-5a, A-5b, and A-5c).

Field of the sphere alone

Following Smith and Lee (2002), we will assume that the step
response of a discrete conductor in free space SðtÞ can be written
in the following form:

SðtÞ ¼ RuðtÞHðtÞ; (3)

where R is the inductive limit ðt → 0Þ response and HðtÞ is
a dimensionless, analytic function characterizing the temporal
decay of the currents induced at the conductor and follows the
constraints:
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lim
t→0þ

HðtÞ ¼ 1 (4a)

lim
t→∞

HðtÞ ¼ 0: (4b)

The impulse response IðtÞ is the time derivative of the step re-
sponse:

IðtÞ ¼ R

�
δðtÞHðtÞ þ uðtÞ ∂HðtÞ

∂t

�
; (5)

where δðtÞ is the dirac-delta function. Smith and Lee (2002) were
interested in the response in the off-time ðt > 0Þ, so they remove the
delta function term because this term vanishes for t > 0:

KðtÞ ¼ RuðtÞ ∂HðtÞ
∂t

: (6)

For other purposes, if the term associated with the delta function
were desired, it could be derived from KðtÞ. Here, we wish to find
the form of SðtÞ. To do so, we can start from the formulation of
Smith and Lee (2002). In their work, the magnetic field of the
sphere in a dipole field is first described from the frequency-domain
expression of Grant and West (1965, p. 518):

Hi ¼
mj

4π

X∞
l¼1

ðX þ iYÞ a2lþ1

ðrroÞlþ2
Fj
ifl; P1

l ðcos ϑÞ; Plðcos ϑÞg;

(7)

where Hi is the radial ði ¼ rÞ, latitudinal ði ¼ ϑÞ, or longitudinal
ði ¼ φÞ component of the field; mj is the jth component of the mo-
ment of the transmitter in spherical coordinates; a is the radius of
the sphere ro is the radial distance from the center of the sphere to
the transmitter; r is the distance to the receiver; Fj

i is a function
dependent on the index of summation l, and the Legendre coeffi-
cients P1

l and Pl. The only frequency-dependent term of equation 7
is given by the complex function X þ iY (Smith and Lee, 2002):

X þ iY ¼
�
Iγþ1ðkaÞ
Iγ−1ðkaÞ

�
; (8)

where γ ¼ lþ 1∕2 and k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iωμoσsp

p
, for frequency ω and sphere

conductivity σsp, and I are modified Bessel functions of the first
kind. The time-dependent part of the impulse response in the off-
time ∂HðtÞ∕∂t is then given by the inverse Laplace transform of X þ
iY (Smith and Lee, 2002):

∂HðtÞ
∂t

¼ L−1fX þ iYg

¼ 1

2πi

Zcþi∞

c−i∞

e−λ
2t∕ðμoσspa2Þ

�
Jγþ1ðλÞ
Jγ−1ðλÞ

�
2λ

μoσspa2
dλ; (9)

where the integration variable is λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−iωμoσspa2

q
, J are Bessel

functions of the first kind, and c is a variable along the real frequency
axis, whose values exceeds the real part of all singularities of X þ iY.
In the work of Smith and Lee (2002), this integral is evaluated

using the residue theorem, which involves summing the contribu-
tions over simple poles of the integrand. Smith and Lee (2002) state
that the integrand has poles at the zeros of Jγ−1, the first of which
occurs at λ ¼ 0. However, we find that the term related to the zero at
λ ¼ 0 leads to unphysical increases of SðtÞ. We can evaluate the
term in square brackets in equation 9 for λ ¼ 0 using equation
9.1.7 of Abramowitz and Stegun (1965), which allows us to com-
pute the value of the Bessel functions for small arguments:

lim
λ→0

�
Jγþ1ðλÞ
Jγ−1ðλÞ

�
¼ lim

λ→0

	
1
2
λ


γþ1

ΓðγÞ	
1
2
λ


γ−1

Γðγ þ 2Þ
¼ 0; (10)

where Γ is the Gamma function. Substituting equation 10 in 9, we
realize that the integrand does not have a pole at λ ¼ 0. However,
according to the theorem of interlacing of zeros of Bessel functions
in Watson (1944, p. 479), it is trivial to show that the integrand will
have a simple pole for all other zeros of Jγ−1ðλÞ.
Then, following Smith and Lee (2002), the integral in equation 9

is evaluated using the residue theorem, which gives us a similar
result:

∂HðtÞ
∂t

¼ −
4γ

μoσspa2
X∞
k¼1

e
−

λ2
k
t

ðμoσspa2Þ; (11)

where now the λk are the non-null ðλk > 0Þ zeros of Jγ−1. Equation 11
is similar to equation 22 of Smith and Lee (2002), except that here
there is no λk ¼ 0 term. We are interested in the case of a dipolar
sphere in a uniform field, whose response is given by the first term
in equation 7, associated with l ¼ 1 and γ ¼ 3∕2 (Smith and Lee,
2001). In this case, λk are the non-null zeros of J1∕2 ¼ sin zffiffiffiffiffi

1
2
πz

p , so we

have λk ¼ nπ for integers n ∈ ð1;∞�. The time-dependent part of the
step response HðtÞ is then obtained starting from the time integral of
equation 11:

HðtÞ ¼ −
6

μoσspa2
X∞
k¼1

Z
e
−

λ2
k
t

ðμoσspa2Þdt ¼ Cþ
X∞
k¼1

6

λ2k
e
−

λ2
k
t

ðμoσspa2Þ

(12)

where C is a constant of integration. From equation 4a, we have

1 ¼ Cþ
X∞
k¼1

6

λ2k
¼ Cþ 6

π2
X∞
k¼1

1

k2
: (13)

The summation given in equation 13 was of interest to mathemati-
cians in 17th–19th century and is known as the Basel problem in
honor of Leonhard Euler, who found the exact sum to be π2∕6
(Ayoub, 1974). This gives us C ¼ 0.
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Following Smith and Lee (2002), the dipole moment induced at
the sphere is then given by

mspðtÞ ¼ 2πa3HðtÞHo; (14)

where Ho is the excitation field evaluated at the sphere. The ob-
served magnetic field SðtÞ is then calculated as (Smith and Lee,
2002)

SðtÞ ¼ uðtÞ 1

4πr3

�
3mspðtÞ · r

r2
r −mspðtÞ

�
: (15)

Combined overburden and sphere response

The combined response of the sphere and overburden is approxi-
mated using an expression in the form given by equation 1. The first
term in this expression Hob is given by equation 2 with � replaced
by a plus sign. The second termH1 is the field of the sphere induced
by the overburden. The field of the overburden is calculated again
using the receding image solution, except that the coordinates of the
sphere replace those of the receiver and � is replaced by a mi-
nus sign.
In the Laplace domain, the first-order approximation for the in-

duced moment at the sphere m1 could be calculated using a multi-
plication of the field of the overburden with that of the sphere at the
corresponding frequencies. In the time domain, an analogous quantity
can be calculated using convolution. From Ampère’s law, together
with Faraday’s and Ohm’s laws in the quasistatic approximation, the
induced moment at the sphere should be proportional to the time
derivative of the excitation field Hos, which is the secondary field
of the overburden evaluated at the sphere. This gives us

m1ðtÞ ¼ −2πa3
∂HosðtÞ

∂t
� uðtÞHðtÞ (16a)

m1ðtÞ ¼ −2πa3
�
−H̄osð0ÞHðtÞ þ

Zt

0

∂H̄osðτÞ
∂τ

Hðt − τÞdτ
�
;

(16b)

where the negative sign out front is included for consistency with
Maxwell’s third equation, H̄os ¼ Hos∕uðtÞ (see Appendix A, equa-
tion A-4) and τ is a convolution variable. The time derivative of m1

can be calculated using the Leibniz integral rule:

∂m1ðtÞ
∂t

¼ −2πa3
�
−H̄osð0Þ

∂HðtÞ
∂t

þ ∂H̄osðtÞ
∂t

þ
Zt

0

∂H̄osðτÞ
∂τ

∂Hðt − τÞ
∂t

dτ

�
: (17)

The actual field H1 is then calculated using an equation similar to
equation 15, except that the induced dipole moment is now m1ðtÞ
and the distance vector is now ros. If the time derivative of the mag-
netic field is desired, it could be calculated using the time derivative of

the moment given by equation 17. The third term H2 in the approxi-
mation of the combined response is the field from the overburden
induced by the sphere. The field H2 can be calculated, again using
the receding image solution, where the energizing moment is m1 in-
stead of the moment of the transmitter. As before, in the Laplace do-
main, the frequency dependence of H2 could be obtained through
multiplication of the frequency-dependent parts of the moment of
the sphere with the secondary field of the overburden. This translates
to a convolution in the time domain. Again fromMaxwell’s equations
in the quasistatic approximation, the field H2 is proportional to the
time derivative of the field of the sphere evaluated at the overburden,
which varies in time according to ∂m1ðtÞ∕∂t:

H2 ¼ −
uðtÞ
4π

�
∇rx

�
∂m1ðtÞ
∂t

⊙∇sp

�
ðrxrx − rxspÞ2 þ ðryrx − ryspÞ2

þ
�
rzrx þ rzsp þ

2t
μoσs

�
2
�
−1
2

�
; (18)

where ⊙ denotes a combination of the convolution and dot product
operators ða⊙b ¼ a1 � b1 þ a2 � b2 þ a3 � b3Þ. Substituting equa-
tion 17 in equation 18, we get

H2¼
−a3

2

�
∇rx

�Zt

0

dT

�
−H̄osð0Þ

∂HðTÞ
∂T

þ∂H̄osðTÞ
∂T

þ
�Zt−T

0

∂H̄osðτÞ
∂τ

∂HðT−τÞ
∂T

dτ

�

·∇sp

�
ðrxrx−rxspÞ2þðryrx−ryspÞ2þ

�
rzrxþrzspþ

2ðt−TÞ
μoσs

�
2
�

−1
2

���
;

(19)

where T is a convolution variable. The analytical gradients contained
in H2 and its time derivative are evaluated in Appendix B.

Generalization to arbitrary waveforms

The response of the sphere-overburden system to excitation by an
arbitrary current waveform pulse ~H can be calculated by convolving
the step response H with the current waveform w or its time deriva-
tive:

~H ¼
Z0

−P

wðϖÞHðt −ϖÞdϖ; (20)

where P is the pulse length and the waveform is assumed to be zero
outside of the pulse. In BHEM, GEM, and AEM, the current wave-
form does not consist of one pulse, but of a series of alternating
positive and negative (or bipolar repetitive) pulses. The effect of
the previous pulses of the waveform is to reduce the amplitude of
the field by factors proportional to the time constant of the decays.
An analytical form for the amplitude reduction factors are given by
Smith and Neil (2013) for responses consisting of a series of expo-
nential decays (such as the response of the sphere alone). In principle,
these factors would have a different analytical form for the combined
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sphere-overburden response. However, for the models of interest to
BHEM, GEM and AEM, the sphere is generally more conductive
than the overburden. So, the residual magnetic field carried by the
previous pulses of the waveform should be proportional to the field
of the sphere alone, as the field of the overburden will have decayed
away (see Figures 2 and 3). We can therefore safely approximate the
amplitude reduction factors using those for the sphere alone:

~HðtÞ ¼
X∞
k¼1

AðkÞ
Z0

−P

wðϖÞHkðt −ϖÞdϖ (21a)

AðkÞ ¼
�
1þ exp

�
−2λ2k

μoσspa2f

��−1
; (21b)

where f is the base frequency, AðkÞ are the amplitude reduction fac-
tors of the bipolar repetitive waveform, and Hk are the spectral com-
ponents of H; (i.e., H ¼ P∞

k¼1 Hk).

RESULTS

The equations presented in the previous section are solved in a
MATLAB code. The only time-consuming parts of the computation
is the evaluation of the convolution integrals. The convolution in
equation 16b is evaluated using the MATLAB integral function,
which is an implementation based on vectorized adaptive quadra-
ture. The integral over τ in equation 20 is again evaluated using the
MATLAB integral function and the integral over T is evaluated us-
ing the trapezoid integration method, as implemented in the trapz
MATLAB function. The integral functions are called with the fol-
lowing arguments: a relative tolerance of 1E-5 and an absolute tol-
erance of 1E-20 A∕m.

Synthetic models

To validate our solutions with regards to convergence of the sum
in equation 1, we compare our results with those calculated using
the sphere in a layered-earth solution of Vallée (2015). Unfortu-
nately, the model used in the Vallée (2015) method is not identical
to our model. There are some similarities in that the buried conduc-
tor is represented by dipoles. However, the sphere is assumed to be
embedded in a conductive half-space and the overburden has a finite
thickness. Furthermore, Vallée’s layered-earth response is estimated
using Hankel transforms and the solution is estimated in the fre-
quency domain and transformed numerically to the time domain.
The geometry of the considered model, as well as its electromag-

netic parameters are present in Figure 1. We convolved the step
response with the time derivative of the MEGATEM waveform.
The resulting signal was sampled in time according to the windows
presented in Table 1. The height above ground of the transmitter
was 120 m, the receiver was 56 m below and 125 m behind the
transmitter. The dipole moment of the transmitter was 1.847300 ×
106 Am2 in the vertical direction. The length of the waveform pulse
was 3.65 ms and its base frequency was 30 Hz.
The responses of the sphere and background alone are presented

in Figure 2. Figure 2a shows the logarithm of the response of the
infinitesimally thin overburden in the solid line and that of the lay-

ered-earth in the dotted-dashed line. Slight disparities are expected
in these decays because of the inexactitude of the thin-sheet
approximation (for the overburden) and because the host in the sol-
ution of Vallée (2015) does not have a zero conductivity (is not in-
finitely resistive). The agreement between our thin-sheet solution
and the layered-earth solution appears to get slightly worse with
increasing time. We attribute this to the noise floor in the numerical
Hankel transforms used by the solution of Vallée (2015), which
causes greater discrepancy when the signal is smaller (i.e., at late
times). Figure 2b shows the response of the sphere using our for-
mula in the solid line and that of the sphere using the solution of

Figure 1. Geometry and electromagnetic parameters of the syn-
thetic model used for the Vallée (2015) algorithm. In our algorithm,
the thickness s is small, but the conductivity-thickness product is set
to 0.666, the same value for the Vallée (2015) model. The other
difference is that for the Vallée (2015) model, the host resistivity
is 10,000 Ωm, but in our algorithm, we assume infinite resistivity.

Table 1. Window sampling times used in the synthetic model
simulation.

Time after shut-off of the transmitter current ðmsÞ

0.1546

0.2360

0.3337

0.4476

0.5778

0.7406

0.9440

1.1882

1.5137

1.9206

2.5309

3.3447

4.5654

6.1930

9.0143
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Vallée (2015) in the dashed line. The differences of these two fields
normalized by the peak at the associated windows are shown in
Figure 2c. Here, the disparities are believed to be the result of numeri-
cal errors in the evaluation of the convolution with the system wave-
form (for both methods) and especially the evaluation of Hankel and
Fourier transforms (for the method of Vallée, 2015). Again, the agree-
ment is shown to get worse with time, likely a consequence of the
constant noise in the numerical Hankel transforms for the method of
Vallée (2015).
The combined responses are presented in Figure 3a. The Vallée

(2015) solution is denoted by the dotted line, the second-order

ðHob þH1 þH2Þ solution is shown in the dotted-dashed line
and the first-order ðHob þH1Þ solution is shown in the solid line.
The agreement between the fields calculated using our approach
and that calculated using the approach of Vallée (2015) is good
at early time but gets progressively worse with time, again likely be-
cause of the noise floor of the numerical Hankel transforms of the
method of the Vallée (2015) algorithm, which becomes more appar-
ent with decreasing delay time. Nonetheless, the good agreement in
the first windows validates our approximate solution at early time.
The remaining difference at early time is again most likely due to
the thin-sheet approximation and numerical errors. Figure 3b shows
the normalized difference of the first- and second-order solutions.
The early windows are plotted in lighter shades and the later windows
are plotted in darker shades. Figure 3b shows that the first- and
second-order solutions converge to the same field at late time, which
validates the approximate solution at late time.
The most important point is that the overburden and sphere re-

sponse can be modeled approximately using our algorithm, and,
hence, the physical and geometric properties of the overburden
and the sphere can be estimated from the data. The small difference
between the first- and second-order solutions suggests that in prac-
tice, good results can be obtained using only Hob and H1. The Liu
and Asten (1993) solution was shown to have a similar behavior

Figure 2. (a) Logarithm of the response of the overburden measured
in nT (solid line) and the layered-earth (dashed line) for the first eight
windows. (b) Secondary magnetic field of the dipole sphere in a uni-
form field using our solution (solid line) and the Vallée (2015) sol-
ution (dashed line). (c) Differences of the sphere’s field calculated
using our approach and that calculated using the approach of Vallée
(2015), normalized by the peak at the corresponding window. The
darker colors denote later times. It can be seen that the relative dis-
agreement between these fields increases as a function of time and is
attributed to the noise in the numerical Hankel transforms of the
method of Vallée (2015).

Figure 3. (a) Response of the sphere overburden system. The first-
order field is in the solid line, the second-order field is in the dotted-
dashed line and the solution obtained using the formula of Vallée
(2015) is in the dotted line. The agreement between our solutions
and that of Vallée (2015) is good for early time but gets worse with
time as a result of the numerical Hankel transforms in the Vallée
(2015) algorithm (see Figure 2). Nonetheless, this validates the
approximation at early time. (b) Normalized difference between
the first- and second-order fields. This plot shows that these fields
converge to the same solution at late time, which validates the
approximation at late time.
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when compared to wire loop in a layered-earth models, in which
disagreement was observed at early time between the layered-earth,
first- and second-order solutions, but these converged to the same
result at late time. It is not surprising that our solution has a similar
behavior. The Vallée (2015) solution is limited to modeling currents
that flow in a direction perpendicular to the excitation field at the
sphere; our solution can restrict the currents to flow in a specific di-
rection, which is necessary to explain field data, as we will see in the
following section.

Test on field data from the Reid-
Mahaffy site

To show some practical applications of our approach, we use our
formula for forward modeling of an anomaly at line 15 of the Reid
Mahaffy test site, Northern Ontario. This is the same anomaly dis-
cussed by Smith and Lee (2001, 2002), Smith and Salem (2007),
Desmarais and Smith (2015c, 2016). This anomaly was modeled
starting from the geometrical parameters obtained by Desmarais
and Smith (2016) and the sphere conductivity-radius-squared
(CRS) from Smith and Salem (2007). We use the dipping-sphere
approach to model the response of an oriented body. This is done
by projecting the first-order approximation to the dipole moment of
the sphere m1 onto the normal n to the desired current flow path
(Smith and Lee, 2002):

~m1 ¼ P̂m1 ¼ n
n · m1

n
: (22)

The projection operator P̂ is time independent, so it can be applied
after calculation of the integrals. After refinement of the parameters
using a manual forward modeling procedure, we obtained a sphere
position along the traverse line of 3300 m, a depth below ground to
the center of the sphere of 230 m, a CRS of 6612 Sm, a strike of 90°,
a dip of 85°, and an overburden conductance of 0.43 S. The result-
ing x- and z-component responses are shown in Figure 4a and 4b.
The measured response is shown using the dashed line and the cal-
culated response is shown using the solid line. Figure 4c and 4d
shows the differences between the measured and calculated fields,
normalized to the peak at the associated window. As can be seen
from these figures, the agreement is not very good for the earliest
and latest windows. There are two reasons for the poor early-time
agreement: First, the overburden does not have a uniform thickness,
as the x and z responses appear to be larger to the right. Second, the
background is most likely thick. Therefore, a thin-sheet of uniform
conductance is unable to model this complexity. Witherly et al.
(2004) generate a map from drill information that shows that the
overburden is approximately 60 m thick near this conductor; how-
ever, AEM inversions (without lateral constraints) on this line show
that the overburden thickness is highly variable, changing very rap-
idly from less than 10 m to more than 40 m over very short distances
(Vallée and Smith, 2009; Figure 4). However, the ground below the
overburden is resistive, so the interaction with this background de-
cays away quickly, and the agreement is good for the intermediate
time windows.
At the latest windows, the amplitude of the anomaly is much

lower and the data are corrupted by noise caused by swaying of
the receiver coil. This is evident from the oscillation of the residual
at late time in Figure 4c and 4d, as well as the oscillations in

Figure 4e, which is a plot of the y-component of the anomaly.
The y-component response is most sensitive to the offset to the tra-
verse line of the conductor (Desmarais and Smith, 2016). Here, the
amplitude of the y-component of this anomaly is low because the
conductor lies below the traverse line and has a strike of 90°. How-
ever, as the receiver sways laterally, the offset from the receiver os-
cillates, which leads to the observed modulation of the amplitude in
the y-component field (Desmarais and Smith, 2016). Nonetheless,
we achieve good fits in the intermediate time windows, which are
most dominated by the response of the discrete conductor. In min-
eral exploration and geologic mapping, the goal of applying AEM
methods is often to extract information on the properties of the dis-
crete conductor and the good intermediate-time agreement obtained
with our approach suggests that we have achieved this goal at these
delay times.

DISCUSSION

For the field example at the Reid-Mahaffy site, we obtained a
depth different from the 200m obtained by Desmarais and Smith
(2016). The depth of the sphere can be expected to change the time
dependence of the combined response. If the depth of the sphere is
infinite, then the combined response becomes the field of the over-
burden alone. Otherwise, the combined response will be a combi-
nation of the sphere response and the overburden response. These
two situations create fields that have different time dependences, so
the depth of the sphere affects the time dependence of the response.
We have more confidence in the depth obtained here because of the
formal inclusion of interaction with the overburden. The other ad-
vantage of this result over previous results is that the conductance of
the overburden has been estimated in this work. Even better results
could be obtained by implementing our formula in an inversion or
automated interpretation algorithm.
We did not use the y-component because this component is weak

in this instance and is dominated by noise. However, in other sit-
uations, the y-component could be used to estimate the strike or the
lateral offset of the conductor. Although this is not critical in our
situation because an estimate of the strike (90°) has already been
obtained using the algorithm of Desmarais and Smith (2016).
The poor early-time agreement between the calculated and mea-

sured response at the Reid-Mahaffy site was caused by the uppermost
conductive layer of variable conductance, which was not adequately
modeled by a thin sheet of uniform conductance. However, the agree-
ment for the intermediate delay times is much better because all
other conductive features are well-represented using our model. If
the electromagnetic properties of the uppermost conductive layer
are of interest, then a method based on a thick sheet of variable con-
ductance would be required. Otherwise, our approach appears to
yield adequate results compared to the work of previous authors.
The resistivity of the host rock in the synthetic model was

10;000 Ωm for the layered-earth simulation and ∞ Ωm for the
overburden simulation. The high resistivity value of the host rock
was chosen to emulate free-space conditions, so that both solutions
could be compared. Granted, these values are not representative of
the host-rock resistivities encountered in all situations. However, the
goal of this paper is not to validate the free-space approximation
because the use of free-space methods is already a common practice
in electromagnetic data interpretation, especially in the resistive
environments of interest here (see the “Introduction” section). Our
model assumes a free-space host below a thin conductive overbur-
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den, which will be a better approximation than the free-space mod-
els with no overburden that are routinely used.
We have shown that an accurate description of the secondary-

magnetic field of the sphere and overburden can be obtained using
only the first-order interaction field. This means that the computa-
tion of a given Cartesian component of the response consists of sim-
ply evaluating one convolution integral over a sum of exponentials
multiplied by a polynomial function. If the second-order interaction
field were desired, then the calculation also requires the evaluation
of a double-convolution integral over an integrand of similar ana-
lytical form. In either case, these methods are expected to outper-
form methods based on integral forms of Maxwell’s equations or
methods using analytical solutions of Maxwell’s equations in the
frequency-wavenumber domain (such as the method of Vallée,
2015). For a given Cartesian component of the secondary-magnetic
field response, the Vallée (2015) algorithm calculates the field in the
frequency-space domain by taking six Hankel transforms over in-
tegrands containing special functions such as Hankel and Bessel

functions, as well as their first-, second- and third-order spatial
numerical derivatives. The solution is then transformed to the
space-time domain by using a 2D digital cosine transform, which
results in an algorithmic implementation that is much more complex
than our approach. The Vallée (2015) method has been imple-
mented in a computer program that is the property of the Compa-
gnie Générale Géophysique, and cannot be run by us or others in the
geophysical community. So, we cannot directly compare execution
times of both algorithms because they cannot be run on similar ma-
chines and in a similar programming language. It is also difficult to
compare the cost of both algorithms based on floating point oper-
ations because the accuracy at which the integral transforms are cal-
culated in Vallée (2015) and using our adaptive quadrature approach
are dependent upon the geometry and electromagnetic properties of
the considered model, as well as the delay time. However, when
comparing their approximate-wire-loop algorithm with a more
elaborate algorithm, Liu and Asten (1993) find a factor-of-100 im-
provement in execution time. Also noteworthy is that the algorithm

Figure 4. The (a) x- and (b) z-component responses at the Reid-Mahaffy site. The calculated responses are depicted using the solid lines, the
measured responses are plotted using the dashed lines, and t1 denotes the corresponding fields calculated at the first window. The (c) x- and
(d) z-component normalized differences between the calculated field and the measured field. The (e) y-component response at the Reid-
Mahaffy site.
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of Vallée (2015) is for a layered-earth and if the background is not
layered, it may yield erroneous results (Wolfgram et al., 1998; Reid
et al., 2010). Admittedly, a similar error would occur with our
method if the background is not represented well by a thin sheet.
However, our method is expected to outperform a method based on
layered-earths in the situation where the background is resistive and
not layered, such as situations encountered in the large igneous and
metamorphic terranes present in the Canadian Shield as well as
other parts of North America. Also, our algorithm is able to model
the electromagnetic response of oriented bodies in any arbitrary ori-
entation, which is not possible in the algorithm of Vallée (2015).
One major improvement over our approach against that of Liu
and Asten (1993) is that our model does not require adjustment
of empirical tuning of parameters while the properties of the dis-
crete conductor vary.

CONCLUSION

We develop a theory from which the electromagnetic response of
a dipping-sphere interacting with conductive overburden can be
quickly and efficiently approximated. The method is especially use-
ful in resistive environments, where the most important interaction
is often between a conductor of interest and a thin horizontal and
conductive sheet, which represents a layer of weathering products
of the basement rocks, or surficial sediments such as glacial tills and
clays. In the derivation of the step response of the sphere alone, we
show that there is no term related to the first zero of the relevant
Bessel function; however, there are terms related to all other zeros,
which is a correction on the work of previous authors. A synthetic
model test shows that the combined response can be reasonably ap-
proximated from the first-order perturbation of the overburden re-
sponse. The discrepancies between our approximate solution and
the full nondipping-sphere solution are most likely the result of
numerical errors. Unlike the full nondipping solution, our model
is able to account for current restricted to flow at a specific plane
(the so-called dipping-sphere model). A test at the Reid-Mahaffy site
in Northern Ontario shows that our approach is useful for interpre-
tation of field data, even when the background is thick. Our param-
eters are in agreement with those of previous authors, and a better
estimate of the depth, dip of current flow and CRS of the conductor,
as well as the overburden conductance have been obtained. Tuning
parameters such as those proposed by other authors are not required
in our approach.
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LIST OF MATHEMATICAL SYMBOLS

AðkÞ = amplitude reduction factors of the transmitter
waveform

a = radius of the sphere
c = variable along the real frequency axis

C = constant of integration
Fj
i = function dependent on l and the Legendre coeffi-

cients P1
l and Pl

f = waveform base frequency
Hob = secondary-magnetic field of the overburden in-

duced by the transmitter and evaluated at the
receiver

H̄ob = Hob
uðtÞ

Hn = nth-order interaction field between the sphere and
the overburden

H = step response of the sphere-overburden system
HðtÞ = analytic function characterizing the decay of the

magnetic field associated with the sphere
Ho = primary field of the transmitter
Hos = field of the overburden excited by the transmitter

and evaluated at the sphere
H̄os = Hos

uðtÞ
~H = combined sphere-overburden response to excitation

by w
Hk = kth spectral component of H ¼ P

kHk

Hi = radial ði ¼ rÞ, latitudinal ði ¼ ϑÞ or longitudinal
ði ¼ φÞ component of the magnetic field of a sphere
in a dipole field, expressed in the Laplace domain

IðtÞ = impulse-response of the sphere
Iν = modified Bessel functions of the first kind
i =

ffiffiffiffiffiffi
−1

p
Jν = Bessel functions of the first kind
KðtÞ = quadrature impulse response of the sphere

k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iωμoσsp

p
L−1 = inverse Laplace transform
l = index of summation for calculating Hi

mtx = dipole moment vector of the transmitter
mj = jth spherical coordinate component of the moment

of the transmitter
mspðtÞ = dipole moment vector of the sphere
m1ðtÞ = first-order approximation to the dipole moment of

the sphere

~m1ðtÞ = dipole moment of an oriented conductor
n = normal to the plane containing the current flow path

at the sphere

P̂ = projection operator transforming the moment of the
sphere into that of an oriented conductor

P = pulse length of the transmitter waveform
R = inductive limit response of the sphere
rrx = coordinates of the receiver
rtx = coordinates of the transmitter
ros = vector from the overburden to the sphere
rsp = coordinates of the sphere
ro = radial distance from the center of the sphere to the

transmitter
r = radial distance from the center of the sphere to the

receiver
SðtÞ = step response of the sphere
t = time after shut-off of the transmitter current
uðtÞ = Heaviside-step-on function with uð0Þ ¼ 1

w = waveform pulse weighting function
X þ iY = frequency-dependent part of Hi

Γ = gamma function
γ = lþ 1

2

Sphere overburden response E273

D
ow

nl
oa

de
d 

06
/1

0/
16

 to
 7

6.
70

.1
19

.5
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



δðtÞ = Dirac delta function with nonzero argument for
lim
t→0−

δðtÞ
λ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−iωμoσspa2

q
λk = non-null zeros of Jγ−1

2

μo = vacuum permeability
σs = overburden conductance
σsp = conductivity of the sphere
τ;T;ϖ = convolution variables
ω = frequency of the field of the transmitter

APPENDIX A

ANALYTICAL GRADIENTS OF THE FIELD
OF THE OVERBURDEN ALONE AND ITS

TIME DERIVATIVE

From equation 2, we can write

Hob ¼ −
uðtÞ
4π

�
∇rx

�
mtx · ∇txh−

1
2

��
; (A-1)

where h is the term in square brackets in equation 2. Evaluating the
gradient of the coordinates of the overburden:

Hob ¼−
uðtÞ
4π

�
∇rx

�
h−

3
2

�
mxðrxrx− rxtxÞ

þmyðryrx− rytxÞ∓mz

�
rzrx� rztx�

2t
μoσs

����
(A-2)

where mtx ¼ ½mx;my;mz�. We now evaluate the gradient over the
receiver coordinates:

Hx
ob ¼−

uðtÞ
4π

�
−3h−5

2ðrxrx− rxtxÞ
�
mxðrxrx− rxtxÞ

þmyðryrx−rytxÞ∓mz

�
rzrx� rztx�

2t
μoσs

��
þh−

3
2mx

�
;

(A-3a)

Hy
ob ¼−

uðtÞ
4π

�
−3h−5

2ðryrx− rytxÞ
�
mxðrxrx− rxtxÞ

þmyðryrx−rytxÞ∓mz

�
rzrx� rztx�

2t
μoσs

��
þh−

3
2my

�
;

(A-3b)

Hz
ob ¼−

uðtÞ
2πμoσs

�
∓3h−5

2

�
rzrx� rztx�

2t
μoσs

��
mxðrxrx− rxtxÞ

þmyðryrx− rytxÞ∓mz

�
rzrx� rztx�

2t
μoσs

��
−h−

3
2mz

�
:

(A-3c)

The time derivative of the field of the overburden is now evalu-
ated as

∂Hob

∂t
¼ uðtÞ ∂H̄ob

∂t
þ δðtÞH̄ob; (A-4)

where H̄ob ¼ Hob∕uðtÞ. This gives us

∂Hx
ob

∂t
¼−

uðtÞ
4π

�
15

2
h−

7
2
∂h
∂t
ðrxrx−rxtxÞ

×
�
mxðrxrx−rxtxÞþmyðryrx−rytxÞ∓mz

�
rzrx�rztx�

2t
μoσs

��

þ3h−
5
2ðrxrx−rxtxÞ

2mz

μoσs
−
3

2
h−

5
2
∂h
∂t
mx

�
þδðtÞH̄x

ob; (A-5a)

∂Hy
ob

∂t
¼−

uðtÞ
4π

�
15

2
h−

7
2
∂h
∂t
ðryrx−rytxÞ

�
mxðrxrx−rxtxÞ

þmyðryrx−rytxÞ∓mz

�
rzrx�rztx�

2t
μoσs

��

þ3h−
5
2ðryrx−rytxÞ

2mz

μoσs
−
3

2
h−

5
2
∂h
∂t
my

�
þδðtÞH̄y

ob; (A-5b)

∂Hz
ob

∂t
¼−

uðtÞ
2πμoσs

�
�15

2
h−

7
2
∂h
∂t

�
rzrx�rztx�

2t
μoσs

�
�
mxðrxrx−rxtxÞþmyðryrx−rytxÞ∓mz

�
rzrx�rztx�

2t
μoσs

��

−3h−5
2

2

μoσs

�
mxðrxrx−rxtxÞþmyðryrx−rytxÞ∓mz

�
rzrx�rztx�

2t
μoσs

��

�3h−
5
2

�
rzrx�rztx�

2t
μoσs

�
2mz

μoσs
þ3

2
h−

5
2
∂h
∂t
mz

�
þδðtÞH̄z

ob; (A-5c)

where the time derivative of h is as follows:

∂h
∂t

¼ �4

μoσs

�
rzrx � rztx �

2t
μoσs

�
: (A-6)

APPENDIX B

ANALYTICAL GRADIENTS OF THE SECOND-
ORDER INTERACTION FIELD AND ITS

TIME DERIVATIVE

The first-order moment of the sphere m1 does not depend on the
coordinates of the receiver. So, the analytical gradients of H2 are
given by equations similar to equations A-3a–A-3c, with the mo-
ment of the transmitter replaced by m1, the coordinates of the trans-
mitter replaced by those of the sphere, the ∓ replaced by a positive
sign, and the � replaced by a negative sign.
From the Leibniz integral rule, the time derivative of H2 reads

∂H2

∂t
¼ 1

4π

�
∇rx

�Zt

0

�
∂M
∂t

·∇sph−
1
2

�

þfM ·∇sp

�
−
1

2
h−

3
2
∂h
∂t

��
dT

�
þ∇rx

�
M ·∇sph−

1
2

�
T¼t

�
; (B-1)
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where the following notations have been adopted as

M ¼ −2πa3
�
−H̄osð0Þ

∂HðTÞ
∂T

þ ∂H̄osðTÞ
∂T

þ
Zt−T

0

∂H̄osðτÞ
∂τ

∂HðT − τÞ
∂T

dτ

�
(B-2a)

M ¼ ½Mx;My;Mz� (B-2b)

h¼
�
ðrxrx−rxspÞ2þðryrx−ryspÞ2þ

�
rzrx−rzsp−

2ðt−TÞ
μoσs

�
2
�

(B-3)

∂M
∂t

¼ −2πa3
∂H̄osðt − TÞ
∂ðt − TÞ

∂Hð2T − tÞ
∂T

(B-4)

∂h
∂t

¼ −
4

μoσs

�
rzrx − rzsp −

2ðt − TÞ
μoσs

�
: (B-5)

We first evaluate the gradients over the sphere coordinates:

∂H2

∂t
¼ 1

4π

�
∇rx

�Zt

0

�
h−

3
2

�
∂Mx

∂t
ðrxrx− rxspÞþ

∂My

∂t
ðryrx−ryspÞ

þ ∂Mz

∂t

�
rzrx− rzsp−

2ðt−TÞ
μoσs

���

−
�
3Mx

2
h−

5
2ðrxrx− rxspÞ

∂h
∂t

þ3My

2
h−

5
2ðryrx− ryspÞ∂h∂t

þ3Mz

2
h−

5
2

�
rzrx− rzsp−

2ðt−TÞ
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The gradient over the receiver coordinates is then evaluated:
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