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ABSTRACT

Mining exploration was very active during the first decade

of the twenty-first century because there were numerous

advances in the science and technology that geophysicists

were using for mineral exploration. Development came from

different sources: instrumentation improvements, new numeri-

cal algorithms, and cross-fertilization with the seismic indus-

try. In gravity, gradiometry kept its promise and is on the cusp

of becoming a key technology for mining exploration. In

potential-field methods in general, numerous techniques have

been developed for automatic interpretation, and 3D inversion

schemes came into frequent use. These inversions will have

even greater use when geologic constraints can be applied eas-

ily. In airborne electromagnetic (EM) methods, the develop-

ment of time-domain helicopter EM systems changed the

industry. In parallel, improvements in EM modeling and inter-

pretation occurred; in particular, the strengths and weaknesses

of the various algorithms became better understood. Simpler

imaging schemes came into standard use, whereas layered

inversion seldom is used in the mining industry today.

Improvements in ground EM methods were associated with

the development of SQUID technology and distributed-acqui-

sition systems; the latter also impacted ground induced-polar-

ization (IP) methods. Developments in borehole geophysics

for mining and exploration were numerous. Borehole logging

to measure physical properties received significant interest.

Perhaps one reason for that interest was the desire to develop

links between geophysical and geologic results, which also is

a topic of great importance to mining geologists and

geophysicists.

INTRODUCTION

At the end of the last millennium, mining exploration experi-

enced an economic rise starting in about 1993 and ending in

1999. Then in the first decade of the new millennium, explora-

tion rose steadily for six years and peaked in 2007, after which

it entered a strong decline at the end of 2008 and reached a na-

dir in 2009. The exploration economy gradually began to

recover at the beginning of 2010. During the first decade of the

twenty-first century, exploration and mining geophysics research

and development were concentrated mainly in academia, the

service industry, and in government institutions. In Australia,

the Commonwealth Scientific and Industrial Research Organiza-

tion (CSIRO), which had been a strong actor in mining geophy-

sics research and development, sharply reduced its activity in

the decade 2000 through 2010 (Raiche, 2008).

The airborne EM industry experienced a consolidation in the

number of businesses and systems available at the start of the

decade 2000 through 2010, but new players stepped in and

introduced new systems. Gravity methods continued to take

advantage of the revolution in global positioning system (GPS)

technology and became popular in the air. Ground geophysical

systems took advantage of the revolution in microprocessor

technology, with more data being acquired and stored and more

sensors being deployed. Magnetic methods did not undergo a

significant advance in acquisition hardware or software, but data

modeling, data interpretation, and integration among data sets

improved. A tremendous advance took place in the application

of time-domain helicopter EM methods for mining exploration

in various environments, with many new systems being intro-

duced. Modeling tools using EM also were improved. Progress

was made in the application of seismic methods for mining
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activities. In parallel, there were developments in the integration

of geophysical data with geology.

GRAVITY METHODS

Review papers summarizing research in gravity leading up to

and at the start of the new millennium include Hansen (2001),

Nabighian and Asten (2002), and Nabighian et al. (2005). An

“Airborne gravity 2004 workshop” was held in Sydney, Aus-

tralia, and the papers presented there are available on the

following Web link: http://www.ga.gov.au/image_cache/

GA4758.pdf. Dransfield (2007) gave a good history of gravity

gradiometry and presented its various applications to mineral ex-

ploration. In a later paper, Dransfield (2010) reviewed the pro-

gress from 2005 to 2010 in airborne gradiometry: Noise levels

were nearly halved and routine incorporation of regional gravity

data led to gravity data sets that contain a broad range of wave-

lengths. The Falcon technology developed by BHP Billiton suc-

cessfully discovered several mineral deposits (Dransfield, 2007),

one of the first of which was the Santo Domingo Sur deposit in

Chile (Figure 1a). The gravity-gradient high shown in Figure 1b

corresponds to the mineralization mapped by drilling. The BHP

Billiton technology was transferred to Fugro Airborne Surveys

in 2008 and now can be used for mineral exploration. In paral-

lel, other commercial airborne gravity gradiometry systems were

developed by Bell Geospace (Hammond and Murphy, 2003) and

Arkex (Lumley et al., 2004). These latter systems measure mul-

tiple gradients, which can be combined to reduce the total noise

level (Murphy et al., 2006). Another approach was the develop-

ment of airborne vector gravimetry by Sander Geophysics Ltd.

(Annecchione et al., 2006). Li and Jekeli (2008) developed and

tested a vector gravimetry system installed on a ground vehicle

by combining GPS data with an inertial navigation system.

In gravity processing, several groups developed methods

for generating terrain corrections. Garcia-Abdeslem and Martin-

Atienza (2001) developed a method to compute the terrain cor-

rections for a gravity survey using a digital elevation model.

This method is based on a forward-model solution for comput-

ing the gravity effect resulting from a rectangular prism of uni-

form mass density that is flat at its base but has a nonflat top. In

gravity gradiometry, Kass and Li (2008) developed an efficient

terrain-correction algorithm and examined the spatial extent and

resolution of terrain models required for performing accurate

terrain corrections. Dransfield and Zeng (2009) proposed a

method for selecting an optimal survey flight over a known ter-

rain, given a desired terrain-correction error. Dransfield (2009)

proposed using sparsely sampled regional gravimetry data to

provide the long-wavelength information, thereby conforming

the derived gravity to the regional gravity.

In signal processing, Lyrio et al. (2004) proposed an auto-

matic, data-adaptive 1D wavelet-filtering technique specially

designed to process gravity gradiometry data. Pajot et al. (2008)

developed a method to reduce noise when the gravity-gradient

tensor and gravity data are both measured in the same area. The

algorithm is based on a least-squares simultaneous inversion of

observations and physical constraints, inferred from the gravity-

gradient tensor definition and its mathematical properties. Not

only does the method use measured values of the tensor compo-

nents, it also uses simultaneously measured gravity data in the

same survey area.

Figure 1. (a) Map of the Far West Candelaria copper project
areas in northern Chile, showing the existing copper-gold mines
such as Manto Verde and Candelaria. The location of the Santo
Domingo Sur deposit is indicated by a cross. Detailed gravity gra-
dient signature of the Santo Domingo Sur deposit. “Eo” is Eötvos.
From Dransfield (2007). Used by permission.
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Advances occurred in gravity interpretation. From the residual

gravity anomaly, Abdelrahman et al. (2001a) used three least-

squares approaches to determine successively the depth, shape,

and amplitude coefficient related to the radius and density con-

trast of a buried structure. The same year, also from residual

gravity data, Abdelrahman et al. (2001b) determined simultane-

ously the shape and depth of a buried structure using filters of

successive window lengths. Later, Abdelrahman et al. (2003)

used two different least-squares approaches to determine the

depth and amplitude coefficient of a buried faulted thin slab.

Zhdanov et al. (2004) interpreted tensor gravity data, based on

regularized focusing inversion. Mikhailov et al. (2007) proposed

an interpretation method that is especially designed to benefit

from the simultaneous use of all components of the gradiometry

tensor components and the normal gravity field.

Several gravity inversion methods used constraints in different

ways. Silva and Barbosa (2006) estimated the location and ge-

ometry of several density anomalies, using user input to define

the assumed outline of the gravity sources. The results from 3D

Euler deconvolution were used as a priori information by Rim

et al. (2007) when inverting gravity data. In other work, Dias

et al. (2009) estimated a 3D density-contrast distribution produc-

ing strongly interfering gravity anomalies.

When solving the forward problem, Zhou (2009) calculated

the gravity anomaly using the vector-potential line-integral

method. The model is a rectangular prism with a density con-

trast. Caratori Tontini et al. (2009) showed how 3D fast Fourier

transform (FFT) can be used for rapid computation of 3D for-

ward models of a potential field. This potentially can lead to

fast 3D inversion schemes. Other developments applicable to

both gravity interpretation and magnetics interpretation are cov-

ered in the next section.

MAGNETIC METHODS

Nabighian et al. (2005) presented the most significant devel-

opments of the magnetic exploration method for mineral explo-

ration from its beginning to 2005. Here we carry that forward

by focusing on the 2005–2010 period, and we also add some

developments that could not be covered in Nabighian’s review

because of space constraints.

Survey technology

Aeromagnetic surveys are used routinely for mineral explora-

tion, mostly to help in mapping geology. Instrumentation

remained essentially the same over the decade 2000 through

2010, with the vast majority of surveys flown using differential

dual-frequency GPS, which results in an accuracy of about 3 m.

Efforts were made by Vallée et al. (2005) and Vallée et al.

(2007) to quantify and understand better the impact of geomag-

netic noise on aeromagnetic surveys. Measuring the transverse

magnetic gradient provides information that improves the qual-

ity of the gridded data, and the technique now is used often

because the increase in cost is marginal (O’Connell et al.,

2005). Cowan and Cooper (2003) advocated the use of tight-

drape surveys that can be done using either crop-dusting air-

planes or helicopters. This is not always practical for cost or

safety considerations. Surveys also can be flown using a pre-

planned flight surface (Sander, 1998) to minimize the height dif-

ference between flight lines and tie-lines at their intersections

and therefore to improve the leveling of the magnetic data. All

surveys flown for the Geological Survey of Canada now use

that technique because it allows better magnetic-data leveling,

especially in rugged areas.

Dransfield et al. (2003) showed how airborne vector mag-

netics can be used to map remanently magnetized banded iron

formations. They computed the vector components of the total

magnetic field, using information from the three fluxgate magne-

tometers employed for compensation, along with the data

regarding the orientation of the aircraft obtained from a gyro-

scopic platform. In the data set they examined, the platform was

installed on the aircraft as part of an airborne gravity gradiome-

try survey. That type of platform is not installed on most aero-

magnetic survey aircraft, so the technique is not used com-

monly. However, it does show that this methodology could help

with interpretation problems when magnetic remanence is

present.

Stolz et al. (2006) discussed the development of a magnetic

full-tensor SQUID system for airborne geophysical applications,

and Rompel (2009) presented examples of the use of this instru-

ment. Such a system allows better 3D modeling of magnetic

bodies and improves the detection of weak magnetic features.

The U. S. Geological Survey developed a prototype (Bracken

and Brown, 2006) magnetic tensor system designed to be used

for unexploded ordnance (UXO) detection. That system uses an

array of highly accurate triaxial fluxgate magnetometers to mea-

sure the magnetic tensor. This and other developments in the

use of magnetic sensors for UXO might have an application in

mining geophysics in the future.

Data processing

Various techniques were developed to enhance aeromagnetic

data to improve qualitative interpretation. First and second verti-

cal derivatives have a physical meaning and still are used com-

monly, but many of the techniques developed recently are

strictly image-processing tools designed to help the interpreter

detect subtle patterns in aeromagnetic data. Cooper and Cowan

(2007) used horizontal orthogonal-gradient ratios to enhance lin-

ear features, and Cooper and Cowan (2008) used statistical tech-

niques to outline better the edges of potential-field data. This

subject is closely related to edge-detection techniques in which

the goal is to locate abrupt changes in susceptibility that may be

related to lithologic contacts. Pilkington and Keating (2009)

compared several edge-detection methods and showed that

many provide equivalent information.

Leveling is an essential step in the production of an aeromag-

netic map, but little was published on this subject between 2000

and 2010. Mauring et al. (2002) and Mauring and Kihle (2006)

proposed use of a moving differential median filter to level

magnetic data. The technique is most useful when one is proc-

essing old surveys that have few tie-lines.

Aeromagnetic data must be interpolated on a regular grid for

further processing and integration into geographic information

system (GIS) databases. Because the data are sampled much

more densely along flight lines than across them, it follows that

the interpolated grid suffers from aliasing in the direction
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perpendicular to the line orientation. The sampling rate of mag-

netometers typically is 10 Hz, or approximately 8 m when a

fixed-wing platform is used, whereas line spacing can be any-

where between 50 m and 400 m depending on the survey objec-

tives. Survey height typically varies between 60 m and 150 m.

Billings et al. (2002) used continuous global surfaces to interpo-

late magnetic and gravity data. For magnetic data they used a

thin-plate spline, and their results compare well with standard

minimum-curvature gridding. Smith and O’Connell (2005) used

a constrained anisotropic diffusion filter to enhance the trends

between adjacent flight lines.

Interpretation of aeromagnetic data is much more complex

when manmade cultural noise is present, especially when sur-

veys are flown over populated areas. Hassan and Pierce (2005)

developed a semi-automated technique for removing cultural

noise from aeromagnetic profiles prior to gridding. Salem et al.

(2010) proposed an equivalent-source technique to remove cul-

tural noise. They used the analytic signal calculated along a pro-

file to identify shallow sources and then removed corresponding

magnetic data from the profile. The missing data then were cal-

culated from an equivalent source, a horizontal cylinder oriented

perpendicularly to the line direction.

Interpretation

Interpretation can be either qualitative or quantitative. Quali-

tative interpretation of magnetic data is used for geologic

mapping and is based on the use of various enhancement tech-

niques. Quantitative techniques generally fall into two catego-

ries: the automated, simple model techniques, which are based

on the assumption of homogeneous functions, and inversion

techniques.

Techniques based on the properties of homogeneous
functions

The theory of homogeneous functions has been used exten-

sively to develop new and faster interpretation techniques. The

best known is certainly Euler deconvolution, which has been the

source of many new developments since its introduction by

Thompson (1982) for profile data and by Reid et al. (1990) for

gridded data. The structural index is really the degree of homo-

geneity of the field; in other words, the fall-off with distance. Its

selection is critical because it influences the interpreted depths.

Thurston (2010) pointed out that for a potential field to obey the

Euler equation, the degree of homogeneity must be an integer.

Thurston (2010) continued that many real sources behave as if

they had a fractional degree of homogeneity, and he showed

that in one case (a thick dyke) useful results nevertheless can be

obtained.

Various techniques have been proposed to determine the best

structural index automatically. Mushayandebvu et al. (2001)

introduced an additional relation that represents the transforma-

tion of homogeneous functions under rotation, and the combined

use of both relations yields a better solution of the Euler equa-

tion. For 2D sources, it then is possible to estimate dip and sus-

ceptibility. In further work, Mushayandebvu et al. (2004)

showed how the eigenvalues of the equations used for Euler

deconvolutions can be used to determine automatically whether

a source is 2D and 3D.

Nabighian and Hansen (2001) unified Euler and Werner

deconvolution in three dimensions via the generalized Hilbert

transform. Pilkington and Keating (2006) showed that the local

wavenumber is simply the vertical derivative of the analytic sig-

nal scaled by the amplitude of the analytic signal. Salem et al.

(2008) obtained a linear system of equations similar to Euler

deconvolution from the horizontal and vertical derivatives of the

tilt angle (Miller and Singh, 1994). In addition to estimating the

location of the source, the method allows one to determine the

structural index, or the homogeneity degree, without any a priori

information. The use of second-order derivatives of the field can

make the method sensitive to noise, and the authors suggested

upward continuation of the field to counteract the effect of

noise. However, it should be noted that modern surveys have a

very low level of noise.

Phillips et al. (2007) proposed use of the curvature of the

magnetic field as an interpretation tool. The eigenvalues and

eigenvectors of the curvature matrix within a small data window

are used to estimate the location and strike of the source of an

anomaly. Its depth and structural index are estimated from the

total gradient or the local wavenumber.

Interpretation techniques were developed that are based on

upward continuation of the magnetic field at a series of increas-

ing heights, combined with application of high-pass filters. The

advantage of these techniques is that upward continuation

reduces the noise level, thereby improving the signal-to-noise

ratio (S/N) for deep targets. The disadvantage is that upward

continuation works best for isolated anomalies because anoma-

lies near each other merge as the continuation height increases.

Sailhac et al. (2000) used a continuous wavelet transform to

interpret magnetic data from a profile. Their technique is equiv-

alent to computing the analytic signal at a series of increasing

heights. They then interpreted for the depth of the source and

for its degree of homogeneity. Once these are determined, the

dip and the susceptibility of the source can be calculated. Using

a similar approach, Vallée et al. (2004) estimated the source and

the depth. They did this on the basis of the analytic signal and

the analytic signal of the first vertical derivative of the magnetic

field upward continued to a series of increasing heights. Fedi

(2007) determined depths and structural indices from a field that

has been scaled to specific power laws of the continuation

heights; he then estimated depths by using the extreme points of

the scaled field. Subsequently, Fedi et al. (2009) proposed the

use of a geometric method combined with a reduced Euler

deconvolution to interpret for the depth and degree of homoge-

neity of the source. In this technique, the magnetic field is

upward continued at a series of heights, and ridges are obtained

from the first horizontal and first vertical derivative of the mag-

netic field continued to a series of heights. This technique is

closely related to the continuous wavelet transform. Keating

(2009) used the local wavenumber upward continued to a series

of increasing heights to solve directly for the degree of homoge-

neity and the depth of a source. His technique also allows one

to determine whether the source is homogeneous.

Stavrev and Reid (2007) used a similarity transform to esti-

mate the degree of homogeneity for sources of complicated

shapes. Gerovska et al. (2010) developed a technique called

MaGSoundDST, which is based on the differential similarity

transform, to interpret magnetic and gravity data in three dimen-

sions. Salem et al. (2007) used the tilt angle to interpret
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magnetic data. Although their technique is restricted to contacts,

it also can be used to interpret large magnetic sources.

Inversion

The objective of 3D inversion is to obtain a 3D model of the

subsurface whose magnetic response reproduces the observed

magnetic field. The subsurface is represented by a large number

of prismatic cells of uniform magnetic susceptibilities. The

problem is underdetermined because there are more parameters

to be estimated than there are observations, and computing time

generally is high. Techniques such as depth weighting are used

to constrain the model. Portniaguine and Zhdanov (1999) intro-

duced focusing stabilizers that make it possible to recover mod-

els with sharper boundaries and contrasts. Figure 2 demonstrates

the advantage of focusing regularization for 3D inversion of full

tensor magnetic gradiometry data from Tallawang, Australia

(Schmidt et al., 2004). As can be seen, the smooth inversion

underestimates and smooths the susceptibility distribution, com-

pared with the focusing inversion. Li and Oldenburg (2003)

used a fast wavelet transform to speed up the inversion and a

logarithmic barrier method to obtain positive susceptibilities.

Fullagar and Pears (2007) proposed using an adaptive 3D mesh

to discretize the subsurface, thereby allowing the inclusion of

geometric and physical property constraints. Lelièvre and Olden-

burg (2009a) showed that including physical properties and

structural information in an inversion results in more realistic

models. Pilkington (2009) proposed use of a sparseness con-

straint, which leads to simpler and better-resolved models. Use

of a data-space method combined with the conjugate-gradient

solver results in a very fast inversion algorithm.

All these techniques assume perfect induction and do not take

magnetic remanence effects into account. Lelièvre and Olden-

burg (2009b) solved the remanence problem by inverting for the

three components of the magnetization vector; they also allowed

for the inclusion of geologic information. Li et al. (2010) pro-

posed two techniques to deal with remanence. In the first, they

estimate the magnetization direction and then incorporate that

information into a 3D inversion. The second technique is to

invert the amplitude of the magnetic anomaly vector, which

depends only weakly on magnetization direction.

AIRBORNE EM METHODS

Many developments in airborne EM (AEM) methods occurred

during the first decade of the present millennium. Several of

those developments were for UXO detection, bathymetry,

groundwater exploration, and salinity mapping. Because this pa-

per concentrates on metalliferous mining geophysics, we will

not discuss those airborne EM developments further except to

say that they created an opportunity whereby methods developed

for other applications could be applied to mineral exploration.

As an example, the spatially constrained inversion techniques

developed for mapping hydrogeology (Auken et al., 2008; Viez-

zoli et al., 2009; Brodie and Sambridge; 2009; Vallée and

Smith, 2009b) could be used for cases in which the mineral

deposits are in quasilayered environments (e.g., nickel laterites

and manganese deposits). As another example, the EM induction

spectroscopy method, developed initially for use in UXO detec-

tion, was proposed subsequently for use in mineral exploration

(Huang and Won, 2002). Because there is a significant effort in

Figure 2. 3D inversion of GETMAG full-tensor
magnetic-gradiometry data with minimum sup-
port (focusing) regularization, for vertical cross
sections along measurement profiles (a) 50 m N,
and (b) 60 m N; and for (c) a horizontal cross
section at 25 m depth. For comparison, results
are also shown for 3D inversion with minimum-
norm (smooth) regularization, for vertical cross-
sections along profiles (d) 50 m north and (e) 60
m north; and for (f) a horizontal cross section at
25-m depth. Superimposed on the susceptibility
models is geology of the Tallawang magnetite
skarn, from Schmidt et al. (2004). Used by
permission.
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hardware development for detection of unexploded ordnance,

perhaps some of the small-scale systems developed (e.g., Beard

et al., 2004) could be scaled up for mineral exploration if there

is a perceived benefit.

Near-surface developments of airborne EM will not be dis-

cussed in this paper. Interested readers are referred to the review

by Auken et al. (2006).

Development of new systems

Corporate developments at the end of the twentieth century

included the purchase of several airborne geophysics firms by

Fugro NV. That consolidation of the industry resulted in some

analog frequency-domain helicopter EM systems previously

marketed by High-Sense Geophysics, Sial Geosciences, and

Aerodat being replaced by a single system, the DIGHEM, which

had been upgraded to digital acquisition. The QUESTEM sys-

tem, a time-domain system developed by World Geoscience,

was withdrawn from the market. Fugro did enhance the systems

that were not discontinued. The dipole moment of the MEGA-

TEM system was doubled (Smith et al., 2003), the GEOTEM

system was upgraded to a higher dipole moment at low frequen-

cies, the TEMPEST system was improved by incorporating the

three-component receiver sensor used by the GEOTEM system,

and the RESOLVE system was introduced as a commercial ver-

sion of a helicopter frequency-domain system built for the Bun-

desanstalt für Geowissenschaften und Rohstoffe (BGR) in Hann-

over, Germany (Sengpiel and Siemon, 2000). The latest version

of RESOLVE has a highest frequency of 140 kHz and includes

a capacity for internal, in-flight calibration.

Systems operated by other organizations also were improved.

A proprietary time-domain system called SPECTREM, operated

by Anglo American plc, was upgraded to provide 50% more

transmitter power and a greater ability to reject sferic noise

(Leggatt et al., 2000). The fixed-wing frequency-domain system

developed in Finland by the Finnish government (Leväniemi

et al., 2009) was used overseas, in collaboration with the British

government, for a major survey covering all of Northern Ireland

(Beamish and Young, 2009).

The most significant development of the decade was the intro-

duction of helicopter time-domain electromagnetic systems. The

pioneering work on commercial systems was done by Aero-

quest, THEM Geophysics, and Geotech (Allard, 2007). The cor-

responding systems were the AeroTEM system (Balch et al.,

2003), the THEM system (Allard, 2007), and a system that

eventually was called the VTEM system (Witherly et al.,

2004b). In a short amount of time, some of these systems, or

their descendants, developed very quickly, with reduced noise

levels and higher dipole moments (Witherly and Irvine, 2006).

Soon they were being compared to fixed-wing time-domain sys-

tems (Macnae, 2008). A system called SkyTEM, developed in

Denmark (Sørensen and Auken, 2004), is intended primarily for

mapping hydrogeology but has been used also in mineral explo-

ration. The SkyTEM introduced a novel feature: being able to

excite the earth at multiple base frequencies (e.g., at 25 Hz and

222 Hz). This is achieved by having two separate transmitters,

one of which transmits a relatively small signal at a base fre-

quency of 222 Hz for a fraction of a second and then switches

off, and the other of which transmits at 25 Hz for about a sec-

ond. The NEWTEM time-domain helicopter system (Eaton

et al., 2002; Eaton et al., 2004) is a proprietary system operated

by Newmont Mining Corporation. A similar system, called

HoisTEM (Vrbancich and Fullagar, 2004; Allard, 2007), was

developed by Normandy-Poseidon in a loose collaboration with

Newmont. The system was available commercially for a brief

time, but it was replaced by two similar systems: RepTEM and

XTEM. Sattel (2009) provides some details on the RepTEM

system, and information about the XTEM system can be found

on the GPX Surveys Web site.

One difficulty with helicopter time-domain systems is that the

receiver is near the transmitter. This proximity makes it difficult

to take measurements during the transmitter pulse or at early

delay times after the pulse. Various systems have addressed that

issue in different ways. The AeroTEM system is rigid, which

means that a bucking coil can be used to create a zone around

the transmitter, where the primary field is very small. An alter-

native approach is used by the SkyTEM system, in which a re-

ceiver loop is placed above and slightly behind the transmitter

loop. Here, the primary field is mainly horizontal, and the hori-

zontal coil (vertical dipole) that is used as the receiver is essen-

tially null-coupled. With the HeliGEOTEM and HELITEM sys-

tems (Fountain et al., 2005; Smith et al., 2009), the receiver is

moved a significant distance up the tow cable, as shown in Fig-

ure 3, where the primary field will be smaller. In a recent devel-

opment, the VTEM system introduced a nonrigid bucking coil.

Another way to null-couple the receiver from the strong primary

field was proposed by Miles et al. (2010).

Other non-time-domain helicopter systems also were devel-

oped. An airborne AFMAG system, called Z-TEM, has been

deployed by Geotech. It measures the z-component (vertical

component) of the natural fields, using an airborne receiver, and

it measures the horizontal components at a remote ground sta-

tion. These horizontal components are assumed to be the same

at the helicopter, so that a tipper can be derived and used for

interpretation. Some modeling and Z-TEM results were pre-

sented by Lo and Zang (2008). In Sweden, there were further

developments on an airborne very-low-frequency (VLF) system.

The concept of a tensor VLF technique was developed at Upp-

sala University and deployed by the Geological Survey of
Figure 3. The HeliGEOTEM system acquiring data in the Domin-
ican Republic. From Smith et al. (2009). Used by permission.
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Sweden. Methods for processing and displaying this type of

data were developed (Becken and Pedersen, 2003; Pedersen and

Becken, 2005), and Pedersen et al. (2009) presented two case

histories that use such a system.

Semiairborne systems developed and documented in the

years 2000 through 2010 include the GREATEM system (Mogi

et al., 2009) and the TerraAir system (Smith et al., 2001). A

novel use of unstacked full waveform (stream) data was pro-

posed by Vallée et al. (2010). The EM data from the transmitter

and the 60-Hz powerlines are separated in the frequency do-

main, and the latter are used to derive maps that show geologic

structures in the survey area. Experience from a survey near

Chibougamau, Canada, indicates that the field from the power-

line can illuminate large structures not seen on the normal

fixed-wing EM data.

Other developments in systems

In the early part of the decade, much work came to light

regarding the measurement of the B-field response rather than

the dB/dt response. Lee et al. (2001) and Lee et al. (2002) con-

cluded that the performance of the SQUID sensor is comparable

to that of induction-coil sensors, but they suggested that the

SQUIDs would perform better at base frequencies below 20 Hz.

Smith and Annan (2000) showed that the advantages of B-field

acquisition can be obtained by integrating the on- and off-time

response of an induction coil (dB/dt) sensor.

Several advantages arise if we know the accurate position and

orientation of the transmitter and receiver. Knowing these geo-

metric parameters can result in better estimates of subsurface

conductivity and the depth to conductive features (because the

response measured is dependent on geometry). Approximate

methods for estimating the receiver position were described by

Smith (2001c) and Vrbancich and Smith (2005). In bathymetric

studies, knowing the system geometry is important, so consider-

able effort (Kratzer and Vrbancich, 2007) was put into monitor-

ing the geometry with GPS and inertial measurement units

(IMU). If this is straightforward and provides a significant bene-

fit, it could be adopted for use in the airborne EM systems used

in the mineral exploration industry. If the position is being used

to estimate the in-phase response of highly conductive (nickel)

bodies, extremely accurate estimates are required (Smith, 2001a;

Hefford et al., 2006).

Similar work on monitoring system geometry was undertaken

for frequency-domain systems. In that case, accurate bird orien-

tation (roll, pitch, and yaw) results in better estimates of the

conductivity structure of the subsurface. Davis et al. (2009)

devised methods for measuring and predicting those orienta-

tions. In another study, Yin and Fraser (2004) showed that by

using the changes in dipole geometry, it is possible to correct

95% of the errors that are generated by changes in the attitude

of a frequency-domain helicopter EM system. More accurate

results were obtained by Fitterman and Yin (2004) for the full

induction solution.

Accurate measurements of system geometry are not required

for measuring the in-phase response with the frequency-domain

systems because such systems are rigid. Efforts to improve the

calibration of helicopter frequency-domain systems were shown

to result in better data being derived from AEM systems (Ley-

Cooper and Macnae, 2007; Macnae et al., 2008). A procedure

involving a ground loop was devised by Davis and Macnae

(2008a, b) to improve understanding of the time-domain wave-

form shape and of timing and altimeter geometry errors; that

procedure also results in derivation of better fidelity information

from the data. One advantage of this work is that the precise na-

ture of most of the time-domain system waveforms becomes

apparent (Davis and Macnae, 2008a). All contractors now are

trying harder to make high-quality waveform information avail-

able. When comparing ground EM and airborne EM, other

workers (Davis and Groom, 2009) also noted the importance of

system parameters such as waveform shape, window position,

and receiver response functions.

An idea that has some currency is to convert a real waveform

to an idealized waveform such as an impulse or a step. This is

the procedure used in processing data from the Spectrem system

(Leggatt et al., 2000) and the TEMPEST data (Lane et al.,

2000). Sattel et al. (2004) extended this concept to the half-sine

waveform and cited some advantages. Huang and Cogbill

(2006) proposed an acquisition procedure for ensuring that

AEM systems are giving repeatable data and for quantifying the

system noise. The method involves flying a repeat line regularly

and analyzing the repeatability of the estimated apparent resis-

tivity at each frequency. This work is done using a frequency-

domain system, but a similar procedure could be used for time-

domain systems.

Sattel and Macnae (2001) investigated the measurement of

gradient data. They argued that the greater spatial resolution of

the gradient measurement could resolve closely spaced features

and, depending on the noise levels, might be able to resolve

shallow features.

Data-processing improvements

Several groups worked on improving the methods for convert-

ing helicopter frequency-domain data to a half-space apparent

resistivity. Beard (2000) discussed the relative merits of look-up

tables and inversion methods to estimate resistivity. Huang and

Fraser (2000) advocated the use of look-up tables to estimate

magnetic permeability and then resistivity. Huang and Fraser

(2001) then extended their method to estimate resistivity, perme-

ability, and permittivity. In 2002, they suggested that quad-quad

algorithms give the best estimate of resistivity in permeable

areas (Huang and Fraser, 2002b). The same year, they also sug-

gested using high-frequency data to estimate dielectric permit-

tivity and then using that permittivity to estimate the resistivity

at other frequencies (Huang and Fraser, 2002a). Completing a

sweep of five papers, Huang and Fraser (2003) suggested solv-

ing for the permeability and resistivity of a layered earth using

singular value decomposition (SVD) inversion techniques. The

next year, Hodges (2004) advocated the use of inversion meth-

ods to estimate conductivity, permeability, and permittivity.

Methods for converting time-domain data to conductance and

conductivity were described by Smith (2001b) and Smith et al.

(2005).

A detailed study of how electrical permittivity can influence

the frequency-domain helicopter EM response, particularly at

high frequencies, was presented by Yin and Hodges (2005b).

They showed that the free-space permittivity of air (and rock)

has little impact on the frequency-domain EM response, but that

the influence on the response can be substantial when the earth
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is dielectrically polarizable. Another theoretical study by Yin

(2001) showed that electrical anisotropy also can have a signifi-

cant impact on the EM response.

A good intuition for the physics of EM induction can be

obtained from visualizing currents flowing in the ground. Yin

and Hodges (2005a) presented a talk that included animations of

the flow patterns of currents in several isotropic and anisotropic

earths, demonstrating that the “smoke ring” description (Nabigh-

ian, 1979) describes frequency EM field propagation as well. An

alternate method for creating maps of frequency-domain data

was proposed by Sattel and Witherly (2008), who suggested

converting the frequency-domain data to a decay constant. In

the area that they examined, it is necessary to take magnetic

permeability effects into account. Along similar lines, Hodges

and Yin (2004) proposed that frequency-domain data could be

converted to time-domain data via an earth model. This would

allow many of the tools used in time-domain interpretation to

be used on frequency-domain data.

Methods of approximate conversion (imaging) of AEM data

to conductivity as a function of depth, assuming a 1D layered

model, are now standard, and a wide variety of new techniques

were introduced in the decade 2000 through 2010 (Sengpiel and

Siemon, 2000; Siemon, 2001; Zhdanov et al., 2001; Zhdanov

et al., 2002; Sattel, 2005; Combrinck, 2008; Huang and Rudd,

2008). Improvements to methods developed in previous decades

also were proposed (Macnae, 2004). Davis et al. (2006) found

that filtering the data to remove bird motion improves the qual-

ity of conductivity estimates. A method for estimating the depth

to an interface visible on an image section was proposed and

assessed by Macnae et al. (2003). Sattel (2004) studied the

strengths and weaknesses of these methods for some AEM sys-

tems for the case of a 3D body. One of the weaknesses of these

layered tools is that they yield artifacts when the geology is not

layered. To reduce such artifacts, Wolfgram et al. (2003) pro-

posed an extension of the 1D imaging tools. They introduced

the idea of a 2D imaging algorithm, and the results they pre-

sented are promising.

Tools for 1D (layered-earth) inversion of AEM data devel-

oped significantly during the decade. Farquharson et al. (2003)

described a method for determining conductivity and magnetic

permeability from frequency-domain data. An approach that

uses a simulated annealing (SA) algorithm was found by Yin

and Hodges (2007) to be less dependent on the starting model.

However, it also requires more computer time and experimenta-

tion with the SA parameters.

For time-domain data, Vallée and Smith (2009a) proposed an

inversion method that smooths the vertical structure. Siemon

et al. (2009) extended to frequency-domain data a laterally con-

strained inversion technique that was developed originally for

time-domain data (Auken et al., 2008). That concept of lateral

constraints was generalized to other flight lines by Viezzoli

et al. (2008) in a technique termed spatially constrained inver-

sion (SCI). Sengpiel and Siemon (2000) compared a 1D imaging

tool and a parametric layered-earth inversion, and they discussed

the circumstances under which either tool might be most appro-

priate and when a combination of both tools could be useful.

Their standard approach was to use the imaging results as a

guide to the first guess (or initial model) for a layered inversion.

A method for combining profile data from alternate flight

directions was proposed by Smith and Chouteau (2006) to

increase the S/N and reduce the “herringbone” artifacts that are

a consequence of the asymmetry of fixed-wing AEM systems.

Sykes and Das (2000) used a radon transform to remove her-

ringbone artifacts from gridded data.

Leveling of frequency-domain helicopter EM data is always

problematic. Alternate methods for leveling this type of data

were suggested by Beiki et al. (2010) and Siemon (2009). The

latter paper includes a good review of the standard methods for

leveling data. A comprehensive description of the tools used for

the general processing of frequency-domain HEM data was pro-

vided by Valleau (2000). Finally, Auken et al. (2009) described

the general procedures used to process SkyTEM data.

Data interpretation and classification

A topic of interest to geophysicists is the volume of earth that

is sensitive to an AEM system; that quantity is sometimes called

the footprint. Beamish (2003) showed that the size of the foot-

print depends most strongly on the orientation and the height of

the transmitter. A horizontal dipole has a footprint comparable

to the height, whereas a vertical dipole has a footprint more

than 1.5 times the height. Subsequent work by Reid and Vrban-

cich (2004) showed that the footprint depends also on the re-

ceiver orientation, and they looked at the case of fixed-wing

towed-bird systems. Their work assumed that all current flow is

at the inductive limit. Reid et al. (2006) removed this assump-

tion in their analysis.

Several tools were developed to assist workers in interpreting

airborne EM data. One procedure, described by Sattel and Reid

(2006), estimates an appropriate layered earth and then inverts

for a number of embedded electric and magnetic dipoles. Inter-

esting results were obtained on data collected at the Bull Creek

prospect in New South Wales, Australia, and the Harmony de-

posit in Western Australia. An alternate tool for rapidly estimat-

ing the depth, dip, conductance, and dimensions of a plate from

AEM data was proposed by Claprood et al. (2008); it is an

extension of the method proposed by Malo-Lalande et al. (2005)

for ground EM data. Smith and Salem (2007) developed a tool

for both interpreting the source of AEM anomalies and display-

ing the results in a pseudosection format. Chung and Keating

(2002) used a statistical analysis of AEM and magnetic data to

predict the statistical likelihood of a mineral deposit occurring.

Another approach is to look at all the physical properties

derived from the geophysical data and use these properties to

classify the rocks in the subsurface using the concept of “self-

organizing maps.” Rajagopalan et al. (2008) showed how that

approach helped to identify new kimberlite targets in the Slave

Craton of Canada. The importance of integrating the results

from many geophysical methods (including airborne EM) and

displaying the results as 3D images was emphasized by With-

erly (2008). He also gave several illustrative examples.

2D and 3D modeling and inversion improvements

A significant body of work exists on EM modeling and inver-

sion, but in this section, we restrict our discussion of the

improvements to those that relate specifically to airborne EM.

One group concentrating on AEM inversion methods was the

group at the CSIRO in Australia (Raiche et al., 2000). Table 1

lists all the programs developed at the CSIRO. One program
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developed there specifically for airborne EM modeling is Arjun-

Air, which assumes a 2D geology and a 3D source. Annetts

et al. (2000) used this program to show that the fixed-wing

response of a vertical contact can mimic the response of a bur-

ied conductive body, especially when flying from a resistive

quarter-space to a conductive quarter-space. They suggested that

using multiple components and multiple flight directions can

help one to determine when there really is a buried conductor.

Raiche (2001) used the CSIRO program MarcoAir to show that

for poorly conductive kimberlites, frequency-domain systems

give stronger anomalies. The CSIRO program ArjunAir can

invert AEM data to find a 2D structure, and this is practical for

both time-domain and frequency-domain data. A published

example presents the response measured over the Voisey’s Bay

ore body in Labrador, Newfoundland, Canada (Wilson et al.,

2006), and the results are impressive. The same data were also

inverted using a spectral Lanczos decomposition method by

Tartaras et al. (2001) and Chernyavskiy and Zhdanov (2002), all

members of the Consortium for Electromagnetic Modeling and

Inversion (CEMI) at the University of Utah. Other airborne EM

modeling and inversion work done at the University of Utah

includes rigorous 3D inversions of frequency-domain AEM data

(Cox and Zhdanov, 2006) and inversions in which the inverted

data are restricted to a window that lies within the footprint of

the AEM system (Cox and Zhdanov, 2007; Cox et al., 2010).

Comparisons of layered-earth inversion and 3D conductivity

imaging using the moving-footprint technique are shown in Fig-

ure 4. Even on a 1D section, the 3D inversion provides a better

image of the conductivity structure. The group at the University

of British Columbia (UBC) also made great strides in modeling

and inversion and achieved practical inversion of airborne data

(Oldenburg et al., 2005; Holtham and Oldenburg, 2008; Olden-

burg et al., 2008; Holtham and Oldenburg, 2010).

In conductive environments, current-channeling effects are

very important and have been modeled by Reid and Macnae

(2000, 2002). In such cases, the model assumes that currents are

at the low-frequency limit or resistive limit. Another rapid-mod-

eling technique for AEM data is to use surface currents to

model the inductive limit (King and Macnae, 2001). The con-

cept of time-domain moments introduced by Smith and Lee

(2002a) is a generalization of the inductive limit and the resis-

tive limit (zero-order and first-order moments). The moments

provide a means of rapidly calculating the response of layered

grounds (Smith and Lee, 2002b; Lee et al., 2003) and spheres.

The sphere model also can model platelike bodies by constrain-

ing the currents so that they flow in a specific direction (Smith

and Lee, 2001). The sphere model was used in modeling the

response of more complicated structures (Hyde, 2002) and

potentially could be used for 3D inversion of AEM data (Schaa

and Fullagar, 2009). The EMQ program is a commercially avail-

able package for modeling AEM moment data using a model of

a sphere (Smith et al., 2003). Other commercially available

packages for airborne EM modeling AEM data are Maxwell

(www.electromag.com.au), EMIGMA (www.petroseikon.com),

two of the UBC layered-earth inversion codes (EM1DFM and

EM1DTM), and the Multiloop III program (Walker and Lamon-

tagne, 2006, 2008).

Figure 4. Vertical cross sections through 3D conductivity models
along Reid-Mahaffy line L50, obtained from 3D inversion and 1D
inversion for DIGHEM, MEGATEM II dB/dt, and MEGATEM II
data. Courtesy of TechnoImaging.

Table 1. List of P223–EM modeling software available from
the AMIRA Web site.

Program Model description Inversion Topography

Airbeo Layered earth Yes Flat earth

Beowulf Layered earth Yes Flat earth

LeroiAir Thin plates in layered host Yes Flat earth

Leroi Thin plates in layered host Yes Flat earth

ArjunAir 2D mesh 3D source Yes Full domain

Arjuna 2D mesh 3D source No Full domain

SamAir Compact 3D in uniform host Yes Limited

Samaya Compact 3D in uniform host Virtual Limited

LokiAir 3D full domain Yes Full domain

Loki 3D full domain Virtual Full domain

MarcoAir Prisms in layered host No Flat earth

Marco Prisms in layered host No Flat earth
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Other developments

The decade 2000 through 2010 included interest in better

understanding the effects of magnetic permeability on the air-

borne EM response. In one study, Sattel (2000) showed that

incorporating large magnetic permeability into the numerical

model does not have a significant effect on the calculated tran-

sient electromagnetic response.

Work also continued on understanding how IP effects mani-

fest themselves in time-domain electromagnetic (TEM) data.

Beran and Oldenburg (2008) solved an inverse problem but

were unable to determine which layer is polarizable. In a ground

study, Flores and Peralta-Ortega (2009) showed that porphyry

deposits can be outlined with IP parameters derived from TEM

data. Thus, it is possible that this could be achieved also with

airborne data in some cases. Examples occur in the literature

when airborne IP effects were observed in AEM data. In one

paper, airborne IP effects are shown to outline a tailings dump

(Smith et al., 2008). In another paper, Walker (2008) gave three

examples of IP effects in helicopter TEM data over a tailings

dump, a kimberlite, and a more extensive geologic feature.

Finally, analytic solutions for the time-domain AEM response

over a conductive half-space were derived by Smith and Lee

(2001).

Case histories

Airborne EM systems continued to be used for their tradi-

tional role — the search for conductive massive sulfide deposits.

The discovery of the Perseverance deposit (Québec, Canada) by

an airborne time-domain EM system was described by Smith

et al. (2003), and other examples were given in Smith et al.

(2009). In an example from the South Ashanti Greenstone belt

in Ghana (Asiamah, 2004), airborne EM and magnetic data did

a “remarkable” job in resolving the geology in an area where

there is a paucity of rock exposure. The geophysical data were

judged to have contributed significantly to exploration efforts

(Asiamah, 2004). In areas with conductive cover, Peters and

Buck (2000) showed that identification of nickel deposits is not

always straightforward with airborne EM data. Similarly poor

results are obtained for the polymetallic Trilogy deposit in

Western Australia (Sampson and Bourne, 2001). One way of

addressing this problem of identifying nickel deposits that have

conductive cover is to improve our understanding of the nature

and response of that conductive cover. With this objective,

Bishop et al. (2001), Macnae et al. (2001), Munday et al.

(2001), Meyers et al. (2001), and Worrall et al. (2001) charac-

terized the regolith in two areas in Western Australia. The Har-

mony deposit (Western Australia) and the Kabanga deposit

(Tanzania) both show strong AEM anomalies (Wolfgram and

Golden, 2001). Furthermore, model studies published by these

authors showed that the Harmony deposit could be identified if

it were buried as deep as 250 m below the surface. In a more

resistive area of western Tasmania, AEM was not successful. In

that case, the lack of success was attributed to the presence of

nonconductive sulfides and proximal conductive shales (Basford

and Hughes, 2000).

In the search for uranium, airborne EM surveys traditionally

have been a valuable tool. In the Northern Territory of Aus-

tralia, airborne data were used to identify the conductive uncon-

formity surface with which uranium is associated (Beckitt,

2003). In Canada, AEM historically was used to search for con-

ductive graphite with which uranium is associated (Smith and

Koch, 2006), but more recently it also was used to look for

alteration of the sedimentary section (Smith et al., 2010). McCo-

nachy et al. (2006) argued that airborne time-domain EM sur-

veys can be effective also when uranium occurs in roll-front

deposits.

Helicopter TEM was used successfully to explore for manga-

nese deposits under thin cover in Western Australia (Hashemi

and Meyers, 2004) and at Groote Eylandt in the Northern Terri-

tory of Australia (Irvine and Berents, 2000). However, in an

area of very conductive cover, helicopter TEM was not as good

at resolving deep structure as was the subaudio magnetic (SAM)

method (Stolz, 2005). A large helicopter TEM survey in British

Columbia, Canada, was used to map the geology associated

with Cu/Au porphyries and to map the overburden thickness

(Espinosa-Corriols and Kowalczyk, 2008).

In exploration for kimberlites, aeromagnetics is often the pri-

mary data set. Cunion (2009) argued that in the Kalahari of Bo-

tswana, in the secondary follow-up phase, airborne TEM was

just as effective and more efficient than ground EM was. How-

ever, in the Slave Province of the North Territories of Canada,

helicopter EM is often the primary tool because the magnetic

maps are so active that it is often difficult to identify the mag-

netic signature of kimberlite. Jansen and Witherly (2004) pre-

sented a case history of the Tli Kwi Cho kimberlites, which

were discovered with the DIGHEM system, and those authors

also have published aeromagnetic and ground EM data from the

same area. In addition, time-domain helicopter systems were

tested at Tli Kwi Cho. One of the kimberlites manifested a nor-

mal positive response, but another displayed a negative

response. Such a mixed response is typical of northern areas

(Smith and Klein, 1996). On the other hand, Munday et al.

(2004) suggested that in areas of highly conductive regolith,

AEM cannot identify kimberlites — it can identify only changes

in the conductivity/thickness of the regolith, which may or may

not be related to any kimberlitic rock.

A large project undertaken during the first decade of the mil-

lennium was a collaboration involving two universities in Can-

ada (Université du Québec en Abitibi-Témiscamingue and École

Polytechnique), a mining company (Noranda, now part of

Xstrata), and a geophysical contracting company (Fugro Air-

borne Surveys). One outcome of the project was several case

histories over the Iso deposit (Cheng et al., 2006a, b), the Gallen

deposit (Cheng et al., 2007) and the Aldermac deposit (Cheng et

al., 2009), all in Québec, Canada. Additional work described

above that was part of the same project includes that by Clap-

rood et al. (2008) and other work involving wavelets (Bou-

chedda et al., 2010). These test sites, and locations such as the

Reid-Mahaffy test site in Ontario, Canada (Witherly et al.,

2004a), have been important locations for comparing airborne

EM systems. In the case in which a test site is not readily avail-

able, Yin and Hodges (2009) suggested using a wire loop laid

out on the ground as a test conductor.

Legault (2009a, b) presented two case histories of ZTEM, a

heliborne AFMAG system. In one case, an anomalous response

was associated with a graphitic conductor at least 500 m deep;

in the second case the system was able to map large conductive

structures associated with a copper-nickel deposit. Reed et al.

W40 Vallée et al.

Downloaded 06 Jun 2011 to 99.254.8.90. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



(2006) presented a case history that uses AEM, magnetic, and

gravity data for platinum-group element exploration. They con-

cluded that geophysics furthered the understanding of the geol-

ogy of the environment but was not able to detect the deposit

directly. Finally, a case history that presents the use of multiple

methods, including AEM, describes the Cinco de Mayo carbon-

ate replacement silver deposit in Chihuahua, Mexico (Robertson

and Megaw, 2009).

Case histories for mine-environment problems

Ground geophysics commonly is used for characterizing

waste dumps from mine sites (e.g., Poisson et al., 2009; Ram-

alho et al., 2009). Rutley and Fallon (2000) described the use of

AEM to map the location at which contaminated groundwater

was seeping from a tailings dump. One case described by these

authors was an active mine, and they argued that the AEM data

can be used to site boreholes to monitor the groundwater. At the

Aldermac abandoned mine site, the IP effects measured with an

airborne survey did an excellent job of mapping the tailings

dump (Smith et al., 2008). In a coal mining area in Pennsylva-

nia, frequency-domain helicopter EM was used to map zones of

greater acid-mine drainage (Love et al., 2005).

GROUND EM METHODS

McMonnies and Gerrie (2007) and Williams et al. (2007)

identified the major advances in ground geophysics during the

millennium’s first decade as SQUID technology, which is cov-

ered in this section, and array systems, which are covered in the

ground IP section. Le Roux and Macnae (2007) described

SQUID developments conducted by the Institut für Physikali-

sche Hochtechnologie in Jena, Germany. That organization

developed a low-temperature SQUID (LTS) ground transient

electromagnetic system that is used currently in mining explora-

tion. A factor of 5 to 10 advantage in S/N over other geophysi-

cal B-field sensors is achieved, and LTS can detect conductive

targets with time constants of seconds. Discovery International

Geophysics uses a SQUID successfully in TEM deep explora-

tion (Woods, 2010). A high-temperature SQUID (HTS) was

developed at the CSIRO (Osmond et al., 2002) and is being

used by Crone Geophysics (Leslie et al., 2008). Malo-Lalande

(2007) described a fixed-loop configuration that generates a

strong horizontal primary field that is ideal for investigating

steeply dipping and deeply buried base-metal targets.

EM MODELING AND INVERSION

During the decade 2000 through 2010, marine controlled-

source electromagnetics (CSEM) was the focus of various

groups working in EM modeling and inversion. However, efforts

continued for developments in EM modeling and inversion that

would be applicable to mining exploration. Major developments

are summarized by Oldenburg and Pratt (2007).

3D EM methods

The Third International Symposium on Three-Dimensional

Electromagnetics (3DEM-3) was held in Adelaide, Australia, in

2003. A special issue of Preview (Macnae, 2006) contained

selected papers from this meeting. A CD containing fully refer-

eed selected papers has been prepared and is available by writ-

ing to the Australian Society of Exploration Geophysicists

(ASEG); for more details, see the Web site http://www.publish.

csiro.au/?act¼view_file&file_id¼EG06222.pdf. The Fourth

International Symposium on Three-Dimensional Electromag-

netics (3DEM-4) was held in 2007 in Freiberg, Germany. The

proceedings for that symposium are available online at

http://www.geophysik.tu-freiberg.de/3dem4/3dem-4-revisited.htm.

Modeling

Sykes (2000) evaluated the accuracy of Hankel transforms

for estimating the response of a vertical dipole source located

on the surface of a half-space. For surface electromagnetic

fields, analytic Bessel function expressions produce faster and

more accurate results than digital filters produce. Badea et al.

(2001) developed a program using a 3D finite-element approach

for CSEM. The solution is based on a weak formulation of the

governing Maxwell equations using Coulomb-gauged EM poten-

tials. Johnson et al. (2001) presented an approach using a finite-

difference time-domain method for high-resolution full-wave

analysis of cross-borehole EM surveys of buried nickel sulfide

deposits. The method is validated against analytic methods for

simple cases, but it is a valuable tool for analysis of complicated

geologic structures such as faulted or layered regions. Qian

et al. (2002) revisited the plate conductor model to improve con-

vergence and numerical accuracy in close proximity to the plate.

Farquharson et al. (2006) compared the results obtained by an

electrical-field integral equation and physical scale modeling of a

cube in free space and in a conductive environment. Börner et al.

(2008) developed an efficient numerical method for simulating

transient electromagnetic fields that result from controlled sources

in three dimensions. Börner (2009) reviewed modeling electro-

magnetic methods and after his discussion of advances in finite-

difference and finite-element methods, he presented recent devel-

opments in 3D modeling techniques that may have a tremendous

impact on the development of inversion strategies.

Inversion

Kaikkonen and Sharma (2001) analyzed the performances of

linearized (local) and global nonlinear joint 2D inversions of

very-low-frequency (VLF) and VLF-resistivity EM measure-

ments. Zhdanov et al. (2002) developed a technique of fast

TDEM inversion based on a thin-sheet conductance approxima-

tion called S-inversion. Farquharson et al. (2003) developed an

algorithm that simultaneously inverts susceptibility-affected data

for 1D conductivity and susceptibility models. Haber et al. (2004)

developed a general formulation for inverting frequency-domain

or time-domain electromagnetic data using an all-at-once

approach, solving the forward problem and the inverse problem

simultaneously in one iterative process. Schultz and Ruppel

(2005) developed robust and convergent regularized, least-squares

inversion algorithms for application in conductive terrains. Zhda-

nov and Tolstaya (2006) presented a new method for resolution

analysis that is based on evaluating the spatial distribution of the

upper bounds of the model variations, and they introduced a new

characteristic of geophysical inversion — resolution density — as

an inverse of those upper bounds. Pujol (2007) presented in a

unified way the Levenberg-Marquardt damped least-squares
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method, which often is used in geophysical inversion. Song and

Kim (2008) developed an inversion algorithm for loop-loop EM

data, based on the localized nonlinear or extended Born approxi-

mation to the solution of the forward model. Oldenborger and

Oldenburg (2008) reported preliminary results on 3D inversion

with high contrasts in conductivity. Oldenburg et al. (2008) pre-

sented a practical formulation for forward modeling and inverting

time-domain data that arise from multiple transmitters. Farquhar-

son (2008) modified the typical minimum-structure inversion

algorithm to generate blocky, piecewise-constant earth models,

using l1-type measurements of the model structure.

P233 project

A major contribution in EM modeling and inversion during the

decade was the release into the public domain of AMIRA P233

software (http://www.amirainternational.com/WEB/site.asp?sec-

tion¼news&page¼projectpages/p223). The P233 consortium, led

by Art Raiche, began in 1980 by developing EM software that

used various approaches and was for different configurations. Ta-

ble 1 lists the programs available on the Web site, and Raiche

(2008) described them in more detail. The models for both for-

ward modeling and inversion modeling include a general 3D fi-

nite-element full-domain model (Loki class), a 3D compact finite-

element model embedded in a uniform host (Samaya class), 2.5D

full-domain finite elements (Arjuna class), multiple 3D plates em-

bedded in a multilayered host (Leroi class), 3D prisms in a lay-

ered host (Marco class), and a 1D layered earth (Airbeo and Beo-

wulf). The programs can be used for any frequency or time-

domain airborne, ground, or downhole EM system. All are based

on complex resistivity, with options for including the Cole-Cole

parameters for modeling induced-polarization effects.

INDUCED-POLARIZATION METHODS

Kingman et al. (2007) described a recent development in dis-

tributed acquisition in electrical geophysics. Distributed acquisi-

tion uses a large number of small-channel-capacity receivers

deployed close to the sensor outputs. Each of those sensors and

the associated receivers acquire data simultaneously. Although

the ability to gather data sets with far greater source-sensor mul-

tiplicity is the most important advantage of a distributed-acquisi-

tion design, this approach also has several other important

advantages, including greater depth of investigation, better pro-

ductivity by reducing the cost per cubic kilometer evaluated,

improved noise-reduction options, and seamless collection of

multiple data types such as induced polarization, resistivity,

magnetotellurics, and grounded-line EM coupling. In some cases

these types of data can be acquired simultaneously. In other

cases, the IP data are collected during the day and the MT data

at night. For interpretation of IP data, 2D inversion has become

a standard practice in mineral exploration (Nimeck and Koch,

2008). To explain IP effects in heterogeneous material, Zhdanov

(2008) proposed a new theory, called the effective-medium

theory of induced polarization (GEMTIP). The GEMTIP model

allows one to find the effective conductivity of a medium with

inclusions that have arbitrary shape and electrical properties.

Application to a simple medium model shows that the GEMTIP

model is closely related to the Cole-Cole model (Cole and Cole,

1941) and Wait’s model (Wait, 1982).

SEISMIC METHODS FOR MINERALS

In the new millennium, the application of seismic methods to

mineral exploration continued to develop, following publication

of a book written by Eaton et al. (2003). In particular, efforts

were made to select processing techniques properly, in accord-

ance with the exploration target.

Li and Eaton (2005) presented seismic-reflection profiles con-

ducted over the Tuwu porphyry-copper deposit in Xinjiang,

China. The results show that seismic methods may be useful as

an aid for mapping the flank of shallow, moderately dipping

porphyry copper orebodies and associated strata. Hajnal et al.

(2007) presented 2D and 3D seismic surveys acquired in the

Athabasca Basin, Canada. Those surveys outline the 3D subsur-

face settings of known uranium deposits. Urosevic et al. (2007)

reported on the processing and analysis of numerous seismic-

reflection data acquired mainly across the Yilgarn craton, Aus-

tralia. Novel seismic data-processing and imaging techniques

were introduced successfully and improved image quality, and

in combination with borehole log information they have enabled

the expansion of the mining activities and the generation of sev-

eral new exploration programs.

Malehmir and Bellefleur (2009) imaged massive sulfide

deposits by reprocessing three-dimensional seismic-reflection

data. They selected a processing approach that was based on a

prestack dip moveout (DMO) and a poststack migration

sequence, carefully focusing on the processing steps that are

critical for data acquired in crystalline environments. They

showed how the DMO approach enabled them to image the

diagnostic diffraction signature of the deep massive-sulfide zone

at Halfmile, New Brunswick, Canada, and helped improve

understanding of the associated geologic structure. This is illus-

trated in Figure 5, in which the original processing and the new

approach are displayed.

GAMMA-RAY SPECTROMETRY

Following an explosion of publications in the previous decade

on noise-adjusted singular-value decomposition (NASVD) and

maximum-noise-fraction (MNF) noise-reduction methods, there

were few developments in gamma-ray spectrometry during the

first decade of the millennium. Ramos et al. (2007) presented a

methodology for reducing gamma-ray survey noise, based on

manifold learning followed by nonlinear regression.

BOREHOLE GEOPHYSICS IN EXPLORATION

AND MINING

The twenty-first century’s first decade had many advances in

borehole geophysics. Charbucinski et al. (2000) described a

spectrometric gamma-gamma probe that was developed for ore-

body delineation of zinc-lead ore. Spitzer and Chouteau (2003)

interpreted the results of a resistivity and IP borehole survey at

Casa Berardi gold mine in northwestern Québec. Crosshole

pole-pole and single-hole pole-dipole configurations were used

to delineate the geometry of the body associated with the Casa

Berardi fault system. Because the spatial data sampling was

insufficient for 3D inversion, the interpretation was done using

3D DC and IP forward modeling. Bolin and Moon (2003) exam-

ined the potential of imaging spectroscopy to estimate sulfide
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percentage in drilling core material from the Stillwater Com-

plex, Montana. Bellefleur et al. (2004) described the application

of downhole seismic imaging of the Halfmile Lake deposit,

New Brunswick, Canada. The massive sulfide lenses, which

have significantly higher elastic impedances than do the host

rocks, produce strong scattering. Elders and Asten (2004) ana-

lyzed noise of borehole magnetometric resistivity (MMR) and

EM surveys. Mudge (2004) surveyed radial resistivity/IP using a

downhole current electrode. Godber and Bishop (2007) detected

low-resistivity targets using advances in downhole magnetomet-

ric resistivity (DHMMR). Lamontagne (2007) reviewed advan-

ces in borehole EM, which has become a standard technique in

mining exploration. Qian et al. (2007) presented results of cross-

borehole electric tomography. Seigel et al. (2007) and Seigel et

al. (2009) developed a borehole gravity meter for borehole

applications. Butler et al. (2007) reviewed the advances in seis-

moelectric data acquisition on the surface and in boreholes,

most of which are attributed to improvements in instrumenta-

tion. Sun et al. (2007) estimated velocity dispersion using vibra-

tor VSP data.

INTEGRATING GEOLOGY AND GEOPHYSICS

Another cross-fertilization between petroleum geophysics and

mining geophysics during the decade occurred in the integration

of geology and geophysics. The concept of the common-earth

model, applied to orebody delineation, was introduced in the

mining industry by McGaughey and Vallée (1999): Advanced

visualization techniques allow simultaneous viewing of the

three-dimensional physical-property model, the geologic infor-

mation, and the geophysical results. Geophysical results may be

simulated from a forward model, or the output from a numerical

inversion in the form of an updated physical-property distribu-

tion can be compared with a geologic model.

The approach that Li and Oldenburg (2000) followed is to de-

velop a new model objective function that allows incorporation

of strike direction and dip angle into geophysical inversions.

Alternatively, Fullagar et al. (2000) developed a modeling and

inversion methodology to expedite joint geologic and geophysi-

cal interpretation of gravity data. The key features of their

approach are the enforcement of drilling constraints (pierce

points) and the imposition of density bounds on geologic forma-

tions and basement. As Roy and Clowes (2000) showed, differ-

ent methods can be combined to construct a geologic model.

They modeled the Guichon Creek batholith (GCB), British Co-

lumbia, Canada, from 2D seismic combined by 3D gravity and

magnetic inversion. Integrated interpretation of geophysical

results and geologic observations indicates that the GCB is a

funnel-shaped feature in which mineralization is located above

the stem of the batholith. More specifically, Bosch et al. (2006)

jointly inverted gravity and magnetic data following a Monte

Carlo method that provides an estimation for a 3D model of the

structure and the physical properties of the medium. This

method combines the gravity data and magnetic data with prior

information about the mass-density and magnetic-susceptibility

statistics, and statistical constraints on the model-interface posi-

tions. As McGaughey (2007) showed, successful integration of

geologic and geophysical data for exploration targeting requires

geologic and geophysical modeling technology and the knowl-

edge necessary to put it into practice. Bellefleur et al. (2007)

illustrated how seismic reflections can improve the understand-

ing of subsurface geology of the Noranda central camp, Québec,

Canada. Seismic data provide additional control in areas lacking

boreholes and can extend geologic information at depth, as

shown in Figure 6.

Mining discoveries also can occur from combining geology

and geophysics. Martin et al. (2007) described a mining discov-

ery that arose from the construction of a 3D common-earth

model of the Noranda camp. This model involves importing

multidisciplinary data sets and the propagation of the data

throughout the model. A series of well-defined visual and quan-

titative queries based on conceptual ore-deposit models was

developed to highlight prospective target areas. The discovery

of the West Ansil deposit in Québec, Canada is credited to the

use of this model. On another continent, Malehmir et al. (2009)

presented a 3D geologic model of the Kriskineberg mining area,

Sweden; that model was based on constrained 3D gravity inver-

sion and seismic profiles. That 3D geologic model supports

many previous interpretations but also reveals new features of

the regional geology that are important for future targeting of

base-metal and gold deposits.

Lelièvre et al. (2009) expanded the types of geologic informa-

tion that can be incorporated into minimum-structure-type deter-

ministic inversions involving minimization of an objective func-

tion. They also presented an iterative cooperative inversion

strategy for combining multiple types of geophysical data and

thereby recovering geologically realistic models.

Figure 5. An unmigrated seismic section from inline 1060 of
Halfmile Lake 3D seismic data, with (a) only NMO corrections
applied and (b) NMO and DMO corrections applied. This figure
demonstrates improvements in the continuity of several steeply
dipping reflections in the southeastern side of the section and
allowing imaging of reflections R1 and D1 originating for the
deep volcanogenic massive sulfide deposit. From Malehmir and
Bellefleur (2009). Used by permission.
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CONCLUSIONS

During the period from 2000 through 2010, a decade in which

mineral industry exploration activity was highly variable,

numerous scientific and technological developments occurred. In

our opinion, six developments stand out as having changed the

face of exploration geophysics:

1) the commercialization of helicopter time-domain EM,

2) the commercialization of airborne gravity gradient,

3) the development of new tools for EM modeling and inversion,

4) the development of many tools for magnetic interpretation

including 3D inversion coming into routine use.

5) numerous developments in mining borehole geophysics, from

downhole seismic to gravity, and

6) the growing application of geophysical and geologic integra-

tion in constrained common-earth-type models.
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