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Abstract

The purpose of this thesis is to introduce the reader to Multiple Regression and Monte

Carlo simulation techniques in order to find the expected compensation cost the insurance

company needs to pay due to claims made. With a fundamental understanding of prob-

ability theory, we can advance to Markov chain theory and Monte Carlo Markov Chains

(MCMC). In the insurance field, in particular non-life insurance, expected compensation

is very important to calculate the average cost of each claim. Applying Markov models,

simulations will be run in order to predict claim frequency and claim severity. A variety of

models will be implemented to compute claim frequency. These claim frequency results,

along with the claim severity results, will then be used to compute an expected compen-

sation for third party auto insurance claims. Multiple models are tested and compared.

Keywords

Regression, MCMC, Gibbs Sampler, Logistic, Poisson, Negative Binomial, Zero-Inflated,

Insurance, Claim Frequency, Claim Severity, Expected Compensation
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1 Introduction

In today’s society, we place a high importance on modelling and predicting various types of

risks. This allows for protection against various financial insecurities that might otherwise

cause significant harm to our financial security. Such risks we model include non-life

insurance or property and casualty insurance. In the field of personal casualty insurance,

actuaries are often tasked with modelling auto insurance claims. The goal of the insurance

company is to calculate an effective insurance price or premium to the corresponding

insured party in order to cover the necessary risk. Claim frequency, also known as count

data, and claim severity are the variables used to calculate the average cost of claims

for property and casualty insurance. A superior model for claim frequency and claim

severity means more competitive fees and in turn, a more profitable coverage for the

insurer. Therefore, modelling claim frequency and claim severity is a crucial step for

pricing personal and casualty insurance.

In the past, there has been extensive interest in count data models, particularly in Actu-

arial Science. Generalized linear models (GLMs) were given a life of their own by [Nelder

and Wedderburn, 1972]. The use of generalized linear models by statisticians and ac-

tuaries has been discussed by [Haberman and Renshaw, 1996] as well as [Renshaw,

1994] and [McCullagh and Nelder, 1989]. Although these GLM models do many things

well, they have several disadvantages. The assumptions made by GLM’s may not hold

true and therefore, the predictiveness of the model can be suboptimal. Residuals of the

GLM’s in insurance data are rarely homogeneous; an important feature in scoring a mod-
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els fit. Lastly, GLM’s only offer correlation between variables rather than causation. As

shown in [Panjer and Willmot, 1983], the statistical interpretation of risk is essentially

Bayesian. The approach adopted here is fully Bayesian, allowing for causation, model

flexibility and credible intervals. To actuate this Bayesian approach, Markov Chain Monte

Carlo (MCMC) is used for parameter estimation.

In this thesis statistical models for the claim frequency in Third Party Motor insurance

are compared. Poisson regression has been the primary regression to model claim fre-

quencies in the past. As has been shown in [Gourieroux and Jasiak, 2001], the Poisson

distribution has many limitations due to its equidispersion. Equidispersion is defined as

the equality of mean and variance within a distribution. To give an alternative, the Poisson

regression model is compared with the Negative Binomial regression. Subsequently, the

Zero-inflated models are compared as well. The claim severity is modeled by a Gamma

model. In order to predict the expected compensation, the expected claim frequency is

multiplied by the expected claim severity. The MCMC with Gibbs sampling will be used

for parameter estimation. The models will then be scored by fit, and compared using the

Deviance Information Criterion (DIC). A comparison of cost savings when using the best

fitted model is given. Based on these models, the total claim severity can be simulated for

premium calculation. The dependencies between the number of claims and claim severity

is allowed. This regression takes into consideration the Poisson distribution as well as the

Negative Binomial distribution to model the claim frequency and the Gamma distribution

2



to model the claim severity.

The contributions of this thesis are to provide four models to quantify and estimate claim

frequency. Provide a Gamma model to estimate claim severity. Compute the expected

compensation for the different zones of policyholders. Discuss strengths and weaknesses

of each count variable model obtained by MCMC. Discuss and provide an example of

regression model comparison with a Bayesian approach for auto claim frequencies.

2 Literature Review

In this chapter the review of the literature employed in the thesis is explained. An intro-

duction to Poisson regression, Negative Binomial regression and Gamma regression is

given. Markov Chain Monte Carlo (MCMC) and Gibbs sampling is reviewed, along with

the Deviance Information Criterion used to compare the models.

2.1 Poisson Model

To begin, the Poisson distribution is introduced. The benchmark model for count data is

the Poisson distribution. It is useful at the outset to review some fundamental properties

and characterization results. If the discrete random variable Y is Poisson-distributed with

intensity or rate parameter µ, µ > 0, and t is the exposure, defined as the length of time

3



during which the events are recorded, then Y has density of the Poisson distribution

Pr[Y = y] =
e−µt(µt)y

y!
, y = 0, 1, 2... (1)

where E[Y ] = V [Y ] = µt. If the length of the exposure period t is equal to unity, then

Pr[Y = y] =
e−µµy

y!
, y = 0, 1, 2, ... (2)

This distribution has a single parameter µ, and is referred to as P [µ]. Its kth raw moment,

E[Y k], may be derived by differentiating the moment generating function k times. The

Poisson distribution has equal mean and variance. This is referred as equidispersion.

This property is often violated in real-life data. Overdispersion (underdispersion) means

the variance exceeds (is less than) the mean.

The law of rare events states that the total number of events will follow, approximately,

the Poisson distribution if an event may occur in any of a large number of trials but the

probability of occurrence in any given trial is small. More formally, let Yn,π denote the total

number of successes in a large number n of independent Bernoulli trials with success

probability π of each trial being small. Then

Pr[Yn,π = k] =

(
n

k

)
πk(1− π)n−k, k = 0, 1, ..., n. (3)

2.1.1 Poisson Regression Model

A standard application of Poisson regression is to cross-section data [Cameron and

Trivedi, 2013]. Typical cross-section data for applied work consist of n independent ob-

servations, the ith of which is (yi, xi). The scalar dependent variable, yi , is the number of

4



occurrences of the event of interest, and xi is the vector of linearly independent regressors

that are thought to determine yi . A regression model based on this distribution follows by

conditioning the distribution of yi on a k-dimensional vector of covariates, xi = [x1i, ..., xki],

and parameters β, through a continuous function µ(xi, β), such that E[yi|xi] = µ(xi, β).

That is, yi given xi is Poisson-distributed with probability density

f(yi|xi) =
e−µiµyii
yi!

, yi = 0, 1, 2, . . . (4)

In the log-linear version of the model, the mean parameter is parameterized as

µi = exp(x′iβ), (5)

to ensure µ > 0. These two equations jointly define the Poisson (log-linear) regression

model. For notational economy f(yi|xi) is written in place of the more formal f(Yi =

yi|xi), which distinguishes between the random variable Y and its realization y. By the

property of the Poisson, V [yi|xi] = E[yi|xi], implying that the conditional variance is not

a constant, and hence the regression is intrinsically heteroskedastic. This is to say that

the variance of the residual terms varies widely. In the log-linear version of the model

the mean parameter is parameterized as Equation (5), which implies that the conditional

mean has a multiplicative form given by

E(yi|xi) = exp(x′iβ)

= exp(x1iβ0)exp(x2iβ1) · · · exp(xkiβk),
(6)

with interest often lying in changes in this conditional mean due to changes in the regres-

sors. The additive specification, E[yi|xi] = x′iβ =
∑k

j=1 xjiβi, is likely to be unsatisfactory
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because certain combinations of βi and xi will violate the nonnegativity restriction on µi.

In most cases, x1 = 1, β0 is interpreted as the intercept, and β1, . . . , βk are unknown

parameters. For example, let y be the observed number of accidents, N be the known

exposure risk, and x the known explanatory variables. The mean number of events µ is

expressed as the product of N and ti. This is often called the rate of occurrence. That is,

µ(x) = N(x)ti(x, β). The expected value for this rate of occurrence with exposure variable

ti is

E(yi|xi) = tiλ(x′iβ)

= tiexp(β0 + β1X1i + . . .+ βkXki).

(7)

Therefore, for a given set of regressor variables, the outcome (dependent variable) follows

a Poisson Distribution.
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Figure 2.1: Probability Mass function for Poisson Distributions
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2.2 Negative Binomial Model

In this thesis the commonly known NB2 model introduced by [Cameron and Trivedi, 1986]

is used. The most common way this model is derived is by assuming the data are Poisson,

but there is gamma-distributed unobserved individual heterogeneity reflecting the fact that

the true mean is not perfectly observed. This model has a scale parameter of α = 1
v
.

Pr(Y = yi|µi, α) =
Γ(yi + α−1)

Γ(yi + 1)Γ(α−1)

(
α−1

α−1 + µi

)α−1(
µi

α−1 + µi

)yi
, (8)

where

µi = tiµ

α =
1

v
.

The parameter µ is the mean of y per unit of exposure ti. The mean is calculated by

E(yi) = µi = ex
t
iβ, (9)

and the variance by

V ar(yi) = σ2
i = µi(1 + αµi). (10)

It is shown below that in Equation (8) when α → 0, the Poisson distribution is obtained.

This is because α is known as the dispersion parameter. α−1 is referred to as the index
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or dispersion parameter. From [Cameron and Trivedi, 2013],

f(y) =

( y=1∏
j=0

(j + α)

)
1

y!

( α

α + µ

)α( 1

α + µ

)y
µy

=

( y=1∏
j=0

j + α

α + µ

)( α

α + µ

)α
µy

1

y!

=

( y=1∏
j=0

1 + j
α

1 + µ
α

)( 1

1 + µ
α

)α
µy

1

y!

→ 1e−µµy
1

y!
as α→∞.

Since 1e−µµy 1
y!

is the Poisson distribution, the Poisson is the special case as α → 0. As

with the Poisson distribution, the parameter µ is the incidence rate per unit of exposure ti.

The function Γ(·) is the gamma function and defined by

Γ(α) =

∫ ∞
0

e−ttα−1dt, α > 0. (11)

Therefore, the Negative Binomial distribution given by Equation (8) is represented as a

Poisson-Gamma mixture distribution.

2.2.1 Negative Binomial Regression Model

The Negative Binomial regression model is determined by exposure time t and k regres-

sor variables. The expected value is expressed as

µi = exp(ln(ti) + β0 + β1x1i + . . .+ βkxki). (12)

In Negative Binomial regression, where µ is the mean and β0 is the intercept. The regres-

sion coefficients β1, β2, . . . , βk are unknown parameters that are estimated from the data

9



Figure 2.2: Probability Mass function for Negative Binomial Distributions with µ = 2.

set. Therefore, a Negative Binomial regression model for an observation i is given as

Pr(Y = y|µi, α) =
Γ(yi + α−1)

Γ(α−1)Γ(yi + 1)

(
1

1 + αµi

)α−1(
αµi

1 + αµi

)yi
, (13)

where y is the dependent variable.

2.3 Zero-Inflated Poisson Model

The zero-inflated Poisson model was introduced by [Lambert, 1992] to solve problems

with the large zero counts in data. The zero-inflated models are a solution to incorrect

10



and biased models, incorrect parameter estimations, biased errors and over-dispersion

caused by the high zero counts in the dataset. The zero-inflated Poisson is a two part

model, consisting of both binary and count model sections. Suppose that for each obser-

vation i, there are two possible cases. If case one occurs, the count is zero. If case two

occurs, counts(including zeros) are generated according to the Poisson model. Given the

probability of case one to be π, and the probability of case two to be 1− π, the probability

distribution of the Poisson is

Pr(yi = 0) = πi + (1− πi)e−µi

Pr(yi > 0) = (1− πi)
µyii exp(−µi)

yi!
,

(14)

and,

V ar(yi) = (1− πi)(µi + µ2
i )

> µi(1− πi) = E(yi).

The zero-inflated Poisson can be written as

µi = exp(ln(ti) + β0 + β1x1i + . . .+ βkxki),

where ti is the exposure variable and βi are the regressor variables. The regressor co-

efficients can then be estimated using maximum likelihood estimation or in this case,

Bayesian estimation. The goal is to estimate (β, γ). [Lambert, 1992] introduced the model

in which µi = µ(xi, β) and the probability πi is parameterized as a logistic function of the

11



observable vector of covariates zi. The logistic link function is given as follows:

yi = 0, with probability πi

yi ∼ P (µi), with probability (1− πi)

πi =
exp(z′iγ)

1 + exp(z′iγ)
,

(15)

where

exp(z′iγ) = exp(ln(ti) + γ1z1i + γ2z2i + . . .+ γmzmi). (16)

2.4 Zero-Inflated Negative Binomial Model

The zero-inflated Negative Binomial (ZINB) regression model is similar to the Poisson

zero-inflated model. A zero-inflated Negative Binomial model will enable us to distinguish

between the effect of the splitting mechanism and the over-dispersion induced by indi-

vidual heterogeneity [Greene, 1994]. Suppose that for each observation i, there are two

possible cases. If case one occurs, the count is zero. If case two occurs, counts(including

zeros) are generated according to the Negative Binomial model. Given the probability of

case one to be π, and the probability of case two to be 1 − π, the probability distribution

of the ZINB is

Pr(yi = 0) = πi + (1− πi)g(yi = 0) if i = 0

Pr(yi = k) = (1− πi)g(yi) if i > 0,

(17)

where πi is the logistic link function defined by

exp(z′iγ) = exp(ln(ti) + γ1z1i + γ2z2i + . . .+ γmzmi). (18)
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The zero-inflated Negative Binomial model can also be expressed as

µi = exp(ln(ti) + β0 + β1x1i + . . .+ βkxki)

where ti is the exposure variable and βi are the regressor variables. The regressor coef-

ficients are then estimated using Bayesian estimation.

2.5 Gamma Model

The Gamma distribution is a two-parameter family of continuous probability distributions.

It has parameter β and shape parameter α, α > 0 and β > 0. As shown in [Gelman

et al., 2013], the Gamma distribution is the conjugate prior distribution for the inverse of

the normal variance and for the mean parameter of the Poisson distribution. Let θ be a

random variable and θ ∼ Gamma(α, β); that is, the random variable θ follows a Gamma

distribution with parameters α and β. The density function of a Gamma distribution given

by the random variable θ is

f(θ; β, α) =
β

Γ(α)
(βθ)α−1e−βθI(0,∞)(θ), (19)

where I(.) is an indicator function. Under this parameterization, the mean is given by

E(θ) =
α

β
, (20)

and the variance by

V ar(θ) =
α

β2

=
µ2

α
.

(21)
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Figure 2.3: Density function for Gamma Distributions

By setting β = α
µ
, it is shown in [Gelfand et al., 2005] that the Gamma density function can

be written as

f(θ) =
1

θΓ(α)

(
αθ

µ

)α
exp

(
αθ

µ

)
I(0,∞)(θ). (22)
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2.5.1 Gamma Regression Model

Let Yi ∼ G(µi, α) for i = 1, 2, . . . , n, be independent random variables. Then the Gamma

regression model is defined as

g(µi) = x′iη

µi = η0x0i + η1x1i + . . .+ ηkxki,

(23)

where η = (η0, η1, . . . , ηp)
′ is a vector of unknown regression parameters (p < n), xi =

(xi1, xi2, . . . , xip)
′ is the vector of p covariates and ηi is a linear predictor. As in most

regression models, x01 = 1 for all i so that the model has intercept η0.

2.6 Collective Risk Model

In the basic insurance risk model from [Embrechts et al., 2013], the number of claims and

the total claim produced in a given time period t = 1, 2, . . . , T for some class i is denoted

by (Nit, Xit) where

Xit =


∑Nit

k=1 Witk Nit > 0

0 otherwise,

(24)

and where Witk is the amount of the kth claim at time t for some class i. The assumptions

for the model are given in [Migon and Moura, 2005], and they are:

• The number of claims in the interval (t− 1, t] is a random variable denoted as Nit

• Conditional on Nit = nit, the claim severity Wik, k = 1, 2, . . . , nit, are positive indepen-

dent and identically distributed random variables with finite mean µi = E(Wik) and

variance σ2
i = V ar(Wik) <∞.
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• The claims occur at random times t1i ≤ t2i ≤ . . . and the inter-arrival times Tji =

tji − tj−1,i are assumed to be independent and identically exponentially distributed

random variables with finite mean E(Tji) = λ−1i .

By assuming the sequences Tj and Wj are mutually independent from each other and

identically distributed, the above conditions hold. It follows that Nit is a homogeneous

Poisson process with rate λit, then
∑πit

k=1Nitk|λit ∼ Poisson(λitπit), ηit is the observed

number of claims at time t, for class i and πit is the insured population at time t for

class i, and not πt, t. Assuming that Witk ∼ Gamma(αit, θit), the inter-arrival times are

exponentially distributed. The Poisson-Gamma model is given by

Nit|λit, πit ∼ Poisson(λitπit), λi > 0

Witk ∼ Gamma(αit, θit),

Xit|ηit, θit ∼ Gamma(ηitαit, θit) θi > 0

(25)

where αit = ηitαi, ηit is the observed number of claims at time t, for class i and πit is the

insured population at time t for class i.

A similar idea is applied to the Negative Binomial expected values and the Gamma ex-

pected values. [Kaas et al., 2008] S = X1, X2, . . . , XN and Xi are amounts for a claim and

N is the total amount of claims and S is the sum of the collective claims. The expected

value is given by

E(S) = E(N)E(X) (26)
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and the variance

V ar(S) = E(N)V ar(X) + (E(X))2V ar(N). (27)

Therefore, the premium for collective risk is given by

P = E(N)E(X). (28)

2.7 Markov Chain Monte Carlo

MCMC is essentially Monte Carlo integration using Markov chains. Scientists need to

integrate over possibly high-dimensional probability distributions to make inference about

model parameters or to make predictions. Markov Chain Monte Carlo (MCMC) algorithms

have made a significant impact on problems where Bayesian analyses can be applied; see

[Spiegelhalter et al., 1996]. MCMC can be broken down into key steps, first, randomly

generating numbers also known as the Monte Carlo part. Second, allow the numbers

generated to influence the next number, also known as the Markov chain part. Third,

check for convergence to a reasonable distribution. Monte Carlo integration evaluates

E[f(x)] by drawing samples Xt, t = 1, . . . , n from π(.) and then approximating

E[f(X)] ≈ 1

n

n∑
t=1

f(Xt). (29)

So the population mean of f(X) is estimated by a sample mean. When the samples Xt

are independent, the law of large numbers ensures that the approximation can be made

as accurate as desired by increasing the sample size n. In general, drawing samples Xt

independently from π(.) is not feasible since π(.) can be non-standard full conditional dis-

tributions. However, Xt does not necessarily need to be independent. It can be generated
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by any process which draws samples throughout support of π(.). Suppose X0, Xl, X2, . . .

are generated as a sequence of random variables, such that at each time t ∼ 0, the next

state Xt+l is sampled from a distribution P (Xt+1|Xt) which depends only on the current

state of the chain, Xt. That is, givenXt, the next stateXt+1 does not depend further on the

history of the chain (X0, X1, . . . , Xt−1). This sequence is called a Markov chain. In gen-

eral, MCMC involves simulating from a complex and multivariate target distribution, p(X),

by generating a Markov chain with the target density as its stationary density, [Gelman

et al., 2013]. Markov chain simulation is used when it is not possible or not computation-

ally feasible to sample X directly from p(X|y). Instead, the method draws iteratively in

such a way that at each step, the draw from the distribution is expected to be closer to

p(X|y). The basic principle is that once the chain has run sufficiently long enough, it will

approximate the posterior distribution p(X|y). In general, m ≥ 1 independent sequences

of simulations are run, each with a length of n, (Xj1, Xj2, . . . , Xjn) for j = 1, . . . ,m.

The term Markov chain stands for a sequence of random variables X1, X2, . . . for which,

for any t, the distribution Xt depends only on the most recent variable, Xt−1. To begin an

MCMC simulation is made by selecting a X0 and then for each t, Xt is drawn from a transi-

tion distribution Tt(Xt|Xt−1) so that the Markov chain hopefully converges to the posterior

distribution p(X|y). Once algorithms have been implemented and the simulations drawn,

it is extremely important to ensure the convergence of the simulated sequences. The

sequence is monitored with a time-series plot, and the Gelman Rubin method is used to
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diagnose convergence, [Brooks and Gelman, 1998]. More on how the MCMC is applied

is discussed in Section 2.7.1.

The two most prevailing techniques used in MCMC are the Metropolis-Hastings algorithm

and the Gibbs sampler. Bayes’ theorem, can be conceptualized as

posterior ∝ prior × likelihood. (30)

That is, the posterior is proportional to the likelihood times the prior. The guidelines below

flow directly from this theorem:

• If the prior is uninformative, the posterior is determined by the data

• If the prior is informative, the posterior is a mixture of the prior and the data

• The more informative the prior, the more data is needed to influence the beliefs since

the posterior is determined more so from the prior information

• If the dataset is large, the data will dominate the posterior distribution

2.7.1 Gibbs Sampler

The Gibbs sampler was introduced by [Geman and Geman, 1984]. Although the Metropolis-

Hastings is more commonly used in the literature, the Gibbs sampler was implemented

in this thesis since the data analysed is low-dimensional. Low-dimensional refers to the

features of the dataset or the amount of variables in the model. High-dimensional data

may consist of hundreds or thousands of features. Gibbs sampling can be understood as
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running a sequence of low-dimensional conditional simulations. It is used when decompo-

sition’s into such conditionals are easy to implement and fast to run, which is the case in

this thesis. As described in [Gill, 2002], the Gibbs sampler is useful in producing Markov

chain values. It is a special case of the Metropolis-Hastings algorithm with a probability of

acceptance of one. Suppose a joint density f(x, y1, . . . , yp) is given and the marginal den-

sity f(x) is needed to calculate the marginal mean or variance. The most natural way to

do so would be to integrate f(x) directly. However, in some cases, it is simpler to sample

from a conditional distribution than to marginalize by integrating over a joint distribution.

Gibbs sampling generates a sample X1, . . . , Xn ∼ f(x) without requiring f(x) [Casella

and George, 1992]. By simulating a large enough sample, the mean, variance, or any

other characteristic of f(x) can be calculated. As an example, to calculate the mean of

f(x),

lim
m→∞

∑m
i=1Xi

m
=

∫ ∞
−∞

xf(x)dx = E[X]. (31)

is used. By taking m large enough in Equation (31), any population characteristic, even

the density itself, can be obtained to any degree of accuracy. The basic tenet of Gibbs

sampling is that one can express each parameter to be estimated as conditional on

all the others. By going through these conditional distributions, eventually the chain

converges to the true joint distribution of interest. Suppose k samples are needed of

X = (x1, . . . , xn) from a joint distribution p(x(i)1 , . . . , x
(i)
n

)
. Let the ith sample be denoted by

X(i) =
(
x
(i)
1 , . . . , x

(i)
n

)
. Beginning with X(i), the objective is to obtain the next sample. This
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sample X(i+1) is given by

X(i+1) =
(
x
(i+1)
1 , x

(i+1)
2 , . . . , x(i+1)

n

)
,

is a vector. Each component of the vector x(i+1)
j is sampled from the distribution of that

component conditioned on all other components sampled so far. Therefore,

X i+1
j ∼ p

(
x
(i+1)
j |x(i+1)

1 , . . . , x
(i+1)
j−1 , x

(i)
j+1, . . . , x

(i)
n

)
is the (i + 1)th component for the variable xj. Notice that the ith components of the j + 1

variables are used. This is because the (i+ 1)th component has not been calculated yet.

The above steps are repeated k times. From these steps, the expected value of any vari-

able can be approximated by averaging over all the samples. Since the average over all

the samples is used to calculate the characteristics of the variable, it is common to ignore

a number of the samples at the beginning (often referred to as the burn-in period). The

sample approximates the joint distribution of all variables since X i+1 approaches p(X) as

i→∞.

To help better describe what is going on with the Gibbs sampler, a simple example is

explained. Suppose X and Y are two binary random variables with joint distribution

P (X = x, Y = y) = pX,Y (x, y) given by the following table:
X\Y 0 1

0 0.6 0.1

1 0.15 0.15


That is, pX,Y (0, 0) = 0.6. The conditional distribution of X is easily calculated from Bayes

formula P (A|B) = P (A ∩ B)/P (B). For example, P (X = 0|Y = 0) = P (X = 0 ∩ Y =
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0)/P (Y = 0) = 0.6/0.75 = 0.8. Starting from some value of X, Y and proceeding to

iterate the following two steps will achieve Gibbs sampling. Simulate a new value of X

from P (X|Y = y) where y is the current value of Y . Simulate a new value of Y from

P (Y |X = x) where x is the current value of X (generated in 1). Running this simulation

via computer program, the summary of the first n = 50 iterations are kept. It is found

that the proportion of the iterations in which X = x and Y = y is increasingly close to

P (X = x, Y = y) = pX,Y (x, y). This is a result of simulating a Markov chain whose

stationary distribution is P (X = x, Y = y) = pX,Y (x, y).

Once convergence is achieved, the simulated values are sampled from a distribution that

asymptotically follows the target posterior distribution. By increasing the length of the

chain (increasing n), the sampling variance of the posterior variables is decreased. The

mean and standard deviation, as well as, the naı̈ve standard error and time-series stan-

dard error are computed. These error values are measures of the computational MCMC

error for the estimation of the posterior expected value. The naı̈ve SE is given as

SEn =

√
V ar(X)

C · S
,

where X is the vector of posterior samples, C is the number of chains run and S is the

number of iterations run. Similarly, the time-series SE is given as

SEts =

√
V arts(X)

C · S
,

where V arts(X) is the average of the variance of each set of samples X for each chain

C. In short, the naı̈ve SE disregards autocorrelation where as the time-series SE takes

into account the often high auto correlations found in MCMC sampling. The ensuing trace
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plots are time-series plots of the sampled values [Toft et al., 2007]. They are the first

tool used to assess the convergence of the chain. If the chain has reached convergence,

then the time-series should be centered around a constant mean. If multiple chains with

different starting points are plotted, then these plots should seem indistinguishable.

A second test for convergence of chains is the autocorrelation of the monitored parame-

ters within each chain. High autocorrelations suggest slow mixing of chains and, usually,

slow convergence to the posterior distribution [Smith et al., 2007]. Although the model

converges eventually, they are significantly less optimal on computing time compared

models with low autocorrelations which tend to converge much faster. A common strategy

is to thin the chains to reduce sample autocorrelation. A chain can be thinned by keeping

every kth simulated draw from each sequence. Thinning the chain is an option considered

to improve accuracy, however according to [Link and Eaton, 2012], for approximations of

simple features of the target distribution (e.g. means, variances and percentiles), thinning

is neither necessary nor desirable.

One approach to get an estimate of the severity of the variance is to run several chains

and use the between-chains variance in θ̂. Specifically, if θ̂j denotes the estimate for chain

j(1 ≥ j ≥ m) where each the m chains have the same length, then an estimate for the

variance is

V ar(θ̂) =
1

n− 1

m∑
j=1

(
θ̂j − θ̂∗

)2

where θ̂∗ =
1

n

m∑
j=1

θ̂j. (32)
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2.7.2 Heidelberg and Welch Test

A third test for convergence of the MCMC chain is the Heidelberg and Welch test [Hei-

delberger and Welch, 1983]. This is a two part test. In the first part, a test statistic on

the entire chain is calculated. The null hypothesis is that the chain is from a stationary

distribution. If the null hypothesis is rejected, the first 10% of the chain is discarded. This

step is repeated until the null hypothesis fails to be rejected or 50% of the chain is dis-

carded. For the second part, if the chain passes the first part of the diagnosis, it then

takes the part of the chain not discarded from the first part to test the second part. The

half-width test calculates half the width of the (1−α)% credible interval around the mean.

If the ratio of the half width and the mean is lower than some ε, then the chain passes

the test. Otherwise, the chain must be run for more iterations. The test also provides a

key p-value statistic for each variable. The null hypothesis for the test is that the Markov

chain are from a stationary distribution.The stationary distribution of a Markov Chain with

transition matrix P is some vector, X, such that XP = X. In other words, over the long

run, no matter what the starting state was, the proportion of time the chain spends in state

j is approximately Xj for all j. Simple put, the probability to end (converge) a very long

random walk (Markov chain), is independent of where the walk started. A large p-value

means we cannot reject the null hypothesis and that the Markov chains do have a sta-

tionary distribution. Therefore, large p-value among these tabled results are an indication

for convergence and stationary distribution. This is to say, as i → ∞ there is a unique

solution.
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2.8 Model Comparison

The deviance information criterion (DIC), introduced by [Spiegelhalter et al., 2002], for a

probability model p(y|θ) with observed data y = (y1, . . . , yn) and unknown parameters θ is

defined as

DIC = E[D(θ|y)] + pD. (33)

It considers both model fit as well as model complexity. The goodness-of-fit is measured

by the posterior mean of the Bayesian deviance D(θ) defined as

D(θ) = −2logp(y|θ) + 2logf(y), (34)

where f(y) is some fully specified standardizing term. Model complexity is measured by

the number of parameters pD defined by

pD = E[D(θ|y)]−D(E[θ|y]). (35)

The DIC criterion has been suggested as a criterion of model fit by [Spiegelhalter et al.,

2002]. DIC is just the sum of the posterior mean deviance and the effective number

of parameters. The goal is to find a model that will be best for prediction when taking

into account the uncertainty inherent in sampling. According to the criterion, as with

other information criterion, the model with the smallest DIC is preferred. The DIC does

not give belief for a ”true” model, instead, it provides model comparison for short term

predictions. Using the MCMC output, both pD and DIC are easily computed by taking

the posterior mean of the deviance E[D(θ|y)] and the estimate of the deviance D(E[θ|y]).

Since 2logf(y) is a standardizing term that is a function of data alone, in the application
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of this thesis the standardized term 2logf(y) from Equation (34) is set to zero by setting

f(y) = 1.

3 Data

The dataset used in this thesis is a Third Party Motor Insurance dataset from Sweden.

In Sweden, all motor insurance companies apply identical risk arguments to classify cus-

tomers, and thus their portfolios and their claims statistics can be combined. The data

was compiled by the Swedish Committee on the Analysis of Risk Premium in Motor In-

surance. This dataset is used to apply the different multiple regressions to compare fits,

scores, and show how valuable information can be extracted from the data. The data has

a sample size of n=1937 with 7 variables. The variables are:

• Kilometres: Number of kilometres driven per year

• Zone: Geographical location divided by major cities and surroundings.

• Bonus: No claims made bonus. Equal to the number of years +1 since last claim

• Make of Vehicle: Represents the 8 most driven car models

• Insured: Amount of time insured in policy-years

• Claims Number of Claims made

• Payment Value amount of payment made in Swedish Krona (Skr)
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Table 3.1: Summary Statistics for the Third Party Insurance Data

mean sd median min max

Kilometres 2.985793 1.410409 3.000 1.00 5.0

Zone 3.970211 1.988858 4.000 1.00 7.0

Bonus 4.015124 2.000516 4.000 1.00 7.0

Make 4.991751 2.586943 5.000 1.00 9.0

Insured 1092.195270 5661.156245 81.525 0.01 127687.3

Claims 51.865720 201.710694 5.000 0.00 3338.0

Payment 257007.644821 1017282.585648 27403.500 0.00 18245026.0

The Kilometres driven per year are separated into 5 different categories, < 1000, 1000-

15000, 15000-20000, 20000-25000, and >25000. The Zones are separated into 7 dif-

ferent zones, Stockholm, Goteborg, Malmo with surroundings, Other large cities with sur-

roundings, Smaller cities with surroundings in southern Sweden, Rural areas in southern

Sweden, Smaller cities with surroundings in northern Sweden, Rural areas in northern

Sweden, and Gotland (island). Unfortunately, the make of the cars was never released

due to the potential impact on sales. The mean, standard deviation, median, min and max

of the data are given below.

The explanatory variables are kilometres driven per year, zone, bonus, make of vehicle,

and amount of time insured in policy years. The response variable is the claim frequency.
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Figure 3.1: Density of Claims with a Gaussian Kernel and Bandwidth of 1.922.

The payment made is omitted for the claim frequency regressions and is considered later

in the claim severity regression. Figure 3.1 depicts the density of claims with bandwidth

calculated by what is known as Silverman’s rule of thumb [Silverman, 2018]. The band-

width is chosen in order to minimize the mean integrated squared error (MISE). MISE is

given as E =
∫

(fn(x)−f(x))2dx, where fn(x) is the estimate based on sample size n and

f(x) is the unknown density function.
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4 Application of Claim Frequency, Severity and Expected

Compensation

As described in Chapter 3, the compound Poisson, the compound Negative Binomial,

the zero-inflated Poisson and the zero-inflated Negative Binomial distributions are used

to model the claim frequencies. Claim severity follows a Gamma distribution. The claim

frequency is modeled by the Poisson, Negative Binomial and the zero-inflated distribu-

tions and assumes independence from claim severity. In this Section, all the models are

described. The primary result is expected compensation and is obtained by multiplying

the expected frequency (from either of the Poisson or Negative Binomial models) by the

expected claim severity (from the Gamma model). This is possible because expected

compensation assumes independence between claim frequency and claim severity.

4.1 Claim Frequency

For claim frequency, the Poisson model, zero-inflated Poisson model, Negative Binomial

model and zero-inflated Negative Binomial model are applied to the dataset. They are

scored and compared using residual analysis and the DIC criterion. A fully Bayesian

MCMC approach is used to find the posterior distribution of the parameters for both mod-

els respectively. Both the Poisson model and Negative Binomial model are tested with

different groupings of covariates. The results are compared using the DIC criterion, and

subsequently, the best model fits are retained.
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4.1.1 Poisson and Zero-Inflated Poisson Models

The first models for claim frequency are the Poisson and Zero-inflated Poisson models.

Considering only the observations with non-zero insured policy years, 1937 observations

are obtained. The following model considers the number of claims Ni, i = 1, 2, . . . , n,

observed for each of the ith insurance class categories:

Ni|θi ∼ Poisson(eit ∗ θNi ), (36)

where

θNi = exp(x′iβ).

Here, eit denotes the insured policy years for policy holder i. The average number of

claims is denoted by θi for class i, xi is a vector of covariates, and β is a vector of pa-

rameters. To estimate the number of claims θi, the vector of unknown parameters is

β = (β0, β1, . . . , β4)
′. The vector of covariates for the ith policy class observation is given

by xi = (x0i, x1i, . . . , x4i). The matrix obtained from above for the ith observation is de-

scribed in Table 4.1.

4.1.2 Negative Binomial and Zero-Inflated Negative Binomial Models

The second class of model chosen for claim frequency are the Negative Binomial and

Zero-inflated Negative Binomial regression models. Just as with the Poisson model, the

number of claims observed is Ni, i = 1, 2, . . . , n for J insurance class categories. From

Equations (9) and (10),

Ni ∼ NegativeBinomial(eit ∗ θNi , σ2
i ) (37)
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Table 4.1: Regression Covariates

Covariate (x) Parameter (β) Description

x0i β0 Intercept

x1i β1 Kilometres

x2i β2 Zone

x3i β3 Bonus

x4i β4 Make

with mean θNi given by

θNi = (exp(x′iβ)),

and variance given as

σ2
i = θi(1 + αθi).

The matrix of regression covariates for the Negative Binomial model is the same as that

for the Poisson regression covariates given in Table 4.1.

4.2 Claim Severity

4.2.1 Gamma Model

The proposed model for claim severity is the Gamma model. For this model, only ob-

servations with a positive number of claims is considered. With this considered, 1797
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observations are obtained for the model. The covariance vector is the same as the model

for claim frequency xi = (xi0, xi1, . . . , xi4)
′. The vector of unknown regression parameters

is η = (η0, η1, . . . , η4). For policy holders i = 1, 2, . . . , n, let Xik, k = 1, 2, . . . , Ni, denote

the individual claim severity for the Ni observed claims. An individual claim severity con-

ditional on Ni is assumed to be independently Gamma distributed:

Xik|Ni ∼ Gamma(µSi , v), k = 1, 2, . . . , Ni, i = 1, 2, . . . , n. (38)

Since Xik|Ni, k = 1, 2, . . . , Ni are assumed to be independent and identically distributed,

the average claim severity Xi, given the observed number of claims Ni, is Gamma dis-

tributed with mean and variance

E(Xik|Ni) =
µSi
v

V ar(Xik|Ni) =
(µSi )2

v
,

E

[
Xi =

Ni∑
k=1

Xik

Ni

|Ni

]
=
µSi
v

V ar

[
Xi =

Ni∑
k=1

Xik

Ni

|Ni

]
=

(µSi )2

vNi

.

Therefore, the average claim severity for policy holder i is given by

Xi =

Ni∑
k=1

Xik

Ni

. (39)

4.3 Expected Compensation

One of the primary goals of this thesis is to find the expected compensation cost insurance

companies have to pay. As mentioned in Chapter 3, this cost depends on the claim
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frequency and claim severity. The expected value of the total cost Xi per number of

years insured ei is a combination of either the Poisson, Zero-inflated Poisson, Negative

Binomial or Zero-inflated Negative Binomial model with the Gamma model. The expected

compensation can be expressed as

E

(
Xit

eit

)
=

1

eit
E(Xit)

=
1

eit
E

( Nit∑
k=1

Witk

)

=
1

eit
E(E(

Nit∑
k=1

Witk|Nit))

=
1

eit
E(NitE(Wit1))

=
1

eit
E(Nit)E(Wit1)

=
1

eit
E(E(Nit|θNit ))µit

=
1

eit
E(eitθ

N
it )exp(xTi η)

= exp(xTi β)exp(xTi η),

where exp(xTi β) is the Poisson or Negative Binomial expected value and exp(xTi η) is the

Gamma expected value.

4.4 Residual Analysis

Evaluating model fit has been a controversial subject among Bayesian statistics. Bayesian

prior to posterior inferences assume the whole structure of a probability model and can

yield misleading inferences when the model is poor. A good Bayesian analysis, therefore,
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should include at least some check of the adequacy of the fit of the model to the data and

the plausibility of the model for the purposes for which the model will be used [Gelman

et al., 2013]. According to [Gelman et al., 2013], it is necessary to examine models

by their practical implications as well as tests for outliers, plots of residuals, and normal

plots. In this thesis, both practical implications and residual plots are analysed. The

practical checks implied are twofold. First, is the model consistent with the data? and

second, do the inferences from the model make sense? Residual analysis, in particular

graphical analysis, is an important statistical tool used to evaluate the quality of a model

fit. Residuals are defined as the difference between the measured output from the data

and the predicted model output. When errors in the residuals are not randomly distributed

about zero, this suggests the model is not an appropriate fit.

A comprehensive residual analysis is employed. The residuals are plotted against the

regressor variables, as well as the response variable to check for any outliers or curvature.

Raw residuals are calculated by ri = yi − µ̂i and analysed. The pearson residual is also

calculated to correct for the unequal variance in the residuals. The Pearson residual is

given by

pi =
yi − µ̂i√
φ̂µ̂i

,

where

φ̂ =
1

n− k

n∑
i=1

(yi − µ̂i)2

µ̂i
.
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For the Negative Binomial regression, the Pearson residual is given as

pi =
yi − µ̂i√
µ̂i + αµ̂i

2
.

Finally, the hat values are calculated. The hat matrix is used to measure the influence of

each observation. The hat values, hii, are the diagonal entries of the hat matrix calculated

using

H = W 1/2X(X ′WX)−1X ′W 1/2,

where W is a diagonal matrix with µ̂i. That is, a square matrix with µ̂i along the diagonal,

and zeroes elsewhere. Residual analysis for the claim severity (with Gamma regression

model) has a standardized ordinal residual defined by

ri =
yi − µ̂i√
V̂ ar(yi)

, (40)

where

V̂ ar(yi) =
µ̂i

2

α̂i
.

4.5 Bayesian Inference

4.5.1 Prior Distributions

An important aspect of Bayesian sampling and MCMC inference is the judicious selection

of prior distributions. It can be an asset to have prior belief of the probability distributions

of the parameters before the data is examined. With this knowledge, a subjective prior

can be chosen. Subjective priors have a significant impact on the posterior distribution.
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On the other hand, objective priors are selected to have a minimal impact on the posterior

distribution. It can be said that objective priors are used to obtain results which are objec-

tively valid. This means the results completely depend on the data. The priors selected

for these models are flat priors. Flat priors place more weight on the likelihood function,

thus have limited impact on the posterior distributions.

Poisson Models

β[i] ∼ N(µβ, σ
2
β) µβ = 0, σ2

β = 1000

Negative Binomial Models

β[i] ∼ N(µβ, σ
2
β) µβ = 0, σ2

β = 1000

α ∼ U(a, b) a = 0, b = 50

Gamma Model

η[i] ∼ N(µβ, σ
2
β) µβ = 0, σ2

β = 1000

α ∼ U(a, b) a = 0 b = 100

In the foregoing, N represented a normal distribution and U represented a uniform distri-

bution.

4.5.2 Posterior Distribution

The posterior distribution of the parameters, given the observed claim numbers and claim

severity, describe the uncertainty and is the result used for inference in Bayesian analysis.

36



The basis of Bayesian statistics is Bayes’ theorem, as was seen in Equation (30). In this

case, the prior is uninformative and the posterior results will be data driven for all three

models. The posterior for the Poisson distribution is

p(θNi , β0, . . . , β4|Ni) =
p(θNi , β0, . . . , β4|Ni)

p(Ni)

∝ p(θNi , β0, . . . , β4|Ni) = p(Ni|θNi )p(θNi |β0, . . . , β4)p(β0) . . . p(β4)

where f(Ni) is the prior and p(Ni|θNi ) is the likelihood. The flat prior is considered to be

insignificant, since it expresses vague information about the variable. Since the likelihood

function yields more information than the uninformative prior, the posterior is proportional

to the likelihood of the distribution p(Ni|θNi ). The posterior to the Negative Binomial follows

the same rules as the Poisson posteriors, and is given as

p(θNi , β0, . . . , β4, α|Ni) ∝ p(Ni|θNi )p(θNi |β0, . . . , β4, α)p(β0) . . . p(β4)

p(θNi , β0, . . . , β4, α|Ni) =
p(θNi , β0, . . . , β4, α|Ni)

p(Ni)

∝ p(θNi , β0, . . . , β4, α|Ni)

= p(Ni|θNi )p(θNi |β0, . . . , β4, α)p(β0) . . . p(β4)p(α)

p(θNi , β0, . . . , β4, α|Ni) ∝ p(Ni|θNi )p(θNi |β0, . . . , β4, α)p(β0) . . . p(β4)p(α)

Lastly, the posterior distribution for claim severity is

p(η0, . . . , η4, α|Xik) =
p(η0, . . . , η4, α|Xik)

p(Xik)

∝ p(η0, . . . , η4, α|Xik)

= p(Xik|Nik)p(Nik|η0, . . . , η4, α)p(η0) . . . p(η4)p(α)
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where f(Xik) is the prior and p(Xik|Nik) is the likelihood for claim severity. Once more,

the prior is considered agnostic and therefore the posterior distribution is proportional to

the likelihood of the distribution p(Xik|Nik).

4.6 Markov Chain Monte Carlo Application

As mentioned in Section 2.7.1, the Gibbs sampler is used as a form of MCMC simulation.

The Gibbs sampler provides samples from the posterior distributions. Three chains are

run simultaneously in order to compute variances. Chains are run for varying simula-

tions of length n in order to enhance the chances of convergence. By sampling from the

posterior distribution of the Gibbs sampler, the conditional distribution for all parameters

are obtained. The Gibbs MCMC estimates the mean, standard deviation, naı̈ve standard

error, and time-series standard error. These results are given in Section 5.

4.6.1 MCMC Calculations

The program used in R which runs Gibbs sampling produce many computations. These

computations are explained in this Section. The mean from the Results is the average

expected value of the unknown parameters β across all iterations of the program. The

standard deviation calculated is the standard deviation of the mean. This is the variance

or dispersion of the mean of each iteration. The naı̈ve standard error is the standard error

of the mean adjusted for sample size which captures the simulation error of the mean

rather than the posterior uncertainty. The time-series standard error adjusts the naı̈ve
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standard error for autocorrelation. This is to say that the time-series standard error is

calculated by taking the average of the variance of each set of samples of each chain.

The Credible Intervals for each model are also calculated. Credible intervals are the

Bayesian equivalent of the confidence interval. Confidence intervals express uncertainty

in the knowledge with a range designed to include the true parameter with some prob-

ability, commonly 95%. This confidence interval is interpreted in the way that if 100 ex-

periments are run, 95 of them will be at least within the interval width. A Bayesian could

criticize the confidence interval since the 5% of the results not in the confidence interval

can be nonsense, just as long as the 95% are within the confidence interval. Furthermore,

a Bayesian could say that the only experiment that matters is the one being ran, not the

other 99 to test the confidence interval. Bayesian’s approach a parameter as fixed with

some probability distribution. The credible interval can be interpreted as an 95% chance

of having a parameter within the interval. For example, if the credible interval of 95% for

the average height of students at Laurentian is between 160 and 180 centimeters, this

means there is a 95% chance the average height of a student is within the interval.

The claim frequencies and severities are primarily calculated by area. This is to say, the

results given is the average claim frequency/severity for each of the stated areas.

Autocorrelation is commonly defined as the degree of similarity between a given time-

series and a lagged version of itself. Since the (i + 1)th iteration depends only on the

ith iteration, autocorrelation is often quite high for Gibbs sampling. Autocorrelation with a

lag of 50 is the degree of similarity between the (i + 50)th iteration and the ith simulation.
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The high autocorrelation goes against the Gibbs sampler used. It is a strong indicator

that running longer chains is required. Rather than thinning the chains and throwing away

samples, the chains are ran for longer when autocorrelation is high as described in Sec-

tion 2.7.1.

5 Results

In this chapter the results from all the methods employed are shown. To start, we model

the expected claim frequency per year insured. Second, the expected claim severity per

year insured. Finally, the expected compensation cost per year insured. The regression

for each of the models are also given. Each model is analysed with residual analysis and

scored with the DIC criterion. Trace plots and analysis for the MCMC chains are given.

5.1 Claim Frequency

5.1.1 Poisson Model

The Poisson model obtained after running 30,000 iterations of the Poisson is given by

E

(
θi
ti

)
= exp(−1.89657 + 0.14532x1 − 0.10590x2 − 0.19687x3 − 0.03691x4) (41)

Since this model, as with the other models given in this Section, is obtained by Bayesian

inference, the posterior distribution can be directly examined to see which parameter val-

ues are most credible. Unlike in frequentist statistical analysis, there is no need to gen-

erate sampling distributions from null hypotheses and to figure out the probability that
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fictitious data would be more extreme than the observed data. In other words, there is no

need for p values and p value based confidence intervals [Kruschke and Liddell, 2018].

Instead, measures of uncertainty are based directly on posterior credible intervals pro-

vided in Table 5.3. The trace plots for the MCMC Gibbs samplers are given in Figure 5.1.

We see that the criterion given by [Toft et al., 2007] listed in Section 2.7 are satisfied.

The plots show that each variable mixed well, in that, it exhibits a rapid up and down

variation with no long-term trends or drifts. The chain has mild correlation between draws

and explores the sample space many times. Figure 5.1 gives both traceplots and density

plots for the Poisson iterations. As true for all traceplots in this Section, traceplots repre-

sent each sample step from the iterations ran. As each iterations jumps from one value

to the next around the mean of the parameter, the traceplot allows for analysis of how

well the parameter traveled in the state space. The traceplots do not show any significant

changes in the target distributions. The density plots given in Figure 5.1 are the smoothed

histograms of their respectful traceplots. That is to say, they represent the posterior distri-

bution of the parameter. The normal curve is important for an accurate distribution about

the mean.

HISTOGRAM

Furthermore, the autocorrelation plots are given in Figure 5.2. These plots support the

likelihood of convergence from Figure 5.1. The relatively low autocorrelation after lag <50

suggests fast convergence for the model.
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Figure 5.1: Trace Plots and Posterior Density Plots for Poisson Iterations. 3 Chains

With 30,000 Iterations Each
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Figure 5.2: Autocorrelation Plot for Poisson Iterations
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Table 5.1: Poisson Heidelberg and Welch diagnostics

Stationarity and Half-width Test Start iteration P-value Mean Half-width

Intercept Passed 1 0.0772 -1.896 1.08e-03

Bonus Passed 1 0.7958 -0.197 8.05e-05

Kilometres Passed 24001 0.0574 0.145 1.91e-04

Make Passed 1 0.2974 -0.037 5.90e-05

Zone Passed 1 0.2728 -0.106 1.22e-04

Table 5.1 gives the Heidelberg and Welch diagnostics. All the variables passed the sta-

tionarity and half-width test. Aside from kilometres, the variables all passed the stationar-

ity test throughout the chain. The kilometres variables discarded the first 24,000 iterations

of the chain before passing the stationarity test as described in Section 2.7.1. The large

P-values obtained in the Heidelberg and Welch diagnostics are a good indication that the

null hypothesis cannot be rejected and the chains are from a stationary distribution as

described in Section 2.7.2. These p-values are not significant levels for the variables in

the Poisson regression, but significance levels for the null hypothesis, the Gibbs sampling

chains are from a stationary distribution.

The results of the full MCMC iterations for all three chains is given in Table 5.2.

Table 5.2 gives the mean, standard deviation, naı̈ve SE and time-series SE of the pos-
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Table 5.2: Poisson Posterior Results

Mean SD Naı̈ve SE Time-series SE

Intercept -1.89657 0.023401 1.351e-04 5.390e-04

Bonus -0.19687 0.002585 1.493e-05 4.113e-05

Kilometres 0.14532 0.005048 2.914e-05 7.332e-05

Make -0.03691 0.002578 1.488e-05 3.168e-05

Zone -0.10590 0.003963 2.288e-05 6.107e-05

terior distribution calculated using the Poisson regression by means of Gibbs sampling.

The posterior quantiles for each variable are given in Table 5.3. These are the confidence

intervals for each estimated variable. From these results, it is seen that the Bonus and

Kilometres have the most significant impact on the expected frequency. This is because

the means for both of these variables are larger than their counterparts. Since the calcu-

lations in Table 5.2 are calculated by taking the average across all iterations ran, the small

standard deviation across all variables indicates a small dispersion of the data for each

estimate of the model. The small standard error across the board indicates that the mean

is a good reflection of the actual mean. The credible intervals for the lower and upper

bounds of the parameter estimates are given in Table 5.3

The closeness of the interval at 95% is ideal and signifies a fairly good fit for the model.
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Table 5.3: Poisson Credible Intervals

2.5% 25% 50% 75% 97.5%

Intercept -1.94236 -1.91237 -1.8965 -1.88086 -1.85007

Bonus -0.20198 -0.19859 -0.1968 -0.19510 -0.19185

Kilometres 0.13538 0.14199 0.1453 0.14872 0.15527

Make -0.04205 -0.03865 -0.0369 -0.03518 -0.03189

Zone -0.11367 -0.10859 -0.1059 -0.10320 -0.09823

The 95% interval can be interpreted as the values between the 2.5% and 97.5% val-

ues. For example, the 95% confidence interval for the Bonus coefficient is −0.20198 to −

0.19185. Moving forward with the results, we can now interpret the expected claim fre-

quencies per area. The results for the aforementioned are given in Table 5.4.

The inferences from the Poisson model, along with those of the other models as seen in

the rest of Section 5, are in accordance with former knowledge of Claim frequencies. The

results obtained from Table 5.4 are in keeping with what is expected. The higher claim

frequencies come from larger cities with busier streets and more traffic. In the Appendix,

Table 7.1 gives credible intervals for the claim frequency by zone. The average 95% error

interval for the claim frequency by zone is 0.0191. The lower bound of the estimates vary

by 13.73% from the mean, while the upper bound vary by 15.93% from the mean. For fur-
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Table 5.4: Claim Frequency by Area (Poisson Results)

Code Zone Claim Frequency

1 Stockholm, Goteborg, Malmo with surroundings 0.08899375

2 Other large cities and surroundings 0.08005118

3 Small cities in northern Sweden 0.0720072

4 Small cities in southern Sweden 0.06477153

5 Rural areas in northern Sweden 0.05821204

6 Rural areas in southern Sweden 0.05240836

7 Gotland 0.04524769
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ther results, see Table 7.2 for the claim frequency by zone and kilometres driven. As the

second practical check, the model is consistent with the data. Replicated data generated

under the model does look similar to the previously observed data.

The residual plot for the Poisson model is analysed and given in Figure 5.3. The random

pattern about zero represents the stochastic error of the model and indicates an appropri-

ate fit from the Poisson model. The slightly positive trend in some of the residuals could

be an indication of the strong influence the larger claim frequencies have on the model.

The Poisson model is said to be over-dispersed, since the residual deviance/degrees of

freedom is > 1. As is often the case with rare event count data, this suggests that the

Poisson model is not the optimal model. Therefore, as previously mentioned in Section

5.1.3, the Negative Binomial model is analysed.
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Figure 5.3: Residual Plot for Poisson Model
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5.1.2 Zero-Inflated Poisson Model

The Zero-inflated Poisson model required many more iterations to achieve convergence.

After running 300,00 iterations on 3 chains simultaneously, the model obtained is given

by

E

(
θi
ti

)
= exp(−1.89501 + 0.14525x1 − 0.10605x2 − 0.19699x3 − 0.03697x4). (42)

Equation (42) is the Zero-inflated regression model for the expected claim frequency per

year of coverage. The slow convergence of the Markov chain can be caused by bad start-

ing values, high posterior correlation, or under-parameterized models to name a few rea-

sons. It is concluded that the slow convergence is a result of assuming no prior knowledge

and the limited parameters for the model. In further work, the issue can be addressed with

more data and prior knowledge to select informative priors.

As we can see from the Trace plots, all of the Zero-inflated Poisson variables mixed rather

well aside from the intercept (β0). For this reason, the chains were run much longer to

ensure convergence.

The higher autocorrelation of β0 was expected since it was slower to converge. However,

the chains still tend towards convergence as seen from the Heidelberg and Welch diag-

nostic in Table 5.5. All variables passed both test and no iterations were discarded from

the first half of the test. The large p-value from the intercept is a good indication that the

null hypothesis cannot be rejected and the chains are from a stationary distribution.

50



Figure 5.4: Trace Plots and Posterior Density Plots for Zero-Inflated Poisson Itera-

tions. 3 Chains With 300,000 Iterations Each
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Figure 5.5: Autocorrelation Plot for Zero-Inflated Poisson Iterations
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Table 5.5: Zero-Inflated Poisson Heidelberg and Welch diagnostics

Stationarity and Half-width Test Start iteration P-value Mean Half-width

Intercept Passed 1 0.974 -1.8962 3.17e-03

Bonus Passed 1 0.299 -0.1969 8.52e-05

Kilometres Passed 1 0.102 0.1454 1.81e-04

Make Passed 1 0.257 -0.0369 6.78e-05

Zone Passed 1 0.271 -0.1060 1.44e-04

Table 5.6: Zero-Inflated Poisson Posterior Results

Mean SD Naı̈ve SE Time-Series SE

Intercept -1.89501 0.022828 2.406e-05 9.133e-04

Bonus -0.19699 0.002571 2.710e-06 2.500e-05

Kilometres 0.14525 0.004954 5.222e-06 5.340e-05

Make -0.03697 0.002559 2.697e-06 2.003e-05

Zone -0.10605 0.003973 4.187e-06 4.133e-05
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Table 5.7: Zero-Inflated Poisson Credible Intervals

2.5% 25% 50% 75% 97.5%

Intercept -1.93856 -1.9105 -1.89526 -1.87967 -1.85032

Bonus -0.20204 -0.1987 -0.19698 -0.19525 -0.19195

Kilometres 0.13556 0.1419 0.14526 0.14861 0.15497

Make -0.04196 -0.0387 -0.03698 -0.03525 -0.03194

Zone -0.11386 -0.1087 -0.10605 -0.10335 -0.09830

r (shape) 9.65539 10.61896 11.16488 11.73455 12.91373

The credible intervals are narrow with relatively small standard deviations as seen in Table

5.6. This signifies that the true estimation of the mean is relatively precise. See Table 5.8

for the results of the claim frequency from the Zero-inflated Poisson model.

The claim frequency results from the Zero-inflated model are comparable to the results

obtained from the Poisson model. This indicates that the results are an appropriate fit

since both models produced similar results. The data does not have enough zero-valued

claims to have a noticeable improvement in the model and results. Therefore, a Zero-

inflated model is not necessary since it has a much higher computing time to obtain the

same results. Nevertheless, it is good to have a second model to complement the Poisson

results. The 95% credible interval for the Zero-inflated Poisson model has an average
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Table 5.8: Claim frequency by zone (Zero-Inflated Poisson)

Code Zone Claim Frequency

1 Stockholm, Goteborg, Malmo with surroundings 0.0890412

2 Other large cities and surroundings 0.08008185

3 Small cities in northern Sweden 0.07202399

4 Small cities in southern Sweden 0.06477691

5 Rural areas in northern Sweden 0.05820826

6 Rural areas in southern Sweden 0.05239699

7 Gotland 0.04523124
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Figure 5.6: Residual Plot for Zero-Inflated Poisson Model

upper-bound that is 9.26% away from the mean. The average lower-bound of the same

credible interval is 7.77% away from the mean. In the Appendix, Table 7.3 gives the

full credible intervals for the claim frequency by zone for the Zero-inflated Poisson model.

The random pattern about zero in the residual plot from Figure 5.6 signifies an appropriate

model fit.

5.1.3 Negative Binomial Model

The Negative Binomial model obtained after running 50,000 iterations is given by

E

(
θi
ti

)
= exp(−1.86302 + 0.11447x1 − 0.10066x2 − 0.19096x3 − 0.03691x4). (43)
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Equation (43) is the expected claim frequency per year of coverage. These values repre-

sent the posterior mean of each variable xi.

The trace plots from the Negative Binomial MCMC iterations are analysed. The Negative

Binomial converged significantly slower than its Poisson counterpart. For this reason, the

chains ran longer. The autocorrelation plot for the Negative Binomial is also considered

for convergence, see Figure 5.8.

We see much greater autocorrelation in these plots which is not conclusive for precision

of estimates. However, with a long enough chain, the precision is improved and autocor-

relation becomes insignificant. In Table 5.9, the passed stationarity and half-width test

results are shown. None of the iterations were discarded for any of the variables since the

null hypothesis could not be rejected from the first iteration.

The credible intervals for the Negative Binomial posterior are bigger than the Poisson

posteriors which is to be expected. The mean of the Negative Binomial is slow to converge

towards a normal distribution [Shilane et al., ] . This suggests that the Negative Binomial

chain requires a larger sample size to produce more accurate results. To obtain more

conclusive predictive estimators, the chain would ideally be run again with a larger data

set.

The results obtained for Claim Frequency from the Negative Binomial posteriors are

slightly different than those from the Poisson posteriors. However, they still follow the

same trend of higher claim frequencies in larger cities. The Negative Binomial claim fre-

quencies are higher than those from the Poisson model. In the Appendix, Table 7.5 gives
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Figure 5.7: Trace Plots and Posterior Density Plots for Negative Binomial Iterations.

3 Chains With 75,000 Iterations Each
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Figure 5.8: Autocorrelation Plot for Negative Binomial Iterations
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credible intervals for the claim frequency by zone. The average 95% error interval for the

claim frequency by zone is 0.0386. The lower bounds vary on average by 24.56% from

the mean, while the upper bounds vary by 32.74% from the mean. The large credible

interval is of concern for the accuracy of the estimates. A larger sample size would be

needed for more conclusive results. For further results on claim frequencies, see Table

7.2 for the claim frequency by zone and kilometres driven.

The residual plot for the Negative Binomial is given in Figure 5.9. The random pattern

about zero for the residuals of the Negative Binomial model is supportive of the model fit

and thus is not a cause for concern.
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Figure 5.9: Residual Plot for Negative Binomial Model
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Table 5.9: Negative Binomial Heidelberg and Welch diagnostics

Stationarity and Half-width Test Start iteration P-value Mean Half-width

Intercept Passed 1 0.883 -1.8641 3.38e-03

Bonus Passed 1 0.209 -0.1910 9.16e-05

Kilometres Passed 1 0.362 0.145 1.91e-04

Make Passed 1 0.2974 -0.0209 8.00e-05

Zone Passed 1 0.155 -0.1006 1.32e-04

r Passed 1 0.198 11.2002 2.72e-03

Table 5.10: Negative Binomial Posterior Results

Mean SD Naı̈ve SE Time-Series SE

Intercept -1.86302 0.046429 3.46E-04 1.37E-03

Bonus -0.19096 0.005474 4.08E-05 7.38E-05

Kilometres 0.11447 0.009265 6.91E-05 1.52E-04

Make -0.02096 0.005091 3.79E-05 6.95E-05

Zone -0.10066 0.006922 5.159e-05 1.07E-04

r (shape) 11.19543 0.831351 6.20E-03 6.20E-03
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Table 5.11: Negative Binomial Credible Intervals

2.5% 25% 50% 75% 97.5%

Intercept -1.95364 -1.89419 -1.86309 -1.83208 -1.77118

Bonus -0.20175 -0.19465 -0.19096 -0.18726 -0.18018

Kilometres 0.09614 0.10832 0.11448 0.12069 0.13252

Make -0.03109 -0.02433 -0.02097 -0.01750 -0.01103

Zone -0.11421 -0.10534 -0.10063 -0.09599 -0.08723

r (shape) 9.65539 10.61896 11.16488 11.73455 12.91373

Table 5.12: Claim Frequency by Zone (Negative Binomial Results)

Code Zone Claim Frequency

1 Stockholm, Goteborg, Malmo with surroundings 0.09141397

2 Other large cities and surroundings 0.08266021

3 Small cities in northern Sweden 0.0747447

4 Small cities in southern Sweden 0.06758718

5 Rural areas in northern Sweden 0.06108674

6 Rural areas in southern Sweden 0.05526271

7 Gotland 0.0480894
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5.1.4 Zero-Inflated Negative Binomial Model

The Zero-inflated Negative Binomial model obtained after running 3 chains for 400,000

iterations each is given by

E

(
θi
ti

)
= exp(−1.86180 + 0.11435x1 − 0.10075x2 − 0.19105x3 − 0.02099x4). (44)

Equation (44) is the regression for the claim frequency obtained from the Zero-inflated

Negative Binomial model. The Zero-inflated Negative Binomial converged significantly

slower than the other models tested. The intercept, β0 did not mix as well as the other

variables. The autocorrelation plots and the Heidelberg and Welch test results are given

in Table 5.11 and Table 5.13 respectively.

The high autocorrelation means the chains will need to be run longer than usual. This is

why iterations of length 400,000 are chosen. The Heidelberg and Welch tests passed for

all the variables in the model. The first 10% of bonus, kilometres, make and zone estima-

tors are discarded since the null hypothesis that the chain is from a stationary distribution

is rejected for the entire chain. For the rest of the chain (90%), the null hypothesis cannot

be rejected and so this chain is from a stationary distribution.

The credible intervals for the Zero-Inflated Negative Binomial posteriors are similar to

the Negative Binomial. Once again, if possible the Zero-inflated Negative Binomial chain

should be run with a larger sample size to produce more conclusive results. The results

from Table 5.16 strongly support those from the Negative Binomial in Table 5.12. This also
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Figure 5.10: Trace Plots and Posterior Density Plots for Zero-Inflated Negative Bi-

nomial Iterations. 3 Chains With 400,000 Iterations Each
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Figure 5.11: Autocorrelation Plot for Zero-Inflated Negative Binomial Iterations
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Table 5.13: Zero-Inflated Negative Binomial Heidelberg and Welch Diagnostics

Stationarity and Half-width Test Start Iteration P-value Mean Half-width

Intercept Passed 1 0.309 -1.862 2.85e-03

Bonus Passed 120,001 0.327 -0.191 8.28e-05

Kilometres Passed 120,001 0.753 0.114 1.77e-04

Make Passed 120,001 0.571 -0.021 7.09e-05

Zone Passed 120,001 0.256 -0.101 1.17e-04

r Passed 1 0.996 11.201 2.40e-03

Table 5.14: Zero-Inflated Negative Binomial Posterior Results

Mean SD Naı̈ve SE Time-Series SE

Intercept -1.86180 0.044205 4.035e-05 1.455e-03

Bonus -0.19105 0.005415 4.943e-06 4.027e-05

Kilometres 0.11435 0.009023 8.237e-06 8.639e-05

Make -0.02099 0.005008 4.572e-06 3.472e-05

Zone -0.10075 0.006830 6.235e-06 5.710e-05

r (shape) 11.20135 0.828431 7.563e-04 1.225e-03
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Table 5.15: Zero-Inflated Negative Binomial Credible Intervals

2.5% 25% 50% 75% 97.5%

Intercept -1.95083 -1.89085 -1.86174 -1.83236 -1.77568

Bonus -0.20166 -0.19471 -0.19105 -0.18741 -0.18041

Kilometres 0.09684 0.10823 0.11434 0.12045 0.13212

Make -0.03076 -0.02437 -0.02099 -0.01762 -0.01114

Zone -0.11417 -0.10535 -0.10076 -0.09617 -0.08732

r (shape) 9.67489 10.62743 11.16675 11.73727 12.92690

supports the findings from the Zero-inflated Poisson: the data does not contain enough

zero frequencies to warrant Zero-inflated models. The full results from the Zero-inflated

Negative Binomial model are given by Table 7.8 in the Appendix. Table 5.15 in the Ap-

pendix also contains the credible intervals for the Zero-inflated Negative Binomial model.

The randomness of the residuals about zero in Figure 5.12 are another indication of an

appropriate model fit.
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Table 5.16: Claim Frequency by Zone (Zero-Inflated Negative Binomial Results)

Code Zone Claim Frequency

1 Stockholm, Goteborg, Malmo with surroundings 0.09144302

2 Other large cities and surroundings 0.08267904

3 Small cities in northern Sweden 0.074755

4 Small cities in southern Sweden 0.06759041

5 Rural areas in northern Sweden 0.06108431

6 Rural areas in southern Sweden 0.0552554

7 Gotland 0.04807919

Figure 5.12: Residual Plot for Zero-Inflated Negative Binomial Model
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5.1.5 Comparison

As it was shown in Section 5.1.1 and Section 5.1.3, both the Poisson and Negative Bino-

mial models produced an appropriate fit for the claim frequency of the dataset. The DIC

scores are therefore analysed in order to establish the best model. Since the DIC mea-

sures posterior predictive error, once the MCMC iterations converge, a fair comparison

of different iteration lengths is possible. The DIC for the Negative Binomial model is 12%

lower than the Poisson model. As a result of the over-dispersion, the Negative Binomial

model for claim frequency is a better fit. The Zero-inflated models show no significant

improvements. This is to be expected after the similar claim frequency results as shown

in Section 5.1. These models are further compared in the expected compensation Table

5.23.

Table 5.17: DIC Criterion for Claim Frequency

Model Mean Deviance Penalty Penalized Deviance

Poisson 10,237 5.221 10,242

Zero-inflated Poisson 10,240 10.34 10,250

Negative Binomial 9,023 6.3 9,029

Zero-inflated Negative Binomial 9,022 5.376 9,027
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5.2 Claim Severity

5.2.1 Gamma Model

The Gamma model obtained after running 75,000 iterations is given by

E

(
θi
ei

)
= exp(8.261333 + 0.029702x1 + 0.033309x2 + 0.006689x3 + 0.016532x4). (45)

This is the expected claim severity per claim made. It represents the posterior distribu-

tions for each variable in the Gamma MCMC sampler. For more information, see Table

5.19. The trace plots for the Gamma variables are all convergent. The MCMC iterations

are further analysed to ensure convergence with the Heidelberg and Welch diagnostic.

The lag plots are given in Figure 5.14.

The intercept β0 has much higher autocorrelation than would be preferred. This implies

that longer chains need to be run in order to insure convergence. Once again thinning

is not used since we are more interested in the accuracy of the posterior estimates. The

Heidelberg and Welch tests are both passed for all variables in the Gamma model as

seen in Table 5.18. None of the iterations from the chain are discarded aside from the

first 10% of the Make variable. The larger p-values for the intercept and zone indicate

weak evidence against the null hypothesis. The null hypothesis is not rejected for all

variables. This is a good indicator that the chains tend towards convergence. The credible

intervals for the Gamma model are reasonable. They are discussed further in the analysis

of claim severity differences. Credible intervals for claim severity are given in Table 5.20
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Figure 5.13: Trace Plots and Posterior Density Plots for Gamma Iterations. 3 Chains

With 75,000 Iterations Each
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Figure 5.14: Autocorrelation Plot for Gamma Iterations
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Table 5.18: Gamma Heidelberg and Welch Diagnostics

Stationarity and Half-width Test Start Iteration P-value Mean Half-width

Intercept Passed 1 0.636 8.26120 0.001841

Bonus Passed 1 0.242 0.00668 0.000135

Kilometres Passed 1 0.249 0.02967 0.000220

Make Passed 22501 0.312 0.03328 0.000158

Zone Passed 1 0.896 0.01656 0.000114

r Passed 1 0.591 11.201 2.40e-03

in the Appendix. The DIC for the Gamma model is also given in Table 5.22 as well as

the residuals in Figure 5.15. As seen in Table 5.21, the claim severity is decreasing

when moving away from major cities. The claim severities follows the same trends as the

claim frequencies, where the larger severity are in the more densely populated cities and

smaller severities are in the rural parts of the country.

The Gamma model is run with different combinations of variables. The DIC scores for

the different models was analysed. The model given above had the lowest DIC score.

Therefore, this model is kept for calculating the expected compensation.
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Table 5.19: Gamma Posterior Results

Mean SD Naı̈ve SE Time-Series SE

Intercept 8.261333 0.074940 1.580e-04 9.177e-04

Bonus 0.006689 0.008937 1.884e-05 6.622e-05

Kilometres 0.029702 0.013218 2.787e-05 1.063e-04

Make 0.016532 0.007792 1.643e-05 5.922e-05

Zone 0.033309 0.010136 2.137e-05 7.382e-05

r (shape) 1.938478 0.064565 1.361e-04 1.733e-04

Table 5.20: Gamma Credible Intervals

2.5% 25% 50% 75% 97.5%

Intercept 8.115721 8.2105063 8.260930 8.31152 8.40945

Bonus -0.010914 0.0006828 0.006688 0.01273 0.02413

Kilometres 0.003820 0.0207980 0.029646 0.03859 0.05574

Make 0.001261 0.0112792 0.016543 0.02177 0.03185

Zone 0.013326 0.0265453 0.033327 0.04012 0.05317

r (shape) 1.814190 1.8944798 1.937981 1.98158 2.06713
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Table 5.21: Claim Severity by Zone (Gamma Results)

Code Zone Claim Severity

1 Stockholm, Goteborg, Malmo with surroundings 119,536.6

2 Other large cities and surroundings 147,291.5

3 Small cities in northern Sweden 109,075.4

4 Small cities in southern Sweden 102,699.2

5 Rural areas in northern Sweden 61,121.93

6 Rural areas in southern Sweden 47,180.94

7 Gotland 28,610.07

Table 5.22: DIC scores for the Gamma Model

Model Mean Deviance Penalty Penalized Deviance

Gamma 35,550 3.934 35,554
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Figure 5.15: Residual Plot for Gamma Model (1e3)
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5.3 Expected Compensation

Table 5.23 and Table 5.3 are comparable. The results for Table 5.23 support a higher

expected compensation in metropolitan and larger cities, and smaller compensation in

the rural country. The results from Table 5.3 support these findings. Table 5.3 also shows

the positive correlation between kilometres driven and expected compensation. The re-

sults observed for metropolitan and large cities of the Negative Binomial results indicate a

larger expected compensation compared to the Poisson. The smaller the expected com-

pensation, the closer the results are for the models. This is consonant with the fact that

over-dispersed data is not accounted for in a Poisson model. Therefore, the Negative

Binomial model better accounts for the points with claims that are outside 2σ. This is

reflected in both the claim frequency and the expected compensation results.

Expected Compensation

Code Zone KMs/Year Poisson ZIP Negative Binomial ZINB

1-1 Metropolitans <1,000 7,703 7,708 8,483 8,488

1-2 Metropolitans 1,000-15,000 12,516 12,524 13,365 13,372

1-3 Metropolitans 15,000-20,000 9,357 9,362 9,688 9,691

1-4 Metropolitans 20,000-25,000 4,242 4,244 4,259 4,259

1-5 Metropolitans >25,000 4,312 4,314 4,197 4,198

Continued on the next page
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Code Zone KMs/Year Poisson ZIP Negative Binomial ZINB

2-1 Large Cities <1,000 6,691 6,695 7,408 7,411

2-2 Large Cities 1,000-15,000 11,230 11,235 12,055 12,059

2-3 Large Cities 15,000-20,000 8,595 8,598 8,946 8,948

2-4 Large Cities 20,000-25,000 4,544 4,545 4,586 4,586

2-5 Large Cities >25,000 4,374 4,375 4,280 4,280

3-1 Small cities Northern <1,000 6,213 6,216 6,915 6,918

3-2 Small cities Northern 1,000-15,000 10,060 10,063 10,856 10,859

3-3 Small cities Northern 15,000-20,000 7,609 7,611 7,962 7,963

3-4 Small cities Northern 20,000-25,000 4,280 4,281 4,342 4,342

3-5 Small cities Northern >25,000 3,985 3,985 3,920 3,920

4-1 Small cities Southern <1,000 9,046 9,048 10,120 10,123

4-2 Small cities Southern 1,000-15,000 15,276 15,279 16,571 16,574

4-3 Small cities Southern 15,000-20,000 12,376 12,377 13,017 13,018

4-4 Small cities Southern 20,000-25,000 7,242 7,242 7,386 7,386

4-5 Small cities Southern >25,000 6,069 6,069 6,002 6,001

5-1 Rural Northern <1,000 1,930 1,930 2,170 2,171

Continued on the next page

79



Code Zone KMs/Year Poisson ZIP Negative Binomial ZINB

5-2 Rural Northern 1,000-15,000 3,154 3,154 3,439 3,440

5-3 Rural Northern 15,000-20,000 2,224 2,223 2,351 2,351

5-4 Rural Northern 20,000-25,000 1,267 1,266 1,299 1,298

5-5 Rural Northern >25,000 1,503 1,502 1,494 1,493

6-1 Rural Southern <1,000 3,157 3,156 3,569 3,569

6-2 Rural Southern 1,000-15,000 4,915 4,914 5,387 5,387

6-3 Rural Southern 15,000-20,000 4,372 4,372 4,647 4,647

6-4 Rural Southern 20,000-25,000 2,300 2,300 2,371 2,370

6-5 Rural Southern >25,000 2,226 2,225 2,224 2,223

7-1 Gotland <1,000 396 396 450 450

7-2 Gotland 1,000-15,000 477 477 526 526

7-3 Gotland 15,000-20,000 541 541 578 578

7-4 Gotland 20,000-25,000 390 390 402 402

7-5 Gotland >25,000 462 462 463 463
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Table 5.23: Expected Compensation by Zone

E
xp

ec
te

d
C

om
pe

ns
at

io
n

C
od

e
Zo

ne
Po

is
so

n
Ze

ro
-in

fla
te

d
Po

is
so

n
N

eg
at

iv
e

B
in

om
ia

l
Ze

ro
-in

fla
te

d
N

eg
at

iv
e

B
in

om
ia

l

1
S

to
ck

ho
lm

,G
ot

eb
or

g,
M

al
m

o
w

ith
su

rr
ou

nd
in

gs
10

,6
38

.0
10

3
10

,6
43

.6
82

31
10

,9
27

.3
15

17
10

,9
30

.7
87

7

2
O

th
er

la
rg

e
ci

tie
s

an
d

su
rr

ou
nd

in
gs

11
,7

90
.8

58
38

11
,7

95
.3

75
81

12
,1

75
.1

46
32

12
,1

77
.9

19
82

3
S

m
al

lc
iti

es
in

no
rt

he
rn

S
w

ed
en

7,
85

4.
21

41
43

7,
85

6.
04

55
19

8,
15

2.
80

80
5

8,
15

3.
93

15
27

4
S

m
al

lc
iti

es
in

so
ut

he
rn

S
w

ed
en

6,
65

1.
98

43
14

6,
65

2.
53

68
35

6,
94

1.
14

93
16

6,
94

1.
48

10
35

5
R

ur
al

ar
ea

s
in

no
rt

he
rn

S
w

ed
en

3,
55

8.
03

22
34

3,
55

7.
80

11
93

3,
73

3.
73

94
46

3,
73

3.
59

09
2

6
R

ur
al

ar
ea

s
in

so
ut

he
rn

S
w

ed
en

2,
47

2.
67

56
89

2,
47

2.
13

92
41

2,
60

7.
34

66
05

2,
60

7.
00

17
12

7
G

ot
la

nd
1,

29
4.

53
95

78
1,

29
4.

06
89

43
1,

37
5.

84
11

1,
37

5.
54

89
91

81



6 Conclusion

The objective of this study was to compare and contrast the different claim frequency

models in the industry and use the results, along with the results for the predicted claim

severity, to produce expected compensation cost for third party insurance companies.

The most common model over the past years has been the Poisson model primarily ow-

ing to its simplicity. It is used for a quick appraisal of a customer. In theory, the Negative

Binomial is more accurate, but at the cost of a higher computational power. This makes

a significant difference in the computational time when running the MCMC algorithm.

Zero-inflated models are best utilized in the industry when zero valued observations are

frequent. In this thesis, four kinds of models were used and compared to best fit the data.

The expected compensation cost was calculated by the frequency-severity method. That

is, the claim frequency multiplied by the claim severity. Results from the claim frequency

models were combined with the results from the claim severity. They are summarized

below:

• Claim Frequency

– Dependence between claim frequency and zone of policyholders

– Comparison between Poisson and Negative Binomial and Zero-inflated models

– The best results come from Negative Binomial models as per DIC scores

– Claim frequency is the highest in the largest cities and lowest in rural places
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• Claim Severity

– Claim severity is given by zone and kilometres driven

– Significant difference in claim severity from one zone to the next. With larger

severity coming from large cities and less severe from rural places

• Expected Compensation

– Highest cost in largest cities and lowest cost in rural countryside

– Considered with the claim frequency and claim severity

According to these results, there is a significant difference in expected compensation by

zone and kilometres driven. It is confirmed that pricing car insurance by zone and yearly

kilometres driven is appropriate practice. The standard Poisson model is still accurate,

however, depending on the data set and data size, the Negative Binomial or the Zero-

inflated models might produce a better fit.

7 Future Work

It should be noted that independence between claim severity and inter-claim arrival times

was assumed in this thesis. In continued studies, it would be worth while looking at a

model with possible dependence between claim severity and inter-claim arrival times.

While working and doing researching for this thesis, a few key points for further work were

determined. These items include:
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• Additional data for more accurate results. These could include variables such as:

– Gender of Policyholder

– Age of Policyholder

– Driving History of Policyholder

– Additional Years of Data

– License of Policyholder

• Add and test for spatial factors

• Add and test for temporal factors

• Compare models on different data sets which have:

– More Zero Claim Frequencies

– Different levels of dispersion

– Limited data size to compare MCMC conversion for the different models
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Table 7.1: 95% Credible Interval for Claim Frequency (Poisson Model)

Code Zone Lower Bound Upper Bound

1 Stockholm, Goteborg, Malmo with surroundings 0.07855981 0.1008392

2 Other large cities and surroundings 0.07011875 0.09140476

3 Small cities in northern Sweden 0.06258466 0.08285297

4 Small cities in southern Sweden 0.05586009 0.07510128

5 Rural areas in northern Sweden 0.0498232 0.06800349

6 Rural areas in southern Sweden 0.04450094 0.06170578

7 Gotland 0.03818582 0.05359728

Appendix

Table 7.2: Claim Frequency by Zone and Kilometres Driven per Year (Poisson

Model)

Code Zone Kilometres/Year Claim Frequency

1-1 Stockholm, Goteborg, Malmo with surroundings <1,000 0.0651638

1-2 Stockholm, Goteborg, Malmo with surroundings 1,000-15,000 0.07535604

1-3 Stockholm, Goteborg, Malmo with surroundings 15,000-20,000 0.08714244

Continued on the next page
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Code Zone Kilometres/Year Claim Frequency

1-4 Stockholm, Goteborg, Malmo with surroundings 20,000-25,000 0.1007724

1-5 Stockholm, Goteborg, Malmo with surroundings >25,000 0.1165341

2-1 Other large cities and surroundings <1,000 0.05861579

2-2 Other large cities and surroundings 1,000-15,000 0.06778386

2-3 Other large cities and surroundings 15,000-20,000 0.0783859

2-4 Other large cities and surroundings 20,000-25,000 0.0906462

2-5 Other large cities and surroundings >25,000 0.1048241

3-1 Small cities in northern Sweden <1,000 0.05272576

3-2 Small cities in northern Sweden 1,000-15,000 0.06097257

3-3 Small cities in northern Sweden 15,000-20,000 0.07050926

3-4 Small cities in northern Sweden 20,000-25,000 0.08153758

3-5 Small cities in northern Sweden >25,000 0.09429084

4-1 Small cities in southern Sweden <1,000 0.04742759

4-2 Small cities in southern Sweden 1,000-15,000 0.05484571

4-3 Small cities in southern Sweden 15,000-20,000 0.06342411

4-4 Small cities in southern Sweden 20,000-25,000 0.07334425

Continued on the next page
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Code Zone Kilometres/Year Claim Frequency

4-5 Small cities in southern Sweden >25,000 0.08481599

5-1 Rural areas in northern Sweden <1,000 0.04266181

5-2 Rural areas in northern Sweden 1,000-15,000 0.04933452

5-3 Rural areas in northern Sweden 15,000-20,000 0.05705091

5-4 Rural areas in northern Sweden 20,000-25,000 0.06597422

5-5 Rural areas in northern Sweden >25,000 0.07669898

6-1 Rural areas in southern Sweden <1,000 0.03837492

6-2 Rural areas in southern Sweden 1,000-15,000 0.04437712

6-3 Rural areas in southern Sweden 15,000-20,000 0.05131813

6-4 Rural areas in southern Sweden 20,000-25,000 0.05934477

6-5 Rural areas in southern Sweden >25,000 0.06862686

7-1 Gotland <1,000 0.03415269

7-2 Gotland 1,000-15,000 0.03991787

7-3 Gotland 15,000-20,000 0.0461614

7-4 Gotland 20,000-25,000 0.05205858

7-5 Gotland >25,000 0.05550082

Continued on the next page
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Code Zone Kilometres/Year Claim Frequency

Table 7.4: Claim Frequency by Zone and Kilometres Driven per Year (Zero-Inflated

Poisson Model)

Code Zone Kilometres/Year Claim Frequency

1-1 Stockholm, Goteborg, Malmo with surroundings <1,000 0.06520899

1-2 Stockholm, Goteborg, Malmo with surroundings 1,000-15,000 0.07540302

1-3 Stockholm, Goteborg, Malmo with surroundings 15,000-20,000 0.08719067

1-4 Stockholm, Goteborg, Malmo with surroundings 20,000-25,000 0.1008211

1-5 Stockholm, Goteborg, Malmo with surroundings >25,000 0.1165823

2-1 Other large cities and surroundings <1,000 0.05864764

2-2 Other large cities and surroundings 1,000-15,000 0.06781594

2-3 Other large cities and surroundings 15,000-20,000 0.07841751

2-4 Other large cities and surroundings 20,000-25,000 0.09067641

2-5 Other large cities and surroundings >25,000 0.1048517

3-1 Small cities in northern Sweden <1,000 0.05274649

3-2 Small cities in northern Sweden 1,000-15,000 0.06099228
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Code Zone Kilometres/Year Claim Frequency

3-3 Small cities in northern Sweden 15,000-20,000 0.07052712

3-4 Small cities in northern Sweden 20,000-25,000 0.08155252

3-5 Small cities in northern Sweden >25,000 0.09430152

4-1 Small cities in southern Sweden <1,000 0.04743912

4-2 Small cities in southern Sweden 1,000-15,000 0.05485522

4-3 Small cities in southern Sweden 15,000-20,000 0.06343066

4-4 Small cities in southern Sweden 20,000-25,000 0.07334668

4-5 Small cities in southern Sweden >25,000 0.08481287

5-1 Rural areas in northern Sweden <1,000 0.04266578

5-2 Rural areas in northern Sweden 1,000-15,000 0.04933567

5-3 Rural areas in northern Sweden 15,000-20,000 0.05704824

5-4 Rural areas in northern Sweden 20,000-25,000 0.06596652

5-5 Rural areas in northern Sweden >25,000 0.07668497

6-1 Rural areas in southern Sweden <1,000 0.03837274

6-2 Rural areas in southern Sweden 1,000-15,000 0.0443715

6-3 Rural areas in southern Sweden 15,000-20,000 0.05130803

Continued on the next page

93



Code Zone Kilometres/Year Claim Frequency

6-4 Rural areas in southern Sweden 20,000-25,000 0.05932894

6-5 Rural areas in southern Sweden >25,000 0.06860376

7-1 Gotland <1,000 0.0341454

7-2 Gotland 1,000-15,000 0.03990682

7-3 Gotland 15,000-20,000 0.0461454

7-4 Gotland 20,000-25,000 0.05203696

7-5 Gotland >25,000 0.05547081

Table 7.6: Claim Frequency by Zone and Kilometres Driven per Year (Negative Bi-

nomial Model)

Code Zone Kilometres/Year Claim Frequency

1-1 Stockholm, Goteborg, Malmo with surroundings <1,000 0.07176465

1-2 Stockholm, Goteborg, Malmo with surroundings 1,000-15,000 0.08046819

1-3 Stockholm, Goteborg, Malmo with surroundings 15,000-20,000 0.09022729

1-4 Stockholm, Goteborg, Malmo with surroundings 20,000-25,000 0.10117

1-5 Stockholm, Goteborg, Malmo with surroundings >25,000 0.1134398

Continued on the next page
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Code Zone Kilometres/Year Claim Frequency

2-1 Other large cities and surroundings <1,000 0.06489249

2-2 Other large cities and surroundings 1,000-15,000 0.07276259

2-3 Other large cities and surroundings 15,000-20,000 0.08158717

2-4 Other large cities and surroundings 20,000-25,000 0.09148198

2-5 Other large cities and surroundings >25,000 0.1025768

3-1 Small cities in northern Sweden <1,000 0.05867842

3-2 Small cities in northern Sweden 1,000-15,000 0.06579488

3-3 Small cities in northern Sweden 15,000-20,000 0.07377441

3-4 Small cities in northern Sweden 20,000-25,000 0.0827217

3-5 Small cities in northern Sweden >25,000 0.09275411

4-1 Small cities in southern Sweden <1,000 0.0530594

4-2 Small cities in southern Sweden 1,000-15,000 0.05949439

4-3 Small cities in southern Sweden 15,000-20,000 0.06670981

4-4 Small cities in southern Sweden 20,000-25,000 0.07480031

4-5 Small cities in southern Sweden >25,000 0.08387201

5-1 Rural areas in northern Sweden <1,000 0.04797845
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Code Zone Kilometres/Year Claim Frequency

5-2 Rural areas in northern Sweden 1,000-15,000 0.05379723

5-3 Rural areas in northern Sweden 15,000-20,000 0.0603217

5-4 Rural areas in northern Sweden 20,000-25,000 0.06763746

5-5 Rural areas in northern Sweden >25,000 0.07624006

6-1 Rural areas in southern Sweden <1,000 0.04338405

6-2 Rural areas in southern Sweden 1,000-15,000 0.04864563

6-3 Rural areas in southern Sweden 15,000-20,000 0.05454532

6-4 Rural areas in southern Sweden 20,000-25,000 0.06116053

6-5 Rural areas in southern Sweden >25,000 0.06857801

7-1 Gotland <1,000 0.03881915

7-2 Gotland 1,000-15,000 0.04398734

7-3 Gotland 15,000-20,000 0.04932209

7-4 Gotland 20,000-25,000 0.05367565

7-5 Gotland >25,000 0.05566228
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Table 7.3: Credible intervals for claim frequency by zone (Zero-Inflated Poisson)

Code Zone Lower Bound Upper Bound

1 Stockholm, Goteborg, Malmo with surroundings 0.07890548 0.1006524

2 Other large cities and surroundings 0.0704139 0.09122905

3 Small cities in northern Sweden 0.06283616 0.08268791

4 Small cities in southern Sweden 0.05607391 0.07494641

5 Rural areas in northern Sweden 0.05000433 0.06785885

6 Rural areas in southern Sweden 0.0446543 0.06156991

7 Gotland 0.03830817 0.05347759
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Table 7.5: 95% Credible Interval for Negative Binomial Posterior Claim Frequency

Code Zone Lower Bound Upper Bound

1 Stockholm, Goteborg, Malmo with surroundings 0.07175434 0.1165637

2 Other large cities and surroundings 0.06400994 0.1068267

3 Small cities in northern Sweden 0.05710138 0.09790305

4 Small cities in southern Sweden 0.05093847 0.08972485

5 Rural areas in northern Sweden 0.04543404 0.08216586

6 Rural areas in southern Sweden 0.04053632 0.07536084

7 Gotland 0.03490089 0.06627785
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Table 7.7: 95% Credible Interval for Zero-Inflated Negative Binomial Claim Fre-

quency

Code Zone Lower Bound Upper Bound

1 Stockholm, Goteborg, Malmo with surroundings 0.07224435 0.1157341

2 Other large cities and surroundings 0.06444964 0.1060569

3 Small cities in northern Sweden 0.05749593 0.09718881

4 Small cities in southern Sweden 0.05129248 0.08906225

5 Rural areas in northern Sweden 0.0457512 0.08155234

6 Rural areas in southern Sweden 0.0408213 0.07479085

7 Gotland 0.03514252 0.06577356
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Table 7.8: Claim Frequency by Zone and Kilometres Driven per Year (Zero-Inflated

Negative Binomial Model)

Code Zone Kilometres/Year Claim Frequency

1-1 Stockholm, Goteborg, Malmo with surroundings <1,000 0.07180665

1-2 Stockholm, Goteborg, Malmo with surroundings 1,000-15,000 0.08050562

1-3 Stockholm, Goteborg, Malmo with surroundings 15,000-20,000 0.09025843

1-4 Stockholm, Goteborg, Malmo with surroundings 20,000-25,000 0.1011927

1-5 Stockholm, Goteborg, Malmo with surroundings >25,000 0.1134517

2-1 Other large cities and surroundings <1,000 0.06492463

2-2 Other large cities and surroundings 1,000-15,000 0.07278989

2-3 Other large cities and surroundings 15,000-20,000 0.08160798

2-4 Other large cities and surroundings 20,000-25,000 0.09149433

2-5 Other large cities and surroundings >25,000 0.1025784

3-1 Small cities in northern Sweden <1,000 0.05870219

3-2 Small cities in northern Sweden 1,000-15,000 0.06581363

3-3 Small cities in northern Sweden 15,000-20,000 0.07378659

3-4 Small cities in northern Sweden 20,000-25,000 0.08272543
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Code Zone Kilometres/Year Claim Frequency

3-5 Small cities in northern Sweden >25,000 0.09274715

4-1 Small cities in southern Sweden <1,000 0.05307612

4-2 Small cities in southern Sweden 1,000-15,000 0.05950599

4-3 Small cities in southern Sweden 15,000-20,000 0.06671481

4-4 Small cities in southern Sweden 20,000-25,000 0.07479694

4-5 Small cities in southern Sweden >25,000 0.08385818

5-1 Rural areas in northern Sweden <1,000 0.04798925

5-2 Rural areas in northern Sweden 1000-15,000 0.05380288

5-3 Rural areas in northern Sweden 15,000-20,000 0.0603208

5-4 Rural areas in northern Sweden 20,000-25,000 0.06762833

5-5 Rural areas in northern Sweden >25,000 0.07622086

6-1 Rural areas in southern Sweden <1,000 0.04338991

6-2 Rural areas in southern Sweden 1,000-15,000 0.04864636

6-3 Rural areas in southern Sweden 15,000-20,000 0.0545396

6-4 Rural areas in southern Sweden 20,000-25,000 0.06114677

6-5 Rural areas in southern Sweden >25,000 0.06855436
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Table 7.9: 95% Credible Interval for Claim Severity (Gamma Model)

Code Zone Lower Bound Upper Bound

1 Stockholm, Goteborg, Malmo with surroundings 81,885.76 175,745.3

2 Other large cities and surroundings 98,292.15 222,025

3 Small cities in northern Sweden 72,001.4 166,305.4

4 Small cities in southern Sweden 66,825.96 158,797.2

5 Rural areas in northern Sweden 39,270.42 95,624.62

6 Rural areas in southern Sweden 28,292.5 79,124.09

7 Gotland 18,623.28 44,172.04

Code Zone Kilometres/Year Claim Frequency

7-1 Gotland <1,000 0.03882071

7-2 Gotland 1,000-15,000 0.04398405

7-3 Gotland 15,000-20,000 0.04931247

7-4 Gotland 20,000-25,000 0.05365848

7-5 Gotland >25,000 0.05563551
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The code for this paper was ran using R. The packaged used to run the MCMC iterations

was Jags. It was introduced by Martyn Plummer as an open-source program for analysis

and statistical inference of Bayesian hierarchical models [Depaoli et al., 2016]. R Code

for Poisson Program

library(rjags)

df <- read.csv(file="c:/Users/Owner/Documents/insurance.csv",

↪→ header=TRUE)

attach(df)

data = as.list(df)

Y <- cbind(df$Claims)

length(df$Kilometres)

X <- cbind(df$Kilometres, df$Zone, df$Bonus, df$Make)

X1 <- cbind(df$Kilometres, df$Zone, df$Bonus, df$Make)

par(mfrow=c(2,2))

df.2 = cbind(df$Kilometres, df$Zone, df$Bonus, df$Make, df$

↪→ Insured, df$Claims)

pairs(df.2)

library(rjags)

model.sim = " model {

logInsured = log(Insured)
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for (i in 1:length(Claims)){

Claims[i] ˜ dpois(lam[i])

log(lam[i]) = intercept + b_Kilometres*Kilometres[i] + b_Zone*

↪→ Zone[i] + b_Bonus*Bonus[i] + b_Make*Make[i] + 1*logInsured[

↪→ i]

res[i] = Claims[i]

}

intercept ˜ dnorm(-1.89554,1/1e6)

b_Kilometres ˜ dnorm(0.14531,1/1e4)

b_Zone ˜ dnorm(-0.10604,1/1e4)

b_Bonus ˜ dnorm(-0.19694,1/1e4)

b_Make ˜ dnorm(-0.03695,1/1e4)

}"

set.seed(102)

data = as.list(df)

param = c("intercept","b_Kilometres","b_Zone","b_Bonus","b_Make")

model = jags.model(textConnection(model.sim),

data=data,

n.chains=3,

n.adapt = 1000)

update(model,1000)
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inits = function(){list(intercept=rlnorm(1),b_Kilometres=rlnorm

↪→ (1),b_Zone=rlnorm(1),b_Bonus=rlnorm(1),b_Make=rlnorm(1))}

traceplot(model.sim)

print(model.sim,dig =3)

hist(exp(model.sim$sims.list$intercept), xlab="Expected count",

↪→ xlim = c(0,25), breaks=20)

model.sim = coda.samples(model=model,

variable.names = param,

n.iter = 30000,

thin = 2)

model.csim = as.mcmc(do.call(rbind,model.sim))

plot(model.csim)

summary(model.sim)

effectiveSize(model.sim)

raftery.diag(model.sim)

gelman.diag(model.sim, confidence = 0.95, transform = FALSE)

print(model.sim$mean, dig = 3)

autocorr.diag(model.sim)

autocorr.plot(model.sim, lag.max = 50)

effectiveSize(model.sim)
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dic.poisson = dic.samples(model,n.iter = 1e3)

dic.poisson

R Code for Negative Binomial Program

mod.string2 = " model {

for (i in 1:n){

mu[i] = beta[1] + beta[2]*Kil[i] + beta[3]*Zone[i] + beta[4]*

↪→ Bonus[i] + beta[5]*Make[i] + 1*Insu[i]

y[i] ˜ dnegbin(p[i],alpha)

lambda[i] = exp(mu[i])

p[i] = alpha/(alpha+lambda[i])

}

beta[1:5] ˜ dmnorm(b0[1:5],B0[,])

alpha ˜ dunif(0,50)

}"

datanb = list(n = dim(df)[1],

Kil = df$Kilometres,

Zone = df$Zone,

Bonus = df$Bonus,

Make = df$Make,

y = df$Claims,
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Insu = log(df$Insured),

b0=rep(0,5),

B0=diag(.0001,5))

writeLines(mod.string2, con="negbin1.bug")

set.seed(87)

require(rjags)

foo <- jags.model(file = "negbin1.bug",

data=datanb,

n.chains = 3,

n.adapt = 3000)

update(foo, 5000)

negbin <- coda.samples(foo,

variable.names=c("beta","alpha"),

n.iter=75000)

xyplot(negbin)

summary(negbin)

plot(negbin)

autocorr.diag(negbin)

autocorr.plot(negbin, lag.max = 100)
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effectiveSize(negbin)

dic.negbin = dic.samples(foo,n.iter = 1e3)

dic.negbin

R Code for Zero-Inflated Poisson Program

zip = "model {

for(i in 1:n){

y[i] ˜ dpois(lambda.hacked[i])

lambda.hacked[i] = lambda[i]*(1-zero[i]) + 1e010*zero[i]

lambda[i] = exp(mu.count[i])

mu.count[i] = inprod(beta[],X[i,]) + Insu[i]

zero[i] ˜ dbern(pi[i])

pi[i] = ilogit(mu.binary[i])

mu.binary[i] = inprod(alpha[],X[i,])

}

beta ˜ dmnorm(b0,B0)

alpha ˜ dmnorm(a0,A0)

}"

set.seed(93)

dataZIP = list(n = dim(df)[1],

X = cbind(1,df$Kilometres,df$Zone,df$Bonus,df$Make),
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y = df$Claims,

Insu = log(df$Insured),

b0=rep(0,5),

B0=diag(.0001,5),

a0=rep(0,5),

A0=diag(.0001,5))

writeLines(zip, con="zipoisson.bug")

zipi <- jags.model(file="zipoisson.bug",

data=dataZIP,

n.chains = 3,

n.adapt = 3000)

update(zipi, 5000)

ZIP<- coda.samples(zipi,

variable.names=c("beta", "alpha"),

n.iter=300000)

options(scipen = 999)

ZIpoisson = as.mcmc(do.call(rbind,ZIP))

plot(ZIpoisson)

summary(ZIP)
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effectiveSize(ZIP)

raftery.diag(ZIP)

gelman.diag(ZIP, confidence = 0.95, transform = FALSE)

dic.zip = dic.samples(zipi,n.iter = 1e3)

dic.zip

R Code for Zero-Inflated Negative Binomial Program

ZINB = "model{

for (i in 1:n){

mu[i] = inprod(beta[],X[i,]) + Insu[i]

y[i] ˜ dnegbin(p[i],r)

lambda[i] = exp(mu[i])

p[i] = (r/(r+lambda[i]))*(1-zero[i]) - 1e-10*zero[i]

zero[i] ˜ dbern(pi[i])

pi[i] = ilogit(mu.binary[i])

mu.binary[i] = inprod(alpha[],X[i,])

}

beta[1:5] ˜ dmnorm(b0[1:5],B0[,])

alpha[1:5] ˜ dmnorm(a0[1:5],A0[,])

r ˜ dunif(0,50)
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}"

set.seed(93)

dataZINB = list(n = dim(df)[1],

X = cbind(1,df$Kilometres,df$Zone,df$Bonus,df$Make),

y = df$Claims,

Insu = log(df$Insured),

b0=rep(0,5),

B0=diag(.0001,5),

a0=rep(0,5),

A0=diag(.0001,5))

writeLines(ZINB, con="zinegbin.bug")

zinegbin <- jags.model(file="zinegbin.bug",

data=dataZINB,

n.chains = 3,

n.adapt = 3000)

update(zinegbin, 5000)

ZINEGBIN<- coda.samples(zinegbin,

variable.names=c("beta", "alpha", "r"),

n.iter=400000)

ZINB = as.mcmc(do.call(rbind,ZINEGBIN))

summary(ZINEGBIN)
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plot(ZINEGBIN)

autocorr.diag(ZINEGBIN)

autocorr.plot(ZINEGBIN, lag.max = 100)

effectiveSize(ZINEGBIN)

dicZINB = dic.samples(zinegbin,n.iter = 1e3)

dicZINB

R Code for Gamma Program

Gamma.data2 = list(n = dim(dfpay2)[1],

Cl = dfpay2$Claims,

Y = dfpay2$Payment,

Kil = dfpay2$Kilometres,

Make = dfpay2$Make,

Bonus = dfpay2$Bonus,

Zone = dfpay2$Zone)

Gamma2 = "model{

for(j in 1:5){beta[j] ˜ dnorm(0.0, 0.001)}

shape ˜ dgamma(1,1)

for(i in 1:n) {

mu[i] = log(Cl[i])*1 + beta[1] + beta[2]*Kil[i] + beta[3]*Zone[i

↪→ ] + beta[4]*Bonus[i] + beta[5]*Make[i]
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Y[i] ˜ dgamma(shape,shape/exp(mu[i]))

}

}"

Gamma.inits2 = function(){list("beta"=rep(0.001,5))}

Gamma.params2 = c("shape", paste("beta[",i=1:5,"]",sep=""))

Gammafit2 = jags.model(textConnection(Gamma2),

data = Gamma.data2,

inits=Gamma.inits2,

n.chains = 3,

n.adapt = 5000)

update(Gammafit2, 5000)

Gamma.model2 = coda.samples(model = Gammafit2, variable.names =

↪→ Gamma.params2, n.iter = 75000)

Gamma.model.csim2 = as.mcmc(do.call(rbind,Gamma.model2))

summary(Gamma.model2)

plot(Gamma.model.csim2)

autocorr.diag(Gammafit2)

autocorr.plot(Gammafit2, lag.max = 100)

effectiveSize(Gammafit2)

dic.Gammafit2 = dic.samples(foo,n.iter = 1e3)

dic.Gammafit2
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