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Abstract 

Predicting drought and streamflow are important aspects of water management to help 

mitigate the effects that a drought has on the environment and the people involved. The goals of 

this research are to assess remote sensing indicators and their ability to monitor drought and 

streamflow changes compared to in situ indicators in order to better estimate streamflow changes 

in times of drought in areas and at times without station-based data. Using in situ drought 

indicators such as station-based Palmer Drought Severity Index (PDSI) and Standardized 

Precipitation Index (SPI) helps water managers identify drought severity based on various 

environmental factors measured on a regular basis using station-based data. Remote sensing 

indicators on the other hand use satellite inputs to monitor such trends as vegetation coverage at 

a higher spatial resolution than an in situ index would. Remote sensing information is more 

readily available than most observed environmental information across the globe.  

The study region is located in central United States in the MINK (Missouri, Iowa, 

Nebraska, and Kansas) region. Data for the growing period (April-September) from 2003-2017 

were used. The region varies greatly from east to west in both land cover and average 

precipitation amount (318 – 1397 mm per year) as the region becomes drier and changes from 

forests in the southeast to farmland and prairie in the west.  

The first part of the study evaluated various drought indices and their relationships with 

streamflow. The in situ indices evaluated include SPI and PDSI, which were available on a 

monthly basis for each climate division in the MINK region. The remote sensing indices include 

the Vegetation Condition Index (VCI) and the Soil Moisture Condition Index (SMCI). Each 

index has different data inputs, such a precipitation (PDSI and SPI) and temperature (PDSI) for 

the in situ indices and vegetation greenness (VCI) and soil moisture (SMCI) for the remote 



  

sensing indices. The indices were ultimately compared both spatially and temporally (annual 

basis) to streamflow in the form of discharge anomalies (PDA).  

In the second part of this study, analysis focused on how relationships between the 

remote sensing indices changed as land cover varies over the MINK region. Overall, results 

suggest that the in situ indices (PDSI and SPI) can estimate PDA changes (on an annual scale), 

while SMCI performed better than VCI overall though not as well as PDSI or SPI. The findings 

from this study have the potential to assist water managers and policy makers to better 

understand streamflow changes and increase drought preparedness. 

 



v 

Table of Contents 

List of Figures ............................................................................................................................... vii 

List of Tables ............................................................................................................................... viii 

Acknowledgements ........................................................................................................................ ix 

Dedication ....................................................................................................................................... x 

Chapter 1 - General Introduction .................................................................................................... 1 

Chapter 2 - Capability of remote sensing and in situ drought indices for assessing drought and 

streamflow ............................................................................................................................... 8 

Introduction ................................................................................................................................. 8 

Methods and Materials ................................................................................................................ 9 

Study Area .............................................................................................................................. 9 

Methods ................................................................................................................................. 10 

In Situ Drought Indices  .................................................................................................... 10 

In Situ Drought Index Data ........................................................................................... 12 

Remote Sensing Indices .................................................................................................... 12 

Remote Sensing Drought Index Data ........................................................................... 13 

Streamflow Percentage of Discharge Anomalies ............................................................. 14 

Streamflow Data ........................................................................................................... 14 

Results and Discussions ............................................................................................................ 15 

Comparing Remote Sensing to In Situ Drought Indices ....................................................... 15 

Comparing the Drought Indices to PDA ............................................................................... 18 

Yearly Variability Analysis between PDA and the Drought Indices ................................... 23 

Conclusions ............................................................................................................................... 26 

Chapter 3 - Evaluating the relationship between remote sensing drought indices and land cover28 

Introduction ............................................................................................................................... 28 

Methods and Materials .............................................................................................................. 29 

Study Area ............................................................................................................................ 29 

Methods ................................................................................................................................. 30 

Remote Sensing Drought Indices...................................................................................... 30 

Data ....................................................................................................................................... 31 



vi 

Remote Sensing Drought Indices...................................................................................... 31 

Land Cover........................................................................................................................ 31 

Watersheds ........................................................................................................................ 31 

Results and Discussion ............................................................................................................. 32 

Comparing Drought Indices to Land Cover on Climate Division Scale............................... 32 

Comparing Remote Sensing Indices to Land Cover on Watershed Scale ............................ 36 

Conclusions ............................................................................................................................... 40 

Chapter 4 - Summary and Conclusion .......................................................................................... 42 

Chapter 5 - References .................................................................................................................. 45 

Appendix A - Watershed and PDA Relationship Table ............................................................... 49 

  



vii 

List of Figures 

Figure 2-1. Maps of United States showing location of the MINK region with climate divisions, 

land cover, and total annual precipitation variation. ............................................................. 10 

Figure 2-2 Climate division boundaries and location of all USGS stream gauges used in the 

study. ..................................................................................................................................... 15 

Figure 2-3 R2 values for temporal correlation from 2003 to 2017 between corresponding drought 

indices in the MINK region. Stars indicate climate divisions with a statistically significant 

correlation with α = 0.05. ...................................................................................................... 17 

Figure 2-4 Maps showing the coefficient of determination (R2) of temporal correlation between 

PDA and the corresponding drought indicators at each stream gauge. ................................ 21 

Figure 2-5 Average Pearson correlation (r) values for different timescale SPIs and PDA. ......... 22 

Figure 2-6 Graphs showing the temporal trends of SPI-1, PDSI, VCI, SMCI, and various PDA.

 ............................................................................................................................................... 26 

Figure 3-1 Maps of the MINK region with 1a) land cover and 1b) total annual precipitation 

variation with climate divisions. ........................................................................................... 30 

Figure 3-2 Watershed information 2a) climate division boundaries and location of all USGS 

stream gauges used in the study, 2b) watershed sizes of gauges for Missouri, Iowa, and 

Kansas. .................................................................................................................................. 32 

Figure 3-3 Graphs showing the relationship between each dominant land cover type (cultivated 

cropland, pasture and hay, grassland and herbaceous, and deciduous forest) in the MINK 

region with SMCI. ................................................................................................................ 34 

Figure 3-4 Graphs showing the relationships between each land cover type (cultivated cropland, 

pasture and hay, grassland and herbaceous, and deciduous forest) with VCI. ..................... 36 

Figure 3-5 Graphs showing the relationship between average SMCI on a watershed scale and 

each land cover type percentage (cultivated cropland, pasture and hay, grassland and 

herbaceous, and deciduous forest). ....................................................................................... 38 

Figure 3-6 Graphs showing the relationship between average VCI on a watershed scale and land 

cover percentage (cultivated cropland, pasture and hay, grassland and herbaceous, and 

deciduous forest). .................................................................................................................. 39 

  



viii 

List of Tables 

Table 2-1 Average R2 values comparing the in situ and remote sensing drought indicators for the 

MINK region and each state. ................................................................................................ 18 

Table 2-2 Overall average R2 values for correlations between PDA and each drought index for 

each state in the region and separated into reference and non-reference gauge stations. ..... 19 

Table 3-1 Summary of watersheds used for land cover analysis. ................................................. 32 

 

  



ix 

Acknowledgements 

Firstly, I would like to thank my family and friends for supporting me through all the 

highs and lows over the years. Without their constant love and support I would not be where I 

am today. Secondly, I would like to thank my major professor Vahid Rahmani and committee 

members John Harrington Jr. and Andres Patrignani for their guidance and support throughout 

the research and writing of this work. I would also like to thank the USDA National Institute of 

Food and Agriculture, Hatch project KS545 and K-State Research and Extension 13-300-A for 

funding this research.  

 

  



x 

Dedication 

I would like to dedicate this thesis to my mother and father. Both of which raised me to 

have a passion for what I believe in and a work ethic to chase my dreams, the journey is just 

getting started. I love you both more than you will ever know. 

  



1 

Chapter 1 - General Introduction 

Droughts are one of the most widely spread and damaging natural hazards impacting 

agricultural environments and the people and the economy that depend on them. Since humans 

have begun to modernize, we have found solutions to many of the issues surrounding agriculture 

like insects, but drought has continued to decimate food supply and water resources (Palmer, 

1965). During a drought, pressure is put on agriculture, water resources (including hydropower 

generation), human and animal health, which puts them in jeopardy (Svoboda & Fuchs, 2016).  

Depending on the areas affected and length of the event, three broadly classified different 

physical types of droughts can occur: meteorological, agricultural, and hydrological drought 

(Zargar, Sadiq, Naser, & Khan, 2011). One type of drought can lead to another depending on the 

length. For instance, lack of precipitation can lead to meteorological drought, decreased soil 

moisture from lack of precipitation can lead to agricultural drought, and low recharge from the 

soil to water bodies like lakes and streams can lead to hydrological drought (Zargar, Sadiq, 

Naser, & Khan, 2011). If a drought lasts long enough, the negative effects on people and 

economic growth increase, which is termed socio-economic drought (Heim Jr., 2002). Droughts 

usually have a slow onset, which makes them able to be monitored by keeping track of the 

various contributors to drought including increased temperatures and below normal precipitation 

totals (Svoboda & Fuchs, 2016). Though droughts usually take time to have negative effects, the 

newer term flash droughts (such as the 2012 event in the central United States), have little 

rainfall and high temperatures that lead to quick decreases in soil moisture (Otkin, et al., 2016). 

For the past half century, researchers have been developing indices to characterize 

drought and help monitor different types of drought and climatic factors such as temperature and 

precipitation changes. The goal of these indices include the development of early warning 
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systems by using readily available data such as air temperature and precipitation, which can be 

used to track and reveal information relating to trends of climate and hydrologic conditions 

(Svoboda & Fuchs, 2016). With the ability to monitor and predict the onset of drought, water 

managers and policy makers for the areas affected can take steps to limit the damage droughts 

can have on the environment and people. The earlier drought indices developed used in situ 

(station-based) data, usually climate related (precipitation and temperature) at selected weather 

stations scattered throughout a region of interest.  

The Palmer Drought Severity Index (PDSI) was one of the first meteorological drought 

indicators developed based on temperature and precipitation shortages (Palmer, 1965). Palmer 

developed the index in order to be independent of space of time (universal across the globe) that 

could be used for extended drought periods (Palmer, 1965). PDSI is calculated based on 

empirical equations that synthesize historical temperature and precipitation data into a simple 

drought indicator (Alley, 1984). The final output gives a numerical value for a single month 

representing wet or dry conditions for the place or region of interest with normal conditions 

being the median values on the PDSI scale. The National Oceanic and Atmospheric 

Administration (NOAA) has determined monthly PDSI values on a climate division scale for the 

United States dating back to 1895 (Karl, 1986). There are several strengths and weaknesses 

associated with using the PDSI. One major strength is that it has been widely adopted throughout 

the world for drought monitoring (Svoboda & Fuchs, 2016). Weaknesses of the indicator include 

the complexity of the equations to derive values and arbitrary rules to quantify the beginning and 

ending of drought (Alley, 1984). 

Many other drought indicators have been developed to monitor different aspects of 

drought or specialize in different climates regimes (Heim Jr., 2002). One such indicator is the 



3 

Standardized Precipitation Index (SPI), which was developed in 1993 to quantify precipitation 

deficits or surplus compared to the long-term normal (McKee, Doesken, & Kleist, 1993). To 

calculate SPI, only monthly precipitation data is needed with averaging periods of varying time 

scales (1, 2, 3, 6, 9, 12, 24, and 48 months). SPI values with time periods in the lower range (less 

than 6 months) fluctuate more often than SPI values for time periods above 6 months (McKee, 

Doesken, & Kleist, 1993). Values that are positive represent greater than median precipitation 

while values below zero represent below median precipitation for that time period (Guttman, 

1998). As with PDSI, the SPI index also has strengths and weaknesses that come with using it. 

Some strengths include: SPI is very simple to use since it only requires monthly precipitation 

data, it has varying time-scales to monitor different types of drought (agricultural and 

hydrological), and SPI is normalized to represent both wet and dry conditions similarly (Zargar, 

Sadiq, Naser, & Khan, 2011). On the other hand, one major weakness is also its greatest 

strength: using only precipitation data to monitor drought means cutting out the temperature 

component, which is important for calculating the water balance in a given region (Svoboda & 

Fuchs, 2016).  

As satellite technology advanced throughout the late 20th century, remote environmental 

sensors have been widely used to monitor the Earth’s surface. Remote sensing data, allows users 

to access large amounts of data that cover the entire Earth or a selected study region on a per 

pixel (picture element) basis. Depending on the sensor, the individual pixels can be as large as 

several kilometers or smaller than 30 meters in width. One of the first remote sensing indicators, 

the Normalized Difference Vegetation Index (NDVI), is used to monitor vegetation health using 

reflectance in the red and near infrared wavelengths (Tarpley, Schneider, & Money, 1984; 

Tucker, 1979). Countless other remote sensing drought indicators have been developed using 
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different satellite sensors and combining data from the sensing of different spectral bands to 

create more complex indicators. The Vegetation Condition Index (VCI) was developed using 

NDVI values to better monitor drought conditions (Kogan, 1990). Other indices monitor 

different aspects of the environment. For example, the Evaporative Stress Index (ESI) was 

developed to monitor drought using remotely sensed potential evapotranspiration (Anderson, 

Hain, Wardlow, Pimstein, & Mecikalski, 2011) or the Temperature Condition Index (TCI), 

Precipitation Condition Index (PCI), and Soil Moisture Condition Index (SMCI) all use similar 

input formulas with different datasets (remotely sensed temperature, precipitation, and soil 

moisture data respectively) (Zhang & Jia, 2013). 

Remote sensing indicators are frequently tested for effectiveness in monitoring drought 

compared to well-known in situ indicators (like PDSI and SPI) that have been shown to monitor 

various aspects (duration and severity) of drought well. One such study was conducted in 2017 

for the continental United States, which compared numerous remote sensing indicators including 

VCI and SMCI to PDSI and SPI for the drought events of 2011 into 2012 (Zhang, Jiao, Zhang, 

Huang, & Tong, 2017). The study showed areas in the Continental United States (CONUS) 

where VCI correlated well with PDSI and SPI on a climate division scale for the drought event. 

Another study looked at how well VCI can monitor drought on a county basis in Texas. The 

authors found that VCI correlated best with PDSI, SPI-6, and SPI-9 in the western half of the 

state (Quiring & Ganesh, 2010). VCI has shown to have stronger correlations with longer term 

drought indices such as PDSI and longer SPI time-scales (Jiao, et al., 2016). VCI performs best 

compared to station-based data in the southern and southwest United States, primarily the semi-

arid regions of the country (Zhang, Jiao, Zhang, Huang, & Tong, 2017). 
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SMCI showed the highest correlation with SPI-1 (short-term drought) in southwest China 

(Hao, Zhang, & Yao, 2015). This finding agrees with other studies that analyzed SPI. Another 

study in southwest China showed that SMCI had the highest correlation with SPI-3, which backs 

the finding that SMCI performs better at detecting short-term drought (Li, He, Quan, Liao, & 

Bai, 2015). The study also showed that the correlations between VCI and SPI were lower than 

those of SMCI-SPI, which might suggest vegetation growth is less responsive to precipitation 

variation in moist areas (Li, He, Quan, Liao, & Bai, 2015). Overall SMCI is best for monitoring 

short-term drought over large areas (Zhang, Jiao, Zhang, Huang, & Tong, 2017). 

Water is one of the most important natural resources that is used for everything from 

drinking water and food production to navigation and recreational purposes, which makes 

drought monitoring an important aspect of water management. With the ever-growing human 

population, the demand for water is also ever growing due to its need for food production and 

human health (Rahmani, Hutchinson, Harrington Jr, Hutchinson, & Anandhi, 2015). Streams and 

rivers are a major source of freshwater that have allowed human civilizations to develop over 

thousands of years (Rahmani, et al., 2018; Zhao, et al., 2014). Due to their importance, stream 

gauge stations have been installed by various governmental agencies to monitor discharge 

changes among other streamflow characteristics. The effects of climate and land use changes on 

streamflow have shown that climate impacts are much higher than that of land use (Liu, et al., 

2013). 

Predicting streamflow changes when discharge measurement stations are not available is 

an important aspect of water management (Haslinger, Koffler, Schoner, & Laaha, 2014). 

Knowing when a streamflow (hydrological) drought could occur would provide important 

information for managing water resources (Zhao, et al., 2014). One way to accomplish this could 
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be to use drought indicators to predict streamflow changes. Studies have analyzed in situ 

indicators like PDSI and SPI to find the relationship that these indicators have with streamflow 

(Zhai, et al., 2010). PDSI and SPI showed relatively high correlations with streamflow discharge 

anomalies, meaning that the indicators could be used to indicate streamflow variation (Zhai, et 

al., 2010). Other studies have shown that there is a significant link between streamflow and 

meteorological drought using PDSI and SPI indicators (Haslinger, Koffler, Schoner, & Laaha, 

2014). Since meteorological drought indices typically use station-based data, using remotely 

sensed drought indices to monitor streamflow changes would provide many advantages in areas 

that cannot afford the cost of station-based data. One of the main objectives of this work is to 

compare capabilities of remote sensing-based to station-based indicators for predicting 

streamflow anomalies. 

If remote sensing drought indices could significantly predict streamflow changes like in 

situ indices have shown, then streamflow could be estimated during drought periods in areas or 

times without regular access to station-based data. This brings up the main question of this 

thesis: can remote sensing drought indices estimate streamflow (Percentage of Discharge 

Anomalies (PDA)) changes as effectively as in situ drought indices in the Missouri, Iowa, 

Nebraska, and Kansas (MINK) region? To answer this question four sub-questions need to be 

addressed: 1) how do the remote sensing (VCI and SMCI) indices compare to in situ indices 

(PDSI and SPI); 2) how do drought indices (PDSI, SPI, VCI, and SMCI) compare to PDA; 3) 

does the variability of drought indices (PDSI, SPI, VCI, and SMCI) follow the variability of 

PDA; and 4) how does land cover influence the remote sensing drought indices? 

 First, chapter 2 of this thesis discusses two remote sensing indices (VCI and SMCI) and 

compares them to two in situ indices (PDSI and SPI) for the MINK region. Second, the chapter 
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investigates streamflow Percentage of Discharge Anomalies (PDA) and examines the PDA 

relationship to each drought index. Chapter 3 of this thesis analyzes the effect land cover within 

the different parts of the study area has on the results from Chapter 2.  

With this work, it is hoped that water managers and policy makers will use the results in 

order to better understand the relationship between drought indices and streamflow. If the results 

for the MINK region are promising, then perhaps the same indicators could be used in other 

regions to monitor drought and streamflow changes. With a better knowledge of the relationship 

between drought indices and streamflow, remote sensing estimates of streamflow could help 

mitigate the damages drought might have on the environment and people being affected. 
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Chapter 2 - Capability of remote sensing and in situ drought indices 

for assessing drought and streamflow 

 Introduction 

Drought is one of the worst natural disasters that affects the environment (through plant 

degradation by water loss), humans, and the economy (by water, food, and crop loss) (Wen, 

Rogers, Ling, & Saintilan, 2011; Zhai, et al., 2010). Monitoring drought is an important aspect of 

water management, with the goal of mitigating the effects a drought has on the environment and 

the people impacted. Droughts can cause major environmental degradation to areas with crop 

yield reduction from an agricultural drought perspective and loss of streamflow discharge from a 

hydrologic drought perspective. Many indicators have been developed over the past half century 

to help climatologists and meteorologists monitor the onset of drought and to help mitigate its 

effects (Zhang, Jiao, Zhang, Huang, & Tong, 2017). In situ drought indicators like the Palmer 

Drought Severity Index (PDSI) and the Standardized Precipitation Index (SPI) are typically 

computed using station-based climate data to monitor various components of droughts, like 

precipitation deficits and related temperature impacts (McKee, Doesken, & Kleist, 1993; Palmer, 

1965). 

Remote sensing data allow more efficient monitoring of changing surface conditions over 

wider areas at fine spatial resolutions (i.e. sub-kilometer scale) with easier measurability 

compared to in situ data (Tavakol, Rahmani, Quiring, & Kumar, 2019; Zhang, Jiao, Zhang, 

Huang, & Tong, 2017). Over the years, various remotely sensed drought indicators have been 

developed to monitor different aspects of drought (Quiring & Ganesh, 2010). The Normalized 

Difference Vegetation Index (NDVI), which is used to monitor vegetation health, was among the 

first vegetation-based indices developed to monitor greenness of the Earth’s surface (Tarpley, 
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Schneider, & Money, 1984). The Vegetation Condition Index (VCI) is a drought index derived 

from NDVI and used to monitor the onset of droughts (Kogan, 1990). Another remote sensing 

environmental indicator is the Soil Moisture Condition Index (SMCI), which uses remotely 

sensed soil moisture for tracking short-term drought conditions over larger regions (Zhang & Jia, 

2013; Zhang, Jiao, Zhang, Huang, & Tong, 2017). 

The motivation for this work is to assess the value of using remote sensing indices to 

estimate streamflow changes during drought periods in order to be better prepared to mitigate the 

problems that arise from such an event. An important aspect of water management is to be able 

to predict streamflow changes in the absence of discharge data (Haslinger, Koffler, Schoner, & 

Laaha, 2014). Water managers and government agencies could use these indicators early on to 

help mitigate the potential negative effects of drought events on vulnerable environments and 

communities. 

 Methods and Materials 

 Study Area 

The Great Plains and Middle West of the United States are home to vast agricultural 

lands where water resources are of great importance for crop yields, food security, and economic 

growth. The states of Missouri, Iowa, Nebraska, and Kansas (the MINK region) utilize both 

surface and ground water for irrigating croplands planted with corn, soybeans, and sorghum 

(Easterling, et al., 1993). Missouri and Iowa have many streams that have sustained flow 

throughout the year whereas western Kansas and Nebraska have little surface water for much of 

the year (Frederick, 1993; Rahmani, Hutchinson, Harrington Jr, Hutchinson, & Anandhi, 2015). 

The region varies from east to west in land cover and precipitation amounts (Fig. 2-1). Land 

cover data was used from the National Land Cover Database 2011 and annual precipitation data 
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was used from the PRISM Climate Group. The main land covers by percentage of area over the 

region are deciduous forest (11%), pasture and hay (13%), grassland and herbaceous (26%), and 

cultivated cropland (40%). The southeast portion of Missouri is primarily deciduous forest with a 

relatively high average annual precipitation (1397 mm) while the western part of the study region 

is semi-arid rangeland and irrigated cropland with lower average precipitation (318 mm). 

Average summer (July) high temperatures in the region are highest in Kansas with a temperature 

of 25 ℃ and lowest in Iowa at around 22.0 ℃ between 1981 and 2010 (NOAA, 2019). 

Figure 2-1. Maps of United States showing location of the MINK region with climate divisions, 

land cover, and total annual precipitation variation. 

 Methods 

For this study, several in situ and remotely sensed datasets were used for calculating each 

environmental indicator. To observe recent relationships in the Missouri, Iowa, Nebraska, and 

Kansas (MINK) region, data from 2003 through 2017 over the growing season of April through 

September on a monthly basis was used for the study. The growing season is the focus because it 

is the time period when droughts have more severe impacts, especially on crop growth.  

 In Situ Drought Indices  
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The two in situ (station-based) drought indices used in this study are PDSI and SPI, both 

of which have been widely used for evaluating the effectiveness of remote sensing indicators in 

monitoring various aspects of drought. The PDSI has been widely used for many decades to 

monitor droughts in the United States. This meteorological index uses station measured 

precipitation, temperature, and soil water budget to estimate the available water content of the 

soil (Palmer, 1965). The soil water budgeting requires evapotranspiration, potential 

evapotranspiration, soil water recharge, potential recharge of the soil, runoff, potential runoff, 

water loss from soil, potential water loss from the soil, and precipitation data (Karl, 1986). PDSI 

values generally range from -10 to +10. A value lower than -4 is considered extreme drought 

while a value greater than +4 is considered extreme wet conditions. Values between -1 to +1 are 

considered normal. Deriving monthly PDSI is outlined in greater detail in Karl (1986). The 

monthly PDSI equation is shown below where PDSIi is monthly PDSI, PDSIi−1 is the previous 

monthly PDSI value, and Zi is the moisture anomaly index for the specific month:  

PDSIi =  PDSIi−1 +
1

3
Zi − 0.103PDSIi−1                                              (1) 

The SPI is based on quantifying precipitation as a deficit or a surplus compared to the 

long-term normal (McKee, Doesken, & Kleist, 1993). SPI values lower than -2.0 are classified as 

extreme drought while values greater than +2.0 are considered extremely wet conditions. SPI 

also classifies values below -1.0 as dry, above +1.0 as wet, and between -1.0 to 1.0 as near 

normal (Zhai, et al., 2010). SPI can be computed for time period ranges of 1, 2, 3, 6, 9, 12, and 

24 months (SPI-1 to SPI-24). When time periods are short (less than 6 months), SPI moves 

frequently above and below zero. As the time period increases, SPI responds more slowly to 

changes in environmental conditions (McKee, Doesken, & Kleist, 1993). The equation for SPI is 
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shown below, where P is precipitation, P∗ is mean precipitation, and σp is the standard deviation 

of precipitation. 

SPI = (P − P∗)/σp                                                         (2) 

 In Situ Drought Index Data  

Monthly values of PDSI and SPI were obtained from the NOAA National Centers for 

Environmental Information (NCEI) (https://www.ncdc.noaa.gov/) on a climate division scale for 

the region. The data is derived from stations across each climate division using area-weighted 

averages of estimates interpolated from the stations (Vose, et al., 2014). In this study, monthly 

drought indicator values are directly compared to the derived remotely sensed indicators and 

PDA values for the growing season months from 2003 to 2017. 

 Remote Sensing Indices  

The VCI is derived directly from the NDVI. NDVI is one of the oldest remote sensing 

indices and is relatively simple in its approach for assessing vegetation health based on infrared 

and visible bands from satellite data (Kogan, 1990). Vegetation greenness is estimated on a per 

pixel basis using the difference in reflectance between visible (red) light and near-infrared (NIR) 

light: 

NDVI =  
VISIBLE − NIR

VISBLE + NIR
                                                                 (3) 

NDVI values range from -1 to +1 with values near 0 having little to no green vegetation 

and values near +1 having full green vegetation density (Tarpley et. al., 1984; Quiring and 

Ganesh, 2010). Compared to NDVI, VCI is better for estimating drought intensity because it 

incorporates various weather impacts such as precipitation changes on vegetation (Kogan, 1990). 

VCI for each month is determined as: 

VCIi =
NDVIi − NDVImin

NDVImax − NDVImin
                                                             (4) 

https://www.ncdc.noaa.gov/
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Where NDVIi is the NDVI value for a given month, and NDVImin and NDVImax are the 

absolute minimum and maximum values for the entire NDVI record (2003-2017 in this study). 

VCI values range from 0 to 1, where values near 0 suggest little vegetation and 1 suggests a pixel 

fully covered with vegetation. 

SMCI is an index solely derived from remotely sensed soil moisture data that estimates 

soil moisture in kilogram per square meter for the top 10 centimeters of soil surface. The index 

values range from 0 to 1 with 0 indicating extreme drought and 0.5 to 1 showing no drought 

(Zhang & Jia, 2013; Zhang, Jiao, Zhang, Huang, & Tong, 2017). SMCI for each month is 

estimated as: 

SMCIi =
SMi − SMmin

SMmax − SMmin
                                                                (5) 

Where SMi is the average soil moisture for a given month, SMmin and SMmax are the 

absolute minimum and maximum values for soil moisture over the entire record from 2003 to 

2017. 

 Remote Sensing Drought Index Data 

Moderate Resolution Imaging Spectroradiometer (MODIS) 250 meter resolution NDVI 

values were used from the NASA Earth data center (https://search.earthdata.nasa.gov/) to derive 

VCI values on a per-pixel basis. All 250 meter pixels within a given climate division were used 

and the median value of all pixels was selected as the climate division value for a given month. 

NASA’s North American Land Data Assimilation System (NLDAS-2) NOAH land-surface 

model composites (https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS) for remotely sensed 

soil moisture was used to calculate SMCI on a monthly basis. This data has a 1/8 degree 

(~13.875 km) resolution and the top 10 centimeter soil moisture depth was used for SMCI. The 

https://search.earthdata.nasa.gov/
https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS


14 

mean of all SMCI pixel values within a climate division was used as a single climate division 

value.  

 Streamflow Percentage of Discharge Anomalies 

PDA was used to compare monthly streamflow changes with each of the four drought 

indicators (Zhai, et al., 2010). The following equation was used to calculate the PDA for each 

month: 

PDAi =
(Xi−X̅)

X̅
                                                                       (6) 

Where Xi is the average discharge for a given month, and X̅ is the average discharge 

(𝑚3/𝑠) for the entire time period from 2003-2017 for a given month.  

 Streamflow Data 

Discharge data were downloaded from the US Geological Survey (USGS) water services site for 

gauge station data (https://waterservices.usgs.gov/). Data for 117 stream gauges were available 

for the region (Fig. 2-2). For each climate division, two to four stream gauge stations were used 

with a mix of reference and non-reference conditions. Stations with reference conditions are 

those, whose flow has minimal impact from human and other anthropogenic activities and the 

site conditions may reflect natural changes like drought influences. Non-reference sites could 

have an array of various human influences like water discharge for human consumption or a dam 

upstream from the gauge station that would influence discharge through the gauge site. The 

watershed size for the selected stream gauges varied from 65.5 km2 to 221,703 km2. The 

Nebraska 1 climate division (i.e. the Nebraska Panhandle) had several years with 0 values for the 

one station in the region and it was excluded from the analysis. 

https://waterservices.usgs.gov/
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Figure 2-2 Climate division boundaries and location of all USGS stream gauges used in the 

study. 

  Results and Discussions 

 Comparing Remote Sensing to In Situ Drought Indices  

Remote sensing indicators of VCI and SMCI were evaluated against the in situ indicators 

of PDSI and SPI. The Pearson correlation (r) and coefficient of determination (R2) values were 

calculated for each relationship and division over the 15-year period (Fig. 2-3 and Table 2-1). 

Overall, SMCI performed better than VCI when correlated with the in situ indicators and 

performed better with short-time scale SPIs (1‒3) than PDSI throughout the entire region. SMCI 

had a statistically significant relationship with PDSI, SPI-1, and SPI-3. SPI has been shown to 

correlate well with soil moisture, which is the basis for SMCI (Vicente-Serrano, et al., 2012). As 

the SPI time periods become longer than SPI-3, its relationship with SMCI generally becomes 

weaker. SMCI was shown to have its strongest correlation with SPI-3 in a study conducted in 

China (Li, He, Quan, Liao, & Bai, 2015). Since SMCI is based on soil moisture, it is more highly 

influenced by the climatic factors of precipitation and temperature compared with VCI, which 
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can be influenced by a variety of non-climatic factors such as plant disease, insects, and human 

influences such as land use changes. As a result, SMCI has higher correlations with the in situ 

indices over the region than VCI. This conclusion suggests SMCI is more susceptible to climatic 

factors that influence both PDSI and SPI (i.e. precipitation and temperature) than VCI. 

VCI performed best with SPI-2 but also was fairly strongly correlated with most other 

SPI time series indices in the western part of the region. VCI had stronger correlations with PDSI 

and SPI in Kansas and Nebraska (Table 2-1) which, is similar to the findings from Zhang, Jiao, 

Zhang, Huang, & Tong (2017). Quiring & Ganesh (2010) found that VCI performed better with 

PDSI and SPI in western (drier) parts of Texas than in the eastern (wetter) part. Drier climates 

have different vegetation types (perhaps with more bare soil), so during a drought event, VCI 

will not have the same response in both types of climate. VCI could have higher correlations in 

drier regions partially due to vegetation types (shallow rooted-grasses) that are more effected by 

varying climate conditions compared to vegetation types (longer rooted-grasses and trees) with 

wetter conditions. VCI had lower correlations with the in situ indicators in irrigated land due to 

irrigation having a positive effect on vegetation health (VCI) that has no effect on meteorological 

indices like PDSI and SPI (Quiring & Ganesh, 2010). The most heavily irrigated part of the 

MINK region is eastern Nebraska (Irrigation & Water Use, 2019), which had weaker correlations 

between VCI and the in situ indicators. Analyzing the irrigated land relationships at smaller 

scales than the scope of this study (climate division rather than state level) would provide more 

information on the performance of VCI. 
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Figure 2-3 𝐑𝟐 values for temporal correlation (yearly) from 2003 to 2017 between 

corresponding drought indices in the MINK region. Stars indicate climate divisions with a 

statistically significant correlation with 𝛂 = 0.05. 
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Analysis of the correlations based on data summarized for each state indicate the highest 

correlations between VCI and PDSI in Kansas followed by Nebraska, Missouri, and Iowa (Fig. 

2-3 and Table 2-1) (Bandad & Rahmani, Analysis of PDSI and Vegetation Condition Index 

(VCI) and Their Links to Streamflow, 2018). SMCI performed better in all four states for PDSI 

and SPI-1‒3. The performance was weaker for SPI-6‒24 with higher correlations in Kansas and 

Nebraska compared to Iowa and Missouri. SMCI estimates upper level soil moisture which is 

more highly influenced by short term changes, so a higher predictability (R2) is expected with the 

shorter-time scale SPIs. Generally, SMCI performed better than VCI indicating SMCI is more 

influenced by climatic factors like precipitation, which greatly influences streamflow. But when 

comparing state by state, VCI performs comparatively similar to SMCI in Kansas and Nebraska, 

where VCI has its best performance. 

Table 2-1 Average R2 values comparing the in situ and remote sensing drought indicators for the 

MINK region and each state. 

 Comparing the Drought Indices to PDA 

Coefficient of determination (R2) values were averaged for the relationships between 

each drought index and PDA for the MINK region and each state individually (Table 2-2). For 

R2 values for each individual watershed and statistically significant relationships (shown by 

bolded values), please see appendix A. Generally, it is expected that changes at reference stream 

gauges have stronger correlations with natural phenomena such as droughts (Lorenzo-Lacruz, et 
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al., 2010). Building reservoirs on streams mitigates the effect that wet and dry seasons can have 

on a river system (Wen, Rogers, Ling, & Saintilan, 2011): the proportion of runoff during the 

rainy season decreases while the proportion of runoff during the dry season increases due to 

regulation (Ren, Wang, Li, & Zhang, 2002; Wen, Rogers, Ling, & Saintilan, 2011). In order to 

investigate this idea, stream gauges were separated into reference and non-reference sites. 

Relationships between drought indicators and PDA had slightly higher R2 values for reference 

sites except for SPI-24 (Table 2-2) suggesting that the indices can predict streamflow better for 

reference watersheds. Generally, SPI-3 (R2 = 0.49) and PDSI (R2  = 0.48) indicated stronger 

predictability for PDA in the region. SMCI performed better than VCI when analyzed against 

PDA. SMCI and PDA are influenced by soil moisture and climatic conditions (such as changes 

in precipitation) more than VCI resulting in stronger relationships between SMCI and PDA. 

Most indices had comparatively higher R2 with PDA in Iowa except VCI and SPI-24 

(Table 2-2 and Fig. 2-4). PDSI correlations produced similar R2 values in Iowa and Nebraska. 

VCI had a stronger relationship with PDA in Kansas and Nebraska where VCI performs better in 

predicting drought (Bandad & Rahmani, 2019). SPI-24 correlations with PDA were also stronger 

in Kansas and Nebraska than the other two states. SMCI and PDSI performed comparatively 

well with PDA compared throughout the region but PDSI performed better overall. 

Table 2-2 Overall average R2 values for correlations between PDA and each drought index for 

each state in the region and separated into reference and non-reference gauge stations. 

All Ref Non-Ref All Ref Non-Ref All Ref Non-Ref All Ref Non-Ref All Ref Non-Ref

SMCI 0.38 0.39 0.37 0.34 0.36 0.30 0.35 0.34 0.36 0.46 0.49 0.45 0.31 0.34 0.24

VCI 0.19 0.21 0.17 0.32 0.35 0.27 0.24 0.25 0.24 0.05 0.02 0.06 0.15 0.16 0.13

PDSI 0.48 0.50 0.47 0.46 0.44 0.49 0.53 0.58 0.52 0.52 0.60 0.47 0.42 0.47 0.33

SPI-1 0.43 0.46 0.39 0.31 0.37 0.22 0.39 0.37 0.40 0.54 0.61 0.51 0.44 0.48 0.34

SPI-2 0.46 0.51 0.41 0.36 0.42 0.25 0.41 0.40 0.41 0.56 0.66 0.51 0.48 0.53 0.38

SPI-3 0.49 0.54 0.44 0.40 0.47 0.29 0.44 0.43 0.45 0.58 0.68 0.52 0.52 0.56 0.44

SPI-6 0.44 0.51 0.39 0.40 0.45 0.32 0.36 0.34 0.37 0.50 0.66 0.41 0.50 0.53 0.45

SPI-9 0.46 0.51 0.42 0.41 0.45 0.34 0.43 0.45 0.43 0.53 0.65 0.46 0.45 0.48 0.39

SPI-12 0.41 0.42 0.39 0.39 0.40 0.37 0.45 0.50 0.44 0.46 0.52 0.43 0.31 0.35 0.23

SPI-24 0.24 0.22 0.26 0.31 0.27 0.39 0.31 0.36 0.30 0.20 0.22 0.19 0.10 0.10 0.11

Kansas Nebraska Iowa MissouriMINK Region
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The spatial pattern of PDA predictability for each drought indicator is presented in Figure 

2.4 for all 117 individual gauge streams. The MINK regional average of R2 was 0.48 for PDSI-

PDA with a slightly weaker relationship in the southern states of Missouri (R2 = 0.42) and 

Kansas (R2 = 0.46) and stronger relationships in the northern states of Nebraska (R2 = 0.53) and 

Iowa (R2 = 0.52). SPI performs best in predicting PDA in Iowa with an average R2 = 0.58 for 

SPI-3. Iowa includes the highest density of larger R2 values for most SPI durations (Figure 2-4). 

The higher statewide average R2 values for Iowa could be due to the higher number of reference 

stations, where relationships are generally stronger. VCI correlations with PDA produced the 

weakest average R2 values in Nebraska (R2 = 0.24) and Iowa (R2 = 0.05) compared to the other 

three indicators. SPI-24 correlations with PDA produced the weakest R2 values for Missouri (R2 

= 0.10) and SPI-1 and SPI-24 for Kansas (R2 = 0.31). Quiring & Ganesh (2010) and Zhang, Jiao, 

Zhang, Huang, & Tong (2017) also found that VCI has higher correlations with PDSI and SPI in 

semi-arid regions, which suggests that VCI is better for monitoring PDA in the western part of 

the study region. SMCI correlations with PDA generates relatively strong R2 values throughout 

the region with Iowa showing the highest density of higher values (R2 = 0.46). 
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Figure 2-4 Maps showing the coefficient of determination (R2) of temporal correlation between 

PDA and the corresponding drought indicators at each stream gauge. 

Figure 2-5 indicates that Pearson correlation (r) values were strongest for intermediate 

values of SPI (e.g., SPI-3) and slightly weaker for shorter and longer SPI indices. Guttman 

(1998) found that longer time scales of SPI are better for addressing water supply changes 
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(hydrologic drought) rather than short term shifts (meteorological or agricultural drought), which 

lead to longer SPI values having less predictability for most droughts. As the time scale of SPI 

becomes longer, the correlation difference between reference and non-reference stations in 

average R2 value becomes less (Fig. 2-5). For SPI-24, non-reference stations have a higher 

average R2 with PDA than reference stations. Lorenzo-Lacruz et al. (2010) analyzing reservoirs 

in Spain found higher correlations between the inflows into reservoirs and shorter-time scale SPI 

indices compared to the outflows. They concluded that lower correlations were due to dam 

operations limiting the natural flow of water through the basin. Similar to the findings of this 

study, longer SPI time-scales had higher R2 (> 0.42 values with 25 month or greater SPI indices) 

in Lorenzo-Lacruz et al. (2010). When prolonged droughts occur, reservoir operation adapts to 

the low water availability and outflows from the reservoirs will be more stable.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5 Average Pearson correlation (r) values for different timescale SPI indices and PDA 

for 117 river locations. 
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 Yearly Variability Analysis between PDA and the Drought Indices  

Figure 2-6 provides the annual values of each drought indicator and PDA for selected 

climate divisions over the 15-year study period (2003-2017). Six representative climate divisions 

are provided in the figure, with similar analyses completed for all climate divisions. The six 

selected climate divisions provide for a wide range of locations within the study region with the 

outer corners (NE 2, IA 3, MO 5, and KS 7) and the inner portion of NE 9 and KS 9. Only one 

PDA and SPI-1 are included in the figure to avoid clutter but other PDAs and SPI time scales 

had similar patterns. Overall, PDSI and SPI-1 yearly variability followed PDA variability for 

each division better than VCI and SMCI. A good example of this can be seen in 2012 where 

extreme drought covers most of the region. This finding suggests that PDSI and SPI can be used 

to estimate discharge anomalies during droughts and agrees with other studies on the 

effectiveness of meteorological indices for monitoring streamflow (Zhai, et al., 2010; Zhao, et 

al., 2014). Ahiablame et al. (2017) analyzed the relationship between precipitation and baseflow 

for the Missouri River Basin covering all of Nebraska and large portions of Kansas, Missouri, 

and Iowa. The study showed that precipitation and river discharge were closely related for a 

majority of gauge stations evaluated. Due to the strong relationship between discharge and 

precipitation, it can be understood why PDSI and SPI-1 (which rely on precipitation data) have a 

similar year to year variability with PDA varying between high and low values. 

SMCI also showed similar yearly variability with PDA across the region. For the 2011-

2012 drought, SMCI values seemed to be at a 15-year low point across the region as PDA was 

also at a low point. Overall, SMCI showed more similar yearly variability with PDA than VCI. 

Just as in the other tests, SMCI performs better with PDA and the in situ indices than VCI due to 

soil moisture being highly influenced by similar factors (i.e. precipitation) directly rather than 
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vegetation greenness. VCI tends to have little year to year variability for most divisions, though 

drought events (like 2011-2012) do have some effect on VCI with the region showing lower 

values. This might be due to the annual cycles of vegetation growth and how long it takes land 

cover to change over time.  
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Figure 2-6 Graphs showing yearly variability of SPI-1, PDSI, VCI, SMCI, and PDA. 
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 Summary and Conclusions 

With easy access to large amounts of near real-time satellite data, remote sensing drought 

indicators may provide valuable information for drought monitoring over wide sections of land, 

like the U.S. Great Plains (AghaKouchak, et al., 2015). This study evaluated two remote sensing 

indicators (VCI and SMCI) against two well-known in situ drought indicators (PDSI and SPI). 

Spatial and temporal changes of all indicators were analyzed to determine their performance in 

monitoring streamflow discharge anomalies (PDA) in the states of Missouri, Iowa, Nebraska, 

Kansas (the MINK region). Three methods for evaluating the effectiveness of the remote sensing 

indicators were discussed: 1) comparing the remote sensing indicators to the in situ indicators 

directly for each of 32 climate divisions, 2) comparing the drought indicators to PDA for each of 

117 stream gauge stations within the region, and 3) assessing yearly variability from 2003 to 

2017 for the various drought indicators and PDA. 

In comparing the remote sensing indicators (VCI and SMCI), the results indicated 

stronger R2 values for correlations between SMCI and both PDSI and SPI over the entire region 

with relationships for most climate divisions being statistically significant at α = 0.05. SMCI 

estimates soil moisture, which is more influenced by climatic factors such as precipitation and 

temperature, whereas VCI addresses vegetation health. VCI tended to perform better in the 

western and more semi-arid regions of Kansas and Nebraska. Both in situ indicators (PDSI and 

SPI) performed better than the remote sensing-based indicators (SMCI and VCI) at predicting 

PDA. 

Meteorological drought indices, such as PDSI and SPI, have shown good performance in 

monitoring streamflow changes especially during a drought (Zhai, et al., 2010; Zhao, et al., 

2014). This is due to the fact that streamflow discharge is highly dependent on precipitation, soil 
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moisture, and temperature (not to mention human water use), which are the main inputs for both 

PDSI and SPI (Zhao, et al., 2014). For estimating PDA, PDSI produced the highest R2 values for 

the western states of Kansas and Nebraska while SPI-3 had the highest predictability power for 

the eastern states of Iowa and Missouri. SMCI had higher R2 values with PDA than VCI in the 

region for most climate divisions (78%). Smaller scale analysis on irrigation and precipitation 

changes in the region could improve our understanding of this behavior of the SMCI.  

This work indicated the potential of using near real-time satellite data and remote sensing 

indicators to monitor drought and changes in streamflow in the MINK region. Overall, SMCI 

performed better than VCI against in situ measurements and predicting PDA patterns. PDSI and 

SPI performed better at estimating PDA than both remote sensing indicators. Western semi-arid 

region of the MINK region is more appropriate for employing VCI. Water managers can use 

these remote sensing drought indicators for monitoring and predicting droughts when making 

decisions on how to use surface and groundwater, particularly during drought periods. 
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Chapter 3 - Evaluating the relationship between remote sensing 

drought indices and land cover 

 Introduction  

Monitoring drought to mitigate the effects they have on the environment and people is 

one of the most important aspects of water management. Droughts can have severe detrimental 

effects on land cover (crop losses) and streamflow. To lessen the effects drought has on 

agriculture (crops and livestock) and water resources, it is important to be able to monitor the 

onset of drought by using drought indices (Svoboda & Fuchs, 2016). Remote sensing technology 

has allowed the development of drought indices for estimating vegetation and soil moisture over 

large areas (Zhang, Jiao, Zhang, Huang, & Tong, 2017). Being able to monitor drought gives 

water and land managers a tool to help prepare methods to limit the negative effects of drought. 

Since drought indices have begun to be evaluated, there have been differences in performance 

not just among indices but differences using the same indices for various locations or land cover 

(Quiring & Papakryiakou, 2003). One study showed that the relationship between VCI and SPI 

was strongest in dry-farming areas due to vegetation health being more effected by climatic 

factors when irrigation is not influencing natural trends (Vicente-Serrano, 2007). Another study 

evaluated human influences on NDVI in China and found that rapid urbanization has caused 

sharp decreases in NDVI, while in other areas NDVI has increased due to irrigation and 

fertilization (and increased plant growth) (Piao, et al., 2003). 

 The goals of this study are to assess the impact of land cover on the relationships 

between each drought index and the relationships between the drought indices and PDA. For 

example, does land cover influence why VCI performs better in the western part of the Missouri, 

Iowa, Nebraska, Kansas (MINK) region while SMCI showed fairly high correlations with PDSI 
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and SPI throughout the region? Spatial patterns like these can influence the correlations between 

each drought index with PDA. As land cover varies throughout the study region from east to 

west, the region also becomes drier. The following analysis looks in depth at the relationships of 

each drought index with land cover by comparing VCI and SMCI to the main land cover types in 

the region by area (cultivated cropland, pasture and hay, grassland and herbaceous, and 

deciduous forest). Each land cover type is compared (through R2 analysis) to VCI and SMCI on 

a climate division scale (larger area) and watershed scale (smaller area).  

 Methods and Materials 

 Study Area 

The area of interest is a section of the Midwest United States coined the MINK 

(Missouri, Iowa, Nebraska, and Kansas) region. This area is part of the Great Plains, which has a 

huge agricultural economy focusing primarily on corn, wheat, soybeans, grain sorghum, and 

livestock such as cattle ranching (Easterling, et al., 1993). Due to its role in crop production, 

water resource management is of great importance in the region, which primarily relies on 

streamflow and ground water supplies (Frederick, 1993). The region varies greatly in land cover 

and precipitation amounts when going from southeast Missouri to western Kansas and Nebraska. 

Figure 3-1a shows how the land cover in the region changes from primarily deciduous forest 

(green) in southern Missouri to cultivated cropland (brown) in Iowa and varying cropland and 

grassland (tan) in Kansas and Nebraska. These land cover changes are in part (along with 

temperature, topography, and soil types) due to the considerable variation in precipitation from 

east to west in the region with southeast Missouri averaging as much as 1,397 mm per year and 

western Kansas and Nebraska averaging as low as 317 mm (Fig. 3-1b). 
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Figure 3-1 Maps of the MINK region with 1a) land cover and 1b) total annual precipitation 

variation with climate divisions. 

 Methods 

Building on the analysis in chapter 2, which calculated each drought indicator (VCI, 

SMCI) on a climate division scale to be compared to the in situ indices (PDSI, SPI), this study 

focuses more so on the watersheds themselves. To do this, both VCI and SMCI index values 

needed to be determined for each specific watershed used. Using data for the growing season 

(April-September) from 2003 through 2017, both indicators were calculated on a watershed 

scale. The growing season was chosen due to the fact that droughts have a greater impact on crop 

growth during this time.  

 Remote Sensing Drought Indices 

VCI is calculated directly from the NDVI, which is calculated using the difference 

between two spectral bands (Red and Near Infrared) to measure variations in the greenness of the 

Earth’s surface on a per pixel basis (Kogan, 1990; Tarpley, Schneider, & Money, 1984). For 

more details on VCI and calculations, please refer to the methods section of chapter 2. For the 

climate division-based results the median of all VCI pixels within a climate division were used 

for calculations. Using the modelbuilder application in ArcGIS for watersheds in Kansas, Iowa, 
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and Missouri, the median value of all VCI pixels within a given watershed determined watershed 

scale VCI. 

SMCI is calculated using remotely sensed soil moisture for the top 10 cm in a similar 

fashion as VCI (Zhang & Jia, 2013). For more details over calculating SMCI, please refer to the 

methods section of chapter 2. Chapter 2 uses average SMCI on a climate division basis for 

comparing to PDSI and SPI. For this analysis, average SMCI needed to be determined using 

modelbuilder in ArcGIS to derive watershed scale average values.  

 Data 

 Remote Sensing Drought Indices  

VCI was calculated using MODIS 250 m resolution pixel NDVI values from NASA’s 

Earth data site (https://search.earthdata.nasa.gov/).  

SMCI was derived using the 13.875 km pixel resolution remotely sensed soil moisture for 

the top 10 cm into the surface. The data was acquired from NASA’s North American Land Data 

Assimilation System (NLDAS-2) NOAH composites 

(https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS). 

 Land Cover 

Land cover data from the 2011 United States land cover shape file (National Land Cover 

Database 2011) was used at 30 m pixel resolution with each pixel representing the dominant land 

cover type at that location (refer to Figure 3-1 above).  

 Watersheds 

Watersheds for each gauge station in the region except Nebraska (as Nebraska does not 

have StreamStats available) were delineated using USGS StreamStats 

(https://streamstats.usgs.gov/ss/) and downloaded to see the effects land cover in the basin area 

https://search.earthdata.nasa.gov/
https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS
https://streamstats.usgs.gov/ss/
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has on the results of this study. Figure 3-2a below shows the location of USGS stream gauges 

and Figure 3-2b shows watershed sizes for each stream gauge (excluding gauges in Nebraska). 

Figure 3-2 Watershed information 2a) climate division boundaries and location of all USGS 

stream gauges used in the study, 2b) watershed sizes of gauges for Missouri, Iowa, and Kansas. 

The table below summarizes the watersheds used in this analysis (detailed watershed 

table in appendix A). The count is the total number of watersheds though the land cover related 

fields do not include Nebraska watersheds and some in the other states. The smallest and largest 

show the size range of single watersheds used in the region and each state. 

Table 3-1 Summary of watersheds sizes and state land cover information. 

 Results and Discussion 

 Comparing Drought Indices to Land Cover on Climate Division Scale 

Working at the climate division scale the remote sensing drought indices (VCI and 

SMCI) were compared to the area of major land cover types in order to understand the effect 

MINK Kansas Nebraska Iowa Missouri

Count 117 34 25 36 22

Smallest (sq. km) 66 253 113 66 169

Largest (sq. km) 221,703 66,726 149,313 221,703 36,260

Smallest Land cover Deciduous Forest Deciduous Forest NA Grass/Herbaceous Grass/Herbaceous

Average Area (%) 11 4 NA 4 1

Largest Land cover Cultivated Crop Grass/Herbaceous NA Cultivated Crop Deciduous Forest

Average Area (%) 40 40 NA 68 36

Watershed Summary
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land cover has on the performance analysis of each index. Most of the MINK region is 

dominated by agriculture (cropland and pasture) with scattered natural grasslands in the west and 

forest primarily in southern Missouri (Fig. 3-1a). The main land covers by percentage of area in 

the MINK region are cultivated cropland (40%), grassland and herbaceous (26%), pasture and 

hay (13%), and deciduous forest (11%). 

To compare each index to cropland, the percentage of cropland was calculated for each 

climate division. The 15-year average value for each drought indicator was calculated to be 

directly compared to cropland amount. The results address what drought index value would one 

expect to see depending on the amount of a certain land cover (%). Initially, the analysis was 

only conducted with cultivated cropland (the most dominant land cover type) to see how each 

index performed. It was expected that VCI would have the highest correlations with Percent 

Cultivated Cropland since VCI estimates vegetation greenness. It was hypothesized that SMCI 

would show fairly strong correlations. The hypothesis was partially correct as VCI does have the 

highest correlation with cultivated cropland as seen in Figure 3-4. Surprisingly, SMCI had a low 

coefficient of determination (R2<0.1) with cultivated cropland. SMCI showed a low to fair 

relationship with the other land cover types as shown in Figure 3-3. Before running the analysis, 

it was hypothesized that SMCI would have a fairly strong relationship with land cover since 

SMCI uses soil moisture as an input, which influences crop growth. It is possible that because 

the scale is so large (climate division basis), soil moisture conditions are influenced by a wide 

variety of factors like precipitation variation, irrigated land, or varying soil types. Since the 

SMCI calculated for this study uses soil moisture from the top 10 cm of soil depth, it is also 

possible that it is not a good indicator of crop coverage, since the plant root depth extends far 

lower than the top 10 cm. SMCI performed best with the grassland and herbaceous cover type, 
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followed by pasture and hay cover. A study that evaluated satellite derived soil moisture in 

relation to drought and land cover found that grassland areas showed a stronger response to soil 

moisture drought than forested areas (Nicolai-Shaw, Zscheischler, Hirschi, Gudmundsson, & 

Seneviratne, 2017). The reason behind SMCI performing best in grasslands was looked at in a 

study analyzing different remotely sensed soil moisture products in France. The study explained 

that remotely sensed soil moisture should be retrievable with high accuracy in herbaceous land 

cover (Rudiger, et al., 2009).

 

Figure 3-3 Graphs showing the relationship between each dominant land cover type (cultivated 

cropland, pasture and hay, grassland and herbaceous, and deciduous forest) in the MINK region 

with SMCI. 

Since VCI had a fairly moderate relationship with cultivated cropland (R2 = 0.4) the same 

analysis was performed for three different land cover types (deciduous forest, pasture and hay, 

and grassland and herbaceous). The graphs for VCI against each cover type are shown in Figure 

3-4 below. The graphs show that: as the percentage of grassland and herbaceous cover increases 
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within a climate division, the average VCI decreases (R2 = 0.18); as the percent of pasture and 

hay increases, average VCI increases within a climate division (R2 = 0.73); and as the percent 

deciduous forest increases, average VCI also increases (R2 = 0.65). The deciduous forest 

relationship does not seem to be a direct linear relationship, as it tends to level off as the percent 

land cover increases. It was predicted that climate divisions with more forest would have higher 

average VCI due to forests having such a dense greenness that increases NDVI (VCI) as the 

amount of forest coverage increases. 

A surprising finding from this analysis is that average VCI decreases for both cultivated 

cropland and grassland and herbaceous as the percentage of each cover type increases, which 

could be due to using season averages as opposed to peak VCI values. Both relationships also 

had the lowest R2 values. VCI has been shown to have the best correlations with other drought 

indices in grassy regions compared to lower correlations in forested or cropland areas (Zhang, 

Jiao, Zhang, Huang, & Tong, 2017). The results of chapter 2 show that VCI performs best in the 

western part of the MINK region (Kansas and Nebraska), which is primarily grassland and 

cultivated cropland. VCI performed best in the semi-arid (western) region of Texas, which is 

similar to the western parts of Kansas and Nebraska (Quiring & Ganesh, 2010). Figure 4 shows 

that VCI has a relatively weak relationship with grassland compared to the other cover types. 
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Figure 3-4 Graphs showing the relationships between each land cover type (cultivated cropland, 

pasture and hay, grassland and herbaceous, and deciduous forest) with VCI. 

These finding show that in fact on a large scale (climate division basis) the results from 

chapter 2 that included VCI may be influenced by land cover type. The relationship between 

pasture and hay and deciduous forest with VCI are fairly strong from a statistical perspective 

while VCI’s relationship with cultivated cropland and grassland and herbaceous land cover 

seems to be weaker. SMCI shows a fair relationship with land cover overall, though its 

relationship with cultivated cropland is weak. 

 Comparing Remote Sensing Indices to Land Cover on Watershed Scale 

To get a better understanding of how the drought indices (SMCI, VCI) are influenced by 

land cover on a smaller scale, a similar analysis was conducted on an individual watershed scale. 

This will allow analysis of how land cover can affect the remote sensing indicators (SMCI, VCI) 

relationships with PDA in the previous analysis, since PDA is watershed based and not climate 

division based. The indices had to be determined for each specific watershed. This is possible 
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since the raw remote sensing indicator values were on a pixel basis, which were then aggregated 

on a climate division basis to be compared to land cover in the previous analysis. For this part, 

the drought indices (SMCI, VCI) were aggregated to individual watersheds where discharge data 

was obtained in order to calculate PDA. Only watersheds from Iowa, Kansas, and Missouri were 

used in this part of the study, since Nebraska watershed boundary information was unavailable 

from USGS. 

Figure 3-5 helps visualize the relationships at the watershed scale between each dominant 

land cover type in the region and SMCI. Results show that the relationships between land cover 

and SMCI are weaker overall compared to the climate division scale. The strongest relationship 

is weak, with an R2 = 0.08 for grassland and herbaceous cover. Due to the increase in the number 

of data points, the variability in the data has increased drastically, which contributes to a weaker 

relationship. Though the relationships between SMCI and land cover types on a watershed scale 

are weak the overall trends are similar. SMCI tends to perform best with other drought indices in 

areas with less tree coverage like grasslands and croplands (Zhang, Jiao, Zhang, Huang, & Tong, 

2017). 
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Figure 3-5 Graphs showing the relationship between average SMCI on a watershed scale and 

each land cover type percentage (cultivated cropland, pasture and hay, grassland and herbaceous, 

and deciduous forest), N = 85. 

VCI had fair to strong relationships with each land cover type on a climate division scale, 

so it was predicted that the relationships would be similar at the watershed scale. For the most 

part, this is true. Figure 6 illustrates the relationships between VCI and land cover types are fairly 

strong in pasture and hay (R2 = 0.52), deciduous forest (R2 = 0.47), and cultivated cropland (R2 

= 0.46) while fairly weak in grassland and herbaceous (R2 = 0.11) for the 85 watersheds 

analyzed. 

Surprising, coefficient of determination values for VCI dropped significantly from the 

climate division analysis for the top two land cover types (pasture and hay and deciduous forest) 

while cultivated cropland increased from R2 = 0.40 to R2 = 0.46. The trends are similar, which 

suggests that as the percentage of pasture and hay and deciduous forest increase, the average VCI 

also increases. On the other hand, when the percentage of cropland and grassland and herbaceous 

increase, the average VCI decreases. VCI has shown to perform best in grassland and cropland 
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regions as discussed in part 1 of this analysis, but VCI’s relationship with land cover could be 

influenced by precipitation variation as well. For a study conducted in Kansas, it was found that 

NDVI (input for VCI) had the highest correlations in forest areas and lower correlations in 

cropland areas (Wang, Price, & Rich, 2001). This claim is similar with the results of this study, 

showing that there are a variety of conclusions between the relationship of land cover and 

vegetation drought indices (VCI, NDVI). 

Figure 3-6 Graphs showing the relationship between average VCI on a watershed scale and land 

cover percentage (cultivated cropland, pasture and hay, grassland and herbaceous, and deciduous 

forest), N= 85. 

This analysis confirms that VCI is influenced by land cover types while SMCI is also 

related to land cover, though not as strongly as VCI. Knowing how VCI and SMCI are 

influenced by varying land covers is useful to know when making conclusions on just how these 

indices relate to the in situ indices (PDSI, SPI) and PDA. 
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 Conclusions 

The first part of this study looked at the large-scale effects (climate division scale) of land 

cover on the drought indices. SMCI had the smallest R2 value with cultivated cropland 

(essentially 0). The other land covers (grassland and herbaceous, pasture and hay, and deciduous 

forest) had stronger relationships with SMCI, though still relatively weak. For the VCI index, the 

greatest influence from land cover was for cultivated cropland (R2 = 0.40). VCI was evaluated 

against the next three dominant land cover types in the region (grassland and herbaceous, 

deciduous forest, and pasture and hay) with moderately low to high R2 values for each type (R2 

= 0.18, 0.65, and 0.73 respectively). 

The second part of this study looked at verifying the effects of land cover at the 

watershed scale for both SMCI and VCI. The results verified the initial findings as R2 values 

remained below 0.1 for SMCI in each land cover type while moderate R2 values (greater than 

0.45) for VCI were found for all land cover types except grassland and herbaceous. Interestingly 

the R2 values varied between climate division scale and watershed scale, which could be due to 

local variability and an increase in the number of data points. 

These results suggest that land cover does influence VCI. This finding agrees with other 

studies, which have shown that deforestation and crop rotation have falsely reported drought 

conditions and reduce accuracy with VCI monitoring (Yagci, Di, & Deng, 2014). For both 

cultivated cropland and grassland and herbaceous, VCI tended to decrease with a higher 

percentage of each cover type. For pasture and hay and deciduous forest, VCI tended to increase 

as the percentage of these two cover types increased. SMCI was shown to also be influenced by 

land cover with low correlations. This work helps to verify the influences that land cover can 

have on the remote sensing drought indices (SMCI, VCI) and then being able to predict 
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streamflow (PDA) changes. The finding that VCI is strongly influenced by land cover could 

explain why VCI had the weakest relationships with PDA across the region, since PDA is mainly 

influenced by meteorological conditions (precipitation and temperature) and not land cover. 

Since SMCI had little correlation with land cover characteristics, this finding could explain why 

SMCI performed better in predicting PDA. 
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Chapter 4 - Summary and Conclusion 

 The goal of this study was to answer the question: can remote sensing drought indices 

(e.g. VCI and SMCI) be used to monitor streamflow changes as effectively as in situ drought 

indices (e.g. PDSI and SPI)? To address this question, linear regression analyses were conducted 

to test for differences. The remote sensing indices were compared to the in situ indices over the 

four-state MINK region. Each index was also compared to streamflow changes (by PDA) to 

determine how well each drought index correlates with changes in streamflow. Finally, and to 

test for the effect that land cover has on these relationships, the remote sensing indices were 

assessed for the different land cover types in the region. 

The indices were compared spatially on a climate division scale for the entire region. 

Results indicated that SMCI performed better than VCI overall when compared to PDSI and SPI 

over the region, with shorter-time scale SPIs (1-3 month) having the highest correlations with 

SMCI. This finding agrees with other studies that showed SMCI performs best with short-term 

drought (Zhang, Jiao, Zhang, Huang, & Tong, 2017). On the other hand, VCI performed best 

overall with SPI-2 and showed stronger correlations with SPI and PDSI in the western part of the 

study region (western Nebraska and Kansas). Other research suggests that VCI performs best in 

semi-arid areas (southern and southwest United States) when compared to PDSI and SPI 

(Quiring & Ganesh, 2010). 

Each drought index was compared to PDA for 117 stream gauge stations scattered 

throughout the MINK region. Due to their inputs (precipitation data), the in situ drought indices 

(PDSI and SPI) were predicted to perform better in monitoring PDA and have shown to be able 

to monitor streamflow changes (Zhai, et al., 2010). SPI-3 (R2 = 0.49) and PDSI (R2 = 0.48) 

indicated stronger power for predicting PDA in the MINK region than any other index. SMCI 
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showed stronger performance (R2 = 0.38) in monitoring PDA than VCI (R2 = 0.19) within the 

region. Although VCI had an overall weak relationship, it showed higher R2 values with PDA in 

the western states of Kansas (R2 = 0.32) and Nebraska (R2 = 0.24). 

In a comparison of reference and non-reference stream gauges throughout the region, the 

reference streamflow station-based PDAs had higher correlations with all drought indices 

(except SPI-24). This was expected, as reference gauges have stronger correlations with natural 

phenomena like drought (Lorenzo-Lacruz, et al., 2010). Overall, both remotely sensed indices 

(VCI, SMCI) did not perform as well as the in situ indices (PDSI, SPI) in predicting PDA within 

the region. 

To assess the effects that land cover might have on the results of chapter 2, chapter 3 

addressed the relationship between land cover and each drought index. Four dominant land cover 

types in the region (cultivated cropland, pasture and hay, grassland and herbaceous, and 

deciduous forest) were used and their area percentage was compared to each drought index (VCI 

and SMCI). Results suggest that land cover has a minor effect on SMCI, which could be due to 

soil moisture being influenced by other factors including precipitation and irrigation. VCI on the 

other hand showed stronger relationships with land cover, with R2 values as high as 0.45 for 

cultivated cropland, pasture and hay, and deciduous forest cover types. The effect of land cover 

on the correlations between the remote sensing indices (VCI and SMCI) and PDA could very 

well be a factor in explaining why VCI and SMCI has a weaker relationship with PDA compared 

to PDSI and SPI. The results indicate VCI could most definitely be influenced by land cover 

type, which might suggest why VCI performs differently depending on the region. 

The results of this study can benefit the individuals and organizations that monitor 

drought and streamflow. Such organizations include national agencies like the Environmental 
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Protection Agency (EPA), United States Geological Survey (USGS), and United States Army 

Corps of Engineers (USACE) and state-based organizations such as the Kansas Department of 

Health and Environment (KDHE) and the Kansas Water Office (KWO). These organizations 

could use results from this study to determine which indices to use when monitoring drought or 

streamflow changes. Other people that benefit from these results include those from places that 

do not have regular access to station-based data to monitor streamflow or in situ drought indices. 

Satellite data is readily available across the globe on various websites like those supported by 

NASA. Working within a geographic information system or image processing software package, 

the satellite image data can be converted into either vegetation or soil moisture indices. Using 

remotely sensed drought indices such as VCI and SMCI in places that do not have regular access 

to stream gauge station data is the main motivation behind this work. 

A future step to this work could be to analyze other remotely sensed indices. Subsequent 

work might use remotely sensed precipitation data or incorporate rainfall estimates from radar 

return signals. Another option might be to incorporate more variables into a multi-variate 

statistical approach. If a newly developed index was as highly correlated with PDA as SPI or 

PDSI, then areas that do not have access to stream gauge stations could use such an index 

instead. In the meantime, SMCI could cautiously be used to a degree to monitor streamflow, 

though it is more limited than using PDSI or SPI. 
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Appendix A - Watershed and PDA Relationship Table 

STAID Station Name CLASS Drain 

Area 

(km2) 

VCI 

(R2) 

SMCI 

(R2) 

PDSI 

(R2) 

SPI_1 

(R2) 

SPI_2 

(R2) 

SPI_3 

(R2) 

SPI_6 

(R2) 

SPI_9 

(R2) 

SPI_12 

(R2) 

SPI_24 

(R2) 

5387440 Upper Iowa River 

at Bluffton, IA 

Ref 951 0.04 0.36 0.20 0.59 0.56 0.52 0.54 0.56 0.34 0.01 

5389400 Bloody Run 

Creek near 

Marquette, IA 

Ref 88 0.00 0.27 0.41 0.44 0.50 0.52 0.52 0.54 0.50 0.20 

5411850 Turkey River 

near Eldorado, IA 

Ref 1660 0.08 0.24 0.16 0.33 0.36 0.34 0.31 0.31 0.20 0.00 

5412500 Turkey River at 

Garber, IA 

Ref 4002 0.03 0.35 0.40 0.51 0.55 0.58 0.52 0.56 0.46 0.07 

5420460 Beaver Slough at 

3rd Street at 

Clinton, IA 

Non-ref 221704 0.00 0.00 0.17 0.18 0.14 0.19 0.21 0.18 0.16 0.18 

5422600 Duck Creek at 

DC Golf Course 

at Davenport, IA 

Non-ref 148 0.01 0.40 0.58 0.58 0.65 0.63 0.62 0.65 0.59 0.23 

5451210 South Fork Iowa 

River NE of New 

Providence, IA 

Ref 580 0.01 0.67 0.68 0.81 0.79 0.72 0.57 0.69 0.62 0.21 
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5453100 Iowa River at 

Marengo, IA 

Non-ref 7236 0.02 0.51 0.60 0.74 0.66 0.67 0.57 0.53 0.47 0.18 

5454000 Rapid Creek near 

Iowa City, IA 

Ref 66 0.02 0.47 0.71 0.74 0.75 0.69 0.59 0.61 0.56 0.38 

5457700 Cedar River at 

Charles City, IA 

Non-ref 2730 0.03 0.22 0.14 0.26 0.32 0.33 0.23 0.15 0.09 0.01 

5459500 Winnebago River 

at Mason City, IA 

Non-ref 1362 0.08 0.37 0.32 0.50 0.52 0.52 0.53 0.49 0.27 0.01 

5463000 Beaver Creek at 

New Hartford, IA 

Non-ref 899 0.02 0.29 0.27 0.39 0.44 0.44 0.30 0.32 0.18 0.02 

5464220 Wolf Creek near 

Dysart, IA 

Ref 774 0.01 0.52 0.70 0.65 0.75 0.81 0.79 0.75 0.58 0.29 

5471000 South Skunk 

River below 

Squaw Creek 

near Ames, IA 

Non-ref 1440 0.00 0.71 0.63 0.81 0.79 0.75 0.51 0.52 0.43 0.18 

5472500 North Skunk 

River near 

Sigourney, IA 

Non-ref 1891 0.01 0.60 0.79 0.74 0.77 0.85 0.86 0.83 0.66 0.37 

5473450 Big Creek North 

of Mount 

Pleasant, IA 

Ref 150 0.00 0.72 0.87 

 

 

 

 

0.78 0.81 0.85 0.77 0.80 0.77 0.50 
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5479000 East Fork Des 

Moines River at 

Dakota City, IA 

Non-ref 3388 0.10 0.44 0.19 0.34 0.31 0.27 0.10 0.17 0.20 0.01 

5481000 Boone River near 

Webster City, IA 

Non-ref 2186 0.00 0.61 0.45 0.64 0.60 0.55 0.35 0.43 0.39 0.06 

5482500 North Raccoon 

River near 

Jefferson, IA 

Non-ref 4193 0.05 0.60 0.46 0.55 0.59 0.67 0.48 0.51 0.44 0.08 

5487980 White Breast 

Creek near 

Dallas, IA 

Ref 862 0.00 0.48 0.68 0.59 0.70 0.78 0.85 0.74 0.47 0.15 

5488200 English Creek 

near Knoxville, 

IA 

Ref 233 0.05 0.65 0.71 0.81 0.83 0.85 0.75 0.69 0.46 0.22 

5489000 Cedar Creek near 

Bussey, IA 

Ref 969 0.00 0.47 0.71 0.53 0.63 0.72 0.81 0.74 0.51 0.23 

5490500 Des Moines River 

at Keosauqua, IA 

Non-ref 36358 0.00 0.67 0.76 0.75 0.75 0.81 0.75 0.79 0.72 0.39 

5494300 Fox River at 

Bloomfield, IA 

Ref 227 0.00 0.61 0.73 0.59 0.69 0.77 0.78 0.78 0.70 0.32 

5495000 Fox River at 

Wayland, MO 

Ref 1036 0.17 0.57 0.75 0.61 0.58 0.64 0.65 0.70 0.55 0.29 



52 

5500000 South Fabius 

River near 

Taylor, MO 

Ref 1606 0.04 0.32 0.52 0.32 0.38 0.50 0.63 0.60 0.37 0.01 

5501000 North River at 

Palmyra, MO 

Ref 917 0.08 0.38 0.60 0.41 0.48 0.58 0.71 0.66 0.40 0.03 

5506100 Long Branch near 

Santa Fe, MO 

Ref 466 0.15 0.51 0.48 0.45 0.57 0.58 0.61 0.55 0.37 0.07 

6453600 Ponca Creek at 

Verdel, Nebr. 

Ref 2103 0.03 0.19 0.47 0.15 0.19 0.25 0.23 0.33 0.40 0.38 

6461500 Niobrara River 

near Sparks, 

Nebr. 

Non-ref 18519 0.76 0.39 0.57 0.49 0.49 0.54 0.42 0.44 0.45 0.25 

6466400 Bazile Creek at 

Center, Nebr. 

Non-ref 0 0.08 0.33 0.61 0.32 0.35 0.38 0.24 0.35 0.42 0.38 

6483290 Rock River below 

Tom Creek at 

Rock Rapids, IA 

Non-ref 2209 0.35 0.10 0.26 0.03 0.03 0.03 0.00 0.04 0.22 0.33 

6483500 Rock River near 

Rock Valley, IA 

Non-ref 4123 0.05 0.50 0.49 0.35 0.37 0.45 0.25 0.43 0.46 0.14 

6600100 Floyd River at 

Alton, IA 

Non-ref 694 0.06 0.43 0.36 0.51 0.56 0.61 0.52 0.60 0.42 0.12 

6600500 Floyd River at 

James, IA 

Non-ref 2295 0.40 0.31 0.47 0.12 0.11 0.11 0.04 0.20 0.38 0.37 
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6601000 Omaha Creek at 

Homer, Nebr. 

Ref 451 0.11 0.30 0.63 0.40 0.41 0.42 0.33 0.51 0.62 0.34 

6607200 Maple River at 

Mapleton, IA 

Non-ref 1733 0.08 0.66 0.75 0.69 0.67 0.70 0.57 0.73 0.79 0.35 

6607500 Little Sioux River 

near Turin, IA 

Non-ref 9132 0.10 0.40 0.44 0.34 0.34 0.35 0.23 0.35 0.44 0.23 

6608500 Soldier River at 

Pisgah, IA 

Non-ref 1054 0.07 0.53 0.62 0.59 0.58 0.57 0.47 0.61 0.65 0.34 

6762500 Lodgepole Creek 

at Bushnell, Nebr. 

Non-ref 3144 NA NA NA NA NA NA NA NA NA NA 

6770500 Platte River near 

Grand Island, 

Nebr. 

Non-ref 149314 0.18 0.07 0.29 0.10 0.12 0.15 0.11 0.11 0.23 0.30 

6775500 Middle Loup 

River at Dunning, 

Nebr. 

Ref 4740 0.50 0.16 0.29 0.26 0.24 0.26 0.24 0.19 0.18 0.16 

6775900 Dismal River 

near Thedford, 

Nebr. 

Non-ref 2502 0.06 0.00 0.04 0.00 0.01 0.02 0.01 0.01 0.02 0.00 

6784000 South Loup River 

at Saint Michael, 

Nebr. 

Ref 6009 0.51 0.68 0.88 0.42 0.52 0.55 0.39 0.56 0.65 0.58 
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6785000 Middle Loup 

River at Saint 

Paul, Nebr. 

Non-ref 20914 0.54 0.76 0.75 0.55 0.67 0.75 0.58 0.63 0.59 0.42 

6786000 North Loup River 

at Taylor, Nebr. 

Non-ref 6087 0.53 0.49 0.83 0.48 0.56 0.63 0.52 0.57 0.56 0.35 

6790500 North Loup River 

near Saint Paul, 

Nebr. 

Non-ref 11142 0.42 0.53 0.77 0.35 0.47 0.56 0.47 0.55 0.59 0.54 

6796500 Platte River near 

Leshara, Nebr. 

Non-

Ref 

0 0.12 0.47 0.64 0.63 0.59 0.64 0.45 0.55 0.58 0.34 

6799445 Logan Creek at 

Wakefield, Nebr. 

Non-ref 0 0.10 0.32 0.53 0.48 0.50 0.51 0.33 0.49 0.55 0.21 

6803530 Rock Creek near 

Ceresco, Nebr. 

Ref 311 0.08 0.35 0.61 0.61 0.63 0.66 0.53 0.64 0.62 0.34 

6804000 Wahoo Creek at 

Ithaca, Nebr. 

Non-ref 707 0.11 0.41 0.76 0.62 0.61 0.65 0.61 0.75 0.81 0.53 

6808500 West 

Nishnabotna 

River at 

Randolph, IA 

Non-ref 3434 0.00 0.50 0.66 0.61 0.64 0.71 0.67 0.71 0.60 0.31 

6809500 East Nishnabotna 

River at Red Oak, 

IA 

Non-ref 2315 0.03 0.56 0.64 0.76 0.75 0.74 0.56 0.60 0.51 0.28 
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6811500 Little Nemaha 

River at Auburn, 

Nebr. 

Non-ref 2051 0.13 0.38 0.73 0.50 0.50 0.51 0.41 0.58 0.73 0.51 

6814000 TURKEY C NR 

SENECA, KS 

Ref 715 0.13 0.33 0.37 0.41 0.42 0.46 0.47 0.52 0.39 0.17 

6817000 Nodaway River at 

Clarinda, IA 

Non-ref 1974 0.01 0.30 0.36 0.57 0.51 0.49 0.31 0.34 0.27 0.12 

6819185 East Fork 102 

River at Bedford, 

IA 

Non-ref 221 0.00 0.54 0.44 0.64 0.60 0.58 0.39 0.45 0.46 0.14 

6819500 One Hundred and 

Two River at 

Maryville, MO 

Non-ref 1334 0.14 0.32 0.35 0.35 0.35 0.38 0.31 0.34 0.22 0.00 

6821080 Little Platte River 

near Plattsburg, 

MO 

Ref 169 0.30 0.49 0.61 0.49 0.51 0.45 0.36 0.46 0.59 0.31 

6827000 SF 

REPUBLICAN R 

NR CO-KS ST 

LINE, KS 

Non-ref 4817 0.26 0.30 0.66 0.20 0.20 0.24 0.32 0.38 0.38 0.58 

6834000 Frenchman Creek 

at Palisade, Nebr. 

Non-ref 3367 0.50 0.49 0.56 0.63 0.59 0.59 0.49 0.47 0.31 0.14 
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6836500 Driftwood Creek 

near McCook, 

Nebr. 

Non-ref 935 0.05 0.00 0.06 0.00 0.00 0.01 0.07 0.08 0.16 0.13 

6838000 Red Willow 

Creek near Red 

Willow, Nebr. 

Non-ref 2124 0.02 0.15 0.37 0.12 0.10 0.08 0.03 0.05 0.10 0.38 

6843500 Republican River 

at Cambridge, 

Nebr. 

Non-ref 37451 0.31 0.36 0.46 0.47 0.40 0.42 0.43 0.49 0.43 0.26 

6844500 Republican River 

near Orleans, 

Nebr. 

Non-ref 40352 0.47 0.51 0.58 0.56 0.54 0.57 0.58 0.64 0.53 0.37 

6845110 SAPPA C NR 

LYLE, KS 

Non-ref 3854 0.07 0.18 0.42 0.10 0.10 0.11 0.09 0.12 0.15 0.35 

6847900 PRAIRIE DOG C 

AB KEITH 

SEBELIUS 

LAKE, KS 

Ref 1528 0.21 0.19 0.56 0.19 0.18 0.20 0.29 0.28 0.27 0.65 

6848500 PRAIRIE DOG C 

NR 

WOODRUFF, 

KS 

Non-ref 2608 0.14 0.10 0.54 0.12 0.13 0.16 0.08 0.17 0.28 0.30 
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6853800 WHITE ROCK C 

NR BURR OAK, 

KS 

Ref 588 0.16 0.09 0.47 0.30 0.39 0.36 0.24 0.23 0.32 0.40 

6860000 SMOKY HILL R 

AT ELKADER, 

KS 

Non-ref 9207 0.17 0.11 0.26 0.02 0.01 0.01 0.03 0.15 0.15 0.03 

6861000 SMOKY HILL R 

NR ARNOLD, 

KS 

Non-ref 13520 0.00 0.01 0.12 0.04 0.02 0.01 0.00 0.03 0.06 0.08 

6866900 SALINE R NR 

WAKEENEY, 

KS 

Non-ref 1803 0.46 0.40 0.71 0.29 0.34 0.41 0.58 0.59 0.49 0.52 

6867000 SALINE R NR 

RUSSELL, KS 

Non-ref 3890 0.27 0.20 0.28 0.17 0.18 0.23 0.35 0.41 0.56 0.63 

6869950 MULBERRY C 

NR SALINA, KS 

Ref 676 0.32 0.23 0.44 0.49 0.46 0.44 0.37 0.34 0.25 0.13 

6872500 NF SOLOMON 

R AT PORTIS, 

KS 

Non-ref 5996 0.12 0.12 0.63 0.15 0.18 0.20 0.11 0.19 0.32 0.43 

6876700 SALT C NR 

ADA, KS 

Ref 1052 0.26 0.10 0.46 0.24 0.34 0.40 0.42 0.46 0.55 0.62 

6878000 CHAPMAN C 

NR CHAPMAN, 

KS 

Ref 777 0.16 0.07 0.21 0.27 0.27 0.26 0.27 0.24 0.17 0.21 
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6882000 Big Blue River at 

Barneston, Nebr. 

Non-ref 11518 0.07 0.45 0.52 0.58 0.58 0.66 0.59 0.64 0.59 0.33 

6883000 Little Blue River 

near Deweese, 

Nebr. 

Non-ref 2549 0.16 0.26 0.43 0.23 0.25 0.30 0.25 0.28 0.23 0.17 

6884000 Little Blue River 

near Fairbury, 

Nebr. 

Non-ref 6087 0.01 0.44 0.32 0.43 0.46 0.53 0.41 0.49 0.42 0.10 

6885500 BLACK 

VERMILLION R 

NR 

FRANKFORT, 

KS 

Ref 1062 0.22 0.38 0.33 0.40 0.42 0.42 0.35 0.41 0.41 0.22 

6888500 MILL C NR 

PAXICO, KS 

Ref 824 0.54 0.60 0.54 0.53 0.57 0.60 0.59 0.65 0.64 0.30 

6889200 SOLDIER C NR 

DELIA, KS 

Ref 386 0.39 0.40 0.52 0.56 0.64 0.67 0.56 0.58 0.54 0.32 

6889500 SOLDIER C NR 

TOPEKA, KS 

Ref 751 0.51 0.39 0.44 0.44 0.48 0.49 0.42 0.45 0.48 0.25 

6892000 STRANGER C 

NR 

TONGANOXIE, 

KS 

Ref 1052 0.60 0.45 0.53 0.43 0.55 0.59 0.45 0.48 0.54 0.39 
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6897500 Grand River near 

Gallatin, MO 

Non-ref 5828 0.11 0.39 0.52 0.44 0.50 0.59 0.52 0.52 0.41 0.08 

6903400 Chariton River 

near Chariton, IA 

Ref 471 0.01 0.53 0.80 0.52 0.67 0.72 0.75 0.70 0.54 0.25 

6906800 Lamine River 

near Otterville, 

MO 

Ref 1406 0.40 0.61 0.65 0.77 0.77 0.77 0.67 0.68 0.61 0.19 

6909500 Moniteau Creek 

near Fayette, MO 

Ref 195 0.02 0.43 0.41 0.40 0.49 0.64 0.67 0.57 0.31 0.02 

6910800 MARAIS DES 

CYGNES R NR 

READING, KS 

Ref 458 0.49 0.59 0.44 0.43 0.48 0.55 0.57 0.58 0.46 0.11 

6911490 SALT C AT 

LYNDON, KS 

Ref 253 0.36 0.54 0.39 0.34 0.43 0.55 0.62 0.60 0.45 0.13 

6917000 L OSAGE R AT 

FULTON, KS 

Ref 813 0.31 0.41 0.42 0.49 0.52 0.54 0.41 0.40 0.22 0.11 

6917060 Little Osage 

River at Horton, 

MO 

Non-ref 1290 0.02 0.14 0.10 0.15 0.16 0.22 0.24 0.15 0.04 0.01 

6918460 Turnback Creek 

above Greenfield, 

MO 

Ref 653 0.16 0.31 0.52 0.55 0.55 0.54 0.48 0.40 0.23 0.02 

6921200 Lindley Creek 

near Polk, MO 

Ref 290 0.36 0.25 0.28 0.54 0.50 0.45 0.30 0.23 0.12 0.00 
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6923950 Niangua River at 

Tunnel Dam near 

Macks Creek, 

MO 

Non-ref 1549 0.26 0.21 0.24 0.36 0.39 0.44 0.39 0.28 0.17 0.02 

6926000 Osage River near 

Bagnell, MO 

Non-ref 36260 0.17 0.43 0.33 0.50 0.52 0.61 0.62 0.47 0.27 0.01 

6928000 Gasconade River 

near Hazelgreen, 

MO 

Ref 3238 0.33 0.20 0.31 0.57 0.57 0.53 0.36 0.25 0.12 0.00 

6928300 Roubidoux Creek 

above Fort 

Leonard Wood, 

MO 

Ref 427 0.00 0.28 0.46 0.47 0.54 0.56 0.49 0.51 0.31 0.02 

6930000 Big Piney River 

near Big Piney, 

MO 

Ref 1450 0.01 0.10 0.25 0.26 0.35 0.39 0.38 0.32 0.19 0.02 

7014500 Meramec River 

near Sullivan, 

MO 

Ref 3820 0.00 0.38 0.40 0.43 0.45 0.51 0.46 0.41 0.32 0.17 

7043500 Little River Ditch 

No. 1 near 

Morehouse, MO 

Non-ref 1166 0.20 0.15 0.52 0.37 0.47 0.49 0.47 0.39 0.22 0.29 
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7057500 North Fork River 

near Tecumseh, 

MO 

Ref 1453 0.34 0.09 0.31 0.44 0.55 0.55 0.56 0.41 0.30 0.19 

7063000 Black River at 

Poplar Bluff, MO 

Non-ref 3225 0.04 0.08 0.21 0.19 0.29 0.38 0.62 0.57 0.28 0.34 

7066000 Jacks Fork at 

Eminence, MO 

Ref 1031 0.00 0.24 0.45 0.50 0.62 0.63 0.60 0.47 0.41 0.22 

7137000 FRONTIER 

DITCH NR 

COOLIDGE, KS 

Non-ref 0 0.00 0.03 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.03 

7137500 ARKANSAS R 

NR COOLIDGE, 

KS 

Non-ref 65812 0.61 0.72 0.87 0.45 0.52 0.59 0.68 0.65 0.72 0.81 

7138000 ARKANSAS R 

AT SYRACUSE, 

KS 

Non-ref 66726 0.51 0.71 0.83 0.40 0.48 0.55 0.66 0.59 0.64 0.83 

7142300 RATTLESNAKE 

C NR 

MACKSVILLE, 

KS 

Ref 1805 0.22 0.18 0.23 0.06 0.11 0.18 0.22 0.25 0.26 0.14 

7144780 NF 

NINNESCAH R 

AB CHENEY 

RE, KS 

Ref 1847 0.51 0.45 0.64 0.46 0.52 0.54 0.43 0.38 0.27 0.28 
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7145700 SLATE C AT 

WELLINGTON, 

KS 

Ref 399 0.68 0.63 0.59 0.36 0.46 0.59 0.69 0.62 0.56 0.35 

7149000 MEDICINE 

LODGE R NR 

KIOWA, KS 

Ref 2339 0.56 0.52 0.49 0.31 0.36 0.48 0.54 0.52 0.60 0.35 

7157500 CROOKED C 

NR 

ENGLEWOOD, 

KS 

Non-ref 2997 0.59 0.44 0.46 0.46 0.52 0.56 0.58 0.52 0.53 0.29 

7167500 OTTER C AT 

CLIMAX, KS 

Ref 334 0.23 0.38 0.30 0.21 0.28 0.37 0.41 0.42 0.28 0.07 

7169500 FALL R AT 

FREDONIA, KS 

Non-ref 2142 0.35 0.62 0.55 0.48 0.57 0.70 0.70 0.67 0.50 0.15 

7184000 LIGHTNING C 

NR MCCUNE, 

KS 

Ref 510 0.23 0.36 0.43 0.53 0.60 0.66 0.64 0.54 0.34 0.10 

 


