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The estimation of a data matrix contains two parts: the well estimated

and the poorly estimated. The latter is usually throwing away because the

estimations are off. As argued in this paper, ignoring is the wrong thing to do

as the poorly estimated part is orthogonal to the well estimated. I will show

how to use such orthogonality information via robust optimization and provide

application in portfolio optimization, least-square regression, and dimension

reduction. Across a large number of experiments, utilizing the orthogonality

information consistently improves the performance.
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Chapter 1

Introduction

1.1 Two-Step Apporach

The most direct way to make decisions based on analytics of data in-

volves two steps. First, I find the best estimations using historical data. Next,

I use these estimations as inputs to an optimization problem and solve it to

obtain decisions. However, as shown in DeMiguel et al. (2009b), such proce-

dure can be seriously problematic: the most straightforward equally-weighted

portfolio, which divides any investment equally amongst the risky assets, has

an embarrassingly good out-of-sample performance compared to 14 sophisti-

cated portfolios that belong to the two-step family. The classical portfolio

(Markowitz, 1952) is among them.

As will be shown later, the primary cause is the compounding effect

of the optimization-driven error amplification on the initial estimation errors.

Specifically speaking, the bottom eigenvalues and corresponding eigenvectors

tend to be hard to estimate than the others. Unfortunately, the optimization

procedure puts too much weights the former resulting in amplifying the error

which leads to an unacceptable performance.

A common way to mitigate this effect is to directly ignore the bottom
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eigenpairs. Indeed, the popular principal components analysis (PCA) related

ideas take this approach. However, I want to argue there is still information

in the bottom eigenpairs and they should not be thrown away. The intuition

is that the space spanned by the bottom eigenvectors are well estimated be-

cause they are orthogonal to the other well-estimated eigenvectors. I call this

orthogonality the forgotten information.

I propose a conservative way to utilize the forgotten orthogonality infor-

mation and demonstrate its value in portfolio optimization, linear regression,

and dimension reduction. That is to say, by modifying the second-step opti-

mization based on the characteristics of the first-step estimation error, lots of

improvements can be achieved.

1.2 Structure of the Thesis

Chapter 2 uses portfolio optimization to introduce the structure of es-

timation errors, namely the well estimated and the poorly estimated part, and

how the errors from the poorly estimated are amplified through the optimiza-

tion. I propose a way of portfolio construction by mitigating the amplification

issue in Chapter 3. This solution involves using the poorly estimated part

via the robust optimization. Chapter 4 focuses on generalizing the idea to-

wards least-squares regression problems. Finally, in Chapter 5, I explore the

possibility of utilizing the orthogonality information in dimension reduction

applications.

The thesis closely depends on Zhao et al. (2019a) and Zhao et al.

2



(2019b) which are my collaboration works with Prof. Chakrabarti and Prof.

Muthuraman.
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Chapter 2

Error Amplification in Portfolio Optimization

2.1 Introduction

The seminal mean-variance portfolio framework (Markowitz, 1952) ini-

tiates the modern era of finance by constructing a portfolio by solving an

intuitive optimization problem. Here the target is to minimize the variance

of a portfolio given its expected return is larger than a target level. Unfortu-

nately, the optimizer does not know either the true expected return and the

true covariance matrix. It is natural to use the corresponding sample estimates

are used instead. Namely, creating a two-step approach: first estimate then

optimize. However, the resulting portfolio has an unacceptable out-of-sample

performance (Jobson and Korkie, 1981; Frost and Savarino, 1986, 1988; Jorion,

1986; Michaud, 1989). Even the simpler sample-variance minimizing portfolio,

denoted as the estimated Min-Var portfolio, often has a similarly unacceptable

performance (Jagannathan and Ma, 2003; DeMiguel et al., 2009b).

A plethora of research papers suggest ways to address this poor out-

of-sample performance. However, DeMiguel et al. (2009b) examine 14 popu-

This Chapter closely follows Long Zhao, Deepayan Chakrabarti, and Kumar Muthur-
man, ‘Portfolio construction by mitigating error amplification: The bounded-noise portfolio’.
Operations Research, 2019. The method is fine tuned by all authors while I implement all
the experiments.
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lar methods in terms of their Sharpe ratio, certainty-equivalent return, and

turnover, and find that none of the methods consistently outperforms the

näıve equally-weighted portfolio which assigns the same weight across all risky

assets.

Recently, some papers start to focus on improving the estimated Min-

Var portfolio which seems to be an easier problem than the mean-variance

one. Among them, some manage to obtain better performance than the näıve

portfolio. Next, I will present more details about these methods.

2.2 Literature Review

I divide the literature into three groups. The first category tries to

develop methods that provide better covariance estimates than the sample

covariance matrix. Namely, it focuses on the first estimation step. In the

second category, the estimated Min-Var portfolio is combined with the equally-

weighted portfolio to maximize a utility measure other than variance. The

third category includes modification of the optimization problem itself with

the hope of improving performance. That is to say, the second optimization

step is the battlefield.

1. Improving covariance estimation: A lot of research exists on the

estimation of the covariance matrix in the context of portfolio optimization.1

One common approach is to shrink the sample covariance. Ledoit and Wolf

1For a more detailed discussion, please see Ledoit and Wolf (2012, 2017) and the refer-
ences therein.
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(2003) shrink the sample covariance matrix toward the single-index covariance

matrix. One can also shrink the eigenvalues of the sample covariance matrix

linearly (Ledoit and Wolf, 2004) or nonlinearly (Ledoit and Wolf, 2012, 2017).

The former is equivalent to shrinking the sample covariance matrix toward

identity matrix. The shrinkage level is chosen such that it is asymptotically

optimal under the Frobenius norm. The shrinkage methods have been shown

to dominate the multi-factor models on the real-world data (Ledoit and Wolf,

2003). A second approach is to use robust statistics to counteract sudden

movements in the stock price. DeMiguel and Nogales (2009) provide a careful

evaluation on both simulated and real-world datasets and show that the robust

statistics can indeed improve performance. A third approach is to use the

information from the option price documented in DeMiguel et al. (2013b).

They indicate that using option-implied volatility can reduce the out-of-sample

standard deviation by more than 10% for various modified Min-Var portfolios

on two real-world datasets.

Estimation errors might be reduced by the these methods, but they

cannot be eliminated, and I will show that this error is amplified by the solver

of the portfolio optimization.

2. Combining with the equally-weighted portfolio: The second

category is inspired by the good performance of the equally-weighted portfolio

(Jobson and Korkie, 1980; DeMiguel et al., 2009b; Duchin and Levy, 2009).

With five reasonable assumptions, Frahm and Memmel (2010) prove that the

portfolio constructed by carefully combining the estimated Min-Var portfolio

6



with any reference portfolio dominates the former. They use a loss function

that is closely related to out-of-sample variance. In the extensive simulation

test and a small real-world dataset evaluation, they take the equally-weighted

portfolio as the reference portfolio and demonstrate the benefit of the com-

bination. By minimizing the expected utility loss, Tu and Zhou (2011) esti-

mate the combination level of each of four different portfolios and the equally-

weighted portfolio. Using an exhaustive assessment of both the simulated and

the real-world datasets, they show that the new portfolios perform better than

the equally-weighted portfolio. DeMiguel et al. (2013a) use different criteria

and calibration methods to decide the combination level and show that the

combined portfolios can achieve good performance across several real-world

datasets.

I will provide theoretical reasons for the good performance of the equally-

weighted portfolio and propose an intuitive way to combine it with the esti-

mated Min-Var portfolio.

3. Modifying the optimization: In the third category, the port-

folio optimization is modified by penalizing portfolios with some predefined

characteristics (or, equivalently, by adding extra constraints based on these

characteristics). The most common modification is to avoid aggressive short

positions. An extreme case is the no-shorting portfolio, which avoids shorting

altogether. This approach is analyzed in Jagannathan and Ma (2003), who

argue that the “wrong” no-shorting constraint helps because it reduces the

effects of the estimation error. They give evidence for better performance us-
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ing both simulated and real-world data. A weaker version of the no-shorting

constraint involves penalizing a norm of the portfolio weights,

min
w
w′Σw + η‖w‖pp subject to w′1 = 1. (2.1)

Two common norms are the L1 norm (Welsch and Zhou, 2007; Brodie et al.,

2009; Fan et al., 2012) and the L2 norm (Lauprête, 2001; DeMiguel et al.,

2009a). Among these studies, Fan et al. (2012) is the only one that uses

both simulated and real-world data to show better performance and that also

provides a mathematical justification. Lauprête (2001) takes the view that

norm-constrained portfolios are regularizations that counteract the deviations

from the normality of the distribution of returns. Empirical evidence is pro-

vided via simulations, but only one real-world dataset is used. DeMiguel et al.

(2009a) provide more comprehensive empirical results. They show that the

norm-constrained portfolios dominate the equally-weighted portfolio and the

estimated Min-Var portfolio, in terms of both the out-of-sample variance and

the Sharpe ratio. They also show the relation between norm-constrained port-

folios and Bayesian priors on the sample covariance matrix. Gotoh and Takeda

(2011) find that the norm constraints are equivalent to the robust constraints

associated with the return vector, and Olivares-Nadal and DeMiguel (2018)

point out that the norm constraints can be interpreted as the transaction costs.

These relations indicate that the same basic idea underpins many seemingly

disparate models.

However, the norm-constrained approach presents several problems,

8



stemming primarily from the ad hoc nature of merely modifying the objec-

tive to keep the portfolio weights low. First, Green and Hollifield (1992) argue

that the optimal portfolio can have sizeable asset weights. Hence, although

norm constraints might help, they also might be wrong because they exclude

the optimal solution, which involves large portfolio weights. Second, the choice

of the norm is arbitrary. Third, the performance of the norm-constrained port-

folios depends on the selection of a parameter that captures the importance of

keeping the portfolio weights low; that is, the coefficient of the norm. The best

parameter value depends on the particular financial dataset and the amount

of training data, and it even changes over the time horizon of a dataset. This

makes parameter tuning particularly important.

I will show why the norm-constrained portfolio can achieve good out-

of-sample performance and how to construct an even better portfolio endoge-

nously.

2.3 Estimation Errors

In this section, I describe the errors from estimating covariance matrix.

Though there are different estimates based on different criterions, surprisingly,

their errors all share a similar structure.

The following proposition shows that the relative errors (percentage

deviations from the true values) in estimating the large eigenvalues of the true

covariance matrix are small while the relative errors in estimating the small

eigenvalues are large. I represent the true covariance matrix as Σ and its

9



estimate as Σ̂. Here, || · ||op denotes the operator norm. The sample size is n,

and the number of assets is p.

Proposition 2.3.1 (Eigenvalue Concentration). Let λi and λ̂i represent the

ith largest eigenvalues of Σ and Σ̂, respectively. Then I have:

|λi − λ̂i|
λi

≤ ‖Σ− Σ̂‖op
λi

.

Proof. By Weyl’s inequality, |λi − λ̂i| ≤ ‖Σ− Σ̂‖op. Dividing both sides by λi

proves the proposition.

Estimation errors for the eigenvectors are a bit more complicated to

characterize. The following Lemma shows that the estimation error not only

depends on ‖Σ− Σ̂‖op, but also how separated the eigenvalues are.

Lemma 2.3.2 (Concentration of Eigenvectors (Yu et al., 2015)). Let Σ, Σ̂ ∈

Rp×p be symmetric, with eigenvalues λ1 ≥ . . . ≥ λp and λ̂1 ≥ . . . ≥ λ̂p,

respectively. Fix 1 ≤ r ≤ s ≤ p, and assume that min(λr−1−λr, λs−λs+1) > 0,

where λ0 =∞ and λp+1 = −∞. Let d = s−r+1. Let V = (vr,vr+1, . . . ,vs) ∈

Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthogonal columns satisfying

Σvj = λjvj and Σ̂v̂j = λ̂jv̂j; then there exists an orthogonal matrix Ô ∈ Rd×d,

such that:

‖V̂ Ô − V ‖F ≤
23/2d1/2‖Σ− Σ̂‖op

min (λr−1 − λr, λs − λs+1)
.

It is worth to notice that given data, ‖Σ− Σ̂‖op is a constant. That is

to say, different estimates might affect the tightness of the bounds but won’t

change the structure. If Σ̂ happens to be the sample covariance, Vershynin

10



(2011) provides a description of ||Σ − Σ̂||op in terms of n and p: under mild

conditions, a high-probability upper bound of ||Σ − Σ̂||op is roughly of order

(p/n)
1
2
− 2
q , where the qth moment of the data is bounded. Thus, for a given

number of assets p, the difference decays when more observations are available,

as expected.

Previous work on financial datasets shows that a few factors can ex-

plain a significant portion of the variance of asset returns (Fama and French,

2015). This finding suggests that Σ has only a few large eigenvalues (whose

corresponding eigenvectors mirror the relevant factors) while the most of the

eigenvalues are small (so their eigenvectors have just a small contribution to

the variance of asset returns).

This intuition is supported by my observations from a historical co-

variance matrix constructed from the monthly returns of the Fama-French

value-weighted dataset with 96 instruments, aggregated over 625 months. Fig-

ure 2.1 shows the eigenvalues of this “true” covariance matrix, as well as those

of a sample covariance matrix simulated from the covariance matrix (both

of which are ordered from largest to smallest eigenvalue). Observe that the

largest eigenvalues are well separated, but the smallest ones are densely packed

(note that I scale the y-axis logarithmically). Note also that the relative dif-

ference between the estimated and the true eigenvalues is small for the largest

eigenvalues, implying that they are relatively well estimated. In addition to

these simulation results and the arguments from the finance literature, I see

widespread evidence of similar phenomena in the eigenvalue spectra of many

11



real-world networks (Mihail and Papadimitriou, 2002; Chakrabarti and Falout-

sos, 2006).

Figure 2.1: Distribution of True and Estimated Eigenvalues
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2.4 Error Amplification

The previous discussion shows that the largest eigenvalues and related

eigenvectors in the covariance estimate Σ̂ are relatively good estimates of the

corresponding eigenvalues and eigenvectors of the true covariance matrix Σ.

The smaller eigenvalues and the corresponding eigenvectors are poor estimates.

Hence, I separate the true eigenvectors (v1, . . . ,vp) into two sets: from index

1 to k, and from k + 1 to p. When the split index k is chosen appropriately, I

expect the first set to be better estimated than the second set. I will show that

12



the first set of estimated eigenvalues and eigenvectors are also more reliable

for portfolio construction, while the remaining ones are not.

For now, given a k, denote the space spanned by v1, . . . ,vk as S and the

space spanned by the other eigenvectors as N. To understand how these two

parts influence portfolio optimization, I first provide a new characterization of

the true Min-Var portfolio.

Lemma 2.4.1 (Portfolio Decomposition). For any separation (S, N), the op-

timal portfolio w∗ can be expressed as:

w∗ = αw∗S + (1− α)w∗N , (2.2)

α =
1/RV (w∗S)

1/RV (w∗S) + 1/RV (w∗N)
. (2.3)

Here w∗S and w∗N are defined as the solution to the following optimization

problems,

w∗S = arg min
w

w′Σw,

subject to w′1 = 1,

w ∈ S,

∣∣∣∣∣∣∣∣∣
w∗N = arg min

w
w′Σw,

subject to w′1 = 1,

w ∈ N.

That is, w∗S is the solution to the Min-Var problem given the restriction of

being a linear combination of the first k eigenvectors (the vectors that span

S) and w∗N the solution with the restriction of being a linear combination of

the other eigenvectors. In the above, RV (w) is the out-of-sample variance

(henceforth, the realized variance2) of w, namely,

RV (w) = w′Σw.

2Our definition of realized variance is slightly different from some in the literature. For

13



Proof. Using the Lagrangian multiplier method, I can easily find:

w∗ =
Σ−11

1′Σ−11
=

∑
i
v′i1

λi
vi∑

i
(v′i1)2

λi

,

where I use Σ−1 =
∑

i(1/λi)viv
′
i. Similarly, I have:

w∗S =

∑k
j=1

v′j1

λj
vj∑k

j=1

(v′j1)2

λj

, RV (w∗S) =
1∑k

j=1

(v′j1)2

λj

,
1

RV (w∗S)
w∗S =

k∑
j=1

v′j1

λj
. (2.4)

Repeat this process for w∗N , and some algebraic manipulations yield Equa-

tion (2.2).

Thus, the true Min-Var portfolio can be seen as a convex combination

of two portfolios: one restricted to space S and the other confined to space

N. The weight of each portfolio is proportional to the inverse of its realized

variance.

Now consider ŵ∗. It can be expressed in the same form as in Lemma 2.4.1,

but with the true parameters replaced by their estimated counterparts. In par-

ticular, the eigenspace S is replaced by Ŝ = span(v̂1, . . . , v̂k); N is replaced

by N̂ = span(v̂k+1, . . . , v̂p); the portfolios w∗S and w∗N are replaced by ŵ∗S

and ŵ∗N . I use ŵ∗S instead of ŵ∗
Ŝ

solely to simplify notation. Also, crucially,

the realized variance RV (w) = w′Σw is replaced by the estimated variance

example, Hansen and Lunde (2006) directly use the square of returns without subtracting
the sample mean. This definition is reasonable when the sample mean is close to 0 and
much smaller than the sample variance. This argument is validated in studies that use daily
data. However, I use monthly data, and the sample mean is not negligible.
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Figure 2.2: The Ratio between RV and EV
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EV (w) = w′Σ̂w. Thus, the relative weight of ŵ∗S to ŵ∗N in the overall port-

folio ŵ∗ (Equation 2.3) is now driven by the estimated variance instead of the

realized variance.

To further illustrate the differences between the realized variance and

the estimated variance, I set Σ̂ to be the sample covariance matrix and

perform simulations on the Fama-French value-weighted dataset comprising 96

risky assets. In the simulation, I assume that the true covariance matrix Σ and

the true expected return µ are the sample covariance matrix and the sample

mean using all monthly data from July 1963 to July 2015 (625 observations).

I also assume that the returns follow a multivariate normal distribution with

mean µ and covariance Σ, and I draw 120 observations (10-year monthly data)
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from this distribution.

I calculate the realized and the estimated variances for various split

indices k. I repeat this experiment 100 times and calculate related averages.

Figure 2.4 shows the ratio of realized variance to estimated variance for ŵ∗S

and ŵ∗N . The realized variance of ŵ∗S is similar to its estimated variance when

k is small (Figure 2.4 left). However, for ŵ∗N , the realized variance is much

larger than its estimated variance (Figure 2.4 right). Indeed, it is at least

20 times larger for any k. This underestimation means that ŵ∗N , which uses

the poorly-estimated parameters, gets overweighted significantly when ŵ∗S and

ŵ∗N are combined to construct ŵ∗.

2.5 Why Do Norm Constraints Work?

In this section, I will use simulations to show that norm-constrained

portfolio perform well not because they propose the right constraints but be-

cause they limit the error amplification phenomenon which is the primary

cause of unacceptable performance of the estimated Min-Var portfolio.

2.5.1 Imposing the Wrong Constraints

A penalty on the p-norm of portfolio weights, ‖w‖p, is equivalent to a

constraint of the form ‖w‖p ≤ δ for some δ > 0. Such a constraint can be

justified if it renders infeasible a large set of poorly performing portfolios that

might otherwise be selected because of estimation errors. However, the con-

straint must not be so restrictive that even the optimal portfolio w∗ becomes
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Figure 2.3: Realized Standard Deviation (RSD) with Respect to Different
Norm-Constraint Levels

L1-norm, the vertical line: δ = ||w∗||1 L2-norm, the vertical line: δ = ||w∗||2
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Figure 2.3 shows how the realized standard deviation (RSD) varies with

different constraint levels, δ, for the L1 and L2 norm-constrained portfolios

under the simulations using the Fama-French value-weighted dataset with 96

assets. In both cases, as expected, the RSD is too high at the extremes, because

the constraints become either too strict or too weak. However, the optimum

RSD is achieved for a constraint level at which the optimal is infeasible; indeed,

the optimum δ is about half of the norm of the optimal portfolio ‖w∗‖p. This

agrees with Green and Hollifield (1992), who show that the optimal portfolio

could have large weights. Thus, the norm-constrained methods can achieve a
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low RSD only by imposing the wrong constraints, and they cannot be justified

simply as a means of capping the estimation error effects.

2.5.2 Wrong Constraints Combat Error Amplification Indirectly

The next lemma shows how, for a given k, any portfolio can be split

into two unique “projection” portfolios on the top-k eigenspace and the others,

and a specific mixing proportion.

Lemma 2.5.1 (Projection Portfolios). Denote the eigenvectors of Σ̂ by v̂1, . . . , v̂p.

For any integer k between 1 and p, let Ŝ = span (v̂1, . . . , v̂k) and N̂ = span (v̂k+1, . . . , v̂p).

Also introduce matrix Ŝ = (v̂1, . . . , v̂k), and matrix N̂ = (v̂k+1, . . . , v̂p). For

any weight w that satisfies w′1 = 1, there is a unique decomposition,

w = θwS + (1− θ)wN , (2.5)

such that wS ∈ Ŝ, w′S1 = 1, and wN ∈ N̂, w′N1 = 1. These “projection

portfolios” wS and wN , and the inferred mixing proportion θ, are given by:

θ = w′ŜŜ ′1, wS =
ŜŜ ′w

w′ŜŜ ′1
, wN =

N̂N̂ ′w

w′N̂N̂ ′1
. (2.6)

Also, as discussed in Section 2.4, the mixing proportion for the esti-

mated Min-Var portfolio is

1/EV (ŵ∗S)

1/EV (ŵ∗S) + 1/EV (ŵ∗N)
. (2.7)

Proof. Clearly,wS andwN as defined in Equation (2.6) satisfywS ∈ Ŝ,w′S1 =

1 and wN ∈ N̂, w′N1 = 1. Combining ŜŜ ′ + N̂N̂ ′ = I with w′1 = 1, I have

1 = w′1 = w′(ŜŜ ′ + N̂N̂ ′)1 = θ +w′N̂N̂ ′1,
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which implies 1 − θ = w′N̂N̂ ′1. Plugging this equation into the right-hand

side of Equation (2.5),

RHS = ŜŜ ′w + N̂N̂ ′w = w = LHS.

In this way, I prove that Equation (2.6) gives one solution. Assume that there

is another solution,

w = θ̃w̃S + (1− θ̃)w̃N .

Then, I have

θwS − θ̃w̃S = −(1− θ)wN + (1− θ̃)w̃N .

The left-hand side belongs to Ŝ while the right-hand side belongs to N̂. Because

Ŝ ∩ N̂ = 0, both sides are 0. However, w′S1 = w̃′S1 = 1. Therefore, the

following holds:

0 = 0′1 = (θwS − θ̃w̃S)′1 = θ − θ̃.

The equation implies that wS = w̃S and wN = w̃N .

The strong performance of norm-constrained portfolios could be be-

cause they have better ‘projection portfolios than the estimated Min-Var port-

folio, or because they use a better mixing proportion than relying on the es-

timated variance (Equation 2.7). I explore this by simulating sample returns

from a multivariate normal distribution (with µ and Σ from the Fama-French

value-weighted dataset) and constructing portfolios from these samples. I then
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calculate the RSD of the corresponding projection portfolios. All results are

averaged over 100 iterations.

For brevity, I will call the L1-norm constrained portfolio the L1 portfolio

with weight vector ŵL1 ; the L2 portfolio with weight vector ŵL2 is defined

accordingly3. Here, k is chosen to be the largest number that satisfies the

bootstrapped estimated ratio of RV (ŵS)/EV (ŵS) is smaller than 1.25. I also

tested different thresholds, such as 1.15 and 1.4. The results are similar.

Table 2.1: RSD of Projection Portfolios

Portfolio ŵ∗S ŵL1
S ŵL2

S wEW
S ŵ∗N ŵL1

N ŵL2
N wEW

N

Mean RSD(%) 3.696 3.753 3.719 5.168 7.687 6.008 4.928 4.948

Table 2.1 compares the RSD of the projection portfolios for the L1 and

L2 portfolios, as well as the equally-weighted portfolio (EW). Except the EW

portfolio, the signal-space projections of all portfolios the have similar RSD.

Thus, even though the L1 and L2 portfolios do not explicitly construct a split,

they indirectly use the top-k eigenpairs just as effectively.

The N-space projections of the L1 and L2 portfolios achieve a much

lower RSD than the aggressive noise-only portfolio ŵ∗N . Thus, norm-based

penalties indirectly lead to improved N-space portfolios. Also, the N-space

projection of the EW portfolio is as good as the projection of the L2 portfolio

and much better than the L1 portfolio.

3The penalty parameter is chosen by leave-one-out crossvalidation, as in DeMiguel et al.
(2009a). I do a bisection search within the interval [10−4, 104] to find the parameter with
the lowest cross-validated standard deviation. This “best” parameter is then used to build
a portfolio using the entire 120 monthly returns.
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Table 2.2: Effects of Mixing Proportion on RSD

Portfolio ŵL1 ŵL̃1 ŵL2 ŵL̃2 ŵ∗S
Mean RSD(%) 3.700 4.215 3.531 3.979 3.696

To investigate the effect of the mixing proportion, I create new port-

folios L̃1 and L̃2 that have the same projection portfolios as the L1 and L2

portfolios respectively, but where the mixing proportion is calculated using

estimated variances (Equation 2.7).

Table 2.2 shows that the L̃1 and L̃2 portfolios are much worse than

the L1 and L2 portfolios, respectively. In fact, they are even worse than the

signal-only portfolio, ŵ∗S. This indicates that even with improved noise-space

projection portfolios, finding the right mixing proportion is essential.

The inferred mixing proportion θ (from Lemma 2.5.1) for the L1 port-

folio is, on average, 1.65 times as large as it for the L̃1 portfolio. The corre-

sponding ratio is 2.09 for the L2 portfolio versus the L̃2 portfolio. This shows

that norm-constrained portfolios avoid overweighting the noise-space projec-

tion portfolios, and hence escape the error amplification trap.
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Chapter 3

The Unified Portfolio

3.1 Intuitions

Based on Section 2.3, I know the top-k eigenpairs tend to be much

better estimates than other eigenpairs. Thus, it is reasonable to trust the

former and obtain the corresponding optimal portfolio. This portfolio happens

to be ŵ∗S, the S-space projection portfolio of the estimated Min-Var portfolio.

For the other eigenpairs, it is tempting to throw them away since they tend to

be bad estimates. However, “poorly estimated” does not imply unimportant:

the N space is well estimated because it is orthogonal to the well-estimated

S space while each eigenvector from the N space is poorly estimated. The

orthogonality implies that a portfolio from the noise space has the potential to

improve performance when combined with ŵ∗S. This space-level information

motives a N-space projection portfolio which might only utilizes the space-level

information. A perfect candidate is wEW
N , the N-space projection portfolio of

the equally-weighed portfolio. Not only wEW
N only depends on the N space but

also the good out-of-sample performance of the equally-weighted portfolio has

This Chapter closely follows Long Zhao, Deepayan Chakrabarti, and Kumar Muthur-
man, ‘Portfolio construction by mitigating error amplification: The bounded-noise portfolio’.
Operations Research, 2019. The method is fine tuned by all authors while I implement all
the experiments.
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been widely documented in the literature (Jobson and Korkie, 1980; DeMiguel

et al., 2009b; Duchin and Levy, 2009).

Table 2.1 provides evidence for the previous intuition. Among four

competing S-space projection portfolios, ŵ∗S achieves the best performance.

Meanwhile, wEW
N is a close runner-up among four N-space projection portfo-

lios. Moreover, wEW
N just has a slightly higher RSD than ŵ∗S implying that

throwing away other eigenpairs might be wasteful. What left is to choose k

endogenously and figure out a smart way to combine ŵ∗S and wEW
N .

3.2 Construction of the Unified Portfolio

Justifications for ŵ∗S. By construction, the S space consists of sample

eigenvectors whose estimated variance is a reliable indicator of their realized

variance. Thus, ŵ∗S, constructed from these sample eigenvectors should also

be reliable. Mathematically speaking, this portfolio is equivalent to a PCA-

based portfolio that ignores a certain number of the low eigenvalues of Σ̂ and

corresponding eigenvectors.

Justifications for wEW
N . Because the eigenpairs which belong to the

N space are poorly estimated, one way to robustness is to pick a portfolio that

has the best “worst-case” realized variance (i.e., the portfolio that is robust

against all possible configurations of eigenvectors from N̂ and is also robust

against the corresponding eigenvalues). I could achieve this solution by solving

23



the following optimization problem:

min
w

max
Ψ∈U

w′Ψw,

subject to w′1 = 1

w ∈ N̂,

(3.1)

where U is the uncertainty set of all possible covariance matrices Ψ that have

the same signal eigenvectors and eigenvalues as Σ̂. Since Equation (3.1) con-

siders only w ∈ N̂, I can use the following uncertainty set:

U = {Ψ |N̂ ′ΨN̂ � bIn−k̂+1}, (3.2)

where b is a constant and In−k̂+1 is a (n− k̂+ 1)× (n− k̂+ 1) identity matrix.

The idea of a robust portfolio has been expressed previously in the lit-

erature in the form of the equally-weighted portfolio. This strategy is the right

one in the extreme case where no historical data is available. Otherwise, ap-

plying this idea just to the noise space is reasonable. Indeed, the projection of

the equally-weighted portfolio on the noise space yields precisely the portfolio

of Equation (3.1), as shown in Lemma 3.2.1.

Lemma 3.2.1 (The Solution to the Robust Optimization). The solution to

the robust optimization problem Equation (3.1) with the uncertainty set defined

in Equation (3.2) is the projection portfolio of the equally-weighted portfolio

on N̂.

Proof. Because w ∈ N̂, I have w = N̂a. Thus,

max
Ψ∈U

w′Ψw = max
Ψ∈U

a′N̂ ′ΨN̂a = ba′In−k+1a.
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The last equality holds because of the definition of the uncertainty set. Then

Equation (3.1) becomes

min
a

ba′In−k+1a,

subject to a′(N̂ ′1) = 1.

Its solution is

a∗ =
N̂ ′1

1′N̂N̂ ′1
,

which implies that the solution to the robust optimization is

N̂a∗ =
N̂N̂ ′1

1′N̂N̂ ′1
.

From Equation (2.6), the projection portfolio of the equal-weighted portfolio

on N̂ is:

wEW
N =

N̂N̂ ′(1/p)

(1/p)′N̂N̂ ′1
=

N̂N̂ ′1

1′N̂N̂ ′1
= N̂a∗.

Combine ŵ∗S and wEW
N . For each possible split k, I use cross-

validation to estimate the variance of ŵ∗S and wEW
N , and the covariance be-

tween them. Then the combined portfolio is set to be

wComb
k = akŵ

∗
S + (1− ak)wEW

N , (3.3)

where

ak =
ˆV ar(wEW

N )− ˆCov(ŵ∗S,w
EW
N )

ˆV ar(wEW
N )− 2 ˆCov(ŵ∗S,w

EW
N ) + ˆV ar(ŵ∗S)

. (3.4)
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If the estimations of variance and covariance are correct, ak is the optimal level

to combine ŵ∗S and wEW
N .

Estimating k. Because the eigenpap gradually decreases as the eigen-

value index grows, I also want to create a gradual change from space S to space

N. For each validation set from the cross-validation procedure, I obtain the

index of wComb
k with the lowest variance. Then I take a probabilistic view that

k can be the any of the previously selected indexes with equal probability. In

this way, a gradual change is achieved.

Figure 3.1 contrasts the classical approach with the unified procedure.

Figure 3.1: Diagram of Estimated Min-Var Compared to Unified Portfolio

Data

Σ̂: sample covariance

Data

Σ̂: sample covariance
v̂i: eigenvectors of Σ̂
k̂: estimated dimension of S

min
w

w′Σ̂w,

s.t. w′1 = 1.

min
w

w′Σ̂w,

s.t. w′1 = 1,

w ∈ Ŝ.

min
w

max
Ψ∈U

w′Ψw,

s.t. w′1 = 1,

w ∈ N̂.

estimated Min-Var, ŵ∗ ŵ∗S wEW
N

Unified Portfolio, ŵUnified

Ŝ = span(v̂1, . . . , v̂k̂) N̂ = span(v̂k̂+1, . . . , v̂p)
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3.3 Empirical Results

In this section, I compare the out-of-sample performance of the Unified

portfolio to eight other portfolios from the literature (Table 3.2) across twelve

different datasets (Table 3.1). The time period for all datasets is July 1963

to July 2015 which shares the same starting point as DeMiguel et al. (2009a).

All datasets except the ones for individual stocks come from Kenneth French’s

website.1 For the one hundred Fama and French (1992) dataset, because there

are missing values for four risky assets for an extended period, I deleted them,

leaving 96 of the original 100 portfolios. The individual stocks datasets come

from CRSP. There is a challenge in creating the stocks datasets due to market

issues like mergers, acquisitions, delistings, IPOs, etc. Ledoit and Wolf (2017)

use a procedure that provides a more stable collection of stocks than random

selections (Jagannathan and Ma, 2003; DeMiguel et al., 2009a). I use this

procedure annually and update my list by choosing the largest 100 or 500

stocks2, as measured by their market value.3 Updating the stock list selection

annually facilitates my turnover investigations as well (Section 3.3.2).

Competing methods. I consider two näıve portfolios, the equally-weighted

(EW) and the value-weighted (VW) portfolio, as my benchmarks. Every asset

in the EW portfolio is given equal weight when it is rebalanced. For the VW

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
2I only include the stocks whose returns are available for the past ten years and the

future one year.
3The number of asset changes for each update is 2.5 and 50 on average for the 100 and

500 stock dataset, respectively.
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Table 3.1: List of Datasets Considered

Dataset Abbreviation p
Six Fama and French (1992) portfolios of firms sorted by size and book-to-market 6FFEW, 6FFVW 6
Ten industry portfolios representing U.S. stock market 10IndEW, 10IndVW 10
Twenty-five Fama and French (1992) portfolios of firms sorted by size and book-to-market 25FFEW, 25FFVW 25
Forty-eight industry portfolios representing U.S. stock market 48IndEW, 48IndVW 48
One hundred Fama and French (1992) portfolios of firms sorted by size and book-to-market 96FFEW, 96FFVW 96
Top 100 market-value individual stocks with annual updates 100 100
Top 500 market-value individual stocks with annual updates 500 500

I use EW (equally-weigthed) and VW (value-weighted) to indicate the corresponding weighting type in the abbreviation.

portfolio, the fraction of the market capitalization is assigned to each asset as

its portfolio weight. DeMiguel et al. (2009b) provide a thorough analysis for

both portfolios. The EstMinVar portfolio, is the estimated Min-Var portfolio

formulated in Markowitz (1952).

In addition to these standard benchmarks, I consider three others that

add additional constraints or penalties to the Min-Var portfolio optimization

problem. The first one is the shortsale-constrained portfolio (Jagannathan and

Ma, 2003, Section 1), which has a non-negativity constraint on the portfolio

weights. I call it the NoShorting portfolio. The remaining two are norm-

constrained portfolios, with parameters set via cross-validation over standard

deviation. These portfolios are detailed in DeMiguel et al. (2009a, Section 3.1

and 3.2). The L1-norm constrained portfolio is labeled as L1, and the L2-norm

constrained portfolio is labeled as L2.

Finally, I also include two relatively recent and well-performing bench-

marks. The partial Min-Var portfolio, whose parameter is calibrated by max-

imizing the portfolio return in the previous period, is labeled as PARR and

is detailed in DeMiguel et al. (2009a, Section 3.3). Ledoit and Wolf (2017,

Section 3.4) introduce the nonlinear shrinkage method, which provides an ex-
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Table 3.2: List of Portfolios Considered in Empirical Experiments

Model Abbreviation
Unified Portfolio Unified
Equally-weighted portfolio EW
Value-weighted portfolio VW
Min-Var portfolio with sample covariance EstMinVar
Min-Var portfolio with sample covariance and shortsale constrained NoShorting
L1-norm-constrained Min-Var portfolio L1

L2-norm-constrained Min-Var portfolio L2

Partial Min-Var portfolio with parameter calibrated by maximizing portfolio
return in previous period

PARR

Min-Var portfolio with nonlinear shrunk covariance NonLin

The penalty parameter for the norm-constrained portfolios is chosen by cross-validation over
standard deviation.

cellent estimation of the covariance matrix. I call the corresponding portfolio

the NonLin portfolio.

Evaluation method. I report two performance measures: the out-of-sample

standard deviation and the out-of-sample Sharpe ratio. The turnover discus-

sion can be seen in Section 3.3.2. Following the convention of Brodie et al.

(2009); DeMiguel et al. (2009a), and Fan et al. (2012), I use the “rolling-

horizon” procedure, which uses a fixed-length training period to estimate. I

denote the length of training period as n < T , where T is the total number of

observations in the dataset. As in DeMiguel et al. (2009a), I use n = 120 (10-

year monthly return data). I construct various portfolios using the same train-

ing data. Then, I roll over to the next month, dropping the earliest month from

the previous training window. This procedure yields T − n portfolio-weight

vectors for each portfolio. I denote the weight vector as wi
t for t = n, . . . , T −1

and for each portfolio i.
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Following DeMiguel et al. (2009a), I hold the portfolio weight wi
t for

one month. This approach generates the out-of-sample return for time t + 1:

rit+1 = (wi
t)
′rt+1, where rt+1 denotes the asset returns at time t + 1. I use

the time series of returns and weights to calculate the out-of-sample standard

deviation:

(σ̂i)2 =
1

T − n− 1

T−1∑
t=n

(
(wi

t)
′rt+1 − µ̂i

)2
, where

I use Levene’s test (Levene, 1960) to calculate the statistical significance

of the difference in the standard deviation. This test, with the sample median

as an estimation of the location parameter, is favored in the literature because

of its power and robustness against non-normality (Brown and Forsythe, 1974;

Conover et al., 1981; Lim and Loh, 1996).

3.3.1 Out-of-Sample Standard Deviation

Table 3.3: Out-of-Sample Monthly Standard Deviation in Percentage

Portfolio 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500
Unified 4.475 4.068 3.573 3.644 3.672 3.684 3.658 3.576 3.685 3.657 3.467 3.152

EW 5.418 4.916 5.732 4.308 5.348 5.107 5.712 4.900 5.414 5.204 4.624 4.795

VW 5.133 4.453 5.817 4.031 4.814 4.409 5.321 4.347 4.746 4.424 4.388 4.386

EstMinVar 4.474 4.059 3.559 3.609 3.858 3.878 5.984 9.978 7.172 7.077 6.499 NA

NoShorting 4.870 4.377 3.605 3.615 4.614 4.293 3.597 3.694 4.506 4.267 3.482 3.332

L1 4.415 4.058 3.720 3.680 3.758 3.790 3.754 3.605 3.902 3.757 3.602 3.487
L2 4.468 4.066 3.514 3.574 3.703 3.697 3.697 3.588 3.723 3.651 3.410 3.133

PARR 4.652 4.154 4.518 3.792 4.101 3.981 4.783 4.291 5.244 5.186 5.157 3.546

NonLin 4.469 4.044 3.545 3.583 3.690 3.717 3.662 3.651 3.732 3.666 3.435 3.047

Notes. This table reports the monthly out-of-sample standard deviation as a percentage. The number in bold is the smallest standard
deviation for one dataset. The p-value is calculated between the Unified portfolio and other portfolios.
One underline, two underlines, and three underlines indicate that the related p-value is smaller than .1, .05, and .01, respectively.
Because the sample covariance is degenerate, there is an NA of the estimated Min-Var portfolio portfolio.

Table 3.3 shows that the Unified portfolio achieves the best out-of-

sample standard deviation on five out of the six large4 portfolio datasets and

4I use the phrase large datasets when the number of assets, p, is larger than ten.
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is second-best on the 48IndEW dataset. For all datasets, the Unified portfolio

is always significantly5 better than the EW portfolio. The results for the stock

portfolios should be interpreted with caution as these are aggregates over not

perfectly comparable stock datasets.

For the small datasets, the out-of-sample standard deviation of the

EstMinVar portfolio is only about 1% larger than the best portfolio. This

relationship indicates that 120 observations are enough for the small datasets

to have the whole eigenspace as the signal space. Hence, the BN portfolio

should not differ much from the EstMinVar portfolio, and indeed the corre-

lation between their returns is more than 0.99. For the same reason, I expect

cross-validation to determine very loose norm constraints for all the norm-

constrained methods. Thus, their corresponding portfolios should be essen-

tially the same as the EstMinVar portfolio. This result is again supported by

the high correlation (about 0.99) between the returns of the norm-constrained

portfolios and the EstMinVar portfolio. Meanwhile, the NoShorting port-

folio’s constraint cannot be relaxed, and as expected its performance suffers

because its constraint interferes with portfolio selection using a well-estimated

covariance matrix. However, it does better on some big datasets, where its

constraint helps to avoid the effects of covariance estimation errors.

5p-value is less than .05 (Levene’s test).
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3.3.2 Robustness of Holding Length and Turnover

To get a sense of how portfolio performance depends on turnover, I

compare the performance of the earlier monthly-rebalanced portfolios with

the annually-rebalanced portfolios (Brodie et al., 2009). This allows us to

evaluate the effects of turnover without making the results sensitive to either

the type or the magnitude of transaction costs. The primary benefit here is

that the performance measure now coincides with the objective, making it a

fair comparison. The secondary benefit is that, from a taxation perspective,

holding a portfolio one year also reduces the taxation rate from short term

to long term. Olivares-Nadal and DeMiguel (2018) show that by penalizing

the turnover in the portfolio construction procedure, it is possible to sharply

reduce the turnover without sacrificing much in performance.

Table 3.4: Hold for One Year, Out-of-Sample Monthly Standard Deviation in Percentage

Portfolio 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500
Unified 4.845 4.583 4.473 3.565 3.933 3.833 4.912 3.593 3.994 3.799 3.545 3.290

EW 5.388 4.911 5.695 4.276 5.320 5.109 5.661 4.843 5.372 5.203 4.501 4.633

VW 5.128 4.450 5.788 4.040 4.796 4.404 5.300 4.340 4.740 4.443 4.380 4.379

EstMinVar 4.835 4.606 4.513 3.577 4.130 3.950 27.439 11.896 7.397 7.417 7.232 NA

NoShorting 4.908 4.469 3.628 3.630 4.653 4.353 3.634 3.761 4.597 4.364 3.522 3.382

L1 4.860 4.607 3.746 3.642 4.034 3.935 4.372 3.682 4.126 4.006 3.789 3.357
L2 4.835 4.613 4.198 3.540 3.922 3.824 4.835 3.664 4.027 3.864 3.523 3.243

PARR 4.985 4.821 4.427 3.738 4.291 4.473 4.833 4.255 5.505 6.292 5.463 3.511

NonLin 4.796 4.561 4.411 3.560 3.970 3.839 4.847 3.705 4.034 3.825 3.573 3.228

Notes. This table reports the monthly out-of-sample standard deviation as a percentage. The number in bold is the smallest standard
deviation for one dataset. The p-value is calculated between the Unified portfolio and other portfolios.
One underline, two underlines, and three underlines indicate that the related p-value is smaller than .1, .05, and .01, respectively.
Because the sample covariance is degenerate, there is an NA of the estimated Min-Var portfolio portfolio.

Compared to Tables 3.3, Tables 3.4 show that the performance of the

low turnover portfolios (EW, VW, and NoShorting) remains similar.
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3.3.3 Robustness of Training Length

In this subsection, following Brodie et al. (2009), I show the results

using the same datasets but with only 60 (5-year monthly data) observations

as training data. When the length of rolling window n is not larger than

the number of assets p, the sample covariance matrix is singular.6 Especially

since the portfolio construction problem assumes stationarity over n periods,

small values of n are common. Hence, assessing the performance of portfolio

optimization in the degenerate case (i.e., n ≤ p) is important. By using 60

observations, the sample covariance matrix for datasets 96FFEW, 96FFVW,

100, and 500 are singular.

Table 3.5: Out-of-Sample Monthly Standard Deviation in Percentage Using 60 Observations

Portfolio 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500
Unified 4.268 3.979 3.483 3.602 3.740 3.712 3.683 3.553 3.813 3.703 3.516 3.233

EW 5.418 4.916 5.732 4.308 5.348 5.107 5.712 4.900 5.414 5.204 4.624 4.795

VW 5.133 4.453 5.817 4.031 4.814 4.409 5.321 4.347 4.746 4.424 4.388 4.386

EstMinVar 4.292 3.992 3.611 3.719 4.447 4.381 7.489 11.168 NA NA NA NA

NoShorting 4.741 4.296 3.565 3.610 4.518 4.262 3.665 3.615 4.453 4.202 3.553 3.341

L1 4.399 4.121 3.800 3.723 3.912 3.942 3.900 4.031 4.286 4.418 3.928 3.462

L2 4.278 3.973 3.505 3.635 3.775 3.726 3.836 3.742 4.047 3.955 3.669 3.119
PARR 4.572 4.129 4.286 3.773 4.345 4.167 5.213 5.209 4.549 4.722 4.177 3.538

NonLin 4.278 3.947 3.518 3.616 3.742 3.770 3.607 3.590 3.822 3.782 3.485 3.078

Notes. This table reports the monthly out-of-sample standard deviation as a percentage. The number in bold is the smallest standard
deviation for one dataset. The p-value is calculated between the Unified portfolio and other portfolios.
One underline, two underlines, and three underlines indicate that the related p-value is smaller than .1, .05, and .01, respectively.
To allow for a fair comparison with the 120-observation case, I truncate the return to the same period.
Because the sample covariance is degenerate, there are NAs of the estimated Min-Var portfolio portfolio.

The results in Table 3.5 show that the Unified portfolio is the best

on eight out of ten portfolio datasets, including five (of six) large portfolio

datasets, and the second-best for the sixth. Comparing Table 3.3 to Table 3.5,

6In the calculation of the sample covariance matrix, the sample mean is subtracted.
Thus, when n ≤ p, the rank of the sample covariance matrix is at most n − 1, which is
smaller than p.
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I find that the out-of-sample standard deviation of the BN portfolio is robust

to the choice of training length. The reason for the robustness is that both

the Unified portfolio becomes more cautious when training length becomes

smaller. Indeed, the S space becomes smaller when fewer observations are

available.

As shown in Table 3.5, the out-of-sample standard deviations of the L1

portfolio and L2 portfolio increase significantly compared to those in Table 3.3.

This change increases the margin between the standard deviations of the Uni-

fied portfolio and other portfolios. For example, for the dataset 96FFVW,

the standard deviation of the BN portfolio is 6% better than that of the L2

portfolio and 11% better than that of the L1 portfolio. The intuitive reason is

that, the cross-validation for them is unable to generate a more conservative

portfolio when there are fewer data. In fact, in about 36% of the time periods,

the penalty parameter (Equation 2.1) with 60 observations η60 is smaller than

η120.
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Chapter 4

Unified Classical and Robust Optimization

4.1 Introduction

Regression analysis and its variants have become the primary workhorse

of statistical and machine learning techniques in quantitative social sciences.

The classical ordinary least-squares (LS) regression problem is to find a p-

vector b, given an n× p data matrix X and a n-vector of observations y, such

that ||y − Xb||2 is minimized. The result of this L2-norm minimization of

the residuals has favorable properties if the underlying assumptions on (X,y)

are true. Some of these assumptions include linearity, homo-scedasticity, no-

autocorrelation, normality of residuals and the error-free observation of X. If

these assumptions are violated the results can be very misleading (Eldén, 1980;

Björck, 1991; Van Huffel and Vandewalle, 1991; Higham and Higham, 1992;

Fierro and Bunch, 1994; Golub and Van Loan, 2012). Moreover, the presence

of unusual observations (data that do not belong to the same data generat-

ing process) could severely distort the LS estimates even when the data sets

are large (Andersen, 2008). Apart from the risk of providing misleading ex-

This Chapter closely follows Long Zhao, Deepayan Chakrabarti, and Kumar Muthur-
man, ‘Unified classical and robust optimization for least squares’. Submitted to Operations
Research. The method is fine tuned by all authors while I implement all the experiments.
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planatory variables and coefficients, this sensitivity and the over-fitting nature

of ordinary LS regression also ends up degrading the out-of-sample predic-

tive performance (Eldén, 1980; Higham and Higham, 1992; Fierro and Bunch,

1994; Golub and Van Loan, 2012), which is the primary objective in several

application settings.

Ordinary least squares (OLS) method is hence said to be not robust,

especially for small data sizes. Several different ways of addressing this sensi-

tivity have been proposed. Most popular among these are the regularization

methods like ridge regression (Tikhonov, 1943), LASSO regression (Tibshirani,

1996), principal components regression (PCR) (Hotelling, 1957), and partial

least squares regression (PLS) (Wold, 1966). While ridge regression adds the

L2 norm of b as a regularization term to the LS objective, LASSO uses the L1

norm and is hence sparsity-inducing. If the corresponding underlying specifi-

cations are correct, these methods will provide a better estimation of b than

OLS (Hoerl and Kennard, 1970; Tibshirani, 1996; Park, 1981). As pointed

out in Golub and Van Loan (2012), the choice of weights (or regularization

parameter) is usually not obvious and application dependent. Criteria for op-

timizing the regularization parameter have been proposed, but are however

chosen using some additional information (see El Ghaoui and Lebret (1997)

and references therein). Extensive surveys of regularizations include Nashed

(1981); Demoment (1989); Hanke and Hansen (1993).

Various other alternatives have also been proposed to address this sen-

sitivity and are commonly referred to as Robust regression methods (Andersen,
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2008). Robust regression methods are designed to be not overly affected by

violations of assumptions by the underlying data-generating process. Some

LS alternatives include the least absolute deviations method, the M-estimator

(“M-” standing for “maximum likelihood type”), least trimmed squares, Theil-

Sen estimator, S-estimator and the MM-estimator. Each of these estimators

has their pros and cons and are usually robust towards specific types of out-

liers. See Andersen (2008) and Rousseeuw and Leroy (2005) for a detailed

discussion of these methods and their sensitivities. Another approach is to

replace the normal distribution assumption of residuals with a heavy-tailed

distribution like the t-distribution (Lange et al., 1989) or a mixture model of

normal distributions. Bayesian robust regression relies heavily on such dis-

tributions (Gelman et al., 2003). Nevertheless, such models still assume that

the assumptions they make on the distribution of residuals are true. The

method of unit weights is also considered a robust method. However, Bobko

et al. (2007) conclude that decades of empirical studies show that unit weights

perform similarly to ordinary regression weights on cross-validation.

More specifically though, the term “Robust regression” is used for the

many robust optimization counterparts (Xu et al., 2009) of the LS problem.

The LS problem being fundamentally an optimization problem, the robust

counterparts seek in their modified objectives, a certain measure of robustness

against uncertainty in the data. In other words, they deal with the problem of

error in variables. Robust Optimization problems only require knowledge of

the support of the uncertain data, rather than the full distribution itself (Ben-
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Tal et al., 2009; Bertsimas et al., 2011). These robust optimization counter-

parts have shown to provide robustness against assumptions, perturbations,

and outliers and also help increase out-of-sample predictive power (Ben-Tal

et al., 2009). The robust counterparts begin by defining an uncertainty set

that contains the unknown but bounded disturbance in the data. Given an

uncertainty set that captures the ambiguity in the data, the robust counter-

part minimizes the largest possible L2 norm of the residuals for all probable

cases belongs to the uncertainty set. The uncertainty sets that have been con-

sidered include bounded total perturbation errors in data matrices (El Ghaoui

and Lebret, 1997) and bounded individual disturbance in independent vari-

ables (Xu et al., 2009). It has been shown that for the former is equivalent

to ridge (El Ghaoui and Lebret, 1997) while the latter is the same as LASSO

(Xu et al., 2009), thereby allowing the interpretation that the LASSO and

ridge techniques are the robust versions of the fundamental LS optimization

problem.

In general, the practical impact of robust optimization methods has

been limited primarily due to three reasons. Firstly, by design, robust opti-

mization focuses on worst-case performance as the primary way of making the

results robust. Hence, the robust solution is sometimes too conservative. Sec-

ondly, to alleviate the first problem, additional knowledge and assumptions

are required to obtain a smaller or more reasonable uncertainty set. Ellip-

soidal approximations of the true uncertainty set (El Ghaoui and Lebret,

1997; El Ghaoui et al., 1998; Ben-Tal and Nemirovski, 1998), the assumption
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that only a few of the parameters are uncertain (Bertsimas and Sim, 2004), or

the assumption that the distribution belongs to a tractable family of distribu-

tions (Delage and Ye, 2010) have all been used. However, the choice is often

driven by the desire for mathematical convenience: it is unclear when these

assumptions and approximations are reasonable, or how one should pick the

right distribution family. Finally, the solution to robust optimization problems

can be sensitive to seemingly minor differences even in the size of the uncer-

tainty set. That is to say, one might end up trading one type of sensitivity for

another type.

4.1.1 Contribution and Outline

It is understandable that for small-size data the robust versions of the

LS problem is more reliable than the classical methodology while the classical

is more trustable for massive data. Unfortunately, most problems have data

sizes that cannot be characterized as very large or very small. Hence, by

recognizing the advantages and disadvantages of both the classical LS problem

and the robust optimization counterparts, in this paper, I construct a new

method that strikes a balance between these two approaches. More specifically,

I first present a new robust version of the LS problem that facilitates my

methodology. In this robust optimization, the size of the uncertainty set does

not affect the solution. Namely, I are not trading one type of sensitivity for

another. I then construct a sequence of problems from the classical LS on

one end to my Robust LS on the other end, by parameterizing them. The
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parametrization is in terms of the number of eigenvalue-eigenvector pairs that

are well estimated, which I obtain from the data itself. my method, called

ULS (Unified Least Squares), essentially splits the feasible space into two: the

well-estimated subspace and the not-well-estimated. In the former, I solve the

classical LS problem, and in the latter, I solve my robust variant of the LS

problem. Finally, I combine these two to yield a prediction.

Eigenpairs are the natural basis for the data and hence using eigenpairs

or their estimates to aid prediction has been shown to add value in several

contexts, such as finance (Chen et al., 2014; Chen and Yuan, 2016; Zhao et al.,

2019a), clustering (Ng et al., 2002), and low-rank models (Blei et al., 2003;

Airoldi et al., 2008; Mao et al., 2018). However, eigenpairs have not been used

as the building block for a sequence of problems spanning between classical

and robust variations of a problem.

Using a simulation test I demonstrate that the ULS tends to have a

better and more stable on-average performance than other methods. I also

consider 68 experiments based on 17 different real-world datasets. The results

show that the ULS consistently outperforms methods, like PLS and PCR, that

ignore the not-well-estimated subspace. This shows that the robust optimiza-

tion part of ULS is very valuable. The ULS also outperforms both ridge and

LASSO regression by a big margin for more than 20 experiments.

The rest of the Chapter is structured as follows. Section 4.2 provides an

overview and the rationale behind my methodology while Section 4.3 describes

the method in detail. Section 4.4 provides several insights into the method-
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ology while drawing connections between my methodology and other popular

methods. Section 4.5 collects the results from my simulation experiments and

Section 4.6 collects those from empirical experiments. Concluding remarks are

presented in Section 4.7.

4.2 Overview

Consider the regression model, where the data are independent and

identically distributed draws from some unknown distribution q(.). The goal

is to minimize the expected squared prediction error:

min
b∈Rp

E(y,xT )∼q(y − xTb)2. (4.1)

Without losing generality I can assume that Ey = 0, Ex = 0 and that there

is no intercept term. By introducing z =

(
1
b

)
the in Eq. 4.1 above becomes

fΘ(z) = zTΘz, where Θ = E(y,xT )∼q

[
y2 −yxT
−yx xxT

]
.

Rewriting Eq. 4.1,

min
z∈Z

fΘ(z), where Z = {z ∈ Rp+1 | zTe1 = 1}. (4.2)

Here, e1 is the unit vector along the first dimension with the solution to Eq. 4.1

being the last p components of the solution to Eq. 4.2. Note that the (out-

of-sample) R2, a common measure of success in regression, can be written as

OR2(z) = 1− fΘ(z)
Ey2 = 1− fΘ(z)

fΘ(e1)
, where z ∈ Z. Thus, minimizing fΘ(z) is the

same as maximizing the out-of-sample R2.
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Since Θ is unknown, it is impossible to find the optimal solution of

Eq. 4.2. Instead, I desire a feasible solution with a good out-of-sample per-

formance (like the expected squared prediction error) from n observations. A

common approach is to minimize the in-sample sum of squared errors:

min
b∈Rp

1

n
·

n∑
i=1

(yi − xTi b)2, (4.3)

where (yi,x
T
i ) is the ith observation. Obviously, Eq. 4.3 is equivalent to

min
z∈Z

fΘ̂(z), where Θ̂ =
1

n

(
yTy −yTX
−XTy XTX

)
, (P̂)

where y is a column vector of yi, and X is a matrix whose ith row is xi. I will

call the solution ẑ? of (P̂) the ordinary least squares solution, or the “classical”

solution.

Clearly, the estimation error Θ̂ − Θ affects the out-of-sample perfor-

mance of ẑ?. Under mild conditions, the operator norm ‖Θ̂ − Θ‖ of the

error decays as O((log2log2p)
2(p/n)1/2−2/q) with high probability, where the

qth (q > 4) moment of the data is bounded (Vershynin, 2011). Thus, for a

fixed number of covariates p, as the number of observation n grows to infinity,

the out-of-sample performance of ẑ? converges to the optimal. However, when

data are limited, the estimation of Θ can be so poor that ẑ? can be inferior to

the solution z̃? of the following robust optimization problem:

min
z∈Z

max
Θ∈U

fΘ(z), (P̃)

where U is an appropriate uncertainty set determined from the data. This phe-

nomenon is remarkable because z̃? is determined by worst-case performance

but might have a better on-average performance than ẑ?.
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It would be nice if I could combine these two approaches to get good

out-of-sample performance regardless of the p/n ratio. The most straightfor-

ward idea would be to interpolate between the solutions of (P̂) and (P̃), but

both solutions could be poor, and it is not apparent that their combination

would be much better. A better approach is to develop a variant of (P̂) for

model parameters that can be estimated confidently, and another variant of

(P̃) for use with parameters that are poorly estimated. A combination of these

two could span the spectrum from “classical” solutions (all estimates are accu-

rate) to robust solutions (all estimates are inaccurate), with the proper inter-

polation being inferred from the data itself. This would capture the strengths

of both the classical and robust approaches without being as sensitive as the

former or as conservative as the latter.

The first few eigenpairs are easier to estimate than the others (Yu

et al., 2015). Methods like the principal component regression leverage on

this idea, with a parameter choice, K, that picks the top K eigenvectors to

regress y against. However, even when each of the lower eigenvectors is not

well estimated, the subspace spanned by these are well estimated. This idea is

illustrated for the simple case of regress y against two covariates in Figure 4.1.

Consider the few data points that are roughly scattered within a cylindrical

region potted with y on the vertical axis and the two covariates on the lower

plane. The first principal component of the data, which is also the first eigen-

vector of Θ̂ is easy to estimate, while the second and third eigenvectors are not.

However, space spanned by the second and third eigenvectors is the subspace
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Figure 4.1: The Orthogonal Subspace is Well Estimated

Given a few data points, only the first eigenvector of Θ̂ (or equivalently, the principal
component of the data) is easy to estimate. The remaining two eigenvectors and

eigenvalues are hard to estimate, as shown by many possible orientations and scales (on
the zoomed plot). However, the subspace spanned by these two eigenvectors is just the

orthogonal plane to the first eigenvector, and hence the subspace is well-estimated.

that is orthogonal to the first eigenvector and is hence easy to estimate.

This motivates splitting the eigenpairs of Θ̂ into the top eigenpairs

and the remaining eigenpairs and handling them separately. Given the well-

estimated eigenpairs, I use a variant of P̂ to seek a solution belonging to the

span of the top eigenvectors. Similarly, a variant of P̃ will be used to search for

a solution belonging to the span of the remaining poorly-estimated eigenvec-

tors. I show that this robust solution is insensitive to the specific orientation

of these eigenvectors or their associated eigenvalues. Instead, it only depends

on the subspace spanned by these eigenvectors. That is to say, the robust so-

lution only uses information about their support. This is precisely the setting
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in which robust optimization excels. The right split of the eigenpairs is chosen

from the data so that the combined solution is the best possible.

This approach effectively bridges classical and robust solutions to the

regression problem. However, it has one critical pitfall. It ignores the fact that

the overarching goal is to predict y. More precisely, splitting based solely on

estimation errors in Θ̂ and their effect on the objective fΘ(z) ignores the con-

straint zTe1 = 1, which emphasizes that the first element of z (corresponding

to y) is very special. Indeed, the top eigenpairs, even without any estimation

errors, could yield poor predictors of y. This mismatch between estimation and

prediction only increases for datasets with many covariates. Left unchecked,

this mismatch can lead to a useless “classical” solution, which severely limits

the benefits of combining the classical and robust solutions.

This leads to the next key component of my approach, the objective

matching tweak that transforms the data with two specific goals. First, I must

ensure that the classical solution based on the top eigenvectors can predict y

at least as well as a baseline predictor. This solves the mismatch problem.

Second, the transformed data should still keep the pattern of top eigenpairs

being estimated better than the bottom eigenpairs. This will allow justifiable

combinations of classical and robust solutions, as discussed above. In the

context of regression, objective matching simply amounts to transforming the

data (y, X) to (y, X/c) for some c� 0. The corresponding matrix Θ̂(c) clearly

underweights X as compared to y, which ensures that the top eigenvectors of

Θ̂(c) capture the variation in y as against focusing on the variation in x. I show
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Algorithm 1 Unified Least-Squares Algorithm (with implicit objective match-
ing)

1: function ULS(X,y,M) . M is a cross-validation parameter
2: Split the data into M (training set, holdout set) pairs as in cross-

validation
3: for the sth (training set, holdout set) pair do

4: Φ̂← 1
n

(
XTX − XTyyXT

yTy

)
from training set

5: ΘHs ← 1
n

(
yTy −yTX
−XTy XTX

)
computed from the holdout set

6: Define gΘHs
(z1, z2) = zT1 ΘHsz2, and fΘHs

(z) = zTΘHsz

7: {(λi(Φ̂),vi(Φ̂))} ← eigenvalue-eigenvector pairs of Φ̂

8: wi ←
(
vi(Φ̂)TXTy/‖y‖2

vi(Φ̂)

)
for i = 1, . . . , p

9: for k = 1, . . . , p+ 1 do

10: ẑ?1:k ←
e1+

∑k−1
i=1

vi(Φ̂)TXT y

nλi(Φ̂)
wi

1+
∑k−1
i=1

(vi(Φ̂)TXT y)2

nλi(Φ̂)·‖y‖2

. Classical solution from top

eigenpairs

11: z̃?k+1:p+1 ←
∑p
i=k(vi(Φ̂)TXTy)wi∑p
i=k

(vi(Φ̂)TXT y)2

‖y‖2

if k ≤ p . Robust solution from

other eigenpairs
12: Ck(s)← fΘHs

(ẑ?1:k) . Error of classical solution
13: Rk(s)← fΘHs

(z̃?k+1:p+1) if k ≤ p . Error of robust solution
14: CRk(s)← gΘHs

(ẑ?1:k, z̃
?
k+1:p+1) if k ≤ p . Cross-product term

15: end for
16: end for
17: Ck ←

∑
s Ck(s)

M
, Rk ←

∑
sRk(s)

M
, CRk ←

∑
s CRk(s)

M
for each k

18: a?k ←
Rk−CRk

Ck+Rk−2·CRk
if k ≤ p; a?p+1 = 1 . Mixing proportions

19: k?(s)← arg maxk {(a?k)2 · Ck(s) + (1− a?k)2 ·Rk(s) + 2 · a?k · (1− a?k) · CRk(s)}
for the sth (training set, holdout set) pair

20: Calculate ẑ?1:k and z̃?k+1:p+1 as in Steps 10 and 11 using the entire dataset
21: Calculate ẑk = a?k · ẑ?1:k + (1− a?k) · z̃?k+1:p+1 for each k . Combined

solution for each k
22: zULS ←

∑
s ẑk?(s)

M

23: return zULS

24: end function
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that the pattern of estimation errors in Θ̂(c) is broadly similar to that of Θ̂,

with the top eigenpairs being estimated better than the remaining eigenpairs.

Finally, I show that these classical and robust solutions have well-defined limit

points for large c. This lets us derive an algorithm that yields the results of

objective matching while avoiding numerical instabilities associated with large

c (Algorithm 1).

4.3 The details

I will now present detailed explanations for objective matching, the

splitting of eigenpairs, and the combination of solutions generated from the

splits. I will assume that y 6= 0 (so Ey2 6= 0), otherwise one can just predict

y = 0 always.

4.3.1 Objective Matching

Well-estimated eigenpairs of Θ do not necessarily imply that they are

useful for prediction. Indeed, the opposite is likely to be true. Since there are

p rows/columns for x but only one for y in the matrix Θ, the top eigenvectors

are more likely to capture the variation in x than in y. Formally, let λ1(Θ) ≥

λ2(Θ) ≥ . . . ≥ λp+1(Θ) be the eigenvalues of Θ, and with corresponding

eigenvectors vi(Θ). Then, w := (v1(Θ)Te1)−1v1(Θ) is a feasible point1 for

(P̂), and I have the following upper-bound on the out-of-sample R2 of w (and

hence a lower bound on the objective fΘ(w)).

1It is easy to show that v1(Θ)Te1 6= 0 when Ey2 6= 0.
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Theorem 4.3.1 (Upper Bound of OR2( v1(Θ)
v1(Θ)T e1

)).

OR2

(
v1(Θ)

v1(Θ)Te1

)
≤ min

(
0, 1− 2−3λ1(Θ)

(
λ1(Θ)− λ2(Θ)

)2
Ey2(

(Ey2)2 + (EyxT )(Exy)
)2

)
.

Observing that OR2(e1) = 0, the above theorem states that a feasi-

ble solution constructed only from the first eigenvector, even if it is perfectly

estimated, can be no better than the baseline solution e1. In fact, it can be

much worse, as shown by the following simulation based on the Diabetes1

dataset. There are n = 442 observations regarding p = 10 covariates. For

k = 1, . . . , p + 1, I construct the optimal solution to Eq. 4.1 under the ad-

ditional constraint that the solution must be a linear combination of the top

k eigenvectors. Figure 4.2 left shows the out-of-sample R2 of these solutions

as a function of k, compared against the baseline solution e1. I see that

OR2((v1(Θ)Te1)−1v1(Θ)) = −40, which is much worse than the baseline. In-

deed, the best solution using 8 perfectly estimated eigenpairs is still worse than

the naive baseline. Thus, even without estimation errors, the top eigenpairs

need not have good predictive power.

At first sight, I appear to have hit a dead end. However, I do have an

extra degree of freedom that can be exploited.

Theorem 4.3.2 (Possible ways to Change Θ). For any invertible M ∈ Rp×p

such that M11 = 1, and Mi1 = M1i = 0 for all i = 2, . . . , p, I have

min
z|zT e1=1

zTΘz = min
z|zT e1=1

zTMTΘMz.
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Figure 4.2: Out-of-sample R2 of the classical solution using the top k eigen-
pairs, as a function of k
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(Left) Without objective matching, the top-k solution is worse than baseline for k ≤ 8.
(Right) With objective matching, it is always at least as good as baseline. The two yield
the same solution (the ordinary least squares solution) when k = p+ 1 = 11.
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Thus, I can choose to minimize fMTΘM(z) instead of fΘ(z), under the

same constraints on z. The choice of M should satisfy two desiderata. First,

it should solve the mismatch problem by aligning estimation and prediction.

The out-of-sample R2 of the easily-estimated top eigenvector is upper-bounded

by 0, as seen from Theorem 4.3.1 with Θ replaced by MTΘM . I should select

an M that achieves this upper bound. Second, the robust solution constructed

from the bottom eigenpairs should achieve an out-of-sample R2 of the same

order as the solution constructed from the top eigenpairs. Only then will the

combination of the classical and robust solutions yield a significant benefit.

I can achieve these desiderata by a diagonal matrixM(c) = diag(1, 1/c, 1/c, . . . , 1/c)

for some constant c � 0. Since Θ(c) := M(c)TΘM(c) = E

(
y2 −yxT

c

−xy
c

xxT

c2

)
,

this is equivalent to replacing (y,xT ) by (y, c−1 ·xT ). This suggests that for a

large c, the first eigenvector v1(c) of Θ(c) is nearly aligned with the e1 direction,

which is also the baseline solution. Hence, in contrast to the first eigenvector

of Θ (Theorem 4.3.1), a solution constructed from the first eigenvector of Θ(c)

achieves at least the baseline out-of-sample R2 of 0.

Theorem 4.3.3 (Best Starting Point). I have

λ1(c) = Ey2 +O(1/c), v1(c) = e1 +O(1/c), OR2

(
v1(c)

v1(c)Te1

)
= O(1/c),

where (λi(c),vi(c)) represent eigenpairs of Θ(c), with λ1(c) ≥ λ2(c) ≥ . . . ≥

λp+1(c).

The solution using more than one top eigenpairs will only improve upon

the baseline. Figure 4.2 right confirms this in simulation: the out-of-sample
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R2 now starts from 0 (for split index k = 1), which is the best starting point

from Theorem 4.3.1, and keeps improving with increasing k. This resolves

the mismatch between good estimation of top eigenpairs of Θ and their poor

prediction accuracy. With my choice of M(c), I expect the top eigenpairs of

Θ(c) to be predictive of y, which is the overall objective of regression. This

motivates the name “objective matching.”

Our second desired property was that the bottom eigenpairs should

also have predictive power. Otherwise, the robust solution constructed from

them will be useless and should be ignored. It may seem that this property

is unlikely; any solution vector z must satisfy zTe1 = 1, but the eigenvectors

vi(c) for i ∈ [2, p+ 1] are nearly orthogonal to e1 (from Theorem 4.3.3 and the

orthogonality of eigenvectors). The following theorem guarantees that these

eigenvectors still have predictive power.

Theorem 4.3.4 (All Eigenvectors are Useful). For all i = 2, . . . , p+ 1, I have

OR2

(
vi(c)

vi(c)Te1

)
= O(1).

Thus, the out-of-sample R2 for a solution vector constructed from any

one eigenvector does not decay to 0 for large c. This is why the solutions

obtained for k > 1 in Figure 4.2 right improved upon the baseline. It also

suggests that the robust solution, constructed from the bottom p − k + 1

eigenvectors, will achieve an out-of-sample R2 of O(1) regardless of the values

of c or the split index k.
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4.3.2 Splitting eigenpairs

Objective matching gives us a matrix Θ(c) whose top eigenvector corre-

sponds to the baseline, and every other eigenvector offers non-trivial predictive

power in terms of out-of-sample R2. It can be argued, as in section 4.2, that

because the top eigenpairs of Θ̂ are good estimations of their counterparts of

Θ, the classical solution constructed from the former is a close approximation

to the one built based on the latter. However, this argument regarding the

ability to estimate eigenvectors relies on the presence of large eigengaps, or

differences, between successive top eigenvalues of Θ (Yu et al., 2015). This no

longer holds for Θ(c): while λ1(c) = Ey2 + O(1/c), all other eigenvalue are

close to zero, and the eigengap between λi(c) and λi+1(c) is negligible for all

i > 1. This necessitates a very different theoretical justification for splitting

the eigenpairs of Θ(c). I will provide this justification next and then discuss

how I devise two solutions from the two sets of eigenpairs.

Theoretical justification for splitting eigenpairs of Θ(c). I will

now prove that the eigenvalues λ2(c), . . . , λp+1(c), appropriately normalized,

are close to the eigenvalues of the matrix Φ = ExxT − (Exy)(EyxT )
Ey2 , which is

independent of c. The same holds for the corresponding eigenvectors as well.

Theorem 4.3.5 (The Connection between Θ(c) and Φ). For all i = 2, . . . , p+

1, I have

c2λi(c) = λi−1(Φ) +O(1/c). (4.4)
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Moreover, if I assume that λi(Φ) is strictly monotone2, then I have∥∥∥∥vi(c)− ( 0
vi−1(Φ)

)∥∥∥∥
2

= O(1/c).

Similar statements link the empirical eigenpairs (λ̂i(c), v̂i(c)) of Θ̂(c) to the

eigenpairs of Φ̂ = 1
n

(∑n
j=1 xjx

T
j −

(
∑n
`=1 yixi)(

∑n
`=1 yix

T
i )∑n

`=1 y
2
i

)
.

Corollary 1. Under the conditions of Theorem 4.3.5, for all i = 2, . . . , p+ 1, I

have

|λi(c)− λ̂i(c)|
λi(c)

=
|λi−1(Φ)− λi−1(Φ̂)|

λi−1(Φ)
+O(1/c),

‖vi(c)− v̂i(c)‖ = ‖vi−1(Φ)− vi−1(Φ̂)‖+O(1/c).

Corollary 1 shows that the relative estimation errors of eigenpairs of

Θ(c) are equivalent to those for Φ. Thus, the estimability of eigenpairs, and

hence the location of the best split k, are driven by differences between con-

secutive eigenvalues (i.e., eigengaps) in Φ, instead of the eigengaps in Θ. The

following theorem characterizes the eigenvalues of Φ.

Theorem 4.3.6 (Eigenvalues of Φ). For any i = 1, . . . , p, I have

λi(Θ) ≥ λi(Exx
T ) ≥ λi(Φ) ≥ λi+1(Θ) ≥ λi+1(ExxT ),

2This assumption is just for the simplicity of the result. If there exists 1 ≤ r < s ≤ p that
λr(Φ) = λr+1(Φ) = · · · = λs(Φ), the result will be the about the matrix (vr(Φ), . . . ,vs(Φ))
instead of individual eigenvectors.
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where λp+1(ExxT ) is taken to be 0. Moreover,

p∑
i=1

(
λi(Φ)− λi+1(ExxT )

)
= λ1(ExxT )− (EyxT )(Exy)

Ey2
≥ 0.

Thus, the eigenvalues of Φ are interlaced between those of Θ and ExxT ,

with a bounded total deviation from {λi+1(ExxT ) | i = 1, . . . , p}. If y is

uncorrelated with x, namely Eyx = 0, then λi(Φ) = λi(Exx
T ). At the other

extreme, if y is maximally correlated with x, namely y is along the direction

of the first eigenvector of ExxT , then λi(Φ) = λi+1(ExxT ). For both these

extremes, the eigengaps of Φ and ExxT are provably related. This suggests

that, even in general, the pattern of eigengaps in Φ is similar to that of Θ or

ExxT . Hence, it is still reasonable to split eigenpairs into well-estimated and

poorly estimated parts.

The top eigenpairs. Let Sk represent the subspace spanned by the

top k empirical eigenvectors {v̂1(c), . . . , v̂k(c)}, and Nk represent the subspace

spanned by the remaining eigenvectors. Then, for any k, I can solve (P̂) under

the restriction that the solution z should be a linear combination of the top k

eigenvectors.

min
zTe1 = 1,
z ∈ Sk

fΘ̂(c)(z), whose solution is ẑ?1:k(c) =

∑k
i=1

v̂i(c)
T e1

λ̂i(c)
v̂i(c)∑k

i=1
(v̂i(c)T e1)2

λ̂i(c)

.

(4.5)

Observe that the solution ẑ?1:k(c) is a function of only the top k eigenpairs.

When k is properly chosen, all k eigenpairs are well-estimated, and ẑ?1:k is
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reliable, i.e., it’s in-sample R2 is close to its out-of-sample R2. This justifies

solving the “classical” optimization (P̂) under the restriction z ∈ Sk.

The remaining eigenpairs. In contrast to the top eigenpairs, the

remaining eigenpairs are likely to be poorly estimated. Hence, the solution

of a “classical” optimization restricted to z ∈ Nk is not reliable; its out-of-

sample R2 may be much worse than its in-sample R2. Instead, observe that

the subspace Nk spanned by these remaining eigenvectors is, in fact, well-

estimated, since it is the subspace that is orthogonal to the well-estimated

Sk. This motivates using robust optimization to find a solution z ∈ Nk that

is agnostic to the bottom eigenpairs {(λ̂i(c), v̂i(c)) | i > k} but respects the

subspace Nk. To achieve this, I propose the following uncertainty set:

U(Nk) = {Θ(c) | Θ(c) |Nk� mIp−k+1}, (4.6)

where Θ(c) |Nk is the projection of Θ(c) on Nk and m is a constant. With this

uncertainty set, I propose the following robust optimization solution derived

from the bottom eigenpairs:

min
z∈Nk∩Z

max
Θ(c)∈U(Nk)

zTΘ(c)z, whose solution is z̃?k+1:p+1(c) =
PNke1

eT1 PNke1

,

(4.7)

where PNk is the projection matrix on the subspace Nk. Note that the solution

z̃?k+1:p+1(c) is independent of m. That is to say, given k, the size of the uncer-

tainty set does not matter. Moreover, the solution remains the same for any

rotation of the eigenvectors from Nk. In other words, the solution only uses
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information about the subspace Nk, and not about the bottom eigenvalues or

the orientations of these eigenvectors.

ẑ?1:k(c) and z̃?k+1:p+1(c) are solutions under Θ̂(c). Using Theorem 4.3.2, I

can easily convert them to the corresponding solutions under Θ̂ by multiplying

them with M(c) = diag(1, 1/c, 1/c, . . . , 1/c). I now show that these solutions

are well-defined as c→∞.

Theorem 4.3.7 (Solutions converge for large c). For any k, as c → ∞, the

classical and robust solutions converge to the following:

ẑ?1:k := lim
c→∞

M(c)ẑ?1:k(c) =
e1 +

∑k−1
i=1

vi(Φ̂)TXTy

nλi(Φ̂)
wi

1 +
∑k−1

i=1

(vi(Φ̂)TXTy)
2

nλi(Φ̂)·yTy

for k = 1, . . . , p+ 1

z̃?k+1:p+1 := lim
c→∞

M(c)z̃?k+1:p+1(c) =

∑p
i=k(vi(Φ̂)TXTy)wi∑p
i=k

(vi(Φ̂)TXTy)2

yTy

for k = 1, . . . , p

where wi =

(
vi(Φ̂)TXTy/yTy

vi(Φ̂)

)
for i = 1, . . . , p

4.3.3 Combining solutions from the two splits

For a particular k, I can get a classical solution ẑ?1:k and a robust

solution z̃?k+1:p+1. Now, I seek a combined solution of the form ẑULSk :=

ak · ẑ?1:k + (1− ak) · z̃?k+1:p+1. The following a?k minimizes fΘ(ẑULSk ),

a?k =
fΘ(z̃?k+1:p+1)− gΘ(ẑ?1:k, z̃

?
k+1:p+1)

fΘ(ẑ?1:k) + fΘ(z̃?k+1:p+1)− 2gΘ(ẑ?1:k, z̃
?
k+1:p+1)

, (4.8)

where gΘ(z1, z2) = zT1 Θz2, (4.9)

fΘ(z) = zTΘz.
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4.3.4 Selection of the split index k

There are two problems left. First, in Eq. 4.8, fΘ(.) and gΘ(.) cannot

be directly computed, since I only have access to Θ̂. Second, I need to pick

k. I solve both of these problems via cross-validation. I first split the training

data into M parts. I then group M − 1 of these parts into a proto-training

data and set the last part aside as a holdout set. Then, for each k, I construct

ẑ?1:k and z̃?k+1:p+1 from the proto-training data. I compute the corresponding

a?k using the holdout sets as ground truth, i.e., I compute Eq. 4.8 with Θ

replaced by the ΘH := Θ̂ computed over all the holdout sets. This gives a

solution zULSk . The best k? for one holdout set is then chosen by picking the

k with the smallest fΘHs
(zULSk ), with the ΘHs from the holdout set standing

in for Θ. This process creates a probabilistic view of k? which is consistent to

the gradual change from well-estimated eigenpairs to the not-well-estimated.

Finally, the solution vectors zULSk? obtained from these iterations are averaged,

and that is returned as the final answer.

I use M = 3 for all methods across this paper. The results are similar

for M = 5 and M = 10. Because there are two parameters a and k to estimate

for ULS, I find that using 10 permutations, namely introducing a total of 30

groups, tends to increase the performance. I also tried 10 permutations for

other methods where only one parameter needs to be estimated. The corre-

sponding improvement is much smaller. Because other methods traditionally

do not involve more permutations, I decide to stick to the conventional version.
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4.4 Relation to Other Methods

In this section, I will describe the relations between ULS and ordinary

least squares regression (OLS), principal components regression (PCR), partial

least squares regression (PLS), and robust optimization. I will also draw par-

allels between regression and portfolio optimization, and the relations between

ULS and existing methods for portfolio optimization.

4.4.1 Relation to OLS

It is easy to show

bOLS =
Φ̂−1XTy

n+ yTXΦ̂−1XTy
yTy

.

This is precisely the solution if k = p+ 1 in Theorem 4.3.7 because z =

(
1
b

)
.

4.4.2 Relation to PCR and PLS

PCR predicts y using the top k eigenvectors of the matrix XTX. The

next theorem shows that these eigenvectors are close to the top eigenvectors

of Φ̂.

Theorem 4.4.1 (Eigenvectors of XTX and Φ̂). For all i = 1, . . . , p, I have∥∥∥vi(XTX)− vi(Φ̂)
∥∥∥

2
≤

23/2 ‖XTy‖22
yTy

min(λi−1(XTX)− λi(XTX), λi(XTX)− λi+1(XTX))
,

where (λi,vi) represent eigenvalue-eigenvector pairs in descending order of

eigenvalues, and I assume that XTX has no repeated eigenvalues3.

3Once again, this assumption is just for the simplicity of the result.
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If the top k eigenvalues of XTX are separated by large eigengaps, the

denominator of the right side is large for each i ≤ k. Then the top eigenvec-

tors vi(X
TX) and vi(Φ̂) are close to each other, and so are the the subspace

spanned by the top k eigenvectors. However, PCR’s solution is not necessarily

close to that of ULS, because PCR ignores the bottom eigenvectors completely.

This leaves PCR vulnerable to the mismatch problem; the top eigenvectors of

XTX could be well-estimated, but still not predictive of y. Indeed, this was

observed by Jolliffe (1982). Thanks to objective matching, ULS avoids this

problem.

PLS predicts y using the k-dimensional subspace spanned by the vec-

tors
{

(XTX)i−1XTy, i ≤ k
}

. In contrast to PCR, this subspace depends on

both y and X. This can be interpreted as an ad hoc fix for the mismatch

problem. Still, like PCR, PLS throws away the orthogonal subspace which

is well estimated as a space. The ULS method utilizes the orthogonal sub-

space conservatively using robust optimization. This is particularly useful in

low-data settings, where the orthogonal subspace is of high dimension.

4.4.3 Connection with Robust Optimization

Robust optimization approaches typically assume uncertainty sets that

are mathematically convenient to analyze. In the LS context, the uncertainty

is about the matrix Θ. A common approach for such covariance matrices is to

use the uncertainty set U(Θ) = {Θ | Θ � hΘ̂} for some constant h ≥ 1 (Delage

and Ye, 2010). However, this is easily shown to yield precisely the OLS solution
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for all h. Clearly, this uncertainty set is not useful.

The ULS method formally defines an uncertainty set only for the poorly

estimated bottom eigenpairs of Θ(c). This can nonetheless be interpreted

as the following uncertainty set on Θ(c): U(Θ(c)) = {Θ(c) | Θ(c)|Sk �

hΘ̂(c)|Sk ,Θ(c)|Nk � mIp−k+1}, where Sk and Nk are the subspaces correspond-

ing to the top k and bottom p − k + 1 eigenvectors of Θ̂(c), R|Sk and R|Nk
denote the restriction of R to these subspaces, and h ≥ 1 and m > 0 are

constants. However, this interpretation cannot match the full flexibility of the

ULS method. ULS picks k via cross-validation, and indeed, the final result is

an average of solutions for several values of k. This effect is difficult to achieve

under one uncertainty set based on one value of k. Also, the ULS solution is a

combination of ẑ?1:k from Sk and z̃?k+1:p+1 from Nk, with the combination level

determined by cross-validation to maximize average-case performance. The

uncertainty-set understanding should choose the combination level based on

h and m. To be consistent with the objective of robust optimization, these

quantities should be set to optimize the worst-case performance in the cross-

validation. Focusing on the worst case can lead to solutions that are too

conservative. Finally, it is difficult to justify why the uncertainty set should

be this specific form.

Thus, I believe that the reasons for the strong performance of the ULS

method lie in requiring robustness only where it is needed, i.e., for the poorly

estimated eigenpairs. By using the well-estimated eigenpairs directly, and com-

bining the classical and robust solutions based on average-case performance,
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ULS avoids the trap of being too conservative.

4.4.4 Relation to Portfolio Optimization

The minimum-variance portfolio is a combination of p assets that has

the least risk (as defined by variance) among all possible portfolios:

min
w

wTΣw

subject to wT1 = 1,
(4.10)

where Σ ∈ Rp×p is the covariance matrix of asset returns, and 1 is a vector with

all elements being 1. The constraint specifies that the portfolio must invest

all available wealth. Here, both “long” and “short” positions are allowed

(i.e., the components of w can be positive or negative). This optimization

encapsulates a basic problem regarding risk-minimization that has applications

far beyond finance, and so it has been widely studied (Jagannathan and Ma,

2003; DeMiguel et al., 2009a; Brodie et al., 2009; Fan et al., 2012; Zhao et al.,

2019a).

The above optimization shares obvious similarities with the LS problem

(P̂). In fact, it can be formally cast as a LS problem:

min
zT e1=1

zT (F TΣF )z, where F =


1/p −1 · · · −1
1/p

... Ip−1

1/p

 (4.11)

with w = Fz being the link between the two formulations. Hence, the z = e1

baseline solution yields the equal-weighted portfolio, which is a robust portfolio

that invests equally in each asset. The goal is to find the optimal deviations
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from this baseline portfolio4. In practice, Σ is unknown, and only the estimated

covariance Σ̂ is available.

Given the close link between the minimum-variance and LS problems,

it is not surprising that many of the proposed methods share some similarities.

These include the norm-based penalties as in ridge (Lauprête, 2001; DeMiguel

et al., 2009a) and LASSO regression (Welsch and Zhou, 2007; Brodie et al.,

2009; Fan et al., 2012). Motivated by the observation that the top eigenpairs

of the sample covariance matrix are well estimated, DeMiguel et al. (2009a)

proposed a PCA-based portfolio that is constructed using only the top eigen-

pairs. Zhao et al. (2019a) try to use other eigenpairs as well by constructing

a conservative portfolio by computing the portfolio variance bounds. They

then improve the PCA-based portfolio by combining it with this conservative

portfolio.

Here is the critical issue with the implications of the method in Zhao

et al. (2019a). When minimal data are available, the corresponding bound will

be so large that the combined portfolio is essentially the PCA-based portfolio.

This is mainly because it puts little faith in the conservative portfolio. That

is to say, the conservative portfolio is abandoned when it is needed the most.

Apart from this, their method cannot adjust itself to the objective of interest.

This is unnecessary in portfolio optimization since there is no special stock a

priori. However, in the LS problems there is the particular dependent variable

4Other reductions to the LS problem also exist, but do not have this interpretation.
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around which the measure of success revolves. Though not that meaningful,

the direct use of Zhao et al. (2019a) for the LS problem hence results in

disastrous performance.

4.5 Simulation Experiments

In this section, I will compare ULS against other methods on simula-

tions based on the Diabetes1 dataset. This dataset has 442 observations and

p = 10 covariates. I first estimate the Θ matrix using all observations. Then

I simulate data by generating (yi,xi) from a multivariate normal distribution

with zero mean and covariance Θ. Since the goal is to investigate the accuracy

of the LS algorithms in a limited-data setting, I simulate n = 20 = 2p obser-

vations as the training data. I run all methods on the simulated data and then

calculate the out-of-sample R2 for each method using the true Θ. The results

are aggregated over 1000 repetitions of this process.

I compare ULS against ordinary least-squares regression (OLS), prin-

cipal components regression (PCR), partial least-squares regression (PLS),

ridge regression (L2), LASSO regression (L1), and non-linear shrinkage (Non-

Lin) (Hotelling, 1957; Wold, 1966; Tikhonov, 1943; Tibshirani, 1996; Ledoit

and Wolf, 2017). PCR, PLS, L2, and L1 traditionally transform the data to

have mean 0 and unit variance before computing their solutions, and then

apply the inverse transform when making predictions (Friedman et al., 2001).

I use this standardization step for ULS too.

The optimal (OPT) can only be achieved by knowing Θ. OPT has the
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Table 4.1: Statistics Of Out-of-Sample R2

Methods ULS L2 PLS PCR L1 NonLin OLS
Mean 0.361 0.308 0.283 0.267 0.267 0.239 -0.087
SD 0.102 0.174 0.197 0.168 0.197 0.229 0.441

best possible out-of-sample R2, 0.528. This is unachievable but serves as a

bound.

Table 4.3 shows that the ULS method has the best average out-of-

sample R2 among all competing algorithms. ULS is 21% closer to OPT than

the next-best algorithm, L2. I also see that OLS performs worse than the

baseline that predicts the mean of y resulting in an out-of-sample R2 of 0.

OLS is by definition the “classical” solution that assumes that all eigenpairs

are well-estimated. The baseline is precisely the robust solution when the

uncertainty set encompasses all eigenpairs. Thus, the “classical” solution,

that optimizes the in-sample R2, actually has lower out-of-sample R2 than the

robust solution that only considers the worst-case.

Another interesting finding is that NonLin performs worse than L2,

even though nonlinear shrinkage (NonLin) provides a better estimation than

linear shrinkage (L2) (Ledoit and Wolf, 2012). The reason is the mismatch

between estimation and prediction: a better estimate of Θ does not guarantee

a better predictor. This emphasizes the need for objective matching.

Table 4.3 also shows that ULS also has the lowest variation in out-of-

sample R2 over the 1000 repetitions. This is due to the splitting mechanism of

ULS. The well-estimated top eigenpairs are similar in most repetitions, so the
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classical solution constructed from them does not vary much. The remaining

poorly-estimated eigenpairs do vary a lot, but the robust solution that ULS

builds for them depends only on the subspace spanned by these eigenvectors.

This again does not vary much. Together, these lead to the observed stability

and robustness of ULS.

4.6 Experiments on Real-world Datasets

This section compares ULS against competing methods using real-world

datasets. The first set of results are on seven classic regression datasets. Then,

I demonstrate an application of ULS to portfolio optimization, by converting

the well-known minimum-variance optimization into a regression problem and

testing it on ten financial datasets. All datasets are listed in Table 4.2.

Table 4.2: List of Datasets

Classic Regression Datasets Number of covariates (p)
Diabetes1 10
Community 99
Protein 88
Diabetes2 64
Crime 15
Supernova 10
Prostate 9
Financial Datasets Number of assets
Six Fama and French (1992) portfolios of firms sorted by size and book-to-market 6
Ten industry portfolios representing U.S. stock market 10
Twenty-five Fama and French (1992) portfolios of firms sorted by size and book-to-market 25
Forty-eight industry portfolios representing U.S. stock market 48
One hundred Fama and French (1992) portfolios of firms sorted by size and book-to-market 96

Each financial dataset has an “equal-weighted” and “value-weighted” version, for a total of 10 financial datasets.
For the last financial dataset, there are missing values for four risky assets for an extended period. Thus, I deleted them, leaving
96 of the original 100 assets.
The regression datasets are from (Hahn and Carvalho, 2015; Efron and Hastie, 2016; Dheeru and Karra Taniskidou, 2017). The
financial datasets are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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4.6.1 Classic Regression Datasets

Our goal is to study the performance of ULS under varying levels of

data insufficiency. So, for each dataset, I construct smaller training sets by

varying the n/p ratio from 20% to 200% with 20% increments. For example,

for the Protein dataset with p = 88 covariates, I construct 100 training sets

with n = 18 randomly chosen data points, another 100 sets with n = 36 data

points, and so on. I ignore instances with n < 10 which is too little data

for any method. Each competing algorithm is trained on these subsets with

standardization, and then its out-of-sample R2 is measured on all remaining

data points. I report the average out-of-sample R2 over the 100 repetitions.

The list of competing algorithms is the same as in Section 4.5 except for the

NonLin method, which sometimes did not yield any answer5 and hence its

performance could not be measured reliably.

Accuracy of ULS. Figure 4.3 shows the results on the Prostate, Diabetes1,

and Community datasets, ranging from small to large p. As expected, all

methods improve as the n/p ratio increases. ULS clearly dominates in the

Diabetes1 and Prostate datasets, and shares the honors with ridge regres-

sion (L2) in the Community dataset. OLS is not shown in the plots because

it performs worse than even the baseline that predicts the mean of y value

irrespective of x. Results for the other datasets show a similar pattern and

are gathered in Figure 4.4.

5The nlshrink R package occasionally broke down.
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Figure 4.3: Out-of-Sample R2 for three classic regression datasets.
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Importance of the robust solution. Observe that ULS always outper-

forms PCR and PLS. This is because both PCR and PLS throw away the

subspace information. However, ULS uses the fact that the subspace spanned

by the lower eigenvectors is estimated well, even though the individual eigen-

pairs are not. The robust solution constructed from this subspace lets ULS

consistently improve upon PCR and PLS.

I also observe that ridge regression (L2) also achieves a similar effect

as ULS, though it does not specifically split eigenpairs. Ridge regression min-

imizes zTΘz + τ · ‖z‖2
2 subject to zTe1 = 1, or equivalently, it minimizes

zT (Θ + τI)z =: zTΘL2z subject to that constraint. This is the same as

adding τ to all eigenvalues of Θ and then computing the OLS solution. If

λi(Θ) � τ (typically the lower eigenvalues), then λi(ΘL2) ≈ τ , so the lower

eigenvectors of ΘL2 are all indistinguishable in terms of their eigenvalues. This

is similar in spirit to the uncertainty set of ULS, where the eigenvalues of the
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Figure 4.4: Out-of-Sample R2 for four classic regression datasets.
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lower eigenvectors are ignored, and only the subspace spanned by these eigen-

vectors is used. However, note that Ridge regression does not do objective

matching, so it is still affected by the mismatch problem.

Table 4.3: Comparison of ULS over ULS without objective matching

n/p 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Prostate - - - - - 14.4 16.4 5.2 5.4 0.8
Crime - - - 11.7 6.6 3.0 2.5 2.2 1.4 1.8

Diabetes1 - - - - 42.9 36.7 3.2 2.8 7.3 2.3
Diabetes2 117.5? 41.1 11.9 3.4 3.6 4.4 3.3 3.4 3.3 3.1
Protein 98.8? 50.9 8.7 3.2 - - - - -

Supernova - - - - 10.3 2.7 2.7 1.1 1.1 0.9
Community 7.3 1.1 1.4 0.6 0.5 0.2 0.1 0.4 0.3 0.3

The table reports OR2(ULS)−OR2(ULSno)
|OR2(ULSno)| as percentages where ULSno stands for ULS

without objective matching. The stars represent settings where OR2(ULSno) < 0, so
ULSno was worse than the baseline.

Importance of objective matching. To quantify the effect of objective

matching, I compare ULS against a variant of ULS (called ULSno) that does

not use objective matching (i.e., it uses c = 1, so Θ(c) = Θ). Table 4.3 shows

the relative difference in the out-of-sample R2 of ULS versus ULSno, averaged

over 100 repetitions. I find that ULS outperforms ULSno in every case, with

the greatest differences appearing when n/p is small. These are precisely the

cases where prediction is difficult. As n/p → ∞, I expect all eigenpairs to

be well estimated, so both ULS and ULSno converge to the “classical” OLS

solution. This emphasizes the need for objective matching in low-data settings.
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Figure 4.5: Out-of-Sample Standard Deviation using n = 60 and n = 120
observations for five financial datasets
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4.6.2 Financial Datasets

For an application outside the classic regression datasets, I turn to the

minimum-variance optimization. I convert this into a LS problem (Eq. 4.11)

and compare ULS against competing regression methods. The setup of the ex-

periments follows Zhao et al. (2019a). I present results on five value-weighted

and five equally-weigthed Fama and French (1992) datasets mentioned in Ta-

ble 4.2, starting from July 1963 and ending in July 2015. I evaluate algorithms

using a rolling window: at time t, the past n monthly returns are used to con-

struct a portfolio, which is held for the next month. The return of this portfolio

is recorded. Then, the starting and ending period are both shifted forward by

one month, a new portfolio is built from this set of n monthly returns. The

process is repeated until the end of the dataset. This yields a sequence of re-

turns, and I report the standard deviation of these returns. Since the number

of stocks p is fixed for each dataset, and portfolios are always constructed using

returns from the previous n months, the n/p ratio is fixed. Following DeMiguel

et al. (2009a); Brodie et al. (2009); Zhao et al. (2019a), I run experiments with

n = 60 months and n = 120 months.

Figures 4.5 shows the out-of-sample standard deviation of returns for

n = 60 and n = 120. The ULS method consistently beats PCR and PLS

which, once again, supports the usefulness of the robust optimization. Note

that LASSO (L1) and ridge regression (L2) perform worse than PCR and PLS.

This is the opposite of what I observed for the datasets shown in Figure 4.3.

Thus, while ULS is the best or second-best method for most datasets and
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settings, no other method is as consistent.

I also compared ULS against the Bounded-Noise (BN) algorithm, which

is specifically designed for portfolio optimization and has been shown to be

competitive or better than state of the art on this problem (Zhao et al., 2019a).

Both performed similarly across all datasets, with a relative difference of 0.15%

on average for n = 120 and 0.79% for n = 60. There was no clear winner.

Note that BN requires a parameter while ULS is fully automatic, and BN is

much slower because intensive bootstrapping is required. Thus, ULS provides

a competitive algorithm for portfolio optimization even though it is designed

for the LS regression problem.

4.6.3 Appendix

4.7 Proofs of Lemmas and Theorems

Lemma 4.7.1 (Concentration of Eigenvectors (Yu et al., 2015)). Let A,B ∈

Rp×p be symmetric, with eigenvalues λ1(A) ≥ . . . ≥ λp(A) and λ1(B) ≥ . . . ≥

λp(B), respectively. Fix 1 ≤ r ≤ s ≤ p, and assume that min(λr−1(A) −

λr(A), λs(A)− λs+1(A)) > 0, where I define λ0(A) = ∞ and λp+1(A) = −∞.

Let d = s − r + 1. Let V (A) = (vr(A),vr+1(A), . . . ,vs(A)) ∈ Rp×d and

V (B) = (vr(B),vr+1(B), . . . ,vs(B)) ∈ Rp×d. Then there exists an orthogonal

matrix O ∈ Rd×d such that

‖V (A)− V (B)O‖F ≤
23/2d1/2‖A−B‖op

min (λr−1(A)− λr(A), λs(A)− λs+1(A))
.

Theorem 4.7.2. Let λi(c) and vi(c) represent eigenvalues and the correspond-

ing eigenvectors of Θ(c), with λ1(c) ≥ λ2(c) ≥ . . . ≥ λp+1(c). Define λi(Φ)
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and vi(Φ) accordingly. Let v
[1]
i := vi(c)

Te1 denote the first element of vi, and

v
[−1]
i be vi without the first element. Assume Ey2 > 0, and Φ has no repeated

eigenvalues6. Then, I have Then,

λ1(c) = Ey2 +O(1/c2),

∥∥∥∥v1(c)− `

‖`‖

∥∥∥∥ = O(1/c2), where ` =

( √
Ey2

−1
c
Exy√
Ey2

)
.

Moreover, for all i ∈ [2, p+ 1], I have

λi(c) =
1

c2
λi−1(Φ) +O(1/c3),

‖v[−1]
i (c)− vi−1(Φ)‖ = O(1/c),

v
[1]
i (c) =

1

c

vi−1(Φ)TE[xy]

Ey2
+O(1/c2).

Further, the corresponding statements hold if Θ(c) and Φ are replaced by their

empirical counterparts.

Proof. Proof. By Weyl’s inequality,

|λ1(c)− λ1(``T )| ≤ ‖Θ(c)− ``T‖op =

∥∥∥∥∥
(

0 0T

0
ExxT− (Exy)(EyxT )

Ey2

c2

)∥∥∥∥∥
op

= O(1/c2).

By applying Lemma 4.7.1 with A = ``T , B = Θ(c), and r = s = 1, I have∥∥∥∥v1(c)− `

‖`‖2

∥∥∥∥
2

≤ 23/2‖Θ(c)− ``T‖op
‖`‖2

2

= O(1/c2),

since ``T is a rank-one matrix with eigenvalue ‖`‖2
2. Note that this also implies

the looser bound ‖v1(c) − e1‖ = O(1/c). From the fact that v1(c)Tvi(c) = 0

6This assumption is just for the simplicity of the result. If there exists 1 ≤ r < s ≤ p that
λr(Φ) = λr+1(Φ) = · · · = λs(Φ), the result will be the about the matrix (vr(Φ), . . . ,vs(Φ))
instead of individual eigenvectors.
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for all i > 1, I have√
Ey2

‖`‖
v

[1]
i (c)− 1

c‖`‖
√
Ey2

E[yxT ]v
[−1]
i (c) = O(1/c2)

⇒ v
[1]
i (c)− 1

c · Ey2
E[yxT ]v

[−1]
i (c) = O(1/c2). (4.12)

Now, using Θ(c)vi(c) = λi(c)vi(c), I have

Θ(c)vi(c) =

(
Ey2 −EyxT

c

−Exy
c

ExxT

c2

)(
v

[1]
i (c)

v
[−1]
i (c)

)
= λi(c)

(
v

[1]
i (c)

v
[−1]
i (c)

)

⇒ − Exy

c
v

[1]
i (c) +

ExxT

c2
v

[−1]
i (c) = λi(c)v

[−1]
i (c)

⇒ 1

c2

(
ExxT − (Exy)(EyxT )

Ey2

)
v

[−1]
i (c) +O(1/c3)Exy = λi(c)v

[−1]
i (c)

(from Eq. 4.12)

⇒ c2λi(c)v
[−1]
i (c) =

(
Φ +

O(1/c)

‖v[−1]
i (c)‖2

E[xy]v
[−1]
i (c)T

)
v

[−1]
i (c) =: (Φ + ∆)v

[−1]
i (c).

(4.13)

The last statement used the fact that ‖v[−1]
i (c)‖ 6= 0 (otherwise v

[1]
i (c) =

O(1/c2) from Eq. 4.12, but I need ‖vi(c)‖ = 1). Hence, c2λi(c) and v
[−1]
i (c)

are the (i−1)th eigenvalue and corresponding eigenvector of the matrix Φ+∆,

with ‖∆‖op = O(1/c). By Weyl’s inequality, I have

|c2λi(c)− λi−1(Φ)| ≤ ‖Φ + ∆− Φ‖op = O(1/c).

Similarly, by Lemma 4.7.1,

‖v[−1]
i (c)− vi−1(Φ)‖2 ≤

23/2‖Φ + ∆− Φ‖op
min (λi−1(Φ)− λi(Φ), λi(Φ)− λi+1(Φ))

= O(1/c).

(4.14)
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Applying Eq. 4.14 to Eq. 4.12, I get

v
[1]
i (c) =

1

c

vi−1(Φ)TE[xy]

Ey2
+O(1/c2).

Similar arguments hold for the empirical matrices Θ̂(c) and Φ̂.

Theorem 4.3.1(Upper Bound of OR2( v1(Θ)
v1(Θ)T e1

))

Proof. Proof. Apply Lemma 4.7.1 with A = Θ and B =

(
0 0T

0 Φ

)
, where

Φ = E(xxT )− (Exy)(EyxT )
Ey2 . Since A−B = ``T , where ` =

(√
Ey2

− Exy√
Ey2

)
, I have

∥∥∥∥v1(Θ)−
(

0
v1(Φ)

)∥∥∥∥
2

≤ 23/2
Ey2 + (EyxT )(Exy)

Ey2

λ1(Θ)− λ2(Θ)
.

Thus, I have the following bound for (v1(Θ)Te1)2:

(v1(Θ)Te1)2 =

((
v1(Θ)−

(
0

v1(Φ)

))T
e1

)2

≤
∥∥∥∥v1(Θ)−

(
0

v1(Φ)

)∥∥∥∥2

2

≤ 23

(
(Ey2)2 + (EyxT )(Exy)

)2

(Ey2)2
(
λ1(Θ)− λ2(Θ)

)2 .

Hence,

OR2

(
v1(Θ)

v1(Θ)Te1

)
= 1− λ1(Θ)/(v1(Θ)Te1)2

Ey2
≤ 1− 2−3λ1(Θ)

(
λ1(Θ)− λ2(Θ)

)2
Ey2(

(Ey2)2 + (EyxT )(Exy)
)2

(4.15)

Noting that λ1(Θ) ≥ eT1 Θe1 = Ey2 and v1(Θ)Te1 ≤ ‖v1(Θ)‖2 = 1, Eq. 4.15

also shows that

OR2

(
v1(Θ)

v1(Θ)Te1

)
≤ 1− Ey2

Ey2
= 0.
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Theorem 4.3.2(Possible Ways to Change Θ)

Proof. Proof. Because Θ = (M−1)TMTΘMM−1 holds for any invertible M , I

have

min
z|zT e1=1

zTΘz = min
z|zT e1=1

(M−1z)TMTΘM(M−1z).

Moreover,

(M−1z)Te1 = (M−1z)TMe1 = zTe1 = 1,

where the first equality holds because Me1 = e1. Thus, I have

min
z|zT e1=1

zTΘz = min
z|zT e1=1

zTMTΘMz.

Theorem 4.3.3(Best Starting Point)

Proof. Proof. Theorem 4.7.2 shows that v1(c) = e1 + O(1/c) and λ1(c) =

Ey2 +O(1/c). Thus,

fΘ(c)

(
v1(c)

v1(c)Te1

)
=

λ1(c)

(v1(c)Te1)2
=
Ey2 +O(1/c)

1 +O(1/c)
= Ey2 +O(1/c),

which means that

OR2

(
v1(c)

v1(c)Te1

)
= 1−

fΘ(c)

(
v1(c)

v1(c)T e1

)
Ey2

= O(1/c).
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Theorem 4.3.4(All Eigenvectors are Useful)

Proof. Proof. For i ∈ [2, p + 1], fΘ(c)

(
vi(c)

vi(c)T e1

)
= λi(c)

(vi(c)T e1)2 . From Theo-

rem 4.7.2, both the numerator and denominator are of the order O(1/c2).

Thus, fΘ(c)(
vi(c)

vi(c)T e1
) = O(1), so OR2( vi(c)

vi(c)T e1
) = O(1).

Theorem 4.3.5(The Connection between Θ(c) and Φ)

Proof. Proof. All statements are derived from Theorem 4.7.2.

Theorem 4.3.6(Eigenvalues of Φ)

Proof. Proof. Since ExxT is a submatrix of Θ, I have λi(Θ) ≥ λi(Exx
T ) by

the Cauchy interlacing theorem. Since ExxT = Φ + 1
Ey2E[yx]E[yxT ], I have

λi(Exx
T ) ≥ λi(Φ) by Weyl’s inequality. Finally, observe that Φ is the Schur

complement of the top-left block of Θ (containing Ey2), so λi(Φ) ≥ λi+1(Θ)

(see Theorem 5 of ?). This proves λi(Θ) ≥ λi(Exx
T ) ≥ λi(Φ) ≥ λi+1(Θ) ≥

λi+1(ExxT ) for all i.

Because E(xxT ) = Φ + (Exy)(EyxT )
Ey2 , I have

tr(E(xxT )) = tr(Φ) + tr(
(Exy)(EyxT )

Ey2
)

⇒
p∑
i=1

λi(Exx
T ) =

p∑
i=1

λi(Φ) +
(EyxT )(Exy)

Ey2
.

Here tr(A) indicates the trace of matrix A. By rearranging, the second equality

of Theorem 4.3.6 is proved.
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Theorem 4.3.7(Solutions converge for large c)

Proof. Proof. I will apply Theorem 4.7.2 to Eq. 4.5. The denominator of

ẑ?1:k(c) is given by

k∑
i=1

(v̂i(c)
Te1)2

λ̂i(c)
=

n

yTy
+O(1/c) +

k∑
i=2

1/c2(vi−1(Φ̂)TXTy)2/(yTy)2 +O(1/c3)

1/c2λi−1(Φ̂) +O(1/c3)

→ n

yTy
+

k∑
i=2

(vi−1(Φ̂)TXTy)2

λi−1(Φ̂) · (yTy)2

as c→∞. The numerator of M(c)ẑ?1:k(c) is given by

k∑
i=1

v̂i(c)
Te1

λ̂i(c)
M(c)v̂i(c)

=
n

yTy
e1 +O(1/c) +

k∑
i=2

1/c · vi−1(Φ̂)TXTy/(yTy) +O(1/c2)

1/c2 · λi−1(Φ̂) +O(1/c3)

(
1/c · vi−1(Φ̂)TXTy/(yTy)

1/c · vi−1(Φ̂)

)

→ n

yTy
e1 +

k∑
i=2

vi−1(Φ̂)TXTy

λi−1(Φ̂) · (yTy)
wi−1,

where the statement a = b+O(.) is taken to imply ‖a−b‖ = O(.). Together,

these yield the limit point ẑ?1:k.
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Similarly, I find

M(c)z̃?k+1:p+1(c)

=
M(c)PNke1

eT1 PNke1

=

∑p+1
k+1(v̂i(c)

Te1)M(c)v̂i(c)∑p+1
k+1(v̂i(c)Te1)2

=

∑p+1
k+1

(
1/c · vi−1(Φ̂)TXTy/(yTy) +O(1/c2)

)(1/c · vi−1(Φ̂)TXTy/(yTy)

1/c · vi−1(Φ̂)

)
∑p+1

k+1 1/c2 · (vi−1(Φ̂)TXTy)2/(yTy)2 +O(1/c3)

→
∑p+1

i=k+1(vi−1(Φ̂)TXTy)wi−1∑p+1
i=k+1(vi−1(Φ̂)TXTy)2/(yTy)

,

which yields the limit point z̃?k+1:p+1.

Theorem 4.4.1(The Connection between v̂i(X
TX) and v̂i(Φ̂))

Proof. Proof. Apply Lemma 4.7.1 with A = XTX and B = Φ̂ to prove the

inequality.
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Chapter 5

Enhanced Principle Component Analysis

For the convenience of reading, I try to make this chapter self-contained.

Namely, I will reiterate some definitions and assumptions. This chapter loosely

depends on Zhao et al. (2019a) and Zhao et al. (2019b).

5.1 Introduction

As data become more complex, dimensionality reduction plays a more

and more critical role. Such reduction can reduce the time and storage re-

quired, generate good visualization of data, and avoid the curse of dimension-

ality. Principle component analysis (PCA) (Pearson, 1901; Hotelling, 1933)

might be the most popular linear technique to reduce dimensionality and has

applications through science and engineering (Jolliffe, 2011). It transforms

data from possibly correlated variables to orthogonal principal components

(PCs).

Though widely used, PCA still has several disadvantages. As an il-

lustration, I will list the three main weaknesses. Firstly, PCs tend to be a

linear combination of all variables. This characteristic restricts the power of

interpretation. d’Aspremont et al. (2005) and Zou et al. (2006) among others
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add sparsity to the PCs. Secondly, PCA is sensitive to outliers because its

objective is variance. Devlin et al. (1981), Xu and Yuille (1995), and Xu et al.

(2010) among others propose ways to address this issue. Thirdly, the decom-

position of PCA does not take the objective into account. For example, in a

regression setting, one applies PCA on the covariates without considering the

dependent variable whose prediction is the target. Bair et al. (2006) proposes

the supervised PCA to incorporate the objective. Because the top PCs might

not be useful in predicting (Jolliffe, 1982), the supervised PCA might not take

the top PCs.

There is still one issue of PCA that is ignored in the literature. No

matter which PCs are selected, the subspace that is orthogonal to the chosen

PCs is always ignored. However, if the selected PCs are well-estimated, the

subspace is also well-estimated because of orthogonality. Ignoring it might

lead to a loss of information.

In this chapter, I will propose a way to not only use the orthogonality

information but also take the objective into account. I call this new method-

ology PCA+. To achieve this goal, I will first introduce the classical PCA

in Section 5.2. I will illustrate the idea of PCA+ in portfolio optimization

in Section 5.3. This is the most natural case to enhance PCA because the

objectives of the optimization and PCA coincide. In Section 5.4, I apply the

idea of PCA+ in the linear regression setting.
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5.2 PCA

PCA tries to linearly transform the data to a new coordinate system

such that the greatest variance along the first coordinate is largest, along the

second coordinate is the second largest, and so on. The new coordinates are

called the principal components (PCs). Mathematically speaking, the first PC

in the original system is the solution to

v1 = arg max
‖v‖2=1

v′X ′Xv,

where X is the n-by-p data matrix with each row representing one observation.

That is to say, there are n observations and p variables. Thus, the first PC

is the first eigenvector of matrix X ′X which explains the choice of using the

same notation v1. Also, the objective, v′1X
′Xv1, is the first eigenvalue of

X ′X, namely λ1.

To calculate the k + 1th PC, the previous k PCs are taken out from

the data matrix X: X −
∑k

i=1 Xviv
′
i. Because viv

′
i is equivalent to an op-

erator that projects values along vi, the subtraction means to taken out all

the variations along the top k PCs. Since
∑p

i=1 viv
′
i is an identity matrix,

X −
∑k

i=1Xviv
′
i = X

(∑p
i=k+1 viv

′
i

)
. For the simplicity, I denote

∑p
i=k+1 viv

′
i

as P⊥. That is to say, the new data matrix is XP⊥.

To obtain the k + 1th PC, one applies the first PC idea to XP⊥.

vk = arg max
‖v‖2=1

v′
[
(XP⊥)′(XP ′⊥)

]
v,

= arg max
‖v‖2=1

(P⊥v)′X ′X(P⊥v).
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P⊥ is an operator that projects values on the orthogonal subspace of the top

k PCs, the solution to the above optimization is the k+1th eigenvector of the

matrix X ′X which is orthogonal to the top k PCs. All in all, PCs are the

eigenvectors of the matrix X ′X.

PCA is closely related to the singular value decomposition (SVD) which

decomposes data matrix X directly as

X = UDV ′ = (u1, . . . ,uq)diag(d1, . . . , dq)

v
′
1
...
v′q

 =

q∑
i=1

diuiv
′
i,

where q = min(n, p) and diag(d1, . . . , dq) is a diagonal matrix with d1, . . . , dq

as the diagonal values. The n-by-q matrix U contains the left-singular vectors

which are the eigenvectors of XX ′. Similarly, the p-by-q matrix V contains

the right-singular vectors which are the eigenvectors of X ′X, namely the PCs

of X. Moreover, it is easy to prove di =
√
λi.

Let 1 and x̄ be both length-p column vectors with all ones and the

mean of each column of X as elements. Because X ′X = (X − 1x̄′)′(X −

1x̄′) + (1x̄′)′(1x̄′), x̄ affects the PCs of X ′X. To eliminate such influence, it

is conventional to demean the data matrix X, namely making x̄ = 0 before

using PCA. With the demeaned data matrix X, X ′X = (n− 1)Σ̂, where Σ̂ is

the sample covariance matrix. For convenience, I assume the data is demeaned

before PCA for all experiments from now on.
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5.3 PCA+ in Portfolio Optimization

The minimum-variance optimization tries to minimize the variance of

a portfolio w. Mathematically speaking,

min
w

w′Σw,

subject to w′1 = 1,

where Σ is the true covariance matrix and 1 is a length-p vector with all

elements being 1. In reality, because Σ is unknown, one might use the sample

covariance matrix Σ̂ in place of it. Since Σ̂ = 1
n−1

X ′X, and the optimization is

invariant to scaling, replacing Σ with Σ̂ in the above optimization is equivalent

to solving

min
w

w′(X ′X)w,

subject to w′1 = 1.

Interestingly, it shares the same objective with applying PCA on X. Because

of the error amplification phenomenon mentioned in Chapter 2, the resulting

portfolio might a terrible out-of-sample performance. PCA, which reduces the

dimensionality, might come to rescue. Indeed, the ŵ∗S portfolio mentioned in

Chapter 2 is the solution when only the top PCs of X are considered in the

optimization. Thus, I will call ŵ∗S the PCA portfolio. As shown in DeMiguel

et al. (2009a), the PCA portfolio does improve out-of-sample performance.

However, as argued in Chapter 2, though the bottom PCs are individually

poorly estimated, the subspace spanned by them are well estimated because of

the orthogonality to the top PCs. Only keeping top PCs seems to be wasting

the orthogonality information. I propose to utilize such information using
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wEW
N portfolio earlier. If one uses the perspective of dimensionality reduction,

it is natural to use the following directions

VPCA+ = (v1, . . . ,vk, P⊥1) ,

where P⊥ =
∑p

i=k+1 viv
′
i is the projection operator for the subspace that is

orthogonal to the top k PCs. It is worth to notice that the L2 norm of P⊥1 is

not 1. Because only the direction matters for the final solution, for simplicity, I

keep it this way. It is tempting to reduce dimension by usingXVPCA+, but such

operation will destroy the robustness of P⊥1 because the projection of X on

the orthogonal subspace, namely XP⊥, is poorly estimated. Instead, I propose

to replace X with X(η) which shares the same U , V matrix, and d1, . . . , dk

with X, but all the remaining singular values are η which is a constant. In

this way, the projection of X(η) on the orthogonal subspace only depends on

the well-estimated subspace. The reduced data become

XPCA+ = (Xv1, . . . , Xvk, X(η)P⊥1) .

Because w = VPCA+l, the minimum-variance optimization now becomes

min
l

l′(X ′PCA+XPCA+)l,

subject to (VPCA+l)
′1 = 1.

It generates the following portfolio,

wPCA+(η) =

∑k
i=1

v′i1

λi
vi + 1

η2P⊥1∑k
i=1

(v′i1)2

λi
+ 1′P⊥1

η2

= (1− a1(η))ŵ∗S + a1(η)wEW
N , (5.1)

where a1(η) =
(∑k

i=1
1′P⊥1
η2

)
/
(∑k

i=1
(v′i1)2

λi
+ 1′P⊥1

η2

)
. Because ŵ?

S is the PCA

solution, the PCA+ solution is a combination of the PCA solution and the
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projection of the equally-weighted portfolio. Clearly, the choice of η is es-

sential because it determines the combination level between ŵ∗S and wEW
N . I

will document the way to choose η in Section 5.3.2. Instead of simply pur-

suing the best out-of-sample performance as the Unified portfolio, the PCA+

portfolio focuses on achieving a good performance with a descent reduction of

dimensionality. That is to say, a small k is preferred.

5.3.1 Exploration Using Simulation

In this subsection, I would like to use the following simulation example

to explore the possibility of obtaining good performance with a small k.

The simulation is based on the Fama-French value-weighted dataset

comprising 96 risky assets. I assume that the true covariance matrix Σ and

the true expected return µ are the sample covariance matrix and the sample

mean using all monthly data from July 1963 to July 2015 (625 observations).

I also assume that the returns follow a multivariate normal distribution with

mean µ and covariance Σ, and I draw 120 observations (10-year monthly data)

from this distribution.

Given one set of the simulated data, for each possible number of PCs,

I calculate the PCA portfolio and the PCA+ portfolio with the optimal η

that minimizes its realized variance1. For readability, I call the latter the

oracle PCA+ portfolio because it needs the true covariance matrix Σ in the

1The realized variance of portfolio w is defined as RV (w) = w′Σw.
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combination procedure. Though not achievable in reality, it helps to show the

potential of the PCA+ portfolio.

From Figure 5.1, the oracle PCA+ portfolio sees a sharp decrease in

realized standard deviation (SD) for the several top PCs where the most sig-

nificant difference between it and the PCA portfolio exists. The improvement

afterward is minuscule. Moreover, the oracle PCA+ portfolio can achieve a

lower realized SD using only several PCs than the PCA portfolio involving

almost 50 PCs.

Here, I will explain the phenomenon mentioned above. From Figure 2.1,

the eigengaps of Σ for the several top eigenvalues are much larger than others.

Based on Lemma 2.3.2, the estimation errors of several top PCs should be

much smaller than other PCs. Namely, the subspace that is orthogonal to

the several top PCs is extremely well estimated. Thus, even though the PCA

portfolio performs better as it includes more PCs, the corresponding orthog-

onal subspace not only becomes smaller but also contains more error. That

is to say, for the oracle PCA+ portfolio, there is a tradeoff when a new PC

is added. For the several top PCs, the benefit of PCA dominates the penalty

of smaller and worst orthogonality subspace, and a sharp drop in realized SD

occurs. Then they become similar, and the realized SD remains almost the

same for a long time. Finally, the penalty grows more prominent than the

benefit, and the realized SD starts to increase. The most significant difference

between them happens for the top PCs because the orthogonal subspace is

both extensive and exceptionally well estimated.
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Figure 5.1: Realized SD for PCA and oracle PCA+ Portfolio
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5.3.2 Parameter Choices of k and η

In this subsection, I will propose a way to approximate the oracle PCA+

portfolio by choosing k and η without knowing the true covariance matrix. The

presented way is ad-hoc but serves the purpose of demonstrating the possibility

to achieve excellent performance with a small dimension.

Across all portfolio experiments, I choose k = 4. Namely, I reduce

the dimensionality of data to k + 1 = 5. With such a small k, the estimated

variance2 of ŵ∗S should be a great estimation of its realized variance, and the

realized covariance3 between ŵ∗S and wEW
N should be small. Based on Lemma

2The estimated variance of a portfolio w is defined as EV (w) = w′Σ̂w.
3The realized covariance between portfolio wA and wB is defined as w′AΣwB
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3.2.1, the optimal combination level should be close to

RV (wEW
N )

RV (ŵ∗S) +RV (wEW
N )

≈ RV (wEW
N )

EV (ŵ∗S) +RV (wEW
N )

. (5.2)

Thus, a good choice of η should be able to estimate RV (wEW
N ). Because λk

serves a bound for all eigenvalues corresponding to the thrown away PCs,

η =
√
λk will generate a bound for RV (wEW

N ). Because k is small, this bound

should be loose. I find that
√
λk/1.5,

√
λk/2, and

√
λk/2.5 all generate similar

results. For simplicity, I decided to show the results with η =
√
λk/2.

5.3.3 Empirical Results

In this subsection, I will compare the PCA+ portfolio with the following

PCA related portfolios.

Competing methods. The oracle PCA portfolio chooses the number

of PCs after observing the out-of-sample returns. It is unachievable in reality

but serves as an upper bound for PCA related methods. Because its existence,

PCA with cross-validation is not presented. To see the improvement of the

PCA+ portfolio, I also include the PCA4 and PCA5 portfolio which uses the

top 4 and 5 PCs, respectively. The PCA90% (PCA95%) portfolio chooses the

number of PCs such that 90% (95%) of the total variance is included. These

two ways are very commonly used across the applications of PCA.

The setup of the experiments. I present results on five value-

weighted and five equally-weigthed Fama and French (1992) datasets men-

tioned in Table 4.2, starting from July 1963 and ending in July 2015. I evalu-

89



ate algorithms using a rolling window: at time t, the past n monthly returns

are used to construct a portfolio, which is held for the next month. The re-

turn of this portfolio is recorded. Then, the starting and ending period are

both shifted forward by one month, a new portfolio is built from this set of n

monthly returns. The process is repeated until the end of the dataset. This

yields a sequence of returns, and I report the standard deviation of these re-

turns. Since the number of stocks p is fixed for each dataset, and portfolios are

always constructed using returns from the previous n months, the n/p ratio

is fixed. Following DeMiguel et al. (2009a); Brodie et al. (2009); Zhao et al.

(2019a), I run experiments with n = 60 months and n = 120 months.

Figure 5.2 presents the out-of-sample standard deviation (SD) for all

six portfolios. Across all 20 experiments, the PCA+ portfolio is almost as

good as the oracle PCA portfolio. For the datasets with more than six assets,

the oracle PCA portfolio never chooses all PCs indicating that the estimation

errors are large enough to affect performance negatively. For these datasets,

the PCA+ portfolio achieves its performance by handling the estimation errors

effectively. For the datasets with six assets, the oracle PCA portfolio uses all

PCs. Thus, the good performance of the PCA+ portfolio comes from the fact

that the fifth and sixth eigenvalues are similar. That is to say, PCA+ works

well because the assumptions are approximately correct.

The PCA+ portfolio dominates the PCA4 portfolio for all experiments.

The gap tends to be more prominent as the number of assets increases. This

makes sense because the orthogonality subspace becomes more and more im-
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Figure 5.2: Out-of-Sample SD of PCA+ and PCA related Portfolios
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portant as its dimensionality grows. This shows the power of enhancing PCA

using orthogonality information.

The PCA5 portfolio is always inferior to the PCA+ portfolio. Because

they have the same number of dimensions, this shows that PCA+ does pro-

vide a higher quality reduction of dimensionality. For most cases, the PCA5

portfolio has a similar level of performance with the PCA4 portfolio indicating

a gradual change as more PCs are included.

Both PCA90% and PCA95% portfolios perform much worse than the

oracle PCA portfolio most of the times. Moreover, PCA90% consistently per-

forms worse than PCA95%. This seems to be counterintuitive for the large

datasets because PCA95% chooses more PCs than PCA90% which should be

problematic for big datasets. This mystery is resolved in Figure 5.3 which

shows the out-of-sample SD with respect to the number of PCs used for

the 96FFVW dataset. Because PCA90% chooses only about 10 PCs while

PCA95% chooses about 20 PCs, based on Figure 5.3, PCA95% should have a

lower out-of-sample SD.

The PCA+ portfolio only uses 5 dimensions while the oracle PCA port-

folio chooses more than 30 PCs for both n = 60 and n = 120 cases. This co-

incides with the expectation motivated by the simulation exploration: PCA+

provides a much efficient reduction of dimensionality.
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Figure 5.3: Out-of-Sample SD of PCA portfolios for 96FFVW dataset

n = 60 n = 120

0 10 20 30 40 50 60

4.
0

4.
5

5.
0

5.
5

Number of PCs

O
ut

−
of

−
S

am
pl

e 
S

D

0 20 40 60 80 100

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

Number of PCs

O
ut

−
of

−
S

am
pl

e 
S

D

5.4 PCA+ in Linear Regression

In this section, I first discuss the challenge of extending the PCA+

portfolio idea to linear regression. Then, just like the portfolio optimization

case, I will use simulation to explore the possibility to obtain good prediction

results with just a few dimensions. Finally, I will present experiments on

real-world datasets.

5.4.1 Inconsistent Objectives

Linear regression brings the issue of inconsistent objectives: the objec-

tive for PCA is the variance of X while the objective for linear regression is

the prediction of y, the dependent variable. Technically speaking, the new
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direction added in the PCA+ portfolio, namely P⊥1, no longer works, because

it is independent of the dependent variable y. To fix this issue, one needs to

understand the reasoning behind the choice of P⊥1 for portfolio optimization:

the good performance and robustness of the equally-weighted portfolio (Job-

son and Korkie, 1980; DeMiguel et al., 2009b; Duchin and Levy, 2009). Thus,

I need to find a robust solution, βrob for the linear regression that has good

performance, and then replace P⊥1 with P⊥βrob.

Because the derivation of the PCA+ solution goes through with any

robust solution, I will present my choice of βrob later.

For the readability, I still use VPCA+ and XPCA+ here representing

VPCA+ = (v1, . . . ,vk, P⊥βrob) ,

XPCA+ = (Xv1, . . . , Xvk, X(η)P⊥βrob) .

Assuming β = VPCA+l, the linear regression becomes

min
l

(y −XPCA+l)
′(y −XPCA+l).

It generates the following solution,

βPCA+ =
k∑
i=1

v′i(X
′y)

λi
vi +

(P⊥βrob)
′(X ′(η)y)

η2
∑p

i=k+1(v′iβrob)
2
P⊥βrob.

Noticing that the first term is the PCA solution, βPCA, I can rewrite it as

βPCA+ = βPCA + a2(η)P⊥βrob, (5.3)

where a2(η) = (P⊥βrob)
′(X ′(η)y)/(η2

∑p
i=k+1(v′iβrob)

2). Just as the portfolio

case, the PCA+ solution is closely related the PCA solution and the projection
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of a robust solution. Instead of a linear combination of two in the minimum-

variance optimization, it is adding a proportion of the latter to the former for

the linear regression.

What left is the choice of βrob The most robust solution is β = 0.

However, it is useless here because P⊥0 = 0 which leads to the traditional

PCA. Recall that the OLS solution, βOLS = (X ′X)−1X ′y, suffers from the

collinearity because of the existence of (X ′X)−1. One way to fix it is to replace

(X ′X)−1 with a matrix which is proportional to the identity matrix. This leads

to a solution that is proportional to βrob ∝ X ′y. The vector X ′y also plays

an important role in PLS (Wold, 1966) and ULS (Zhao et al., 2019b).

5.4.2 Exploration Using Simulation

In this subsection, I use simulation to explore the possibility of obtain-

ing a good prediction using a small number of dimensions.

The simulation is based on dataset Diabetes2 which has 442 observa-

tions and 64 covariates from Table 4.2. I generate the independent variables,

X, using a multi-normal distribution where the mean and covariance are the

sample counterparts using all observations. Then I use N(Xβ, σ) to generate

the dependent variable, y, where β and σ are obtained by a linear regression

of y on X using all observations. I draw n = 128 = 2p from this procedure.

Given one set of simulated data, for each possible split, I calculate the
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PCA solution4 and the PCA+ solution with the optimal η that maximizes the

out-of-sample R2. As in the portfolio simulation, I call the latter the oracle

PCA+ solution. It is unachievable in reality but serves an upper bound for

the PCA+ method.

Figure 5.4 shows the out-of-sample R2 for PCA and the oracle PCA+

solution. Same as in the portfolio case, the PCA solution needs about 30

PCs to achieve the best performance while the oracle PCA+ can achieve a

similar result with just several top PCs. Also, the difference between PCA and

the oracle PCA+ is biggest when k is small. Same explanation also applies

here. The top PCs are extremely well estimated which means the orthogonal

subspace is also a great estimation. Moreover, this subspace is also of high

dimension which leads to high potential. Once again, the simulation results

show the power of the forgotten orthogonality information.

5.4.3 Parameter Choices of k and η

Unlike the portfolio experiments, I use different ks for different datasets.

This decision is based on the design of empirical experiments which have the

same low-data settings regardless of the number of covariates, p. To have

PCA+ method work well for dataset with a small p, the dimensionality of the

orthogonal subspace needs to be large enough. That is to say a large p− k is

needed. Indeed, the choice of k grows as p grows.

4It is usually called the principal components regression (PCR), but for consistency, I
still use the name PCA.
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Figure 5.4: Out-of-Sample R2 for PCA and oracle PCA+ Solution
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I consider not using η =
√
λ/2 as in portfolio optimization because the

structures of enhancement are different based on Eq. 5.1 and Eq. 5.3. In fact,

I find that this choice of η no longer works well while
√
λk/1,

√
λk/1.1, and√

λk/1.2 all generate great performance. For simplicity, I choose η =
√
λk.

With η =
√
λk, it is tempting to think what PCA+ does is a simple

modification of X ′X: all its eigenvalues are clipping to λk except the top k,

and the new matrix is used to replace the X ′X matrix in the OLS solution.

However, it can be proved to be not true based on Eq. 5.3.
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5.4.4 Empirical Results

In this subsection, I will compare the PCA+ method using different ks

and η = λk with five PCA related methods defined in Section 5.3.3.

I decide to focus on dataset Diabetes2 (p = 64) and dataset Community

(p = 99) from Table 4.2 because they are the largest datasets. Dataset Protein

(p = 88) is ignored because there are only 96 observations resulting in overfit-

ting for the oracle PCA solution. For both datasets, I use k = 4.

My goal is to study the performance of PCA+ under varying levels of

data insufficiency. Thus, for both datasets, I construct smaller training sets by

varying the n/p ratio from 20% to 200% with 20% increments. For example,

for the Community dataset with p = 99 covariates, I construct 100 training

sets with n = 20 chosen observations, another 100 sets with n = 40 chosen

observations, and so on. I ignore instances with n < 10 which is too little data

for any method. Each competing method is trained on these datasets with

standardization, and then its out-of-sample R2 is measured on the remaining

data points. I report the average out-of-sample R2 over the 100 repetitions.

Figure 5.5 shows the results for all six methods. As expected, all meth-

ods improve as the n/p ratio increases. For all 20 experiments, the oracle PCA

method is the best among PCA methods. It is expected since the oracle PCA

method chooses the number of PCs after observing all testing data. Unlike

the portfolio tests, PCA90% works well and even matches the performance of

the oracle PCA on some datasets. Thus, the conventional wisdom of cutting
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Figure 5.5: Out-of-Sample R2 for Two Classic Regression Datasets.
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at 90% does have some merit.

The PCA+ method works extremely well on the Diabetes2 dataset: it

is even better than the oracle PCA for 9 out of 10 tests. For the Community

dataset, most of the time, it matches the performance of the oracle PCA.

However, PCA+ doesn’t work well when n/p = 20%. This happens because

fewer than 4 PCs should be used. Indeed, PCA4 and PCA5 are also better

than the PCA+ method in such a low data scenario. This motivates choosing k

based on n/p ratio which requires future research. For cases with n/p > 40%,

the PCA+ method is much better than both PCA4 and PCA5 indicating the

power of the orthogonality information.

Figure 5.6 presents the out-of-sample R2 with respect to the number of
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Figure 5.6: Out-of-Sample R2 Regarding #PCs When n/p = 2
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PCs selected for both datasets. The oracle PCA selects 20 PCs for Diabetes2

and 19 PCs for Community. This is consistent to the previous simulation study.

Meanwhile, PCA90% (PCA95%) chooses about 25 (30) and 20 (30), respec-

tively. For the Community case, though PCA+ and PCA90% have similar

performance, PCA+ only utilizes 1/5 of the PCs that PCA90% uses.

For dataset Prostate (p = 9), Diabetes1 (p = 10), and Supernova

(p = 10), I use k = 1 while for dataset Crime (p = 15), I use k = 3. The

corresponding out-of-sampler R2 is presented in Figure 5.7 and 5.8. Similar as

the previous results, PCA+ can achieve at least as good as the oracle PCA.
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Figure 5.7: Out-of-Sample R2 with k = 1
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Figure 5.8: Out-of-Sample R2 for Crime (p = 15) with k = 3
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Chapter 6

Concluding Remarks

The essence of the thesis lies in recognizing the value of the orthogo-

nality information: the poorly estimated part of a data matrix should not be

ignored because they are orthogonal to the well-estimated. I propose two ways

to use orthogonality information. The first way tries to build a robust solution

from the poorly-estimated via robust optimization. The second way is to re-

duce dimensionality by projecting a robust solution on the poorly-estimated.

They are mathematically equivalent for the minimum-variance portfolio opti-

mization while different for the least-squares regression. Across a large number

of experiments, both ways consistently improve the performance showing the

importance of the orthogonality information.

For the enhancing principal component analysis part, several aspects

could benefit from further investigations. First of all, extend the dimension

reduction to additional applications including max-Sharpe portfolio optimiza-

tion, quantile regression, and logistic regression. Secondly, for different ap-

plications, find a way to choose parameters and the robust direction endoge-

nously. Thirdly, explore the idea in a large dataset setting. Finally, explore

the possibility to use a similar approach in a dynamic programming problem
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which suffers from the curse of dimensionality matters. The last one is the

hardest and the most exciting direction.
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