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In this dissertation, new results on stochastic geometric models in high

dimensional space are presented. We first concentrate on a particular class

of repulsive point processes called determinantal point processes (DPPs). We

establish a coupling of a DPP and its reduced Palm version showing the re-

pulsive effect of a point of the point process. This is used for discussing the

degree of repulsiveness in DPPs, including Ginibre point processes and other

specific parametric models for DPPs.

We then study this repulsion for stationary DPPs in high dimensional

Euclidean space. It is shown that for many families of DPPs, a typical point

has no repulsive effect with high probability for large space dimension n. It

is also proved that for some DPPs there exists an R∗ such that the repulsive

effect occurs at a distance of
√
nR∗ with high probability for large n. This
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R∗ is interpreted as the asymptotic reach of repulsion of the DPP. Examples

of DPPs exhibiting this behavior are presented and an application to high

dimensional Boolean models is given.

The second half of this dissertation examines zero cells of stationary

Poisson tessellations. First, a stationary stochastic geometric model is pro-

posed for analyzing one-bit data compression. The data is assumed to be an

unconstrained stationary set, and each data point is compressed using one bit

with respect to each hyperplane in a stationary and isotropic Poisson hyper-

plane tessellation. Size metrics of the zero cell of the tessellation are studied

to determine how the intensity of hyperplanes must scale with dimension to

ensure sufficient separation of different data by the hyperplanes or sufficient

proximity of the data compressed together. The results have direct implica-

tions in compressive sensing and source coding.

We then study the concentration of the norm of a random vector Y

uniformly sampled in the centered zero cell of a stationary random tessel-

lation in high dimensions. It is shown that for a stationary and isotropic

Poisson-Voronoi tessellation, |Y |/E(|Y |2)
1
2 approaches one as the dimension

approaches infinity. For a stationary and isotropic Poisson hyperplane tes-

sellation, we prove that |Y |/
√
n will be within a fixed range (R`, Ru) with

probability approaching one as dimension n tends to infinity.
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Chapter 1

Introduction

The field of stochastic geometry provides tools and models for the study

of random geometric objects and patterns, and has found applications in many

areas [21] including materials science, wireless networks, computational biol-

ogy, machine learning, and information theory. Fundamental objects of study

in stochastic geometry are point processes, which are random variables that

take values in the space of counting measures, or equivalently, random objects

taking values in the space of locally finite point configurations. There are

many disciplines where phenomena can be modeled with point processes and

random geometric models built from point processes such as tessellations and

germ-grain models [75]. Recent work has used this theory to study probabilis-

tic models for data analysis and transmission, for example in channel coding

[4] and topological data analysis [81]. In many applications, the data is high

dimensional, motivating the study of how the geometry of high dimensional

space affects the models.

This thesis described new results on two different stochastic geometric

models, with a particular interest in the behavior of these random objects

in high dimensional space. The first models studied are determinantal point
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processes. The most commonly studied class of point processes are Poisson

processes, where all points are stochastically independent from each other.

However, models exhibiting interaction are often needed. Determinantal point

processes (DPPs) are a useful class that model repulsion between particles

[41, 52, 56]. They were initially introduced by Macchi in [57], and have since

found uses in random matrix theory and machine learning [49]. An advantage

of these point processes is that they have closed form expressions for their joint

densities, but the nature of the repulsion is not clear from their definition.

In order to study the repulsion between points of a DPP, we turn to

Palm theory. The Palm distribution of a point process X on a Polish space Λ

with respect to some finite subset u of Λ is the conditional distribution of the

point process, given that it contains points at the locations in u. The reduced

Palm distribution with respect to u is the Palm distribution with the points at

u removed. A useful property of DPPs is that the reduced Palm distribution

has the distribution of another DPP.

To quantify repulsiveness of a DPP, we first note the following result

proved in [35]: For any point u, let X be a DPP and Xu be a DPP with its

reduced Palm distribution with respect to u. Then, there exists a coupling

(X,Xu) such that Xu is obtained by removing a point process ξu from X. In

joint work with Jesper Møller, this coupling has been made more precise by

showing the existence of such a coupling where ξu has at most one point. This

result says that the repulsive effect of a point at location u is to push out one

other point with some probability, and the distribution of the point removed
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has been characterized and depends on the associated kernel of the DPP.

The initial motivation for studying DPPs was to extend threshold re-

sults on the Boolean model in high dimensions in [3]. The Boolean model

studied in [3] consists of the union of balls with i.i.d radii and centers at the

points of a Poisson point process in Rn. Three different properties of the

model are studied: the degree, the volume fraction, and percolation. The

authors prove the existence of thresholds for the logarithmic intensity of the

point process at which each property has a sharp transition as the dimension n

tends to infinity. This work has applications to channel coding in information

theory where the underlying Poisson point process models a codebook [4].

The question then became whether the thresholds related to degree,

volume fraction, or percolation change when the underlying point process, or

codebook, is not Poisson. In the application to channel coding, larger thresh-

olds or faster rates of convergence are desirable, which leads to asking these

same questions for Boolean models with underlying repulsive point processes.

A popular class of models exhibiting repulsion is that of hard-core point pro-

cesses [21]. These models have an intuitive repulsive nature, because no two

points are allowed to be closer that some finite positive distance apart. How-

ever, in general, for these and other repulsive point processes such as pairwise

interaction point processes [63], there is no closed form for their moment mea-

sures, and simulation can be difficult. DPPs provide a potentially desirable

alternative since they do have a closed form for their moment measures and a

relatively simple simulation procedure. The question of whether an underly-
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ing DPP would change the asymptotic behavior of the Boolean model led to a

more general study of how the strength and reach of repulsion between points

of DPPs interact with the geometry of high dimensional space.

Using the measure of repulsiveness related to the previously described

coupling between a DPP and its reduced Palm distribution, we show that for

some parametric classes of stationary and isotropic DPPs in Rn, the effect of

repulsion becomes very small in high dimensions, in the sense that placing a

point at the origin has no effect with high probability. We also quantify an

asymptotic reach of repulsion R∗ ∈ (0,∞), such that with certain conditions

on the associated kernel of the DPP, the repulsive effect occurs within a thin

annulus around the sphere of radius
√
nR∗ with high probability for large

dimension n. The conditions on the kernel are connected with the phenomenon

of thin-shell concentration, where under certain conditions, high dimensional

vectors have a norm that is concentrated near its expectation, see [14].

The second part of this thesis focuses on random tessellations, and in

particular on the random polytope that contains the origin, called the zero cell.

Important classes of random tessellations studied in stochastic geometry are

generated from Poisson point processes, such as Poisson Voronoi and Poisson

hyperplane tessellations. The main properties studied in high dimensions have

been the volume and shape of particular cells, see [40] and [2]. In particular,

the connection between high dimensional convex geometry and these models

was studied in [40], where it is shown that there is a class of isotropic Poisson

tessellations where the zero cell, that is, the cell containing the origin, satisfies

4



the hyperplane conjecture asymptotically almost surely. If the tessellation is

stationary, i.e., its distribution is invariant under translations, one can also

study the distribution of the typical cell, obtained by averaging over all cells

in a large bounded subset and then increasing this subset to the entire space.

This work was initially inspired by questions related to one-bit data

compression. In this paradigm, a signal x is compressed into a sequence of

one-bit measurements given by the measurement model yi = sign(〈x, ui〉− ti),

i = 1, . . . ,m where each ui is a random direction in the unit sphere Sn−1 and

ti is a random displacement vector. Each pair (ui, ti) defines a hyperplane

hi in Rn and the measurement yi gives the side of the hyperplane that x lies

on. Thus, the measurements define a unique cell of the random hyperplane

tessellation induced by the collection of hyperplanes {hi}mi=1. Ensuring all of

the data within a cell of the tessellation is close together ensures that the signal

can be recovered with small error, and requires certain geometric constraints

on the these random polytopes that can be guaranteed with high probability in

high dimensions. This idea can be applied to recovering a codeword associated

with the cell, as in source coding, or by reconstructing a high dimensional signal

with a convex program, as in one-bit compressed sensing [13, 8, 7, 69].

We present a model for the compression using a stationary Poisson

hyperplane process on all of Rn. We consider the signal set to be all of Rn

or stationary Poisson point process in Rn, and we study the case of a typical

signal at the origin, thus asking for geometric constraints on the zero cell that

would ensure recovery of this typical signal with high probability. We prove
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results giving the scale at which the intensity of the hyperplane process must

grow with dimension n so that a sufficient degree of separation or distortion is

obtained with high probability for large dimension n. Additionally, we study a

different metric of the zero cell inspired by this compression model for both the

Poisson hyperplane as well as the Poisson-Voronoi tessellation. This metric

is the norm of the random vector that is, conditionally on the tessellation,

chosen uniformly at random from the zero cell. This is a measure of the

distance of the mass of the cell from the origin. We show to what extent this

norm concentrates as dimension tends to infinity.

1.1 Outline

Chapters 3 and 4 focus on determinantal point processes. Chapter

3 discusses the new result on the repulsive nature of DPPs by examining a

coupling between a DPP and its reduced Palm distribution. In Chapter 4 this

characterization of repulsion is used to study the strength and reach of the

repulsive effect of a point as the space dimension tends to infinity. Chapters 5

and 6 describe the results on high dimensional stationary Poisson tessellations.

Chapter 5 describes the model for one-bit compression and Chapter 6 presents

the results on the concentration of the norm of the vector chosen uniformly

from the zero cell in high dimensions.
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1.2 Papers included

Chapter 3 is taken from [61], which is joint work with Jesper Møller.

Chapter 4 is based on the paper [5] that is joint with François Baccelli, but as

this paper was written before [61], the results have been reformulated to use

the new coupling result. Chapter 5 is taken from the paper [6], which is also

joint work with François Baccelli, and Chapter 6 is taken from [66].
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Chapter 2

Preliminaries and Notation

In this chapter, we briefly cover some background material, definitions,

and known results used throughout the remaining chapters. General references

on point processes and the stochastic geometric models studied here include

[26, 75, 21].

2.1 Point Processes

Let Λ be a a locally compact Polish space equipped with its Borel σ-

algebra B and Radon measure ν. A point process X on Λ is a random locally

finite subset of Λ. One can also view X as a random counting measure on

Λ, having the form X =
∑

k∈N δTk , where {Tk}k∈N is a countable collection of

points in Λ with no accumulation points.

We now recall some basic definitions related to point processes. A point

process is called simple if almost surely X({x}) ≤ 1 for all x ∈ Λ. A point

process is stationary if its distribution is invariant under translations. The

intensity measure of a point process X is the measure on Λ defined by

α(B) = E[X(B)], B ∈ B(Λ).

If X is stationary, α(B) = ρν(B), and the constant ρ is called the intensity

8



of the point process. The k-th factorial moment measure of a point process

X is the measure α(k) on (Rn)k such that for all non-negative and measurable

f : (Rn)k → R,∫
f(x1, ..., xk)α

(k)(x1, ..., xk) = E[

6=∑
(x1,...,xk)∈X

f(x1, ..., xk)].

In particular, α(k)(B1× ...×Bk) = E[
∏k

i=1 X(Bi)], for B1, ..., Bk disjoint. If it

exists, the density of α(k) with respect to ν is called the k-th product density,

ρ(k).

The most commonly studied point process is the Poisson point process.

For this model, all points are stochastically independent, and the number of

points in a bounded set follows a Poisson distribution. The formal definition

is as follows.

Definition 2.1.1. A point process X on a Polish space Λ is Poisson with

intensity measure α if for all disjoint subsets B1, . . . , Bk ∈ B(Λ) such that

α(Bi) <∞ for all i,

P(X(B1) = m1, ..., X(Bk) = mk) =
k∏
i=1

α(Bi)
mi

mi!
e−α(Bi).

If the measure α has a density ρ(·), then ρ is called the intensity func-

tion of the point process. In particular, the k-th factorial moment measure

for a Poisson point process with intensity function ρ(x) has density given by

ρ(k)(x1, . . . , xk) =
∏k

i=1 ρ(xi) for all k = 1, 2, . . ..

There are many non-Poisson point processes used to model random

subsets with dependence between points. A large class of attractive point

9



processes are called Cox processes. These models are also known as doubly

stochastic Poisson processes because they consist of a Poisson point process

with a random intensity measure, i.e. letting ξ be a random measure, a point

process X is a Cox process if, conditional on ξ, X is a Poisson point process

with intensity measure ξ. A large class of repulsive point processes are Gibbs

point processes [21], which include hardcore and pairwise interaction models

mentioned in the introduction. These are point processes that are absolutely

continuous with respect to a Poisson point process. Determinantal point pro-

cesses (DPPs) are another example of a repulsive model, and it was shown in

[32] that DPPs are also Gibbs point processes. However, unlike many Gibbs

point processes, they have a closed form for their moment measures and a

relatively easy simulation procedure.

2.2 Palm Theory

Let X be a point process on Λ. For u ∈ Λ, the Palm distribution Pu

of X can be interpreted as the conditional distribution of X given there is a

point of X at location u. For a formal definition of this measure for a general

point process X, see [26]. For a stationary point process on Λ = Rn, without

loss of generality we consider the Palm measure at the origin, which we call

the ‘typical point’, and it can be formally defined as follows.

Let (Ω,A, {θt}t∈Rn ,P) be a stationary framework and X a point process

compatible with the flow {θt}t∈Rn , implying X is stationary. Let ρ be the

intensity of X. The Palm measure P0 associated with X is defined on (Ω,A)
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by

P0(A) :=
1

ρ
E
[∫

B

1A ◦ θtX(dt)

]
,

for any bounded Borel set B with volume one. There is also the following

ergodic interpretation of the Palm probability. If X is stationary and er-

godic, then by Birkhoff’s Pointwise Ergodic theorem, for all convex averaging

sequences {Km}m≥1 in Rn, and all f : Ω→ R+ measurable and in L1(P0
N),

1

Vn(Km)

∫
Km

f ◦ θtX(dt)→ λE0[f ], as m→∞, P− a.s.

Thus, we can think of the Palm probability as the empirical average over

all the points in a very large ball. The reduced Palm probability measure

of X, denoted P0,!, is the Palm distribution with the point at 0 removed. An

important result known as Slivnyak’s theorem says that a Poisson point process

has the same distribution as its reduced Palm distribution, i.e. P0,! = P.

Finally, we recall that the nearest neighbor function of a stationary

point process X in Rn is defined as

D(r) := P0,!(X(Bn(r)) > 0). (2.1)

This gives the distribution of the distance to the nearest point to the typical

point. If X is Poisson, Slivnyak’s theorem implies that D(r) = 1−e−EX(Bn(r)).

2.3 Poisson Tessellations

One of the stochastic geometric models studied here is the random

mosaic, or tessellation. We first need the following notation. Denote by F,C

11



the sets of closed and convex subsets of Rn, respectively. For A ⊂ Rn, define

FA := {F ∈ F : F ∩ A = ∅} and FA := {F ∈ F : F ∩ A 6= ∅}. (2.2)

The σ-algebra B(F) of Borel sets of F is generated by either of the systems

{FC : C ∈ C} and {FC : C ∈ C} (see Lemma 2.1.1 in [75]). Let F′ and

C′ denote the sets of non-empty closed and compact sets in Rn, respectively.

Also, let K denote the set of convex bodies (non-empty compact convex sets).

A particle process is a point process in C′. A mosaic, or tessellation,

is defined to be a collection of convex polytopes in Rn such that the union is

the entire space and no two polytopes in the collection share interior points.

Letting M denote the set of all face-to-face mosaics (see [75]), a random mosaic

in Rn is defined to be a particle process in Rn such that X ∈M almost surely.

The polytopes contained in the mosaic will be called the cells of the mosaic.

The intensity measure of a stationary particle process can be decom-

posed in the following way. Let c : C
′ → Rn be a center function, defined as a

measurable map which is compatible with translations, i.e., c(C+x) = c(C)+x

for all x ∈ Rn. Define the grain space

C0 := {C ∈ C′ : c(C) = 0},

and the homeomorphism (see [75] for more details)

Φ : Rn × C0 → C′; (x,C)→ x+ C.

Theorem 2.3.1. (Theorem 4.1.1 in [75]) Let X be a stationary particle pro-

cess in Rn with intensity measure Θ 6= 0. Then there exist a number λ ∈ (0,∞)
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and a probability measure Q on C0 such that

Θ = λΦ(ν ⊗Q).

The number λ is called the intensity of the particle process and Q is

called the grain distribution. The point process of centers of the cells of X is

a stationary point process with intensity λ, and so λ will also be referred to

as the cell intensity.

2.3.1 Zero cell and Typical cell

An important cell of the mosaic is the zero cell, defined as the cell that

the origin is contained in. It will be denoted Z0. Since larger cells are more

likely to contain the origin, the zero cell is not a good measure of the average

or “typical” cell. For a stationary random mosaic X with grain distribution

Q, a random set with distribution Q is called the typical cell of X. It can also

be thought of as the zero cell of the tessellation under the Palm measure of

the point process of cell centers. That is, its distribution is that of the cell

containing the origin, conditioned on a cell of the tessellation having its center

at the origin. This more accurately represents the average distribution of the

cells in the random mosaic. Formally, we define this distribution as follows.

Definition 2.3.1. The typical cell Z of a random mosaic X with intensity

λ is the random polytope with the following distribution. For all Borel sets

A ∈ B(K),

Q(A) =
1

λ|B|
E
∑
P∈X

1A{P − c(P )}1B(c(P )),

13



where B ∈ B(Rn) is an arbitrary bounded Borel set. Also, in the case where

X is ergodic, this distribution has the following interpretation:

Q(A) = lim
r→∞

1A{P − c(P )}1r[−1/2,1/2]n(c(P ))∑
P∈X 1r[−1/2,1/2](c(P ))

, a.s.

By the ergodic interpretation of the distribution, we can think about the

typical cell as taking a large compact set, picking a cell uniformly at random

and translating it is some appropriate way so that it contains the origin.

It is known that (see, e.g., [75, (10.4) and (10.46)]), that the expected

volume of the typical cell is given by the reciprocal of the cell intensity, i.e.,

E[V (Z)] =

∫
V (K)Q(K) =

1

λ
.

The following result provides an important relationship between the

distribution of the zero cell and the typical cell of a stationary random mosaic,

i.e. that the distribution of Z0 − c(Z0) has a Radon-Nikodym derivative with

respect to the distribution of Z given by V (·)/E[V (Z)].

Theorem 2.3.2. (Theorem 10.4.1 in [75]) Let X be a stationary random

mosaic in Rn. Denote its typical cell by Z and zero cell by Z0. For any

non-negative measurable and translation-invariant function g : K→ R,

E[g(Z0)] =
1

E[V (Z)]
E[g(Z)V (Z)].

2.3.2 Poisson-Voronoi Mosaic

A special type of random mosaic comes from the Voronoi cells of a

Poisson point process in Rn. Let N be a stationary Poisson point process with
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intensity λ and for x ∈ N , define the Voronoi cell of N with center x by

C(x,N) := {z ∈ Rn : ‖z − x‖ ≤ ‖z − y‖ for all y ∈ Z}.

The collection X := {C(x,N) : x ∈ N} is a stationary random mosaic and

is called the Poisson-Voronoi mosaic induced by N . The intensity λ of the

underlying Poisson point process is the cell intensity of the induced mosaic.

2.3.3 Poisson Hyperplane Mosaic

The second type of random mosaic we consider is the mosaic induced

by a stationary and isotropic Poisson hyperplane process X in Rn. Denote the

set of n − 1 dimensional hyperplanes in Rn by Hn and the Grassmanian of

n− 1-dimensional linear subspaces of Rn by G(n, n− 1). The set G(n, n− 1)

is the subset of hyperplanes in Hn that pass through the origin. A hyperplane

process in Rn is a point process in the space Hn.

The following theorem (see, e.g., [75]) provides a decomposition for the

intensity measure for all stationary hyperplane processes. Note that elements

of the space Hn are of the form

H(u, τ) := {x ∈ Rn : 〈x, u〉 = τ}, (2.3)

where u ∈ Rn and τ ∈ R.

Theorem 2.3.3. (Theorem 4.4.2 and (4.33) in [75]) Let X be a stationary

hyperplane process in Rn with intensity measure Θ 6= 0. Then, there is a

unique number γ ∈ (0,∞) and probability measure Q on G(n, n− 1) such that
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for all nonnegative measurable functions f on Hn,∫
Hn

fdΘ = 2γ

∫
Sn−1

∫ ∞
0

f(H(u, τ))dτφ(du),

where for A ∈ B(Sn−1), φ(A) := 1
2
Q({u⊥ : u ∈ A}). φ is called the spherical

directional distribution. In particular, for A ∈ B(Hn),

Θ(A) = 2γ

∫
Sn−1

∫ ∞
0

1{H(u,τ)∈A}dτφ(du).

The parameter γ is called the intensity and Q the directional distribu-

tion of X. If X is isotropic, i.e., if its distribution is invariant under rotations

about the origin, then Q is rotationally invariant and thus is the Haar measure

νn−1 and φ = σn−1, the normalized spherical Lebesgue measure on Sn−1.

The relation of the intensity γ to the cell intensity λ of the induced

random mosaic is given by

λ = κn

(
γκn−1

nκn

)n
, (2.4)

where κn is the volume of the unit ball in Rn.

If the hyperplane process is stationary, then the induced random mosaic

is stationary, and one can examine the typical cell of the tessellation. There are

a number of metrics one can use to understand the size and shape of the typical

cell. In the following, we describe some metrics for which the distribution is

known in the case of a stationary Poisson hyperplane tessellation.

First, letting Z denote the typical cell of X, (2.4) implies that

E[V (Z)] =

∫
V (K)Q(K) =

1

λ
=

1

κn

(
nκn
γκn−1

)n
. (2.5)
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The inradius rin of a cell is the radius of the largest ball completely

contained in the cell. The following result gives the distribution of the inradius

of the typical cell of a stationary Poisson hyperplane process.

Theorem 2.3.4. (Theorem 10.4.8 in [75]) Let X be a nondegenerate station-

ary Poisson hyperplane process in Rn with intensity γ. Let Z be the typical

cell. Then,

P(rin(Z) ≤ a) = 1− e−2γa, a ≥ 0.

If we define the center function c(C) to be the center of the largest

ball included in the set cell C, Calka [15] showed that the distribution of

the typical cell can be described in the following way. Let R ∈ R+ and

(U0, ..., Un) ∈ (Sd−1)(d+1) be independent random variables such that R is

exponentially distributed with parameter 2γ, as rin(Z) is in the above theorem,

and (U0, ..., Un) has density with respect to the uniform measure which is

proportional to the volume of the simplex constructed with these n+1 vectors

multiplied by the indicator that this simplex contains the origin. Then, let

XR be the hyperplane process X restricted to Rn\Br(0). Letting C1 be the

polyhedron containing the origin obtained as the intersection of the (n + 1)

half spaces bounded by the hyperplanes HRUi , 0 ≤ i ≤ n and C2 be the

zero-cell of the hyperplane tessellation associated with XR, the typical cell of

the stationary and isotropic Poisson hyperplane tessellation is distributed as

C1 ∩ C2. In other words,
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Theorem 2.3.5. (Theorem 10.4.6 in [75]) Let X be a stationary and isotropic

Poisson hyperplane process in Rn with intensity γ. If Q is the probability

distribution of the typical cell Z with respect to the inball center as the center

function, then for all borel sets A ∈ B(K),

Q(A)

=
E[V (Z)]γn+1

(n+ 1)

∫ ∞
0

∫
(Sn−1)n+1

e−2γrP

 ⋂
H∈X∩FB0(0,r)

H+
0 ∩

n⋂
j=0

H−(uj, r) ∈ A


· 4n(u0, ..., un)1P (u0, ..., un)σn−1(du0)...σn−1(dun)dr.

The triangle notation is the n-dimensional volume of the convex hull of

the vectors, i.e.

4n(u0, ..., un) =
1

n!
On(u1 − u0, u2 − u0, ..., un − un),

where On(v1, v2, ..., vn) is the volume of parallelpiped spanned by the vectors

v1, . . . , vn. The set P ⊂ (Sn−1)n+1 is the set of all (n+1)-tuples of unit vectors

such that the origin is contained in their convex hull.

2.4 High Dimensional Space

This thesis will discuss the above random geometric models in high di-

mensional Euclidean space. The following notations and asymptotic formulas

will be used throughout. Let Bn(r) denote the ball or radius r centered at the

origin in Rn. The usual `2 norm of a vector is denoted by | · |, and the L2-norm

on the space L2(Rn) by ‖ · ‖2. The n−dimensional volume of a set K ⊂ Rn
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is denoted by Vn(K). The volume of the n−dimensional unit ball Bn(1) is

denoted by κn and the surface area of the n−dimensional unit sphere Sn−1 is

denoted by ωn. They satisfy

κn =
π
n
2

Γ(n
2

+ 1)
, ωn = nκn =

2π
n
2

Γ(n
2
)
.

Also recall the following special functions. The gamma function is defined as

Γ(x) :=

∫ ∞
0

tx−1e−tdt,

and the upper and lower regularized incomplete gamma functions are defined

for all R ≥ 0 by

Γu(x,R) :=

∫∞
R
tx−1e−tdt

Γ(x)
, Γ`(x,R) :=

∫ R
0
tx−1e−tdt

Γ(x)
,

respectively. Stirling’s formula gives the following asymptotic expansion as

x→∞:

Γ(x+ 1) ∼
√

2πx
(x
e

)x
. (2.6)

The following asymptotic formulas will also be used: by (2.6), as n→∞,

κn ∼
1√
nπ

(
2πe

n

)n/2
and

κn−1

nκn
∼ 1√

2πn
. (2.7)

2.4.1 Log-concavity and Thin-shell estimate

For general random vectors Yn in Rn, the concentration of |Yn| for large

n has been well-studied (see [31], [38], [47]). Indeed, in [31, Proposition 3], it
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is proved that Yn is concentrated in a “thin shell”, i.e., there exists a sequence

{εn} such that εn → 0 as n→∞ and for each n,

P

(∣∣∣∣ |Yn|
E[|Yn|2]

1
2

− 1

∣∣∣∣ ≥ εn

)
≤ εn, (2.8)

if and only if |Yn| has a finite rth moment for r > 2, and for some 2 < p < r,∣∣∣∣E[|Yn|p]1/p

E[|Yn|2]1/2
− 1

∣∣∣∣→ 0 as n→∞.

More can be said about the concentration under the assumption that

the vector has a log-concave density. A function f : Rn → R is log-concave if

its domain is a convex set and is log f is concave, i.e., if for all s ∈ (0, 1) and

x, y in the domain of f ,

log f(sx+ (1− s)y) ≥ s log f(x) + (1− s) log f(y).

It is known that for a random vector Y with density f(x) := g(|x|), where

g : R→ R is log-concave, the following thin-shell estimate holds:

E

(
|Y |

(E|Y |2)
1
2

− 1

)2

≤ C

n
. (2.9)

The best known estimate applies to general log-concave random vectors

(not necessarily radial) and is given by the following theorem in [38].

Theorem 2.4.1. (Guédon and Milman [38]) Let Y denote a random vector

in Rn such that EY = 0 and E(Y ⊗ Y ) = In. Assume Y has a log-concave

density. Then, for some C > 0 and c > 0,

P
(∣∣∣∣ |Y |√n − 1

∣∣∣∣ ≥ t

)
≤ C exp

(
−c
√
nmin(t3, t)

)
.
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We refer to the monograph [14] for a summary of these and more related

results.
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Chapter 3

Measure of Repulsiveness of DPPs1

3.1 Introduction

Determinantal point processes (DPPs) have been of much interest over

the last many years in mathematical physics and probability theory (see e.g.

[12, 42, 57, 77, 79] and the references therein) and more recently in other areas,

including statistics [52, 62], machine learning [49], signal processing [28], and

neuroscience [78]. They are models for regularity/inhibition/repulsiveness, but

there is a trade-off between repulsiveness and intensity [51, 52]. The results

in this chapter shed further light on this issue by studying various couplings

between a DPP and its reduced Palm distributions.

Section 3.2.1 provides our general setting for a DPP X defined on a

locally compact Polish space Λ and specified by a so-called kernel K : Λ×Λ→

C which satisfies certain mild conditions given in Section 3.2.2. Also, for any

u ∈ Λ with K(u, u) > 0, if Xu follows the reduced Palm distribution of X at u

– intuitively, this is the conditional distribution of X \ {u} given that u ∈ X –

1This chapter is based on the following manuscript: J. Møller and E. O’Reilly. Couplings
for determinantal point processes and their reduced Palm distribution with a view to quan-
tifying repulsiveness. arXiv:1806.07347, June 2018. The author of this thesis performed
substantial research that formed the results in this manuscript.
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then Xu is another DPP; Section 3.2.3 provides further details. Furthermore,

Section 3.2.4 discusses Goldman’s [35] result that if for any compact set S ⊆

Λ, denoting KS the restriction of K to S × S, we have that the spectrum

of KS is < 1, then X stochastically dominates Xu and hence by Strassen’s

theorem there exists a coupling so that almost surely Xu ⊆ X. The difference

κu := X \ Xu is a finite point process with a known intensity function. In

particular, for a standard Ginibre point process [33], which is a special case

of a DPP in the complex plane, Goldman showed that κu consists of a single

point which follows NC(u, 1), the complex Gaussian distribution with mean

u and unit variance. However, apart from this and other special cases, the

distribution of κu is unknown.

Section 3.3 shows that more can be said: Under weaker conditions

than in Goldman’s paper, there is a coupling so that almost surely Xu ⊆ X,

ξu := X \Xu consists of at most one point, and the distribution of ξu can be

specified. Note that κu and ξu share the same intensity function. As in [35] we

only verify the existence of our coupling result. We leave it as an open research

problem to provide a specific coupling construction or simulation procedure

for (X,Xu) (restricted to a compact subset of Λ); possibly this may provide a

faster simulation algorithm than in [51, 52, 62].

Section 3.4 discusses how our coupling result can be used for describing

the repulsiveness in a DPP. In particular, if for all u ∈ Λ with K(u, u) > 0,

almost surely ξu has one point, we call X a most repulsive DPP; we discuss this

definition in connection to most repulsive stationary DPPs on Rd as specified
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in [52, 9]. For example, if X is a standard Ginibre point process, we obtain a

similar result as in [35]: X is a most repulsive DPP and the point in ξu follows

NC(u, 1). Moreover, we consider the cases of a finite set Λ and when we have a

stationary DPP defined on Λ = Rd. Finally, we compare with most repulsive

isotropic DPPs on Sd, the d-dimensional unit sphere in Rd+1, as studied in

[60].

3.2 Background

Below we give the definition of a DPP, specify our assumptions, and

recall that the reduced Palm distribution of a DPP is another DPP. We also

describe a previous result on a coupling between a DPP and its reduced Palm

version.

3.2.1 Definition of a DPP

Let X be a point process defined on a locally compact Polish space Λ

equipped with its Borel σ-algebra B and a Radon measure ν which is used as

a reference measure in the following. We assume that X is a DPP with kernel

K which by definition means the following. First, X has no multiple points, so

dependent on the context we view X as a random subset of Λ or as a random

counting measure, and we let X(B) denote the cardinality of XB := X ∩ B

for B ∈ B. Second, K is a complex function defined on K : Λ2 7→ C. Third,

for any n = 1, 2, . . . and any mutually disjoint bounded sets B1, . . . , Bn ∈ B,

E [X (B1) · · ·X (Bn)] =

∫
B1×···×Bn

det {K (ui, uj)}ni,j=1 dνn (u1, . . . , un)
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is finite, where νn denotes the n-fold product measure of ν. This means that X

has n-th order intensity function ρ(u1, . . . , un) (also sometimes in the literature

called n-th order correlation function) given by the determinant

ρ (u1, . . . , un) = det {K (ui, uj)}ni,j=1 , u1, . . . , un ∈ Λ, (3.1)

and this function is locally integrable. In particular, ρ(u) = K(u, u) is the

intensity function of X, and when B ∈ B is bounded almost surely XB is

finite.

In the special case where K(u, v) = 0 whenever u 6= v, the DPP X is

just a Poisson process with intensity function ρ(u) conditioned on that there

are no multiple points in X (if ν is diffuse, it is implicit that there are no

multiple points). For other examples when Λ is a countable set and ν is the

counting measure, see [49]; when Λ = Rd and ν is the Lebesgue measure,

see [42, 52]; and when Λ = Sd (the d-dimensional unit sphere) and ν is the

surface/Lebesgue measure, see [60]. Examples are also given in Section 3.4.2.

From (3.1) and the fact that the determinant of a complex covariance

matrix is less than or equal to the product of its diagonal elements we obtain

that

ρ (u1, . . . , un) ≤
n∏
i=1

ρ (ui) ,

where the equality holds if and only if X is a Poisson process. Thus, apart

from the case of a Poisson process, the counts X(A) and X(B) are negatively

correlated whenever A,B ∈ B are disjoint.
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3.2.2 Assumptions

We always make the following assumptions (a)–(c):

(a) K is Hermitian, that is, K(u, v) = K(v, u) for all u, v ∈ Λ;

(b) K is locally square integrable, that is, for any compact set S ⊆ Λ, the

double integral
∫
S

∫
S
|K(u, v)|2 dν(u) dν(v) is finite;

(c) K is of locally trace class, that is, for any compact set S ⊆ Λ, the integral∫
S
K(u, u) dν(u) is finite.

By Mercer’s theorem, excluding a ν2-nullset, this ensures the existence of a

spectral representation for the kernel restricted to any compact set S ⊆ Λ:

Ignoring a ν2-nullset, we can redefine K on S × S by

K(u, v) =
∞∑
k=1

λSkφ
S
k (u)φSk (v) u, v ∈ S, (3.2)

where the eigenvalues λSk are real numbers and the eigenfunctions φSk constitute

an orthonormal basis of L2(S), cf. Section 4.2.1 in [42]. Here, for any B ∈ B,

L2(B) = L2(B, ν) is the space of square integrable complex functions w.r.t.

ν restricted to B. Note that (c) means EX(S) =
∑∞

k=1 λ
S
k < ∞. Thus,

when B ∈ B is bounded, almost surely XB is finite. When ν is diffuse, as we

are redefining K by (3.2) we have effectively excluded the special case of the

Poisson process (i.e. when K is 0 off the diagonal) because all the eigenvalues

in (3.2) are then 0; however, as shown later, it will still make sense to consider

the Poisson process when quantifying repulsiveness in DPPs.

We also always assume that
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(d) for any compact set S ⊆ Λ, all eigenvalues satisfy 0 ≤ λSk ≤ 1.

In fact, under (a)–(c), the existence of the DPP with kernel K is equivalent to

(d) (see e.g. Theorem 4.5.5 in [42]), and the DPP is then unique (Lemma 4.2.6

in [42]). If Λ = Rd, ν is the Lebesgue measure, and K(u, v) = K0(u − v) is

stationary, where K0 ∈ L2(Rd) and K0 is continuous, we denote the Fourier

transform of K0 by K̂0. Then (d) is equivalent to 0 ≤ K̂0 ≤ 1 (Proposition 3.1

in [42]).

Recalling thatKS is the restriction ofK to S×S, we sometimes consider

one of the following conditions:

(e) For a given compact set S ⊆ Λ, KS is a projection of finite rank n.

(f) For all compact S ⊆ Λ, all eigenvalues satisfy that λSk < 1.

3.2.3 Reduced Palm distributions

Consider an arbitrary point u ∈ Λ with ρ(u) > 0. Recall that the

reduced Palm distribution of X at u is a point process Xu on Λ with n-th

order intensity function

ρu(u1, . . . , un) = ρ(u, u1, . . . , un)/ρ(u).

This combined with (3.1) easily shows that Xu is a DPP with kernel

Ku(v, w) = K(v, w)− K(v, u)K(u,w)

K(u, u)
v, w ∈ Λ, (3.3)

see Theorem 6.5 in [77]. For any compact set S ⊆ Λ, it follows that the

restriction Xu
S := Xu ∩ S follows the reduced Palm distribution of XS at u.
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3.2.4 Goldman’s results

Goldman [35] made similar assumptions as in our assumptions (a)-(d),

and in addition he assumed condition (f) throughout his paper. Two of his

main results were the following.

(G1) For any u ∈ Λ with K(u, u) > 0, there is a coupling of X and Xu so

that almost surely Xu ⊆ X.

(G2) Suppose X is a standard Ginibre point process, that is, the DPP on

Λ = C ≡ R2, with ν being Lebesgue measure, and with kernel

K(v, w) =
1

π
exp

(
vw − |v|

2 + |w|2

2

)
, v, w ∈ C. (3.4)

Then, for the coupling in (G1) and any u ∈ C, X \Xu consists of a single

point which follows NC(u, 1).

It follows from (G1) and (3.3) that κu := X\Xu is a finite point process

with intensity function

ρκu(v) = |K(u, v)|2/K(u, u), v ∈ Λ. (3.5)

Note that the standard Ginibre point process is stationary and isotropic with

intensity 1/π, but its kernel is only isotropic. In accordance with (G2), com-

bining (3.4) and (3.5), ρκu is immediately seen to be the density of NC(u, 1).
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3.3 Main result

The theorem below is our main result which is sharpening Goldman’s

result (G1) in two ways: We do not assume condition (f) and we establish a

coupling so that X contains Xu, the difference is at most one point, and we

can completely describe the distribution of this difference. In the proof of the

theorem we use basic results and definitions for operators on the Hilbert space

L2(Λ), see e.g. [65, 68]. An outline of the proof is as follows. First, we dilate

the operator associated to the DPP X to a projection operator on the union

of two copies of Λ. Second, we use the existence of a coupling for projection

operators in Lemma 3.3.1. Finally, we compress back down to Λ to obtain the

desired coupling.

We use the following special result established under condition (e) and

where νS denotes the restriction of the reference measure ν to a compact set

S ⊆ Λ.

Lemma 3.3.1. Assume S ⊆ Λ is compact and let {φSk}nk=1 be an orthonormal

set of functions in L2(S) with 1 ≤ n <∞. Let X and Y be DPPs with kernels

K and L, respectively, so that

K(v, w) =
n∑
k=1

φSk (v)φSk (w), L(v, w) =
n−1∑
k=1

φSk (v)φSk (w), v, w ∈ S

(setting L(v, w) = 0 if n = 1). Then there exists a monotone coupling of YS

w.r.t. XS such that almost surely YS ⊂ XS, ηS := XS \ YS consists of one

point, and the point in ηS has density |φSn(·)|2 w.r.t. νS.
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Proof. Observe that K and L are the kernels of finite dimensional projections,

a special case of trace-class positive contractions, and the difference,

K(v, w)− L(v, w) = φSn(v)φSn(w), v, w ∈ S,

is a positive definite kernel. Thus, by Theorem 3.8 in [56], XS stochastically

dominates YS. Therefore, there is a coupling such that almost surely YS ⊆ XS.

As YS has cardinality one less than XS, almost surely ηS := XS \ YS consists

of one point. Finally, for any Borel set A ⊆ S,

P(ηS ∩A 6= ∅) = E
[
1{X(A)−Y (A)=1}

]
= E[X(A)]−E[Y (A)] =

∫
A

|φSn(v)|2 dν(v).

Denote ‖ · ‖2 the usual norm on L2(Λ) w.r.t. ν.

Theorem 3.3.2. Let X be a DPP on Λ with kernel K satisfying conditions

(a)–(d). For any u ∈ Λ with K(u, u) > 0, there exists a coupling of X and

Xu such that almost surely Xu ⊆ X and ξu := X \Xu consists of at most one

point. We have

pu := P(ξu 6= ∅) =
1

K(u, u)

∫
|K(u, v)|2 dν(v), (3.6)

and conditioned on ξu 6= ∅ the point in ξu has density

fu(v) := |K(u, v)|2/‖K(u, ·)‖2
2, v ∈ Λ, (3.7)

w.r.t. ν.
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Compared to Goldman’s result (G1), we also have pu = P(κu 6= ∅) and

fu is the conditional density of a point in κu given that κu 6= ∅, cf. (3.5)–(3.7).

Proof. Denote K the locally trace class operator on L2(Λ) with kernel K. As

in section 3.3 in [56], consider the dilation of K given by

Q :=

[
K L

L I−K

]
,

where L :=
√

K(I−K). Then, sinceQ = Q2, Q is an orthogonal projection on

L2(Λ, ν)⊕L2(Λ0, ν), where Λ0 is a disjoint identical copy of Λ. If Λ is discrete,

then Q is clearly locally trace class, since any compact set of a discrete space

is finite. If Λ is not discrete, consider the operator

Q′ :=

[
I 0
0 U

]∗
Q

[
I 0
0 U

]
=

[
K LU

U∗L U∗(I−K)U

]
,

where U is a unitary operator from `2(Λ′0) to L2(Λ0, ν) for some countably

infinite space Λ′0. The operator U exists since any two infinite dimensional

separable Hilbert spaces are unitarily equivalent. The operator Q′ is an or-

thogonal projection on L2(Λ, ν) ⊕ `2(Λ′0), and K is the compression of Q′ to

Λ. Further, Q′ is also locally trace class, because K is locally trace class on

L2(Λ, ν) by assumption, and all operators on `2(Λ′0) are locally of trace class

since Λ′0 is discrete. Thus, Q′ defines a projection DPP YQ on the union Λ∪Λ′0.

First, assume that Λ is compact. Then, the kernel of the operator K

satisfies

K(v, w) =
∑
k≥1

λΛ
kφ

Λ
k (v)φΛ

k (w), v, w ∈ Λ,
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where {φΛ
k } is an orthonormal basis for L2(Λ), λΛ

k ∈ [0, 1] for all k, and∑
k≥1 λ

Λ
k <∞. Also, the kernel for the operator L is then given by

L(v, w) =
∑
k≥1

√
λΛ
k (1− λΛ

k )φΛ
k (v)φΛ

k (w).

Note that

L(L(·, u))(w) =

∫
Λ

L(w, v)L(v, u) dν(v) =
∑
k≥1

λΛ
k (1− λΛ

k )φΛ
k (w)φΛ

k (u),

and

K(K(·, u))(w) =

∫
Λ

K(w, v)K(v, u) dν(v) =
∑
k≥1

(
λΛ
k

)2
φΛ
k (w)φΛ

k (u).

Hence, K(K(·, u)) + L(L(·, u)) = K(·, u). Also,

L(K(·, u))(w) =

∫
Λ

L(w, v)K(v, u) dν(v) =
∑
k≥1

λΛ
k

√
λΛ
k (1− λΛ

k )φΛ
k (w)φΛ

k (u)

and

K(L(·, u))(w) =

∫
Λ

K(w, v)L(v, u) dν(v) =
∑
k≥1

λΛ
k

√
λΛ
k (1− λΛ

k )φΛ
k (w)φΛ

k (u),

and so L(K(·, u)) = K(L(·, u)). Consequently, for fixed u ∈ Λ,

ψu(·) :=


K(·,u)√
K(u,u)

U∗
(

L(·,u)√
K(u,u)

)
is an eigenvector of the operator Q′. Indeed, since UU∗ = I by that fact that
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U is unitary,

Q′(ψu(·)) =

[
I 0
0 U

]∗
Q


K(·,u)√
K(u,u)

(UU∗)

(
L(·,u)√
K(u,u)

)
=

[
I 0
0 U∗

] K(K(·,u))√
K(u,u)

+ L(L(·,u))√
K(u,u)

L(K(·,u))√
K(u,u)

+ (I−K)(L(·,u))√
K(u,u)

 =


K(·,u)√
K(u,u)

U∗
(

L(·,u)√
K(u,u)

) = ψu(·).

Then, we can define the projection

Q′u := Q′ − Pψu ,

where Pψu is the projection operator on L2(Λ, ν) ⊕ `2(Λ′0) onto the span of

ψu. This projection operator is also locally trace class since it is the difference

of locally trace class operators. Then we can define the projection DPP Y u
Q

on Λ ∪ Λ′0 associated with Q′u. If Q′ has finite rank, then Q′ and Q′u have

corresponding kernels

Q′ =
n∑
k=0

qkq
T
k and Q′u =

n∑
k=1

qkq
T
k ,

where n < ∞, {qk}nk=1 is an orthonormal set, and q0 := ψu. Applying

Lemma 3.3.1 then gives the result.

Now, assume Q′ projects onto an infinite dimensional subspace of L2(Λ, ν)⊕

`2(Λ′0) and let {qk}∞k=0 be an orthonormal basis for the range of Q′, where

q0 := ψu. For each positive integer M , define the finite dimensional projection

kernels

Q′M =
M∑
k=0

qkq
T
k and Q′M,u =

M∑
k=1

qkq
T
k ,
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and let YQM and Y u
QM

be the corresponding projection DPPs. By Lemma 3.3.1,

there is a coupling of YQM and Y u
QM

such that almost surely YQM ⊃ Y u
QM

, where

ξuQM := YQM \Y u
QM

consists of one point which has density |ψu(·)|2. By the same

argument as in the proof of Lemma 20 in [35], the sequences YQM and Y u
QM

are tight and converge in distribution to YQ and Y u
Q , respectively, as M →∞.

Also, the sequence (Y u
QM

, ξuQM )M is tight, and thus a subsequence converges in

distribution to (Y u
Q , ξ

u
Q), where ξuQ consists of one point with density |ψu(·)|2,

and Y u
Q ∪ ξuQ is equal in distribution to YQ.

The projection operator Pψu has kernel ψuψ
T
u and the compression of

Pψu to Λ is the integral operator with kernel

K(v, u)K(u,w)

K(u, u)
.

Then, since the compression of Q′ to Λ is the operator K, the compression of

Q′u to Λ is the integral operator Ku with kernel

Ku(v, w) = K(v, w)− K(v, u)K(u,w)

K(u, u)
.

This gives that YQ ∩ Λ has the same distribution as X and Y u
Q ∩ Λ has the

same distribution as Xu. Thus, almost surely

X = Xu ∪ ξu,

where ξu := ξuQ ∩ Λ and Xu are disjoint. Therefore, we have a coupling of X

and Xu, where almost surely Xu ⊆ X and the difference is at most one point.

The probability of ξu 6= ∅ is the probability that ξuQ is in Λ, and the density of
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ξuQ restricted to Λ is

fξuQ(v)1{v∈Λ} =
|K(v, u)|2

K(u, u)

w.r.t. ν. Hence,

P(ξu 6= ∅) = P(ξuQ ∈ Λ) =

∫
|K(v, u)|2

K(u, u)
dν(v)

and the density of ξu conditioned on ξu 6= ∅ is fu(v) = |K(v, u)|2/‖K(·, u)‖2
2

w.r.t. ν.

Second, if Λ is not assumed to be compact, consider a sequence of

compact sets Sn ⊂ Λ such that ∪∞n=1Sn = Λ and Sn ⊆ Sn+1 for n = 1, 2, . . ..

For each n, using the result above with Λ replaced by Sn, there exists a coupling

of (XSn , X
u
Sn

), where almost surely XSn = Xu
Sn
∪ ξuSn , ξuSn = XSn \Xu

Sn
consists

of at most one point,

P
(
ξuSn 6= ∅

)
=

∫
Sn

|K(v, u)|2

K(u, u)
dν(v), (3.8)

and conditioned on ξuSn 6= ∅ the density of the point in ξuSn is

fu,Sn(v) = |K(v, u)|2/
∫
Sn

|K(w, u)|2 dν(w) (3.9)

w.r.t. νSn . For consistency, let T1 = S1 and generate a realization (yT1 , y
u
T1

)

of (YT1 , Y
u
T1

) := (XS1 , X
u
S1

), and for n = 2, 3, . . ., let Tn = Sn \ Sn−1 and

generate a realization (yTn , y
u
Tn

) of (YTn , Y
u
Tn

) which follows the conditional dis-

tribution of (XSn \ Sn−1, X
u
Sn
\ Sn−1) given that (XSn ∩ Sn−1, X

u
Sn
∩ Sn−1) =

(∪n−1
i=1 yTi ,∪n−1

i=1 y
u
Ti

). Then (X,Xu) is distributed as (Y, Y u) := (∪∞n=1YTn ,∪∞n=1Y
u
Tn

),

and almost surely, for n = 2, 3, . . ., YTn−1 \ Y u
Tn−1
6= ∅ implies that YTn \ Y u

Tn
=
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YTn+1 \ Y u
Tn+1

= . . . = ∅, and so ξu := Y \ Y u consists of at most one point.

The probability that ξu is non-empty is, by (3.8),

P(ξu 6= ∅) = lim
n→∞

∫
Sn

|K(v, u)|2

K(u, u)
dν(v)

and hence by monotone convergence we obtain (3.6). Finally, (3.7) is obtained

in a similar way using (3.9).

3.4 Quantifying repulsiveness in DPPs

In this section we quantify how repulsive DPPs can be, using the proba-

bility pu and the density fu from Theorem 3.3.2 to describe the repulsive effect

of a fixed point contained in a DPP. Note that Xu is the point process where

there is a ‘ghost point’ at u that is affecting the remaining points. Using this

coupling of Xu and X, it is clear that the repulsive effect of a point at loca-

tion u is characterized by the difference between Xu and the original DPP X,

where there is no repulsion coming from the location u. Further, ξu = X \Xu

has intensity function

ρu(v) := |K(v, u)|2/‖K(·, u)‖2
2, v ∈ Λ.

This is the intensity function for the points in X ‘pushed out’ by u under the

Palm distribution. It makes also sense to consider ρu as the intensity function

of X \Xu when ν is diffuse and X is a Poisson process because then X = Xu

and ρu(v) = 0 for v 6= u.
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3.4.1 A measure of repulsiveness

Setting 0/0 = 0, recall that the pair correlation function of X is defined

by g(v, w) = ρ(v, w)/(ρ(v)ρ(w)) for v, w ∈ Λ, so it satisfies

1− g(v, w) = |r(v, w)|2, v, w ∈ Λ,

where r(v, w) = K(v, w)/
√
K(v, v)K(w,w) is the correlation function ob-

tained from K. Note that

ρu(v) = ρ(v)(1− g(u, v)), v ∈ Λ. (3.10)

As a global measure of repulsiveness in X when having a point of X at

u, we suggest the probability of ξu 6= ∅, that is,

pu =

∫
ρu(v) dν(v) =

∫
|K(u, v)|2/K(u, u) dν(v).

By (3.10), there is a trade-off between intensity and repulsiveness: If pu is

fixed, we cannot both increase ρ and decrease g. Therefore, when using pu as

a measure to compare repulsiveness in two DPPs, they should share the same

intensity function ρ. Then small/high values of pu correspond to small/high

degree of repulsiveness. For a stationary DPP X on Rd, apart from a constant

(given by the intensity of X), pu is in agreement with the measure for repul-

siveness in DPPs introduced in [52, 51]; see also [9, 5]. Indeed this measure is

very specific for DPPs as discussed later in Section 3.4.2.5. Finally, note that

when the intensity function ρ is constant, conditioned on ξu 6= ∅, the density

fu(v) = ρu(v)/pu of the removed point ξu is a characteristic of the DPP that

is not dependent on the intensity function ρ.
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If pu = 1 for all u ∈ Λ with K(u, u) > 0, we say that X is a globally

most repulsive DPP. This is the case if K is a projection, that is, for all

v, w ∈ Λ,

K(v, w) =

∫
K(v, y)K(y, w) dν(y).

For short we then say that X is a projection DPP. The standard Ginibre point

process given by (3.4) is globally most repulsive, and its kernel is indeed a

projection; this follows from a straightforward calculation using that (v, w)→

exp(vw) is the reproducing kernel of the Bargmann-Fock space equipped with

the standard complex Gaussian measure. At the other end, if ν is diffuse and

X is a Poisson process with intensity function ρ, then pu = 0 for all u ∈ Λ

with ρ(u) > 0, and so X is a globally least repulsive DPP.

If Λ is compact, then it follows from the spectral representation (3.2)

and condition (d) that∫
S

|K(u, v)|2 dν(v) =
∑
k

∑
`

λSkλ
S
l φ

S
k (u)φS` (u)

∫
S

φSk (v)φS` (v) dν(v)

=
∑
k

(
λSk
)2 |φSk (u)|2 ≤

∑
k

λSk |φSk (u)|2 = K(u, u),

and so

pu =

∑
k

(
λΛ
k

)2 |φΛ
k (u)|2∑

k λ
Λ
k |φΛ

k (u)|2
. (3.11)

Consequently, in this case, projection DPPs are the only globally most repul-

sive DPPs. Such a process has a fixed number of points which agrees with the

rank of the kernel.
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3.4.2 Examples

This section shows specific examples of our measure pu and the distri-

bution of a point in ξu.

3.4.2.1 DPPs defined on a finite set

Assume Λ = {1, . . . , n} is finite and ν is the counting measure; this

is the simplest situation. Then L2(Λ) ≡ Cn, the class of possible kernels for

DPPs corresponds to the class of n × n complex covariance matrices with

all eigenvalues ≤ 1, and the eigenfunctions simply correspond to normalized

eigenvectors for such matrices. For simplicity we only consider projection

DPPs and Poisson processes below, but other examples of DPPs on finite

sets include uniform spanning trees (Example 14 in [42]) and finite DPPs

converging to the continuous Airy process on the complex plane [44].

The projection DPPs are given by complex projection matrices, ranging

between the degenerated cases where X = ∅ and X = Λ. For example,

consider the projection kernel of rank two given by K(v, w) = 1
n

+ tvtw, where∑n
i=1 ti = 0 and

∑n
i=1 |ti|2 = 1. For any u ∈ {1, . . . , n}, we have pu = 1 and

ρu(v) =
| 1
n

+ tutv|2
1
n

+ |tu|2
, v ∈ {1, . . . , n},

is a probability mass function. This shows the repulsive effect of having a

point of X at u; in particular, ρu(v) has a global maximum point at v = u.

The kernel of a Poisson process with intensity function ρ ≤ 1 and

conditioned on having no multiple points is given by a diagonal covariance
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matrix with diagonal entries ρ(1), . . . , ρ(n). If ρ(u) > 0, then pu = ρ(u). This

is a much different result as when we consider a Poisson process X on a space

Λ where the reference measure ν is diffuse: If ρ(u) > 0, then pu = 0 and almost

surely X = Xu.

3.4.2.2 Ginibre point processes

From the standard Ginibre point process given by (3.4), other station-

ary point processes can be obtained. Independently thinning the process with

a retention probability αβ, where β > 0 and α ∈ (0, 1/β], and multiplying

each of the retained points by
√
β gives a new stationary DPP with kernel

K(v, w) =
α

π
exp

(
vw

β
− |v|

2 + |w|2

2β

)
, v, w ∈ C. (3.12)

We have

ρ = α/π, pu = αβ, fu(v) =
exp (−|v − u|2/β)

πβ
∼ NC(u, β). (3.13)

The case where α = 1 and 0 < β ≤ 1 is mentioned in Goldman’s paper [35],

and the results in (3.13) match those in Remark 24 in [35]. [28] called the DPP

with kernel (3.12) the scaled β-Ginibre point process but the bound αβ ≤ 1

was not noticed. For any fixed value of ρ > 0, as the value of β increases to

its maximum min{1, 1/(πρ)}, the more repulsive the process becomes, whilst

as β decreases to 0, in the limit a Poisson process with intensity ρ is obtained.
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3.4.2.3 DPPs on Rd with a stationary kernel

Suppose Λ = Rd, ν is the Lebesgue measure, and K(u, v) = K0(u− v)

is stationary, where K0 ∈ L2(Rd) and K0 is continuous. Then it follows from

Parseval’s identity that pu = 1 if and only if K̂0 is an indicator function whose

integral agrees with the intensity of X, cf. Appendix J in [51]. A natural choice

for the support of this indicator function is a ball centred at the origin in Rd,

and if (as in the standard Ginibre point process) we let the intensity be 1/π,

then the globally most repulsive DPP has a stationary and isotropic kernel

given by

K(v, w) =

∫
|y|d≤dΓ(d/2)/(2π1+d/2)

exp (2πi(v − w) · y) dy, v, w ∈ Rd, (3.14)

where x · y denotes the usual inner product for x, y ∈ Rd and |y| is the usual

Euclidean distance. For instance, for d = 1 this kernel is the sinc function and

for d = 2 it is the jinc-like function

K(v, w) = J1(2|v − w|)/(π|v − w|), (3.15)

where J1 is the Bessel function of order one. We straightforwardly obtain the

following proposition, where the moments in (3.16) follow from Eq. 10.22.57

in [1].

Proposition 3.4.1. For the globally most repulsive DPP on Rd with kernel

given by (3.14) and for any u ∈ C, we have that ρu(v) = π|K(u, v)|2 is a

probability density function. In particular, for d = 2,

ρu(v) = J1(2|v − u|)2/
(
π|v − u|2

)
, v ∈ R2,
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and the moments of |Zu − u| with Zu ∼ ρu satisfy

E
(
|Zu − u|k

)
=

Γ(1 + k/2)Γ(1− k)

Γ(2− k/2)Γ(1− k/2)2
, k ∈ (−2, 1), (3.16)

and are infinite for k ≥ 1.

For comparison consider a standard Ginibre point process, where we

can define Zu in a similar way as in Proposition 3.4.1. In both cases, |Zu − u|

is independent of (Zu−u)/|Zu−u|, which is uniformly distributed on the unit

circle. However, the distribution of |Zu − u| is very different in the two cases:

For the standard Ginibre point process, |Zu − u|2 is exponentially distributed

and |Zu−u| has a finite k-th moment for all k > −2 given by Γ(1+k/2)/(πρ)k/2;

whilst for the DPP on R2 with jinc-like kernel (3.15), |Zu − u| is heavy-tailed

and has infinite k-th moments for all k ≥ 1.

For any DPP X with kernel K and defined on Rd, using independent

thinning and scale transformation procedures similar to those in Section 3.4.2.2

(replacing
√
β by β1/d when transforming the points in the thinned process),

we obtain a new DPP with kernel

Knew(v, w) = αK(v/β1/d, w/β1/d), v, w ∈ Rd,

where β ∈ (0, 1] and α ∈ (0, 1/β]. For instance, if K is the jinc-like kernel for

the globally most repulsive DPP given by (3.15), the new DPP satisfies the

same equations for its intensity ρ and its probability pu as in (3.13). Hence, if

ρ and β are the same for this new DPP and the scaled β-Ginibre point process,
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the two DPPs are equally repulsive in terms of pu. However, the probability

density function for the point in ξu conditioned on ξu 6= ∅ now becomes

fu(v) = J1

(
2|v − u|2/β

)
/
(
π|v − u|2/β

)
. (3.17)

The reach of the repulsive effect of the point at u is much different when

comparing the densities in (3.13) and (3.17), in particular if β is large.

3.4.2.4 DPPs on Sd with an isotropic kernel

Suppose Λ = Sd is the d-dimensional unit sphere, ν is the Lebesgue

measure, and K(v, w) = K0(v · w) is isotropic for all v, w ∈ Sd. Then the

DPP with kernel K is isotropic, and ρ = K0(1) and pu do not depend on the

choice of u ∈ Λ. By a classical result of Schoenberg [76] and by Theorem 4.1

in [60], we have the following. The normalized eigenfunctions will be complex

spherical harmonic functions, and K0 will be real and of the form

K0(t) = ρ
∞∑
`=0

β`,d
C

( d−1
2 )

` (t)

C
( d−1

2 )
` (1)

, −1 ≤ t ≤ 1,

where C
( d−1

2 )
` is a Gegenbauer polynomial of degree ` and the sequence β0,d, β1,d, . . .

is a probability mass function. Further, letting σd = ν(Sd) = 2π(d+1)/2/Γ((d+

1)/2), the eigenvalues of K are

λ`,d = ρσdβ`,d/m`,d, ` = 0, 1, . . . ,

with multiplicities

m0,1, m`,1 = 2, ` = 1, 2, . . . , if d = 1,
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and

m`,d =
2`+ d− 1

d− 1

(`+ d− 2)!

`!(d− 2)!
, ` = 0, 1, . . . , if d ∈ {2, 3, . . .}.

So the DPP exists if and only if ρ ≤ inf`:β`,d>0m`,d/(σdβ`,d). Now, applying

(3.11), we obtain

pu = ρσd

∞∑
`=0

β2
`,d/m`,d. (3.18)

There is a lack of flexible parametric DPP models on the sphere where

K0 is expressible in closed form, see Section 4.3 in [60]. For instance, let d = 2

and consider the special case of the multiquadric model given by

K0(t) = ρ
1− δ√

1 + δ2 − 2δt
, −1 ≤ t ≤ 1,

with δ ∈ (0, 1) a parameter and 0 < ρ ≤ 1/(4π(1 − δ)). Then, as shown in

Section 4.3.2 in [60], the sequence

β`,2 = (1− δ)δ`, ` = 0, 1, . . . , (3.19)

specifies a geometric distribution and

λ`,2 = 4πρδ`(1− δ)/(2`+ 1) ≤ δ`/(2`+ 1), ` = 0, 1, . . . .

As δ → 0, then λ0,2 → 4πρ and λ`,2 → 0 if ` ≥ 1, corresponding to the

uninteresting case of a DPP with at most one point if ρ < 1/(4π) and with

exactly one point if ρ = 1/(4π). From (3.18) and (3.19) we obtain

pu = 4πρ(1− δ)/(1 + δ) ≤ 1/(1 + δ),
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with this upper bound obtained for the maximal value of ρ = 1/(4π(1 − δ)).

Therefore the DPP with the multiquadric kernel is far from being globally

most repulsive unless the expected number of points is very small.

Instead a flexible parametric model for the eigenvalues λ`,d is suggested

in Section 4.3.4 in [60] so that globally most repulsive DPPs as well as Poisson

processes are obtained as limiting cases. However, the disadvantage of that

model is that we can only numerically calculate ρ and pu.

3.4.2.5 Remark

The considerations in Sections 3.4.1 and 3.4.2.1-3.4.2.4 are strictly for

DPPs. For example, the intensity function of a Gibbs point process can be

both smaller and larger than the intensity function of its Palm distribution

at a given point; whilst for a DPP, ρ ≥ ρu. Furthermore, as a candidate

for a ‘globally most repulsive stationary Gibbs point process on R2’, we may

consider Y = LZ := {x + Z : x ∈ L}, where L is the vertex set of a regular

triangular lattice (the centres of a honeycomb structure) with one lattice point

at the origin, and where Z is a uniformly distributed point in the hexagonal

region given by the Voronoi cell of the lattice and centred at the origin (in

other words, Y may be considered as the limit of a stationary Gibbs hard core

process when the packing fraction of hard discs increases to the maximal value

≈ 0.907, see e.g. [29, 58]). However, the reduced Palm process at u ∈ R2 will

be degenerated and given by Y u = Lu\{u}, which is a much different situation

as compared to DPPs.
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Chapter 4

Reach of Repulsion for Determinantal Point

Processes in High Dimensions1

4.1 Introduction

Consider a sequence of point processes Xn indexed by dimension, that

is, let Xn be a point process in Rn with constant intensity ρn for each n. If

ρn = enρ and Rn =
√
nR, with ρ ∈ R and R > 0, then Stirling’s formula gives

Vn(Bn(Rn)) ∼ 1√
nπ

(
2πe

n

)n
2

Rn
n, as n→∞.

This implies there exists a threshold R∗ = 1√
2πeeρ

such that as n→∞,

E[Xn(Bn(Rn))] ∼ en(ρ+ 1
2

log 2πe+logR)+o(n) →

{
0, R < R∗

∞, R > R∗.
(4.1)

This justifies the interest in this regime where the intensities grow exponen-

tially with dimension and distances grow with the square root of the dimension.

This regime also naturally arises in information theory, and following [4], it

will be called the Shannon regime. In this chapter, the range and strength at

1This chapter is based on the following manuscript: F. Baccelli and E. O’Reilly. Reach
of repulsion for determinantal point processes in high dimensions. Journal of Applied Prob-
ability, 55(3), September 2018. The author of this thesis performed substantial research
that formed the results in this publication.
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which DPPs asymptotically exhibit repulsion between points in this regime is

quantified.

Mention of these issues appear in [80], where the authors characterize

a certain class of DPPs by an effective “hard-core” diameter D that grows

like
√
n, aligning with our observations. They observe that for r < D, the

number of points in a ball of radius r around a typical point will be zero with

probability approaching one, and for r > D, the number of points in a ball

of radius r around a typical point is zero with probability approaching zero

as dimension n goes to infinity. The behavior for r < D is a result of the

natural separation due to dimensionality as exhibited in (4.1). However, the

observation that D is the maximal such separation is due to the ν-weakly sub-

Poisson property of DPPs as defined in [10], and is a feature of all DPPs, not

just those studied in [80]. This behavior is the same as a sequence of Poisson

point processes in the same regime, and thus this separation of points in high

dimensions is due to dimensionality and not the repulsion of the DPP model.

Using the coupling from the last chapter, a more precise description of the

repulsion in high dimensions is given that is specific to the associated kernel

of the DPP.

Theorem 3.3.2 says that there exists a coupling of X and X0,! such that

almost surely X0,! ⊆ X and η := X \X0,! consists of at most one point, where

X0,! denotes a point process with the reduced Palm distribution of X. Thus,

when a point is “placed at” the origin, at most one point is “pushed out”. We
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consider the global measure of repulsiveness

p = P(η 6= ∅),

as well as the point Y with the distribution of the point in η conditioned on

η 6= ∅. This distribution of Y characterizes the location of the repulsive effect,

while p characterizes the global strength of the repulsion.

Also, the repulsive effect of a typical point over a finite distance R is

quantified by P[η(Bn(R)) > 0]. Note also that

P[η(Bn(R)) > 0] = E[η(Bn(R))] = ρVol(Bn(R))− E[X0,!(Bn(R))]

= ρ [KPoi(R)−KDPP (R)] ,

where KPoi and KDPP are Ripley’s K-functions [72] for a Poisson point process

and X, respectively.

Our main results describe the behavior of these measures of repulsive-

ness in the Shannon regime. Consider a sequence of stationary DPPs {Xn},

such that Xn lies in Rn. For each n, let ηn be the point process, containing at

most one point, such that Xn = X0,!
n ∪ ηn in distribution and X0,!

n ∩ ηn = ∅. It

is often the case that P[ηn 6= ∅]→ 0 as n→∞. In this case, the coupling in-

equality implies that, in high dimensions, the total variation distance is small

between Xn and X0,!
n . Indeed,

‖Xn −X0,!
n ‖TV ≤ P(ηn 6= ∅). (4.2)

Since Xn and X0,!
n have the same distribution if and only if Xn is Poisson
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by Slivnyak’s theorem [21], this says that such DPPs look increasingly like

Poisson point processes as the space dimension increases.

However, the effect of the repulsion can still be observed by conditioning

on ηn 6= ∅. Letting Yn be the point in ηn conditioned on ηn 6= ∅, Theorem

3.3.2 says that Yn has density

fn(·) := |Kn(·)|2/‖Kn‖2
2.

Then, under certain conditions on the kernels Kn, |Yn|/
√
n → R∗ ∈ (0,∞)

in probability as dimension n tends to infinity. Here, R∗ is interpreted as the

asymptotic reach of repulsion in the Shannon regime for these DPPs. This re-

sult implies that in high dimensions, a typical point has its strongest repulsive

effect on points that are at a distance of
√
nR∗ away, since it is at this distance

that a point is “pushed out”.

The parametric families of DPP kernels presented in [9] and [52] pro-

vide examples of DPPs exhibiting a reach of repulsion R∗ and counterexamples

where no finite R∗ exists, as well as computational results on the rates of con-

vergence when a threshold does occur. Four classes of DPPs are studied in

Section 4.4: Laguerre-Gaussian DPPs, power exponential DPPs, Bessel-type

DPPs, and normal-variance mixture DPPs. For Laguerre-Gaussian DPPs, the

sequence |Yn|/
√
n satisfies a large deviations principle (established later in

Lemma 4.4.1). As a consequence, the reach of repulsion R∗ becomes a phase

transition for the exponential rate at which P[ηn (Bn(R
√
n)) > 0] → 0 as

n → ∞ (established later in Proposition 4.4.2). Power exponential DPPs are
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shown to have a finite reach of repulsion in the Shannon regime for certain

parameters (established later in Proposition 4.4.4). Bessel-type DPPs are a

more repulsive family that does not exhibit an R∗, but does not exhibit re-

pulsion past the
√
n scaling (established later in Proposition 4.4.5). Finally,

normal-variance mixture DPPs provide additional examples of DPPs that ex-

hibit an R∗, including the Cauchy and Whittle-Matérn models (established

later in Propositions 4.4.7 and 4.4.6).

An application of these results is presented in Section 4.5. It is shown

that some threshold results in [4] for Poisson Boolean models can be extended

to generalized Laguerre-Gaussian DPP Boolean models in the Shannon regime.

Finally, concluding remarks and open questions are stated in Section 4.6.

4.2 Setting

We restrict to the case of Section 3.4.2.3 in the previous chapter, and

consider DPPs on Rn with a stationary kernel. Recall that these DPPs exist if

and only if the Fourier transform of the stationary kernel is bounded between

zero and one. Also, for a DPP X with stationary kernel K and intensity

K(0) = ρ, (3.3) says that the reduced Palm distribution corresponds to a

DPP with kernel

K !
0(x, y) = K(x− y)− 1

ρ
K(x)K(y).

This implies by (2.1) that the nearest neighbor function of X is D(r) =

P(X0,!(Bn(r)) > 0), with X0,! ∼ DPP (K !
0). All of the examples in this chap-
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ter will also be real-valued and isotropic kernels, meaning K(x) = R(|x|) for

some R : Rn → R. Throughout, when we state X ∼ DPP (K) is stationary,

it is assumed that K is stationary and real-valued. For more on this class of

DPPs, see [9, 52, 77]. There exist stationary DPPs with kernels that are not

of this form (see [42, 4.3.7]), but they are complex-valued and not considered

here.

4.3 Reach of Repulsion

When considering the reach of repulsion of a DPP, it is natural to

first consider the nearest neighbor function (2.1). The following threshold

behavior was observed for stationary DPPs in [80]. It is stated here for a

sequence of DPPs in the Shannon regime. For each n, let Xn ∼ DPP (Kn)

in Rn be stationary with intensity Kn(0) = enρ for some ρ ∈ R. Then, for

R̃ := (2πe)−
1
2 e−ρ,

lim
n→∞

P(X0,!
n (Bn(

√
nR)) > 0) =

{
0, R < R̃

1, R > R̃.
(4.3)

A proof of this fact is given in Appendix A.1.

This shows there is a separation of points as dimension tends to infinity

for any stationary DPP. However, the same threshold behavior occurs if the

elements of the sequence {Xn} are stationary Poisson point processes, as a

consequence of (4.1). This observation shows that this separation is due purely

to dimensionality and is not a result of the repulsiveness of DPPs.

We instead study the point process ηn and the point Yn with the distri-
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bution of the point in ηn conditioned on ηn 6= ∅, as defined in the introduction,

to measure the consequence of repulsiveness in high dimensions that depends

on the determinantal structure. Under certain limit conditions on the kernels

of a sequence of DPPs, the point Yn that is pushed out by the point at the

origin is approximately at a distance of
√
nR∗ for some R∗ ∈ (0,∞) as n goes

to infinity.

Lemma 4.3.1. For each n, let Xn ∼ DPP (Kn) be a stationary DPP in Rn

and Yn a random vector in Rn with probability density Kn(·)2/‖Kn‖2
2. Assume

that as n→∞,

|Yn|/
√
n→ R∗ in probability. (4.4)

Then,

lim
n→∞

P[ηn(B(
√
nR)) > 0|ηn 6= ∅] =

{
0, R < R∗

1, R > R∗.
(4.5)

Remark 4.3.1. One way to show (4.4) is to show that

lim
n→∞

Var(|Yn|2)

n2
= 0 and lim

n→∞

(
E[|Yn|2]

n

)1/2

= R∗ ∈ (0,∞),

and then apply Chebychev’s inequality.

For random vectors with log-concave distributions, the deviation esti-

mate can be improved from the estimate obtained through Chebychev’s in-

equality (see Remark 4.3.1) using Theorem 2.4.1.
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Proposition 4.3.2. Consider the setting of Lemma 4.3.1. Let σ2
n = E|Yn|2.

If K2
n is log-concave for all n, then there exist positive constants C, c such that

for all δ ∈ (0, 1),

P[ηn(Bn(σn(1− δ))) > 0|ηn 6= ∅] ≤ Ce−c
√
nδ3 ,

and for all δ > 0,

P[ηn(Bn(σn(1 + δ))) > 0|ηn 6= ∅] ≤ Ce−c
√
nmin(δ3,δ).

If, in addition,

lim
n→∞

σn/
√
n = R∗ ∈ (0,∞), (4.6)

then for this R∗, the threshold (4.5) occurs, and for all R < R∗, there exists a

constant C(R) > 0 such that

lim inf
n→∞

− 1√
n

lnP[ηn(Bn(
√
nR)) > 0|ηn 6= ∅] ≥ C(R).

Remark 4.3.2. The last conclusion of Proposition 4.3.2 about the rate also

holds for R > R∗ if Bn(
√
nR) is replaced by Rn\Bn(

√
nR).

The assumption of large deviation principle (LDP) concentration leads

to an estimate of the exponential rate of convergence with speed n and an

exact computation of the reach of repulsion R∗.

Proposition 4.3.3. Consider the setting of Lemma 4.3.1. Suppose |Yn|/
√
n

satisfies a LDP with strictly convex rate function I. Then, for R∗ such that
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I(R∗) = 0, the threshold (4.5) occurs. Also, for R < R∗,

− inf
r<R

I(r) ≤ lim inf
n→∞

1

n
lnP[ηn(Bn(

√
nR)) > 0|ηn 6= ∅]

≤ lim sup
n→∞

1

n
lnP[ηn(Bn(

√
nR)) > 0|ηn 6= ∅] ≤ − inf

r≤R
I(r),

and if the rate function I is continuous at R,

lim
n→∞

− 1

n
lnP[ηn(Bn(

√
nR)) > 0|ηn 6= ∅] = I(R).

Remark 4.3.3. The second conclusion of Proposition 4.3.3 about the rate also

holds for R > R∗ if Bn(
√
nR) is replaced by Rn\Bn(

√
nR).

If a sequence of DPPs in increasing dimensions exhibits a reach of

repulsion R∗, this says that the point in ηn, conditioned on ηn 6= ∅, is most

likely to be near distance
√
nR∗ away from the origin in high dimensions. If

R∗ is less than R̃ from (4.3), this point is most likely to be removed at a

distance where points of Xn appear with probability decreasing to zero as n

increases due to dimensionality. If R∗ is larger than R̃, the point “pushed out”

by repulsion is most likely to lie at a distance where points of Xn appear with

high probability. Thus it is of interest to check whether there exist DPP models

such that R∗ is greater than or equal to R̃, i.e., if P(X0,!
n (Bn(

√
nR∗)) = 0)→ 0

as n → ∞. In Sections 4.4.1 and 4.4.2 examples of DPP models with this

reach are provided.

The above results have strong assumptions, and open up additional

questions. The first question is whether Yn tends to lie at a distance scaling

with
√
n, i.e., is the Shannon regime the right one to examine the repulsive-

ness between points of a family of DPPs in high dimensions? By the radial
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symmetry of the density of each Yn, the coordinates {Yn,k}nk=1 are identically

distributed, and the sequence |Yn|2 is the sequence of row sums of a triangular

array of random variables with identically distributed rows. If the coordinate

distributions depend on dimension in such a way that E (|Yn|2) 6= O(n), then

a different scaling is needed.

4.4 Examples

In the following, specific families that were presented in [9] and [52] are

examined that illustrate both examples of DPP models satisfying the above

results, as well as examples that do not. These examples provide a window

into the wide scope of repulsive behavior that can be described using this

framework.

The first task will be to determine the behavior of P[ηn 6= ∅] as n in-

creases. For almost all of the examples provided in this section, limn→∞ P[ηn 6=

∅] = 0, but each class exhibits this convergence at different speeds. Then the

goal is to determine if the DPP models satisfy the conditions of Propositions

4.3.1, 4.3.2, or 4.3.3.

4.4.1 Laguerre-Gaussian Models

For each n, let Xn ∼ DPP (Kn) in Rn be a Laguerre-Gaussian DPP as

described in [9] with intensity Kn(0) = enρ, i.e., for some m ∈ N, α ∈ R+, let

Kn(x) =
enρ(

m−1+n
2

m−1

)Ln/2m−1

(
1

m

∣∣∣x
α

∣∣∣2) e− |x/α|2m , x ∈ Rn, (4.7)
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where Lβm(r) =
∑m

k=0

(
m+β
m−k

) (−r)k
k!

, for all r ∈ R, denote the Laguerre polyno-

mials. From [9], the condition 0 ≤ K̂n ≤ 1 translates to a bound on αn,

α ≤ 1

eρ(mπ)1/2

(
m− 1 + n/2

m− 1

) 1
n

. (4.8)

Direct calculations give that the global measure of repulsiveness is

P[ηn 6= ∅] =

enραnn(
m−1+n

2
m−1

)2

(mπ
2

)n
2

m−1∑
k,j=0

(
m− 1 + n

2

m− 1− k

)(
m− 1 + n

2

m− 1− j

)
(−1)k+j

k!j!

Γ
(
n
2

+ k + j
)

2k+jΓ
(
n
2

) .

(4.9)

By (4.8), P[ηn 6= ∅] ≤ 2−
n
2 f(n,m), where

f(n,m) =
m−1∑
k,j=0

(
m−1+n/2
m−1−k

)(
m−1+n/2
m−1−j

)(
m−1+n/2
m−1

) (−1)k+j

k!j!

Γ
(
n
2

+ k + j
)

2k+jΓ
(
n
2

) = O(nm−1).

It follows from [9, (5.7)] that for fixed n, limm→∞ 2−
n
2 f(n,m) = 1, and as

α → 0, Kn approaches the Poisson kernel. Thus, this class of DPPs covers a

wide range of repulsiveness for fixed dimension n. However, for any fixed m,

the dominant behavior as n increases is 2−
n
2 .

Since
(
m−1+n/2
m−1

) 1
n decreases to one as n goes to infinity, a sufficient

condition for (4.8) to hold for all n is 0 < α ≤ e−ρ(mπ)−
1
2 . Note that this

scaling for the intensity is the right one for observing interactions between the

parameters of the model because it provides a trade-off between how large the

parameter α can be and the magnitude of ρ. If the intensity did not grow as

quickly with dimension, the upper bound on α would depend less and less on

changes in ρ as dimension increased, and if the intensity grew more quickly, α

would tend to zero as n went to infinity.
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Proposition 4.3.3 holds for this sequence of DPPs. Indeed, the next

lemma shows that the sequence |Yn|/
√
n satisfies a LDP.

Lemma 4.4.1. Fix m ∈ N, ρ ∈ R, and let α ∈ (0, e−ρ(mπ)−1/2]. For each n,

let Yn be a random vector in Rn with probability density Kn(·)2/‖Kn‖2
2, where

Kn is given by (4.7). Then, the sequence {|Yn|/
√
n}n satisfies an LDP with

rate function

Λ∗(x) =
2x2

α2m
− 1

2
+

1

2
log

(
α2m

4x2

)
.

Using this lemma, Proposition 4.3.3 implies that an R∗ exists, and the

exponential rates can be determined. In addition, using (4.9), the exponential

rate of decay of P[ηn(Bn(
√
nR)) > 0] can be computed.

Proposition 4.4.2. Fix m ∈ N, ρ ∈ R, and let α ∈ (0, e−ρ(mπ)−1/2). For

each n, let Xn ∼ DPP (Kn) where Kn is given by (4.7). Then, for R∗ :=
√
mα

2
,

lim
n→∞

− 1

n
logP[ηn(Bn(

√
nR)) > 0]

=

{
−ρ− 1

2
log 2πe+ 2R2

α2m
− logR, 0 < R < R∗

−ρ− logα− 1
2

log mπ
2
, R > R∗.

The rate decays as R increases to R∗ :=
√
mα

2
and then for R > R∗,

the rate no longer depends on R. This coincides with our interpretation of R∗

as the asymptotic reach of repulsion of the sequence of DPPs.

For a fixed α, a larger m will give farther reach, and for a fixed m, a

larger α will provide a farther reach. However, by the bound α ≤ e−ρ(mπ)−1/2,
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the following upper bound on the reach holds uniformly for all m:

R∗ :=
α
√
m

2
≤ 1

2eρπ1/2
.

Note that the larger ρ is, the smaller the upper bound on R∗ can be. This

follows from the relationship between α and ρ: the higher the intensity, the

smaller α must be for the DPP to exist. Since a larger α implies a larger

value of P[ηn(Rn) > 0], the parameter α is associated with the strength of

the repulsiveness. The relationship with ρ showcases the following tradeoff

observed in [52]: the higher the intensity of the DPP, the less repulsive it can

be.

As mentioned in the previous section, it is of interest to know whether

there is a range of parameters such that R∗ is greater than R̃, the threshold

for the convergence of the nearest-neighbor function of X (4.3). For Laguerre-

Gaussian models, R∗ :=
√
mα
2

is larger than R̃ and α satisfies the condition of

Lemma 4.4.1 if (
2

e

)1/2

< eρ
√
mπα ≤ 1.

Since the lower bound is strictly less than one, there is a non-empty range for

α such that the reach of repulsion reaches past R̃.

4.4.2 Power Exponential Spectral Models

The power exponential spectral models, introduced in [52], are defined

through the Fourier transform of the kernel. For almost all of these models,
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there is no closed form for the kernel K. Using properties of the Fourier

transform, a similar analysis of the repulsive behavior can still be performed.

For each n, let Xn ∼ DPP (Kn) be a power exponential DPP with

intensity Kn(0) = enρ and parameters ν > 0 and αn > 0, i.e., let

K̂n(x) = enρ
Γ(n

2
+ 1)αnn

πn/2Γ(n
ν

+ 1)
e−|αnx|

ν

, x ∈ Rn. (4.10)

When ν = 2, a closed form expression for Kn exists and is called the Gaussian

kernel. The condition 0 ≤ K̂n < 1 implies the following upper bound on αn:

αn <
Γ(n

ν
+ 1)

1
nπ1/2

eρΓ
(
n
2

+ 1
) 1
n

, (4.11)

and the asymptotic expansion for the upper bound on αn as n→∞ is(
Γ(n

ν
+1)πn/2

enρΓ(n
2

+1)

)1/n

∼
(√

2πn
ν ( n

νe)
n/ν

πn/2

enρ
√

2πn
2 ( n

2e)
n/2

)1/n

∼ e−ρn
1
ν
− 1

2
(2πe)1/2

(νe)1/ν
= O(n

1
ν
− 1

2 ).

By Parseval’s theorem and a change of variables,

P[ηn 6= ∅] =
1

enρ
‖Kn‖2

2 =
1

enρ
‖K̂n‖2

2 =
1

enρ

(
enρ

Γ
(
n
2

+ 1
)
αnn

πn/2Γ
(
n
ν

+ 1
))2 ∫

Rn
e−2|αnx|νdx

= enρ
(

Γ(n
2

+ 1)αnn
πn/2Γ(n

ν
+ 1)

)2
nπn/2

Γ(n
2

+ 1)

∫ ∞
0

rn−1e−2(αr)νdr

= enρ
Γ(n

2
+ 1)α2n

n

π
n
2 Γ(n

ν
+ 1)2

n

2
n
ν ναnn

∫ ∞
0

t
n
ν
−1e−tdt = 2−

n
ν αnn

enρΓ(n
2

+ 1)

π
n
2 Γ(n

ν
+ 1)

.

(4.12)

By the bound on αn (4.11),

P[ηn 6= ∅] ≤ 2−
n
ν .
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For fixed dimension n, the global measure of repulsion approaches its upper

bound of one for large ν. Thus, this class covers a wide range of repulsiveness

similar to the Laguerre-Gaussian DPPs. However, for fixed ν, the measure

decays exponentially as n goes to infinity. Note that for ν > 2, the rate is

smaller than for the Laguerre-Gaussian models, i.e., the decay is slower.

The following results show that if the parameters αn grow appropriately

with n, this sequence satisfies the assumptions of Proposition 4.3.1.

Lemma 4.4.3. For each n, let Yn be a vector in Rn with density K2
n

‖Kn‖22
such

that K̂n is given by (4.10). Assume αn ∼ αn
1
ν
− 1

2 as n → ∞ for α ∈ (0,∞),

and αn ≤
(

Γ(n
ν

+1)πn/2

enρΓ(n
2

+1)

)1/n

for all n. Then, as n→∞,

|Yn|√
n
→ α

(2ν)1/ν

4π
in probability.

Lemma 4.3.1 then implies the following.

Proposition 4.4.4. For each n, let Xn ∼ DPP (Kn) where K̂n satisfies the

assumptions in Lemma 4.4.3. Then, for R∗ := α (2ν)1/ν

4π
,

lim
n→∞

P[ηn(Bn(
√
nR)) > 0|ηn 6= ∅] =

{
0, R < R∗,

1, R > R∗.

For ν > 1, the reach of repulsion R∗ for the power exponential models

can also reach past the nearest neighbor threshold R̃. Indeed, for αn ∼ αn
1
ν
− 1

2 ,

R∗ := α (2ν)1/ν

4π
satisfies P[Xn(Bn(0,

√
nR∗)) = 0]→ 0 as n→∞ if

α
(2ν)1/ν

4π
>

1√
2πeeρ

.
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By the asymptotic formula (4.11) for the upper bound of αn, α <
√

2πe
eρ(νe)1/ν

.

Thus, R∗ reaches past R̃ when αn ∼ αn
1
ν
− 1

2 and

4π

(2ν)1/νeρ
√

2πe
< α <

√
2πe

eρ(νe)1/ν
.

The interval is non-empty since the upper bound is strictly greater than the

lower bound for ν > 1.

4.4.3 Bessel-type Models

Another class of DPP models presented in [9] is the Bessel-type. This

class is more repulsive than the previous two families of models. It is shown

that while the Shannon regime is the right scaling to examine the repulsiveness

of this class in high dimensions, a sequence of these DPPs does not satisfy the

conditions of Proposition 4.3.1.

For each n, let Xn ∼ DPP (Kn) be a Bessel-type DPP with parameters

σ ≥ 0, α > 0, and intensity Kn(0) = enρ, for ρ ∈ R. That is, let

Kn(x) = enρ2(σ+n)/2Γ

(
σ + n+ 2

2

)
J(σ+n)/2(2|x/α|

√
(σ + n)/2)

(2|x/α|
√

(σ + n)/2)(σ+n)/2)
. (4.13)

From [9], the bound 0 ≤ K̂n ≤ 1 implies that

αnn ≤
(σ + n)n/2Γ

(
σ
2

+ 1
)

enρ(2π)n/2Γ
(
σ+n

2
+ 1
) . (4.14)

Similarly to the previous examples, this family contains DPPs covering a wide

range of repulsiveness measured by ηn, and as n→∞, they are more repulsive
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in the sense that P[ηn 6= ∅] decays slower. Indeed,

P[ηn 6= ∅] =
1

enρ

∫
Rn
Kn(x)2dx = enρ

(2π)n/2αn

(σ + n)n/2Γ
(
n
2

) Γ
(
σ+n+2

2

)2
Γ
(
n
2

)
Γ(σ + 1)

Γ
(
σ
2

+ 1
)2

Γ
(
σ + n

2
+ 1
)

= enρ
(2π)n/2αn

(σ + n)n/2
Γ(σ + 1)Γ

(
σ
2

+ n
2

+ 1
)2

Γ
(
σ
2

+ 1
)2

Γ
(
σ + n

2
+ 1
) ,

and by the upper bound (4.14),

P[ηn 6= ∅] ≤
Γ(σ + 1)Γ

(
σ
2

+ n
2

+ 1
)

Γ
(
σ
2

+ 1
)

Γ
(
σ + n

2
+ 1
) .

By Stirling’s formula, as n→∞,
Γ(σ+1)Γ(σ2 +n

2
+1)

Γ(σ2 +1)Γ(σ+n
2

+1)
= O(n−σ/2).

These DPPs do not satisfy the conditions of Proposition 4.3.1, and so

the concentration of the first moment measure does not occur, contrary to the

first two families presented. However, the repulsive measure does not reach

past the
√
n scale in the sense of the following proposition.

Proposition 4.4.5. Let ρ ∈ R, α > 0, and σ ≥ 0. For each n, let Xn ∼

DPP (Kn) in Rn with Kn given by (4.13). Then, for any β > 1
2

and R > 0,

lim
n→∞

P[ηn(Rn\Bn(Rnβ)) > 0|ηn 6= ∅] = 0.

4.4.4 Normal Variance Mixture Models

Another class of DPPs described in [52] are those with normal-variance

mixture kernels. Let Xn ∼ DPP (Kn) be a normal-variance mixture DPP in

Rn with intensity enρ for ρ ∈ R, i.e., let

Kn(x) = enρ
E[W−n/2e−|x|

2/(2W )]

E[W−n/2]
, x ∈ Rn,
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for some non-negative real-valued random variable W such that E[W−n/2] <

∞. From [52], the bound 0 ≤ K̂ ≤ 1 translates to the following bound on the

intensity:

enρ ≤ E[W−n/2]/(2π)n/2. (4.15)

If
√

2W = α, this is known as the Gaussian DPP model. If W ∼ Gamma(ν +

n
2
, 2α2), this is called the Whittle-Matérn model. The Cauchy model is given

when 1
W
∼ Gamma(ν, 2α−2). In both cases ν > 0 and α > 0 are parameters.

This family of DPPs does not cover a wide range of repulsiveness like

the previous families. Indeed, for any random variable W in R+ such that

E[W−n
2 ] < ∞, Parseval’s theorem, Jensen’s inequality, (4.15), and Fubini’s

theorem imply

P[ηn 6= ∅] =
1

enρ

∫
Rn
K̂n(x)2dx =

1

enρ

∫
Rn

(
enρ (2π)

n
2

E[W−
n
2 ]
E
[
e−2π2|x|2W

])2

dx

≤ (2π)
n
2

E[W−
n
2 ]

∫
Rn

E
[
e−4π2|x|2W

]
dx

= (2π)
n
2

E[W−
n
2 ]
E
(

(4πW )−
n
2E
[
(4πW )

n
2

∫
Rn
e−4π2|x|2Wdx

∣∣∣∣W]) = 2−
n
2 .

Is it difficult to make further general statements about this class because

the behavior of the sequence |Yn|/
√
n depends greatly on the distribution of

the R+-valued random variable W . The rest of the section will describe results

for specific models in this class.

Consider a sequence of normal-variance mixture DPPs all associated

with the same random variable W . If W is a constant α, the random vari-

ables Xn become multivariate Gaussian vectors with mean zero and variance
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depending on α. The scaled norms of these vectors are well-known to sat-

isfy a LDP since the coordinates are independent. This also corresponds to a

Laguerre-Gaussian DPP with parameter m = 2.

There is also a subclass of the normal-variance mixture models that

satisfy Proposition 4.3.2. In [82], it is proved that if W has a log-concave

density, then the normal-variance mixture distribution is log-concave. This

implies that K2
n is log-concave, and thus if condition (4.6) holds, the conclusion

of Proposition 4.3.2 holds. Since the Gamma distribution for shape parameter

ν greater than 1 is log-concave and ν + n
2
≥ 1 for large n, Whittle-Matérn

DPPs are an example from this subclass and exhibit an R∗ as shown in the

following proposition.

Proposition 4.4.6. For each n, let Xn ∼ DPP (Kn) be a Whittle-Matérn

model in Rn with intensity enρ and parameters ν > 0 and α > 0, i.e., let

Kn(x) = enρ
21−ν

Γ(ν)

|x|ν

αν
Kν

(
|x|
α

)
, x ∈ Rn, (4.16)

where α ≤ Γ(ν)
1
n

Γ(ν+n
2 )

1
n 2
√
πeρ

and Kν is the modified Bessel kernel of the second

kind. Then, for R∗ := α
2

,

lim
n→∞

P[ηn(Bn(
√
nR)) > 0|ηn 6= ∅] =

{
0, R < R∗

1, R > R∗.

Remark 4.4.1. The upper bound on α implies that for all ν,

R∗ :=
α

2
≤ Γ(ν)

1
n

Γ
(
ν + n

2

) 1
n 4
√
πeρ

<
1√

2πeeρ
:= R̃,
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since

(
Γ(ν)

Γ(ν+n
2 )

) 1
n

≤ 1 and 4 >
√

2e. Thus, for these models, R∗ never reaches

past the nearest neighbor threshold R̃.

Finally, the following proposition shows that the Cauchy models satisfy

the conditions of Lemma 4.3.1 if the α parameter grows appropriately with n.

Proposition 4.4.7. For each n, let Xn ∼ DPP (Kn) be a Cauchy model in

Rn with intensity enρ and parameters ν > 0 and αn > 0, i.e., let

Kn(x) =
enρ

(1 + | x
αn
|2)ν+n

2

, x ∈ Rn.

Assume αn ∼ αn1/2 as n → ∞ for some α > 0 such that αn ≤
Γ(ν+n

2
)
1
n

√
πeρΓ(ν)

1
n

for

each n. Then, for R∗ := α,

lim
n→∞

P[ηn(Bn(
√
nR)) > 0|ηn 6= ∅] =

{
0, R < R∗

1, R > R∗.

Remark 4.4.2. The upper bound on αn has the following asymptotic expansion

as n→∞:

αn ≤
Γ(ν + n

2
)

1
n

√
πeρΓ(ν)

1
n

∼ n1/2

√
2πeeρ

.

Thus, if αn ∼ αn
1
2 , the reach of repulsion has the upper bound

R∗ := α ≤ 1√
2πeeρ

.

This upper bound is precisely the threshold R̃ for the nearest neighbor func-

tion, and so unlike in the case of Laguerre-Gaussian DPPs and power expo-

nential DPPs, the reach of repulsion R∗ for a sequence of Cauchy models with

fixed parameter ν cannot reach past R̃.
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4.5 Application to determinantal Boolean models in the
Shannon regime

Poisson Boolean models in the Shannon regime were studied in [3], and

the degree threshold results can be extended to Laguerre-Gaussian DPPs using

Proposition 4.4.2.

The setting is the following: Consider a sequence of stationary DPPs

Xn, indexed by dimension, where Xn ∼ DPP (Kn) in Rn. Assume that for

each n, Kn is continuous, symmetric, and 0 ≤ K̂n < 1. Let the intensity of Xn

be Kn(0) = enρ. Let Xn =
∑

k δT (k)
n

and R > 0. Then, consider the sequence

of particle processes [75], called determinantal Boolean models,

Cn =
⋃
k

Bn

(
T (k)
n ,

√
nR

2

)
.

The degree of each model is the expected number of balls that intersect the ball

centered at zero under the reduced Palm distribution, i.e., E[X0,!
n (Bn(

√
nR))].

In the case when Xn is Poisson, E0,![Xn(B(
√
nR))] = E[Xn(B(

√
nR))] by

Slivnyak’s theorem, and

lim
n→∞

1

n
lnE0,![Xn(Bn(

√
nR))] = ρ+

1

2
log 2πe+ logR.

To extend this result to DPPs, it is sufficient to show that as n→∞,

E[X0,!
n (Bn(

√
nR))] ∼ E[Xn(Bn(

√
nR))].

Note that it is impossible to extend this result to a repulsive point process like

the Matérn hardcore process, since E[X0,!
n (Bn(Rn))] = 0 for all Rn less than

the hardcore radius.
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However, for DPPs, notice that

E[X0,!
n (Bn(

√
nR))]

E[Xn(Bn(
√
nR))]

= 1− E[ηn(Bn(
√
nR))]

E[Xn(Bn(
√
nR))]

= 1− P[ηn(Bn(
√
nR)) > 0]

E[Xn(Bn(
√
nR))]

.

Thus, if P[ηn(Bn(
√
nR))>0]

E[Xn(Bn(
√
nR))]

→ 0 as n → ∞, then the degree of the determinan-

tal Boolean model has the same asymptotic behavior as the Poisson Boolean

model.

In the case of Laguerre-Gaussian kernels, this is the case, and the earlier

results even provide the rate at which the quantity goes to zero, which exhibits

a threshold at R∗ as is expected.

Proposition 4.5.1. Let m ∈ N and ρ ∈ R. For each n, let Xn ∼ DPP (Kn)

in Rn where

Kn(x) =
enρ(

m−1+n/2
m−1

)Ln/2m−1

(
1

m

∣∣∣x
α

∣∣∣2) e− |x/α|2m ,

and α is a parameter such that 0 < α < 1√
mπeρ

. Then,

lim
n→∞

− 1

n
ln

P[ηn(Bn(
√
nR)) > 0]

E[Xn(Bn(
√
nR))]

={
2R2

α2m
, 0 < R <

√
mα

2
1
2

+ log 2− logα− 1
2

logm+ logR, R >
√
mα

2
.

4.6 Conclusion

By examining a measure of repulsiveness of DPPs, this paper provides

insight into the high dimensional behavior of different families of DPP models.

Most of the families of DPPs presented in this paper have a global measure
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of repulsion decreasing to zero as dimension increases, indicating that they

become more and more similar to Poisson point processes in high dimensions

by (4.2). However, the reach of the small repulsive effect can still be quantified.

By making a connection between the kernel of the DPP and the concentration

in high dimensions of the norm of a random vector, we have shown under

certain conditions that there exists a distance on the
√
n scale at which the

repulsive effect of a point of the DPP model is strongest as n → ∞. It has

been illustrated that some families of DPPs exhibit this reach of repulsion and

some do not. The results are summarized in Table 4.1.

Some questions remain concerning the range of possible repulsive be-

havior of DPPs in high dimensions. First, the results can be extended to

scalings other than the Shannon regime in the following way. Assumption

(4.4) in Lemma 4.3.1 can be generalized to the assumption that for some se-

quence bn, |Yn|
bn
→ R∗ as n→∞. If bn 6= O(n

1
2 ), the result holds for a different

scaling than the Shannon regime, and the repulsiveness is strongest near R∗bn

in high dimensions. While this is precisely what is shown not to happen for the

Bessel-type DPPs if σ > 0, examples of this generalization for bn = o(n) can be

obtained from the power exponential DPPs when αn = o(n
1
ν
− 1

2 ). However, as

noted in the introduction, any distance scaling smaller than
√
n will not reach

the regime where the expected number of points goes to infinity as dimension

grows. Thus, this scaling appears less interesting. It would be interesting to

find a family of DPPs that exhibits the concentration for bn �
√
n.

For almost all of the DPPs studied in this paper, P[ηn 6= ∅] → 0 as
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n → ∞. The exception is given by the case of the Bessel-type kernel when

σ = 0. For any fixed c ∈ (0, 1], if you let αnn = c nn/2

enρ(2π)n/2Γ(n
2

+1)
, then

P(ηn 6= ∅) = c.

for all n. When c = 1, this class of DPPs are the most repulsive DPPs on

Rn with a stationary kernel described in Section 3.4.2.3. For these DPPs, the

point Yn has a distribution such that |Yn| has infinite k-the moment for all

k ≥ 1. It would be interesting to find a necessary and sufficient condition for

P[ηn 6= ∅] to converge to zero, but for any applications where one would like a

sequence of DPPs to return a different result that a sequence of Poisson point

processes, this class of most repulsive DPPs, where ηn 6= ∅ a.s., is certainly

the class of DPPs to focus on.

Table 4.1: Summary of Results
DPP Class P[ηn 6= ∅] ≤ R∗ Rate type R∗ > R̃

Laguerre-Gaussian 2−
n
2O(nm−1)

√
mα

2
LDP

(
2
e

) 1
2 < eρ

√
mπα < 1

Power-Exponential 2−
n
ν α (2ν)

1
ν

4π
Chebychev 2

2
1
ν e
< eρν

1
ν√

2πe
α < 1

e
1
ν

Bessel-type O(n−σ/2) N/A N/A N/A
Whittle-Matérn 2−

n
2

α
2

Log-concave N/A
Cauchy 2−

n
2 α Chebychev N/A
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Chapter 5

The Stochastic Geometry of Unconstrained

One-bit Data Compression1

5.1 Introduction and Motivations

One-bit compressed sensing is a method of signal recovery from a se-

quence of measurements contained in {−1, 1}. More specifically, one aims to

recover the signal x ∈ Rn from measurements of the form

yi = sign(〈ui, x〉 − ti),

where the ui are independent vectors in Rn and ti random displacements in R.

One can interpret this problem geometrically, by the fact that each pair (ui, ti)

defines a unique affine hyperplane in Rn with normal unit vector ui at distance

ti from the origin. The measurement yi ∈ {−1, 1} then indicates which side of

the hyperplane the signal x lies on. This collection of hyperplanes tessellates

the space of signals into convex cells. Two signals contained in the same

cell will have the same set of one-bit measurements {yi}. The quality of this

compression can be measured in a few different ways. For instance, one can

1This chapter is based on the following manuscript: F. Baccelli and E. O’Reilly. The
stochastic geometry of unconstrained one-bit data compression. arXiv:1810.06095, 2018.
The author of this thesis performed substantial research that formed the results in this
manuscript.

70



measure how likely it is that two different signals are compressed differently,

i.e., lie in different cells of the tessellation. As in one-bit compressed sensing,

the quality can also be determined by having a small error in signal recovery,

which can be guaranteed if the collection of hyperplanes tessellate the signal

space into cells small enough to ensure all signals within a single cell are close

in Euclidean distance.

Previous work ([8], [48], [70]) has examined this problem when it is

known that the signal lies in some bounded set K ⊂ Rn. Here, we consider

the data set to be either all of Rn or an uncountable discrete subset of Rn

modeled with a stationary Poisson point process. The assumption that the

data is Poisson provides a worse-case scenario, since any dependence between

the underlying points increases one’s ability to compress the data in such a

way that the signals can be recovered with small error. The set of random

hyperplanes used to obtain the one-bit measurements is given by a stationary

and isotropic Poisson hyperplane process. The reasons for this choice are

discussed at the end of the paper (see Subsection 5.6.3), the key reason being

that it leads to the least volume of data compressed with a typical data point

among a wide collection of hyperplane models.

The aim is to find the minimum intensity of the hyperplane process

at some scaling with the space dimension n such that different data will be

separated by hyperplanes with high probability, and also for data compressed

in the same way to be close with high probability. Under the assumption of

stationarity, we can ask for, in some sense, a “typical” instance to satisfy the
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desired property. To address the “typicality”, there are two viewpoints to take.

One is from the view of a typical data point, and in the stationary regime,

we can consider its location to be at the origin. The cell of the tessellation

that the typical data point is contained in is then the so-called zero cell [21],

also referred to as the Crofton cell. The other viewpoint is to ask that a

typical cell satisfy some property, e.g., to have small diameter. The typical

cell of a stationary Poisson hyperplane tessellation can be interpreted as the

distribution of the cell obtained when taking a large ball centered at the origin,

and picking a cell intersecting that ball uniformly at random. The zero cell is

larger in mean than the typical cell, as there is bias towards larger cells when

asking that it contain the origin. The viewpoint of a typical signal and its

cell, the zero cell, seems a more natural viewpoint to take here, and will be

the main focus, although some results are also derived on the typical cell for

comparison.

To summarize the results, consider a sequence of compressions indexed

by dimension, i.e., for each n, let Xn be a stationary and isotropic Poisson

hyperplane tessellation in Rn with intensity γn that is used to compress the

underlying data. We let γn ∼ ρnα as n → ∞ and discuss the values of α

for which a good separation or low distortion of the data can be achieved

with high probability by the hyperplanes when n is large. Several criteria

of good separation and low distortion are discussed. By good separation,

we mean a property that connects differences between data and differences

between their encodings. By low distortion, we mean a property than connects
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closeness of data and similarity of their encodings. The results on the matter

are summarized below when data are the whole of Rn.

The first separation criterion discussed is that the distance to the near-

est data that is compressed differently from the typical data (i.e., the closest

point of the Euclidean space which is not in the zero cell) be small. It is shown

that as long as α > 0, this distance tends to zero in distribution as n tends to

infinity.

The second separation criterion considered is that some transformation

of the typical signal is compressed differently than the typical signal with high

probability. We discuss two types of transformations: (i) a Gaussian displace-

ment with fixed variance σ per dimension (which is the least demanding of

the criteria discussed here), and (ii) a displacement at a fixed distance σ away

and in a random direction. For case (i), we show that, for α = 0, the typical

signal is compressed in the same way as the typical signal with a probability

decreasing exponentially with ρ. We also show that the same holds in case (ii)

provided α = 1
2
.

The first low distortion criterion is the requirement that the volume of

other data compressed with a typical data be small. The hyperplane intensities

discussed above are not large enough for this to hold. While data in most

directions will be separated from the typical data, there is a set of directions

of decreasing measure in which the compression will remain identical, and in

high dimension, this is where most of the volume of data compressed like the

typical signal lies. Considering this low distortion criterion, we show that, for
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α = 1, there is a threshold for ρ above which the expected value of the volume

in question goes to zero and below which it approaches infinity.

A small volume still does not ensure that all data compressed together

is close in Euclidean distance. This motivates the discussion of a second low

distortion criterion. In the case where data is the whole Euclidean space,

the requirement is that the point which is the farthest away from the typical

data and encoded in the same way be within some distance R. It is shown

that if we increase α to 3
2
, then there exists a finite value for ρ above which

this probability approaches one as dimension n tends to infinity. A similar

criterion for the case when the data is modeled with a Poisson point process

is also discussed.

Some of these scalings can be significantly decreased if it is known that

the data are ‘sparse’, namely lie within a lower dimensional subspace of Rn.

In Section 5.5, we show how this affects the intensity of hyperplanes needed

for the above low distortion criteria.

The results have several implications in compressed sensing and in

source coding. These are discussed in Subsections 5.6.1 and 5.6.2 at the end

of the paper.

5.2 Preliminaries

5.2.1 Poisson Hyperplane Tessellations

A hyperplane process X in Rn is a random counting measure on the

space Hn. The process X is stationary if its distribution is invariant under
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translations and it is isotropic if its distribution is invariant under rotations

about the origin. The hyperplane process X with intensity measure Θ is

Poisson if for all disjoint A1, ..., Ak ∈ B(Hn) such that Θ(Ai) <∞ for all i,

P(X(A1) = m1, ..., X(Ak) = mk) =
k∏
i=1

Θ(A)mi

mi!
e−Θ(A).

Remark 5.2.1. Recall from (2.4) that the cell intensity λ of the induced random

mosaic of a hyperplane process X in Rn is related to the intensity γ of X in

the following way:

λ = κn

(
γκn−1

nκn

)n
.

Consider a sequence of hyperplane tessellations Xn in increasing dimensions

Rn with intensity γn and cell intensity λn. If λn ∼ enλ as n → ∞, then

γn ∼ ρn as n → ∞. This exponential scaling with dimension for the point

process of cell centroids matches the so-called Shannon regime studied in [3]

and Chapter 4, and corresponds to a linear scaling of the hyperplane intensity

with dimension.

5.2.2 Zero cell

The following result (see Theorem 10.4.9 in [75]) states that for station-

ary Poisson hyperplane processes, isotropic hyperplanes minimize the expected

area of the zero cell over all spherical distributions. This result helps to justify

considering the class of isotropic Poisson hyperplanes to tessellate the space,

since cells of smaller volume may lead to a more efficient compression.

Theorem 5.2.1. Let X be a nondegenerate stationary Poisson hyperplane

75



process in Rn of intensity γ, and let Z0 be the zero cell of the induced hyperplane

tessellation. Then,

EVn(Z0) ≥ n!κn

(
nκn

2γκn−1

)n
,

with equality if and only if X is isotropic.

As mentioned in the introduction, a small volume is not sufficient to

ensure that two data points that have the same compression are close together.

This requires the cell the points are contained in to have small diameter, but

this is a difficult quantity to study. A related quantity is the radius of the

smallest ball centered at the origin that contains the cell C, i.e., the quantity

RM(C) = inf{r > 0 : C ⊂ B(r)}.

The distribution of RM(Z0) is described in [15]. It is based on the observation

that if RM ≥ r, then the sphere of radius r centered at the origin will not be

covered by the random arcs generated by the hyperplanes that compose the

faces of Z0, i.e., rSn−1 ∩ int(Z0) 6= ∅. Since the directional distribution of X is

just the Haar measure on Sn−1, the probability that RM ≥ r is the probability

that Sn−1 can be covered by a Poisson numberN of independent spherical caps,

with angular radii divided by π distributed as dν(θ) = π sin(πθ)1[0,1/2](θ)dθ.

Unfortunately, no explicit formula for this probability is known beyond dimen-

sion two.
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5.2.3 Palm Distribution

Throughout this paper, when the underlying data is assumed to be

discrete, it is modeled by a stationary Poisson point process N with intensity λ.

Since this is an unbounded collection of data, we need some way of examining

a typical data point and the cell of the tessellation that contains it. To do

this, we use the Palm probability measure of N as defined in Section 2.2.

5.3 Results

In this section, for each n, let Xn be a stationary and isotropic Pois-

son hyperplane process in Rn with intensity γn representing the compression

scheme (note that the Poisson assumption implies that the compression scheme

is characterized by the single parameter γn > 0, for all dimensions n). The zero

cell of the tessellation is denoted Z0,n and the typical cell is denoted Zn. In the

case where the underlying data is discrete, Nn is a stationary Poisson point

process with intensity λn lying in Rn and independent of Xn, representing the

data. The Palm probability of Nn is denoted by P0
n.

As explained in the introduction, the goal is to find the minimum in-

tensity γn needed to separate or minimize the distortion of the data Rn or Nn

with high probability according to various criteria listed there.
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5.3.1 Distance from typical data to nearest data compressed dif-
ferently

Given a typical data point, we first ask how far away the closest data

is that is compressed differently in any direction. When the data is all of Rn,

this is the distance to the nearest separating hyperplane in any direction. To

find the distribution of this distance, notice that if no hyperplane hits the ball

of radius r centered on the typical data, then this distance is greater than r.

This is the spherical contact distribution [75]:

Dn(r) := P
(
Xn

(
FBn(r)

)
= 0
)
.

Proposition 5.3.1. Assume γn → ∞ as n → ∞, for example γn ∼ ρnα as

n→∞ for any α > 0. Then, for fixed r > 0,

lim
n→∞

Dn(r) = 0.

Proof. By the fact that X is Poisson,

lim
n→∞

Dn(r) = lim
n→∞

P(Xn(FBn(r)) = 0) = lim
n→∞

e−Θn(FBn(r)) = lim
n→∞

e−2γnr = 0.

Another viewpoint to take is the distance to the nearest data com-

pressed differently from the center of a typical cell of the tessellation, where

the center is considered to be the center of the largest ball completely contained

in the cell. This is equivalent to asking for the distribution of the inradius of

the typical cell. Theorem 2.3.4 implies the following.
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Proposition 5.3.2. Assume γn → ∞ as n → ∞, for example γn ∼ ρnα for

any α > 0. Then, for fixed r > 0,

lim
n→∞

P(rin(Zn) > r) = 0.

5.3.2 Separation of two different data

The next criterion for separation is the probability that two different

data points, one obtained by some given transformation of the other, are com-

pressed differently, i.e., the probability that there is at least one hyperplane

separating them.

First, consider the case where the transformation is a random displace-

ment by an i.i.d. Gaussian with mean zero and variance σ2 per dimension.

Proposition 5.3.3. For each n, let Yn ∼ N(0, σ2In) be a Gaussian random

vector in Rn. Assume γn ∼ ρnα for some ρ > 0 as n→∞. Then,

lim
n→∞

P(Yn ∈ Z0,n) =


0, α > 0

e−
√

2
π
ρσ, α = 0

1, α < 0.

Proof. First, by the decomposition of the spherical Lebesgue measure (Equa-
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tion (1.41) in [64]), for all x ∈ Rn,

Θ(F[0,x]) = 2γn

∫
Sn−1

∫ ∞
0

1{H(u,t)∩[0,x] 6=0}dtσ(du)

= 2γn

∫
Sn−1

∫ ∞
0

1{0≤t≤〈x,u〉+}dtσ(du)

= 2γn

∫
Sn−1

〈x, u〉+σ(du) = 2γn|x|
∫
Sn−1

〈
x

|x|
, u

〉
+

σ(du)

= 2γn
κn−1

nκn
|x|, (5.1)

where a+ = max(a, 0). Then, since X is Poisson, by (5.1),

P(x ∈ Z0,n) = P
(
X
(
F[0,x]

)
= 0
)

= e−Θ(F[0,x]) = e−
2γnκn−1
nκn

|x|. (5.2)

By (5.2),

P(Yn ∈ Z0,n) = E [P(Yn ∈ Z0,n|Yn)] = E
[
e−

2γnκn−1
nκn

|Yn|
]
.

By the strong law of large numbers, |Yn|2/n→ σ2 a.s., and by (2.7), as n→∞,

2γκn−1

nκn
∼ 2ρnακn−1

nκn
∼ 2ρnα√

2πn
=

√
2

π
ρnα−

1
2 . (5.3)

Then, as n→∞,

2γnκn−1

nκn
|Yn| ∼

√
2

π
ρnα
|Yn|√
n
→
√

2

π
ρσnα, a.s.

Thus,

lim
n→∞

E
[
e−

2γnκn−1
nκn

|Yn|
]

=


0, α > 0

e−
√

2
π
ρσ, α = 0

1, α < 0.
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Next, consider the case where the displacement is uniformly chosen on

the sphere of fixed radius δ. By the fact that the tessellation is isotropic, this is

equivalent to looking at the linear contact distribution for any fixed direction

u ∈ Sn−1 at distance δ:

Lu(δ) := P
(
X
(
F[0,δu]

)
= 0
)
.

Proposition 5.3.4. For each n, let Yn,δ be a uniformly chosen random point

on the sphere of radius δ in Rn. Under the same assumptions as in Proposition

5.3.3,

lim
n→∞

P(Yn,δ ∈ Z0,n) =


0, α > 1

2

e−
√

2
π
ρδ, α = 1

2

1, α < 1
2
.

Proof. By (5.2),

P(Yn,δ ∈ Z0,n) = E
[
e−

2γnκn−1
nκn

|Yn,δ|
]

= e−
2γnκn−1
nκn

δ.

Then, by the asymptotic formula (5.3), as n→∞,

2γκn−1

nκn
δ ∼

√
2

π
ρnα−

1
2 δ.

By continuity, the conclusion holds.

Note that a scaling of γn greater than n
1
2 (resp. more than a constant)

is needed for this last separation criterion (resp. that of the Gaussian displace-

ment) to hold as dimension increases. This is less than what is needed for the

expected volume of Vn(Z0,n) to be small as seen in the next section. This in-

dicates that in high dimensions, most of the volume of the cell is concentrated

in a set of directions with very small measure.
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5.3.3 Volume of data compressed together

This section is focused on the asymptotic behavior as n goes to infinity

of the volume of the data that is compressed together in a cell of the tessella-

tion. The requirement that this volume tends to zero is a first low distortion

criterion. One viewpoint is to examine the volume of data in the cell contain-

ing a typical data point. When the data is all of Rn, this is the just the volume

of Z0,n. This quantity has been studied in [43] and [39]. The expected value is

E[Vn(Z0,n)] = n!κn

(
nκn

2γκn−1

)n
=

(
(n!κn)1/n nκn

2γκn−1

)n
. (5.4)

From [39], the following bounds on higher moments of Vn(Z0,n) are obtained:

Γ(n+ 1)κkn

(
nκn

2γκn−1

)kn
≤ E[Vn(Z0,n)k] ≤ Γ(kn+ 1)κkn

(
nκn

2γκn−1

)kn
. (5.5)

A corollary in [39] shows there exist constants c and C, not depending on n

or γ, such that

c
√
n

(
π

e

n

γ

(
1 +

1

n

)n
2

)2n

≤ Var[Vn(Z0,n)] ≤ C
√
n

(
π

e

n

γ

(
1 +

1

n

)n
2

)2n

.

(5.6)

The authors note that if γ scales with n in such a way that E[Vn(Z0,n)] = 1 for

all n, the lower bound implies that the variance of Vn(Z0,n) approaches infinity

as the dimension n increases, which contrasts with the behavior seen in the

typical cell of the Poisson-Voronoi tessellation, where the variance converges

to zero, see [2].

By the asymptotic formulas (2.7) and the above results, we obtain the

following limiting behavior as dimension goes to infinity.
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Proposition 5.3.5. Let γn ∼ ρn as n→∞ for some ρ > 0. Then,

lim
n→∞

1

n
lnE[Vn(Z0,n)] = − ln ρ+ ln π − 1

2
.

In addition,

lim
n→∞

E[Vn(Z0,n)] =

{
0, ρ > π√

e

∞, ρ < π√
e
.

Proof. By (2.7), as n→∞,

(n!κn)1/n nκn
2γκn−1

∼

(
√

2πn
(n
e

)n 1√
nπ

(
2πe

n

)n/2)1/n √
2πn

2γ

∼ n

e

√
2πe√
n

√
πn√
2γ

=
π√
e

n

γ
.

Thus, by (5.4), under the assumption γn ∼ ρn, we have the following limiting

behavior:

lim
n→∞

1

n
lnE[Vn(Z0,n)] = lim

n→∞
ln

[
(n!κn)1/n nκn

2γκn−1

]
= ln

π√
eρ

= − ln ρ+ ln π − 1

2
.

This implies the last statement.

Another viewpoint is to consider the volume of the typical cell Zn of

the tessellation. This measures the volume of a typical collection of data that

is compressed together.

Proposition 5.3.6. If γn ∼ ρn for some ρ > 0 as n→∞, then

lim
n→∞

1

n
lnE[Vn(Zn)] = − ln ρ− 1

2
.
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In addition,

lim
n→∞

E[Vn(Zn)] =

{
0, ρ > 1√

e

∞, ρ < 1√
e
.

Proof. By (2.5), the expected value of the volume is

E[Vn(Zn)] =
1

κn

(
nκn
γκn−1

)n
.

Then, by (2.7), as n→∞,

1

κ
1/n
n

nκn
γnκn−1

∼ (nπ)1/n
( n

2πe

)1/2
√

2πn

γn
∼ n

γn
√
e
.

Thus, assuming γn ∼ ρn as n→∞ for ρ > 0,

lim
n→∞

1

n
logE[V (Zn)] = − log ρ− 1

2
.

The right hand side is positive if ρ < e−1/2 and negative if ρ > e−1/2, which

implies the last statement of the proposition.

When the data set is (the support of) a stationary Poisson point pro-

cess, the volume of the zero cell has to be replaced by the number of points

of Nn that lie in Z0,n. A similar threshold exists for the expected amount of

data in Z0,n, but it depends on the intensity of Nn. This then implies that

for ρ big enough, the probability that there is another data point in the cell

of a typical data is small, meaning that with high probability, the cell of the

tessellation determines the data uniquely.

Proposition 5.3.7. For each n, assume Nn is a Poisson point process in Rn

with intensity λn = nn(α−1)enλ for some λ ∈ R and α ∈ R. Let γn ∼ ρnα as
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n→∞ for some ρ > 0. Then,

lim
n→∞

E0,!
n [Nn(Z0,n)] =

{
0, ρ > eλπ/

√
e

∞, ρ < eλπ/
√
e.

Thus, for ρ > eλπ√
e

,

lim
n→∞

P0
n(Nn(Z0,n) = 1)→ 1.

Proof. By Slivnyak’s theorem,

E0,!
n [Nn(Z0,n)] = E[Nn(Z0,n)] = E [E[Nn(Z0,n)|Z0,n]] = λnE[Vn(Z0,n)]. (5.7)

By the assumption on γn and (2.7),

2γnκn−1

nκn
∼
√

2ρ√
π
nα−

1
2 , as n→∞. (5.8)

Then, by (2.7) and (5.8), as n→∞,

1

n
logE[Vn(Z0,n)] ∼ log

(n
e

)
+

1

2
log

2πe

n
+log

√
π

√
2ρnα−

1
2

= (1−α) log n+log
π

ρ
√
e
.

By the assumption on λn and (5.7), as n→∞,

1

n
logE0,!

n [Nn(Z0,n)] ∼ λ+ log
π

ρ
√
e
. (5.9)

The threshold follows. Then, by Slivnyak’s theorem and Jensen’s inequality,

P0
n(Nn(Z0,n) = 1) = P(Nn(Z0,n) = 0) = E[e−λnVn(Z0,n)]

≥ e−λnE[Vn(Z0,n)] = e−E
0,!
n [Nn(Z0,n)].

Thus, for ρ > eλπ/
√
e,

lim
n→∞

P0
n(Nn(Z0,n) = 1) = 1.

85



5.3.4 Farthest distance between two data points compressed to-
gether

Another and more demanding low distortion criterion is that all the

data compressed together be close in Euclidean distance. Consider first the

case when the data is all of Rn. We want to find the scaling necessary for γn

to ensure that all data points in the zero cell are within some distance from

the typical data point at the origin. This is equivalent to showing that the

radius of the smallest ball centered at the origin that contains all of the zero

cell is small. As mentioned in Section 5.2.2, a closed form for the distribution

of this radius RM is only known in dimension two, but we can obtain bounds

that give the following asymptotic behavior.

Theorem 5.3.8. Assume γn ∼ ρnα as n→∞ and let R > 0. Then, there ex-

ist constants x` in the interval (0, 1) and xu in the interval (1,∞), independent

of R, such that for all ρ > ρu := xu
√
π

R
√

2
,

lim
n→∞

P(RM(Z0,n) ≥ n3/2−αR) = 0.

and for all ρ < ρ` := x`
√
π

R
√

2
,

lim
n→∞

P(RM(Z0,n) ≤ n3/2−αR) = 0.

Before proving the Theorem, we need the following. Define the beta

prime density with parameters n ∈ N and σ > 0 as follows:

fn,σ(x) = cn,σ

(
1 +
|x|2

σ2

)−n+1
2

for x ∈ Rn, with cn,σ =
Γ(n+1

2
)

σnπn/2Γ(1
2
)
.
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Let X1, . . . , Xm be i.i.d random vectors in Rn with density fn,σ and let P σ
m,n

denote the convex hull of these points. Also, define A := A(X1, ..., Xn) to be

the d−1 dimensional affine subspace containing the points X1, . . . , Xn, and let

h(A) be the signed distance from the origin to the subspace A. The following

lemma gives the probability that the points X1, . . . , Xn form a face of P σ
m,n.

Lemma 5.3.9.

P
(
[X1, . . . , Xn] is a facet in P σ

m,n such that |h(A)| ≤ r
)

=
2Γ(d+1

2
)

σΓ(d
2
)
√
π

∫ r

−r

(
1 +

t2

σ2

)−n+1
2

(
1

σπ

∫ t

−∞

(
1 +

s2

σ2

)−1

ds

)m−n

dt.

Proof. Let πA⊥ be the projection from Rn to the 1-dimensional subspace A⊥

and define the isometry IA⊥ : A⊥ 7→ R such that IA⊥(0) = 0.

By Lemma 3.1 in [46], if X has density fn,σ, then IA⊥(πA⊥(X)) has

density

f1,σ(s) =
1

σπ

(
1 +

s2

σ2

)−1

.

This was stated with σ = 1 in the reference, but if X has density fn,σ, then

X/σ has density f̃n,1, and the more general statement follows from a change

a variables, since IA⊥(πA⊥(X/σ)) = IA⊥(πA⊥(X))/σ.

Also, by Corollary 3.6 in [46], if X1, . . . Xn have the beta prime density

fn,1, then h2(A)/σ2 has density

g(t) =
Γ(n+1

2
)

Γ(n
2
)
√
π
t−

1
2 (1 + t)−(n+1

2
)1{t≥0}.

By a changes of variables,

P (|h(A)| ≤ r) =
2Γ(n+1

2
)

Γ(n
2
)
√
π

∫ r/σ

0

(1+y2)−
n+1
2 dy =

2Γ(n+1
2

)

σΓ(n
2
)
√
π

∫ r

0

(
1 +

t2

σ2

)−n+1
2

dt.
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Hence, the distribution of |h(A)| has density

h̃(t) =
2Γ(n+1

2
)

σΓ(n
2
)
√
π

(
1 +

t2

σ2

)−n+1
2

1{t≥0}.

Then, by the fact that [X1, . . . , Xn] is a facet of P σ
m,n if and only if IA⊥(πA⊥(Xi)) ≤

h(A) for all i = n+ 1, . . . ,m, or IA⊥(πA⊥(Xi)) ≥ h(A) for all i = n+ 1, . . . ,m.

This gives

P
(
[X1, . . . , Xn] is a facet in P σ

m,n such that |h(A)| ≤ r
)

=

∫ r

0

P
(

[X1, . . . , Xn] is a facet in P σ
m,n

∣∣∣∣ |h(A)| = t

)
h̃(t)dt

=

∫ r

0

(P (IA⊥(πA⊥(Xi)) ≤ t for each i = n+ 1, . . . ,m)

+ P (IA⊥(πA⊥(Xi)) ≥ t for each i = n+ 1, . . . ,m))h̃(t)dt

=

∫ r

0

(∫ t

−∞
f1,σ(s)ds

)m−n
h̃(t)dt+

∫ r

0

(∫ ∞
t

f̃1,σ(s)ds

)m−n
h̃(t)dt

=

∫ r

−r

(∫ t

−∞
f1,σ(s)ds

)m−n
h̃(t)dt,

where the last inequality follows from the fact that the densities are symmetric.

Hence,

P
(
[X1, . . . , Xn] is a facet in P σ

m,n such that |h(A)| ≤ r
)

=
2Γ(n+1

2
)

σΓ(n
2
)
√
π

∫ h

−h

(
1 +

t2

σ2

)−n+1
2

(
(σπ)−1

∫ t

−∞

(
1 +

s2

σ2

)−1

ds

)m−n

dt.

We can now prove Theorem 5.3.8.

Proof. (of Theorem 5.3.8)
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Let X be a random vector in Rn with density fn,σ. By a generalization

of Lemma 7.7 in [45], we have the vague convergence

mP(m−1X ∈ ·)→ ν(·), (5.10)

as m→∞, where ν is a measure on Rn\{0} with density

x 7→ 2σ

ωn+1

|x|−n−1. (5.11)

Let Πn(σ) be a Poisson point process on Rn\{0} with intensity measure

ν. Then, (5.10) implies the following generalization of (4.6) in [45]: Asm→∞,

m∑
i=1

δXi/m → Πn(σ) in distribution, (5.12)

where X1, . . . , Xm are i.i.d random vectors in Rn with density fn,σ. Now, let

P σ
m,n be the convex hull of X1, . . . , Xm. The convergence (5.12) implies that

lim
m→∞

E[# of faces within distance mh in P σ
m,n]

= E[# of faces within distance h in C(Πn(σ))],

with C(P ) denoting the convex hull of the points in set P . Now, by the same

argument as in the proof of Theorem 1.21 of [46], the convex dual of C(Πn(σ))

has the same distribution as the zero cell Z0,n of a stationary and isotropic

hyperplane tessellation with intensity γn = σωn
ωn+1

. Hence, the distances to the

facets of the convex hull of Πn(σ) are the reciprocal of the distances to the
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vertices of Z0,n. This gives

E[# of vertices at distance greater than r in Z0,n]

= E[# of facets at distance less than r−1 in C(Πn(σ))]

= lim
m→∞

E[# of facets at distance less than mr−1 in P σ
m,n]

= lim
m→∞

(
m

n

)
P
(
[X1, . . . , Xn] is a facet of P σ

m,n such that |h(A)| ≤ mr−1
)

= lim
m→∞

(
m

n

)
2Γ(n+1

2
)

√
πΓ(n

2
)

∫ m/r

−m/r

(
1 +

t2

σ2

)−n+1
2

(
1

πσ

∫ t

−∞

(
1 +

s2

σ2

)−1

ds

)m−n

dt,

where the last equality follows from Lemma 5.3.9. By the same arguments as

in Lemma 4.9 in [46], as m→∞,∫ m/r

−m/r

(
1 +

t2

σ2

)−n+1
2

(
1

πσ

∫ t

−∞

(
1 +

s2

σ2

)−1

ds

)m−n

dt

∼ m−nσπnΓ(n)Γu
(
n, π−1σr

)
.

Then, since
(
m
n

)
∼ mn

n!
as m→∞,(

m

n

)
2Γ(n+1

2
)

σ
√
πΓ(n

2
)

∫ m/r

−m/r
(1 + t2)−

n+1
2

(
c̃1,n+1

2

∫ t

−∞
(1 + s2)−1ds

)m−n
dt

∼ 2

n

Γ(n+1
2

)πn
√
πΓ(n

2
)

Γu
(
n, σπ−1r

)
= πn−

1
2

Γ(n+1
2

)

Γ(n
2

+ 1)
Γu
(
n, σπ−1r

)
.

Let γn = σωn
ωn+1

, i.e., let σ = γn
ωn+1

ωn
. Then,

E[# of vertices farther than r in Z0,n] =
Γ(n+1

2
)πn

√
πΓ(n

2
+ 1)

Γu

(
n, γn

ωn+1

πωn
r

)
.

Similar computations give

E[# of vertices closer than r in Z0,n] =
Γ(n+1

2
)πn

√
πΓ(n

2
+ 1)

Γ`

(
n, γn

ωn+1

πωn
r

)
.
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Now, by Markov’s inequality,

P(RM(Z0,n) ≥ n3/2−αR) = P(# of vertices farther than n3/2−αR in Z0,n > 0)

≤ E[# of vertices farther than n3/2−αR in Z0,n]

=
Γ(n+1

2
)πn

√
πΓ(n

2
+ 1)

Γu

(
n, γn

ωn+1

πωn
n3/2−αR

)
.

Also,

P(RM(Z0,n) ≤ n3/2−αR) ≤ P(# of vertices closer than n3/2−αR in Z0,n > 0)

≤ E[# of vertices closer than n3/2−αR in Z0,n]

=
Γ(n+1

2
)πn

√
πΓ(n

2
+ 1)

Γ`

(
n, γn

ωn+1

πωn
n3/2−αR

)
.

By the assumption on γn and (2.6), as n→∞,

γn
ωn+1

πωn
n3/2−αR ∼ ρnα

2π
n+1
2 Γ(n/2)

πΓ(n+1
2

)2πn/2
n3/2−αR ∼ ρn3/2

(
2

πn

)1/2

R =
ρR
√

2√
π
n.

Then, by Laplace’s method (see Lemma A.2 in [66]), for ρ >
√
π

R
√

2
,

lim
n→∞

1

n
ln Γu

(
n, γn

ωn+1

πωn
n3/2−αR

)
= ln

ρR
√

2√
π
− ρR

√
2√

π
+ 1.

and similarly, for ρ <
√
π

R
√

2
,

lim
n→∞

1

n
ln Γ`

(
n, γn

ωn+1

πωn
n3/2−αR

)
= ln

ρR
√

2√
π
− ρR

√
2√

π
+ 1.

Since
Γ(n+1

2
)√

πΓ(n
2

+1)
= O(n−1/2), for ρ >

√
π

R
√

2
,

lim
n→∞

1

n
lnP(RM(Z0,n) ≥ n3/2−αR) ≤ ln ρR

√
2π − ρR

√
2√

π
+ 1,
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and for ρ <
√
π

R
√

2
,

lim
n→∞

1

n
lnP(RM(Z0,n) ≤ n3/2−αR) ≤ ln ρR

√
2π − ρR

√
2√

π
+ 1,

The function lnπ + lnx− x+ 1 is concave, and has two zeros, one 0 < x` < 1

and one where xu > 1. These zeros determine the values of

ρ` := x`

√
π

R
√

2
and ρu := xu

√
π

R
√

2
,

respectively.

Next consider the case where the underlying data is a Poisson point

process, and more precisely the regime where the expected number of points in

the zero cell goes to infinity. Theorem 5.3.10 below gives a sufficient condition

for all points of the point process which are contained in the zero cell (the cell

of the typical data) to be within distance Rn from the point at the origin (the

typical data). The result also shows that the same scaling that is sufficient for

the criterion to be satisfied is also necessary.

Theorem 5.3.10. Consider the setting of the Proposition 5.3.7, with λ fixed,

and assume that ρ < ρ∗ := eλπ√
e

.

(i) If R >
√
e

eλ
√

2π
, then

√
π

R
√

2
< ρ∗ and for all ρ in the interval (

√
π

R
√

2
, ρ∗),

lim sup
n→∞

1

n
logP0

n

(
max

xi∈Nn∩Z0,n

|xi| ≥ Rn
3
2
−α
∣∣∣∣Nn(Z0,n) > 0

)
≤ λ+

1

2
log 2πe+ logR−

√
2ρR√
π

+ log 4.
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(ii) Let

a(R, λ) = max

((
λ+

1

2
log 2πe+ logR + log 4

)
, 1

)
≥ 1.

If R is such that ρu :=
√
π

R
√

2
a(R, λ) < ρ∗, which holds for R large enough,

then for all ρ in the interval (ρu, ρ
∗),

lim
n→∞

P0
n

(
max

xi∈Nn∩Z0

|xi| ≥ Rn
3
2
−α
∣∣∣∣Nn(Z0,n) > 0

)
= 0, (5.13)

where the convergence is at least exponential of rate λ + 1
2

log 32πeR2 −
√

2ρR√
π
< 0.

(iii) For all ρ < min
( √

π

R
√

2
, ρ∗
)

,

lim sup
n→∞

1

n
logP0

n

(
max

xi∈Nn∩Z0,n

|xi| ≤ n
3
2
−αR

∣∣∣∣Nn(Z0,n) > 0

)
≤ λ+

1

2
log 2πe+ logR−

√
2ρR√
π

+ log 4.

(iv) If R < (4eλ
√

2πe)−1, then for all ρ in
(

0,min
( √

π

R
√

2
, ρ∗
))

,

lim
n→∞

P0
n

(
max

xi∈Nn∩Z0

|xi| ≤ n
3
2
−αR

∣∣∣∣Nn(Z0,n) > 0

)
= 0, (5.14)

where the convergence is at least exponential of rate λ + 1
2

log 32πeR2 −
√

2ρR√
π
< 0.
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Proof. First, by (5.2) and two changes of variable,

E[Nn(Z0,n ∩Bn(R)c)] = λnE[Vn(Z0,n ∩Bn(R)c)]

= λn

∫
Bn(R)c

P(x ∈ Z0,n)dx =

∫
Bn(R)c

e−
2γnκn−1
nκn

|x|dx

= λnnκn

∫ ∞
R

rn−1e−
2γnκn−1
nκn

rdr

= nκn

(
2γnκn−1

nκn

)−n ∫ ∞
2γnκn−1
nκn

R

yn−1e−ydy

= λnn!κn

(
2γnκn−1

nκn

)−n
Γu

(
n,

2γnκn−1

nκn
R

)
= λnE[Vn(Z0,n)]Γu

(
n,

2γnκn−1

nκn
R

)
= E[Nn(Z0,n)]Γu

(
n,

2γnκn−1

nκn
R

)
,

and similarly,

E[Nn(Z0,n ∩Bn(R))] = E[Nn(Z0,n)]Γ`

(
n,

2γnκn−1

nκn
R

)
.

By Laplace’s method (see Lemma A.2 in [66]) and (5.8), if
√

2ρR√
π
> 1,

lim
n→∞

1

n
ln Γu

(
n,

2γnκn−1

nκn
n

3
2
−αR

)
= log

√
2ρR√
π
−
√

2ρR√
π

+ 1,

and the limit is 1 otherwise. Then, by (5.9),

lim
n→∞

1

n
lnE[Nn(Z0,n ∩Bn(n

3
2
−αR)c)] =

{
λ+ ln

√
2πeR−

√
2ρR√
π
,
√

2ρR√
π
> 1

λ+ ln π
ρ
√
e
,

√
2ρR√
π
< 1.

(5.15)

Similarly,

lim
n→∞

1

n
lnE[Nn(Z0,n ∩Bn(n

3
2
−αR))] =

{
λ+ ln

√
2πeR−

√
2ρR√
π
,
√

2ρR√
π
< 1

λ+ ln π
ρ
√
e
,

√
2ρR√
π
> 1.

(5.16)
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Next, by the fact that Nn is Poisson,

E[Nn(Z0,n)2] = E[E[Nn(Z0,n)2|Z0,n]] = λ2
nE[Vn(Z0,n)2] + λnE[Vn(Z0,n)],

and by the second moment inequality, we have

P(Nn(Z0,n) > 0) ≥ E[Nn(Z0,n)]2

E[Nn(Z0,n)2]
=

λ2
nE[Vn(Z0,n)]2

λ2
nE[Vn(Z0,n)2] + λnE[Vn(Z0,n)]

=
E[Vn(Z0,n)]2

E[Vn(Z0,n)2]

 1

1 + λnE[Vn(Z0,n)]

λ2nE[Vn(Z0,n)2]

 . (5.17)

Then, by Jensen’s inequality,

λnE[Vn(Z0,n)]

λ2
nE[Vn(Z0,n)2]

≤ λnE[Vn(Z0,n)]

λ2
nE[Vn(Z0,n)]2

=
1

λnE[Vn(Z0,n)]
,

and by the assumption on ρ, limn→∞ λnE[Vn(Z0,n)] =∞ by Proposition 5.3.7,

and so

lim
n→∞

λnE[Vn(Z0,n)]

λ2
nE[Vn(Z0,n)2]

= 0.

Then, by (5.4) and (5.5), as n→∞,

P(Nn(Z0,n) > 0) &
E[Vn(Z0,n)]2

E[Vn(Z0,n)2]
∼ Γ(n+ 1)2

Γ(2n+ 1)
.

Now, by Markov’s inequality and (5.17),

P0
n

(
max

xi∈Z0,n∩Nn
|xi| ≥ n

3
2
−αR

∣∣∣∣Nn(Z0,n) > 0

)
= P0,!

n

(
Nn(Z0,n ∩Bn(n

3
2
−αR)c) > 0

∣∣∣∣Nn(Z0,n) > 0

)

=
P0,!
n

(
Nn(Z0,n ∩Bn(n

3
2
−αR)c) > 0

)
P0,!
n (Nn(Z0,n) > 0)

. E[Nn(Z0,n ∩Bn(n
3
2
−αR)c)]

Γ(2n+ 1)

Γ(n+ 1)2
.
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Thus, by (2.7) and (5.15), for ρ >
√
π

R
√

2
,

lim sup
n→∞

1

n
lnP0

n

(
max

xi∈Nn∩Z0,n

|xi| ≥ R

∣∣∣∣Nn(Z0,n) > 0

)
≤ λ+

1

2
log 2πe+ logR−

√
2ρR√
π

+ log 4.

Thus, for all ρ > ρu := max{
√
π

R
√

2
,
√
π

R
√

2
(λ+ 1

2
log 2πe+ logR + log 4)},

lim
n→∞

P0
n

(
max

xi∈Nn∩Z0,n

|xi| ≥ R

∣∣∣∣Nn(Z0,n) > 0

)
= 0.

This completes the proofs of (i) and (ii).

Now, again by Markov’s inequality and (5.17),

P0
n

(
max

xi∈Nn∩Z0,n

|xi| ≤ n
3
2
−αR

∣∣∣∣Nn(Z0,n) > 0

)
. E[Nn(Z0,n ∩Bn(n

3
2
−αR))]

Γ(2n+ 1)

Γ(n+ 1)2
.

By (2.7) and (5.16), for ρ <
√
π

R
√

2
,

lim sup
n→∞

1

n
logP0

n

(
max

xi∈Nn∩Z0,n

|xi| ≤ n
3
2
−αR

∣∣∣∣Nn(Z0,n) > 0

)
≤ λ+

1

2
log 2πe+ logR−

√
2ρR√
π

+ log 4.

Thus, if R < (4eλ
√

2π)−1 then for all ρ <
√
π

R
√

2
,

lim
n→∞

P0
n

(
max

xi∈Nn∩Z0,n

|xi| ≤ n
3
2
−αR

∣∣∣∣Nn(Z0,n) > 0

)
= 0.

This completes the proofs of (iii) and (iv).

Remark 5.3.1. To separate data more efficiently, we would ideally like to as-

sume a relationship between λn and γn such that the cells of the tessellation
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contain more than one point with high probability. The assumption that

limn→∞ E0,!
n [Nn(Z0,n)] = ∞ does not ensure that limn→∞ P0

n(Nn(Z0,n) > 1) =

1, however. The second moment method does not help, since this lower bound

goes to zero as n goes to infinity for all λn, and thus it remains an open question

what scaling of λn and γn is needed to ensure limn→∞ P0
n(Nn(Z0,n) > 1) = 1.

5.4 Summary

Our results can be summarized in terms of phenomena that succes-

sively take place when increasing ρ for a given α and incrementing α, when

parameterizing the intensity of hyperplanes as ρnα. As soon as α is positive,

one finds a data arbitrarily close and encoded differently w.h.p. In addition,

a displacement of order
√
n in a random direction leads to an encoding which

is different w.h.p. When moving to α > 1
2
, a displacement of order one in a

random direction leads to an encoding which is different w.h.p. Further phe-

nomena start appearing when α = 1 (Shannon regime). When increasing ρ,

one first gets a small volume for the typical cell, and then for the zero cell

w.h.p. At this scale, one can also control distortion, namely the fact that the

most distant data point encoded like the typical data is at distance at most
√
nR w.h.p. by a proper choice of ρ with ρ arbitrarily small as R grows. A

new phenomenon appears at α = 3
2

where a sufficiently large ρ guarantees

that the most distant data point encoded like the typical data is at distance

at most R w.h.p. The following table illustrates how and when this collection

of phenomena take place when increasing α and ρ .
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Table 5.1: Labels for different separation and distortion criteria
Measure of good separation/low distortion Label
P(Xn(FBn(r)) = 0) A
P(Yn ∈ Z0,n) (Gaussian displ.) B
P(Yn,δ ∈ Z0,n) (Displ. at dist. δ) C
E[Vn(Z)] D
E[Vn(Z0,n)] E
P(RM(Z0,n) > r) F

Table 5.2: Limit of separation and distortion metrics as n → ∞ for different
values of α and ρ when γn ∼ ρnα.

α = 0 α ∈ (0, 1
2
) α = 1

2
α ∈ (1

2
, 1)

ρ > 0 ρ > 0 ρ > 0 ρ > 0
A e−ρr 0 0 0

B e−
√

2
π
ρσ 0 0 0

C 1 1 e−
√

2
π
ρδ 0

D ∞ ∞ ∞ ∞
E ∞ ∞ ∞ ∞
F 1 1 1 1

α = 1 α ∈ (1, 3
2
) α = 3

2

ρ = 1√
e
ρ = π√

e
ρ > 0 ρ` ρu

A 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0
D ∞ 0 0 0 0 0 0
E ∞ ∞ 0 0 0 0 0
F 1 1 1 1 1 open 0

Remark 5.4.1. In Table 5.2, the only distortion measure which was included

is P(RM(Z0,n) > r), but as mentioned, we could also consider P(RM(Z0,n) >
√
nr), which follows the information theoretic Shannon regime discussed later
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in Section 5.6.2. In this case the threshold above which this probability is

small in high dimensions is for α = 1 and ρ > ρu, and by Remark 5.2.1, this is

the scaling at which the centroids of the cells have intensity growing like enλ

with dimension n for some λ ∈ R.

5.5 Dimension Reduction

If it is known beforehand that the data lie in a lower dimensional sub-

space of Rn, then the number of random hyperplanes needed to encode it may

be much less than was evaluated above. If the subspace is known, we can

tessellate the subspace directly. But if only the dimension of the subspace

known, then we can model the subspace containing the data as a uniform

random subspace in Rn independent of Xn. Let L be a random subspace in

Rn of dimension m(n), independent of the hyperplane tessellation X. If we

assume that the data all lie in L, then instead of considering the zero cell Z0

of X in Rn, we can consider the zero cell Z
(L)
0 of the tessellation induced by

the intersection of X with L. By radial symmetry, we can just consider a

fixed subspace L. It is known that X ∩L is a Poisson hyperplane process with

intensity measure

ΘL(·) = γm

∫
SL

∫
R

1{tu+ (u⊥ ∩ L) ∈ ·}dtσm−1(du),

where γm = ωmωn+1

ωnωm+1
γ. In [39], the authors showed that

E[Vm(Z0 ∩ L)] = Γ(m+ 1)κm

(
πωn

γnωn+1

)m
, (5.18)
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and established the following results on higher moments:

Γ(m+ 1)kκkm

(
πωn

γnωn+1

)km
≤ E[Vm(Z0 ∩ L)k] ≤ Γ(2m+ 1)κkm

(
πωn

γnωn+1

)2m

.

(5.19)

Proposition 5.3.5 can be extended to this case:

Proposition 5.5.1. Let Ln be a random subspace of Rn with dimension mn <

n such that mn →∞ as n→∞. Let Xn be a stationary and isotropic Poisson

hyperplane process in Rn with intensity γn. Then, if γn ∼ ρ
√
mnn for some

fixed ρ > 0,

lim
n→∞

E[Vmn(Z0,n ∩ Ln)] =

{
0, ρ > π√

e

1, ρ < π√
e
.

Similarly, Theorem 5.3.8 can be extended to:

Proposition 5.5.2. Let Ln be a random subspace of Rn with dimension mn <

n such that mn → ∞ as n → ∞. Let Xn be a stationary and isotropic

Poisson hyperplane process in Rn with intensity γn, and let R > 0 Then, if

γn ∼ ρnα−1mn as n→∞, then there exists ρu such that for all ρ > ρu,

lim
n→∞

P
(
RM(Z0,n ∩ Ln) ≥ n

3
2
−αR

)
= 0,

and there exists ρ` such that for all ρ < ρ`,

lim
n→∞

P
(
RM(Z0,n ∩ Ln) ≤ n

3
2
−αR

)
= 0.
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5.6 Comments

5.6.1 One-Bit Compressed Sensing Comments

In this paper, the compression of the data can be considered as a se-

quence of one-bit measurements, where each bit gives the side of a random

hyperplane the data lies on. This is the paradigm of one-bit compressed sens-

ing, and the aim of this section is to further connect this theory with the

results in this paper.

Traditional compressed sensing is concerned with recovering a signal

x ∈ Rn from a measurement vector y = Ax ∈ Rm, where A is some m × n

measurement matrix (m ≤ n). The goal is to find the smallest m such that

the signal x can be recovered from y. If m is less than n, this problem is

ill-posed. However, Tao and Candes [19] showed that under the assumption

that x is s-sparse, i.e. |supp(x)| ≤ s, x can be recovered from y = Ax, where

A is Gaussian matrix, with m = O
(
s log n

s

)
measurements.

In general the measurement vector in this set-up requires infinite bit

precision. One-bit compressed sensing was introduced by Baraniuk and Boufounos

in [13] and aims to recover x from the most severely quantized measurements

possible: y = sign(Ax). This contains just one-bit per measurement. Note

that taking these measurements loses all information regarding the norm of x,

so we can only hope to recover x/|x|. The goal is then to find a x∗ ∈ Sn−1

such that |x/|x| − x∗| < δ for some error δ. To reconstruct the signal from

m measurements, Plan and Vershynin showed that one can solve the convex
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optimization

min ‖x‖1 subject to sign(Ax) ≡ y and ‖Ax‖1 = m, (5.20)

where A is a m × n matrix with i.i.d. standard Gaussian entries, see Theo-

rem 1.1 in [69]. The original signal is recovered with small error if it can be

guaranteed that the reconstructed signal is close in Euclidean distance to the

original signal with high probability. Plan and Vershynin showed this error

guarantee specifically for sparse or almost sparse signals using the following

two results. First, they showed that if the original signal is effectively sparse

(see Remark 1 in [69]), the signal returned from the optimization (5.20) will

also be effectively sparse. Second they use the fact that there is a tessella-

tion of the signal space Sn−1 ∩ Σs, where Σs := {s − sparse signals}, with

m = O(s log2(n/s)) hyperplanes where all cells in the tessellation will have

diameter at most δ, i.e., all sparse signals within a cell of the tessellation will

be with δ-distance apart from eachother. Thus, the recovered signal will be

within distance δ of the original signal with high probability. In fact, they

showed a more general result in [70] that, for a subset K ⊆ Sn−1, all cells of

a tessellation with m ≥ Cδ−6ω(K)2 hyperplanes will have diameter at most δ

with probability as least 1− 3e−cδ
4m, where ω(K) is the Gaussian mean width

of the set K.

Some recent work has shown that the same geometric techniques can

be used to recover a signal x, both direction and magnitude, if it is known

that |x| ≤ R < ∞. Instead of linear hyperplanes tessellating K ⊂ Sn−1,
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consider a bounded set K ⊂ Rn and tessellate it with affine hyperplanes with

normal vectors ai and translations from the origin ti. It was shown in [7] that

a s-sparse signal x with |x| ≤ R can be recovered with measurements of the

form

yi = sign(〈ai, x〉 − ti), i = 1, ...,m, (5.21)

where t1, ..., tm ∼ N(0, R2) are independent of a1, ..., am. It is proved that the

following program recovers the signal with small error:

argmin‖z‖1 subject to |z| ≤ R and yi(〈ai, z〉 − ti) ≥ 0, ∀i = 1, ...,m.
(5.22)

More specifically, Theorem 2 in [7] states that with probability at least 1 −

3 exp(−cδ4m), the following holds for all x ∈ Bn(R) ∩ Σs: For n ≥ 2m and

m ≥ Cδ−4s log(n/s), and for y obtained from the measurement model (5.21),

the solution x∗ to the program (5.22) satisfies |x− x∗| ≤ δR.

Also, Knudson et al. [48] showed that if t is a Gaussian vector with

variance depending on R, x can be recovered if |x| ≤ R by lifting to one

dimension higher and using the program (5.20). They also showed you can

estimate the magnitude (but not direction) of a signal x in an annulus r ≤

|x| ≤ R up to error δ with m & R4r−2δ−2 measurements from evaluating the

inverse Gaussian error function.

If we remove the norm constraint on the signal, one can use a stationary

and isotropic hyperplane tessellation to obtain an infinite sequence of one-

bit measurements encoding the signal. Instead of minimizing the number of
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hyperplanes, the intensity of hyperplanes is minimized, as done throughout

this paper for the various separation/distortion metrics. The encoding scheme

corresponding to a stationary and isotropic Poisson hyperplane tessellation

is given as follows. Letting {ui}i∈Z be an i.i.d sequence of normal Gaussian

random vectors in Rn, and {ti}i∈Z be the support of a Poisson point process

of intensity γ in R, then the encoding is given by the one-bit measurements

yi = sign (〈ui/|ui|, x〉 − ti) , i ∈ Z.

The collection of hyperplanes {H(ui, ti)}i∈Z tessellates all of Rn and forms a

stationary and isotropic Poisson hyperplane process with intensity γ, and all

data within a single cell of the tessellation have the same encoding. The results

in the paper provide an analysis of the quality of the compression, in terms

of theoretical error bounds on the separation of a typical signal from other

signals or the distortion of a typical signal. These are based on some metric

of the cell that a typical signal lies in, i.e., the zero cell by stationarity.

The paradigm of one-bit compressed sensing requires the ability to

recover the original data given only its one-bit encoding. Given an encoding,

if one can identify a member of the cell corresponding to this sequence of bits,

one can use this as an approximation of the original data.

The convex optimization recovery technique used in the literature for

the constrained norm case will return a signal x∗ that is one of the vertices of

the cell, and knowing that all cells have small diameters ensures that recovered

signal is close the original. The analogous strategy for the Poisson hyperplane
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compression requires showing that the vertex of the zero cell that is furthest

from the origin is close in Euclidean distance, and thus the measure of distor-

tion needed to ensure signal recovery through this convex optimization strategy

is Theorem 5.3.8. To ensure that the farthest vertex of the cell containing the

original signal is within error distance δ the intensity of hyperplanes γn must

be on the order of n3/2.

An alternative method for reconstruction that returns a point of the cell

more likely to be close to the typical signal would provide a more efficient com-

pression. For example, if the reconstruction returns a uniformly distributed

signal in the cell determined by the measurements using, for instance, the

algorithm for finding an approximate uniform random point in a convex set

in [24], this could be guaranteed to be close to the original signal with high

probability using results from [66].

As seen later, a deterministic grid actually performs better than the

isotropic Poisson hyperplane tessellation in the full dimensional case in the

sense that a smaller constant ρ is needed to ensure that the furthest vertex,

or a uniform random vector in the cell, is close with high probability. How-

ever, if the data is sparse, or somehow lower-dimensional, this may make the

isotropic case more desirable. In the case of a deterministic grid, only in the

best case scenario will the intersection of the tessellation with a random m-

dimensional subspace be a m-dimensional grid. However, in the isotropic case,

the intersection will always have the distribution of a m-dimensional isotropic

hyperplane tessellation. A more complete analysis of the case of sparse and
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lower dimensional data is left for future work.

5.6.2 Information Theoretic Comments

The aim of this section is to connect the results of the present paper to

classical information theory.

5.6.2.1 Channel Coding

Consider first channel coding. The additive noise channel features the

transmission of codewords in Rn (n is referred to the block-length of the code)

through a noisy channel. The white Gaussian noise special case is of the

same nature as that considered in Proposition 5.3.3: each coordinate of a

transmitted codeword is additively blurred by an independent N(0, σ2) random

variable.

In the viewpoint introduced by Poltyrev [71], the codebook is a station-

ary point process in Rn (e.g., a Poisson point process in the random coding

case) and the decoding scheme consists in saying that the codeword c was

transmitted if the received message is in the Voronoi cell of c. The latter is

the maximal likelihood decoder. In the regime where the point process has

intensity enρ for some ρ ∈ R, there is a threshold for ρ below which the correct

codeword is decoded with a probability tending to one as n tends to infinity,

and above which the probability of error tends to 1 as n tends to infinity.

In Shannon’s channel coding theory, the codewords are constrained to satisfy

some power constraint requiring that the Euclidean norm of a codeword be less
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than or equal to
√
nP , for some P which is the power per symbol. As shown

in [3] (Lemma 2 and Theorem 7), the Poltyrev viewpoint can be connected

to Shannon’s channel coding theorem in the high signal to noise ratio case,

namely when P tends to infinity. In particular the Shannon capacity then

grows like 1
2

log(2πeP ) when P → ∞, and the Poltyrev capacity is what one

gets asymptotically when subtracting 1
2

log(2πeP ) from the Shannon capacity.

5.6.2.2 Loss-less One-bit Compression Source Coding

Consider now source coding, which is more directly related to the set-

ting considered in the present paper. Consider a source with i.i.d. N(0, σ2)

symbols. If there are n such symbols, with n (also called block-length) large,

they lie in a ball of radius
√
nσ2, which has volume about en

1
2

log(2πeσ2). If one

wants to represent in a loss-less way all typical sequences of this type by 2βn

binary compression sequences, namely all binary sequences of length βn, the

volume per sequence should tend to 0. That is

en
1
2

log(2πeσ2)e−βn log(2)

should go to 0 when n tends to infinity. This shows that the best (smallest)

compression rate β for such a signal is βc = 1
2

log(2πeσ2)/ log(2). This is

sharp and generalizes to all sources with a well defined entropy rate. This is

formalized in the source coding theorem.

In our case, we have no structure in the signal, which corresponds to

letting σ2 tend to ∞. The unconstrained setting developed in the present
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paper can hence be seen as an analogue of the Poltyrev regime for source

coding. In addition, we focus on a specific coding scheme which is that of

Poisson hyperplanes one-bit compression.

Before going down this path, let us discuss some questions related to

coding in this one-bit compressive setting. (1) What is the codebook? A first

natural answer consists in associating one codeword sampled at random to each

cell, with the uniform sampling taking place in a conditionally independent

way given the hyperplane tessellation. Another possibility is the center of the

smallest ball containing the zero cell (the out-ball). A third one is the center

of the largest ball contained in the zero cell (the in-ball). (2) What is the

decoding algorithm? By this, we mean the way to retrieve the codeword, as

defined above, from the sequence of bits characterizing the cell as described in

Section 5.6.1.

For unconstrained one-bit data compression, the analogue of the Shan-

non threshold βc is the density γn = ρnα of hyperplanes that separates the

situations where the mean volume of the typical cell tends to 0 and infinity,

respectively. As shown above, this critical density lies in the Shannon regime,

namely for α = 1. More precisely, if γn = ρn, with ρ < ρc = 1√
e
, then this

mean volume tends to infinity, whereas if ρ > ρc, then it tends to 0. In other

words, for one-bit compressive sensing based on Poisson isotropic hyperplanes,

the Palm-Shannon-Poltyrev source coding rate is αc = 1 and ρc = 1√
e
. The

proposed name comes from the fact that one looks at the typical cell, with

typicality defined in the Palm sense (e.g., with respect to the point process of
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centers of the out-balls). The threshold that separates the situations where the

mean volume of zero cell tends to 0 and infinity, respectively, could be called

the Feller-Shannon-Poltyrev threshold and is obtained for a density of hyper-

planes with αc = 1 and ρc = π√
e
. The proposed name comes from “Feller’s

paradox” which states that the interval of a stationary point process on R

containing the origin is larger than the typical interval. The Feller-Shannon-

Poltyrev rate is of the same order as the Palm-Shannon-Poltyrev one, but π

times larger.

5.6.2.3 Lossy One-bit Compression Source Coding

In the classical lossy source coding case, one looks for a codebook such

that the distortion between a signal and its encoding be less than or equal to

D. The most common distortion constraint is that the signal be at Euclidean

distance order less than or equal to
√
nD from the sequence it is encoded

by. The rate-distortion function then specifies what is the best coding rate

ensuring this constraint.

The framework discussed in the present paper can be seen as some

Poltyrev version of lossy source coding with codebooks corresponding to one-

bit data compression. As for the loss-less case, the first dichotomy is whether

one takes the Palm viewpoint of the typical codeword or the Feller viewpoint of

the typical data point. The cell of the former is Z, whereas that containing the

latter is Z0. Let us first discuss the equivalent of the classical distortion defined

above in the Palm case. If the codewords are the centers of the out-balls, then
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a natural definition of Palm distortion is in terms of the radius of the out-ball

of the typical cell. For instance, in this case, the rate-distortion function would

give the smallest intensity of hyperplanes γn = ρnα such that this radius is

less than or equal to
√
nR, as a function of R. This Palm-Shannon-Poltyrev

out-ball rate-distortion function is not known to the best of our knowledge.

However, the Feller version of this problem is precisely solved by Theorems

5.3.10 and 5.3.8. For instance, in the case of Theorem 5.3.8, the parameters

in question are α = 1 and ρu(R) = xu
√
π

R
√

2
, with xu the constant defined in

the proof of the theorem. Hence the function R → nρu(R) can be seen as

the rate-distortion function for this version of the problem. Note that for this

definition of distortion, lossy coding with a radius R large enough requires a

smaller hyperplane intensity than that guaranteeing the Palm volume to go to

zero (which can be seen as an analogue of loss-less coding): the exponent is

the same, namely α = 1, but the multiplicative constant ρ(u) goes to 0 as R

tends to infinity. As expected, relaxing the distortion constraint allows one to

use smaller codes.

The paper also determines various other rate-separation functions of the

Feller type. A first instance is the Feller-Shannon-Poltyrev in-ball function,

which gives the smallest hyperplane intensity such that the closest data point

not encoded in the same way as the origin lies at a distance at least δ. This

last condition is equivalent to having the radius of the largest ball centered at

the origin and contained in the zero cell being larger than or equal to δ. By the

same arguments as in Proposition 5.3.1, the associated threshold is αc = 0.
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If γn = ρ, the probability that this distance is at least δ is exp(−2ρδ). A

second example is the Feller-Shannon-Poltyrev linear contact function, which

gives the smallest hyperplane intensity such that the closest data point in some

random direction and not encoded as the origin is at distance more than
√
nD.

By the arguments of Proposition 5.3.2, the threshold is again αc = 0 and if

γn = ρ, the probability that this distance is at least
√
nD is exp(−

√
2√
π
ρD).

5.6.3 Why Isotropic Poisson Hyperplanes

We discuss here some mathematical reasons justifying the framework

proposed here for a one-bit compression based on Poisson isotropic hyper-

planes. Other natural options in the Poisson hyperplane framework are Pois-

son Manhattan hyperplanes, where all hyperplanes are orthogonal to the or-

thonormal basis of Rn. An even simpler hyperplane system is the square one

(referred to as the deterministic grid below). The following tables summarize

the results available on basic quantities related to these tessellations, when the

distance to the nearest hyperplane is the same in expectation. The results are

proved at the end of the section.

For all criteria in Table 5.3, the Poisson isotropic setting outperforms

the two other options. For the expected volume of the zero cell (first column),

the isotropic Poisson tessellation is the best, i.e., has the smallest expected

volume. This fact is the main justification of the use of this Poisson isotropic

structure in the context of one-bit compression: this allows the code with the

smallest volume of data encoded as the typical data, among all three options.
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Table 5.3: Comparison of quantities for different tessellations with intensity γ
in Rn.

Type of tessellation E[V (Z0)] E[V (Z)] P(x /∈ Z0)

Deterministic Grid
(

2n
γ

)n (
2n
γ

)n
1{‖x‖∞≥nγ }

Poisson Manhattan
(

2n
γ

)n
1
κn

(
nκn
γκn−1

)n
1− exp(− γ

n
‖x‖1)

Poisson Isotropic n!κn

(
nκn

2γκn−1

)n
1
κn

(
nκn
γκn−1

)n
1− exp

(
−2γκn−1

nκn
|x|
)

The Poisson isotropic setting is also better than the other two in terms of the

probability of separation of the typical data from data point x. We see from

the last column that isotropic Poisson hyperplanes outperforms the other two

options orderwise: the thresholds for the latter have order α = 1, whereas that

of the former has order α = 1/2 only.

In contrast, consider now a uniform random vector Y chosen in the zero

cell and take as a distortion criterion the “norm” of Y , defined as E[|Y |2]
1
2 . The

deterministic grid has the smallest norm and the Poisson grid has the second

smallest norm. From Proposition 4.1 in [66], the isotropic Poisson tessellation

gives an upper bound of this norm, where the upper bound is larger than the

other two cases. For the quantityRM , or equivalently, the furthest vertex of the

zero cell from the origin, the results are the same, with the deterministic grid

performing better than the Poisson grid, and the isotropic Poisson tessellation

having an upper bound greater than the other two cases, since xu ≈ 3. For

both quantities to be small, the scaling with dimension n needed for γ is n3/2

for all three tessellations.
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Table 5.4: Comparison of quantities for different tessellations with intensity γ
in Rn.

Type of tessellation E[|Y |2]
1
2 RM

Deterministic Grid n3/2
√

3γ
n3/2

γ

Poisson Manhattan n3/2

γ

√
7n

3
2√

2γ

Poisson Isotropic .
√
πn3/2
√

2γ
. xu

√
πn3/2
√

2γ

We now give the proofs.

To compute the norm of the uniform random vector in the zero cell

of the deterministic grid, consider the fixed cube of width 2n
γ

. Let Yn ∼

Uniform ([−n/γ, n/γ]n). Then, by the strong law of large numbers,

|Yn|2

n
=

∑n
k=1 Y

2
n,k

n
→ E[Y 2

n,1],

as n→∞. Then, since Yn,1 ∼ Uniform([−n/γ, n/γ]),

E[Y 2
n,1] =

1

3

(
n2

γ2
− n2

γ2
+
n2

γ2

)
=

n2

3γ2
.

Thus, |Yn| ∼ n3/2
√

3γ
, as n→∞. The other quantities are immediate.

The Poisson Manhattan tessellation is defined as follows. Let X be a

Poisson hyperplane tessellation in Rn with intensity γ and directional distri-

bution φ that has mass 1
2n

on each positive and negative axis, i.e. the normal

vectors of the hyperplanes are the usual basis directions ±e1, ...,±en. Since

equal weight is placed on each direction, the normal vectors of the hyperplanes

form independent Poisson point processes of intensity γ
n

on each axis.
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For each i = 1, . . . n, let Ni = {T ik} be the Poisson point process of

intersection points on the ±ei axis with the usual convention that T i0 ≤ 0 < T i1.

Then, the zero cell Z0 of X is defined as

Z0 =
n∏
i=1

[T i0, T
i
1].

Note that the interval [T i0, T
i
1] will not have an exponential distribution, since

we are requiring that 0 is in the interval, biasing for larger intervals. We obtain

the distribution of the length of the interval by using the Palm distributions

of {Ni}ni=1. By Slivnyak’s theorem, PN = P0
N−δ0 , so the distribution of length

of the interval is the same as

P(T i1 − T i0 ∈ A) = P0(T i1 + |T i−1| ∈ A).

Under P0, i.e. conditioned on T0 = 0, T1 and |T−1| are independent exponential

random variables with parameter γ
n
. Then, we first see that

E(Vn(Z0)) =
n∏
i=1

E(T i1 − T i0) = E0(T 1
1 + |T 1

−1|)n =

(
2γ

n

)n
.

Also, for Y such that conditioned on X, Y ∼ Uniform(Z0), the law of large

numbers implies that as n→∞,

|Y |2

n
=

∑n
i=1 Y

2
i

n
→ E[Y 2

1 ] a.s.

Using the fact that (Yi|T i0, T i1) ∼ Uniform([T i0, T
i
1]), we have

E[Y 2
i ] = E[E[Y 2

i |T i0, T i1]] = E
[
T 2

0 + T0T1 + T 2
1

3

]
=

1

3

(
ET 2

0 − E0[|T−1|]E0[T1] + ET 2
1

)
=

1

3

(
2n2

γ2
− n2

γ2
+

2n2

γ2

)
=
n2

γ2
.
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Thus, |Yn|2 ∼ n3/2

γ
as n→∞.

For the Poisson Manhattan, the quantity RM is given by

R2
M = |(max{T 1

1 , |T 1
0 |}, ...,max{T n1 , |T n0 |}|2 =

n∑
i=1

(max{T n1 , |T n0 |}2).

By the law of large numbers, as n→∞,

R2
M

n
→ E[max{T n1 , |T n0 |}2], a.s.

The distribution of max{T1, T0} is

P(max{T1, T0} ≤ x) = P0(max{T1, |T−1|} ≤ x) = (1− e−
γ
n
x)2.

Then, using integration by parts,

E[max{T n1 , |T n0 |}2] =

∫ ∞
0

2xP(max{T1, |T0|} ≥ x)dx

=

∫ ∞
0

2x(1− (1− e−
γ
n
x)2)dx =

∫ ∞
0

2x(1− (1− 2e−
γ
n
x + e−

2γ
n ))dx

=

∫ ∞
0

2x(2e−
γ
n
x − e−

2γ
n
x)dx =

4n2

γ2
− n2

2γ2
=

7n2

2γ2
.

Thus, RM is concentrated near
√

7n3/2
√

2γ
for large n.
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Chapter 6

Uniform Random Vectors in Zero Cells of

Stationary Poisson Mosaics1

6.1 Introduction

Random mosaics, also called random tessellations, have long been stud-

ied in stochastic geometry and give rise to interesting classes of random poly-

topes. Recently, there has been more interest in high dimensional tessellations,

partially due to applications in signal processing [69] and information theory

[3]. For these applications, it is important to understand the asymptotic ge-

ometric properties of the polytopes induced by random tessellations, in order

to decode and reconstruct signals with small error.

Some well-known classes of random mosaics are built from Poisson point

processes, either in Rn or in the space of hyperplanes in Rn. Statistics of the

cells of these random mosaics have been well-studied, particularly in dimen-

sions n = 2 and n = 3. See [75] and [18] for more background and further

references. Some recent work has focused on high dimensional Poisson mo-

saics, particularly on the volume and shape of the zero cell and typical cell as

dimension n tends to infinity ([2], [43], and [40]). The zero cell is the cell of

1This chapter is based on the following manuscript: E. O’Reilly. Thin-shell concentration
for zero cells of stationary Poisson mosaics. arXiv:1809.04134, September 2018.
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the tessellation containing the origin, and the distribution of the typical cell is

obtained by averaging over all cells in a large bounded subset and then increas-

ing this subset to the entire space. The volume of these cells has been studied

in [2] and [43], as well as some analysis of their shape in high dimensions. For

example, in [2], it is proved that the volume of the intersection of the typical

cell of a Poisson-Voronoi tessellation with intensity λ and a co-centered ball

of volume u tends to λ−1(1− e−λu) as the space dimension tends to infinity.

In this chapter, we aim to better understand the nature of the zero cell

of stationary Poisson mosaics in high dimensions by considering the random

vector that, conditioned on the random mosaic, is uniformly distributed in the

centered zero cell. By “centered”, we mean that an appropriately chosen center

of the cell is located at the origin, for instance, the center of the largest ball

contained within the cell. We will study to what extent the phenomenon of

thin-shell concentration, as described in Section 2.4.1, occurs for this random

vector for specific models. If this random vector is concentrated around its

mean in high dimensions, then most of the volume of the zero cell of the

random mosaic will be contained within a narrow annulus.

One motivation for the study of the norm of this random vector is

data compression. Random mosaics can be used to compress data in Rn such

that all data contained in the same cell of the tessellation will have the same

encoding. This is the case, for instance, in one-bit compressed sensing using

hyperplane tessellations, see [69] and [70]. Reconstructing the original data

with small error requires that all data within the same cell of the tessellation
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are close together. The volume of the cell is not a useful metric in this case,

since a very thin cell could have small volume and also contain signals that

lie very far apart. The norm of the random vector studied in this paper is a

more useful metric to ensure the mass of the cell does not lie far away from

the center.

The distribution of the vector described above is shown to depend on

the typical cell, as shown in Lemma 6.2.1, due to the fact that the distri-

bution of the zero cell has a Radon-Nikodym derivative with respect to the

distribution of the typical cell. Here, we restrict to studying two types of sta-

tionary random mosaics, a stationary Poisson-Voronoi mosaic and a stationary

and isotropic Poisson hyperplane mosaic, since in both cases there exists an

explicit representation for the distribution of the typical cell that allows for

computations. Both of these random mosaics are isotropic, that is, their dis-

tribution is invariant under rotations about the origin. This implies that the

random vector chosen uniformly from the centered zero cell will be radially

symmetric. In the Poisson-Voronoi case, we show that this random vector

is also log-concave, and thus satisfies the thin-shell estimate (2.9). Strong

concentration inequalities are also obtained directly.

The main complementary results can be stated as follows. For each

n, let Xn be a stationary random mosaic in Rn where the intensity of cell

centroids is enλn and assume limn→∞ λn = λ ∈ R. Let Yn denote a random

vector in Rn such that, conditionally on Xn, Yn is uniformly distributed in

the centered zero cell of Xn. For the Poisson-Voronoi mosaic, we show that
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|Yn|/
√
n concentrates to e−λ(2πe)−

1
2 as the dimension n increases. Exponential

rates of convergence are also computed, as shown in Theorem 6.3.3.

In the case of the zero cell of a Poisson hyperplane tessellation, we show

there exists an interval (R`, Ru) such that |Yn|/
√
n will be contained in this

interval with high probability in high dimensions. Rates of convergence are

also computed in this case as shown in Theorem 6.4.2.

6.2 Preliminaries

An application of Theorem 2.3.2 gives the density of a vector uniformly

sampled in the zero cell of a random mosaic.

Lemma 6.2.1. Let X be a stationary random mosaic in Rn with zero cell Z0

and typical cell Z with respect to the center function c : C
′ → Rn as previously

defined. Let Y be a random vector in Rn such that conditioned on X,

Y ∼ Uniform(Z0 − c(Z0)).

Then, for all measurable g,

E[g(Y )] =

∫
Rn
g(x)

P(x ∈ Z)

E[V (Z)]
dx,

i.e., Y ∈ Rn has density fY (x) = P(x∈Z)
E[V (Z)]

.

Proof. First, by the definition of Y ,

E[g(Y )] = E [E[g(Y )|Z0]] = E
[

1

V (Z0)

∫
Rn
g(x)1{x∈Z0−c(Z0)}dx

]
.
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Note that the function f(·) = 1
V (·)

∫
Rn g(x)1{x∈·−c(·)}dx is invariant under trans-

lations, since for any t ∈ R and K ∈ K′,

f(K + t) =
1

V (K + t)

∫
Rn
g(x)1{x∈K+t−c(K+t)}dx

=
1

V (K)

∫
Rn
g(x)1{x∈K+t−c(K)−t}dx

=
1

V (K)

∫
Rn
g(x)1{x∈K−c(K)}dx = f(K).

Thus, by Theorem 2.3.2, and since c(Z) = 0,

E[g(Y )] = E
[

1

V (Z0)

∫
Rn
g(x)1{x∈Z0−c(Z0)}dx

]
=

1

E[V (Z)]
E
[
V (Z)

1

V (Z)

∫
Rn
g(x)1{x∈Z−c(Z)}dx

]
= E

[∫
Rn
g(x)

1{x∈Z}
E[V (Z)]

dx

]
.

Finally, applying Fubini’s Theorem gives the result.

6.3 Poisson-Voronoi Mosaic

A special type of random mosaic comes from the Voronoi cells of a

Poisson point process in Rn. Let N be a stationary Poisson point process with

intensity λ and, for x ∈ N , define the Voronoi cell of N with center x by

C(x,N) := {z ∈ Rn : |z − x| ≤ |z − y| for all y ∈ N}.

The collection X := {C(x,N) : x ∈ N} is a stationary random mosaic and

is called the Poisson-Voronoi mosaic induced by N . The intensity λ of the

underlying Poisson point process is the cell intensity of the induced mosaic.
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First we show that for a Poisson-Voronoi mosaic X, the density of the

random vector Y that is uniformly distributed in Z0 conditioned on X, is

log-concave, and we then compute the moments of its norm.

Lemma 6.3.1. Let Z0 be the zero cell of the stationary and isotropic Poisson-

Voronoi tessellation associated to N ∼ PPP (λ) in Rn. Define the random

vector Y , such that conditioned on Z0,

Y ∼ Uniform(Z0 − c(Z0)).

Then, Y has a log-concave density and for all k ∈ N,

E[|Y |k] =
Γ(1 + k

n
)

(λκn)
k
n

= O
(
λ−

k
nn

k
2

)
.

Proof. By Lemma 6.2.1, the density of Y is P(x∈Z)
E[V(Z)]

. By the fact that E[V(Z)] =

1
λ

and by Slivnyak’s theorem [75],

P(x ∈ Z)

E[V(Z)]
= λP0,!(x ∈ Z0) = λP(N(B(x, |x|)) = 0) = λe−λκn|x|

n

,

and this is clearly log-concave. Thus, the density of Y is log-concave.

For the moments, switching to polar coordinates and using another

change of variables (y = λκnr
n) gives

E[|Y |k] = λ

∫
Rn
|x|ke−λκn|x|ndx = λnκn

∫ ∞
0

rn+k−1e−λκnr
n

dr

= λnκn

∫ ∞
0

(
y

λκn

)1+ k
n
− 1
n

e−y
1

nλκn

(
y

λκn

) 1
n
−1

dy

= (λκn)−
k
n

∫ ∞
0

y
k
n e−ydy =

Γ(1 + k
n
)

(λκn)
k
n

.
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Then, by (2.7), as n→∞,

E[|Y |k] ∼ n
k
2

λ
k
n (2πe)

k
2

.

The fact that Y has a radial and log-concave density already implies

that |Y | concentrates to

E[|Y |2]
1
2 =

Γ(1 + 2
n
)
1
2

(λκn)
1
n

∼
√
n

λ
1
n

√
2πe

, (6.1)

in high dimensions by the thin-shell estimate (2.9). However, we can prove

strong concentration inequalities by direct computation.

Theorem 6.3.2. Let X be a stationary Poisson-Voronoi mosaic in Rn with in-

tensity λ and Y a random vector such that, conditioned on X, Y ∼ Uniform(Z0−

c(Z0)). Let σ2 = E|Y |2. Then, there exists c > 0 such that for all t > 0,

P (|Y | ≥ (1 + t)σ) ≤ e−e
cn ln(1+t)

,

and for all t ∈ (0, 1) and n ≥ 2,

P (|Y | ≤ (1− t)σ) ≤ en ln(1−t).

Proof. By Lemma 6.3.1,

P(|Y | ≤ R) = λ

∫
B(R)

e−λκn|x|
n

dx = λnκn

∫ R

0

rn−1e−λκnr
n

dr

=

∫ λκnRn

0

e−ydy = 1− e−λκnRn ,
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and by (6.1),

P(|Y | ≤ (1− t)σ) = 1− e−Γ(1+ 2
n

)
n
2 (1−t)n .

By the inequality 1− e−x ≤ x for all x ≥ 0 and the assumption n ≥ 2,

P(|Y | ≤ (1− t)σ) ≤ Γ

(
1 +

2

n

)n
2

(1− t)n ≤ Γ(2)
n
2 en ln(1−t) = en ln(1−t).

Similarly, we have

P(|Y | ≥ (1 + t)σ) =

∫ ∞
λκnRn

e−ydy = e−Γ(1+ 2
n

)
n
2 (1+t)n .

Then, by the property Γ(s+1) = sΓ(s) and the inequality 1+s ≤ es for s > 0,

Γ

(
1 +

2

n

)n
2

=

(
Γ(2 + 2

n
)

(1 + 2
n
)

)n
2

≥ 1

e
.

Hence, for c = e−1,

P(|Y | ≥ (1 + t)σ) ≤ e−e
cn ln(1+t)

.

Considering a sequence of these vectors in increasing dimensions, we

obtain the following threshold result when the cell intensity of the random

mosaics grows exponentially with dimension.

Theorem 6.3.3. Let Yn ∼ Uniform(Z0,n− c(Z0,n)), where Z0,n is the zero cell

of a stationary Poisson-Voronoi tessellation in Rn with intensity enλn. Assume

limn→∞ λn = λ ∈ R. Then,

lim
n→∞

P(|Yn| ≤
√
nR) =

{
0, R < e−λ (2πe)−

1
2

1, R > e−λ (2πe)−
1
2
.
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For R < e−λ (2πe)−
1
2 ,

lim
n→∞

1

n
lnP(|Yn| ≤

√
nR) = λ+

1

2
ln(2πe) + lnR,

and for R > e−λ (2πe)−
1
2 ,

lim
n→∞

1

n
ln

(
− 1

n
lnP(|Yn| ≥

√
nR)

)
= λ+

1

2
ln(2πe) + lnR.

Proof. Switching to polar coordinates and then using another change of vari-

ables gives

P(|Yn| ≤
√
nR) = enλn

∫
B(
√
nR)

e−e
nλnκn|x|ndx = enλnnκn

∫ √nR
0

rn−1e−e
nλnκnrndr

=

∫ enλnκn(
√
nR)n

0

e−ydy = 1− e−enλnκn(
√
nR)n .

For R < e−λ (2πe)−
1
2 , by (2.7),

enλnκn(
√
nR)n ∼ 1√

πn

(
eλn(2πe)

1
2R
)n
→ 0, as n→∞.

implying that P(|Yn| ≤
√
nR)→ 0 as n→∞. This also implies that there is

an α > 0 such that for all n large enough,

α(enλnκn(
√
nR)n) ≤ 1− e−enλnκn(

√
nR)n ≤ enλnκn(

√
nR)n.

Thus,

lim
n→∞

− 1

n
lnP(|Yn| ≤

√
nR) = λ+

1

2
ln(2πe) + lnR.

Also, similarly to above, for R > e−λ (2πe)−
1
2 ,

P(|Yn| ≥
√
nR) =

∫ ∞
enλnκn(

√
nR)n

e−ydy = e−e
nλnκn(

√
nR)n → 0,
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as n→∞, and

lim
n→∞

1

n
ln

(
− 1

n
lnP(|X| ≥

√
nR)

)
= λ+

1

2
ln(2πe) + lnR.

6.4 Poisson Hyperplane Mosaic

The second type of random mosaic we consider is the mosaic induced

by a stationary and isotropic Poisson hyperplane process X in Rn. Recall that

a hyperplane process in Rn is a point process in the space of n−1 dimensional

affine subspaces in Rn, denoted by Hn.

In the case where the stationary mosaic is induced by a stationary and

isotropic Poisson hyperplane process, we first have the following proposition.

For C ∈ K′, let c(C) be the center of the inball of C.

Proposition 6.4.1. Let X be a stationary and isotropic Poisson hyperplane

mosaic in Rn with cell intensity λ. Let Y be the random vector such that,

conditional on X,

Y ∼ Uniform(Z0 − c(Z0)).

Then, for all k ≥ 0,

E[|Y |k] ≤ Γ(n+ k + 1)

Γ(n+ 1)2k

(κn
λ

)k/n
.

Next, we consider a sequence of these random vectors in increasing

dimensions n, and obtain the following result.
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Theorem 6.4.2. For each n, let Xn be a stationary and isotropic Poisson

hyperplane process with cell intensity enλn. Assume limn→∞ λn = λ ∈ R.

Let Z0,n be the zero cell of Xn, and define the random vectors Yn such that,

conditional on Xn,

Yn ∼ Uniform(Z0,n − c(Z0,n)).

Then, for all R > e−λ
√
πe√
2

,

lim
n→∞

P(|Yn| ≥
√
nR) = 0,

and there is a R` such that 0 < R` < e−λ
√
πe√
2

and for all R < R`,

lim
n→∞

P(|Yn| ≤
√
nR) = 0.

Also, for R > e−λ
√
πe√
2

,

lim sup
n→∞

1

n
lnP(|Yn| ≥

√
nR) ≤ λ+

1

2
ln

(
2e

π

)
+ lnR− eλR

√
2√

πe
,

and for R < e−λ
√
πe√
2

,

lim sup
n→∞

1

n
lnP(|Yn| ≤

√
nR) ≤ λ+

1

2
ln (2πe) + lnR− eλR

√
2√

πe
− ln 2.

Remark 6.4.1. The lower bound R` is the radius satisfying

λ+
1

2
ln (2πe) + lnR` −

eλR`

√
2√

πe
− ln 2 = 0.

Then, for all R > 0,

λ+
1

2
ln (2πe) + lnR− eλR

√
2√

πe
− ln 2 < λ+

1

2
ln (2πe) + lnR,
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and thus, λ+ 1
2

ln (2πe) + lnR` > 0, implying that

R` > e−λ(2πe)−
1
2 .

This implies that that vector Yn chosen with respect to the Poisson-Voronoi

zero cell will have a smaller norm in high dimensions than the vector Yn chosen

with respect to the zero cell of the Poisson hyperplane mosaic.

Remark 6.4.2. The assumption on λn can be generalized to λn ∼ enλnnα for

some α ∈ R. By (2.4), this implies that the scaling for the intensity of hyper-

planes is γn = O(nα+1). Then a similar result holds with the probabilities

P(|Yn| ≤ Rn) and P(|Yn| ≥ Rn),

where Rn = Rn
1
2
−α. This requirement gives two special cases: λn ∼ enλ,

γn = O(n), Rn = O(
√
n) and λn ∼ enλn

n
2 , γn = O(n3/2), Rn = O(1).

Before proving the theorem, recall the following special functions. The

beta function is defined by

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1dt.

The incomplete beta function is defined as B(x; a, b) :=
∫ x

0
ta−1(1 − t)b−1dt,

and the regularized incomplete beta function is

Ix(a, b) :=
B(x; a, b)

B(a, b)
.

Recall that the Gamma function is defined by Γ(x) :=
∫∞

0
tx−1e−tdt,

and we define the upper and lower incomplete gamma functions by

Γ(x,R) :=

∫ ∞
R

tx−1e−tdt, and Γ`(x,R) :=

∫ R

0

tx−1e−tdt,
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respectively. The following series of lemmas are needed before proving the

results.

Lemma 6.4.3. Let X be a stationary and isotropic Poisson hyperplane process

with intensity γ. Then, letting [0, x] denote the line segment between 0 and the

point x,

Θ
(
F
B(r)
[0,x]

)
= γ|x|

[
2κn−1

nκn

(
1− r2

|x|2

)n−1
2

− r

|x|
I

1− r2

|x|2

(
n− 1

2
,
1

2

)]
1{|x|≥r}.

Proof. Note that if r > |x|, then a hyperplane cannot hit [0, x] and not hit the

open ball B(r) at the same time and thus Θ
(
F
B(r)
[0,x]

)
is zero. If r ≤ |x|, then

by Theorem 2.3.3,

Θ
(
F
B(r)
[0,x]

)
= 2γ

∫
Sn−1

∫ ∞
0

1{H(u,t)∩[0,x]6=0}1{H(u,t)∩B(r)=∅}dtσn−1(du)

= 2γ

∫
Sn−1

∫ ∞
0

1{r≤t<〈x,u〉+}1{r≤〈x,u〉}dtσn−1(du)

= 2γ

∫
{v∈Sn−1:〈v,x〉≥r}

(〈x, u〉+ − r)σn−1(du)

= 2γ|x|
∫
{v∈Sn−1:〈v,x〉≥r}

〈
x

|x|
, u

〉
σn−1(du)

− 2rγσn−1({v ∈ Sn−1 : 〈v, x〉+ ≥ r}),

where a+ = max{a, 0}. To compute the first integral, first note that the

integral does not depend on the direction of x, only on the norm |x|. We can
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then assume x = |x|en, where en = (0, ..., 0, 1), and∫
{v∈Sn−1:〈v,|x|en〉≥r}

〈en, u〉+σn−1(du) =

∫
{v∈Sn−1:vn≥ r

|x|}
unσn−1(du)

=
ωn−2

ωn−1

∫ 1

r
|x|

∫
Sn−2

t(1− t2)
n−3
2 σn−2(du)dt

=
(n− 1)κn−1

nκn

∫ 1

r
|x|

t(1− t2)
n−3
2 dt =

(n− 1)κn−1

nκn

∫ 1− r2

|x|2

0

1

2
s
n−3
2 ds

=
(n− 1)κn−1

2nκn

2

n− 1

(
1− r2

|x|2

)n−1
2

=
κn−1

nκn

(
1− r2

|x|2

)n−1
2

.

The fractional area of a spherical cap is given by

σn−1({v ∈ Sn−1 : 〈v, x〉+ ≥ r}) =
1

2
I

1− r2

|x|2

(
n− 1

2
,
1

2

)
.

Then,

Θ
(
F
B(r)
[0,x]

)
=

[
2γ|x|κn−1

nκn

(
1− r2

|x|2

)n−1
2

− rγI
1− r2

|x|2

(
n− 1

2
,
1

2

)]
1{|x|≥r}

= γ|x|

[
2κn−1

nκn

(
1− r2

|x|2

)n−1
2

− r

|x|
I

1− r2

|x|2

(
n− 1

2
,
1

2

)]
1{|x|≥r}.

Lemma 6.4.4. Let Z0 be the zero cell of a stationary and isotropic Poisson

hyperplane tessellation with intensity γ in Rn. Conditioned on Z0, let Y ∼

Uniform(Z0 − c(Z0)). Then, for R > 0,

P(|Y | ≥ R) ≤
Γu

(
n+ 1, 2γRκn−1

nκn

)
Γ(n+ 1)

,

and

P(|Y | ≤ R) ≤ nκ2
n

4n

(
nκn

2κn−1

)[
Γ`

(
n+ 1, 2γR

κn−1

nκn

)
+ Γ(n)

(
κn−1

nκn

)n+1
]
.
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Proof. By Lemma 6.2.1, the density of Y is

fY (x) =
P(x ∈ Z)

E [V (Z)]
.

Using the representation of Z in Theorem 2.3.5,

P(x ∈ Z) =
γn+1

λ(n+ 1)

∫ ∞
0

∫
(Sn−1)n+1

e−2γrP

x ∈ ⋂
H∈X∩FB(r)

H+
0 ∩

n⋂
j=0

H−(uj, r)


· 4n(u0, ..., un)1P (u0, ..., un)

n∏
i=0

φ(dui)dr.

First, we see that

P

x ∈ ⋂
H∈X∩FB(r)

H+
0 ∩

n⋂
j=0

H−(uj, r)

 =
n∏
j=0

1{x∈H−(uj ,r)}P
(
X
(
F
B(r)
[0,x]

)
= 0
)

=
n∏
j=0

1{x∈H−(uj ,r)}e
−Θ

(
F
B(r)
[0,x]

)
.

Then,

P(|Y | ≥ R) =

∫
B(R)c

P(x ∈ Z)

E[V (Z)]
dx

=

∫
B(R)c

γn+1

(n+ 1)

∫ ∞
0

∫
(Sn−1)n+1

e−2γrP

x ∈ ⋂
H∈X∩FB(r)

H+
0 ∩

n⋂
j=0

H−(uj, r)


· 4n(u0, ..., un)1P (u0, ..., un)

n∏
i=0

σn−1(dui)dr

=
γn+1

(n+ 1)

∫
B(R)c

∫ ∞
0

∫
(Sn−1)n+1

e−2γre
−Θ

(
F
B(r)
[0,x]

)
4n1P

n∏
i=0

1{x∈H−(ui,r)}σn−1(dui)drdx

=
γn+1

(n+ 1)

∫
B(R)c

∫ ∞
0

e−2γre
−Θ

(
F
B(r)
[0,x]

) ∫
(Sn−1)n+1

4n1P

n∏
i=0

1{〈x,ui〉≤r}σn−1(dui)drdx.
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Making the change of variables t = r
|x| , observing that the innermost integral

does not depend on the direction of x, and using Fubini’s Theorem,

P(|Y | ≥ R)

=
γn+1

(n+ 1)

∫
B(R)c

|x|
∫ ∞

0

e
−2γ|x|t−Θ

(
F
B(|x|t)
[0,x]

) ∫
(Sn−1)n+1

4n1P

n∏
i=0

1{〈en,ui〉≤t}σn−1(dui)dtdx

=
γn+1

(n+ 1)

∫ ∞
0

∫
B(R)c

|x|e−2γ|x|t−Θ
(
F
B(|x|t)
[0,x]

)
dx

∫
(Sn−1)n+1

4n1P

n∏
i=0

1{〈en,ui〉≤t}σn−1(dui)dt.

By Lemma 6.4.3 and a change to polar coordinates,∫
B(R)c

|x|e−2γ|x|te
−Θ

(
F
B(|x|t)
[0,x]

)
dx

=

∫
B(R)c

|x|e
−2γ|x|t−γ|x|

[
2κn−1
nκn

(1−t2)
n−1
2 −tI(1−t2)(

n−1
2
, 1
2)

]
1{t≤1}

dx

= nκn

∫ ∞
R

rne
−γr

[
2t+

(
2κn−1
nκn

(1−t2)
n−1
2 −tI1−t2

(
n−1

2
,
1
2

))
1{t≤1}

]
dr.

Now, using the identity I1−x(a, b) = 1− Ix(b, a),∫
B(R)c

|x|e−2γ|x|te
−Θ

(
F
B(|x|t)
[0,x]

)
dx = nκn

∫ ∞
R

rne−γrfn(t)dx,

where

fn(t) :=

{
t+ 2κn−1

nκn
(1− t2)

n−1
2 + tIt2

(
1
2
, n−1

2

)
, 0 ≤ t ≤ 1

2t, t ≥ 1.

Note that fn is differentiable and that

fn(0) =
2κn−1

nκn
. (6.2)

Then, by the change of variables y = γfn(t)r,

nκn

∫ ∞
R

rne−γfn(t)rdr =
nκn

(γfn(t))n+1

∫ ∞
γfn(t)R

yne−ydy

=
nκn

(γfn(t))n+1 Γu(n+ 1, γfn(t)R).
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This gives us that

P(|Y | ≥ R) =

nκn
(n+ 1)

∫ ∞
0

Γu(n+ 1, γfn(t)R)

fn(t)n+1

∫
(Sn−1)n+1

4n1P

n∏
i=0

1{〈en,ui〉≤t}σn−1(dui)dt.

Since the upper incomplete gamma function is decreasing in its second

argument, for all t ≥ 0,

Γu(n+ 1, γfn(t)R) ≤ Γu

(
n+ 1, γ

2κn−1

nκn
R

)
,

where we have used (6.2). So, we have the upper bound

P(|Y | ≥ R) ≤
Γu(n+ 1, γ 2κn−1

nκn
R)

Γ(n+ 1)

·

[
nκn

(n+ 1)

∫ ∞
0

Γ(n+ 1)

fn(t)n+1

(∫
(Sn−1)n+1

4n1P

n∏
j=0

1{〈en,uj〉≤t}σn−1(duj)

)
dt

]
.

The term in the parentheses is the value of the integral
∫
Rn

P(x∈Z)
E[V (Z)]

dx and is

thus equal to 1. Hence,

P(|Y | ≥ R) ≤
Γu

(
n+ 1, γR 2κn−1

nκn

)
Γ(n+ 1)

.

To obtain the upper bound for P(|Y | ≤ R), we can follow a similar

procedure up to the equality

P(|Y | ≤ R)

=
nκn

(n+ 1)

∫ ∞
0

Γ`(n+ 1, γfn(t)R)

fn(t)n+1

∫
(Sn−1)n+1

4n1P

n∏
i=0

1{〈en,ui〉≤t}σn−1(dui)dt.
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The lower incomplete gamma function is not decreasing in t like the upper

incomplete gamma function, so we cannot proceed exactly as above.

First we use the upper bound∫
(Sn−1)n+1

4n(u0, . . . , un)1P

n∏
i=0

1{〈en,ui〉≤t}σn−1(dui)

≤
∫

(Sn−1)n+1

4n(u0, . . . , un)1P

n∏
i=0

σn−1(dui).

Then, by the fact that

n2n

(n+ 1)(ωn)2(κn−1)n
4(u0, . . . , un)1P (u0, . . . , un)

n∏
i=0

dσn−1(ui)

is a joint density (see equation (11) in [16]),∫
(Sn−1)n+1

n∏
j=0

4n(u0, . . . , un)1P

n∏
i=0

σn−1(dui) =
κn(n+ 1)

2n

(
κn−1

nκn

)n
,

and thus

P(|Y | ≤ R) ≤ nκ2
n

2n

(
κn−1

nκn

)n ∫ ∞
0

Γ`(n+ 1, γfn(t)R)

fn(t)n+1
dt.

Then, note that for t ≥ 1, fn(t) = 2t, so∫ ∞
1

Γ`(n+ 1, γfn(t)R)

fn(t)n+1
dt ≤ 1

2n+1

∫ ∞
1

Γ(n+ 1)

tn+1
dt =

Γ(n)

2n+1
.

Thus,

P(|Y | ≤ R) ≤ nκ2
n

2n

(
κn−1

nκn

)n [∫ 1

0

Γ`(n+ 1, γfn(t)R)

fn(t)n+1
dt+

Γ(n)

2n+1

]
.

Now, we note that the function

hn(t) :=
Γ`(n+ 1, γfn(t)R)

fn(t)n+1
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is decreasing and thus reaches its maximum at t = 0. It suffices to show

h′n(t) ≤ 0. Indeed, we first note that the derivative of f ′n(t),

f ′n(t) =

{
1 + It2

(
1
2
, n−1

2

)
, 0 ≤ t ≤ 1

2, t ≥ 1,

is positive. Then, by the Fundamental Theorem of Calculus,

d

dt
Γ`(n+ 1, γfn(t)R) = e−γfn(t)R (γfn(t)R)n (γR) f ′n(t),

and by the quotient rule,

h′n(t) = − 1

fn(t)n+2

(
(n+ 1)f ′n(t)Γ`(n+ 1, γfn(t)R)− e−γfn(t)R (γfn(t)R)n+1 f ′n(t)

)
= − f ′n(t)

fn(t)n+2

(
Γ`(n+ 1, γR)(n+ 1)− e−γf(t)R (γfn(t)R)n+1) .

Since fn and f ′n are positive, it suffices to show the following inequality for h′

to be negative:

e−γf(t)R (γfn(t)R)n+1 ≤ Γ`(n+ 1, γfn(t)R)(n+ 1). (6.3)

Indeed, since e−t ≥ e−x for all t ∈ [0, x],

Γ`(n+ 1, x) =

∫ x

0

e−ttndt ≥ e−x
∫ x

0

tndt = e−x
xn+1

n+ 1
.

Letting x = 2γf(t)R gives (6.3), and hence h′(t) ≤ 0.

Thus, by (6.2),

P(|Y | ≤ R) ≤ nκ2
n

4n

(
nκn

2κn−1

)[
Γ`

(
n+ 1, 2γR

κn−1

nκn

)
+ Γ(n)

(
κn−1

nκn

)n+1
]
.

We can now prove the main results.
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6.4.1 Proof of Proposition 6.4.1

By Lemma 6.4.4,

E[|Y |k] = k

∫ ∞
0

yk−1P(|Y | ≥ y)dy

≤ k

∫ ∞
0

yk−1
Γu(n+ 1, 2γ κn−1

nκn
y)

Γ(n+ 1)
dy

=
k

Γ(n+ 1)

∫ ∞
0

yk−1

(∫ ∞
2γ

κn−1
nκn

y

tne−tdt

)
dy.

Then, by Fubini’s Theorem,

E[|Y |k] ≤ k

Γ(n+ 1)

∫ ∞
0

tne−t

(∫ t
2γ

nκn
κn−1

0

yk−1dy

)
dt

=
1

Γ(n+ 1)

∫ ∞
0

tne−t
(

nκn
2γκn−1

t

)k
dt =

Γ(n+ k + 1)

Γ(n+ 1)

(
nκn

2γκn−1

)k
.

Then, by (2.4),

E[|Y |k] ≤ Γ(n+ k + 1)

Γ(n+ 1)2k

(κn
λ

)k/n
.

6.4.2 Proof of Theorem 6.4.2

By the assumption on λn and (2.4), the intensity γn of Xn satisfies

γn ∼
eλ√
e
n as n→∞.

Then, by (2.7),

lim
n→∞

γn
√
nR

2κn−1

n2κn
= lim

n→∞

eλ√
e

√
nR

2κn−1

nκn
= lim

n→∞

2eλ√
e

√
nR√
2πn

=
eλR
√

2√
πe

.

Let cn = eλ 2
√
nR

κ
1/n
n

, and c = eλR
√

2√
πe

. Then, by a modified application of Laplace’s

method (see B.0.2), for eλR
√

2√
πe

> 1,

Γu(n+ 1, 2γn
√
nR

κn−1

nκn
) = Γu(n+ 1, cnn) ∼ nn

ce−n(cn−log cn)

(c− 1)
, (6.4)
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and for eλR
√

2√
πe

< 1,

Γ`(n+ 1, 2γn
√
nR

κn−1

nκn
) = Γ`(n+ 1, cnn) ∼ nn

ce−n(cn−log cn)

(1− c)
. (6.5)

Then, by Lemma 6.4.4, (6.4), and Stirling’s formula, as n→∞,

P(|Yn| ≥
√
nR) ≤ Γu (n+ 1, cnn)

Γ(n+ 1)
∼ ce−n(cn−log cn−1)

√
2πn(c− 1)

.

Then, for R > e−λ
√
πe√
2

,

lim sup
n→∞

1

n
lnP(|Yn| ≥

√
nR) ≤ lim sup

n→∞
1− cn + ln cn = 1− c+ ln c

= −e
λR
√

2√
πe

+ ln
eλR
√

2e√
π

= λ+
1

2
ln

(
2e

π

)
+ lnR− eλR

√
2√

πe
.

Similarly, for R < e−λ
√
πe√
2

,

P(|Yn| ≤
√
nR) ≤ nκ2

n

4n

(
nκn

2κn−1

)
Γ` (n+ 1, cnn)

1 +
Γ(n)

(
κn−1

nκn

)n+1

Γ` (n+ 1, cnn)

 .

Then, for all λ and R,

lim
n→∞

Γ(n)
(
κn−1

nκn

)n+1

Γ` (n+ 1, cnn)
= lim

n→∞

1

n

(
κn−1

nκn

)n+1
Γ(n+ 1)

Γ` (n+ 1, cnn)
= 0.

Hence, by (6.5) and Stirling’s formula, as n→∞,

P(|Yn| ≤
√
nR) .

nκ2
n

4n

(
nκn

2κn−1

)
Γ` (n+ 1, cnn) ∼

(π
2

)n ce−n(cn−ln cn−1)

√
2πn(1− c)

,

and thus

lim sup
n→∞

1

n
lnP(|Yn| ≤

√
nR) ≤ λ+

1

2
ln

(
2e

π

)
+ lnR− eλR

√
2√

πe
− ln 2 + ln π.
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Appendix A

Proofs from Chapter 4

A.1 Proof of (4.3)

For each n, let Xn ∼ DPP (Kn) in Rn be stationary with intensity

Kn(0) = enρ. From (4.1), there exists R̃ := 1√
2πeeρ

such that

lim
n→∞

E[Xn(Bn(
√
nR))] =

{
0, R < R̃

∞, R > R̃.

Now,

E[Xn(Bn(
√
nR))]− E[X0,!

n (Bn(
√
nR))] =

1

enρ

∫
Bn(
√
nR)

Kn(x)2dx,

and, by Parseval’s theorem and the condition on Kn for the existence of Yn,

1

enρ

∫
Bn(
√
nR)

Kn(x)2dx ≤ 1

enρ

∫
Rn
K̂n(ξ)2dξ ≤ 1

enρ

∫
Rn
K̂n(ξ)dξ = 1.

Also, since 1
enρ

∫
Bn(
√
nR)

Kn(x)2dx ≥ 0, the following bounds hold:

E[Xn(Bn(
√
nR))]− 1 ≤ E[X0,!

n (Bn(
√
nR))] ≤ E[Xn(Bn(

√
nR))].

Thus, the threshold remains the same for the reduced Palm expectation:

lim
n→∞

E[X0,!
n (Bn(

√
nR))] =

{
0, R < R̃

∞, R > R̃.
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By the first moment inequality and Proposition 5.1 in [10], one has the follow-

ing bounds:

1− E[X0,!
n (B(

√
nR))] ≤ P(X0,!

n (Bn(
√
nR)) = 0) ≤ exp

(
−E[X0,!

n (B(
√
nR))]

)
.

Thus, limn→∞ P(X0,!
n (Bn(

√
nR)) > 0) =

{
0, R < R̃

1 R > R̃.

A.2 Proof of Lemma 4.3.1

The assumption |Yn|√
n
→ R∗ in probability means that for all ε > 0,

P
(∣∣∣∣ |Yn|√n −R∗

∣∣∣∣ > ε

)
→ 0, as n→∞.

Now, assume R < R∗. Then, there exists ε > 0 such that R = R∗−Varepsilon.

Thus,

P(|Yn| ≤
√
nR) = P

(
|Yn|√
n
≤ R∗ − ε

)
≤ P

(∣∣∣∣ |Yn|√n −R∗
∣∣∣∣ > ε

)
→ 0 as n→∞.

Second, assume R > R∗. Then, there exists ε > 0 such that R = R∗ +

Varepsilon, and

P(|Yn| ≤
√
nR) = 1− P

(
|Yn|√
n
> R∗ + ε

)
≥ 1− P

(∣∣∣∣ |Yn|√n −R∗
∣∣∣∣ > ε

)
→ 1.

Then, by the assumption on Yn and Theorem 3.3.2,

P(ηn(Bn(
√
nR)) > 0|ηn 6= ∅) = P

(
|Yn| ≤

√
nR
)
→

{
0, R < R∗

1, R > R∗.
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A.3 Proof of Proposition 4.3.2

Since for all n, Yn is isotropic, Yn as defined in Lemma 4.3.1 has a

radially symmetric density. Thus, Yn has the same distribution as the product

RnUn, where Rn is equal in distribution to |Yn|, Un is uniformly distributed on

Sn−1, and Rn and Un are independent. Letting σ2
n = E|Yn|2 for each n,

√
n

σn
Yn

then satisfies the conditions of Theorem 2.4.1 for each n. Then, by Theorem

2.4.1, for any δ > 0, there exist absolute constants C, c > 0 such that

P
(∣∣∣∣ |Yn|σn − 1

∣∣∣∣ ≥ δ

)
≤ Ce−c

√
nmin(δ,δ3).

Now, let δ ∈ (0, 1). Then,

P(ηn(Bn(σn(1− δ))) > 0|ηn 6= ∅) = P
(
|Yn|
σn
≤ 1− δ

)
≤ Ce−c

√
nδ3 ,

since min(δ3, δ) = δ3 for δ ∈ (0, 1). Similarly, for any δ > 0,

P(ηn(Rn \Bn(σn(1 + δ))) > 0|ηn 6= ∅) = P
(
|Yn|
σn
≥ 1 + δ

)
≤ Ce−c

√
nmin(δ3,δ).

Now, assume σn√
n
→ R∗ ∈ (0,∞) as n→∞. For R < R∗, there exists ε ∈ (0, 1)

such that R = R∗(1− ε). Then, for all n large enough,
√
nR∗

σn
< 1−ε/2

1−ε and

P[ηn(Bn(
√
nR)) > 0|ηn 6= ∅] = P

(
|Yn| ≤

√
nR
)

= P
(
|Yn|
σn
≤
√
nR

σn

)
= P

(
|Yn|
σn
≤
√
nR∗(1− ε)

σn

)
≤ P

(
|Yn|
σn
≤ 1− ε

2

)
≤ P

(∣∣∣∣ |Yn|σn − 1

∣∣∣∣ ≥ ε

2

)
≤ Ce−c

√
n(ε/2)3 .

Thus for all R < R∗, there exists a constant C(ε(R)) = cε3/23 such that

lim inf
n→∞

− 1√
n

lnP[ηn(Bn(
√
nR)) > 0|ηn 6= ∅] ≥ C(ε(R)).
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A similar argument gives that for all R > R∗, there exists C(ε(R)) such that

lim inf
n→∞

− 1√
n

lnP[ηn(Rn \Bn(
√
nR)) > 0|ηn 6= ∅] ≥ C(ε(R)).

This implies the threshold (4.5).

A.4 Proof of Proposition 4.3.3

If |Yn|√
n

satisfies a large deviations principle with convex rate function I,

then by definition,

− inf
r<R

I(r) ≤ lim inf
n→∞

1

n
lnP

(
|Yn|√
n
≤ R

)
≤ lim sup

n→∞

1

n
lnP

(
|Yn|√
n
≤ R

)
≤ − inf

r≤R
I(r).

Thus,

− inf
r<R

I(r) ≤ lim inf
n→∞

1

n
lnP[ηn(Bn(

√
nR)) > 0|ηn 6= ∅]

≤ lim sup
n→∞

1

n
lnP[ηn(Bn(

√
nR)) > 0|ηn 6= ∅] ≤ − inf

r≤R
I(r).

By the assumption that the rate function I is strictly convex, there exists

a unique R∗ such that I(R∗) = 0. Note that inf{r≤R} I(r) is then zero for

R > R∗. Thus,

lim
n→∞

P[ηn(Bn(
√
nR)) > 0|ηn 6= ∅] =

{
0, R < R∗

1, R > R∗.

Let R < R∗. If the rate function I is continuous at R, then the above inequal-

ities become equalities and

lim
n→∞

− 1

n
lnP[ηn(Bn(

√
nR)) > 0|ηn 6= ∅] = I(R).
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A.5 Proof of Lemma 4.4.1

The proof shows that the sequence of random variables satisfies the

conditions of the Gärtner-Ellis theorem (see [27]). First,

E[es|Yn|
2

] =
e2nρ(

m−1+n/2
m−1

)2‖Kn‖2
2

I(s)︷ ︸︸ ︷∫
Rn
e−( 2

α2m
−s)|x|2

(
L
n/2
m−1

(
1
m

∣∣ x
α

∣∣2))2

dx .

Writing out the polynomial, the integral I above becomes

I(s) =
m−1∑
k,j=0

(
m− 1 + n/2

m− 1− k

)(
m− 1 + n/2

m− 1− j

)
(−1)k+j

k!j!(mα2)k+j

∫
Rn
e−( 2

α2m
−s)|x|2|x|2k+2jdx.

A quick calculation shows that for a > 0,∫
Rn
e−a|x|

2 |x|bdx =
πn/2

a
n+b
2

Γ
(
n
2

+ b
2

)
Γ
(
n
2

) . (A.1)

Then, if s < 2
α2m

,

I(s) =
πn/2(

2
α2m
− s
)n

2 Γ
(
n
2

) m−1∑
k,j=0

(
m− 1 + n/2

m− 1− k

)(
m− 1 + n/2

m− 1− j

)
(−1)k+jΓ

(
n
2

+ k + j
)

k!j! (2− smα2)k+j
,

and I(s) =∞ otherwise. For each k, j ∈ N,(
m− 1 + n/2

m− 1− k

)(
m− 1 + n/2

m− 1− j

)
Γ
(n

2
+ k + j

)
∼ 1

(m− 1− k)!(m− 1− j)!

(n
2

)2m−2

Γ
(n

2

)
, (A.2)

as n → ∞. So, I(s) has the following asymptotic expansion for s < 2
α2m

as

n→∞:

I(s) ∼ πn/2(
2

α2m
− s
)n

2

(n
2

)2m−2
m−1∑
k=0

m−1∑
j=0

(−1)k+j

k!j!(m− 1− k)!(m− 1− j)!
1

(2− smα2)k+j
.
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By (4.9) and (A.2),

1

e2nρ
‖Kn‖2

2 ∼
αn(

m−1+n/2
m−1

)2

(mπ
2

)n
2
(n

2

)2m−2
m−1∑
k,j=0

(−1)k+j

k!j!(m− 1− k)!(m− 1− j)!
1

2k+j
,

(A.3)

and hence,

E[es|Yn|
2

] ∼
(

1− sα2m

2

)−n
2

∑m−1
k,j=0

(−1)k+j

k!j!(m−1−k)!(m−1−j)!
1

(2−smα2)k+j∑m−1
k,j=0

(−1)k+j

k!j!(m−1−k)!(m−1−j)!
1

2k+j

 ,

as n→∞. Thus,

Λ(s) = lim
n→∞

1

n
logE[es|Yn|

2

] = −1

2
log

(
1− sα2m

2

)
if s <

2

α2m
,

and is infinite otherwise. It is clear that 0 ∈ (D(Λ))◦, where D(Λ) = {s ∈

R : Λ(s) < ∞}. Thus, the Gärtner-Ellis conditions are satisfied. The rate

function for the LDP is computed with the optimization

Λ∗(x) = sup
λ∈R

[xλ− Λ(λ)] = sup
λ∈R

[
xλ+

1

2
log

(
1− λα2m

2

)]
.

Then, since

0 =
d

dλ

[
xλ+

1

2
log

(
1− λα2m

2

)]
= x− α2m

4− 2α2mλ
if and only if λ =

2

α2m
− 1

2x
,

the rate function is

Λ∗(x) = x

(
2

α2m
− 1

2x

)
+

1

2
log

(
1−

(
2

α2m
− 1

2x

)
α2m

2

)
=

2x

α2m
− 1

2
+

1

2
log

(
α2m

4x

)
.

Then by the contraction principle (see [27]), the sequence |Yn|√
n

satisfies an LDP

with rate function

Λ∗(x) =
2x2

α2m
− 1

2
+

1

2
log

(
α2m

4x2

)
.

Note that Λ∗(x) = 0 if and only if x =
√
mα

2
, implying |Yn|√

n
→
√
mα

2
in

probability.
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A.6 Proof of Proposition 4.4.2

Proof. For each n, let Yn be a random vector in Rn with density K2
n

‖Kn‖22
. By

Lemma 4.4.1, for R <
√
mα

2
,

lim
n→∞

− 1

n
logP

(
|Yn|√
n
≤ R

)
=

2R2

α2m
− 1

2
+

1

2
log

(
α2m

4R2

)
.

Then by (A.3), as n→∞,

P[ηn 6= ∅] =
1

enρ
‖Kn‖2

2 ∼
(
e2ρα2mπ

2

)n
2
m−1∑
k,j=0

(−1)k+j

k!j!(m− 1− k)!(m− 1− j)!
1

2k+j
,

(A.4)

Thus,

lim
n→∞

− 1

n
logP[ηn(Bn(

√
nR)) > 0]

= lim
n→∞

− 1

n
logP[ηn 6= ∅] + lim

n→∞
− 1

n
logP

(
|Yn|√
n
≤ R

)
=

{
−ρ− logα− 1

2
log
(
mπ
2

)
+
(

2R2

α2m
− 1

2
+ 1

2
log
(
α2m
4R2

))
, 0 < R <

√
mα

2

−ρ− logα− 1
2

log
(
mπ
2

)
, R >

√
mα

2

=

{
−ρ− 1

2
log 2πe+ 2R2

α2m
− logR, 0 < R <

√
mα

2

−ρ− logα− 1
2

log mπ
2
, R >

√
mα

2
.

A.7 Proof of Lemma 4.4.3

Since for all n, K̂n ∈ C2(Rn), Parseval’s theorem implies

E[|Yn|2] =
1

‖Kn‖2
2

∫
Rn
|x|2Kn(x)2dx =

1

‖K̂n‖2
2

∫
Rn
−4K̂n(ξ)

(2π)2
K̂n(ξ)dξ. (A.5)
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To compute the Laplacian of K̂, we first see that for each i,

∂2

∂x2
i

e−|αx|
ν

=
∂

∂xi
(−νανxi|x|ν−2e−|αx|

ν

)

= −ναν |x|ν−2e−|αx|
ν − νανxi

(
∂
∂xi
|x|ν−2

)
e−|αx|

ν

+ (νανxi|x|ν−2)2e−|αx|
ν

= e−|αx|
ν (−ναν |x|ν−2 − ν(ν − 2)ανx2

i |x|ν−4 + ν2α2νx2
i |x|2ν−4

)
= e−|αx|

ν (
x2
i (ν

2α2ν |x|2ν−4 − ν(ν − 2)αν |x|ν−4)− ναν |x|ν−2
)
.

Then,

4e−|αx|ν =
n∑
i=1

∂2

∂x2
i

e−|αx|
ν

=
n∑
i=1

e−|αx|
ν (
x2
i (ν

2α2ν |x|2ν−4 − ν(ν − 2)αν |x|ν−4)− ναν |x|ν−2
)

= e−|αx|
ν (|x|2(ν2α2ν |x|2ν−4 − ν(ν − 2)αν |x|ν−4)− nναν |x|ν−2

)
= e−|αx|

ν (
ν2α2ν |x|2ν−2 − (ν(ν − 2)αν + nναν)|x|ν−2

)
.

Thus by (A.5) and (4.12),

E[|Yn|2]

=
Γ(n

2
+ 1)αnn2

n
ν

4π2πn/2Γ(n
ν

+ 1)

∫
Rn
e−2|αnx|ν

(
(ν(ν − 2)ανn + nνανn)|x|ν−2 − ν2α2ν

n |x|2ν−2
)

dx

=
Γ(n

2
+ 1)αn+ν

n 2
n
ν ν

4π2π
n
2 Γ(n

ν
+ 1)

[
(ν − 2 + n)

∫
Rn
|x|ν−2e−2|αnx|νdx− νανn

∫
Rn
e−2|αnx|ν |x|2ν−2dx

]
.

Then, using (A.1),

E[|Yn|2] = n
αn+ν
n 2

n
ν ν

4π2Γ(n
ν

+ 1)

[
−

νανnΓ(n+2ν−2
ν

)

ν2(n+2ν−2)/ναn+2ν−2
n

+
(ν − 2 + n)Γ(n+ν−2

ν
)

ν2(n+ν−2)/ναn+ν−2
n

]

= n
22/να2

n

4π2Γ(n
ν

+ 1)

[
(ν − 2 + n)

2
Γ

(
n− 2

ν
+ 1

)
− ν

4
Γ

(
n− 2

ν
+ 2

)]
= n

22/να2
nΓ
(
n−2
ν

+ 1
)

4π2Γ(n
ν

+ 1)

[
n

4
+
ν

4
− 1

2

]
.
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By the asymptotic formula for the Gamma function, as n→∞,

E[|Yn|2]

∼ n
α2
n2

2
ν

4π2

(√
ν

2πn

(νe
n

)n
ν

)(√
2π(n− 2)

ν

(
n− 2

νe

) (n−2)
ν

)[
n

4
+
ν

4
− 1

2

]

= n
α2
n22/ν

4π2

√
n− 2√
n

(
1− 2

n

)n
ν
(
n− 2

νe

)− 2
ν
[
n

4
+
ν

4
− 1

2

]
∼ n2−2/να2

n

(2ν)2/ν

16π2
.

By assumption, αn ∼ αn
1
ν
− 1

2 for some constant α ∈ (0,∞). Thus,

lim
n→∞

E[|Yn|2]

n
= α2 (2ν)2/ν

16π2
.

For the second moment of |Yn|2, Parseval’s theorem is applied again

and gives that

E[(|Yn|2)2] =
1

‖Kn‖2
2

∫
Rn

(|x|2Kn(x))2dx =
1

‖Kn‖2
2

∫
Rn

(4K̂n(ξ))2

(2π)4
dξ. (A.6)
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Then, by the above computation of the Laplacian of K̂, (A.1), and (4.12),

E[(|Yn|2)2]

=
Γ(n

2
+ 1)αnn2n/νν2α2ν

n

(2π)4πn/2Γ(n
ν

+ 1)

∫
Rn
e(−2|αnx|ν)

(
νανn|x|2ν−2 − (ν − 2 + n)|x|ν−2

)2
dx

=
Γ(n

2
+ 1)αnn2n/νν2α2ν

n

(2π)4πn/2Γ(n
ν

+ 1)

[
(νανn)2

∫
Rn
e−2|αnx|ν |x|4ν−4dx

− 2νανn(ν − 2 + n)

∫
Rn
e−2|αnx|ν |x|3ν−4dx+ (ν − 2 + n)2

∫
Rn
e−2|αnx|ν |x|2ν−4dx

]
= n

αnn2n/νν2α2ν
n

(2π)4Γ(n
ν

+ 1)

[
(νανn)2Γ(n+4ν−4

ν
)

ν2(n+4ν−4)/ναn+4ν−4
n

−
2νανn(ν − 2 + n)Γ(n+3ν−4

ν
)

ν2(n+3ν−4)/ναn+3ν−4
n

+
(ν − 2 + n)2Γ(n+2ν−4

ν
)

ν2(n+2ν−4)/ναn+2ν−4
n

]
=

n24/νν2α4
n

(2π)4Γ(n
ν

+ 1)

[
νΓ
(
n−4
ν

+ 4
)

24
−

2(ν − 2 + n)Γ
(
n−4
ν

+ 3
)

23
+

(ν − 2 + n)2Γ
(
n−4
ν

+ 2
)

ν22

]
= n

24/να4
nΓ
(
n−4
ν

+ 1
)

(2π)4Γ
(
n
ν

+ 1
) [

ν3

24

(
n− 4

ν
+ 3

)(
n− 4

ν
+ 2

)(
n− 4

ν
+ 1

)
− ν2(n+ ν − 2)

22

(
n− 4

ν
+ 2

)(
n− 4

ν
+ 1

)
+
ν(n+ ν − 2)2

22

(
n− 4

ν
+ 1

)]
= n

24/να4
n

(2π)4

Γ
(
n−4
ν

+ 1
)

Γ
(
n
ν

+ 1
) (n3

24
− n3

22
+
n3

22
+ o(n3)

)
= n4 24/να4

n

(2π)4

Γ
(
n−4
ν

+ 1
)

Γ
(
n
ν

+ 1
) ( 1

16
+ o(1)

)
∼ n4 24/να4

n

16(2π)4

√
ν

2πn

(νe
n

)n
ν

√
2π(n− 4)

ν

(
n− 4

νe

)n−4
ν

= n4

√
n− 4

n

(
1− 4

n

)n
ν
(
n− 4

νe

)− 4
ν
α4
n24/ν

16(2π)4
∼ n4 (n− 4)−

4
ν
α4
n(2ν)4/ν

16(2π)4
.

Again, since αn ∼ αn
1
ν
− 1

2 , E[(|Yn|2)2] = O(n2), and

lim
n→∞

E[(|Yn|2)2]

n2
= α4 (2ν)4/ν

16(2π)4
.
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Note that this limit is exactly the square of the limit of the expectation of

|Yn|2/n, implying

Var

(
|Yn|2

n2

)
=

E[(|Yn|2)2]

n2
−
(
E[|Yn|2]

n

)2

→ 0 as n→∞.

Thus, by Chebychev’s inequality, |Yn|√
n
→ α (2ν)1/ν

4π
in probability.

A.8 Proof of Proposition 4.4.5

First, for k ≥ 0, we see that∫
Rn
|x|kK(x)2dx

=

∫
Rn
|x|k

(
enρ2(σ+n)/2Γ

(
σ + n+ 2

2

)
J(σ+n)/2(2|x/α|

√
(σ + n)/2)

(2|x/α|
√

(σ + n)/2)(σ+n)/2

)2

dx

= e2nρ2(σ+n)Γ

(
σ + n+ 2

2

)2 ∫
Rn
|x|k

J(σ+n)/2(2|x/α|
√

(σ + n)/2)2

(2|x/α|
√

(σ + n)/2)(σ+n)
dx

= e2nρ2(σ+n)Γ

(
σ + n+ 2

2

)2
2πn/2

Γ(n
2
)

∫ ∞
0

rn−1rk
J(σ+n)/2(2(r/α)

√
(σ + n)/2)2

(2(r/α)
√

(σ + n)/2)(σ+n)
dx,

and by the change of variables y =
(

2
α

√
σ+n

2

)
r,

= e2nρ2σ+n2πn/2Γ
(
σ+n+2

2

)2

Γ(n
2
)

∫ ∞
0

(
2

α

√
σ + n

2

)−k−n+1
J(σ+n)/2(y)2

yσ+1−k

(
2

α

√
σ + n

2

)−1

dy

= e2nρ2σ+n2πn/2Γ
(
σ+n+2

2

)2
αk+n

Γ(n
2
)(2(σ + n))

k+n
2

∫ ∞
0

J(σ+n)/2(y)2

yσ+1−k dy.

For σ + 1− k > 0, from [1, 10.22.57],∫ ∞
0

J(σ+n)/2(y)2

yσ+1−k dy =
Γ
(
n
2

+ k
2

)
Γ(σ + 1− k)

2σ−k+1Γ
(
σ−k

2
+ 1
)2

Γ
(
σ − k

2
+ n

2
+ 1
) ,
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and thus,∫
Rn
|x|kK(x)2dx

= e2nρ2σ+n2πn/2Γ
(
σ+n+2

2

)2
αk+n

Γ(n
2
)(2(σ + n))

k+n
2

Γ
(
n
2

+ k
2

)
Γ(σ + 1− k)

2σ−k+1Γ
(
σ−k

2
+ 1
)2

Γ
(
σ − k

2
+ n

2
+ 1
)

= e2nρ (2π)n/2αk+n2k/2Γ
(
σ+n+2

2

)2

(σ + n)
k+n
2 Γ(n

2
)

Γ
(
n
2

+ k
2

)
Γ(σ + 1− k)

Γ
(
σ−k

2
+ 1
)2

Γ
(
σ − k

2
+ n

2
+ 1
) .

Then, for σ > 0,

E[|Yn|] = 1
‖Kn‖22

∫
Rn
|x|Kn(x)2dx

=
(2π)

n
2α1+n21/2Γ

(
σ+n+2

2

)2
Γ
(
n
2

+ 1
2

)
Γ(σ)

(σ + n)
1+n
2 Γ(n

2
)Γ
(
σ+1

2

)2
Γ
(
σ − 1

2
+ n

2
+ 1
) (σ + n)

n
2 Γ
(
σ
2

+ 1
)2

Γ
(
σ + n

2
+ 1
)

(2π)
n
2αnΓ(σ + 1)Γ

(
σ
2

+ n
2

+ 1
)2

=
α21/2

(σ + n)1/2Γ(n
2
)

Γ
(
n
2

+ 1
2

)
Γ(σ)Γ

(
σ
2

+ 1
)2

Γ
(
σ + n

2
+ 1
)

Γ
(
σ
2

+ 1
2

)2
Γ
(
σ + n

2
+ 1

2

)
Γ(σ + 1)

∼ α21/2

(σ + n)1/2Γ(n
2
)

Γ
(
n
2

) (
n
2

) 1
2 Γ(σ)Γ

(
σ
2

+ 1
)2

Γ
(
n
2

) (
n
2

)σ+1

Γ
(
σ+1

2

)2
Γ
(
n
2

) (
n
2

)σ+ 1
2 Γ(σ + 1)

=
α21/2

(σ + n)1/2

(
n
2

)
Γ(σ)Γ

(
σ
2

+ 1
)2

Γ
(
σ+1

2

)2
Γ(σ + 1)

∼ n1/2 α

21/2

Γ(σ)Γ
(
σ
2

+ 1
)2

Γ
(
σ+1

2

)2
Γ(σ + 1)

= O(n
1
2 ).

Now, let β > 1
2
. By Markov’s inequality,

lim
n→∞

P[ηn(Bn(Rnβ)c) > 0|ηn 6= ∅] = lim
n→∞

P
(
|Yn| ≥ Rnβ

)
≤ lim

n→∞

E|Yn|
Rnβ

= 0.

For σ = 0, one can take any k ∈ (0, 1), and a similar analysis shows that

E[|Yn|k] = O(nk/2), and the result still holds by applying Markov’s inequality

to P
(
|Yn|k ≥ Rknkβ

)
.
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A.9 Proof of Proposition 4.4.6

First, from [36, 6.576.3], we have for all ν > 0 and k > 2ν − 1,∫ ∞
0

rkKν

( r
α

)2

dr =
2−2+kαk+1

Γ(1 + k)
Γ

(
1 + k

2
+ ν

)
Γ

(
k + 1

2

)2

Γ

(
1 + k

2
− ν
)
,

(A.7)

where Kν is the modified Bessel function of the second kind. Then, for the

Whittle-Matérn Kernel (4.16),∫
Rn
Kn(x)2dx =

∫
Rn
e2nρ 22−2ν

Γ(ν)2

|x|2ν

α2ν
Kν

(
|x|
α

)2

dx

=
2π

n
2

Γ(n
2
)
e2nρ 22−2ν

Γ(ν)2α2ν

∫ ∞
0

rn−1r2νKν(r)
2dr

= e2nρ 2π
n
2

Γ(n
2
)

22−2ν

Γ(ν)2α2ν

∫ ∞
0

rn−1+2νKν(r)
2dr.

Then by (A.7),∫ ∞
0

rn−1+2νKν(r)
2dr

=
2−3+n+2ναn+2ν

Γ(n+ 2ν)
Γ

(
n+ 2ν

2
+ ν

)
Γ

(
n+ 2ν

2

)2

Γ

(
n+ 2ν

2
− ν
)

=
2−3+n+2ναn+2ν

Γ(n+ 2ν)
Γ
(n

2
+ 2ν

)
Γ
(n

2
+ ν
)2

Γ
(n

2

)
.

Similarly,∫
Rn
|x|2Kn(x)2dx = e2nρ 2π

n
2

Γ(n
2
)

22−2ν

Γ(ν)2α2ν

∫ ∞
0

rn+1+2νKν(r)
2dr.

and also by (A.7),∫ ∞
0

rn+1+2νKn(r)2dr

=
2−1+n+2ναn+2+2ν

Γ(n+ 2 + 2ν)
Γ
(n

2
+ 2ν + 1

)
Γ
(n

2
+ ν + 1

)2

Γ
(n

2
+ 1
)
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Then,

E[|Yn|2] =

∫
Rn |x|

2Kn(x)2dx∫
Rn Kn(x)2dx

=
(2α)2Γ(n+ 2ν)Γ

(
n
2

+ 2ν + 1
)

Γ
(
n
2

+ ν + 1
)2

Γ
(
n
2

+ 1
)

Γ(n+ 2 + 2ν)Γ
(
n
2

+ 2ν
)

Γ
(
n
2

+ ν
)2

Γ
(
n
2

)
=

(2α)2
(
n
2

+ 2ν
) (

n
2

+ ν
)2 (n

2

)
(n+ 1 + 2ν)(n+ 2ν)

∼
(α

2

)2

n,

as n→∞, and this implies

E[|Yn|2]
1
2

√
n

→ α

2
, as n→∞.

Thus, since the Whittle Matérn kernel is log-concave, the conclusion

holds by Theorem 4.3.2.

A.10 Proof of Proposition 4.4.7

First, recall the the beta function satisfies

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1dt =

∫ ∞
0

tx−1(1 + t)−(x+y)dt =
Γ(x)Γ(y)

Γ(x+ y)
.

Then, for any k ≥ 0,∫
Rn
|x|kKn(x)2dx =

∫
Rn
|x|k e2nρ

(1 + | x
αn
|2)2ν+n

dx

= e2nρ2πn/2

Γ(n
2
)

∫ ∞
0

rn−1+k

(
1 +

r2

α2
n

)−2ν−n

dr

= e2nρ π
n/2

Γ(n
2
)
αn+k
n

∫ ∞
0

t
n
2
−1+ k

2 (1 + t)−(2ν+n)dt

= e2nρ π
n/2

Γ(n
2
)
αn+k
n B

(
n

2
+
k

2
, 2ν +

n

2
− k

2

)
.
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Thus, the expectation of |Yn|2 is

E[|Yn|2] =
1

‖Kn‖2
2

∫
Rn
|x|2Kn(x)2dx = α2

n

B(n
2

+ 1, 2ν + n
2
− 1)

B(n
2
, 2ν + n

2
)

= α2
n

Γ(n
2

+ 1)Γ(2ν + n
2
− 1)Γ(n+ 2ν)

Γ(n+ 2ν)Γ(n
2
)Γ(2ν + n

2
)

= α2
n

n

2(n
2

+ 2ν − 1)

= α2
n

n

n+ 4ν − 2
,

and

E[|Yn|4] = α4
n

B(n
2

+ 2, 2ν + n
2
− 2)

B(n
2
, 2ν + n

2
)

= α4
n

Γ(n
2

+ 2)Γ(2ν + n
2
− 2)Γ(n+ 2ν)

Γ(n+ 2ν)Γ(n
2
)Γ(2ν + n

2
)

= α4
n

(n
2

+ 1)n
2

(2ν + n
2
− 2)(2ν + n

2
− 1)

= α4
n

n(n+ 2)

(n+ 4ν − 4)(n+ 4ν − 2)
.

Thus, by the assumption that αn ∼ αn
1
2 as n→∞ for some α > 0,

lim
n→∞

E[|Yn|2]

n
= α2 and lim

n→∞

Var(|Yn|2)

n2
= 0.

Thus, by Chebychev’s inequality, |Yn|√
n
→ α in probability.

A.11 Proof of Proposition 4.5.1

By Proposition 4.4.2,

lim
n→∞

− 1

n
lnP[ηn(Bn(

√
nR)) > 0]

=

{
−ρ− 1

2
log 2πe+ 2R2

α2m
− logR, 0 < R <

√
mα

2

−ρ− logα− 1
2

log mπ
2
, R >

√
mα

2
.
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Recall that limn→∞
1
n

lnE[Xn(Bn(
√
nR))] = ρ+ 1

2
log 2πe+ logR. Thus,

lim
n→∞

− 1

n
ln

P[ηn(Bn(
√
nR)) > 0]

E[Xn(Bn(
√
nR))]

= lim
n→∞

− 1

n
lnP[ηn(Bn(

√
nR)) > 0] +

1

n
lnE[Xn(Bn(

√
nR))]

=

{
−ρ− 1

2
log 2πe+ 2R2

α2m
− logR + ρ+ 1

2
log 2πe+ logR, 0 < R <

√
mα

2

−ρ− logα− 1
2

log mπ
2

+ ρ+ 1
2

log 2πe+ logR, R >
√
mα

2

=

{
2R2

α2m
, 0 < R <

√
mα

2
1
2

+ log 2− logα− 1
2

logm+ logR, R >
√
mα

2
.
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Appendix B

Laplace Method

Lemma B.0.1. Let f(t) be a function such that f(t) achieves its minimum at

t = a on the interval [a, b) and f ′(t) is continuous. Also assume limn→∞ an =

a ∈ R. If f ′(a) > 0, then as n→∞∫ b

an

e−nf(t)dt ∼ e−nf(an)

nf ′(a)
.

If f(t) achieves its minimum at t = b over the interval (a, b], limn→∞ bn = b,

and f ′(b) < 0, then ∫ bn

a

e−nf(t)dt ∼ −e
−nf(bn)

nf ′(b)
.

Proof. Let ε > 0. By the continuity of f ′, there exists minn(b − an) > δ > 0

such that |t− a| < 2δ implies f ′(t) ≤ f ′(a) + ε. By Taylor’s theorem, for each

t ∈ [an, b], there is some ξt ∈ (an, t) such that

f(t) = f(an) + f ′(ξt)(t− an).

Then, for t such that |t− an| < δ and n large enough such that |an − a| < δ,

we have that |ξt − an| < δ, and thus by the triangle inequality, |ξt − a| < 2δ,

which implies that for all n large enough,

f(t) ≤ f(an) + (f ′(a) + ε)(t− an).
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Since the integrand is positive,∫ b

an

e−nf(t)dt ≥
∫ an+δ

an

e−nf(t)dt ≥
∫ an+δ

an

e−n(f(an)+(f ′(a)+ε)(t−an))dt

= e−nf(an)

∫ δn(f ′(a)+ε)

0

e−ydy =
e−nf(an)

n(f ′(a) + ε)

(
1− e−δn(f ′(a)+ε)

)
.

Then,

lim inf
n→∞

∫ b
an
e−nf(t)dt

e−nf(an)

n(f ′(a)+ε)

≥ lim inf
n→∞

(
1− e−δn(f ′(a)+ε)

)
= 1.

For δ > 0, let N be such that for all n > N , an + δ > a+ δ
2
. Then, for

the upper bound, define

C := inf
t∈[a+ δ

2
,b]
f(t) > f(a),

where the last inequality follows from the hypothesis that f achieves its mini-

mum at a on the interval [a, b). By a similar Taylor series argument, we have

for all |t− an| < δ, and n large enough,

f(t) ≥ f(an) + (f ′(a)− ε)(t− an).

Define η := C − f(a) > 0. Then, for all t ∈ [a + δ
2
, b], f(t) > f(a) + η. Then,

for all n large enough,∫ b

an

e−nf(t)dt =

∫ an+δ

an

e−nf(t)dt+

∫ b

an+δ

e−nf(t)dt

≤
∫ an+δ

an

e−n(f(an)+(f ′(a)−ε)(t−an)dt+

∫ b

a+ δ
2

e−nCdt

< (b− a)e−nC +
e−nf(an)

n(f ′(a)− ε)

∫ δn(f ′(a)−ε)

0

e−ydy

= (b− a)e−nC +
e−nf(an)

n(f ′(a)− ε)

(
1− e−δn(f ′(a)−ε)

)
.
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Then,

lim sup
n→∞

∫ b
an
e−nf(t)dt

e−nf(a)

n(f ′(a)−ε)

≤ lim sup
n→∞

{(b− a)n(f ′(a)− ε)e−nη + 1− e−δn(f ′(a)+ε)} = 1,

since η > 0. These limits hold for all ε, and thus,

lim
n→∞

∫ b
an
e−nf(t)dt

e−nf(an)

nf ′(a)

= 1.

Lemma B.0.2. Assume that limn→∞ cn = c ∈ (0,∞). Then, as n → ∞, if

c > 1,

Γu(n+ 1, cnn) ∼ nn
cen(ln cn−cn)

(c− 1)
,

and if c < 1,

Γ`(n+ 1, cnn) ∼ nn
cen(ln cn−cn)

(1− c)
.

Proof. By a change of variables,

Γu(n+ 1, cnn) =

∫ ∞
cnn

e−ttndt = nn+1

∫ ∞
cn

e−n(y−log y)dy.

For c > 1, letting f(y) = y − log(y), f has a minimum at c on the interval

[c,∞). Also observe that f ′(y) = 1 − 1
y
, and for c > 1, f ′(c) = 1 − 1

c
> 0.

Thus, by Lemma B.0.1,

Γu(n+ 1, cnn) ∼ nn+1 e
−n(cn−ln cn)

n
(
1− 1

c

) = nn
cen(ln cn−cn)

(c− 1)
.

Similarly,

Γ`(n+ 1, cnn) =

∫ cnn

0

e−ttndt = nn+1

∫ cn

0

e−n(y−log y)dy,
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and for c < 1, f(y) = y − log(y) hits its minimum at c on the interval (0, c]

and f ′(c) = 1− 1
c
< 0. Then, by Lemma B.0.1,

Γ`(n+ 1, cnn) ∼ nn
cen(ln cn−cn)

(1− c)
.
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densities and simulated tempering for hard core Gibbs point processes.

Annals of the Institute of Statistical Mathematics, 53:661–680, 2001.

[59] P. McCullagh and J. Møller. The permanental process. Advances in

Applied Probability, 38:873–888, 2006.

165



[60] J. Møller, M. Nielsen, E. Porcu, and E. Rubak. Determinantal point

process models on the sphere. Bernoulli, 24:1171–1201, 2018.

[61] J. Møller and E. O’Reilly. Couplings for determinantal point processes

and their reduced Palm distribution with a view to quantifying repulsive-

ness. arXiv:1806.07347, June 2018.

[62] J. Møller and E. Rubak. Functional summary statistics for point pro-

cesses on the sphere with an application to determinantal point processes.

Spatial Statistics, 18:4–23, 2016.

[63] J. Møller and R. Waagepetersen. Statistical Inference and Simulation for

Spatial Point Processes. Chapman & Hall/CRC, Boca Raton, Florida,

2004.

[64] C. Müller. Analysis of Spherical Symmetries in Euclidean Spaces, volume

129 of Applied Mathematical Sciences. Springer, New York, 1998.

[65] B. S. Nagy, C. Foias, H. Bercovici, and L. Kérchy. Harmonic Analysis of

Operators on Hilbert Space. Springer-Verlag, New York, 2010.

[66] E. O’Reilly. Thin-shell concentration for zero cells of stationary Poisson

mosaics. arXiv:1809.04134, September 2018.

[67] E. O’Reilly, F. Baccelli, G. De Veciana, and H. Vikalo. End-to-end opti-

mization of high-throughput DNA sequencing. Journal of Computational

Biology, 23(10), 2016.

166



[68] V. Paulsen. Completely Bounded Maps and Operator Algebras. Cam-

bridge University Press, Cambridge, 2002.

[69] Y. Plan and R. Vershynin. One-bit compressed sensing by linear pro-

gramming. Communications on Pure and Applied Mathematics, 66:1275–

1297, 2013.

[70] Y. Plan and R. Vershynin. Dimension reduction by random hyperplane

tessellations. Discrete and Computational Geometry, 51:438–461, 2014.

[71] G. Poltyrev. On coding without restrictions for the AWGN channel.

IEEE Transactions on Information Theory, 40(2):409–417, March 1994.

[72] B. D. Ripley. The second-order analysis of stationary point process.

Journal of Applied Probability, 13(2):255–266, June 1976.

[73] W. Rudin. Functional Analysis. International Series in Pure and Applied

Mathematics. McGraw-Hill, Inc., second edition, 1991.

[74] A. Scardicchio, C. E. Zachary, and S. Torquato. Statistical properties

of determinantal point processes in high-dimensional Euclidean spaces.

Physical Review, 79, 2009.

[75] R. Schneider and W. Weil. Stochastic and Integral Geometry. Springer,

2008.

[76] I. J. Schoenberg. Positive definite functions on spheres. Duke Mathe-

matical Journal, 9:96–108, 1942.

167



[77] T. Shirai and Y. Takahashi. Random point fields associated with certain

Fredholm determinants I: Fermion, Poisson, and Boson point processes.

Journal of Functional Analysis, 205:414–463, 2003.

[78] J. Snoek, R. S. Zemel, and R. P. Adams. A determinantal point pro-

cess latent variable model for inhibition in neural spiking data. In I. S.

Francis, B. J. F. Manly, and F .C. Lam, editors, Advances in Neural

Information Processing Systems 26 (NIPS 2013), pages 1932–1940. Elec-

tronic proceedings from the conference, ”Neural Information Processing

Systems 2013”, 2013.

[79] A. Soshnikov. Determinantal random point fields. Russian Mathematical

Surveys, 55:923–975, 2000.

[80] S. Torquato, A. Scardicchio, and C. E. Zachary. Point processes in arbi-

trary dimension from Fermionic gases, random matrix theory, and number

theory. Journal of Statistical Mechanics, 2008.

[81] D. Yogeshwaran and R. J. Adler. On the topology of random com-

plexes built over stationary point processes. Annals of Applied Probabil-

ity, 25(6):3338–3380, 2015.

[82] Y. Yu. On normal variance-mean mixtures. Statistics and Probability

Letters, 121:45–50, February 2017.

168


