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Supervisor: François Baccelli

This thesis proposes new stochastic interacting particle models for net-

works, and studies some fundamental properties of these models. This thesis

considers two application areas of networking - engineering design questions in

future wireless systems and algorithmic tasks in large scale graph structured

data. The key innovation introduced in this thesis is to bring tools and ideas

from stochastic geometry to bear on the problems in both these application

domains. We identify certain fundamental questions in design and engineer-

ing both wireless systems and large scale graph structured data processing

systems. Subsequently, we identify novel stochastic geometric models, that

captures the fundamental properties of these networks, which forms the first

research contribution. We then rigorously study these models, by bringing

to bear new tools from stochastic geometry, random graphs, percolation and

Markov processes to establish structural results and fundamental phase tran-

sitions in these models. Using our developed mathematical methodology, we

x



then identify design insights and develop algorithms, which we demonstrate

are instructive in many practical settings.

In the setting of wireless systems, this thesis studies both ad-hoc and

cellular networks. In the ad-hoc network setting, we aim to understand funda-

mental limits of the simplest possible protocol to access the spectrum, namely

a link transmits whenever it has data to send by treating all interference as

noise. Surprisingly this basic question itself was not understood, as the system

dynamics is coupled spatially due to the interference links cause one another

and temporally due to randomness in traffic arrivals. We propose a novel in-

teracting particle model called the spatial birth-death wireless network model

to understand the stability properties of the simple spectrum access protocol.

Using tools from Palm calculus and fluid limit theory, we establish a tight

characterization of when this model is stable. Furthermore, we show that

whenever stable, the links in steady-state exhibit a form of clustering. Lever-

aging these structural results, we propose two mean field heuristics to obtain

formulas for key performance metrics such as average delay experienced by a

link. We empirically find that the proposed formulas for delay predicts accu-

rately the system behavior. We subsequently study scalability properties of

this model by introducing an appropriate infinite dimensional version of the

model we call the Interference Queueing Networks model. The model consists

of a queue located at each grid point of an infinite regular integer lattice, with

the queues interacting with each other in a translation invariant fashion. We

then prove several structural properties of the model namely, tight conditions

xi



for existence of stationary solutions and some sufficient conditions for unique-

ness of stationary solutions. Remarkably, we obtain exact formula for mean

delay in this model, unlike the continuum model where we relied on mean-

field type heuristics to obtain insights. In the setting of cellular networks, we

study optimal association schemes by mobile phones in the case when there are

several possible base station technologies operating on orthogonal bands. We

show that this choice leads to a performance gain we term technology diver-

sity. Interestingly, we show that the performance gain relies on the amount of

instantaneous information a user has on the various base station technologies

that it can leverage to make the association decision. We outline optimal asso-

ciation schemes under various information settings that a user may have on the

network. Moreover, we propose simple heuristics for association that relies on

a user obtaining minimal instantaneous information and are thus practical to

implement. We prove that in certain natural asymptotic regime of parameters,

our proposed heuristic policy is also optimal, and thus quantifying the value

of having fine grained information at a user for association. We empirically

observe that the asymptotic result is valid even at finite parameter regimes

that are typical in todays networks.

In the application of analyzing large scale graph structured data, we

consider the graph clustering problem with side information. Graph clustering

is a standard and widely used task which consists in partitioning the set of

nodes of a graph into underlying clusters where nodes in the same cluster are

similar to each other and nodes across different clusters are different. Moti-

xii



vated by applications in social and biological networks, we consider the task

of clustering nodes of a graph, when there is side information on the nodes,

other than that contained in the graph. For instance in social networks, one

has access to meta data about a person (node in a social graph) such as age,

location, income etc, along with the combinatorial data of who are his friends

on the social graph. Similarly, in biological networks, there is often meta-data

about an experiment that provides additional contextual data about a node,

in addition to the combinatorial data. In this thesis, we propose a generative

model for such graph structured data with side information, which is inspired

by random graph models in stochastic geometry such as the random connection

model and the generative models for networks with clusters without contexts,

such as the stochastic block model or the planted partition model. We propose

a novel graph model called the planted partition random connection model.

Roughly speaking, in this model, each node has two labels - an observable

Rd valued (for some fixed d) feature label and an unobservable binary valued

community label. Conditional on the node labels, edges are drawn at random

in this graph depending on both the feature and community labels of the two

end points. The clustering task consists in recovering the underlying partition

of nodes corresponding to the respective community labels better than a ran-

dom assignment, when given an observation of the graph generated and the

features of all nodes. We show that if the ‘density of nodes’, i.e., average num-

ber of nodes having features in an unit volume of space of Rd is small, then

no algorithm can cluster the graph that can asymptotically beat a random

xiii



assignment of community labels. On the contrary, if the density of nodes is

sufficiently high, we give a simple algorithm that recovers the true underlying

partition strictly better a random assignment. We then apply the proposed al-

gorithm to a problem in computational biology called Haplotype Phasing and

observe empirically, that it obtains state of art results. This demonstrates,

both the validity of our generative model, as well as our new algorithm.

xiv
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Chapter 1

Introduction

This thesis proposes and studies, new mathematical models of large

networks inspired from recent advances and trends in information technology.

We consider two emerging technologies of interest - (i) large scale ad-hoc wire-

less networks and (ii) graph structured network data with side information.

Both these areas are receiving increased amount of attention, both in academic

literature and in industrial research, due to emergent technologies such as the

drive toward 5G networks in the case of wireless systems and the explosion

of available graph structured data from various sources such as social and bi-

ological networks, in the case of data analysis. In the topic of 5G networks,

this thesis focuses on two key questions. One is the performance analysis of a

simple and scalable protocol for large scale ad-hoc networks and the other is

a problem of user-association in modern cellular networks with several over-

lapping technologies (such as LTE, 3G and/or several different operators). In

the case of large scale graph structured data, the main application of interest

in this thesis is the question of community detection, namely identifying un-

derlying latent clusters of groups in large graph structured datasets. We then

study a particular case of connection between general community detection

and haplotype-phasing, a fundamental problem in computational genomics
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that lends itself to the community detection framework we introduce in this

thesis.

Wireless networks are getting increasingly complex to engineer, espe-

cially with the growing demands and performance requirements placed on

them. The advent of new technologies and solution paradigms to meet some

of these demands are collectively labeled as 5G technology. Many challenging

research questions then emerges from this drive towards newer technologies

and increased performance requirements. A key common feature of modern

wireless technologies are that they are large-scale, i.e., a large number of wire-

less nodes will be in use simultaneously. For example, one can envision that

in the near future, a multitude of devices sharing the wireless spectrum such

as sensors in the environment and automobiles, wearable devices on people

and other monitoring devices on infrastructure, all working together to deliver

newer wireless services. The most widely used design abstraction to engineer-

ing such systems is to view them as ad-hoc wireless networks, i.e., a collection

of individual wireless nodes accessing the shared spectrum without any cen-

tralized entity controlling them. In this thesis, we ask the question as to how

well such ad-hoc networks perform when every node employs the simplest pro-

tocol to access the spectrum, namely they transmit whenever they have data

to send. Surprisingly, this basic question itself was not fully understood and

we make progress towards this in the present thesis. The key challenge in this

study arises as wireless is a broadcast medium, and thus the instantaneous

rate of service at any node depends on the locations of other concurrently
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active nodes, as the other active nodes cause interference. In this thesis, we

introduce a novel mathematical model using stochastic geometry and infor-

mation theory, to capture the essential features of such large scale ad-hoc

networks, and in particular capture precisely the dynamics of the network and

its impact due to interference. We first introduce this model on a compact Eu-

clidean space which we call the Spatial Birth-Death Wireless network model.

Roughly speaking, this is a particle process, where we assume wireless links,

each of which is a transmitter and receiver pair, are ‘born’ in space and ‘die’

after a while. In other words, links arrive randomly, stay for a duration that is

governed by the geometry of other concurrently active links and then exit the

network and ‘die’ after the transmitter completes a certain file transfer. This

model naturally couples the temporal evolution of links with the interference

experienced by modeling the rate of communication between any transmitter

and receiver using results from information theory, when all interference is

treated as noise [130].

Subsequently, we extend the above particle dynamics to a certain infi-

nite network setting. The analysis of the spatial birth-death model crucially

relies on the fact that the set of all potential locations for a link form a com-

pact subset of the Euclidean plane. This compactness allowed us to use the

theory of finite dimensional Markov processes to reason about the dynamics

of the spatial birth-death model. However, the results and the analysis from

this case do not extend to the limiting case if the set of possible locations is

a non compact subset or the entire Euclidean plane. The study of infinite
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networks in this context encompasses two goals - (i) to better understand the

behavior of ‘large’ networks, for which an infinite model provides a natural

abstraction which is somewhat easier to mathematically analyze on account

of the translation invariance of the plane and - (ii) the infinite network sheds

light on scalability of the proposed protocol, namely the one where every link

transmits whenever it has a packet to do so by treating all interference as noise.

In this context a protocol is scalable if the outcome for a typical link, such as

the average delay experienced by a typical link, remains finite as the network

‘size goes to infinity’. Scalability as stated here is indeed a very desirable prop-

erty, as it implies that a typical user will not be adversely affected by links

accessing the spectrum ‘far away’ in space. However, results from the spatial

birth-death model on compact domains is not sufficient to answer this question

of scalability and hence we treat the infinite model separately from the spatial

birth-death model on compact domains. We introduce a discretized version of

the spatial birth-death model on the infinite lattice grid and call this model,

the ‘Interference Queuing Network’ model. We will show in the sequel that

such a discretization of the continuum can be done without loss of generality

and one can recover the some of the results in the continuum by appropriate

limiting procedures. Nevertheless, forming a full analog of results obtained in

this discrete infinite model to the continuum infinite model is left as future

work. In addition to the discretization, we make an approximation in the way

interference impacts the temporal evolution of links. As opposed to the spatial

birth-death model, which uses an exact information theoretic formulation for
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the rate of file transfer, in the infinite model, we make a low SINR (Signal

to Interference plus Noise) approximation, or a linearization of the capacity

formula given by information theory. This approximation is made for math-

ematical tractability and we demonstrate that this nevertheless captures the

key features of the model and is capable of delivering practical insights. We

conduct a detailed mathematical study to obtain both qualitative and quanti-

tative results on the behavior of the network. We envision that such analytical

studies based on the spatial birth death model or the interference queueing

network model, can serve as a benchmark to design and evaluate the perfor-

mance of more complex protocols, such as those involving admission control

and/or interference cancellation or other sophisticated network information

theoretic schemes.

Similar to the ad-hoc networks case, there is expected to be newer en-

gineering challenges in the cellular networks of the future. In this thesis, we

consider the problem of user association in the presence of multiple orthogonal

cellular services servicing a single user. A concrete example of such a model

is the current Google Fi service, where multiple different service providers,

operating on orthogonal frequency bands ‘pool’ together to provide a common

service. We consider the problem of how must a mobile user leverage instan-

taneous information it has about the network, to derive benefits from this

‘diversity’ in available technologies. Following the convention in information

theory, we call the potential gains in performance experienced by a mobile

user in such a setting as technology diversity. In this case too, we establish
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several qualitative results that characterize optimal association schemes that

yield the benefits from technology diversity, as well as propose novel heuristics

which are near optimal under certain limiting regimes.

In the topic of large graph analysis, the main question studied in this

thesis is that of community detection. Roughly speaking, community detection

also known as graph clustering consists of partitioning the nodes of a graph

into many clusters or classes, such that nodes of the same class are ‘similar’

to each other and nodes across clusters or communities are ‘different’. This

is a fundamental problem studied widely in machine learning, statistics and

probability literature. This problem has received tremendous attention, both

due to the mathematical elegance, and the numerous applications such a clus-

tering paradigm has found. We refer the reader to Chapter 5 for references and

the various applications of the community detection paradigm. In this thesis,

we consider the question of how well can one perform graph clustering, when

the available information is not only the graph, but also additional ‘covari-

ate’ or side-information about the nodes. Concretely, we study the case when

each node as two ‘features’, an unobserved community label and an observed

covariate information, which we model as a vector in some d dimensional Eu-

clidean space. Then the observed graph is a noisy interaction among nodes

that depend both on their latent community label and the Euclidean covari-

ate or side-information vector. We will demonstrate in the sequel that such

models better capture many applications such as social networks and textual

networks of blogs on the web compared to the classical approaches such as
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the Stochastic Block Models. In the case of social networks, the side informa-

tion can correspond to observable features of individuals such as location, age,

income etc. and in a network of blogs on the web, the side information can

correspond to certain embedding of the text content such as a bag-of-words

representation of the text data. In Chapter 5, we introduce a new mathemat-

ical model of spatial random graphs with planted communities and consider

the community detection problem on this generative model. We establish both

qualitative and quantitative results for this model. We identify certain funda-

mental phase transitions on the model parameters, that separate the regimes

from when there exists an algorithm to cluster the graph from regimes when

clustering is impossible. We then propose a novel and simple algorithm that

can cluster the spatial random graph with communities under further restric-

tive conditions for clustering than predicted by the phase transition result.

Subsequently in Chapter 6, we consider the haplotype phasing problem, a key

question in computational genomics ([125],[245]) and demonstrate that this

problem can be recast as a community detection question on a spatial ran-

dom graph. We then empirically establish that the performance of our spatial

community detection algorithm is superior to the prior state of art method for

haplotype phasing. This demonstrates, both the applicability of the spatial

random graph model with planted communities, and the effectiveness of our

proposed algorithm compared to state of art methods for clustering that do

not exploit such a spatial embedding information.

From a modeling stand point, the key object in this thesis is the sta-
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tionary Poisson Point Process (PPP) in an Euclidean space. Although this

is a simple and classical object, it nevertheless provides a rich mathematical

framework, capable of modeling and studying many different problems and

applications, leading to many new insights. The field of stochastic geometry

was originally motivated by applications in material sciences, astronomy and

biology. As the field of stochastic geometry has matured, it has also found

applications lately in image analysis [145] and the design of communication

networks. In the case of wireless networks for example, it is now standard to

model the locations of wireless links in space using stationary point processes

(see for example the books of [42], [187]). In this thesis, we contribute to this

framework by proposing a new dynamic model of wireless links in Chapter 2

that extends the PPP modeling in space of wireless links to a PPP model of

links in ‘space-time’. This is the first model that combines the ideas developed

in queueing theory along with the ideas in stochastic geometry to propose a

new model for wireless networks. We then extend the model in Chapter 3 to

consider translation invariant infinite queueing network model, which is con-

ceptually new, both from a mathematical view point and a modeling point of

view. Subsequently, in Chapter 4, we use the PPP framework to model the

locations of base stations in a cellular network, which is now a widely accepted

model for cellular systems ([187]). With regard to data networks, we introduce

a new model of spatial random graph with planted communities in Chapter

5, which can be viewed as a multi-type version of the classical random con-

nection model ([303]) of a spatial graph studied widely in stochastic geometry.
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This random graph model is new and forms a contribution of this thesis. We

show the effectiveness of this model on the task of haplotype phasing from

computational biology in Chapter 6, which is an example of a spatial network

data set.

From an analytical perspective, this thesis makes advances by bringing

to bear new mathematical arguments and tools to the proposed models. In

the case of spatial birth-death process, our key analytical contribution is to

apply the rate conservation principle from Palm calculus ([49]) and classical

fluid limit theory of queueing systems ([135]) to study stability and clustering

of the spatial birth-death model. The extension of this model to the case of

infinite network in Chapter 3 is also conceptually new and requires the develop-

ment of new analysis and tools. We use Loyne’s type coupling from the past

arguments ([251]) along with translation invariance and the mass transport

principle ([255]) to reason about the dynamics on infinite space. In Chapter

3, we also establish several new qualitative phenomena on infinite network

dynamics using ideas that appeared in the classical interacting particle litera-

ture such as the Ising model and Gibbs measures. In the study of community

detection, we make novel connections between the statistical task of clustering

the graph and structural percolation properties of appropriately constructed

spatial random graphs. The arguments in that chapter are new and different

from those that are used in the study of stochastic block model (SBM) [16],

which is the most popular generative model for community detection.

In summary, the contributions of this thesis to the study of wireless net-
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works and graph clustering can be viewed as two fold. First, we propose novel

mathematical models to the applications in consideration and argue that they

better capture reality of the applications compared to the traditional more

widely studied models. Subsequently, the thesis introduces new mathematical

tools and algorithms to analyze our proposed model, which forms the techni-

cal contribution of this thesis. Thirdly, we validate empirically and through

simulations, the benefits and insights obtained by our algorithms and analysis

to the applications in consideration, lending validity to our proposed models.

1.0.1 Organization of the Thesis

The first three chapters of the thesis discus problems stemming from

wireless networks and the last two discuss the problem of community detec-

tion. In Chapter 2, we introduce the Spatial Birth-Death model for an ad-hoc

wireless network on a compact domain and study its mathematical proper-

ties. This chapter contains both qualitative results such as the stability re-

gion and clustering properties of this model and quantitative results such as

heuristic formulas for mean delay and numerical simulations to better un-

derstand the model. Subsequently in Chapter 3, we consider an appropriate

infinite network extension of the Spatial Birth-Death model, which we call the

Interference Queueing Network model. Chapter 4 considers the problem of

user-association in large cellular networks with technology diversity.

In the next two chapters, we focus on the problem of community de-

tection. In chapter 5, we introduce the new generative model of a spatial ran-
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dom graph with planted communities and consider the community detection

problem on it. We establish, both phase transition results and also present

the new spatial community detection algorithm in this Chapter. Finally in

Chapter 6, we consider an application of the community detection problem to

haplotype phasing, a key question in the study of computational genomics. We

demonstrate empirically, that our Euclidean community detection algorithm

performs better than the prior state of art method for haplotype phasing,

thereby establishing the effectiveness of our clustering algorithm.

The chapters are organized so that they are self contained and it is

possible to read a chapter without referencing other chapters. Nevertheless,

Chapters 2 and 3 follow sequentially as they both consider complementary

aspects of the same underlying question. Similarly, Chapters 5 and 6 follow

sequentially as they both again discuss complementary aspects of the same

chapter, namely Chapter 5 introduces the mathematical aspects of the com-

munity detection algorithm while Chapter 6 studies the empirical performance

of our method. In all chapters, certain proofs are deferred to the Appendix

for clarity in exposition.

1.1 Contributions

The various chapters have either been published, accepted or are under

preparation to be submitted. Chapter 2 appears as part of the paper [336].

Chapter 3 is accepted to appear and is part of the paper [338]. Chapter 4 is

part of paper [340]. Chapter 5 is based on papers [17] and [337].
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Chapter 2

Spatial Birth-Death Wireless Networks

2.1 Introduction

In this chapter, we consider the problem of studying the spatial dy-

namics of Device-to-Device (D2D) or ad-hoc wireless networks. Such wireless

networks have received a tremendous amount of attention, due on the one

hand to their increasing ubiquity in modern technology and on the other hand

to the mathematical challenges in their modeling and performance assessment.

Wireless is a broadcast medium and hence the nodes sharing a common spec-

trum in space interact through the interference they cause to one another.

Understanding the limitations due to interference and theoretically optimal

protocols in such a static spatial setting has long been considered in network

information theory under the interference channel [350]. The full characteri-

zation of the interference channel is however a long standing open-problem in

network information theory.

In recent years, Stochastic Geometry ([187], [42]) has emerged as a way

of assessing performance of wireless links in large-scale networks interacting

Parts of this chapter is published in [336]. The author was part of formulating, executing
and writing up the results in that paper.
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through interference in space. These tools have been very popular to model

and analyze wireless system performance for a variety of network architectures

including D2D networks, mobile-ad hoc networks [46] and cellular networks

[33]. However, the main drawback in these models is that they do not have

a notion of temporal interaction and do not allow one to represent random

traffic (they usually rely on a “full-buffer” assumption, i.e., every link always

has a packet to transmit).

This additional dimension of interaction among wireless links sharing

a common spectrum adds to the complexity of their performance analysis but

nonetheless is very crucial to understand network performance. Most prior

work aiming at studying the temporal interaction of links model spatial in-

teractions through binary on-off behavior encoded by interference or conflict

graphs. The temporal interactions are then modeled using queuing theoretic

ideas of flow based models (for ex: [85], [243], [276]). Such flow models have a

long history in applied mathematics and engineering. They were initially pro-

posed to study dynamic resource allocation in wired networks ([209], [263]),

and were subsequently used to model and study wireless networks. Flow based

queuing models have inspired many seminal results in applied probability and

networks in the past. The main drawback in employing such models in a wire-

less scenario however is that the spatial and information-theoretic interactions

are overly simplified and not captured precisely.

Motivated by this, we propose a new spatial flow model, which uses the

continuum space to model link interaction through interference as prescribed
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by the information-theoretic setting, and also takes into account the interaction

of links across time due to traffic variations. Roughly speaking, our model

consists of an interacting particle system in space, where links which is a

transmitter-receiver pair arrive in space according to a Poisson Point Process

in space-time. The transmitter of each link has a file which it wants to transmit

to its corresponding receiver. A link exits the network upon completion of this

file transfer. The instantaneous rate at which a transmitter can transmit a

file to its receiver is given by the instantaneous Shannon rate, which in turn

depends on the geometry of the other transmitters in the network transmitting

at that instant to their respective receivers. We study this space-time dynamics

to identify a phase-transition in the arrival rate such that each link can be

guaranteed to exit in finite time almost surely. The model and the question of

phase-transition is formalized in Section 2.2.

The mathematical framework we follow for spatial birth-death processes

has been studied in different contexts in the probability literature starting

from the work of Preston [308]. In recent years, [172] and [304] have also

studied in great detail, the problem of general spatial birth and death process

which is the basis of our modeling. From a methodological point of view, the

work of [57] is the closest in spirit to our work as it also studies a space-time

interacting particle process (of a wireline peer-to-peer network). There are

several fundamental differences between the model of [57], which is intrinsically

stable, and exhibits repulsion, and our model, which is potentially unstable

and which exhibits attraction (clustering). Another difference from [57] is
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that the death-rate (defined later) is a linear-function of the state whereas our

model is non-linear because of the information-theoretic formulation, thereby

making the analysis more challenging. Nevertheless, we use some of the ideas

developed in that paper.

From an information-theoretic viewpoint, one can interpret our model

and the phase-transition result as a form of dynamic network capacity. Our

network model can be interpreted as consisting of arrivals of a single antenna

Gaussian additive noise point-to-point channels in space. At each instant of

time, the network is a random realization of an interference network operating

under the scheme of treating interference as noise. The point-to-point channels

exit the network upon completion of a file transfer i.e., with the departures

happening in a space-time correlated way determined by our dynamics which

in turn is derived from the capacity region of an interference channel under

treating interference as noise. The phase-transition results in Theorems 1 and

3 give the maximum rate of arrival that can be supported in the network under

the scheme of treating interference as noise. Our model and the framework

could potentially be generalized to consider the dynamic capacity of other

channels like the Multiple Access Channels or Broadcast channels instead of

the Gaussian point-to-point channel considered in this thesis. In these models,

each arrival could consist of a single transmitter and multiple receivers or mul-

tiple transmitters and a single receiver which form a basic unit of the network.

This network can then be modeled to evolve in time through dynamics similar

in spirit to Equation (2.4). It is beyond the scope of the thesis however to pose
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the problem precisely in the case of multiple access or broadcast channels to

derive a phase-transition for dynamic capacity and leave this to future work.

Our model also presents a new form of single server queuing network.

Based on our model description in Section 2.2, one can come up with two nat-

ural queuing model bounds to study the performance of our model. One can

construct a ‘worse’ system by assuming that there is no distance dependent

attenuation and all transmitters contribute the same interference to any re-

ceiver. This system will predict larger delays than our original system since the

interference is higher. Moreover, since there is no geometry, this upper bound

system is equivalent to an M/M/1 generalized processor sharing system. On

the other hand, to come up with lower bounds for delay, one can totally neglect

interference and assume that the different links do not interact at all. This

assumption will render our model equivalent to an M/M/∞ system. One of

our key insight is that simplifying our model to any of the above two dynamics

which neglects spatial structure to provide bounds on delay leads to estimates

for delay which are very poor (as demonstrated in Section V.E). Thus, we

really need to consider the spatial structure as done in Section IV to come up

with estimates for delay and performance. The evolution of our model thus

presents a novel behavior of stochastic dynamics that cannot be captured by

a queuing model that neglects spatial interactions.

From an engineering viewpoint, this work is motivated by emerging

interest in applications like Device-to-Device (D2D) networks and Internet of

Things (IoT). These two applications can be viewed as an instance of our ab-
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stract mathematical model which is more general. D2D is being considered as

a viable networking architecture in future cellular standards to improve system

capacity by offloading some traffic from base-station to other mobile devices

that have the same content. Some of the more important use cases for such

offloading are in a crowded setting (like a stadium or a concert) where there

is a huge density of mobile devices. Another important application of D2D is

in enabling cellular operators to provide “proximity based services”. In such

settings, a mobile may access content (which we model as files) from nearby

mobile users possessing the content (which may be likely owing to geographi-

cal and temporal proximity) rather than from a base-station. Such networking

architectures are being envisioned to both reduce the load on the base-stations

and also to develop new markets for mobile services. Thus, a snapshot of a

D2D network will resemble our model with some mobile devices connecting

to and downloading files from other mobile devices that are nearby. IoT is

another technology gaining momentum due to the vast market opportunities

to develop user applications that leverage the IoT network (for instance in

tracking sensors for health, security etc). This network also resembles a wire-

less ad-hoc network with different things communicating occasionally data to

each other or to a central access point using the shared wireless medium.

2.1.1 Main Contributions

The main contributions of the present chapter are two-fold -

1. Stochastic Space-Time Dynamic Model:
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In Section 2.2, we define precisely the mathematical model of the net-

work along with the assumptions we are imposing for the mathematical

analysis. This model is one of the contributions of the present chapter

as it captures precisely the stochastic interactions and dynamics both in

space and time. In Section 2.3 we state the main mathematical results

of this chapter. In subsection 5.3 we give an exact characterization of

the time-ergodicity criterion i.e., give an explicit and simple formula to

determine the phase-transition for dynamic stability. This notion of sta-

bility will be made precise in the sequel in Section 2.2.5 . In section

2.3.2, we prove the intuitive result that, when it exists, the steady-state

point process in our model exhibits a form of statistical clustering (made

precise later), which is detrimental to performance as it creates higher

interference powers at typical receivers than in a network with complete

independence. We provide the proof of the ergodicity criterion in the

Appendix ( Section A.1) which requires the use of point-process theory

and in particular Palm calculus and stochastic coupling arguments. Our

proof techniques for handling dynamic point-processes are to the best of

our knowledge new and potentially useful for analyzing other similar dy-

namic models of wireless networks. More generally, from an information

theoretic perspective, we exhibit a form of dynamic network capacity

when treating interference as noise. Our modeling framework could po-

tentially be extended to consider the dynamic network capacity of other

more complex channels and pose interesting questions. From a queuing
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perspective, we exhibit through our model, a new form spatial queuing

which cannot be reduced to any traditional non-spatial queuing network.

2. Formulas for Delay and System Design Insights:

We provide an explicit closed form formula to compute the phase-transition

for dynamic stability in Section 2.3. The phase-transition result however

only provides whether the delay experienced by a typical link is finite

or not. In Section 2.4, we propose two formulas to approximately com-

pute the mean-number of links per-unit space and the average delay of

a typical link. The simplest heuristic is a first order Poisson approxima-

tion which relies on a single intensity parameter and hence cannot take

clustering into account. We also propose another heuristic, which is a

second order cavity type approximation of the second moment measure

[136] of the steady-state point process. We find through simulations,

that this heuristic works very well in all regimes. This heuristic is po-

tentially useful to derive explicit approximate formulas for mean delay

in other spatio-temporal models. From a practical networking perspec-

tive, closed form expressions for delay based on system parameters is

very crucial. The formulas for delay provide insight into how to dimen-

sion D2D networks in terms of maximum allowable space-time traffic

intensity or minimum spectral bandwidth needed to provide mean-delay

based guarantees to the links in the ad-hoc network.
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2.2 System Model - Birth-Death Process for Wireless
Flows

In this section, we describe the mathematical model of the dynamic

wireless network which we later analyze. Roughly speaking, our model of a

network is one wherein links which are transmitter-receiver pairs arrive into

the network which is Euclidean space. Each transmitter of a link has a file it

wants to send to its receiver. The speed or rate at which a transmitter can

send its file to the receiver is a function of the positions of other transmitters

transmitting files to their respective receivers. Upon completion of file transfer,

a link departs from the network. We make the above dynamic description of

the network more precise in the sequel. In subsection 2.2.1, we describe the

continuum network topology. In subsection 2.2.2, we describe the process of

link and traffic arrivals into the network. Subsection 2.2.3 gives the precise

description of how the instantaneous speed or instantaneous rate of file transfer

of a link is affected by the presence of other transmitting links. Finally, in

subsection 2.2.4, we put together the preceding parts by compactly describing

the arrival-departure dynamics of the wireless links.

2.2.1 Spatial Domain

The wireless links considered in this setup are transmitter-receiver pairs.

The network at any point of time consists of a certain number of transmitters

each transmitting to its own unique intended receiver. This is also commonly

referred to as the “dipole-model” of a D2D ad-hoc wireless network.
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The wireless links live in S ⊂ R2 = [−Q,Q]× [−Q,Q], a square region

of the Euclidean plane where Q is a large but fixed finite constant. To avoid

edge effects, we identify the opposite edges of the square and wrap it around

to form a torus. We denote by |S| as the area of the region S which is 4Q2. We

present the mathematical analysis assuming S is a square torus as it makes

exposition of proof ideas easier.

2.2.2 Links and Traffic Arrival Process

The links arrive into the network as a stationary marked space-time

process on S × R with intensity λ. This marked point-process on S × R is

denoted by A. An atom p ∈ Z of A represents the receiver and is denoted by

(xp, bp). xp ∈ S denotes the spatial location of receiver p and bp ∈ R denotes

the time of arrival into the network of receiver p. Hence, one can represent

the point process A as A =
∑

p∈Z δ(xp,bp), where δ(x,b) refers to the Dirac-mass

at (x, b) ∈ S×R. To each point p of A, we associate a vector mark of (yp, Lp),

where yp ∈ S and Lp ∈ R+, where yp refers to the location of the transmitter

of receiver p and Lp denotes the file-size which the transmitter of p wants to

send to the receiver of p. We refer to the pair (xp; yp) as link p whose receiver

is in location xp and transmitter in location yp. The length of link p is denoted

by Tp := ||xp − yp||.

The set of links present or alive in the network at time t is denoted

by φt i.e., φt = {(x1; y1), ..., (xNt ; yNt)}, where Nt is the number of links alive

in the network at time t. The exact dynamics describing which links are
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present at a particular time t will be specified in the sequel. More formally,

φt =
∑Nt

i=1 δxt is a point-process on S of receivers marked with the location of

their transmitters. We use the terminology “configuration of links” to refer to a

marked point-process on S (atoms representing the receiver locations) with its

marks (representing its corresponding transmitter locations) in S. We denote

by φTxt = {y1, · · · , yNt}, the point-process of transmitters present at time t in

the network and by φRxt = {x1, · · · , xNt}, the point process of receivers at time

t in the network.

This arrival process can be seen as an incarnation of links initiating

communication in a very dense IoT or a D2D network for instance. When a

link has a file to transmit (which comes rarely and randomly in time), a node

“switches on” and initiates contact with its receiver. Since the network is

dense and arrivals are rare, the spatial locations of links initiating connection

can be seen as coming from a space-time point-process which we model as the

link arrival process.

2.2.3 Data Rate

The transmitter of each link p has a file of size Lp measured in bits

which needs to be communicated to its receiver. The transmitter sends this

file to its receiver at a time varying rate given by the instantaneous Shannon

rate. Denote by l(·) : R+ → R+, a distance dependent ‘path-loss’ function

which encodes how signal power attenuates with distance. More precisely, l(r)

is the received power at distance r from a transmitter transmitting at unit-
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power. We can thus, define the rate of file transmission by a transmitter to its

receiver as

R(x, φ) = C log2

(
1 +

l(||x− y||)
N0 +

∑
u∈φTx\{y} l(||x− u||)

)
. (2.1)

In the above expression, C is a constant with units in bits per unit

time, N0 denotes the thermal noise power at the receiver,
∑

u∈φTx\{y} l(||x−u||)

denotes the interference seen at location x due to configuration φ and l(||x−y||)

is the received signal power at x from y. The interference at location x is the

sum of attenuated powers from the transmitters in φTx \ {y} which is the sum

of attenuated powers from all other transmitters other than the transmitter of

the tagged receiver under consideration. For any (x; y) ∈ φ, denote by I(x, φ)

as the interference seen at x in configuration φ, which can be written as

I(x, φ) =
∑

u∈φTx\{y}

l(||x− u||). (2.2)

Further, denote by a the constant (which can possibly be infinite) a =
∫
x∈S l(||x||)dx.

Some common examples of path-loss functions are

• l(r) = r−α with α > 2 called the “power-law path-loss” model.

• l(r) = (r+ k)−α where k is a constant is commonly called the “bounded

path-loss” model.

In our analysis however, we remain general and do not explicitly assume a

particular form for the function l(·). Equation (2.1) is the Shannon formula
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for the Gaussian SISO (Single Input Single Output) channel with signal power

1 and the interference treated as noise [130].

In Equation (2.1), we did not consider the effect of random channel

fading. However, one can easily model the effect of fast fading by defining the

rate-function as

R(f)(x, φ) = CEh

[
log2

(
1 +

hxy
N0 +

∑
t∈φT \{y} hxtl(||t− x||)

)]
, (2.3)

where hxy and htx are independent random-variables representing the values

of the fading power between the different transmitters and receiver and the

expectation is with respect to this random vector of fades h. All of our theoret-

ical results extend to this case but with a bit more notation and computation

cost and thus, we discuss only the case without fading. The reason for fast-

fading to not affect our theoretical insights is that both Equations (2.1) and

(2.3) are deterministic monotone functions of the point x and φ. The rate

functions are monotone in the sense that if (x; y) ∈ φ1 ⊆ φ2, then we have

R(x, φ1) ≥ R(x, φ2) and R(f)(x, φ1) ≥ R(f)(x, φ2). We see from the proofs of

our results, that these two (monotonicity and deterministic) are the crucial

aspects of rate function on which the results hinge on and hence, we will only

discuss the case without fading to simplify notation and convey the main ideas.

2.2.4 The Dynamics

This setup now allows one to precisely define the network dynamics. A

link arriving with receiver in location xp ∈ S and its transmitter at location
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yp ∈ S at time tp with file of size Lp leaves the network at time dp given by

the following recursive definition

dp = inf

{
t > bp :

∫ t

u=tp

R(xp, φu)du ≥ Lp

}
. (2.4)

In the above equation, φu denotes the point process of all links “alive” at time

u i.e., φRu =
∑

p∈Z δxp1{u∈[bp,dp]} and φTu =
∑

p∈Z δyp1{u∈[bp,dp]} where δx denotes

to the Dirac-measure at location x ∈ S. We refer to the time instant bp as

the “birth” time of link p and dp as the “death” time of link p. This is the

justification for calling this dynamics a “spatial birth-death” model, i.e., this

transmitter-receiver pair is “born” at time bp and “dies” at time dp and leaves

the network.

This model is the wireless analog of the “flow-level” model introduced

by Massoulie and Roberts [263] to evaluate and study wired networks, par-

ticularly the Internet. The flow-model in the present chapter is based on a

more precise modeling of the wireless interactions compared to the standard

conflict graph model of interference. This spatial birth-death model can also

be viewed as a “dynamic” version of the model considered in [51], namely the

Gaussian Interference channel with point-to-point codes. In our model, each

link or a “flow” is a Guassian point-to-point channel using a point-to-point

codebook and treats all Interference as Noise (IAN) as made evident in the

rate-formulation in Equation 2.1. It was shown in [51], that one can consider

other schemes such as Successive Interference Cancellation or Joint Optimal

Decoding to get strictly better performance than considering Interference as
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Noise in cases of static links that use ptp codes. We however only study the

dynamic version of treating IAN and leave the other cases for future work.

2.2.5 Mathematical Assumptions

All the analysis and results rely on the following assumptions on the

system model presented in the previous section.

1. The link arrival process is a time-space stationary Poisson Point Process

of intensity λ. The probability of an arrival of a receiver in an infinites-

imal location dx in an infinitesimal time interval dt is λdxdt.

2. The file sizes of each transmitter are i.i.d. and exponentially distributed

with mean L bits.

3. The transmitter location y of a receiver at x is assumed to be distributed

uniformly and independently of everything else on the perimeter of a ball

of radius T centered at x. In particular, the received signal power at any

receiver is l(T ).

4. The thermal noise power N0 > 0 is a fixed constant.

5. The path-loss function is bounded and non-increasing with l(0) = 1. This

is a reasonable assumption since energy is only dissipated on traveling

through space and the received energy can be no larger than the transmit

energy.

26



These assumptions (especially the statistical ones) are imposed primar-

ily for mathematical tractability. It is well known, at least in the context of

the Internet, that file sizes are Pareto [133] and it would make modeling sense

to assume heavy-tailed file sizes. We will relax the statistical assumption on

exponential file-sizes in the simulation studies. Nonetheless, studying the sys-

tem under the Markovian statistical assumptions form a necessary first step

before considering the general case.

In our model, we have that all links have the same length of T . This

is commonly referred to as the ‘Dipole-Model’ of an ad-hoc wireless network

[42]. An interesting limiting case is that of T = 0. This corresponds to the

physical case of when the link lengths are very small compared to the size of

the network. In this limiting case, the point process φt is simple and unmarked

since the transmitter and receiver locations are identical, and the signal power

is l(0) = 1. The interference function at a point x from configuration φ is

then I(x, φ) =
∑

y∈φ\{x} l(||y − x||). We mention this limiting case here as it

will help us to get a much better understanding of what our theoretical results

imply, especially that of clustering (defined later in Definition 4). However, all

of our mathematical results are valid for general arbitrary link distances T .

Although the assumptions may render the model somewhat specific,

it still presents a formidable mathematical challenge and captures the key

features of a spatio-temporal dynamic wireless network. Most prior works

incorporating spatial interference circumvent this mathematical difficulty by

making ‘full-buffer’ assumptions which is equivalent to assuming no temporal
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interactions. Our results, especially the closed form expressions for approxi-

mating of delay are the first in the context of spatio-temporal wireless network

models to the best of our knowledge.

The statistical assumptions, namely the Poisson arrival process and

i.i.d. exponential file sizes imply that the process φt is a continuous time

measure-valued Markov Chain on the state space of marked simple counting

measure on S denoted as M(S) [136]. More precisely, the process φt is a piece-

wise constant jump Markov Process i.e., from a time t, the next change in the

configuration will occur after an exponentially distributed time duration with

rate λ|S|+ 1
L

∑
x∈φt R(x, φt). This interpretation follows since births occur at

the epochs of an exponential clock with rate λ|S| and the death rate of any

receiver x in configuration φ is 1
L
R(x, φ) which is independent of everything

else. The assumption Q < ∞ ensures that φt is a piece-wise constant jump

process. Extending the analysis of stability to the case of S = R2 is way more

challenging and is left for future work. The large torus is meant to emulate

the Euclidean space. The fact that it is similar to the Euclidean space (in

terms of interference field and hence birth and death dynamics) justifies our

use of the Palm calculus of the Euclidean space rather than that of the torus

in some derivations.

The first natural question we ask about φt is that of time ergodicity

which we address in the next section. Time ergodicity implies that the process

φt admits an unique steady-state in which the links form a stationary and

space-ergodic point process on S. Moreover, since S is a compact set, the
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stationary-regime when it exists will put only finitely many points in S at any

given instant almost-surely. Denote by φ0 the steady-state point-process of

links i.e., the links that are “alive” or active in steady-state. φ0 is a point-

process on S with atoms representing the locations of receivers and marks

representing the relative transmitter locations.

Denote by β the density of links present in the network in steady-state

(assuming it exists). More formally, β denotes the intensity of the receiver

point-process φRx0 (which is the ground point process of φ0) on S when the

dynamics is in steady state. Note that the intensity of the transmitter point-

process φTx0 in steady-state is also β since every receiver in the model has

exactly one transmitter. The distribution of the relative location of the trans-

mitter of a typical receiver of φRx0 is uniform on the perimeter of a ball of

radius T around this receiver. However, the transmitter locations across dif-

ferent receivers of φRx0 are not independent due to the correlation (clustering)

induced by the dynamics.

The interpretation of time ergodicity is also connected to the phase-

transition of mean delay. Little’s law for this dynamics yields β = λW , where

W is the average sojourn time of a typical link i.e., W = E[d0 − b0]; which

follows from PASTA [387]. The process φt being time ergodic in our model

is equivalent to asserting that W < ∞, i.e., finite mean delay for a typical

link in the network. This interpretation is what we allude to in the system

insight section which allows one to evaluate how frequently in space and time

should the traffic arrival process be (i.e., how large λ) can be for the network
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to provide finite mean-delay to all links.

2.3 Main Theoretical Results

The main theoretical results are on the time-ergodicity (or stability)

conditions of the dynamics φt and on a certain structural characterization of

the steady-state point process of φt whenever it exists. The proofs of the

theorems are presented in the Appendix.

2.3.1 Stability Criterion

We state our main theoretical results on the stability criterion (i.e.,

time ergodicity) of the dynamics.

Theorem 1. If λ > Cl(T )
ln(2)La

, then the Markov Chain φt admits no stationary

regime.

We see from the proof (in Section A.1) that this theorem only needs the

weaker assumption that l(·) be such that l(r) <∞ for all r > 0. This indeed is

a weaker assumption than assuming that the function l(·) is bounded. Thus,

we have as immediate corollary to this theorem:

Corollary 2. For the path-loss model l(r) = r−α, α ≥ 2, for all λ > 0, and

all mean file sizes, the process φt admits no stationary-regime.

Proof. This follows since the integral
∫
x∈S l(||x||)dx diverges for the function

l(r) = r−α for all α ≥ 2.
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The next result provides a tight condition for time ergodicity.

Theorem 3. If λ < Cl(T )
ln(2)La

, then the Markov Chain φt is time ergodic, i.e.,

has an unique stationary regime.

Both of these Theorems are proved in Appendix A. We note that the

above theorems statements are valid as is even in the case of fading if one

used the rate-function in Equation (2.3) with the fades being unit-mean i.i.d.

random variables. The two theorems identify the exact critical arrival rate λ

for ergodicity as λc = Cl(T )
L ln(2)a

. We however refrain from studying the critical

case as it is technically more subtle. In the sequel, whenever we refer to φ0,

we implicitly assume φt is ergodic, i.e., the condition λ < C
ln(2)La

holds.

2.3.2 Clustering

In this section, we state the main structural characterization of the

steady-state point process φ0 when it exists i.e., when λ < C
L ln(2)a

. We need

the following definition of clustering.

Definition 4. (CLUSTERING) Let φ be a stationary configuration of links,

i.e., it is a stationary marked point-process on S with its marks in S. Then

φ is said to be clustered if for all bounded, positive, non-increasing functions

f(·) : R+ → R+, the following inequality holds

E0
φ[F (0, φ)] ≥ E[F (0, φ)], (2.5)

where F is the shot-noise defined as follows. For any atom (receiver) x ∈ φ
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with its corresponding mark (transmitter) y ∈ S, the shot noise F (x, φ) :=∑
T∈φTx\{y} f(||T − x||).

Theorem 5. If the dynamics φt is ergodic, then the steady state point process

φ0 is clustered.

By substituting f(·) = l(·) in Equation (2.5) , we get that the mean of

the interference measured at any uniformly randomly chosen receiver in the

steady-state point process (this is the interpretation of the Palm probability) is

larger than the mean of the interference measured at any uniformly randomly

chosen location of space in S.

To understand why the above definition is a form of clustering, consider

the case T = 0 which gives a clearer picture. In this case, Theorem (5) gives

a clustering comparison of φ0 with a Poisson Point Process (PPP) of same

intensity. Let ψ be a PPP of the same intensity as φ0. Then, from Slivnyak’s

theorem (Theorem 1.4.5, [42]), one can rewrite the inequality in (2.5) as

E0
φ0

[F (0, φ0)] ≥ E0
ψ[F (0, φ0)], (2.6)

where E0
ψ[F (0, φ0)] = E[F (0, ψ)] follows from Slivnyak’s theorem which is

equal to β
∫
x∈S f(||x||)dx from Campbell’s Theorem (Theorem 1.4.3, [42]).

Slivnyak’s theorem essentially gives that the PPP has no clustering i.e., the

Inequality 2.5 is an equality. Hence, we automatically have a shot noise com-

parison of the steady state point process φ0 with a PPP.

The comparison with a PPP also gives us a comparison of the Ripley

K-function [279] of φ0 with that of a PPP. The Ripley K-function Kφ(·) :
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R+ → R+ of a point-process φ is defined as Kφ(r) = 1
β
E0
φ[φ(B(0, r)) − 1]

where β is the intensity of φ and E0
φ is the Palm probability measure of φ.

This function can be interpretted as the mean number of points (scaled by the

intensity of the point-process) within distance r to the origin conditioned on

a point of φ to be present at the origin. The Ripley K-function is commonly

used in statistical analysis of point-patterns to identify if an empirical data-set

exhibits statistical clustering [279]. Based on the shot-noise comparison with

a PPP, we have the following corollary.

Corollary 6. Assume φt is in steady-state and T = 0. Denote by β to

be the intensity of φ0 and ψ to be a PPP on S with intensity β. Then,

Kφ0(r) ≥ Kψ(r).

Proof. Consider f(x) = 1(x ≤ r) in Theorem 5.

We will use Ripley K-function in the simulations to compare the point

process φ0 with a PPP to derive a bound on the intensity β of φ0 as a function

of λ, L and l(·).

Intuitively, it is not surprising to expect a clustered point-process in

steady state. An arriving link gets lower rate if it is in a crowded area of

transmitters, due to interference. This arriving link also causes more interfer-

ence to the cluster of links already present thereby causing more interference

and slowing everyone down. This reinforcement of service slowdown is actually

the fundamental reason making the system always unstable in the power law

attenuation function case. More generally, when φt is sampled in steady-state,
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it is expected to be clustered as formalized by Theorem 5. A snapshot of the

point-process φ0 is presented in Figure 2.4 which gives a visual illustration of

the clustering.

2.4 Performance Analysis - Steady State Formulas

In this section, we propose two heuristic formulas for β the intensity of

the point process φ0 as a function of λ. Note that a heuristic formula for β

gives a heuristic formula for mean delay W through Little’s Law (β = λW ).

We propose two formulas - βf called the Poisson Heuristic and βs called

Second-Order heuristic to approximate β the intensity of the steady-state point

process φ0. We show that subject to a natural conjecture (Conjecture 8), βf

is a lower bound on β. We see from simulations however that βs is a much

better approximation of β compared to βf . Both formulas are derived based

on approximately evaluating the following Equation which we establish in

Equation (A.3) in the Appendix.

λL = βE0
φ0

[
log2

(
1 +

l(T )

N0 + I(0, φ0)

)]
. (2.7)

The Poisson Heuristic

The Poisson heuristic formula βf is given by the largest solution to the

following fixed point equation

λL =
βf

ln(2)

∫ ∞
z=0

e−N0z(1− e−zl(T ))

z
e−βf q(z)dz, (2.8)
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where q(z) =
∫
x∈S(1−e−zl(||x||))dx. This formula is obtained by approximating

the expectation in Equation (2.7) by assuming the following “Independent

Poisson heuristic”. We assume that φ0 is an independently marked Poisson-

Point process with the transmitter locations of different receivers in φ0 being

independent. Since the transmitter locations are assumed to be independent,

the process φTx0 will also be a PPP in this Poisson heuristic. We state the

following lemma without proof from [190] which is useful in computing the

expectation under the Poisson assumption.

Lemma 7. Let X, Y be non-negative and independent Random Variables.

Then,

E
[
ln

(
1 +

X

Y + a

)]
=

∫ ∞
z=0

e−az

z
(1− E[e−zX ])E[e−zY ]dz.

We can then explicitly compute the expectation in Equation (2.7) by

letting X = l(T ) to be deterministic and Y = I(0, φ0) as follows

λL = βfE0
ψ

[
log2

(
1 +

l(T )

N0 + I(0)

)]
(a)
= βfEψ

[
log2

(
1 +

l(T )

N0 + I(0)

)]
(b)
=

βf
ln(2)

∫ ∞
z=0

e−N0z(1− e−zl(T ))

z
e−βf q(z)dz,

where q(z) =
∫
x∈S(1 − e−zl(||x||))dx and ψ is a Poisson Point Process on S

with intensity βf . The equality (a) follows from Slivnyak’s theorem and the
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equality (b) follows from Lemma 7 and the formula for the Laplace functional

of a Poisson Point Process. The subscript f refers to the computation of the

density under this Poisson heuristic. This establishes the formula in Equation

(2.8).

We now make the following conjecture on the higher-order moment

measures of φ0, which we will leverage to show that βf is a lower bound on β.

Conjecture 8. Let φ0 be the point process on S corresponding to the station-

ary distribution of φt with intensity β. Denote by ψ to be an independently

marked Poisson Point Process on S with intensity β. The mark of any atom

x of ψ is a point y drawn uniformly on the perimeter of a circle of radius T

around x. Then, for any s > 0, we have E0
φ0

[e−sI(0;φ0)] ≤ E0
ψ[e−sI(0;ψ)].

Note that from Slivnyak’s theorem we also have E0
ψ[e−sI(0;ψ)] = Eψ[e−sI(0;ψ)].

This conjecture which is validated through simulations in Figure 2.1, is a

slightly different statement on the structural characterization of φ0 than stated

in Theorem 5. This conjecture gives that the Laplace transform of the inter-

ference measured at a typical receiver of φ0 is larger than that measured at a

typical receiver of an equivalent PPP. In general, whenever we have ordering

of the mean, then we have ordering of the Laplace Transform only as s → 0.

This ordering for the Laplace transform as s → 0 follows from Taylor’s ex-

pansion that e−sx ≈ 1 − sx as s → 0. However, in our case, we believe that

the ordering on the Laplace transform holds for all s ≥ 0 but we are unable

to prove so. The intuition for this follows from the pictorial interpretation
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that there are roughly the same number of interfering transmitters around a

typical receiver in φ0 and ψ since the intensities of φ0 and ψ are the same.

However, the interfering transmitters are closer to the typical receiver in φ0

as compared to in ψ. This intuition follows from Corollary 6 where we had

ordering of the Ripley-K function of φ0 and ψ. This pictorial interpretation

then gives an intuition for the conjecture since, the interference is the sum

of attenuated powers from interfering transmitters where the attenuation is

through a function that is non-increasing with distance. Thus, I(0) is the

sum of roughly the same number of terms in both φ0 and in ψ, but each of

the terms are slightly larger in φ0 than in ψ. This interpretation can possibly

be made rigorous in the asymptotic regime as λ ↑ λc by alluding to certain

concentration phenomenon. However, we see from simulations that this con-

jecture holds true for all regimes of λ. This conjecture is further substantiated

in Figure (2.2) which underpins Proposition 9.

The ordering of the mean does not always imply the ordering of Laplace

transforms in general. As a very simple example consider two random variables

X and Y where X takes values {1, 2, 3, 4} with probabilities
{

1
6
, 1

3
, 1

6
, 1

3

}
and Y

is deterministic and takes value of 2. Here E[X] = 8
3

and E[Y ] = 2. However,

for s = 1.1, E[e−sX ] > E[e−sY ]. More generally if E[X] ≥ E[Y ] but the higher

order moments are ordered in the opposite direction, then one cannot expect

an ordering on the Laplace-transform.

Proposition 9. Subject to Conjecture (8), we have that β ≥ βf , where βf is

the largest solution of Equation (2.8).
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Figure 2.1: A plot comparing the functions E0
φ0

[e−sI(0;φ0)] and E0
ψ[e−sI(0;ψ)], for

l(r) = (r + 1)−4.

Proof. Let g(β) = βE0
φ0

[R(0;φ0)] (where φ0 has intensity β) and let p(β) =

βE0
ψ[R(0;ψ)] where ψ is a PPP on S with intensity β. Rate-conservation equa-

tion (2.7) gives that λL = g(β) and our heuristic computation is λL = p(βf ).

From our conjecture and Lemma 7, we have the inequality g(β) ≤ p(β). The

function g(β) = βE0
φ0

[R(0;φ0)] is monotone non-decreasing in β as it de-

scribes the true dynamics through the equation λL = g(β). The monotonicity

of g(·) along with the inequality g(β) ≤ p(β) gives the performance bound

β ≥ βf .

Proposition 9 gives that βf |S| is a lower bound on the mean number

of links present in the network in steady state and
βf
λ

, as a lower bound on

mean-delay of a typical link.

The Poisson heuristic completely ignores the spatial clustering we es-

tablished in Theorem 5 and assumes complete-spatial randomness. Since it

does not account for the clustering it underestimates the typical interference

seen at a receiver and therefore predicts a lower density of links. We see
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Figure 2.2: The performance plot with 95% confidence interval when T = 0
and l(r) = (r + 1)−4.

through simulations, that this heuristic is poor (i.e., the gap between β and βf

is large) in certain traffic regimes (Figure 2.2). This is not surprising as one

cannot neglect the effect of spatial correlations except in asymptotic regimes

of heavy and light-traffic (detailed later). Motivated by the poor performance

of the Poisson heuristic in certain regimes, we propose a “second-order heuris-

tic” βs which takes into account the spatial correlations by considering an

approximation of the second-order moment measure of φ0. We see through

simulations (Figure 2.2) that βs is a much better approximation of β than βf

in all traffic regimes.
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Second-Order Heuristic

We propose a heuristic formula βs for approximating β in Equation

(2.9). For all values of T , βs is given by

βs =
λL

C log2

(
1 + l(T )

N0+Is

) , (2.9)

where Is is the smallest solution of the fixed-point equation

Is = λL

∫
x∈S

l(||x||)

C log2

(
1 + l(T )

N0+Is+l(||x||)

)dx. (2.10)

We call the heuristic in Equation (2.9) a second-order heuristic since

it follows from an approximation of the second-order moment measure of φ0

as follows. Let Is denote the interference of a typical point at φ0 and assume

it is non-random and equal to its mean. Then, Equation (2.9) follows from

Rate-Conservation in Equation (2.7). To compute Is, we use the following

approximation of the second order moment measure ρ(2)(x, y) of φ0 as

ρ(2)(x, y) ≈ βλL

C log2

(
1 + l(T )

N0+Is+l(||x−y||)

) . (2.11)

Intuitively, the approximation is a form of cavity approximation which

can be understood as follows. Two points at locations x and y will each “see”

an interference of Is which is the interference of a typical point plus the addi-

tional interference caused by the presence of the other point. Using the above

interpretation of interference, Equation (2.11) is a form of Rate-Conservation

on the pair of points at x and y. The average increase of the pair happens at
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rate 2λβ and the average decrease of the pair happens at the rate equal to the

sum of rates (since file-sizes are i.i.d. exponential) received by points x and y

which is approximately 2(C/L) log2(1+ l(T )
N0+Is+l(||x−y||)) from the cavity approx-

imation. Now, using the fact that E0
φ0

[I0] := Is = 1
β

∫
x∈S l(||x||)ρ

(2)(x, 0)dx, we

get Equation (2.10) from Equation (2.11).

The heuristic βs is compared against the true β and the Poisson heuris-

tic βf in Figure 2.2. The second-order heuristic performs much better com-

pared to the Poisson-heuristic as it takes into account some notion of spatial

correlations which the Poisson heuristic completely ignores.

2.5 Simulation Studies

We perform simulations to gain a finer understanding of our model.

We see that the bound in Proposition 9 is tight in the two asymptotic regimes

of light and heavy-traffic where the effect of spatial correlations vanishes. We

also argue that, in these two asymptotic regimes, the heuristic βs is “close” to

βf thereby implying that βs is also a good approximation to β. As noticed in

Figure 2.2, βf is a poor approximation to β compared to βs in the intermediate

traffic-regime which we further highlight in this section.

To explore the impact of spatial correlations, we study the tails of delay

of a typical link and correlation between delays of different links in space.

We observe that our model exhibits marked difference in terms of tail delay

behavior from that of an equivalent queuing system which is obtained by a

“spatial-fluid” approximation. We conclude from these studies that although
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our model resembles that of a queue (for e.g. the dynamics satisfies Little’s

Law), there are significant differences due to the spatial correlations, which

in hindsight is not so surprising. We finally perform simulations with heavy-

tailed file size distribution and observe qualitatively the same phenomena as

seen under exponential file-size distribution. We state our simulation results

as claims which are not formal conjectures, but are meant to provide a starting

point for future research.

2.5.1 Simulation Setup

The path-loss function we consider is l(r) = (r + 1)−4. Although all

of the results qualitatively hold for any bounded-non-increasing function, we

choose this power law function due to its wide-spread popularity in modeling

wireless propagation. We assume unit link-length T = 1 unless otherwise

mentioned. We however note that all the qualitative results carry over for any

value of T including the case of T = 0. The pictures of point-process and the

Ripley K-functions we test are those corresponding to the receivers.

2.5.2 Tightness of βf

We study the bound in Proposition 9 by empirically noticing how much

Kφ0 , the Ripley K-function of φ0, deviates from that of an equivalent PPP

denoted by KPPP. The two Ripley K-functions being almost identical implies

that the steady-state is “almost” Poisson and thereby the bound in Proposition

9 is good. On the other hand, if there is significant deviation between the two
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Ripley K-function, then the bound is poor. We know from Corollary 6 that

Kφ0(r) ≥ KPPP(r) for all r ≥ 0. Here, we are interested in seeing how large

this difference can be.

To plot the Ripley K-functions, we simulated the Markov chain φt in

forward time for a long time to obtain a single sample of the steady-state φ0.

We used the Spatstat package in R [60] to perform spatial statistics and plot

Kφ0 . A single sample is sufficient as we take a large enough space (i.e., large S)

so that a single sample of φ0 has about 500 points. Due to spatial ergodicity

of φ0, we get a smooth estimate of the K-function from a single sample.

We observe in Figures ??, ?? and ??, that the functions Kφ0 and KPPP

are very close in heavy and light traffic and are very different in intermediate

traffic. The heavy traffic corresponds to the scenario when λ is very close

to the critical λc and the light traffic corresponds to the case when λ is very

“close” to 0. We do not rigorously demarcate the exact space-time scaling

needed to define the two asymptotic limiting regimes as it is beyond the scope

of this thesis.

Claim 10. φ0 is almost Poisson in light-traffic. Moreover, the delay of a typical

link converges weakly to an exponential distribution with mean L log2

(
1 + 1

N0

)−1

as λ→ 0.

In the light-traffic regime, λ is very “small” compared to L, and thereby

β is also “small”. This then implies that the distribution for the interference

I(0, φ0) is close to 0, thereby making the interaction between the points al-
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most negligible. The rate-function can then be approximated as R(x, φ) ≈

log2

(
1 + 1

N0

)
and the dynamics resembles that of a spatial M/M/∞ queue

whose stationary spatial distribution is a PPP. The intensity β in this regime

is βl = λ
(

log2

(
1 + 1

N0

))−1

. The subscript l refers to the density computation

in the interaction-less approximation. Figure ?? provides numerical evidence

that φ0 exhibits very little clustering in this regime and is “close” to a PPP.

Claim 11. In the heavy-traffic regime, φ0 is almost Poisson, i.e., the effect of

clustering vanishes as λ→ λc.

The intuition behind the heavy-traffic behavior is that as λ approaches

λc, the stationary distribution is very dense, i.e., β is large. Hence, the inter-

ference of a typical arriving link is mainly dominated by the local geometry

which does not change much during the life-time of the typical link. This in-

dicates that the dynamics behaves very similarly to a heavily loaded M/M/1

Processor Sharing (PS) queue and the correlation across space is negligible

in this regime. Moreover, it is easy to see that λ = λc is an asymptote for

Equation (2.8) i.e., as λ → λc, βf → ∞. This further strengthens the belief

that the stationary distribution is close to Poisson in the heavy-traffic regime

as it predicts the correct stability boundary. Making this claim rigorous or

even just state a mathematical conjecture is quite challenging and would re-

quire an appropriate scaling of space and time similar to the diffusion scaling

considered for a single server PS queue [181].
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Figure 2.3: Plot comparing the Empirical Ripley K-function Kφ0 with that of
an equivalent PPP. The path loss function is l(r) = (r + 1)−4, T = 1. The
critical λc = 1.42. This shows that there is little clustering in the heavy and
light traffic regimes but significant clustering in the intermediate regime.

2.5.3 Tightness of βs

We argue here that in both the low and heavy-traffic regimes, the ap-

proximation βs is close to βf and is hence a good approximation of the true

β. In low-traffic, as λ → 0, the smallest solution of Equation (2.10) tends

to 0 and hence the formula for βs ≈ λL

C log2

(
1+ 1

N0

) . This from Claim 10 gives

that βs and βf predict the same value in low-traffic. In high-traffic regime,

as λ → λc, the value of Is from Equation (2.10) is very high. Thus, the

second-order moment-measure approximation ρ(2)(x, y) in Equation (2.11) is

almost constant i.e., does not depend of the actual values of x and y as l(·) is

a bounded function. This implies that the effect of clustering vanishes in this

heuristic and hence is close to βf .
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2.5.4 Intermediate Clustered Regime

In the intermediate regime, the Poisson approximation is poor and the

steady state-point process is quite clustered (see Figures 2.4 and ??) i.e., Kφ0 is

much larger than KPPP. However, we see from Figure 2.2 that the second-order

heuristic βs performs much better than the Poisson heuristic in this regime as

it takes into account some form of spatial-correlations atleast upto second-

order moment measure of φ0. However, Figure 2.4 which shows a snapshot of

φ0 which is a clustered process is very interesting as it indicates finer properties

of higher order moment measures. One observes for instance “filaments” of

points which are locally directional in-spite of the fact that the dynamics is

isotropic. Such behavior indicates that the higher order moment measures of

φ0 (of order greater than 2) may have interesting properties which we capture

neither in Theorem 5 nor in the second order heuristic βs. Understanding the

higher order moment measure of φ0 can also aid in proposing a provably better

performance bound in this intermediate regime. Studying these higher order

moment measures of φ0 will be a very interesting and challenging direction of

research.

2.5.5 Delay Tails

To get a heuristic understanding of the delay tails, one would be tempted

at first glance to approximate our model by an equivalent M/M/1 PS queue

using a spatial-fluid approximation that neglects randomness in space. We see

through simulations that any approximation that neglects spatial interactions
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Figure 2.4: A sample of φ0 when λ = 0.99 and l(r) = (r + 1)−4. This is a
visual representation of the clustering of points.

will predict much larger delays for a typical link than the true delays in our

model.

Claim 12. The delay tails in our model are exponential and have a faster

decay than that of an equivalent M/M/1 PS queue obtained by a “spatial-

fluid” approximation.

An equivalent M/M/1 PS queue approximation has the following pa-

rameters - arrival rate λ, service requirement of mean L and service capac-

ity of the server λc which is split equally among all customers in the queue.

Such a PS queuing model is equivalent to a first-order approximation where

the spatial randomness vanishes and a point in steady-state receives rate of

C log2

(
1 + 1

N0+βa

)
where β is the density of points in steady-state. Hence,

the quantity C
ln(2)a

(which is an upper bound on the total rate given to all

points i.e., Cβ log2

(
1 + 1

N0+βa

)
≤ C

ln(2)a
) can be seen as the maximum service
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capacity of the spectrum in S which is equally shared by all links accessing

the spectrum. Another simple picture as to why the above M/M/1 PS queue

is a simple heuristic is to observe that this queue corresponds to the scenario

when one ignores spatial interactions among the arriving points and assumes

that the total spectrum “capacity” of λc is shared equally among all the links

sharing the spectrum in S. Hence, the mean-delay under the M/M/1 - PS

model for a typical point is L
λc−λ and the stability criteria for this queue is the

same as that for our spatial model. However, we note from simulations (Fig-

ure 2.6) that the delay tails predicted by the heuristic M/M/1 queue which

completely ignores spatial interactions are much larger than those observed in

our model.

The poor performance of the queuing approximation can be understood

by studying the correlation between the delays of different links. In Figure 2.7,

we plot the correlation between the delay experienced by two links arriving

at the same time as a function of their distance. We consider the T = 0 case

and hence the distance between two links is just the distance between the two

points. Numerically, we plotted Figure 2.7 by first sampling a steady-state

point process (by running the Markov Chain φt for a long time) and then in-

troducing two additional links to this sample with independent file-sizes. We

then run the dynamics from this state until the two additional links die and

then compute the correlation between their delays

We see from Figure 2.7 that as the distance between the two links
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increases, the delays of the two links are almost uncorrelated even though

they arrive at the same time. This indicates that, two links arriving at the

same time will be almost oblivious to each other and will each roughly receive

independent service if they arrive far enough apart in space. This is unlike in

the M/M/1 - PS queue approximation where two customers arriving at the

same time have positively associated delays as both of them will be competing

for the same spectrum resource. This suggests that the spatial heterogeneity

is key in extracting more “service” from the spectrum than predicted by a

model which considers spectrum as a fixed quantity of good to be divided

among contending links.
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Figure 2.5: Plot of logarithm of CCDF of delay.

2.5.6 Heavy Tailed File Sizes

Claim 13. φt, with file-sizes being Pareto distributed of mean L and finite

variance, admits a stationary regime with the critical λ being smaller than or

equal to C
ln(2)La

.
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Figure 2.6: Comparison of the delays with that of an equivalent M/M/1 - PS
queue. The critical λc = 1.42.
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Figure 2.7: Decay of delay correlation of two points born at the same time, as
a function of their distance. λ = 0.8.

This model also exhibits the interesting phenomenon of prominent clus-

tering in the intermediate traffic regime and very little to no-clustering in the

asymptotic regimes of high and low traffic. Note that the term “high-traffic” in

this context is somewhat loose since we do not even know exactly the stability

region. With regards to delays, our model predicts tails that are stochasti-

cally dominated by the delay of a typical customer of an equivalent M/GI/1

PS queue (see Figure 2.8). The equivalent queue we compared against had

a capacity of λc which from Claim 13 is an upper bound on the capacity.

Nonetheless, the delay predicted in our model is stochastically smaller. This
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observation again highlights the importance of taking into account the spatial

heterogeneity in modeling the “service” provided by the spectrum.
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Figure 2.8: Comparision of the delay under Pareto file size distribution with
mean L and shape α = 2.5.

2.6 Conclusion and Future Work

In this chapter, we proposed a novel space-time interacting particle

system to model spectrum sharing in ad-hoc wireless networks. We computed

exactly the phase-transition point for time ergodicity. We also proved the in-

tuitive fact that the steady-state point-process corresponding to this dynamics

exhibits clustering. In order to understand the performance metric of density

of links in steady-state, we proposed a Poisson heuristic βf (which is a bound

subject to Conjecture 8) and a second order heuristic βs. We saw from sim-

ulations that both the heuristics are tight in the two asymptotic regimes of

heavy and light traffic. However, in the intermediate traffic regime, we found

that the heuristic βs performs much better compared to the Poisson heuristic

βf as βs accounts for some spatial correlations which are non negligible in this

regime. We also saw through simulations that any form of simplistic model-
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ing of spatio-temporal interactions through PPP or equivalent queues ignoring

spatial clustering, leads to poor estimates for performance.

From a mathematical perspective, we identified several challenging di-

rections of future work in the simulation section. In particular, understanding

the higher order moment measure of φ0 will be key in evaluating or providing

provably tighter bounds for performance metrics. Understanding the higher-

order moment measures may also aid in making progress on Conjecture 8.

From an information-theoretic perspective, we considered a dynamic inter-

ference network where links treat interference as noise. However, it will be

interesting to consider other receiver schemes such as Successive Interference

Cancellation or Joint-Decoding and show that the critical arrival rate for these

schemes are strictly better than considering all Interference as Noise. This

will then yield the complete dynamic version of the model considered in [51],

namely a dynamic version of an interference network with point-to-point (ptp)

codes. In this thesis, we carry out the program started here in the case when

the spatial domain is infinite. This is particularly interesting both mathemat-

ically, as it will require the development of new tools and ideas and also from

an engineering perspective
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Chapter 3

Interference Queueing Networks on Grids

3.1 Introduction

In this chapter, we continue the line of inquiry started in the previous

chapter on the spatial-birth death model for a wireless network. We refer the

reader to Chapter 2 for practical and applied motivations based on emerging

wireless networks to study such spatial birth-death processes. In the previous

chapter, we showed that when the arrival rate is sufficiently small, the network,

which forms a Markov process on the space of all marked point processes on

a finite torus S admits a stationary regime. The key factor that was used

throughout in our analysis was that the spatial domain S was a compact subset

of the Euclidean plane. Thus, we could stochastically dominate the Markov

process above and below by finite dimensional Markov chains, and use the

classical theory of such Markov processes to reason about the behaviour of our

spatial birth death dynamics. However, the results and analysis presented in

that chapter does not answer if the dynamics instead were defined on an infinite

domain, (i.e., S = Rd), then what would be its behaviour, and in particular,

does it also admit a stationary regime for λ smaller than the identified critical

Parts of this chapter is published in [338]. The author was part of formulating, executing
and writing up the results in that paper.
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arrival rate. The main motivation of study in this chapter thus is to advance

our understanding of the spatial birth-death wireless network dynamics on

infinite domains.

To this effect, we introduce a discretized version of the spatial birth-

death model, where the spatial domain is the integer grid. However, we cru-

cially consider the case when the spatial domain is infinite, i.e., the spatial

domain is the infinite grid. Recall from the proof of Theorem 3, the behaviour

of the dynamics on a discrete grid is in a precise sense a good approxima-

tion of the dynamics on the continuum. Hence, we decided to focus on the

discrete space setting in this chapter. In future work, we plan to extend the

ideas developed in this chapter to study the continuum space case. From a

practical viewpoint, one may wonder what modeling benefits does a network

model comprising of an infinite space bring. Our motivations to study an in-

finite network model are two fold. First, from a mathematical point of view,

the infinite model provides an elegant method of modeling dynamics on clas-

sical stochastic geometric objects, which are typically defined on an infinite

domain. The infinite domain also presents us with certain algebraic symme-

tries such as translation invariance which greatly aid in understanding the

dynamics both qualitatively and quantitatively. We see in all the proofs that

translation invariance plays a very key role. Second and more importantly in

our context, the infinite network provides a clean mathematical abstraction to

understand many phenomena pertaining to large finite networks. Just as in

the Ising Model [241] for example, in our case, the infinite model could poten-
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tially admit multiple stationary distributions (See Theorem 25 and the remark

following it). If it is the case, by analogy to the Ising model, it could indi-

cate the presence of long range spatial correlations. Practically, operating the

network in this ‘phase’ could be undesirable. Thus understanding the infinite

model could pave the way for more refined analysis of large finite networks, as

done for other interacting particle systems such as the Ising model. In view of

this, we find it important to describe and analyze the infinite network model

along with large finite networks.

3.1.1 Organization of the Chapter

We describe the model in Section 3.2 and state the main results of

this chapter in Section 3.3. For brevity, we skip presenting the proofs of all

the results and refer the reader to [338] for the proofs. Instead, we highlight

the main technical challenges and provide ideas and proof sketches in Section

3.4 and Chapter B. We survey related work in Section 3.5 and conclude the

chapter in Section 3.6.

3.2 Mathematical Framework and the Network Model

Formally, we consider a spatial queueing network consisting of an in-

finite collection of processor sharing queues interacting with each other in

a translation invariant way. In our model, there is a queue located at each

grid point of Zd, for some d ≥ 1. The queues evolve in continuous time and

serve the customers according to a generalized processor-sharing discipline.
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The arrivals to the queues form a collection of i.i.d. Poisson Point Processes

of rate λ > 0. Thus, the total arrival rate to the network is infinite since

there is an infinite number of queues. The different queues interact through

their departure rates. We model the interactions through an interference se-

quence that we denote by {ai}i∈Zd . It is such that ai ≥ 0 and ai = a−i

for all i ∈ Zd. We also assume that this sequence is finitely supported, i.e.,

L := max{||i||∞ : ai > 0} < ∞. For ease of exposition, we also assume

that a0 = 1 in certain sections of the chapter, although our model and its

analysis can be carried out for any non-zero value of a0. For any t ∈ R, let

{xi(t)}i∈Zd ∈ NZ
d

denote the queue lengths at time t in the network, i.e., the

state of the system at time t. Then the interference experienced by a customer

located in queue i at time t is defined as
∑

j∈Zd ajxi−j(t), i.e., some weighted

sum of queue lengths of the neighbors of queue i. Observe that the neigh-

borhood definition is translation invariant. Conditional on the queue lengths

{xi(t)}i∈Zd at time t, the instantaneous departure rate from any queue i at

time t is given by xi(t)∑
j∈Zd ajxi−j(t)

, with 0/0 interpreted as being equal to 0. Note

that since the interference sequence {ai}i∈Zd is non-negative, and a0 = 1, for

all t ∈ R and all i ∈ Zd, the instantaneous departure rate from queue i at time

t is xi(t)∑
j∈Zd ajxi−j(t)

∈ [0, 1] and is hence bounded. Since {ai}i∈Zd is non-negative,

the rate of service at a queue is reduced if its ‘neighbors’ have larger queue

lengths. This is meant to capture the fundamental spatiotemporal dynamics

in wireless networks where the instantaneous rate of a link is reduced if there

are a lot of other links accessing the spectrum nearby, due to an increase of in-
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terference. In the rest of the chapter, we shall always assume that there exists

at least one i ∈ Zd \ {0} such that ai > 0. For otherwise, the system is ‘triv-

ial’, as the queues evolve independent of each other without any interaction

amongst them, according to a standard M/M/1 dynamics with unit service

rate. Observe that the Markovian dynamics of our model is non-reversible

and does not fall under the class of generalized Jackson networks. This model

is also not of the mean-field interacting queues type such as the supermarket

model [380], which admit a form of ‘asymptotic independence’ across queues,

as the system sizes get large.

The model described above can be viewed as a space discretized ver-

sion of the model described in Chapter 2. The grid points of Zd in the present

model represent tiny ‘chunks’ of continuum space of Rd. The number of cus-

tomers at some time t in queue z ∈ Zd is the number of links at time t located

in the tiny region of space corresponding to queue z. For simplicity, we as-

sume that links are very tiny (mathematically a point) and hence both the

transmitter and receiver of a link can be seen to be located at the same point.

This is of-course only done to have a clear presentation and convey the main

message and one can easily have non-zero link lengths as done in [336], with

significantly heavier notation. This is the key difference between our model

and those of for example [345], where a queue represents a link in the model

of [345]. In contrast, in our model, a queue represents a region of space, and

the queue length denotes the number of transmitting devices in that region

of space. We assume that, the interference function l(·) is discretized as the
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sequence {ai}i∈Zd . Thus ai represents the received power at queue 0 (or queue

i) if unit power is transmitted at queue i (or at queue 0). However, we relax

the condition that ai be non-increasing in ||i|| but impose the stricter condition

that it is finitely supported. Thus the total interference at any link in queue

0 at time t is a0(x0(t) − 1) +
∑

i∈Zd\{0} aixi(t). To derive the instantaneous

rate, we assume a linear approximation of the Shannon rate and model the

instantaneous rate of communication is given by SINR. Thus, the instanta-

neous rate of communication at any link in queue 0 at time t is then given

by
(
a0(x0(t)− 1) +

∑
i∈Zd\{0} aixi(t) +N0

)−1

, where N0 is the thermal noise

power. The minus 1 for the a0 term is to account for the fact that a link

will not interfere with itself. For further ease of notation, we assume N0 = a0

and thus obtain that the instantaneous rate of communication for any link at

queue 0 is given by 1∑
i∈Zd aixi(t)

. Now as there are x0(t) links at queue 0 and

they all have independent exponential unit mean file sizes, the total rate of

departure is then given by x0(t)∑
j∈Zd ajxj(t)

.

To summarize, the model in this chapter differs from that presented in

Chapter 2 in three key aspects. First, the space in our model is discretized,

while it is a continuum in Chapter 2. This is not much a difference as already

seen in the previous chapter in the proof of Theorem 3. Second, the rate of

departure of a link in our model is given just by the SINR, as opposed to the

Shannon’s formula used in the previous chapter. This can be viewed as a low

SINR regime, or high noise regime. From a mathematical perspective however,

this simplification turns out to be very frutiful and allows us to derive closed
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form formulas as explained in the sequel. Thirdly, the model considered in this

chapter refers to the infinite spatial domain while the model in the previous

chapter corresponded to only compact spatial domains.

We now give a precise description of our model in subsection 3.2.1 and

demonstrate certain useful monotonicity properties it satisfies in Subsection

3.2.3. We then precisely state the definition of stability in Section 3.2.4 and

the notion of stationary solutions to the dynamics in Section 3.2.5.

3.2.1 Probabilstic Framework

Our model is parametrized by λ ∈ R and an interference sequence

{ai}i∈Zd which is a non-negative sequence. This sequence satisfies a0 = 1,

ai = a−i for all i ∈ Zd and L := sup{||i||∞ : ai > 0} < ∞, i.e., is finitely sup-

ported. We also impose the sequence {ai}i∈Zd to be irreducible, which gives

that for all z ∈ Zd, there exists k ∈ N and i1, · · · , ik ∈ Zd not necessarily dis-

tinct, such that i1+i2 · · ·+ik = z and aij > 0 for all j ∈ {1, · · · , k}. To describe

the probabilistic setup, we assume there exists a probability space (Ω,F,P)

that contains the stationary and ergodic driving sequences (Ai,Di)ı∈Zd . For

each i ∈ Zd, Ai is a Poisson Point Process (PPP) of intensity λ on R, inde-

pendent of everything else and Di is a PPP of intensity 1 on R× [0, 1], inde-

pendent of everything else. Our stochastic process denoting the queue lengths

t → {xi(t)}i∈Zd will be constructed as a factor of the process (Ai,Di)ı∈Zd .

The process Ai :=
∑

q∈Z δA(i)
q

encodes the fact that, at times {A(i)
q }q∈Z, there

is an arrival of a customer in queue i. Thus the arrivals to queues form
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PPPs of intensity λ and are independent of everything else. The process

Di :=
∑

q∈Z δ(D
(i)
q ,U

(i)
q )

encodes that there is a possible departure from queue i

at time D
(i)
q , with an additional independent U [0, 1] random variable provided

by U
(i)
q . To precisely describe the departures, we define the interference at a

customer in queue i at time t as equal to
∑

j∈Zd ajxi−j(t). A customer, if any,

is removed from queue i at times D
(i)
q if and only if U

(i)
q ≤ xi(D

(i)
q )∑

j∈Zd aj−ixj(D
(i)
q )

.

In other words, conditionally on the state of the network {xj(D(i)
q )}j∈Zd at

time D
(i)
q , we remove a customer from queue i at time D

(i)
q with probability

xi(D
(i)
q )∑

j∈Zd aj−ixj(D
(i)
q )

, independently of everything else. Thus we see that condi-

tionally on the network state {xj(t)}j∈Zd at time t, the instantaneous rate of

departure from any queue i ∈ Zd at time t ∈ R is xi(t)∑
j∈Zd ajxi−j(t)

, independently

of everything else. Observe that since a0 = 1, if xi(t) > 0, then necessarily,

xi(t)∑
j∈Zd ajxi−j(t)

∈ (0, 1].

We further assume (without loss of generality) that the probability

space (Ω,F,P) is equipped with a group (θu)u∈R of measure preserving func-

tions from Ω to itself where θu denotes the ‘time shift operator’ by u ∈ R. More

precisely (Ai,Di)ı∈Zd◦θu is the same driving sequence where each of the arrivals

and departures are shifted by time u in all queues, i.e., if Ai :=
∑

q∈Z δA(i)
q

and Di :=
∑

q∈Z δ(D
(i)
q ,U

(i)
q )

, then Ai ◦ θu :=
∑

q∈Z δA(i)
q −u

and Di ◦ θu :=∑
q∈Z δ(D

(i)
q −u,U

(i)
q )

, for all i ∈ Zd. We also assume that the system (P, (θu)u∈R)

is ergodic, i.e., if for some event A ∈ F, if P[A4A◦ θu] = 0 for all u ∈ R, then

P[A] ∈ {0, 1}.
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3.2.2 Construction of the Process

Before we analyze the above model, one needs to ensure that it is ‘well-

defined’. We mean that our model is well defined if given the initial network

state {xi(0)}i∈Zd , any time T ≥ 0 and any index k ∈ Zd, we are able to con-

struct the queue length xk(T ) unambiguously and exactly. In the case of finite

networks (i.e., networks with finitely many queues), the construction is trivial:

almost surely, one can order all possible events in the network with increas-

ing time, and then update the network state sequentially using the evolution

dynamics described above. Such a scheme works unambiguously since, almost

surely, all event times will be distinct and in any interval [0, T ], there will be

finitely many events. The main difficulty in the case of infinite networks is

that there is no first-event in the network. In other words, in any arbitrar-

ily small interval of time, infinitely many events will occur almost surely and

hence we cannot construct by ordering all the events in the network. However

we show in Appendix B, that in order to determine the value of any arbitrary

queue k ∈ Zd at any time T ≥ 0, we can effectively restrict our attention to

an almost surely finite subset Xk,T ⊂ Zd and determine xk(T ) by restricting

the dynamics to Xk,T to the interval [0, T ]. This is then easy to construct as

it is a finite system. Thereby we can determine xk(T ) unambiguously. The

construction techniques we use are common in Interacting Particle systems

setup (for example, the book of [241] for more examples and details on the

method).
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3.2.3 Monotonicity

We establish an obvious but an extremely useful property of path-wise

monotonicity satisfied by the dynamics. Note that our model is not monotone

separable in the sense of [53] since the dynamics does not satisfy the external

monotonicity condition. Nonetheless, the model still enjoys certain restricted

forms of monotonicity, which we state below. We only highlight the key idea

for the proof and defer the details to Appendix B.

Lemma 14. If we have two initial conditions {x′i(0)}i∈Zd and {xi(0)}i∈Zd such

that for all i ∈ Zd, x′i(0) ≥ xi(0), then there exists a coupling such that

x
′
i(T ) ≥ xi(T ) for all i ∈ Zd and all T ≥ 0 almost surely.

The proof is by a path-wise coupling argument, where the two dif-

ferent initial conditions are driven by the same arrival and potential depar-

tures. The key idea is as follows. At arrival times, the ordering will trivially

be maintained. Consider some queue i and time t where there is a poten-

tial departure. If x
′
i(t) ≥ xi(t) + 1, then, since at most one departure oc-

curs, the ordering will be maintained. But if x
′
i(t) = xi(t), then the rates

x
′
i(t)∑

j∈Zd ajx
′
i−j(t)

≤ xi(t)∑
j∈Zd ajxi−j(t)

and hence the ordering will again be maintained.

This observation can be leveraged again to have the following form of mono-

tonicity.

Lemma 15. For all initial conditions {xi(0)}i∈Zd , for all 0 ≤ s ≤ t ≤ ∞,

all X ⊂ Zd, and all T > 0, {xi(T )}i∈Zd is coordinate-wise larger in the true
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dynamics than in the dynamics constructed by setting Aj([s, t]) = 0 for all

j ∈ X.

3.2.4 Stochastic Stability

We establish a 0− 1 law stating that either all queues are transient or

all queues are recurrent (made precise in Lemma 16 in the sequel). Thus, we

can then claim that the entire network is stable if and only if any (say queue

indexed 0 without loss of generality) is stable (made precise in Definition 17

in the sequel). To state the lemmas, we set some notation. Let T ≥ 0 and

s > −T be arbitrary and finite. Denote by {xi;T (s)}i∈Zd the value of the

process seen at time s when started with the empty initial state at time −T ,

i.e., with the initial condition of xi;T (−T ) = 0 for all i ∈ Zd. Lemma 14

implies that for every queue i ∈ Zd, and for P almost-every ω ∈ Ω, we have

T → xi;T (s) is non-decreasing for every fixed s. Thus, for every i, and every

s ∈ R, there exists an almost sure limit limT→∞ xi:T (s) := xi;∞(s). From the

definition, this limit is shift-invariant, i.e., almost surely, for all x ∈ R, we have

xi;∞(s) ◦ θx = xi;∞(s+ x).

Lemma 16. We have either P[∩i∈Zd{xi;∞(0) =∞}] = 1 or P[∩i∈Zd{xi;∞(0) <

∞}] = 1.

The proof follows from standard shift-invariance arguments which we

present here for completeness. Since for all x ∈ R and all j ∈ Zd, xi;∞(0)◦θx =

xi;∞(x), we have that this lemma implies for all s ∈ R, either P[∩i∈Zd{xi;∞(s) =

∞}] = 1 or P[∩i∈Zd{xi;∞(s) <∞}] = 1.
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Proof. It suffices to first show that for any fixed i ∈ Zd, we have P[xi;∞(0) <

∞] ∈ {0, 1}. Assume that we have established for some i (say 0 without loss

of generality that) P[x0;∞(0) < ∞] ∈ {0, 1}. From the translation invariance

of the dynamics, it follows that, for all i ∈ Zd, we have P[xi;∞(0) < ∞] =

P[x0;∞(0) <∞]. Thus, if P[x0;∞(0) <∞] = 1, then P[∩i∈Zdxi;∞(0) <∞] = 1.

Similarly, if P[x0;∞(0) = ∞] = 1, then P[∩i∈Zdxi;∞(0) = ∞] = 1. Thus to

prove the lemma, it suffices to prove that P[x0;∞(0) <∞] ∈ {0, 1}.

The key observation is, the event A := {ω ∈ Ω : x0;∞(0) < ∞} is

such that for all x ∈ R, P[A 4 A ◦ θu] = 0. To show this, first notice that

from elementary properties of PPP, we have that for every i ∈ Zd and every

compact set B ⊂ R, Ai(B) <∞ a.s.. Now for any x ≥ 0, we have x0;∞(0)◦θx ≤

x0;∞(0)+A0([0, x]), which is finite almost surely if x0;∞(0) <∞ almost surely.

Similarly for every x < 0, x0;∞(0) = x0;∞(0) ◦ θx + A0([x, 0]), which again

implies that x0;∞(0) ◦ θx is almost surely finite if x0;∞(0) < ∞. Thus, for all

x ∈ R, we have P[A4A◦θx] = 0, which from ergodicity of (P, (θu)u∈R) implies

P[A] ∈ {0, 1} and thus the lemma is proved.

The following definition of stability follows naturally.

Definition 17. The system is stable if x0;∞(0) < ∞ almost surely. Con-

versely, we say the system is unstable if x0;∞(0) =∞ almost surely.

Observe that the definition of stability does not require E[x0;∞(0)] to

be finite. In words, we say that our model is stable if when starting with all

queues being empty at time −t in the past, the queue length of any queue stays
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bounded at time 0 when letting t go to infinity. This definition of stability is

similar to the definition introduced for example by [251] in the single server

queue case. A nice account of such backward coupling methods can be found

in [49].

The main result in this chapter is to prove that if λ
∑

j∈Zd aj < 1,

then the system is stable (Theorem 19). Moreover, in this case, we compute

exactly the mean queue length in steady state, i.e., an explicit formula for

E[x0;∞(0)], and by shift-invariance it is equal to E[xi;∞(s)]. We also conjecture

this condition to be necessary, i.e., if λ
∑

j∈Zd aj > 1, then x0;∞ = ∞ almost

surely. We are unable to prove this conjecture yet, but prove it for the special

case of d = 1 in Theorem 28.

3.2.5 Translation Invariant Stationary Solutions

Definition 18. A probability measure π on (Zd)N is said to be translation

invariant, if (yi)i∈Zd ∼ π implies, for all x ∈ Zd, (yi−x)i∈Zd ∼ π. A probability

measure π on (Zd)N is said to be stationary for the dynamics {xi(t)}i∈Zd if,

whenever {xi(0)}i∈Zd is distributed according to π independently of everything

else, then, for all t ≥ 0, the random variables {xi(t)}i∈Zd are also distributed

as π.

In this chapter, we restrict ourselves to studying stationary solutions to

the dynamics that are translation invariant in space. Observe that the driv-

ing sequence (Ai,Di)i∈Zd is translation invariant on Zd, i.e., for all v ∈ Zd,

(Ai−v,Di−v)i∈Zd is equal in distribution to (Ai,Di)i∈Zd . Furthermore, the in-
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teractions among the queues are also translation invariant, since the definition

of interference seen at a queue is translation invariant. However, it is not

immediately clear that all stationary solutions must necessarily be translation

invariant. It is known, for instance in the literature on Ising Models (see the

book [176]), that certain stationary measures for translation invariant Glauber

dynamics need not necessarily be translation invariant. We leave the question

of existence and construction of non-translation invariant stationary measures

for our model to future work.

Moreover, as our network is not finite-dimensional, stability in the sense

of Definition 17 does not imply ergodicity in the usual Markov chain sense.

In particular, it does not imply that stationary distributions are unique, and

starting from any initial condition on NZd , the queue lengths converge in some

sense to the minimal stationary distribution considered in Definition 17. Sta-

bility only implies the existence of a stationary solution, namely the law of

{xi∞(0)}i∈Zd . However, uniqueness is not granted and one of our main results

in Proposition 20 bears on this. Moreover, convergence to stationary solutions

from different starting states is more delicate as evidenced in Theorems 23 and

25.

3.3 Main Results

Our first result provides a sufficient condition for stability. Moreover,

it precisely gives a closed form expression for the mean queue length.
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Theorem 19. If λ < 1∑
j∈Zd aj

, then the system {xi(·)}i∈Zd is stable. Further-

more, for all i ∈ Zd and s ∈ R, the minimal stationary solution {xi;∞(s)}i∈Zd

satisfies

E[xi;∞(s)] =
λa0

1− λ
∑

j∈Zd aj
.

In the rest of the chapter, the condition λ < 1∑
j∈Zd aj

will be referred to

as the stability criterion for the system. In this theorem, we only considered

whether there exists a stationary solution to the dynamics. However, as our

network consists of infinitely many queues, uniqueness of stationary solutions

is not guaranteed. As explained, we are mainly concerned with stationary

solutions of queue lengths that are translation invariant in space. The fol-

lowing Proposition sheds light on the question of unique translation invariant

stationary solutions.

Proposition 20. If E[x0;∞(0)2] <∞, then {xi;∞(0)}i∈Zd is the unique trans-

lation invariant stationary solution with finite second moment.

This result relies on the finiteness of second moment of the stationary

queue length, which does not follow immediately from the conclusions of The-

orem 19. In this regard, we have the following proposition, that establishes

finiteness of second moment under further restrictive conditions than stability.

Proposition 21. If λ < 2
3

1+c∑
j∈Zd aj

, where c =

√
a20+a0

∑
j∈Zd\{0} aj − a0∑

j∈Zd\{0} aj
, then we

have E[x0;∞(0)2] <∞.
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Note that under our assumption of a0 = 1, the value of the constant c

can be simplified as c =

√∑
j∈Zd ai−1∑

j∈Zd ai−1
. Observe that if c = 1

2
, then the above

proposition will cover the full range of stability. However, for any valid inter-

ference sequence {ai}i∈Zd , we have c ∈
(
0, 1

2

)
, with c↗ 1

2
as
∑

j∈Zd\{0} aj ↘ 0.

Thus, this proposition does not cover the full stability region. For the simplest

non-trivial case of one dimensions and the interference sequence being ai = 1

if |i| ≤ 1 and ai = 0 if |i| > 1, the second moment is finite for λ ≤ 0.91 1∑
j∈Z aj

.

From Propositions 20 and 21, we have the following immediate corollary.

Corollary 22. If λ < 2
3

1+c∑
j∈Zd aj

, where c is given in Proposition 21, then

{xi;∞(0)}i∈Zd is the unique translation invariant stationary solution with finite

second moment.

Our next set of results assesses whether queue length process converges

to any stationary solution when started from different starting states. Observe

that we deemed the system stable if when started with all queues empty, the

queue lengths converge to a proper random variable. Thus, stability alone does

not imply convergence from other initial conditions. In this regard, our main

results are stated in Theorems 23 and 25 which show the sensitivity of the

dynamics to the starting conditions. In particular, we show in Theorem 23,

that if λ is sufficiently small and the initial conditions are uniformly bounded,

then the queue lengths converge to the minimal stationary solution. Surpris-

ingly, in Theorem 25 below, we exhibit both deterministic and random initial

conditions for all λ > 0, such that the queue lengths diverge, even though the
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stability criterion λ < 1∑
j∈Zd aj

is met. This is a new type of result which holds

primarily since the network consists of an infinite collection of queues.

Theorem 23. Let λ be such that the minimal stationary solution satisfies

E[x0;∞(0)2] <∞. Then if the initial condition satisfies supi∈Zd xi(0) <∞, the

queue length process {xi(·)}i∈Zd converges weakly to the minimal stationary

solution as t→∞.

As the queue lengths are positive integer valued, and the dynamics

admits a form of monotonicity, every fixed finite collection of coordinates also

converges to the minimal stationary solution in the total variation norm in the

above Theorem, which is stronger than just weak convergence. Notice from

Proposition 21, that if λ < 2
3

1+c∑
j∈Zd aj

, where c is given in Proposition 21, then

the conclusion of the above Proposition holds.

We further examine sensitivity to initial conditions in Theorem 25 by

constructing examples where the queue lengths diverge, even though the sta-

bility criterion is met. To state the result, we need a natural ‘irreducibility’

condition on the interference sequence {ai}i∈Zd .

Definition 24. The interference sequence {ai}i∈Zd is said to be irreducible if,

for all z ∈ Zd, there exists k ∈ N and i1, · · · , ik ∈ Zd, not necessarily distinct,

such that i1 + i2 · · ·+ ik = z and aij > 0 for all j ∈ [1, k].

This is a natural condition which ensures that we cannot ‘decompose’

the grid into many sets of queues, each of which does not interact with the
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queues in the other group. In the extreme case, this disallows the case when

ai = 0 for all i 6= 0, in which case the network can be decomposed into an

infinite collection of independent M/M/1 Processor Sharing queues.

Theorem 25. For all λ > 0, d ∈ N, and irreducible interference sequences

{ai}i∈Zd , and even when the stability criterion holds, there exists

1. A deterministic sequence (αi)i∈N such that if the initial condition sat-

isfied xi(0) ≥ αi for all i ∈ Zd, then the queue length of 0 satisfies

limt→∞ x0(t) =∞ almost surely.

2. A distribution ξ on N such that if the initial condition {xi(0)}i∈Zd is an

i.i.d. sequence with each xi(0), i ∈ Zd being distributed as ξ independent

of everything else, then the queue length of 0 (or any finite collection of

queues) satisfies limt→∞ xi(t) =∞ almost surely.

Based on the proof of this theorem, we make the following remark.

Remark 26. For all λ, the support of (αi)i∈Zd in statement 1 above can be

made arbitrarily sparse, i.e. for any sequence (bn)n∈N such that bn → ∞, the

initial conditions (αi)i∈Zd can be chosen, such that limn→∞

∑
i∈Zd:||i||∞≤n 1αi>0

bn
=

0, yet the queue lengths converge almost surely to infinity.

The above theorem is qualitative in nature, as it only establishes the

existence of bad initial conditions, but does not provide estimates for how

large this initial condition must be. In this regard, we include Proposition 27,
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which pertains to the deterministic starting state in the simplest non-trivial

system, namely the case of d = 1, and the interference sequence being (ai)i∈Z

such that ai = 1 for |i| ≤ 1 and ai = 0 otherwise. This simplest non-trivial

example already contains the key ideas and hence we present the computations

involved explicitly here. In principle, one can provide a quantitative version

of the above theorem in full generality. However, we do not pursue this here

as they involve heavy calculations without additional insight into the system.

Proposition 27. Consider the system with d = 1 and the interference se-

quence ai = 1 if |i| ≤ 1 and ai = 0 otherwise. Let (bn)n∈N be arbitrary

deterministic non-negative integer valued sequence such that bn → ∞. If the

initial condition, αi := ii2
i+2+8 for i ∈ {bn : n ∈ N}, and αi = 0 otherwise, then

for every λ > 0, limt→∞ x0(t) =∞ almost surely.

Regarding the converse to stability, we prove the following result in

Theorem 28, which establishes that the phase-transition at the critical λ is

sharp, at least in certain cases, and we conjecture it to be sharp for all cases.

Theorem 28. For the dynamics on d = 1 and monotone interference sequence

{ai}i∈Z, if λ > 1∑
j∈Z ai

, then there exists a N0 sufficiently large so that for all

N ≥ N0, the dynamics truncated to the finite set [−N, · · · , N ] is transient.

Observe that the truncated dynamics to a finite set is a classical finite

dimensional Markov Chain. From the monotonicity in the dynamics, we have

the following immediate corollary.
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Corollary 29. For the system with d = 1 and monotone interference sequence,

if λ > 1∑
j∈Z ai

, then the system is unstable.

3.3.1 Open Questions and Conjectures

We now list some conjectures and questions that are left open by the

present chapter. The first one concerns the moments of the minimal stationary

solution x0;∞(0). We have established an exact formula for the mean that holds

in the entire stability region and finiteness of the second moment in a fraction

of the stability region. In an earlier version of this work that we posted online,

we had put forth the following conjecture.

Conjecture 30. If λ < 1∑
j∈Zd aj

, then E[x0;∞(0)2] <∞.

Subsequently, this has been proven to be correct by [356] using rate-

conservation techniques, similar to those presented in the present chapter.

This fact, along with Proposition 20 implies, that the minimal stationary so-

lution is indeed the unique translation invariant stationary solution to the

dynamics that admits finite second moments. Furthermore, the conclusion of

Theorem 23 also hold for all λ < 1∑
j∈Zd aj

, namely from all bounded initial

conditions, the queue length process will converge to this unique translation

invariant stationary solution if λ < 1∑
j∈Zd aj

. In this regard, three natural

interesting questions arise - one concerning what other moments of station-

ary queue lengths are finite, one regarding correlation decay and another on

existence of other stationary solutions.
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Question 31. For each λ ∈
(

0, 1∑
j∈Zd aj

)
, what moments of x0;∞(0) are finite

?

In an ongoing project [339], we show that for all λ < 1∑
j∈Zd aj

, there

exists a c > 0 such that E[ecx0;∞(0)] <∞. In particular, this will establish that

all power moments of x0;∞(0) are finite

Question 32. How does the correlation k → E[x0;∞(0)xk;∞(0)]− E[x0;∞(02)]

decay as |k| → ∞ ?

Question 33. Does the dynamics admit stationary solutions other than the

minimal one ? If so, do there exist initial conditions such that the law of the

queue lengths converge to them ?

We know from Proposition 20 that the minimal stationary solution is

the unique translation invariant stationary solution with finite second moment.

This then raises the following question.

Question 34. Does there exist a translation invariant stationary solution that

has an infinite first moment ? Does there exist one with finite first moment,

but infinite second moment ?

In regard to establishing transience, a natural open question in light of

Theorem 28 is to extend this result to higher dimensions and non monotone

interference sequence. We make the following conjecture.

Conjecture 35. For all d ≥ 1 and interference sequence (ai)i∈Z, if λ >

1∑
j∈Zd aj

, then the system is unstable.
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3.4 Main Ideas in the Analysis

The key technical challenge in analyzing our model is the positive cor-

relation between queue lengths, which persist even in the model with infinitely

many queues (see also Figure 3.1). As mentioned, our system of queues is nei-

ther reversible, nor falls under the category of generalized Jackson networks.

Thus, our model does not admit a product form stationary distribution, even

when there are finitely many queues. In particular, the model has no asymp-

totic independence properties as those encountered in “mean-field models”

(such as the supermarket model [380]). The correlations across queues is in-

tuitive, since if a queue has a large number of customers, then its neighboring

queues will receive lower rates, and thus they will in turn build up. There-

fore in steady state, if a particular queue is large, most likely, its neighboring

queues are also large (see also Figure 3.1).

To prove the sufficient condition for stability, we first study finite space-

truncated torus systems. In words, we restrict the dynamics to a large finite

set Bn ⊂ Zd, and study its stability by employing fluid-like and Lyapunov

arguments. This model in a sense is the discrete space analog of the compact

continuum birth-death process studied in Chapter 2. For this model, we write

down rate conservation equations in Section B.2 and solve for the mean queue-

length of this dynamics. The equations of rate-conservation contains the key

technical innovations in this model. The rate conservation equations turn out

to be surprisingly fruitful, as we are able to obtain an exact formula for the
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mean queue length. This formula also gives as a corollary, that the queue

length distributions are tight, as the size of the truncation Bn increases to

Zd. We then show that we can take a limit as Bn increases to all of Zd

and consider the stationary solution {xi;∞(0)}i∈Zd as an appropriate limit of

the stationary solutions of the space-truncated system. The central argument

in this section is to exploit the many symmetries, the monotonicity of the

dynamics and the aforementioned tightness to arrive at the desired conclusion.

We furthermore, apply a similar rate conservation equation for the infinite

system, which along with monotonicity arguments, establishes the uniqueness

of stationary solutions with finite second moments.

To study the convergence from different initial conditions, we employ

different arguments, again exploiting the symmetry and monotonicity in the

model. To show that stability implies convergence from bounded initial con-

ditions, we define a modified K-shifted system. It is a model having the same

dynamics as our original model, except that the queue lengths do not go be-

low K, for some K ∈ N. We carry out the same program of identifying a

bound on the first moment on the minimal stationary solution to the shifted

dynamics by analyzing similar rate conservation equations as for the original

system. We then exploit the monotonicity and the fact that a stationary solu-

tion with finite mean is unique, to conclude that stability implies convergence

to the minimal stationary solution from bounded initial conditions. In order

to identify initial conditions from where the queue length can diverge even

though the stability condition holds, we first consider a simple idea of ‘freez-
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ing’ a boundary of queues at a large distance n, to a ‘large value’ αn around

a typical queue, say 0, and then consider its effect on the queue length at the

origin. By freezing, we mean, there are no arrivals and departures in those

queues, but a constant number αn of customers that cause interference. We

see that by choosing αn sufficiently large, this wall can influence the stationary

distribution at queue 0. We leverage this observation, along with monotonic-

ity, to construct both deterministic and random translation invariant initial

conditions such that queue lengths diverge to +∞ even though the stability

condition holds. This proof technique is inspired by similar ideas developed to

establish non-uniqueness of Gibbs measures in the case when the state space

of a particle is finite, while our methods and results bear on the case when the

state space is countable.

3.5 Related Work

Our study is motivated by the performance analysis of wireless networks

which has a large and rich literature as already outlined in Chapter 2 (see for

ex. [86] [42], [360] and the references therein). Thus, we survey the related

work in this discrete setting and place it in context mainly with the literature

in applied mathematics where similar models have appeared in other contexts.

In particular, since some of the new properties we establish in this chapter are

directly linked to the fact that there are infinitely many queues, we thought it

appropriate to briefly survey the mathematical literature on queueing models

consisting of infinitely many queues interacting through some translation in-
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variant dynamics. A model related to ours is the so called Poisson Hail model

which has been studied in a series of papers [52],[50],[164]. The discrete ver-

sion of this model consists of a collection of queues on Zd, where the queues

interact through their service mechanism in a translation invariant manner.

In this model, the customer at a queue occupies a ‘footprint’ and when being

served, no other customer in the queues belonging to its footprint is served.

In contrast, in our model a customer slows down the customers in neighboring

queues, but does not block them. Another set of papers close to our model

is [48], [259], and [257]. These papers analyze an infinite collection of queues

in series. The main results are connections with last passage percolation on

grids. A similar model to this is studied by [160], where analogues of Burke’s

theorem are established for a network of infinite collection of queues on the

integers. There is also a series of papers on infinite polling systems. The

paper [165] considers a polling model with an infinite collection of stations,

and addresses questions about ergodicity and positive recurrence of such mod-

els. In a similar spirit, [93] considers infinite polling models and establishes

the presence of many stationary solutions leveraging the fact that the Markov

process is not finite-dimensional. The dynamics in these polling systems are

however very different from ours. The paper of [258] also introduced a nice

problem with translation invariant dynamics, but only analyzed the setting

with finitely many queues. The paper of [211] introduced an elegant problem

on Jackson queueing networks on infinite graphs. However, the stationary dis-

tribution there admits a product-form representation, which is very different
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from our model in the present paper. The paper [189] studies translation-

invariant dynamics on infinite graphs arising from combinatorial optimization,

which again falls broadly in the same theme, but for a fundamentally different

class of problems. Queueing like dynamics on an infinite number of nodes are

also studied, though under different names, in the interacting particle system

literature in the sense of [241]. The most well known instance of interacting

particle system connected to queueing is probably the TASEP. Another fun-

damental class of interacting particle system exhibiting a positive correlation

between nodes (like our model) is the ferromagnetic Ising model. The first dif-

ference is that the state-space of a node is not compact (i.e., N, since the state

is the number of customers in the queue) in our model, whereas it is finite in

these models. Another fundamental difference between our model and these

is the lack of reversibility. The common aspects are the infinite dimensional

Markovian representation of the dynamics, the non uniqueness of stationary

solutions, and the sensitivity to initial conditions. Infinite queueing models

are also central in mean-field limits. In the literature on mean-field queue-

ing systems ([380],[180],[147]) the finite case exhibits correlations among the

queue lengths thereby making them difficult to analyze. However, in the large

number of node limit, one typically shows that there is ‘propagation of chaos’.

This then gives that the queue lengths become independent in the limit. This

independence can then be leveraged to write evolution equations for the lim-

iting dynamics which can be analyzed. Such mean-field analysis have recently

become very popular in the applied literature (for ex. [392],[25]). Our model

78



Figure 3.1: A plot of the empirical covariance function of queue lengths in
steady state. We consider d = 1 and 51 queue placed on a ring. The arrival
λ = 0.1419 while λc = 1/7 and the interaction function is ai = 1 if |i| ≤ 3 and
0 otherwise.

differs fundamentally from the above models in many aspects. First, unlike the

mean-field models described above, we can directly define the limiting infinite

object, i.e., a model with infinitely many queues. Secondly and more crucially,

our infinite model does not exhibit any independence properties in the limit,

i.e., queue lengths are positively correlated even in the infinite model. This

is why we need different techniques to study this model. Our main techni-

cal achievement in this context is to introduce coupling and rate conservation

techniques not relying on any independence properties.

3.6 Conclusions

In this chapter, we introduce a novel model of infinite spatial queueing

system with the queues interacting with each other in a translation invariant

fashion. This model was motivated by scalability questions of operating wire-

less networks, that was raised in the previous chapter. In particular, we answer
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in the affirmative, that in case of finitely supported interference sequence, the

qualitative phase transition result in the previous chapter also holds for the

infinite network case. Nevertheless, the mathematical arguments needed to

establish this result is very different from those that were needed in the previ-

ous chapter. The queueing model we introduced here is neither reversible nor

admits any mean-field type approximations to analyze it. In the present chap-

ter, we analyzed this model using rate conservation and coupling arguments,

which can be of interest to study other large interacting queueing systems.

We establish a sufficient condition for stability which we also conjecture to

be necessary. Surprisingly, we are able to compute an exact formula for the

mean number of customers in steady state in any queue. Furthermore, we

identify a subset of the stability region in which the stationary solution with

finite second moment is unique. Interestingly however, we see that our system

is sensitive to initial conditions. We construct for every λ, both a determin-

istic and translation invariant random initial conditions, such that the queue

lengths diverges to infinity almost surely, even though the stability conditions

hold.

However, our work leaves open many intriguing questions as discussed

in Section 3.3.1. In particular, the correlation across queues is interesting as it

can be numerically simulated and is shown in Figure 3.1. In Figure 3.1, we are

empirically estimating the function i→ E[(x0(t)−µ)(xi(t)−µ)], where µ is the

mean queue length given in the formula in Theorem 19. However, we cannot
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simulate an infinite system and hence consider a finite system of 51 queues

placed on a ring (i.e., one dimensional torus). We use the interaction function

ai = 1 if |i| ≤ 3 and 0 otherwise. The critical arrival rate is 0.14285 and we used

a λ = 0.1419 to simulate. The mean queue length in this example is 21.18. We

estimate the function E[(x0(t)−µ)(xi(t)−µ)] by collecting many independent

samples approximating the steady state queue lengths {x(25)
i }i∈[−25,25]. For

each collected sample, we evaluate an empirical covariance function by setting

the value at i ∈ [−25, 25] to be (x
(25)
i −µ)(x

(25)
0 −µ), where µ is the mean queue

length equal to 21.18 in this example. We plot after averaging over many such

functions computed on independent queue-length samples. From the plot, the

strong positive correlations are very evident, as the function plotted is always

large and positive. The figure also supports our intuition that the correlations

must decay with distance as one would guess, but yields no concrete insight

for the exact nature of this decay, for instance does the correlations decay

polynomially or exponentially with the distance. Exploring this and other

related questions in our model is an exciting line of future work.
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Chapter 4

User Association in Cellular Networks

4.1 Introduction

This chapter studies the problem of user association in modern day

large cellular networks. In traditionally operated mobile networks, each user

(mobile) is obliged to subscribe to a particular operator and has access to the

base stations owned by the operator (or to Wi-Fi access points administered

by the operator). A new paradigm known as mobile virtual network opera-

tors (MVNO) is currently reshaping the wireless service industry. The idea

is to provide higher service quality and connectivity by pooling and sharing

the infrastructure of multiple wireless networks. A concrete example of this is

Google’s new “Project Fi” service in the United States, whose main feature is

improved coverage provided through outsourcing infrastructure from its part-

ners, T-Mobile, Sprint and their Wi-Fi networks. In parallel, the European

Commission has been ruling favorably for MVNOs since 2006, so as to make

the European wireless market more competitive [14], thereby facilitating in-

vestment in MVNOs in Europe. These virtual operators can take advantage of

the different physical network operators which use separate bandwidths, and

Parts of this chapter is published in [340]. The author was part of formulating, executing
and writing up the results in that paper.
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even different wireless access technologies, for improvement of user experience.

It is reported [15] that the market share of these virtual operators, especially

in mature markets, ranged from 10% (UK and USA) to 40% (Germany and

Netherlands) as of 2014. This increase of diversity, both in terms of band-

widths and wireless technologies raises many challenging questions to realize

the envisioned benefits in large scale networks. In this context, this chapter

considers the design and analysis of user association schemes, that are both

scalable to large systems and leverage the gains from diversity.

Figure 4.1: Motivational example with two technologies: rA1 < rB1 and rA2 < rB2 .

The most widely studied association policy in existing wireless networks

consists in associating each user equipment (UE) with the nearest base station

(BS) or access point where one typical aim is to maximize the likelihood of

being covered or connected. One of the main points of the present chapter is

that this is no longer optimal in these emerging virtual networks, as further

discussed in Section 4.1.2. The subtle distinction arising from technology di-

versity is illustrated in Fig. 4.1, where rA1 and rA2 (respectively, rB1 and rB2 )

denote the distances to the nearest and second-nearest BSs of technology A

(respectively, technology B) from the UE located at the origin. Also, we as-

sume that rA1 < rB1 , i.e. the nearest BS of technology A is the nearest to the
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UE, and there are only four BSs as shown in Fig. 4.1, which are identical

except that they operate on different technologies (i.e. non-overlapping band-

widths). In the single technology case (A = B), the UE can simply associate

with the BS at rA1 . However, if A 6= B, e.g. the two technologies operate

on different bandwidths, the locations of the strongest interferers, rA2 and rB2

(the second-nearest BSs), may overturn the choice of technology A when the

strongest interferer of technology B is much farther from the UE than that

of technology A, i.e. rB2 � rA2 , thus boosting the signal-to-noise-ratio (SINR)

of technology B. In light of this example, optimal association in such net-

works requires new paradigms. We can further generalize the above example

and envisage a practical scenario where each UE can obtain the information

about several received pilot signals of nearby BSs, as in 3G and 4G cellular

networks, which can be translated into a vector of distances. In this chapter,

we are interested in investigating the following question.

Q: How to leverage the diversity brought in by the choice to associate with

various non-overlapping networks ? How much should a mobile phone learn

about the instantaneous network conditions to exploit the diversity ?

4.1.1 Main Contributions

Our main contribution in this chapter is to formalize the above question

into an abstract mathematical framework. We propose a simple abstraction

for the network model and quantify the question how much resources should
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a mobile phone expend in learning about the instantaneous network condi-

tion. Secondly, we look at the question of given that the UE has expended its

resources to have an accurate knowledge of the instantaneous network condi-

tions, how should it exploit this information to improve performance.

4.1.2 Related Work

The policy of associating each UE to the nearest BS or the BS with

the strongest received power has been taken for granted in the vast literature

on cell association. This is for instance the case in the stochastic geometry

model of cellular networks [32]. The rationale is clear. This leads to the highest

connectivity for each UE to choose the nearest BS unless it is possible to exploit

the time-varying fading information, which is often unavailable in practice.

Even with the recent emergence of heterogeneous wireless networks, also called

HetNet, the rule is still valid in terms of coverage probability. That is, a UE is

more likely to be covered if it associates with a BS whose received long-term

transmission power (called pilot power) is the strongest. A stochastic geometry

model to exploit this heterogeneous transmission powers of BSs belonging to

multiple tiers in HetNets along with fading information has been investigated

in [146].

However, from the perspective of load balancing between cells, the rule

is invalid in general because each UE might be better off with a lightly-loaded

cell rather than heavily-loaded one irrespective of the distances to them. In

particular, in HetNet scenarios, it is important to distribute UEs to macro-
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cells and micro-cells so that they are equally loaded. The optimal association

in the HetNet setting is inherently computationally infeasible, i.e. NP-Hard,

whereas the potential gains from load-aware association schemes are much

higher [391]. To tackle this problem, a few approximate or heuristic algorithms

were proposed based on convex relaxations [391], [381] and non-cooperative

and evolutionary games [36], [295]. Most of these algorithms are iterative in

nature, requiring many rounds of messaging between UEs and BSs for their

convergence.

4.2 Stochastic Network Model

In this chapter, we consider adapting association schemes to optimize

any arbitrary function of the SINR received at a single typical UE. To this

aim, we first describe a generic stochastic model of the network and define

the general performance metric that is induced by an association policy of

the UE of interest, which are assumed to be decoupled from those of other

UEs. In the rest of the chapter, we use the terminology “technology diversity”

to refer to (i) several networks operated on orthogonal bandwidths and (ii)

different cellular technologies (e.g. 3G and 4G), both of which can be shared

by MVNOs.

Note that extending this framework and results therein to the case where the associa-
tion policy of a user is affected by those of other users (e.g. load-balancing in HetNet) is
mathematically far more challenging and thus is left to future work.
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4.2.1 Network Model

We consider T different technologies where T is finite. The BS locations

of technology i ∈ [1, T ] are assumed to be a realization of a homogeneous

Poisson-Point Process (PPP) φi on R2 of intensity λi independent of other

PPPs. The typical user, from whose perspective we perform the analysis,

is assumed to be located at the origin, without loss of generality. Denote by

rij ∈ R+ the distance to the jth closest point of φi to the origin, or equivalently

the jth nearest BS, where ties are resolved arbitrarily. Hence ri1 denotes the

distance to the closest point (BS) of φi from the origin.

Each BS of technology i transmits at a fixed power Pi. The received

power at a UE from any BS is however affected by fading effects and signal

attenuation captured in the propagation model, typically through the path-

loss exponent. We assume independent fading, i.e. the collection of fading

coefficients H i
j, which denotes the corresponding value from the jth nearest BS

in technology i to the UE, are jointly independent and identically distributed

according to some distribution function. We model the propagation path loss

through a non-increasing function li(·) : R+ → R+, where i ∈ {1, 2, ..., T},

i.e. the propagation model for each technology is determined by a possibly

different attenuation function. Hence, the signal power received at the typical

UE from the jth BS of technology i is PiH
i
jli(r

i
j). For mathematical brevity,

we henceforth consider the point process φi of technology i where each point is

marked with an independent mark denoting the fading coefficient between the

point (BS) to the origin (UE). We can assume that all the random variables
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Notation Brief Description

φi Point process corresponding to technology i ∈ [1, T ]
λi Intensity (density) of point process φi
pi(·) Performance function when associated with technology i
FI Information available at the typical UE

ji arg supj≥1 E[pi(SINRi,j
0 )|FI ]

i∗ The technology chosen by an association policy
Rπ
I Average performance of association policy π with FI

Rπ∗
I Average performance of optimal policy π∗ with FI

Table 4.1: Table of Notation

belong to a single probability space denoted by (Ω,F,P) [44].

4.2.2 Information at a UE

A key concept in this chapter is the tradeoff between the cost of “infor-

mation” available at UE and the performance gain attained by the association

policy making use of that information. Mathematically, the notion of infor-

mation is encapsulated in a sigma-field FI which is a sub-sigma algebra of

the sigma-algebra F on which the marked point processes φi are defined. A

sub-sigma algebra F
′

of F is such that F
′ ⊆ F. An example of information is

FI = σ
(
∪Ti=1φi(B(0, w))

)
, which corresponds to the sigma-field generated by

the point process up to distance w from the origin. In other words, the UE

can estimate BS locations of different technologies rij such that rij ≤ w. How-

ever, note that, we use the information sigma algebra FI more generally, which

could potentially include fading and shadowing and not just the distances as

given in the above example.
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4.2.3 Association Policies

An association policy governs the decisions on which technology and

BS the typical user (who is located at the origin) should associate with. More

formally, an association policy π is a measurable mapping, i.e. π : Ω→ [1, T ]×

N which is FI measurable. As stated before, we assume that all additional

random variables needed by the policy π are FI measurable. The interpretation

of the policy π being FI measurable is that a typical UE decides to choose a

technology and a BS to associate with based only on the information obtainable

in the network. It is important to note that while our discussion in this chapter

mainly revolves around optimal policies denoted by π∗, our methodology for

the performance evaluation in Section 4.5 can be applied for any (suboptimal)

policy.

4.2.4 Performance Metrics

All performance metrics considered in this work are functions of SINR

(Signal to Interference plus Noise Ratio) received at the typical UE. The SINR

of the signal received at the origin from the jth nearest BS of technology i is:

SINRi,j
0 =

PiH
i
jli(r

i
j)

N i
0 +

∑
k∈N\{j} PiH

i
kli(r

i
k)
,

where N i
0 is the thermal noise power which is a fixed constant for each tech-

nology i ∈ {1, 2, ..., T}. In order to encompass a general set of most useful

performance metrics in wireless networks, the performance of different asso-

ciation policies are evaluated through non-decreasing functions of the SINR
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observed at the typical UE. Formally, let pi(·) : R+ → R+ be a non-decreasing

function for each i ∈ {1, 2, ..., T} which represents the metric of interest if the

typical UE associates with technology i. Since π takes values in two coor-

dinates [1, T ] × N (Section 4.2.3), we divide them into separate coordinates

which are denoted by π(0) ∈ [1, T ] and π(1) ∈ N, respectively corresponding

to the technology and BS chosen by the policy. Then the performance of the

association policy π when the information at the typical UE is quantified by

FI is then given by:

Rπ
I = E[pπ(0)(SINRπ

0 )]. (4.1)

The subscript I refers to the fact that the information present at the typical

UE is FI . The performance metric Rπ
I is averaged over all realizations of the

BS deployments, fading variables, and any additional random variables used

in the policy π.

Two well-known examples of performance metrics used in practice are

coverage probability and average achievable rate. Coverage probability corre-

sponds to setting the function pi(x) = 1(x ≥ βi), which is the chance that the

SINR observed at a UE from technology i exceeds a threshold βi. The other

common performance metric of interest, average achievable rate, is defined as

pi(x) = Bi log2(1+x), where the parameter Bi is the bandwidth of technology

i. All results on optimal association policy and performance evaluation are

stated on the assumption of a general function pi(x).
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4.3 Optimal Association Policy

The optimal association policy denoted by π∗ is

π∗I = arg sup
π

Rπ
I , (4.2)

where the supremum is over all FI measurable policies. From a practical point

of view, the optimal association policy is the one that maximizes the perfor-

mance of the typical UE among all policies having the same “information”. In

this setup of optimal association, however, we always assume that the typical

UE has knowledge of the densities λi of the different technologies and the fact

that they are independent PPPs although several fundamental results can be

easily extended to more general point processes.

Since, we are interested in maximizing an increasing function of the

SINR of the typical UE, the optimal association rule is clearly to pick the pair

of technology and BS which yields the highest performance conditional on FI .

Proposition 36. The optimal association algorithm when the information at

the typical UE is given by the filtration FI is such that

π∗I (0) = arg max
i∈[1,T ]

sup
j≥1
E[pi(SINRi,j

0 )|FI ],

π∗I (1) = arg sup
j≥1

max
i∈[1,T ]

E[pi(SINRi,j
0 )|FI ],

(4.3)

where the UE must pick the technology π∗I (0) and the π∗I (1)-th nearest BS to

the origin in φπ∗I (0).

The performance of the optimal association is

Rπ∗

I = E[sup
j≥1

max
i∈[1,T ]

E[pi(SINRi,j
0 )|FI ]]. (4.4)
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Since [1, T ] and N are countable sets, the order of the maxima in (4.4) does

not matter. An important point to observe is that the optimal association

given in (4.3) depends on the choice of the performance metric {pi(·)}Ti=1.

Hence, the optimal association rule would be potentially different if one was

interested in maximizing coverage probability as opposed to maximizing rate-

related metrics for instance.

4.3.1 Ordering of the Performance of the Optimal Association

In this sub-section, we prove an intuitive theorem (Theorem 37) stating

that “more” information leads to better performance.

Theorem 37. If FI1 ⊆ FI2 , then Rπ∗
I1
≤ Rπ∗

I2
where the association rule is the

optimal one given in (4.3).

This theorem establishes a partial order on the performance of the opti-

mal policy under different information scenarios at the UE for any performance

functions {pi(x)}Ti=1.

4.3.2 Optimal Association in the Absence of Fading Knowledge

The following lemma is quite intuitive and affirms that the optimal

strategy for a UE in the absence of fading knowledge is to associate to the

nearest BS of the optimal technology.

Lemma 4.3.1. If the information FI at the typical UE is independent of the

sigma algebra generated by the fading random variables, then

ji = arg supj≥1 E[pi(SINRi,j
0 )|FI ] = 1 and hence π∗I (1) = jπ∗I (0) = 1.
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4.3.3 Examples of Information

One common class of information is the “locally estimated information”

which a UE may attain through measurements of (i) received long-term re-

ceive pilot signals, which can be easily converted into distances of BS, and

(ii) instantaneous received signals, from which fading coefficients can be com-

puted. For example, the knowledge of the distances to BSs no farther than w

from the UE is quantified through the sigma-algebra Fw = σ
(
∪Ti=1F

i
w

)
, where

Fiw = σ (φi(B(0, w))) is the sigma algebra generated by the stochastic process

φ(B(0, w)). Furthermore, in case the UE is capable of estimating fading in-

formation, one can opt for the sigma-field generated by the marked stochastic

process φi(B(0, w)), denoted as Fi,Hw , where each point (BS) is marked with a

fading coefficient between the BS and the UE. Here the superscript H refers

to the sigma-field generated by the marked point-process.

In existing networks, the most practical example is the knowledge of

the nearest L BSs of each technology, denoted by rLi = [r1
i , .., r

L], i.e. the

L-dimensional vector of the distances. In terms of sigma-algebra, it can be

defined as FL = σ
(
∪Ti=1F

i
L

)
, where FiL = σ

(
φi(B(0, rLi ))

)
is the knowledge

of the L nearest BS of each technology. One particularly intriguing scenario

is complete information about the BS deployments, i.e. L = ∞. Denote by

F∞ the sigma-field for this information scenario and Rπ∗
∞ as the performance

obtained by the optimal policy knowing the entire network. Since F∞ is the

maximal element among all sub-sigma algebras of F, it follows from Theorem

37 that Rπ∗
∞ is the the upper bound of all achievable performances. To strike
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a balance between the performance of interest and estimation cost at UE,

each MVNO can evaluate Rπ∗
L to see how much the association policy with L

distances stack up against the upper bound Rπ∗
∞ .

4.4 Max-Ratio Association Policy

While the parametric framework in Section 4.3 paves the way for de-

signing the association policy maximizing various metrics, the optimal schemes

encapsulated in (4.2) and (4.3) are amenable to tractable analysis only with

the knowledge about the underlying PPPs φi, i.e. their intensities λi. On the

other hand, it is less conventional at the present time, if not unrealistic, to

assume that the densities λi are available at the UE in a real network. More

importantly, in certain deployment scenarios, it is highly likely that the BS

distribution follows a non-homogeneous point process with density (intensity)

varying with the location over the network, thereby invalidating the homoge-

neous PPP assumption.

From the computational perspective, the optimal association can often

demand substantial processing power of the UE particularly when the resulting

association tailored for a specified performance metric is not simplified into a

tractable closed-form expression. In this light, it is desirable to have policies

that are completely oblivious to any statistical modeling assumption on the

network, i.e. minimalistic policies exploiting universally available information

such as distances to BSs, which can be computed from received pilot signal

powers in 3G and 4G networks. To address these issues, we propose a max-
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ratio association policy. This policy has access to the ratio ri2/r
i
1 information

for each technology i, i.e. the information FI = σ
(
∪Ti=1r

i
2/r

i
1

)
. The max-ratio

association is formally described by

i∗ = max
i∈[1,T ]

ri2/r
i
1, j

∗ = 1.

This ratio maximization implies that we place a high priority on a

technology where simultaneously the distance to the nearest BS ri1 is smaller

and that to the second-nearest BS ri2 is larger than other technologies. Note

also that the above expression can be easily rearranged into the ratio of the

received pilot powers of the nearest and second-nearest BSs when the BS

transmission powers within each technology is the same. We show in Theorem

38 that although this policy per se is a suboptimal heuristic, it is optimal (in

the sense of (4.3)) under a certain limiting regime of the wireless environment.

Theorem 38. Let the noise powers N i
0 = 0 for all technologies i and the

performance function for all technologies pi(·) = p(·) for all i. Consider the

family of power-law path-loss functions {l(α)(·)}α>2 where l(α)(x) = x−α.

Let k be any integer greater than or equal to 2. If the information at the

UE is the k-tuple of the nearest distances of each technology i i.e. FI =

σ(∪Ti=1(ri1 · · · , rik)), then

π∗α(0)
α→∞−−−→ arg max

i∈[1,T ]

ri2
ri1

a.s., (4.5)

where π∗α is the optimal association as stated in (4.3). Recall π∗α(1) = 1, ∀α

from Lemma 4.3.1.

95



This theorem states that max-ratio association is optimal in cases where

the signal is drastically attenuated (i.e. large path-loss exponents) with dis-

tance, e.g., metropolitan or indoor environments where the exponent reach

values higher than 4, e.g. α ∈ [4, 7]. It is noteworthy that α at higher frequen-

cies as in LTE networks tends to be higher (See, e.g. [179, Chapter 2.6] and

references therein). In addition, another implication of this theorem is that it

suffices for the asymptotic optimality to exploit the reduced information ri1/r
i
2

per technology in lieu of the given original information, i.e. ri1 and ri2.

4.5 Framework for Performance Analysis

In Section 4.3, we compared the performance of the optimal association

policy under different information scenarios by establishing a partial order on

them without explicitly computing the performance Rπ. However, in order to

quantify its impact on Rπ without resorting to exhaustive simulations, one is

also interested in its explicit expression for a given policy π, which may be

an optimal policy as in Section 4.3 or a suboptimal one as in Section 4.4. We

demonstrate how to explicitly compute Rπ in an automatic fashion (in Theorem

39) for any arbitrary policy π belonging to a large class of polices, called

generalized association, which constitutes another part of our contribution.

4.5.1 Generalized Association

In the rest of the chapter, we restrict our discussion to a class of asso-

ciation policies π that are optimized over information with a special structure
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FI , incorporating what is conventionally available in cellular networks, i.e., we

assume that the form of information that a UE has about each technology i is

a vector ri ∈ RL. For instance, if the mobile is informed of the smallest two

distances of each technology and their instantaneous signal powers, then ri is

a 4-dimensional vector with 2 dimensions representing the distances and the

other 2 dimensions corresponding to the instantaneous fading powers. That

is, we adopt this reduced notation as a surrogate for the sigma-algebra nota-

tion in Section 4.3 for simplicity of the exposition. Formally, we assume that

the association policy π = {πi(·)}Ti=1, according to which a mobile chooses a

technology to associate with is given by

i∗ = arg max
i∈[1,T ]

πi(ri, λi), (4.6)

where ji, the index of BS of technology i to which the UE associates con-

ditioned on selection of i, i.e. i = i∗, and ri is the L-dimensional vector of

observation for technology i.

It is noteworthy that when the technologies are operated on overlapping

bandwidths, the above form of association may be extended to a more general

form πi({ri}Ti=1, {λi}Ti=1), where each association policy utilizes not only the

information regarding technology i but also that about all other technologies.

Envisioning this extension is easily justifiable because the desirability of tech-

nology i (represented by πi(·)) is affected by the interference inflicted by other

technologies. However, we leave it as future work and focus our discuss onto

the restricted class of information FI in (4.6) which covers the most interesting

scenarios of non-overlapping bandwidths.

97



4.5.2 Performance Computation of the Generalized Association

For each technology i, we denote by fi(ri) the probability density func-

tion (pdf) of the information vector ri of technology i. For instance, if L = 1

and each mobile has knowledge about the location of the nearest base-station

ri1, then it follows from the property of a PPP that fi(ri) = fi(r
i
1) is the

Rayleigh distribution with parameter 1/
√

2πλi. As for the max-ratio policy,

fi(ri) = fi([r
i
1, r

i
2]) becomes the distribution of the nearest and second-nearest

BSs characterized by the underlying PPP of technology i. We also denote by

f ∗i (r) the pdf of the vector ri conditioned on the event that technology i is

selected, i.e. i∗ = i.

Denote by fπi(·) the pdf of πi(ri, λi) and by Fπi(·) the cumulative den-

sity function (cdf) of πi(ri, λi). To put it simply, fπi(·) is the cdf of a function

πi(·) of the given information ri rather than that of ri itself. For example, in

case of the max-ratio policy, fπi(·) is the distribution of ri2/r
i
1. To prove the

main theorem, we first need to delineate the interplay between the distribution

of optimal technology f ∗i (·), its original distribution fi(·), and the (cumulative)

distribution of the association policy Fπi(·). We have the following lemma from

a direct application of Bayes’ rule and independence of the point processes φi.

Lemma 4.5.1. The probability density function f ∗i (r) is given by

f ∗i (r) = fi(r) · 1

P[i∗ = i]
·

T∏
j=1,j 6=i

Fπj(πi(r, λi)). (4.7)
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The following theorem finally presents a direct method for comput-

ing the performance of any generalized association policy π. Recall that the

performance of a policy π is given by Rπ
I = E[pi∗(SINRi∗,ji∗

0 )].

Theorem 39. The performance of the association algorithm π under infor-

mation FI denoted by Rπ
I is given by-

T∑
i=1

∫
r∈RL

E[pi(SINRi,ji
0 )|r]fi(r)

T∏
j=1,j 6=i

Fπj(πi(r, λi))dr, (4.8)

where E[pi(SINRi,ji
0 )|r] corresponds to the performance obtained by as-

sociating to technology i conditioned on the information about technology i

the UE has is the vector r.

This theorem states that we need only two expressions, information

distribution fi(·) and policy distribution fπi(·), in order to derive the per-

formance metric. As exemplified earlier, while fi(·) is usually a simplistic

expression thanks to properties of PPP, mathematical manipulability of fπi(·)

highly relies on the complexity of the association policy.

4.6 Computational Examples

In this section, we leverage the results in Section 4.5 to derive several

performance metrics in selected practical scenarios where the association policy

utilizes information FI restricted to a vector of distances to BSs (ri) and BS

densities (λi) as shown in (4.6). Note however that one can directly compute

the performance (Rπ
I in Theorem 39) with the probability density function
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of any association policy (fi(r)) by exploiting Lemma 4.5.1. We show that

the resulting performance expressions are mathematically tractable and lend

themselves to quantifying the performance of large-scale wireless networks.

For the rest of this section, we consider two representative metrics: (i)

coverage probability pi(x) = 1(x ≥ βi) and (ii) average achievable rate where,

to simplify the exposition, we assume the bandwidths of different technologies

are the same, i.e. pi(x) = p(x) = log2(1 + x). However, Theorem 39 can

be used to compute the performance of any arbitrary non-decreasing function

pi(·). We also assume that the fading variable H i
j is exponential, i.e. Rayleigh

fading, with mean µ−1 and the path-loss function li(r) = r−α for α > 2 for all

i ∈ [1, T ]. These assumptions have often been adopted for analysis of wireless

systems [179] and espoused in stochastic geometry models [44454445].

Let us denote by cp(j; r, λ, P, β) the coverage probability of a UE at the

origin served by the jth nearest BS to the origin where the BSs are spatially

distributed as a PPP of intensity λ. Here each BS transmits at power P and

we are interested in the probabilistic event that the received SINR exceeds the

threshold β. The vector r denotes the vector of distances to BSs, based on

which the association decision will be made. More formally,

cp(j; r, λ, P,N0, β) = E

[
1

(
PHj

N0 +
∑

k 6=j PHk

≥ β

)∣∣∣∣r ] (4.9)

Likewise, we denote by r(j; r, λ, P ) the expected rate received by a typical UE

at the origin when it is being served by the jth nearest BS to the origin where

the BSs are distributed as a PPP of intensity λ and transmitting at power
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level P :

r(j; r, λ, P,N0) = E

[
log2

(
1 +

PHj

N0 +
∑

k 6=j PHk

)∣∣∣∣r
]

=
∫
t≥0

cp(j; r, λ, P,N0, 2
t − 1)dt. (4.10)

Therefore, once we derive an expression for the coverage probability, the av-

erage achievable rate expression follows immediately from the calculation of

the simple integral in (4.10). In the sequel, we first compute technology-wise

expressions, (4.9) and (4.10), which are in turn plugged as pi(·) into Theorem

39 to yield coverage probability metric Rcp and average achievable rate metric

Rr, respectively.

4.6.1 Optimal Association Policy

Recall that in the absence of knowledge of fading information, the op-

timal association policy is to choose technology i∗ such that:

i∗ = arg max
i∈[1,T ]

cp(1; ri, λi, Pi, N
i
0, βi), (4.11)

i∗ = arg max
i∈[1,T ]

r(1; ri, λi, N
i
0, Pi), (4.12)

respectively for coverage probability and average achievable rate. Note also

that it follows from Lemma 4.3.1 that it is unconditionally optimal to choose

the nearest BS for each technology, i.e. j∗ = 1. Thus our discussion in this

section is focused on the choice of technology i.

In this example, we investigate two cases where the UE has knowledge

of the distances to the nearest ri1 or up to the second-nearest BSs [ri1, r
i
2] along
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with the densities of technologies λi while being oblivious to the information

about fading H i
j. In comparison with the standard rule to associate with the

nearest BS, this example demonstrates how our proposed framework can be

used not only to design an optimal association algorithm maximizing a per-

formance index but also to compute the resulting performance improvements

arising from the additional knowledge of distances and densities. The following

theorem delineates, among all technologies i ∈ [1, T ], which technology yields

the best coverage probability metric.

Theorem 40. If the UE has the knowledge about ri1, for all i ∈ [1, T ], the

association rule (4.11) with the following expression maximizes the coverage

probability:

cp(1; r1, λ, P,N0, β) = e−µβN0rα1 P
−1

exp

(
−2πλ

∫ ∞
u=r1

1

1 + β−1 (u/r1)α
udu

)
. (4.13)

If the UE has the knowledge about ri1 and ri2, for all i ∈ [1, T ], the association

rule (4.11) with the following expression maximizes the coverage probability:

cp (1; [r1, r2], λ, P,N0, β) = e−µβN0rα1 P
−1 1

1 + β (r1/r2)α

exp

(
−2πλ

∫ ∞
u=r2

1

1 + β−1 (u/r1)α
udu

)
. (4.14)

To better understand the practical implications of (4.13), we can con-

sider the case where the thermal noise and threshold terms are identical, i.e.
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N i
0 = N0 and βi = β. Since both the first and second factors in the right-hand

side of (4.13) are decreasing functions with respect to r1, the above policy

gives preference to smaller ri1 among all technologies i ∈ [1, T ], which is in line

with our intuition.

However, for approximately similar values of ri1, it also reveals that the

optimal policy tends to choose technology i with lower density λi because the

right-hand side of (4.13) decreases with λ. The observation is in best agree-

ment with our intuition again because technology i with high density λi implies

that there are more interfering BSs on the average. On the other hand, the

standard rule leads to higher chance of association with the technology with

large λi because the nearest BS is more likely to belong to the technologies

consisting of higher number of BSs. Thus it can be deduced that in case

of heterogeneous BS densities, the standard rule leads to very poor coverage

performance because of its tendency to associate with the most populous tech-

nology, whereas the above equation reveals the optimality of associating with

sparsely populated technology, which sheds light on the complex optimization

to be carried out by MVNOs. Likewise, the optimal policy exploiting the ad-

ditional information of ri2 exhibits similar tendencies in (4.14) by preferring

a technology i having large ri2, i.e. the technology with smallest dominant

interfering power.

In order to compute the optimal performance metric Rcp resulting from

the association rule maximizing the coverage probability, we first need to derive

the probability distribution of cp(1; r, λi, Pi, N0, β), which is in turn plugged
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into Theorem 39. The CDF Fπi(y) = P[cp(1; r, λi, Pi, N0, β) ≤ y] can be

simplified into the following expression by using the fact that the nearest

distance r of BSs distributed as a PPP is Rayleigh distributed with parameter

1√
2πλi

.

Lemma 4.6.1. The CDF Fπi(·) is given by

Fπi(y) = e
− ln( 1

y )
1
2

(∫∞
v=1

1
1+β−1(v)α

vdv
)−1

. (4.15)

Finally, plugging (4.15) into (4.8), we get the following theorem on the

coverage probability maximized by the optimal association policy.

Corollary 41. The coverage probability resulting from the optimal associa-

tion exploiting the knowledge of ri1 is

Rcp =
T∑
i=1

∫
r∈R

cp(1; r, λi, Pi, N
i
0, βi)2πλire

−πλir2

T∏
j=1,j 6=i

(
1

cp(1; r, λj, Pj, N
j
0 , βj)

)− 1
2

(∫∞
v=1

1
1+(βj)

−1(v)α
vdv

)−1

.

4.6.2 Max-Ratio Association Policy

Recall that in the absence of fading information, the Max-Ratio algo-

rithm described in Section 4.4 is to choose technology such that i∗ = maxi∈[1,T ]
ri2
ri1

with the nearest BS in the chosen technology, i.e. j∗ = 1. Although we saw in
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Section 4.6.1 that the density information play a crucial role in performing op-

timal association, we know from Theorem 38 that the simple non-parametric

policy of Max-Ratio is optimal in the limit of large path-loss. In this section,

we also show that this policy is tractable and yields expressions for key per-

formance metrics (Corollary 42 and 43). The simplistic form of the policy

distribution Fπi(·) in the following lemma alludes to ensuing tractable results

in this section.

Lemma 4.6.2. The law Fπi(·) for the max-ratio algorithm is:

Fπi(x) = P
[
ri2/r

i
1 ≤ x

]
= 1− 1/x2. (4.16)

Corollary 42. The coverage probability performance Rcp of the max-ratio

algorithm is given by

2
T∑
i=1

∫
t≥1

cp

(
1;
ri2
ri1

= t, λi, Pi, N
i
0, βi

)
1

t3

(
1− 1

t2

)T−1

dt, (4.17)

where

cp

(
1;
ri2
ri1

= t, λi, Pi, N
i
0, βi

)
=∫ ∞

u=0

cp
(
1; [u, ut] , λi, Pi, N

i
0, βi

)
2(πλi)

2u3t4e−λπ(ut)2du, (4.18)

where cp (1; [u, ut] , λi, Pi, N
i
0, βi) is given in (4.14).

Since the max-ratio does not optimize a particular performance metric

but merely compares the ratio ri2/r
i
1, the average achievable rate expression
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can be obtained directly from the integral transform in (4.10), which in turn

is plugged into Theorem 38 to yield the following corollary.

Corollary 43. The average achievable rate of the max-ratio algorithm is

Rr = 2
T∑
i=1

∫
v≥0

∫
t≥1

cp

(
1;
ri2
ri1

= t, λi, Pi, 2
v − 1

)
1

t3

(
1− 1

t2

)T−1

dtdv, (4.19)

where cp

(
1;

ri2
ri1

= t, λi, Pi, 2
v − 1

)
is given in (4.18).

To get more intuition about the formula, we present the following the-

orem.

Theorem 44. In the Interference-limited regime (i.e. N i
0 = 0 for all i ∈ [1, T ]),

if the path-loss function is given by li(r) = r−α for some α > 2 and all

i ∈ [1, T ], the coverage probability and the average achievable rate of the

max-ratio algorithm are respectively given by

Rcp =


T∑
i=1

∫ 1

x=0

2(T−1)·x3(1−x2)T−2

1+β
2/α
i φ(α,βi,x)

dx, T ≥ 2

1

1+β
2/α
1 φ(α,β1,1)

, T = 1

, (4.20)

Rr =


T∑
i=1

∫ 1

x=0

∫
t≥0

2(T−1)·x3(1−x2)T−2

1+(2t−1)2/αφ(α,2t−1,x)
dtdx, T ≥ 2∫

t≥0

1
1+(2t−1)2/αφ(α,2t−1,1)

dt, T = 1,

(4.21)

where the function φ is given by

φ(α, y, x) =

∫
u≥y−2/α

1

1 + x−αuα/2
du.
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Since the case T = 1 in the above theorem corresponds to the standard

rule to associate with the nearest BS in the presence of only one technology,

Equations (4.20) and (4.21) reduce to much simpler expressions compared to

those in the literature, e.g. Sections III-D and IV-C in the work [32]. On the

other hand, as T becomes larger, inside integrand in (4.20), the distribution

2T (T −1)x3(1−x2)T−2 (additional T cancels out the summation operation) is

gradually skewed toward the origin x = 0, around which φ(α, βi, x) approaches

0. It is easy to show that the coverage probability Rcp approaches one with

higher technology diversity, i.e. T →∞. Though it is not realistic to envision

such a large number of technologies or operators, from which each UE can

cherry-pick its optimal BS, this theorem demonstrates how much UEs can

potentially benefit from the this diversity pooled by MVNOs.

Contrary to the standard association which tends to pick more populous

technologies (i.e. large λi), giving rise to higher number of interferers, the max-

ratio policy counterbalances this pathological behavior by ensuring that the

strongest interferer ri2 is located relatively further. At the same time, the

overall performance of max-ratio algorithm critically relies on large path-loss

constant α, whereas with this caveat, Theorem 38 states that the algorithm

is asymptotically optimal as α → ∞ for any increasing performance function

pi(·) = p(·) in the interference-limited regime.
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Figure 4.2: Comparison of various association schemes. The first two graphs
on the left compare coverage probability where li(r) = r−4 and T = 5 for the
first figure and T = 8 for the second figure. The rightmost graph compares
average achievable rate where α is varied on the x-axis and li(r) = r−α.

4.7 Simulations and Numerical Results

In this section, we provide more insights into our framework and re-

sults by performing simulations and noticing their trends. In performing the

simulations, we take as performance metrics, the coverage probability with

pi(x) = 1(x ≥ βi) and the average rate with pi(x) = log2(1 + x).
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4.7.1 Comparison of Schemes and Technology Diversity

The first two graphs in Fig. 4.2 compare the coverage probability of

various association schemes with path-loss exponent α = 4 for different number

of technologies, T = 5 and T = 8. We observe in all graphs that the Max-

Ratio association scheme outperforms the optimal association policy under the

case when only the nearest BS distances are known. More importantly, the

Max-ratio association performs almost as well as the optimal association under

the knowledge of nearest 2 BSs per technology for this typical value of path-

loss exponent, not to mention that it outperforms the nearest BS association

significantly, particularly when the technology diversity is higher, i.e. T = 8.

The rightmost graph in Fig. 4.2 depicts the average achievable rate for

path-loss exponents α ∈ [2.5, 7], which empirically corroborates the statement

of Theorem 38 that Max-Ratio is the optimal policy when nearest k ≥ 2 BS

per technology are known in the high path-loss regime. Remarkably, Max-

Ratio and the optimal association with two nearest BS distances performs

almost equally (indistinguishable in the graph) for α ≥ 5. That is, a simple

non-parametric policy like the max-ratio performs as well as the optimal asso-

ciation policy in which the entire network topology is known (the best possible

performance) even in the finite path-loss case. It is also noted that the ran-

dom BS association, which is the only policy oblivious to technology diversity,

results in poor performance in all cases. Thus it is beneficial for MVNOs to

leverage the technology diversity in any possible manner by all means.
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4.8 Conclusions

In this work, we explored the potential to boost the service perfor-

mance of wireless networks without incurring additional infrastructure cost by

capitalizing on a new form of diversity, which can be either several networks

operated on orthogonal bandwidths or multiple wireless technologies pooled

by some mobile virtual network operators. We proposed a generic stochas-

tic geometry model for designing association policies that can optimize any

desired performance metric. We characterized the optimal policies by estab-

lishing a natural monotonicity with respect to increasing information, thereby

giving a partial order on the performance without explicit computations. We

also proposed a pragmatic data-dependent association policy and showed it

to be optimal under reasonable assymptotics. In simulations, we see that the

practically reasonable finite network parameters mimic well the limit in our

theoretical result, thereby giving great validity to our heuristic association

scheme. We believe that our heuristic scheme can serve as an alternative to

the standard rules in urban or metropolitan environments with severe signal

attenuation which better exploits the new form of diversity.
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Chapter 5

Community Detection on Euclidean Random

Graphs

5.1 Introduction

In this chapter, we study the problem of graph clustering on euclidean

random graphs, from a stochastic geometric perspective and establish funda-

mental limits and a new clustering algorithm. Community Detection, also

known as the graph clustering problem, is the task of grouping together nodes

of a graph into representative clusters. This problem has several incarna-

tions that have proven to be useful in various applications ([162]) such as so-

cial sciences ([198],[294]), image segmentation [354], recommendation systems

([244],[330]), web-page sorting [221], and biology ([344], [114]) to name a few.

In the present thesis, we introduce a new class of spatial random graphs with

communities and consider the Community Detection problem on it. Our mo-

tivation for a new class of random graph model comes from applications where

nodes have geometric attributes, such as in social networks or more generally

in graphs of similarities, where the similarity function has metric properties.

We study two regimes of the random graph - the sparse degree regime and the

Parts of this chapter is published in [337] and under review [17]. The author was part
of formulating, executing and writing up the results in both papers.
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logarithmic degree regime. The sparse degree regime is one wherein the aver-

age node degree does not scale with the total number of nodes of the graph,

while the logarithmic degree regime is one where the average node degree is

proportional to the logarithm of the total number of nodes.

The random graph will be denoted by Gn, which has a random Nn

number of nodes which is Poisson distributed with mean λn. In our formula-

tion, λ > 0 is a fixed constant that denotes the intensity parameter and n is a

scaling parameter, and we will consider the asymptotic as n→∞. Nodes are

equipped with two i.i.d. labels, a uniform {−1,+1} valued community label

and a uniform Bn :=
[
−n1/d

2
, n

1/d

2

]d
, d ∈ N valued location label. Therefore,

the average number of nodes having location labels in any subset of Bn of unit

volume is λ, which explains why we call λ as the intensity parameter. To draw

the edges, we consider two sequences of functions (f
(n)
in (·))n∈N and (f

(n)
out (·))n∈N

such that 1 ≥ f
(n)
in (r) ≥ f

(n)
out (r) ≥ 0 for all r ≥ 0 and n ∈ N. Conditional

on the node labels, two nodes with location labels x, y ∈ Bn and community

labels Zx, Zy ∈ {−1,+1} are connected by an edge in Gn independently of

other edges with probability f
(n)
in (||x − y||) if Zx = Zy and with probability

f
(n)
out (||x − y||) if Zx 6= Zy. In this interpretation, || · || denotes the Euclidean

norm on the set Bn if Gn is sparse, or denotes the toroidal metric on Bn in

the non-sparse case. We call the random graph Gn sparse if the connection

functions f
(n)
in (·) and f

(n)
out (·) do not depend on n. More precisely, the graph

Gn is sparse if for all r ≥ 0, f
(n)
in (r) := fin(r) and f

(n)
out (r) := fout(r), for func-

tions fin(·) and fout(·) satisfying 0 <
∫
x∈Rd(fin(||x||) + fout(||x||))dx < ∞. In
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this sparse regime, the average degree of any node in Gn is bounded above by

(λ/2)
∫
x∈Rd(fin(||x||) + fout(||x||))dx < ∞ uniformly in n. In this regime, we

draw an edge between two nodes i and j with probability fin(||Xi−Xj||) if the

community labels Zi and Zj are the same or with probability fout(||Xi−Xj||) if

the community labels Zi and Zj are different, where ||·|| denotes the Euclidean

norm on the set Bn. Furthermore, the ‘boundary effects’ due to the edges of

the set Bn will not matter asymptotically as n→∞ as the average degree is

uniformly bounded in n (We make this precise in Section 5.2). We call this

the sparse regime as the average degree is a constant independent of n. If

the connection functions f
(n)
in (·) and f

(n)
out (·) depended on n and further-more

satisfy
∫
x∈Rd f

(n)
in (||x||)dx = Cin log(n) and

∫
x∈Rd f

(n)
out (||x||)dx = Cout log(n) for

some Cin > Cout ≥ 0, for all n, then we call the graph Gn as the logarithmic

degree regime or simply as the logarithmic regime. This is so since the average

degree of any node is proportional to the logarithm of the total number of

nodes in Gn. In this case of logarithmic regime, we avoid having to deal with

boundary effects by considering the toroidal metric on the set Bn. Precisely,

conditional on the location and community labels on nodes, we place an edge

between nodes i and j in Gn with probability f
(n)
in (||Xi −Xj||) if Zi = Zj and

with probability f
(n)
out (||Xi −Xj||) if Zi 6= Zj, where || · || is the toroidal metric

on Bn. We provide a more formal description of the random graph process in

both regimes in Section 5.2.

In the sparse regime, we study the problem of ‘weak-recovery’, which

asks how and when one can estimate the community labels of the nodes of
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Gn better than at random, with high probability, given observational data of

locations labels of all nodes and the graph Gn. Although this requirement

on estimation is very weak, we see through our results that this is indeed

the best one can hope for in the sparse graph setting considered here. In the

logarithmic regime, we consider the problem of ‘Strong Recovery’ or also known

as exact-recovery, which asks how and when can one recover the partition of

nodes into communities exactly based on the observation of the random graph

Gn and the location labels of all nodes. As this is a stronger requirement,

the graph needs to be sufficiently dense in order to perform Exact-Recovery.

More precisely, we see that the average node degree must scale logarithmically

to the number of nodes to capture the phase transition for exact-recovery. In

both of these problems, we assume that the estimator has access to the model

parameters λ and f
(n)
in (·) and f

(n)
out (·). However, we present how one could

possibly implement our algorithm in practice, when the connection functions

are not known explicitly. From a mathematical perspective, the estimation

of the connection functions from data in our spatial setup is an interesting

research question which is beyond the scope of this thesis.

5.1.1 Motivations for a New Spatial Graph Model

The most widely studied model for Community Detection is the Stochas-

tic Block Model (SBM), which is a multi-type Erdős-Rényi graph. In the sim-

plest case, the two community symmetric SBM corresponds to a random graph

with n nodes, with each node equipped with an i.i.d. uniform community label
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drawn from {−1,+1}. Conditionally on the labels, pairs of nodes are con-

nected by an edge independently of other pairs with two different probabilities

depending on whether the end points are in the same or different communities.

Structurally, the sparse SBM is known to be locally tree-like ([288],[16]) while

real social networks are observed to be transitive and sparse. Sparsity in social

networks can be understood through ‘Dunbar’s number’ [149], which concludes

that an average human being can have only about 500 ‘relationships’ (online

and offline) at any point of time. Moreover, this is a fundamental cognitive

limitation of the person and not that of access or resources, thereby justify-

ing models where the average node degree is independent of the population

size. Social networks are transitive in the sense that any two agents that share

a mutual common neighbor tend to have an edge among them as well, i.e.,

the graph has many triangles. Similar phenomena also takes place in graphs

of similarities, where vertices are connected based on metric similarity func-

tions. These aspects point out the limitations of the sparse SBM and a large

collection of models have been proposed to better fit applications under the

realm of Latent Space Models ([191],[197]) and inhomogeneous random graphs

([83]). See also [16] for more references. These are sparse spatial graphs in

which the agents of the social network are assumed to be embedded in an

abstract social space that is modeled as an Euclidean space and conditional

on the embedding, edges of the graph are drawn independently at random as

a non-increasing function of the distance between two nodes. Thanks to the

properties of Euclidean geometry, these models are transitive and sparse, and

115



have a better fit to data than any SBM ([191]). Such modeling assumptions

in the context of multiple communities was also recently verified in parallel

independent work [171], where the nodes have both a community label and

a location label. The locations labels are sampled uniformly on a sphere and

the edges are generated by nodes ‘nearby’ in this sphere connecting with prob-

abilities that depend on the community labels. Several empirical validations

of this model on real data is also conducted in [171] which suggests that such

spatial random graph model provides a good fit for several real world net-

works. However, we note that the sparse SBM enjoys certain advantages over

the geometric random graph considered here, namely that of having low di-

ameter, in agreement with the ‘small world’ phenomena observed in many real

world networks (see [371]). Therefore a natural next step is to superimpose

an SBM with the type of geometric graphs considered here to obtain both a

lot of triangles and small diameter, i.e. a type of small world SBM.

Thus, one can view our model as the simplest planted-partition version

of the Latent Space model, where the nodes are distributed uniformly in a

large compact set Bn and conditional on the locations, edges are drawn de-

pending on Euclidean distance through connection functions fin.(·) and fout(·).

Although, our assumptions are not particularly tailored towards any real data-

sets, our setting is the most challenging regime for the estimation problem as

the location labels alone without the graph reveal no community membership

information. However,in this thesis we assume the location labels on nodes

are known exactly to the estimator. In practice, it is likely that the locations

116



labels are unknown (as in the original Latent Space models where the social

space is unobservable) or are at-best estimated separately. Nonetheless, our

formulation with known location labels forms a crucial first step towards more

general models where the location labels are noisy or missing. The problem

with known spatial location labels is itself quite challenging as outlined in the

sequel and hence we decided to focus on this setting alone in the present the-

sis. Another drawback of our formulation is that we assume the estimator has

knowledge of the model parameters fin(·) and fout(·). In our spatial setup,

the estimation of connection functions from data is an interesting research

question in itself which is however beyond the scope of this thesis.

Central Technical Challenges - The core technical challenge in

studying our spatial graph model in the sparse regime lies in the fact that it

is not ‘locally tree-like’. The spatial graph is locally dense (i.e., there are lots

of triangles) which arises as a result of the constraints imposed by Euclidean

geometry, while it is globally sparse (i.e., the average degree is bounded above

by a constant). The sparse SBM on the other hand, is locally ‘tree-like’ and

has very few short cycles [288]. This comes from the fact that the connection

probability in a sparse SBM scales as c/n for some c > 0. In contrast, the con-

nection function in our model in the sparse regime does not scale with n. From

an algorithmic point of view however, most commonly used techniques (mes-

sage passing, broadcast process on trees, convex relaxations, spectral methods

etc) are not straight forward to apply in our setting since their analysis funda-

mentally relies on the locally tree-like structure of the graph (see [16] and refer-
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ences therein). This fundamental difficulty renders the weak-recovery problem

in the sparse regime quite challenging, even in the presence of known spatial

location labels. We overcome this difficulty by proposing a novel clustering

algorithm and lower bound technique. The key idea for our algorithm is to ex-

ploit the fact that our graph is locally quite dense, which allows one to classify

very accurately ‘nearby’ pairs of nodes. We then use ideas from percolation

theory to then piece together in a non-trivial fashion the different nearby esti-

mators to produce a global clustering. To prove the lower bound, we develop

a new coupling argument by connecting Community Detection with a prob-

lem we call ‘Information Flow from Infinity’, which is a new problem and is

of independent interest. In the logarithmic degree regime, our main novelty

is to notice that the lower bound for community detection can be reduced to

reasoning about events in disjoint regions of space. We then exploit this reduc-

tion along with the fact that events of a Poisson process in disjoint regions of

space are independent, along with certain symmetries of the Euclidean space,

to provide an explicit lower bound for exact-recovery. In certain cases, we give

a closed form expression of the phase-transition threshold by using the large

deviations framework introduced in [20].

The other speciality in our setting is the presence of location labels

which are known exactly to the estimator. This provide some form of ‘side-

information’ which any estimator must exploit. As an illustrative example to

see this, consider the connection functions fin(·) and fout(·) in the sparse case to

be of bounded support. In this case, the absence of an edge between two nearby
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nodes makes it likely that these two nodes belong to opposite communities but

the lack of an edge between far-away nodes farther than the support of either

connection functions does not give any community membership information.

Thus the lack of an edge in this example has different interpretations depending

on the location labels which needs to be exploited in a principled manner by

the estimator. Indeed this is best seen in our lower bound for exact-recovery

case, where if f
(n)
out (r) is identically 0, i.e. there are no cross community edges,

then Exact-Recovery might still be possible even before the subgraph on the

nodes of each individual communities become fully connected. This takes place

since we can use the spatial location information in a non-trivial fashion to

estimate the labels of isolated nodes. Nonetheless, the location labels alone

without the graph provide no information on community membership as the

community and location labels are independent of each other.

5.1.2 Related Work

Community Detection on sparse graphs has mostly been studied on the

SBM random graph model. The study of SBM has a long history in the differ-

ent literatures of statistical physics (see [142] and references therein), mathe-

matics (for ex. [82],[288]) and computer science (for ex. [265], [128],[286]). The

reader should refer to the survey [16] for further background and references

on the SBM. The survey [281] gives a complete treatment of the SBM from a

statistical physics view point. There has been renewed interest in the sparse

regime of the SBM following the paper [142], which made a number of striking
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conjectures on phase-transitions. Subsequently, some of them have been estab-

lished with the most notable and relevant achievements to ours being that of

[288],[284], [262] and [91]. These papers prove that both Community Detection

and the distinguishability problem for the two community sparse SBM undergo

a phase-transition at the same point which they characterize explicitly. These

results for the SBM motivates the investigation of the phase-transitions for

Community Detection and distinguishability in our model. However, the tools

needed for our model are very different from those used to study the SBM.

The key ideas for all of our results come from different problems, mostly those

studied in the theory of percolation [83] and stochastic geometry [303]. Our al-

gorithm is motivated by certain ideas that appeared in the Interacting Particle

Systems literature (for ex. [303] [241],[304],[150]). The papers there developed

re-normalization and percolation based ideas to study different particle sys-

tems arising in statistical mechanics, and our analysis bears certain similarity

to that line of work. Our lower bound comes from identifying an easier prob-

lem than Community Detection called Information Flow from Infinity, which

is a new problem. The key idea to show this reduction comes from an ergodic

argument applied on the spatial random graphs. To study the impossibility

of Information Flow from Infinity, we employ certain ‘random-cluster method’

and coupling arguments. Such methods are quite popular and have proven to

be extremely fruitful in other contexts for example to study mixing time of

Ising Models ([254],[253],[252]). Similar coupling ideas have also appeared in

other estimation contexts, notably the reconstruction on trees problem [282],
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where a lower bound was established using this method.

In the non-sparse regime, the work of [18] and [20] is most related to

our methods for the non-sparse regime. Both papers studies the problem of

Exact-Recovery in much greater detail in the generalized SBM, proving both

lower bounds and efficient algorithms for exact recovery. In this thesis, we

use the lower bound framework developed in [20], specifically, the large devia-

tions characterization of hypothesis testing between Poisson random vectors,

to provide a lower bound for our spatial random graph model.

From a modeling perspective, the works of [389] and [171] which con-

siders the Latent Space Models as a part of its model is the closest to our

model. The paper of [389] gives a spectral algorithm that is proven to work

in the logarithmic degree regime. In particular, their methods do not work for

the sparse regime which is one of the central topics discussed in the present

thesis. The algorithm provided in [171] bears certain similarity to ours where

nearby nodes’ community membership are tested based on the common neigh-

bors. However, it is only guaranteed to work in the logarithmic degree regime.

Furthermore, no lower bounds are presented in [171], while the lower bound

in [389] is based on the idea that the graph is locally tree-like, which is not

the case in our model. Another related problem of group synchronization was

introduced in [19], which among other things, also considered the question

of how well can one identify the communities of two ‘far-away’ nodes. This

paper establishes certain phase-transitions for weak recovery that look similar

to our lower bound, using different ideas from percolation and random walks
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on grids. Nonetheless, our algorithm is completely different from theirs and

in-fact a straight forward adaptation of our algorithm to their setting can give

an alternative proof of Theorem 3 in [19].

5.2 Mathematical Framework and Problem Statement

We describe the mathematical framework based on stationary point

processes and state the problem of Community Detection. We will consider

the graph Gn as a suitable truncation of an infinite random graph constructed

on the support of a Poisson Point Process (PPP). This representation allows

us to couple the graphs Gn for all n on a single probability space, which

aids in the mathematical analysis. In the non-sparse case, there is no direct

limiting infinite graph. Nevertheless, we can couple all the graphs Gn on a

single probability space by constructing them on a single marked PPP. We set

a common shorthand notation we use throughout. For two arbitrary positive

sequences (an)n∈N and (bn)n∈N, we let bn = o(an) to denote the fact that

limn→∞ bn/an = 0.

5.2.1 The Planted Partition Random Connection Model

We suppose there exists an abstract probability space (Ω,F,P) on which

we have an appropriately marked PPP φ̄. We will construct the sequence of

random graphs (Gn)n∈N on this space simultaneously for all n as a measurable

function of this marked PPP φ̄. More formally, we assume φ to be the support

of a homogeneous PPP of intensity λ on Rd with the enumeration that φ :=
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{X1, X2, · · · }. In this representation, Xi ∈ Rd for all i ∈ N. Furthermore, we

assume the enumeration to be such that for all i > j ∈ N, we have ||Xi||∞ ≥

||Xj||∞, i.e., the points are ordered in accordance to increasing l∞ distance. We

further mark each atom i ∈ N of φ with random variables Zi ∈ {−1,+1} and

{Uij}j∈N\{i} ∈ [0, 1]N\{i} satisfying Uij = Uji for all i 6= j ∈ N. We denote by φ̄

to be this marked PPP. The sequence {Zi}i∈N is i.i.d. with each element being

uniformly distributed in {−1,+1}. For every i ∈ N, the sequence {Uij}j∈N\{i}

is i.i.d. with each element of {Uij}j∈N\{i} being uniformly distributed on [0, 1].

The interpretation of this marked point process is that for any node i ∈ N,

its location label is Xi, community label is Zi and {Uij}j∈N\{i} are used to

sample the graph neighbors of node i. We describe this construction in both

the sparse and logarithmic degree regimes below.

Denote by the set Bn :=
[
−n1/d

2
, n

1/d

2

]d
, the cube of area n in Rd. For

all n ∈ N, we let Nn := sup{i ≥ 1 : Xi ∈ Bn}. Since the nodes are enumerated

in increasing order of l∞ distance, it follows that for all i ∈ [1, Nn], Xi ∈ Bn.

Furthermore, from basic properties of PPP, Nn is a Poisson random variable

of mean λn. We construct the graph Gn, by assuming its vertex set to be

{1, · · · , Nn} and the location label of any node i ∈ [1, Nn] to be Xi ∈ Bn

and its community label to be Zi ∈ {−1,+1}. However, we use the marks

{Uij}j∈N\{i} slightly differently depending on whether the graph is sparse or

not. Recall that in the sparse regime, we have the connection functions f
(n)
in (·)

and f
(n)
out (·) to be independent of n. In this case, we first construct an infinite

graph G with vertex set N and place an edge between any two nodes i, j ∈ N
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if and only if Uij = Uji ≤ fin(||Xi−Xj||)1Zi=Zj + fout(||Xi−Xj||)1Zi 6=Zj . The

graph Gn is then the induced subgraph of G consisting of the nodes 1 through

Nn, i.e., the subgraph of G restricted to the node set with location labels in Bn.

In the logarithmic degree regime, we assume that the set Bn is equipped with

the toroidal metric rather than the Euclidean metric for simplicity. Formally,

for any x := (x1, · · · , xd), y := (y1, · · · , yd) ∈ Bn, the toroidal distance on

Bn is given by ||x − y||Tn = ||(min(|x1 − y1|, n1/d − |x1 − y1|), · · · ,min(|xd −

yd|, n1/d − |xd − yd|))||, where ||.|| is the standard Euclidean norm on Rd. For

any i, j ∈ [1, Nn], we draw an edge between nodes i and j in Gn if and only if

Uij = Uji ≤ f
(n)
in (||Xi −Xj||Tn)1Zi=Zj + f

(n)
out (||Xi −Xj||Tn)1Zi 6=Zj .

The infinite random graph G in the sparse regime can be viewed as a

‘planted-partition’ version of the classical random-connection model ([268]).

Given λ ∈ R+, g(·) : R+ → [0, 1] and d ≥ 1, the classical random-connection

model Hλ,g(·),d, is a random graph whose vertex set forms a homogeneous PPP

of intensity λ on Rd. Conditionally on the locations, edges in Hλ,g(·),d are

placed independently of each other where two points at locations x and y of

Rd are connected by an edge in Hλ,g(·),d with probability g(||x − y||). This

construction can be made precise by letting the edge random variables for

each node be marks of the PPP similarly to the construction of G.

5.2.2 The Community Detection Problem

In this thesis, we study two different notions of Community Detection

- weak recovery and exact recovery, depending on whether the graph Gn is
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sparse or non-sparse. In the sparse regime, our definition of Community De-

tection is analogous to the notion of ‘weak-recovery’ considered in the classicial

SBM literature ([142]) and in the logarithmic degree regime, our definition of

Community Detection is analogous to the notion of ‘Exact-Recovery’ ([18])

in the SBM literature. To state the two notions of community recovery, we

set more notation. Let φn be the restriction of the point process φ to the set

Bn. Notice that the cardinality of φn is Nn which is distributed as a Poisson

random variable of mean λn, and Xi ∈ Bn for all i ∈ [1, Nn]. Moreover, con-

ditionally on Nn, the location variables (Xi)i∈[1,Nn] are placed uniformly and

independently in Bn. Before describing the problem, we need the definition of

‘overlap’ between two sequences.

Definition 45. Given a t ∈ N, and two sequences a,b ∈ {−1, 1}t, the over-

lap between a and b is defined as
|
∑t
i=1 aibi|
t

, i.e., the absolute value of the

normalized scalar product.

We define two notions of performance of community detection, weak

recovery and exact recovery defined below.

Definition 46. Weak Recovery is said to be solvable in the sparse regime

for λ, d, fin(·) and fout(·) if for every n ∈ R+, there exists a sequence of

{−1,+1} valued random variables {τ (n)
i }

Nn
i=1 which is a deterministic func-

tion of the observed data Gn and φn such that there exists a constant γ > 0

satisfying

lim
n→∞

P [On ≥ γ] = 1, (5.1)
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where On is the overlap between {τ (n)
i }

Nn
i=1 and {Zi}Nni=1.

In the above definition, we let the overlap On := 1 if Nn = 0. In the

logarithmic degree regime, we ask for exact-recovery which is formally stated

as follows.

Definition 47. Exact-Recovery is said to be solvable in the logarithmic

degree regime for λ, d, (f
(n)
in (·))n∈N and (f

(n)
out (·))n∈N if for every n ∈ R+,

there exists a sequence of {−1,+1} valued random variables {τ (n)
i }

Nn
i=1 which

is a deterministic function of the observed data Gn and φn such that

lim
n→∞

P [On = 1] = 1, (5.2)

where On is the overlap between {τ (n)
i }

Nn
i=1 and {Zi}Nni=1.

A key new feature of our Definitions 46 and 47 comes from our assump-

tion that the algorithm has knowledge of all location labels on the nodes and

it only needs to estimate the missing community labels. In the sparse regime,

we ask when can any estimator assign community labels to the nodes that

beats a ‘random guess’. Observe that if an estimator guessed every node to

be in Community +1, then the achieved overlap On converges almost-surely

to 0, thanks to the Strong Law of Large Numbers. Thus, achieving a positive

γ asks whether an estimator can asymptotically beat the trivial estimator. In

the non-sparse regime, we ask when and how can we recover the commuity

label of all nodes, upto a global flip.
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Observe that we assume the algorithm has access to the parameters

f
(n)
in (·), f (n)

out (·) and λ although this assumption may not always hold in practice.

As mentioned, the estimation of model parameters from data itself will form

an interesting technical question which we leave for future work. We take

an absolute value in the definition of overlap since the distribution of Gn is

symmetric in the community labels. In particular, if we flipped all community

labels of Gn, we would observe a graph which is equal in distribution to Gn.

Thus, any algorithm can produce the clustering only up-to a global sign flip,

which we capture by considering the absolute value. We take finite restrictions

Bn since the overlap is not well defined if Nn =∞. A natural question then is

of ‘boundary-effects’, i.e. the nodes near the boundary of Bn will have different

statistics for neighbors than those far away from the boundary. However since

Gn is sparse, except for a on(1) fraction of nodes, all nodes in Gn will have the

same degree as in the infinite graph G, i.e. the boundary effects are negligible.

In the non-sparse case, since we consider the set Bn as a torus, to precisely

avoid the technicalities arising out of considering the edge effects.

The following elementary monotonicity property is evident from the

definition of the problem and sets the stage for stating our main results.

Proposition 48. For every fin(·), fout(·) and d, there exists a λc ∈ [0,∞] such

that

• λ < λc =⇒ weak-recovery is not solvable.
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• λ > λc =⇒ there exists an algorithm (which could possibly take expo-

nential time) to solve weak-recovery.

Proof. Assume, for a given value of λ, there exists a community detection

algorithm that achieves an overlap of γ > 0. Now, given any λ
′
> λ, we will

argue that we can achieve positive overlap. The proof of this follows from

the basic thinning properties of the PPP. Given an instance of the problem

with intensity λ
′
, we will remove every node along with its incident edges

independently with probability 1− λ
λ′

. We assign a community label estimate

of +1 to all the removed nodes. For the nodes that remain (which is then an

instance of the problem of community detection with intensity λ), we achieve

an overlap of γ with probability at-least 1 − on(1), from the hypothesis that

we can achieve positive overlap at intensity λ. Thus, from the independence

of the thinning procedure and the community labels and strong law of large

numbers, the overlap achieved by this process on an instance of intensity λ
′

will be at-least λγ

λ′
with probability at-least 1 − on(1). Thus, the problem of

community detection solvability is monotone in λ in the sparse case.

This proposition is not that strong since it does not rule out the fact

that λc is either 0 or infinity. Moreover, this proposition does not tell us any-

thing about polynomial time algorithms, just of the existence or non-existence

of any (polynomial or exponential time) algorithms. The first non-trivial re-

sult would be to establish that 0 < λc <∞, i.e. the phase transition is strictly
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non-trivial and then to show that for possibly a larger constant, the problem

is solvable efficiently. We establish both of this in Section 5.3.

Distinguishability of the Planted Partition in the Sparse Regime

In this study, we also consider a related problem to weak-recovery,

namely the distinguishability question in the sparse regime.

Definition 49. The sparse planted partition model with parameters λ, d and

connection functions fin(·) and fout(·) is said to be distinguishable, if for every

g(·) : R+ → [0, 1], one can identify with probability at-least 1
2

+ γ − on(1) for

some γ > 0, whether the observed data (Gn, φn) is a sample of the planted

partition with the above parameters, or is a sample of the random connection

model Hλ,g(·),d, given an uniform prior over the two models.

This problem asks if we can even identify the existence of communities,

before trying to identify them. Such hypothesis testing questions are of critical

importance in practice where one needs to be reasonably sure of the presence

of communities in a given graph, before attempting to cluster the graph. Our

main result in Theorem 56 is that one can always solve the distinguishability

problem, i.e. it exhibits no phase-transition. Thus our results on weak-recovery

and distinguishability predicts regimes of the problem (i.e. d = 1 and λ < λc

for d ≥ 2), where we can be very sure of the presence of communities, but

cannot recover it better than at random.
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5.3 Main Results

5.3.1 Lower Bound for Weak Recovery

To state the main lower bound result in Theorem 50 below, we set

some notation. For the random connection model graph Hλ,g(·),d, denote by

CHλ,g(·),d(0) the set of nodes of Hλ,g(·),d that are in the same connected com-

ponent as that of the node at the origin under the measure P0. Denote by

θ(Hλ,g(·),d) := P0[|CHλ,g(·),d(0)| =∞] the percolation probability of the random

graph Hλ,g(·),d, i.e. the probability (under Palm) that the connected component

of the origin has infinite cardinality.

Theorem 50. If θ(Hλ,fin(·)−fout(·),d) = 0, then weak-recovery is not solvable.

The proof of this Theorem is presented in Section 5.5. This theorem

states that if the two functions fin(·) and fout(·) are not ‘sufficiently far-apart’,

then no algorithm to detect the partition of nodes can beat a random guess.

As a corollary, this says that Community Detection is impossible for d = 1.

Corollary 51. For all λ > 0, fin(·), fout(·) such that
∫
x∈R fin(||x||)dx < ∞,

weak-recovery is not solvable if d = 1.

Proof. This is based on the classical fact that for all g(·) : R+ → R+ such that∫
x∈R g(||x||)dx <∞, θ(Hλ,g(·),1) = 0.

The following corollary gives a quantitative estimate of the percolation

probability for higher dimensions in terms of the problem parameters.
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Corollary 52. For all d ≥ 2, if λ ≤ λlower := (
∫
x∈Rd(fin(||x||)−fout(||x||))dx)−1,

then weak-recovery cannot be solved. Thus, λc > (
∫
x∈Rd(fin(||x||)−fout(||x||))dx)−1.

Proof. From classical results on percolation [268], by comparison with a branch-

ing process, we see that λ
∫
x∈Rd g(||x||) ≤ 1 =⇒ θ(Hλ,g(·),d) = 0.

Recall that if the graph G is sparse, then
∫
x∈Rd fin(||x||)dx <∞ which

implies from Corollary 52 that λc is strictly positive in the sparse regime. The

following proposition shows that this lower bound is tight for certain specific

families of connection functions.

Proposition 53. For all d ≥ 2 and R1 ≥ R2, if fin(r) = 1r≤R1 and fout(r) =

1r≤R2 and λ is such that θ(Hλ,fin(·)−fout(·),d) > 0, then weak-recovery can be

solved in time proportional to n with the proportionality constant depending

on the parameters λ,Rin and Rout.

The proof of this Proposition is presented in Section 5.5. Hence, in view

of Theorem 50, for fin(r) = 1r≤R1 and fout(r) = 1r≤R2 for some R1 ≥ R2, then

if λ is such that θ(Hλ,fin(·)−fout(·),d) = 0, no algorithm (exponential or polyno-

mial) time can solve weak-recovery, while if λ is such that θ(Hλ,fin(·)−fout(·),d) >

0, then a linear time algorithm exists to solve weak-recovery. This gives a sharp

phase-transition for this particular set of parameters where the problem shifts

from being unsolvable even with unbounded computation to being efficiently

solvable.
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5.3.2 Algorithm and an Upper Bound for Weak Recovery

Our main result in the positive direction is our GBG algorithm described

in Section 5.4. The main theorem statement on the performance of GBG is the

following.

Theorem 54. If fin(·) and fout(·) are such that {r ∈ R+ : fin(r) 6= fout(r)} has

positive Lebesgue measure and d ≥ 2, then there exists a λupper <∞ depending

on fin(·), fout(·) and d, such that for all λ ≥ λupper, the GBG algorithm solves

the weak-recovery problem. Moreover, GBG when run on data (Gn, φn), has

time complexity order n2 and storage complexity order n.

The proof of this Theorem is in Appendix D. This theorem gives a

complete non-trivial phase-transition for the sparse graph case where we have

0 < λc < ∞ which implies the existence of different phases. We also note

that our algorithm is asymptotically optimal in a weak sense made precise

in the sequel below. Denote by Oλ as the maximum overlap achieved by

our algorithm, with the definition of overlap as given in Definition 45. More

precisely, denote by Oλ as

Oλ := sup{γ ≥ 0 : lim
n→∞

P[On > γ] = 1}, (5.3)

where On is the overlap achieved by the GBG algorithm when run on the data

Gn and φn. Thus, for each fixed λ, the overlap Oλ ∈ [0, 1] is determinstic

quantity.

Proposition 55. The following limit limλ→∞Oλ = 1 exists.
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The proof is presented in Appendix D. In words, this proposition states

that as the ‘signal’ gets stronger, the fraction of nodes correctly classified by

our algorithm tends to 1. On a related note, we also mention in Section 5.4.5,

a practical way of implementing the algorithm when the connection functions

fin(·) and fout(·) are not known explicity.

5.3.3 Distinguishability of the Planted Partition

The key result we show here is that unlike in the traditional Erdős-Rényi

setting, the planted partition random connection model is always mutually

singular with respect to any random connection model without communities.

Before precisely stating the result, we set some notation. Denote by MG(Rd)

the Polish space of all simple spatial graphs whose vertex set forms a locally

finite set of Rd. Thus, our random graph G or the random connection model

Hλ,g(·),d can also be viewed through the induced measure on the space MG(Rd).

Theorem 56. For every λ > 0, d ∈ N and connection functions fin(·) and

fout(·) satisfying 1 ≥ fin(r) ≥ fout(r) ≥ 0 for all r ≥ 0, and {r ≥ 0 : fin(r) 6=

fout(r)} having positive Lebesgue measure and g(·) : R+ → [0, 1], the probabil-

ity measures induced on the space of spatial graphs MG(Rd) by G and Hλ,g(·),d

are mutually singular.

The proof of this Theorem is presented in Appendix D. This theorem

56 implies that this distinguishability problem as stated in Definition 49 can

be solved with probability of success 1− on(1) for all parameter values. Thus,
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the distinguishability problem as stated in our spatial case exhibits no phase-

transition. A consequence of our results is that in certain regimes (λ < λc for

d ≥ 2 and λ > 0 for d = 1), we can be very sure by observing the data that a

partition exists, but cannot identify it better than at random. Such phenom-

ena was proven not to be observed in a symmetric SBM with two communities

([288]) and conjectured not to occur in any arbitrary SBM ([142]). Technically,

this theorem gives in particular that G and H
λ,
fin(·)+fout(·)

2
,d

are mutually singu-

lar. Note that if g(·) 6= fin(·)+fout(·)
2

, then the average degrees of G and Hλ,g(·),d

are different and hence the empirical average of the degrees in Gn and Hλ,g(·),d

restricted to Bn, will converge almost surely as n→∞ (thanks to the ergodic

property of PPP) to the mean degree, thereby making the two induced mea-

sures mutually singular Thus, the only non-trivial random connection model

that can possibly be not singular with respect to G is H
λ,
fin(·)+fout(·)

2
,d

, i.e. the

case of equal average degrees. We show by a slightly different albeit similar

ergodic argument in Section D.2 that even in the case of equal average degrees,

the two induced measures are mutually singular.

5.3.4 Phase Transition for Exact-Recovery

Our main achievement with regards to Exact-Recovery is an explicit

necessary condition on the model parameters given in the following Theorem.

To highlight the ideas, we primarily focus on a simplest non-trivial example of

connection functions in the logarithmic regime, where we are able to conjecture

a closed form expression for the phase-transition threshold.
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Definition 57. For any 0 ≤ b < a ≤ 1, n ∈ N, λ > 0 and d ∈ N, we

denote by G(λn, a, b, d) as the distribution of graph Gn we defined in Section

5.2 with f
(n)
in (r) = a1r≤log(n)1/d and f

(n)
out (r) = b1r≤log(n)1/d for all r ≥ 0, where

the distance on the set Bn is the torridal metric.

In the results that follow, denote by νd to be the volume of the unit

Euclidean unit ball in d dimensions.

Theorem 58. For any λ > 0, d ∈ N and 0 ≤ b < a ≤ 1 such that λνd(1 −
√
ab −

√
(1− a)(1− b)) < 1, Exact-Recovery of Gn ∼ Gn(λn, a, b, d) is not

solvable.

The proof is presented in Appendix D. This connection functions are the

simplest non-trivial instance of our model that makes the study interesting.

We also believe that this necessary condition to be tight. However, at this

point, we only present the following conjecture and do not pursue a proof of

this.

Conjecture 59. For any λ > 0, d ∈ N and 0 ≤ b < a ≤ 1 such that

λνd(1 −
√
ab −

√
(1− a)(1− b)) > 1, Exact-Recovery of Gn ∼ Gn(λn, a, b, d)

is solvable.

We believe two-round techniques developed in [20] applied to the spatial

graph case can be fruitful in establishing this conjecture. To establish the

existence of a phase-transition however, we analyze the GBG algorithm and

adapt it to the non-sparse case to yield the following result.
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Theorem 60. For every λ > 0, d ∈ N and 0 ≤ b < a ≤ 1, there exists

C(a, b, d) > 0 such that if λνd(1−
√
ab−

√
(1− a)(1− b)) > C(a, b, d), Exact-

Recovery of Gn ∼ Gn(λn, a, b, d) is solvable by GBG algorithm.

The proof is presented in Appendix D. This theorem gives the existence

of different phases of the exact-recovery problem depending on λ. In particular,

it states that if the intensity λ is sufficiently high, then Exact-Recovery is

solvable by our GBG algorithm.

5.4 Algorithm for Performing Community Detection

In this section, we outline an algorithm called GBG described in Algo-

rithm 3 that has time complexity of order n2 and storage complexity of order

n. We make the presentation here assuming that Gn is sparse, although a

straightforward adaptation can be made to apply this algorithm in the loga-

rithmic degree regime as well. We skip it here and it may be found for instance

in [17]. The algorithm we present and analyze requires the knowledge of the

model parameters λ, f
(n)
in (·) and f

(n)
out (·), although we show in Section 5.4.5,

that by a simple modification, we can implement the algorithm even if the

model parameters are unknown to the algorithm.

5.4.1 Key Idea behind the Algorithm - Dense Local Interactions

The main and simple idea in our algorithm is that the graph Gn is

‘locally-dense’ even though it is globally sparse. This is in contrast to sparse

Erdős-Rényi based graphs in which the local neighborhood of a typical vertex
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‘looks like a tree’, our graph will have a lot of triangles due to Euclidean

geometry. This simple observation that our graph is locally-dense enables us to

propose simple pairwise estimators as described in Algorithm 1 which exploits

the fact that two nodes ‘nearby’ in space have a lot of common neighbors (order

λ). For concreteness, consider the case when fin(r) = a1r≤R and fout(r) =

b1r≤R for some R > 0 and 0 ≤ b < a ≤ 1. This means that points at Euclidean

distance of R or lesser are connected by an edge in G with probability either

a or b depending on whether the two points have the same community label

or not. Moreover from elementary calculations, the number of common graph

neighbors for any two nodes of G at a distance αR away for some α < 2 is a

Poisson random variable with mean either λc(α)Rd(a2 + b2)/2 or λc(α)Rdab

(for some constant c(α) that comes from geometric arguments) depending on

whether the two nodes have the same or different community labels. Thus,

using a simple strategy consisting of counting the number of common neighbors

and thresholding gives a probability of mis-classifying any ‘nearby’ pair of

nodes to be exponentially small in λ. We implement this idea in the sub-

routine 1 below. Now, to produce the global partition one needs care to

aggregate the pairwise estimates into a global partition. Since some pair-wise

estimates are bound to be in error, we must identify them and avoid using

those erroneous pair-wise estimates (see also Figure 5.1). We achieve this by

classifying regions of space Bn as ‘good’ or ‘bad’ and then by considering the

pair-wise estimates only in the ‘good’ regions. We prove that if λ is sufficiently

large, then the ‘good’ regions will have sufficiently large volume and hence will
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succeed in detecting the communities better than at random.

We summarize our main algorithm below before presenting the formal

pseudo-code.

• Step 1 Partition the region Bn into small constant size cells and based on

‘local-geometry’ classify each cell as good or bad. This is accomplished

in the Is-A-Good routine.

• Step 2 Consider connected components of the Good cells and then in each

of them apply the following simple classification rule. We enumerate

the nodes in each connected component of Good cells in an arbitrary

fashion subject to the fact that subsequent nodes are ‘near-by’. Then

we sequentially apply the Pairwise-Classify Algorithm given in 1.

• Step 3 Do not classify the nodes in the bad cells and just output an

estimate of +1 for them.

5.4.2 Notation and Definitions

In this section, we specify the needed notations for describing our algo-

rithm. We will assume that the connection functions fin(·) and fout(·) satisfy

the hypothesis of Theorem 54. Thus, there exists 0 ≤ r̃ < R < ∞ such that

fin(r) > fout(r) for all r ∈ [r̃, R]. In the rest of this section, we will use the r̃

and R coming from the connection functions.

To describe the algorithm, we need to set some notation. We partition

the entire infinite domain Rd into good and bad regions. However this is just
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for simplicity and in practice, it suffices to do the partition for the region Bn.

We first tessellate the space Rd into cubes of side-length R
4d1/d

where R is as

above. We identify the tessellation with the index set Zd, i.e. the cell indexed

z is a cube of side-length R
4d1/d

centered at the point zR
4d1/d

∈ Rd. The subset of

Rd that corresponds to cell z is denoted by Qz. Hence the cell indexed 0 is the

cube of side-length R
4d1/d

centered at the origin. We now give several definitions

on the terminology used for the Zd tessellation and not to be confused with the

terminology for describing the graph Gn. We collect all the different notation

and terminology in this sub-section for easier access and reference.

Definition 61. A set U ⊆ Zd is said to be Zd-connected if for every x, y ∈

U , there exists a k ∈ N and x1, · · ·xk ∈ U such that for all i ∈ [0, k + 1],

||xi − xi−1||∞ = 1, where x0 := x and xk+1 := y.

Definition 62. For any z ∈ Zd, denote by Zd-neighbors of z the set of all

z
′ ∈ Zd such that ||z − z′||∞ ≤ 1.

Definition 63. For any subset A ⊂ Zd and any k ∈ N, the k thickening of

A is denoted by Lk(A) := ∪z∈A ∪z′∈Zd:||z−z′ ||∞≤k z
′
.

Definition 64. For any set B ⊆ Zd, denote by the set QB := ∪z∈BQz.

Definition 65. Let Z(·) : Rd → Zd be the projection function, i.e. Z(x) :=

inf{z ∈ Zd : || Rz
4d1/d

− x||∞ ≤ 0.5}. In case, of more than one z achieving the

minimum, we take the lexicographically smallest such z.
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Definition 66. For any two points x, y ∈ Rd, denote by SR(x, y) := B(x,R)∩

B(y,R), i.e. the intersection of two balls of radius R centered at points x and

y.

Definition 67. For any two points x, y ∈ Rd such that ||x− y||2 < R, define

by the two constants Min(x, y) and Mout(x, y) as follows.

Min(x, y) =

∫
z∈SR(x,y)

(fin(||x− z||)fin(||y − z||) + fout(||x− z||)fout(||y − z||)) dz

Mout(x, y) =

∫
z∈SR(x,y)

(fin(||x− z||)fout(||y − z||) + fout(||x− z||)fin(||y − z||))dz.

Observe that the definitions of Min(x, y) and Mout(x, y) immediately

give that

Min(x, y)−Mout(x, y) =∫
z∈SR(x,y)

(fin(||x− z||)− fout(||x− z||)) (fin(||y − z||)− fout(||y − z||)) dz.

Definition 68. For any two points x, y ∈ φ, denote by E
(R)
G (x, y) the number

of common graph neighbors of x and y in G which are within a distance R

from both x and y.

5.4.3 Algorithm Description in Pseudo Code

We first present two sub-routines in Algorithms 1 and 2 that classify

each cell of Rd to be either Good or Bad. The algorithm is parametrized by

ε ∈
(
0, 1

2

)
which is arbitrary and fixed.
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Algorithm 1 Pairwise Classifier

1: procedure Pairwise-Classify(i, j, φ,G)

2: if E
(R)
G (Xi, Xj) >

λ
2

(Min(Xi, Xj) +Mout(Xi, Xj)) then return 1
3: else
4: return −1
5: end if
6: end procedure

In this algorithm, we classify two nodes as in the same partition if

the number of common graph neighbors they have exceeds a threshold. The

threshold is the average of the expected number of neighbors if the two nodes

in consideration are of the same or opposite communities. Such simple tests

suffices for our purpose, although one could imagine a more accurate estimator

that also takes into account the number of nodes in SR(Xi, Xj) that do not

have any edges to Xi and Xj; or the location labels of the common neighbors.

Algorithm 2 Is A-Good Testing

1: procedure Is-A-Good(z,G)
2: if |φ ∩Qz| < λ(R/4)d(1/d)(1− ε) then return FALSE
3: end if
4: φ(z) := φ ∩ (∪z′ :||z−z′ ||∞≤1Qz′ )

5: for all ∀k ≥ 1, and all X1, · · ·Xk ∈ φ(z) do
6: if

∏k
i=1 PAIRWISE-CLASSIFY(Xi, Xi+1, G) = −1 then .

Where Xk+1 := X1

7: return FALSE
8: end if
9: end for

10: return TRUE
11: end procedure

To understand the algorithm, we need some definitions which classify
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Algorithm 3 GBG

1: procedure Main-Routine(Gn, φn)
2: Classify each cell in Bn to be either A-Good or A-Bad using subroutine

Is-A-Good.
3: Let D1, · · ·Dk be the A-Good Zd-connected components in Bn.
4: for l = 1, l ≤ k do
5: LetXl1 , · · ·Xlnj

∈ φn∩QDj be maximal and arbitrary s.t ||Z(Xlo)−
Z(Xlo+1)||∞ ≤ 1,∀1 ≤ o ≤ nj − 1

6: Set τ̂
(n)
l1

= +1
7: for w = 2, w ≤ nj do

8: Set τ̂
(n)
lw

= Pairwise-Classify(lw−1, lw, φn, Gn)τ̂
(n)
lw−1

9: end for
10: end for
11: for c = 1, c ≤ Nn do
12: if τ̂

(n)
c = 0 then

13: Set τ̂
(n)
c = +1

14: end if
15: end for
16: return {τ̂ (n)

i }
Nn
i=1

17: end procedure
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cells of Zd into Good or Bad depending on the ‘local graph geometry’.

Definition 69. A cell Qz is A-Good if

1.

∣∣∣∣φ ∩Qz

∣∣∣∣ ≥ max
(
λ
(
R
4

)d 1
d
(1− ε), 1

)
; and

2. Is-A-Good(z,G) returns TRUE

A cell is called A-Bad if it is not A-Good.

The key idea of our simple algorithm lies in the definition of A-Good

cells. We classify a cell to be A-Good if there are no ‘inconsistencies’ in the

Pairwise-Estimates. See Figure 5.1 for an example of pair-wise inconsistency

due to the Pairwise-Classify algorithm. In words, a cell is A-Good, if

among the nodes of G that either lie in the cell under consideration or in the

neighboring cells, there are no inconsistencies in the output returned by the

Pairwise-Classify algorithm. Moreover, one can test whether a cell is A-

Good or not based on the data (φ,G) itself as done in Algorithm 2. Thus, we

use the nomenclature of Algorithm-Good as A-Good.

The main routine in Algorithm 3 proceeds as follows. In Line 3, we

extract out all A-Good connected cells in the spatial region Bn. Suppose

that there are k A-Good connected components denoted by D1, · · · ,Dk. Our

algorithm looks at each connected component independently and produces a

labeling of the nodes in them. In Line 5, we enumerate all nodes in any A-Good

connected component Dl as Xl1 · · ·Xlnl
such that for all 1 ≤ o < nl, we have

||Z(Xlo) − Z(Xlo+1)||∞ ≤ 1. Such an enumeration of any A-Good connected
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+1	 +1	

-1	

Node	i	

Node	j	 Node	k	

Figure 5.1: An illustration where Pairwise-Classify leads to inconsistency. The
values on the edges represent the output of pairwise classify run on the two
end points as inputs. In this example it is clear that for at-least one pair
(i, j), (j, k), (k, i), the output of pairwise estimate is different from the ground
truth.

component is possible since by definition, every A-Good cell is non-empty of

nodes. Now, we sequentially estimate the community labels in Line 8 using

the Pairwise-Classify sub-routine applied on ‘nearby’ pairs of nodes. In

Line 13, we assign an estimate of +1, i.e., extract no meaningful clustering for

nodes that fall in A-Bad cells. See also Figure 5.2 for an illustration.

5.4.4 Complexity and Implementation

We discuss a simple implementation of our algorithm which takes time

of order n2 to run and storage space of order n. The multiplicative constants

here depend on λ. We store the locations φn as a vector whose length is order

λn and the graph Gn as an adjacency list. An adjacency list representation is

appropriate since Gn is sparse and the average degree of any node is a constant

(that depends on λ). Once we sample the locations φn, the graph Gn takes

time of order n2 to sample. However, if one represented the locations of nodes
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more cleverly, then the sampling complexity could possibly be reduced from

n2. Moreover, since the average degree is a constant, the storage needed is

order n. Given the data φn and the graph Gn, we pre-process this to store

another adjacency list where for every vertex, we store the list of all other

vertices within a distance of 2R from it. This preprocessing takes order n2

time and order n space. The space complexity is order n since the graph is

sparse. Equipped with this, we create a ‘grid-list’ where for each coordinate

of Zd, we store the list of vertices whose location is in the considered grid

cell. This takes just order n time to build. Moreover, since only a constant

number of nodes are in any grid cell and the set Bn contains order n cells,

the storage space needed for ‘grid-list’ is order n. Furthermore, since only a

constant number of nodes are in a cell, it takes a constant time to test whether

a particular cell is A-Good or A-Bad. Thus, to find Zd connected components

of Good-cells and produce the clustering takes another order nd time where d

is the dimension. This gives our algorithm overall a time complexity of order

n2 and a storage complexity of order n.

5.4.5 Practical Implementation if Model Parameters are Unknown

In this section, we provide a simple alternative that can be used to

cluster even when the model parameters f
(n)
in , f

(n)
out (·) and λ are unknown to the

algorithm. Assume for simplicity, that we know an estimate of R such that∫
x∈B(0,R)

(fin(||x||)−fout(||x||))dx > 0, i.e. the set {r ∈ [0, R] : fout(r) < fin(r)}

has non-zero Lebesgue measure. Then, we can change the definition of A-Good
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X11

X12 X13
X14

X15

X16

X17

X18

X19
X21 X22

X23

Figure 5.2: An illustration of algorithm 3. In this example, we do not draw
the graph G, but only show the locations of the nodes. The shaded cells corre-
sponds to A-Good cells and in this example there are two A-Good connected
components. In each component, we outline an arbitrary sequence of points
X11 · · ·X19 and X21 , X22 , X23 that will be used in line 4 of our main Algorithm
3. The lines then represent how we recursively set the community label esti-
mates of the nodes as in line 8 of Algorithm 3. The estimates for the nodes in
A-Bad cell is always set to 1.

as follows. For any grid cell z, z
′ ∈ Zd such that ||z − z′ ||∞ = 1, consider the

subgraph Gz,z′ of G consisting of nodes whose locations lie either in cell z or

z
′
. Consider applying some known partition to the nodes of Gz,z′ , for instance

the standard spectral method described in [16]. We can denote the cell z to be

A-Good, if the number of points of φ in that cell is no smaller than (1− ε) of

the expected value, and for every z
′

in the 1-thickening of z, the partition of

the nodes of Gz, when the spectral method is applied to the induced sub-graph

Gz,z′ is identical, i.e. for every z
′
, z
′′

in the 1 thickening of z, the partition of

the nodes of Gz is same whether the spectral method is run on the graph

Gz,z′ or Gz,z′′ . Since the spectral method of [16] does not need to know the

connection functions, one can use this as an alternative definition of A-Good

cell in place of Algorithm 2. The only model information in this alternative
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implementation required is an estimate of R to perform the tessellation of

space. Thus in line 3 of Algorithm 3, we can invoke the test described in

this paragraph which does not need knowledge of the connection functions, as

opposed to involing Algorithm 2 which does need knowledge of the parameters.

5.5 Lower Bound for Community Detection

The goal of this section is to prove Theorem 50. The central idea is

to consider the problem of how well can one estimate whether two uniformly

randomly chosen nodes of Gn belong to the same or opposite communities

better than at random. This problem is indeed easier than Community De-

tection which requires one to produce an entire partition of the nodes of Gn.

We will show that the natural way to understand the pairwise classification

problem is through another problem which we call ‘Information Flow through

Infinity’ which we define in the sequel in Section 5.5.2. Informally, this prob-

lem asks whether one can estimate with success probability larger than a

half, the community label of any node chosen uniformly at random from Gn,

given the graph, the spatial locations and the true community labels of all

nodes whose spatial locations are far away (at infinity) from this chosen node.

Subsequently, the core technical argument of this section is to establish an im-

possibility result for Information Flow from Infinity which we state below in

Theorem 75. To aid us in developing the technical arguments, it is instructive

to first consider the proof of Proposition 53 (which was stated in Section 5.3),

which identifies a special case of connection functions fin(·) and fout(·) when
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the phase-transition is sharp.

5.5.1 Proof of Proposition 53

Let Rin > Rout ≥ 0 be arbitrary and consider the two functions to

be fin(r) = 1r≤Rin and fout(r) = 1r≤Rout . In words, two points of opposite

communities are connected if and only if their distance is lesser than Rout

and two points of the same community are connected if and only if their

distance is smaller than Rin. In this example, it is clear that for any two points

Xi, Xj ∈ φ, no matter their community labels Zi and Zj, if ||Xi−Xj||2 ≤ Rout,

then i and j are always connected in G. Similarly, any two points Xi and

Xj such that ||Xi − Xj||2 > Rin are never connected by an edge in G no

matter their community labels Zi and Zj. Hence, the informative pairs of

points in this example are those Xi, Xj such that ||Xi − Xj||2 ∈ (Rout, Rin].

Moreover, it is immediate that, if ||Xi −Xj||2 ∈ (Rout, Rin] and i ∼G j, then

Zi = Zj. On the other hand if ||Xi − Xj||2 ∈ (Rout, Rin] and i 6∼G j, then

it must be the case that Zi 6= Zj. For any two points Xi and Xj such that

||Xi − Xj||2 ∈ [0, Rout] ∪ (Rin,∞), the presence or absence of an edge is not

informative as it is a certain event.

This example motivates the following simple algorithm for Community

Detection. Partition the nodes of Gn into D1, · · ·Dk where each component

Di is a maximal set of nodes {Xi1 , · · ·Xili
} of Gn such that for all j ∈ [1, li],

we have ||Xij−1
− Xij || ∈ (Rout, Rin]. In words, we form another graph Tn

from the points φn such that any two nodes i and j of Gn are connected in
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Tn if and only if ||Xi −Xj|| ∈ (Rout, Rin]. Then D1, · · ·Dk are the connected

components of the graph Tn. The algorithm works by considering and labeling

each connected component Di independently of other components. For each

cluster i ∈ [1, k], estimate the node label of Xi1 to be +1. Then for every

j ∈ [2, li], recursively estimate the node label by the following procedure-

• If ij−1 ∼Gn ij then set Zij = Zij−1
.

• If ij−1 6∼Gn ij then set Zij = −Zij−1
.

This algorithm considers each of the connected component of Tn enu-

merated in an arbitrary manner and then labels the nodes in these components.

The following very elementary proposition explains when this algorithm will

perform well.

Proposition 70. Let Rin > Rout ≥ 0 be arbitrary such that fin(r) = 1r≤Rin

and fout(r) = 1r≤Rout . If θ(Hλ,fin(·)−fout(·),d) > 0, then the procedure described

above solves Community Detection for this set of parameters.

Note that in view of Theorem 75, Proposition 70 will imply Proposition

53.

Proof. Notice that if fin(r) = 1r≤Rin and fout(r) = 1r≤Rout , then fin(r) −

fout(r) = 1Rout≤r<Rin . From the properties of the construction of the graph,

any two i 6= j ∈ N such that ||Xi −XJ || ∈ (Rout, Rin] satisfies -

• Zi = Zj if i ∼G j
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• Zi 6= Zj if i 6∼G j.

Hence, it is clear that the algorithm described in the preceding paragraph par-

titions each cluster Di, i ∈ [1, k] exactly in accordance to the ground truth.

However, it could be that the estimated signs in each of the connected com-

ponents Di could be flipped from the underlying ground truth and hence the

achieved overlap can still be small even though we partition each cluster Di ac-

curately. To argue that the overlap achieved by the algorithm is not too small,

a sufficient condition is that there exists a unique giant (of size cn− o(n) for

some c > 0) component of Tn and all other connected components are o(n).

Then, we will have by the strong-law of large numbers that the overlap achieved

will be c, i.e. the mislabeling in all small components will ‘cancel’ each other

out and in particular cannot drive the overlap of c achieved in the giant com-

ponent to 0. From the definition of percolation, a unique giant component in

Tn exists if and only if θ(Hλ,fin(·)−fout(·),d) > 0 since Tn
(d)
= Hλ,fin(·)−fout(·),d.

In the sequel, we will generalize the above example to come up with

the general lower bound for Community Detection problem.

5.5.2 The Information Flow from Infinity Problem

This problem refers to how well can one estimate the community label of

a tagged node of a graph better than at random, given some extra ‘information

at infinity’. We make this problem precise by posing this question under the
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Palm Probability measure P0. Recall that the Palm measure is the distribution

of the graph G obtained by placing an additional node at the origin and

equipping it with an independent community label and edges to other existing

nodes. For every r ∈ R+, denote by φ(r) and G(r) the point-process and graph,

in which every vertex i ∈ N (which is at location Xi ∈ Rd) is equipped with

the random variable Zi1||Xi||2≥r. Note that this is not a mark since it is not

translation invariant, but is a (measurable) random variable associated with

vertex i. In words, we retain the community label marks on nodes of G at

a Euclidean distance of r or more from the origin and delete (i.e. set to 0)

the community label of those nodes which are located at distances less than r

from the origin.

Definition 71. We say Information Flows from Infinity if for every r ∈ R+

there exists a random variable τr ∈ {−1,+1}, measurable (deterministic func-

tion) with respect to the observed data (φ(r), G(r)) and a constant γ > 0 such

that

lim inf
r→∞

P0[τr = Z0] ≥ 1

2
+ γ. (5.4)

We say information ‘flows’ from infinity if we are able to non-trivially

estimate the community label at origin, given ‘information at infinity’. Note

that for each r, there exists algorithms (i.e. τr) such that P0[τr = Z0] > 1
2
.

However, the non-trivial question is to understand if the limit as r → ∞ is

still strictly larger than a half. This definition is similar in spirit to those
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considered in Ising models to detect phase-transition for multiplicity of Gibbs

states (as in [81] and [288]). We first establish a monotonicity property of this

problem and connect it with the Community Detection Problem.

Proposition 72. For every d ∈ N and fin(·), fout(·) : R+ → [0, 1], the limit

limr→∞ supτr∈σ(Ḡ(r),φ̄(r)) P0[τr = Z0] exists. Moreover, the map

λ→ limr→∞ supτr∈σ((Ḡ(r),φ̄(r))) P0[τr = Z0] is non-decreasing.

Note the supremum is over all possible estimators of the community

label at origin.

Proof. Denote by ξ̃(λ, r) := supτr∈σ((Ḡ(r),φ̄(r))) P0
φ[τr = Z0]. Notice that, for

each fixed λ and r
′ ≥ r, we have σ((Ḡ(r

′
), φ̄(r

′
))) ⊆ σ((Ḡ(r), φ̄(r))). This follows

from the fact that sample path-wise,(Ḡ(r
′
), φ̄(r

′
)) is a measurable function of

(Ḡ(r), φ̄(r)) which is obtained by zeroing all revealed labels in the set Bc
r ∩Br′ .

Hence, the limit in proposition 72 exists.

It remains to prove that ξ(λ) := limr→∞ ξ̃(λ, r) is non-decreasing in

λ. It suffices to prove that ξ̃(λ, r) is non-decreasing in λ for every r. We

show this by using a standard coupling argument used to prove monotonicity

of percolation probabilities (for example in Chapter 2, [268]). The basis of

the coupling argument is the independent thinning property and Slivnyak’s

theorem of the PPP and the associated random connection model. These two

theorems gives the following two facts. Let (φ,G) be a Poisson Point Process of

intensity λ and G is the block model graph for some connection functions fin(·)

and fout(·) under measure P. Then if each node of G along with its incident

152



edges are removed independently with probability p, the resulting point process

φ
′

is an instance of a PPP with intensity λp and the resulting graph G
′

is the

associated block model graph with the same connection functions fin(·) and

fout(·). Slivnyak’s theorem for (φ,G) gives that if we place an extra node at

origin and equip it with independent community label and edges, the resulting

point-process and graph is equal in distribution to (φ,G) under the Palm

measure P0.

Thus given a problem instance at intensity λ under measure P0, we can

independently remove nodes of G other than the one at origin with probability

p. The resulting graph and the Information Flow from Infinity problem will

be that at intensity λp. Thus, the best performance at intensity λ cannot be

smaller than that at intensity λp. Since p was arbitrary, we have that the

best performance at intensity λ cannot be smaller than that at any intensity

λ
′ ≤ λ. In other words, for all r ≥ 0, ξ̃(λ

′
, r) ≤ ξ̃(λ, r).

We will need the following classical result on the ergodic property of

marks of a stationary point process.

Proposition 73. ([136]) Let φ := {X1, X2, · · · } be a homogeneous PPP with

its atoms enumerated in an arbitrary measurable way. Let each atom i ∈ N

be assigned a translation invariant mark random variable Ji ∈ Ξ taking values

in an arbitrary Borel measurable space (Ξ, �). Let Bn :=
[
−n1/d

2
, n

1/d

2

]d
be the

box of volume n and let Xj(n) ∈ φ be chosen uniformly at random among the

atoms of φ that lie in Bn, if any. Then for all A ∈ �, the limit limn→∞ P[Jj(n) ∈
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A] exists and satisfies limn→∞ P[Jj(n) ∈ A] = P0[J0 ∈ A], where J0 is the mark

of the atom of φ at origin under P0.

The following proposition establishes that Community Detection is

harder than Information Flow from Infinity.

Lemma 74. If there exists a Community Detection algorithm (polynomial or

exponential time) that achieved an overlap of γ > 0, then

limr→∞ supτr∈σ((Ḡ(r),φ̄(r))) P0[τr = Z0] ≥ 1+γ
2

.

Proof. We will assume that we cannot solve Information Flow from Infinity

problem and then conclude that Community Detection is not solvable. More

precisely, we will assume that limr→∞ supτr∈σ((Ḡ(r),φ̄(r))) P0[τr = Z0] ≤ 1
2

and

then argue that no Community Detection algorithm can achieve a positive

overlap. A Community Detection algorithm achieves an overlap γ > 0 if when

run on the data (Gn, φn), it produces an output {τ (n)
i }

Nn
i=1 satisfying

|
∑Nn

i=1 τ
(n)
i Zi|

Nn

≥ γ, (5.5)

with probability 1 − on(1). Now, an easier question corresponds to asking if

any two uniformly randomly chosen nodes (with replacement) of Gn belong

to the same or opposite community. This question is easier than Community

Detection since one way to answer this pairwise question is to first produce a

partition of all nodes of Gn and then answer the question for the two randomly

chosen nodes. Note that an overlap of γ can be achieved if and only if a fraction

(1 + γ)/2 of the nodes have been correctly classified. Hence the chance that
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any two uniformly chosen nodes are classified correctly is at-least (1 + γ)/2.

Since we can achieve an overlap of γ with probability 1 − on(1), the chance

that two uniformly randomly chosen nodes of Gn to be correctly classified

is at-least (1 + γ)/2 − on(1). Hence, if we show that the best estimator for

answering whether any two randomly chosen nodes from Gn belong to the

same or opposite community has a success probability of at-most 1
2

+ on(1),

then no algorithm exists for solving Community Detection. In the rest of the

proof, we will show that if the Information Flow from Infinity cannot be solved,

then for every ε > 0, the best estimator to estimate whether any two randomly

chosen nodes of Gn belong to the same or opposite communities will succeed

with probability at-most 1
2

+ ε + on(1). This will conclude the proof that no

algorithm exists for solving Community Detection in view of the preceding

discussion and hence the proof of Lemma 74.

Let ε > 0 be arbitrary. Under the assumption that Information Flow

from Infinity cannot be solved, there exists a r > 0 such that

supτr∈σ((G(r),φ(r))) P0[τr = Z0] ≤ 1
2

+ ε
2
. In words, choose a r such that the

Information Flow from Infinity cannot succeed with probability larger than

1
2

+ ε
2
. Now, let n be large enough such that with probability at-least 1− ε

2
, we

have (i) - Gn has at-least two nodes and (ii) Any two randomly chosen nodes

with replacement from Gn denoted as i and j is such that ||Xi − Xj|| > r.

Now, assume that we are on the event that Gn has at-least 2 nodes and two

randomly chosen nodes with replacement denoted by i and j are such that

||Xi −Xj|| > r. From the choice of r, we will argue that conditionally on this
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event, the probability that any pairwise estimator correctly tells whether the

two nodes i and j are in the same or opposite community will succeed with

probability at-most 1
2

+ ε
2
. This follows since conditionally on Xi and Xj, we

can make the pairwise problem easier by revealing all community labels of

nodes at a distance of larger than r from Xi and asking whether we can now

guess the community label at Xi. This will enable us to answer the pairwise

question of whether Xi and Xj lie in the same community or not since we will

know the true label of Xj when the labels of nodes at distances r or more

from Xi are revealed. This now is a problem of finding a mark τi of the atom

i of φ which denotes the best community label estimate of Xi given φ,G and

all community labels of nodes at a distance of r or more from Xi. Since Xi

was an uniformly randomly chosen point from φ ∩ Bn, Proposition 73 gives

that P[τi = Zi] = P0[τ0 = Z0]. Thus the probability τi = Zi is bounded from

above by 1
2

+ ε
2

+ on(1), as by assumption P0[τ0 = Z0] ≤ 1
2

+ ε
2

+ on(1) .

On the complementary event that either ||Xi − Xj|| ≤ r or if Gn has lesser

than 2 nodes, we use the trivial bound that the pairwise estimation is always

successful. Hence by the law of total probability, the success probability of the

pairwise estimator cannot be larger than 1
2
+ε+on(1). In other words, for every

ε > 0, there exists a nε < ∞, such that for all n ≥ nε, the probability that

we correctly identify the community membership of two uniformly randomly

chosen nodes of Gn is at-most 1
2

+ ε.

The following is the main technical result on the Information Flow from
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Infinity problem.

5.5.3 Main Result on Information Flow from Infinity

Theorem 75. For every λ, fin(·), fout(·) and d, the following limit exists and

satisfies

lim
r→∞

sup
τr∈σ(G(r),φ(r))

P0[τr = Z0] ≤ 1

2

(
1 + θ(Hλ,fin(·)−fout(·),d)

)
. (5.6)

Recall that θ(Hλ,fin(·)−fout(·),d) is the percolation probability of the clas-

sical random connection model where any two nodes of φ located at x, y ∈ Rd

are connected by an edge with probability fin(||x− y||)− fout(||x− y||). The

supremeum is over all valid estimators of the community label at origin and

hence if θ(Hλ,fin(·)−fout(·),d) = 0, then there is no estimator that will solve the

Information Flow from Infinity problem. In view of Lemma 74, we also get

that if θ(Hλ,fin(·)−fout(·),d) = 0, then there is no algorithm (polynomial or expo-

nential time) to solve Community Detection. Thus, if we prove Theorem 75,

then we will conclude the proof of Theorem 50.

Before presenting the proof of Theorem 75, we illustrate a few example

setting where the bound in Equation 5.6 is tight and loose respectively. In

view of Lemma 74 and Proposition 53, the following corollary where Equation

(5.6) is tight holds.
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Corollary 76. For all λ > 0, R1 ≥ R2, if fin(r) = 1r≤R1 and fout(r) = 1r≤R2

lim
r→∞

sup
τr∈σ(G(r),φ(r))

P0[τr = Z0] =
1

2

(
1 + θ(Hλ,fin(·)−fout(·),d)

)
.

In other words, we see that the inequality in Theorem 75 is achieved

in certain examples. However, Theorem 75 is not an accurate characterization

of the Information Flow from Infinity problem as evidenced in the following

example.

Proposition 77. For all d ≥ 2, if fin(r) = min
(

1, 1√
r

+ 1
rd−1/4

)
and fout(r) =

min
(

1, 1√
r

)
, the inequality in Equation (5.6) is strict for all values of λ > 0.

The example in Proposition 77 corresponds to the case when the degree

of each node is almost-surely infinite. Thus, θ(Hλ,fin(·)−fout(·),d) = 1 in this

case. However, using results from [355], one can argue that perfect recovery is

impossible in this example, i.e. limr→∞ supτr∈σ(G(r),φ(r)) P0[τr = Z0] < 1. The

key tool, is to see that if perfect recovery were to be possible, then it would be

the case that either of the following two pairs of point-process will be mutually

singular.

1. The point process formed by the location of those nodes of G that have

an edge to the origin and have a community label Z0 and the point

process formed by the location of those nodes of G having an edge to

the origin and having a community label of −Z0 are mutually singular.

2. Or, the point process corresponding to the locations of those nodes of G

that have a community label Z0 and do not have an edge to the origin
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and the point process corresponding to the locations of those nodes of G

that have a community label −Z0 and do not have an edge to the origin

are mutually singular.

We will argue that in our example, neither is possible by alluding to

a theorem from [355], and hence perfect recovery is not possible. We present

the complete proof in the Appendix D.

5.5.4 The Information Graph and Proof of Theorem 75

In this section, we generalize the example of the previous section and

give a proof of Theorem 75. To do so, we define a general information graph

and conclude that if this constructed information graph does not percolate,

then one cannot solve the Information Flow from Infinity problem.

We denote by I the information graph whose vertex set is φ. The ran-

dom graph I is constructed just based on the positions of the points and the

random elements {{Uij}j>i}i∈N. Recall that the graph G was built by connect-

ing any two points i < j ∈ N if Uij ≤ 1Zi=Zjfin(||Xi−Xj||)+1Zi 6=Zjfout(||Xi−

Xj||). Using the same random elements, we connect any i < j ∈ N by an edge

in graph I if Uij ∈ [fout(||Xi − Xj||), fin(||Xi − Xj||)]. We denote by i ∼I j

the event that points i and j are connected by an edge in I. Hence the graphs

I and G are coupled and built on the same probability space using the same

set of random elements. For each i ∈ N, we denote by VI(i) ⊆ N the random

subset of the nodes contained in the connected component of node i in graph

I. Note that the information graph I
(d)
= Hλ,fin(·)−fout(·),d, i.e. the I graph we
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constructed is equal in distribution to the graph of the Poisson Random Con-

nection model with vertex set forming a PPP of intensity λ and connecting

any two vertices at distance r away with probability fin(r)− fout(r) indepen-

dently of everything else. This equality in distribution follows from the fact

that {{Ukl}l>k}k∈N is an i.i.d. uniform [0, 1] sequence. The following structural

lemma justifies the term information graph.

Lemma 78. From the way we have coupled the construction of G and I, we

have

• If i ∼I j and i ∼G j, then Zi = Zj.

• If i ∼I j and i 6∼G j, then Zi 6= Zj.

Proof. This follows from the following construction of G and I as follows.

• i ∼G j if and only if Uij ≤ fin(||Xi−Xj||)1Zi=Zj +fout(||Xi−Xj||)1Zi 6=Zj .

• i ∼I j if and only if Uij ∈ [fout(||Xi −Xj||), fin(||Xi −Xj||)].

• ∀r ≥ 0, fin(r) ≥ fout(r).

The lemma follows since the {Uij}0≤i<j are the same with which we build both

the random graphs G and I.

We can iterate the above lemma from edges to connected components

of I which forms a crucial structural lemma.
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Lemma 79. For all j ∈ N, conditional on G, φ, I, there are exactly two

possible sequences (Zk)k∈VI(j) which are complements of each other that are

consistent in the sense of Lemma 78 with the observed data G, φ and I.

The proof of this follows from Lemma 78 and an induction argument.

The proof can be found in Appendix D.4. We now present the main prob-

abilistic observation in the sequel in Lemma 80 which essentially states that

the community labels on disconnected components are independent.

Lemma 80. For all λ > 0, on the event {|VI(0)| <∞},

P0

[
Z0 = +1

∣∣∣∣G, {{Ukl}l>k}k∈N∪{0}, φ, {Zi}i∈V (I(0))
c

]
=

1

2
a.s.

Proof. From Lemma 79, we know that conditionally on φ,G, I, there are ex-

actly two possible sequences {Zk}k∈VI(0) that are consistent with the observed

data in the sense of Lemma 78. Denote these two sequences by s and sc. It suf-

fices to show that conditionally on φ, {{Ukl}l>k}k∈N∪{0}, G and {Zk}k∈V cI (0), the

two sequences s and sc are equally likely. We will denote by g the realization

of the random graph G. To conclude the lemma, we use Bayes’ conditional

rule as follows.
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P0
φ[(Zk)k∈VI(0) = s|φ, {{Ukl}l>k}k∈N∪{0}, (Zk)k∈V cI (0), G = g]

=
P0
φ[G = g|φ, {{Ukl}l>k}k∈N∪{0}, (Zk)k∈V cI (0), (Zk)k∈VI(j) = s]

P0
φ[G = g|φ, {{Ukl}l>k}k∈N∪{0}, (Zk)k∈V cI (0)]

(5.7)

P0
φ[(Zk)k∈VI(0) = s|φ, {{Ukl}l>k}k∈N∪{0}, (Zk)k∈V cI (0)]

(a)
=

1∑
g P0

φ[G = g|φ, {{Ukl}l>k}k∈N∪{0}, (Zk)k∈V cI (0)]

(
1

2

)|VI(0)|

a.s. on {|VI(0)| <∞}

(5.8)

(b)
=

1

2
a.s. on the event {|VI(0)| <∞} (5.9)

The first equality follows from rewriting the events using Baye’s condi-

tional rule. In the rest of the proof, we justify steps (a) and (b). We prove the

equalities and also justify that one can apply conditional Baye’s rule without

worrying about the 0 by 0 situation almost-surely.

Note that conditionally on φ, {{Ukl}l>k}k∈N∪{0}, {Zk}k∈N, the graph G

is fixed and deterministic. Thus, the numerator in step (a) is 1 almost-surely.

This follows from Lemma 79 which states that g is consistent with the data

(φ, {{Ukl}l>k}k∈N∪{0}, (Zk)k∈V cI (0)) if (Zk)k∈VI(0) = s or sc. Furthermore, the

process (Zk)k∈N is an i.i.d. sequence independent of everything else. Hence,

given any random finite subset A ∈ N independent of (Zk)k∈N, the labels

(Zk)k∈A are uniform over {−1, 1}|A|. Now, since |VI(0)| < ∞, and VI(0) is a

function of (φ, {{Ukl}l>k}k∈N∪{0}) which is independent of (Zk)k∈N, it follows

that, on the event {|VI(0)| <∞},

P0
φ[(Zk)k∈VI(0) = s|φ, {{Ukl}l>k}k∈N∪{0}, (Zk)k∈V cI (0)] =

(
1

2

)|VI(0)|

a.s. (5.10)
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Moreover, the above expression is non-zero almost surely since |VI(0)| < ∞.

This justifies step (a). To conclude the proof, it suffices to show that on the

event {|VI(0)| <∞},∑
g

P0
φ[G = g|φ, {{Ukl}l>k}k∈N∪{0}, (Zk)k∈V cI (0)] = 2

(
1

2

)|VI(0)|

a.s . (5.11)

This will conclude the proof by noticing that the above expression is non-zero

almost-surely.

Observe that the summation in Equation (5.11) is over the various

community labels (Zk)k∈VI(0). Thus, the summation is over the 2|VI(0)| differ-

ent choices for (Zk)k∈VI(0). However, given φ and {{Ukl}l>k}k∈N∪{0}, one can

construct the I graph. Then, Lemma 79 states that the total number of possi-

ble choices for the labels (Zk)k∈VI(0) is now only two, which we denoted by s and

sc in this proof. However, again from Lemma 79, conditionally on those two se-

quences, the graph constructed from the data (φ, {{Ukl}l>k}k∈N∪{0}, (Zk)k∈V cI (0),

(Zk)k∈VI(0) = s) and from the data (φ, {{Ukl}l>k}k∈N∪{0}, (Zk)k∈V cI (0),

(Zk)k∈VI(0) = sc) is g, the observed graph. Hence, the proof of the claim follows

from Equation (5.10).

The following is an immediate corollary of the definition of conditional

expectation.

Corollary 81. For all events A ∈ σ(G, φ, {{Ukl}l>k}k∈N∪{0}, (Zk)k∈V cI (0)), we

have E0[1E1A1Z0=+1] = E0[1E1A1Z0=−1] = 1
2
E0[1E1A], where E is the event

that VI(0) is finite.
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5.5.5 Proof of Theorem 75

We are now ready to conclude the proof of Theorem 75. Notice that

since τr ∈ {−1,+1}, we can represent it as τr = 1A − 1Ac , for some A ∈

σ((G(r), φ(r))). Hence, we have

sup
τr∈σ((G(r),φ(r)))

P0
φ[τ (δ)

n = Z0] = sup
A∈σ((G(r),φ(r)))

E0
φ[1A1Z0=+1 + 1Ac1Z0=−1]. (5.12)

For every m ∈ N, denote by Em the event that CI(0) ⊆ Bm, i.e. the event

that the connected component of the point at the origin in I is contained in

the set Bm. The sets Em are non-decreasing. Moreover, from the definition

of percolation, P0[∪m∈NEm] = limm→∞ P0[Em] = 1 − θ(Hλ,fin(·)−fout(·),d). Let

r ∈ R be arbitrary, and condition on the event Er. We have,

sup
A∈σ((G(r),φ(r)))

E0[1A1Z0=+1 + 1Ac1Z0=−1] =

sup
A∈σ(((G(r),φ(r)))

E0[1Er (1A1Z0=+1 + 1Ac1Z0=−1)] + E0[1Ecr (1A1Z0=+1 + 1Ac1Z0=−1)]

≤ sup
A∈σ(((G(r),φ(r))))

E0[1Er (1A1Z0=+1 + 1Ac1Z0=−1)] + P0[Ec
r ]

(a)

≤ sup
A∈σ((G(r),φ(r),{{Ukl}l>k}k∈N∪{0})

E0[1Er (1A1Z0=+1 + 1Ac1Z0=−1)] + P0[Ec
r ]

(b)

≤ sup
A∈σ(G,φ,{{Ukl}l>k}k∈N∪{0},(Zk)k∈V c

I
(0))

E0[1Er (1A1Z0=+1 + 1Ac1Z0=−1)] + P0[Ec
r ]

(c)
= sup

A∈σ(G,φ,{{Ukl}l>k}k∈N∪{0},(Zk)k∈V c
I
(0))

1

2
E0[1A1Er ] +

1

2
E0[1Ac1Er ] + P0[Ec

r ]

=
1

2
P0[Er] + P0[Ec

r ].
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Step (a) follows from enlarging the sigma algebra over which we are searching

for a solution. Step (b) follows from the fact that on the event Er, VI(0) ⊆

B(0, r). Thus, revealing more labels will only preserve the inequality. Step (c)

follows from Corollary 81. Now, since the sets Er are non-decreasing , we get

the theorem by taking a limit as r goes to infinity on both sides, i.e.

lim
r→∞

sup
A∈σ((G(r),φ(r)))

E0[1A1Z0=+1 + 1Ac1Z0=−1] ≤ lim
r→∞

1

2
P0[Er] + P0[Ec

r ]

=
1

2
P0[E] + P0[Ec]

=
1

2
(1 + θ(Hλ,fin(·)−fout(·),d)).

(5.13)

The limit on the LHS exists from Proposition 48 and the limit on the RHS

exists since Er are non-decreasing events.

5.6 Conclusions and Open Problems

In this chapter, we introduced the problem of community detection in

a spatial random graph where there are two equal sized communities. We

studied this problem in both the sparse and non-sparse regime. Our main

technical contributions in the sparse graph case are in identifying the problem

of Information Flow from Infinity and connecting that with the Community

Detection problem and giving a simple lower bound criterion. For developing

the algorithm, we noticed that a spatial graph is sparse due to the fact that

all interactions are dense, but localized which is starkly different from the

reason why an Erdős-Rényi graph is sparse. We leveraged this difference to
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propose an algorithm for community detection by borrowing further ideas from

dependent site percolation processes. In the Exact-Recovery setting, we give

a lower bound that we conjecture to be tight. However, this is just a first

step and there are a plenty of open questions just concerning the model we

introduced.

1) Is Weak-Recovery and Information Flow from Infinity equivalent ?

- Here, we proved that weak-recovery was harder than Information Flow from

Infinity. However, our algorithm and its analysis showed that it can solve Com-

munity Detection whenever it can solve Information Flow from Infinity. Thus

a natural question is whether these two problems undergo a phase-transition

at the same point ? Moreover is there a relation between the optimal over-

lap achievable in Community Detection and the optimal success probability

of estimating the community label of the origin in the Information Flow from

Infinity problem ?

2) Is the optimal overlap in weak-recovery monotone non-decreasing in

λ ? - We see in the proof of Proposition 48 that the optimal success probability

of correctly labeling the origin in the Information Flow from Infinity problem

is monotone in λ. However, for Community Detection, we only established

that solvability is monotone and not the optimal overlap achievable.

3) Can one resolve Conjecture 59 to identify the critical phase-transition

point for Exact-Recovery - This conjecture is reminiscent of the local to global

phenomenon consistently observed in various random graph models ([16], [302],[286]

). In these settings, an obvious local condition, i.e., there being no flip-bad
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node, also turns out to be sufficient for exact-recovery. Establishing such a

result in our model will help us obtain a better understanding of our random

graph model and also may aid in improved algorithms for practical situations.

3) More than 2 Communities - In this thesis, we focused exclusively

on the case of two communities in the network, and an immediate question is

that of 3 or more communities. In the symmetric case where the connection

function is f
(n)
in (·) within communities and f

(n)
out (·) across communities, a simple

adaptation of our algorithm can give a sufficient condition in both the sparse

and logarithmic degree regime, although will be sub-optimal. Our lower bound

technique in the sparse regime can also be applied in the setting of many

communities (see Theorem 2 in [19] for example ) thereby establishing the

existence of a non-trivial phase transition for any number of communities in

the symmetric setting. But the open question is to identify examples similar

to Proposition 53 where the phase transition for weak-recovery can be tight.

A quest for such examples can possibly lead to better understanding of even

the 2 community case considered in this thesis. Moreover, unified algorithmic

techniques capable of handling non-symmetric case also is of interest since our

algorithm does not generalize in a straight forward way to the non-symmetric

setting. As far as the logarithmic degree regime, our lower bound framework

can easily extend using the same large-deviations result for Poisson hypothesis

testing developed in [20]. However, an algorithm achieving this threshold in

the logarithmic regime with multiple communities is not yet known.

4) Characterization of the Phase-Transition for Weak-Recovery - An
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obvious but harder question is whether one can characterize if not compute the

exact phase-transition for either Community Detection or Information Flow

from Infinity. We show that our lower bound is capturing the phase-transition

only in very specific cases and may not be tight in general due to corner

cases similar to Proposition 77. We also have no reason to believe that our

algorithm is optimal in any sense. Thus, a structural characterization of the

phase-transition is still far from being understood.

5) Computational Phase-Transition - Another aspect concerns the pos-

sible gaps between information versus computation thresholds. Is there a

regime where Community Detection is solvable, but no polynomial (in n) time

and space algorithms that operate on (Gn, φn) are known to exist ?

6) Estimating the Model Parameters - How to efficiently estimate fin(·)

and fout(·) from the data of just the graph G and the spatial locations φ.
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Chapter 6

Haplotype Assembly and Community

Detection

In this chapter we discuss how to use the insights gained from the math-

ematical study of Euclidean Community Detection in the previous chapter, to

aid in design of practical algorithms for Haplotype Phasing. This chapter is

organized as follows. In Section 6.1, we introduce the problem of Haplotype

Phasing and its importance in computational biology. In Section 6.2 we pre-

cisely state the mathematical problem formulation of haplotype assembly along

with the key performance metrics. In section 6.3, we describe our algorithm

ComhapDet, a community detection based algorithm to solve the problem. We

evaluate the performance of our algorithm empirically and compare it against

other state of the art methods in Section 6.4.

6.1 Introduction and Background

Haplotype Phasing problem consists of reconstructing individual ‘hap-

lotypes’ or DNA sequences from a collection of noisy measurements or ‘reads’.

Every species has an associated DNA sequence, which for the purposes of this

note can be considered to be a sequence of {A,C,G, T} alphabets called ‘bases’
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or ‘alleles’. The DNA sequence however is known to exhibit small variations

across different individuals of an organism, even though the DNA sequence

is ‘approximately’ identical across all members of an organism. Amongst the

variations of the DNA sequence between individuals, an important class is

what is known as the Single Nucleotide Polymorphisms (SNPs). The ordered

list of alleles or the bases at these SNP variant positions is known as hap-

lotypes. In humans for instance, each individual has two copies of the DNA

string, that are identical except at SNP, where the bases on the two strings are

different. Moreover, different individuals have different pair of bases at a SNP

position. Humans are thus referred to as diploid, since there are two roughly

identical strings of DNA with variations at SNP positions. Many plants on the

other hand are polyploid species, i.e., each individual has multiple DNA strings

associated with them, which are all almost identical except at SNP positions,

where the bases in the different strings are different. For instance the most

commonly grown Potato crop (Solanum Tubersoum) is a tetraploid organism,

i.e., each organism has 4 roughly identical DNA strings, with variations at

SNP positions. Technicaly speaking however, each organism has multiple such

collection of DNA strings. For example, humans have 22 pairs of DNA se-

quences, one for each ‘chromosome’. Technically, this implies that a human

individual, has 22 different instances of the haplotype phasing problem, one

for each chromosome.

We briefly describe the haplotype assembly problem here before giving

a precise mathematical description of the problem in Section 6.2. The task of
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haplotype assembly consists of identifying K different strings (the haplotype

sequences) denoted as S1, · · · , SK , with each string position taking an alphabet

in {A,C,G,T}. The K strings are such that at no position all the K strings

have an identical alphabet. In reality, these K strings are the ‘ground-truth’

alphabets at the SNP positions in a DNA sequence. The K strings are to

be deduced from measurements of short sequencing reads, where each read

originates from one of the K haplotype sequences, and reveals the bases in a

subset of the positions. We assume that the positions of each reads are known,

i.e., the alphabet indices. However, for each read, it is not known from which of

the K haplotype sequence it originates from. The task of haplotype assembly

then consists in reconstructing the K strings from a collection of such short

reads.

In practice, the K strings consists only of the DNA sequence sampled

at the SNP positions. Since the SNP positions are estimated separately (and

hence we assume to be known exactly in this chapter), one can only restrict

attention to those positions on the DNA sequence. Thus, from the discussions

in the previous section, K = 2 for humans and K = 4 for potato. The

assumption of known location positions is also very reasonable in practice.

This is so, as it is now reasonable to assume that DNA sequences of organisms

of interests has been ‘sequenced’, i.e., can be assumed to be known. Thus,

given a read, one can map it to this genome to infer from which locations the

read originates from on the reference genome. However, as the SNP locations

are also known, one can after mapping the read to a reference, identify the
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SNP positions that a particular read covers.

In the absence of measurement noise, this is a trivial task, as we know

that at every position, not all of the K strings have an identical base. Thus,

one can partition the set of reads unambiguously as originating from one of th

K different haplotypes, and this can be used for haplotype assembly. Unfortu-

nately however, sequencing is erroraneous, and the state of the art sequencing

platforms have an error in the magnitude of 10−3 − 10−2. Thus, in the pres-

ence of errors, it is no longer obvious as to how to assign whether a read

originates from a particular haplotype, and one needs to develop a computa-

tional framework for haplotype assembly, which is the central subject of the

present chapter.

6.2 Problem Formulation

Letm be the length of the haplotype sequences and n to denote the total

number of paired-end read measurements and k denote the ploidy. Thus, there

are k different strings, or haplotype sequences to be estimated, each of length

m, with the cardinality of the alphabet set being a. The alphabet cardinality

a is also refered to the allelic of the problem, i.e., if a = 2, it is refered to as the

bi-allelic case. In most practical applications either a = 4, corresponding to

the 4 bases of A,C,G, T , or a = 2, as in the human haplotype problem case.

These strings (or haplotype sequences) are denoted by si[l], where for each

i ∈ {1, · · · ,m} and l ∈ {1, · · · , k}, where in the tetra-alleleic case, (i.e, the

number of alleles is 4), we have sl[i] ∈ {A,C,G,T}. In the rest of the chapter,
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we denote by the haplotype positions {1, · · · ,m} also by the term sites. Each

measurement, denoted as ru, for u ∈ {1, · · · , n} consists of choosing a string

vu ∈ {1, · · · , k}, a set of sites Iu ⊂ {1, · · · ,m}, and {s̃(u)[i]}i∈Iu , where for

each i ∈ Iu, s̃
(u)[i] ∈ {A,C,G, T} is a ‘noisy copy’ of the ground truth svu [i].

For each measurement u ∈ {1, · · · , n}, we observe the set of positions Iu and

the noisy string values {s̃(u)[i]}i∈Il , but not the string index vu, from which the

measurement was made. The goal of Haplotype phasing then is, to recover

the k ground-truth strings, from which the measurements were observed.

We also assume that the set of m haplotypes and n reads, form a single

contiguous block. Formally, given the set of m haplotypes and n reads, we say

it forms a contiguous block if for any two positions i, j ∈ {1, · · · ,m}, we have

a set of reads r1, · · · , rk, such that for every i ∈ {1, · · · , k − 1}, the reads ri

and ri+1 overlap in at-least one site, and r1 overlaps with site i and rk overlaps

with site j. Notice that since the problem definition is agnostic to how we label

the strings from {1, · · · , k}, any haplotype phasing algorithm can only hope

to recover the k strings, upto a permutation of the labels. Thus in particular,

for two disjoint blocks of haplotype, where there is no read bridging the two

blocks, then one can only hope to recover the k strings in the two blocks

individually, but there is no way to ascertain which of the k estimated strings

in one block is from the same source as one of the k estimated strings in another

block. Thus, without loss of generality, we assume that the set of haplotypes

m form a contiguous block of reads. Indeed, if this were not the case, then we

can pre-process the reads and split the problem into many instances, where
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each instance consists of a single contiguous haplotype block that needs to be

estimated.

In this chapter, we are interested in the case when the reads/measurements

form what are known as paired-ended reads. Formally, this implies that each

measurement l ∈ {1, · · · , n}, is such that the set of sites covered by read

l has two contiguous blocks. More precisely, we assume that every read

l ∈ {1, · · · , n} is such that there exists i
(l)
1 , j

(l)
1 , i

(l)
2 , j

(l)
2 ∈ {1, · · · ,m}, such

that Il = {i(l)1 , i
(l)
1 + 1, · · · , i(l)1 + j

(l)
1 } ∪ {i

(l)
2 , i

(l)
2 + 1, · · · , i(l)2 + j

(l)
2 }.

Recovery Goals and Performance Metrics

The main performance metrics used to benchmark haplotype assembly

algorithms is what are known as the Correct Phasing Rate (CPR) and the

Minimum Error Correction (MEC) score (see eg. ([117],[194], [177])). The

CPR measures the discrepancy between the reconstructed haplotype ŝ1, · · · , ŝk

and the original ground truth s1, · · · , sk, and is defined as,

CPR =
1

m

m∑
i=1

max
π∈Sk

k∏
j=1

1sj [i]=sπ(j)[i], (6.1)

where Sk is the set of all permutations of {1, · · · , k}. Observe that this is

a much more stringent notion of recovery as compared to that used in [193]

and [289], where the Reconstruction Rate, which we denote as M-CPR to

abbreviate Modified CPR. This metric, is defined by

M-CPR = max
π∈Sk

1

mk

m∑
i=1

k∑
j=1

1sj [i]=sπ(j)[i]. (6.2)

174



Observe that in the case of diploid with binary alphabets, both CPR and

M-CPR are identical. However, in the polyploid case, where the alphabet size

is 3 or more, the inequality CPR ≤ M-CPR holds, since for all sets X1, · · · , Xk,∏k
j=1 1Xj ≤

∑k
j=1 1Xj .

However, we cannot design an algorithm to directly minimize this ob-

jective, as the ground truth is unknown. A commonly used metric in practice

is the MEC which can be computed directly from the observed data and the

reconstructed output. The MEC score of an algorithm is defined as follows.

MEC =
n∑
j=1

min
p∈{1,··· ,k}

m∑
i=1

1Read j covers position i1s̃(j)[i] 6=sp[j].

In applications where there is no underlying ground truth known, the

MEC score serves as a proxy to measure the performance of haplotype assem-

ble methods. Indeed, popular haplotype assembly algorithms, such as [193],

[63], try and directly minimize the MEC score, by relaxations of the underlying

combinatorial optimization problem. Contrary to this popular approach, in

this paper, we do not directly try to minimize the MEC as the problem of min-

imizing MEC is known to be a NP-Hard combinatorial problem ([226],[87]).

More importantly, the MEC score only serves as a proxy to the required per-

formance metric. Instead, we leverage the typical structure in the data, and

the fact that the noise in measurements are introduced through randomness,

rather than the measurements being corrupted by an adversarial source, to de-

sign a randomized algorithm by posing haplotype phasing as a spatial graph

clustering problem.
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The key parameters that impact the performance are coverage, error

rate and read length. Formally, the read-length r is defined to be the average

of all j
(l)
1 and j

(l)
2 , i.e., the read-length

r =
1

2n

n∑
l=1

(j
(l)
1 + j

(l)
2 ).

We define the coverage C as the average number of reads that cover a single

base in a haplotype, i.e., C = 2nr
km

. The interpretation is that there are a total

of n reads, each having on average 2r bases. Thus, the total average number

of bases recored is 2nr. These bases cover a total of km bases, i.e., we have k

haplotypes, each of m bases long. The error-rate p is the average error rate in

the measurement process, i.e., the fraction of bases recored by the reads that

are an incorrect copy of the underlying ground truth. Notice that this quantity

cannot be defined only based on the observed samples, but is known by other

methods, for instance one knows accurate estimates and bounds on the error

rates of many of the high throughput sequencers. It is standard practice in

the study of haplotype assembly to characterize and benchmark performance

of algorithms using either the achieved MEC when the ground truth is un-

known and the CPR in simulated data when ground truth is known. We shall

characterize the performance of our algorithm, when the problem parameters,

namely ploidy and the alphabet size, and the measurement characteristics,

namely the coverage, read-lengths and error-rates vary.

176



Main Contributions

This chapter introduces a spatial point process representation of the

paired-end reads, which is subsequently used to reconstruct the underlying

strings. More precisely, we advocate that a good description of the paired-end

read data is to represent each read as having a spatial coordinate correspond-

ing to the starting indices of the two read blocks, in addition to the actual

bases recorded by a read. Equipped with such a representation of the data, we

then construct a weighted graph among the set of reads, by placing an appro-

priately weighted edge between two reads . This weighting mechanism ensures

that if two reads belong to the same haplotype, then they will likely receive

a large positive weight, while if the two reads belong to different haplotypes,

then then will likely receive a large negative weight. We then cast the Hap-

lotype Assembly problem as an Euclidean Community Detection problem in

the sense of [337], where the community labels of a node (or a read) indicates

the haplotype from which it comes from. We find in our experiments, that

such a ‘spatial’ embedding of the problem greatly improves both the accuracy

of polyploid phasing and the run time complexity.

6.3 The Haplotype Assembly Algorithm

The algorithm we propose is based on identifying a simple connection

between the aforementioned haplotype reconstruction problem and euclidean

community detection. Although, such a connection was observed for the spe-

cial case of single-ended read and the diploid haplotype phasing problem in
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[116], the extension to paired-end reads and in particular to the case of phasing

polyploids was not known. We provide a unified framework to apply algorithms

developed for Euclidean Community detection (for ex. [337]) to both diploid

and polyploid haplotype phasing problems.

Connection with Community Detection

In order to invoke a connection with spatial community detection, we

pre-process the n paired-end measurements into a graph G on n nodes, with

each node representing a measurement. For any two reads u, v ∈ [n] with

u 6= v, denote by the intersection of sites at which the two measurements

occur as Iu ∩ Iv := {l1, · · · , lq} with q = 0 implying this set is empty. More

precisely, each li, for i ∈ {1, · · · , q} is a position from 1 through m of the

haplotype sites, which both the reads u and v cover. If q = 0, it implies that

reads u and v cover disjoint set of sites, and in this case, there is no edge

between u and v in the graph G. If the two reads u and v, have at-least one

site in common, then we place an edge between reads u and v with weight

wuv := 1
q

∑q
h=1(1s̃(u)[lh]=s̃(v)[lh] − 1s̃(u)[lh]6=s̃(v)[lh]). In words, the weight between

reads u and v, look at what fraction of the sites in which both u and v take a

measurement agree minus the fraction of common sites for u and v in which

they disagree. Typically that the weights wuv ∈ [−1, 1] for all u, v ∈ [n]. Such

a weighting scheme ensures that if wuv is positive and large, then it is likely

that measurements u and v are generated from the same string, while if wuv is

negative and large in magnitude, then it is likely that measurements u and v are
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generated from different strings. The intuition for the facts that large positive

weights indicate reads come from the same haplotype while large negative

weights indicate reads come from different haplotypes can be understood by

examining the typical structure of the polyploid phasing problem. Observe

that if the SNP positions were called accurately, i.e., all of the m haplotypes

to be phased were ‘true’, then it would be the case that in any location i ∈

{1, · · · ,m}, not all strings s1, · · · , sk will have identical bases, i.e., the set of

locations {i ∈ {1, · · · ,m} : s1[i] = · · · = sk[i]} = ∅. Since sequencing errors

are ‘typically’ small, it is thus the case that if two reads covering the same site

have different values, then it is likely that they come from different haplotypes.

Additionally, we equip each node u ∈ [Nn] of this graph (i.e., each

paired-end read) two labels - a community label Zu ∈ [k] and a spatial label

Xu ∈ [m]2. The community label of a measurement is the string index or

the haplotype index from which that read originated, and the spatial label

of a measurement u ∈ [n] is (i
(u)
1 , i

(u)
2 ), i.e., the indices from which the two

contiguous substrings of the read start. If the reads were to be perfect paired-

end measurements, then every read would have exactly two contiguous set

of sites which it covers, and their starting points form a reads spatial label.

However, many times, reads are imperfect, i.e., a single read may have either

a single or more than 2 contiguous fragments. In the case that reads have a

single fragment, then the spatial location of that reads is to be taken on the

diagonal in [n]2, i.e., the starting site index for the supposedly two contiguous

fragments are the same. In case of a read having more than 2 fragments, there

179



are several alternatives. We may either split the read into multiple reads, such

that each of them have at-most two contiguous fragments. Else, we may pick

two of the many starting contiguous points from the read in a suitable fashion

as a starting spatial label.

Note that, we get to observe the graph G, after pre-processing the

observed data, and the spatial labels (Xu)u∈[n] but not the community labels

(Zu)u∈[n]. We defer a discussion of the computational complexity involved in

this pre-processing to construct the graph G the sequel, where we show that

one can exploit the structure in the data to reduce complexity of this pre-

processing step from the naive order n2 to roughly linear in n. Equipped with

such a representation of the data, we reduce the task of haplotype assembly

into first performing community detection on the graph G, where the nodes

have an additional location label, to cluster the reads as originating from the

k different strings. Subsequently, for all i ∈ [m] and l ∈ [k], we estimate

ŝl[i] to be the majority alphabet indicated by all reads covering site i and are

estimated to originate from string l by the community detection algorithm.

Before presenting the entire pseudo-code, we find it instructive to summarize

our algorithmic pipeline here.

1. We tessellate the grid [n]2 into smaller overlapping boxes, denoted by

(Bx,y)1≤x≤ñ,1≤y≤ñ. Here ñ < n is a parameter which we will set and each

Bx,y ⊂ [n]2. This tessellation is such that, each grid point u ∈ [n]2 will

belong to multiple boxes Bx,y, as the boxes are overlapping.
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2. For each box Bx,y, denote by Hx,y to be the subgraph of G containing

nodes whose spatial locations lie in Bx,y. The nodes of Hx,y are all

clustered independently into k communities.

3. The community estimates in different boxes are synchronized to obtain a

global clustering estimate from such spatially-local clustering estimates.

Since each grid point is present in multiple boxes, a read gets many

estimates for its community, each of which adds an ‘evidence’ to the label

of the node. This scheme has a natural ‘error-correcting’ mechanism,

since it is less likely for a node to be misclassified in the majority of the

boxes it lies in, as opposed to any one particular box.

4. Finally, for all j ∈ [k] and i ∈ [m], we estimate ŝj[i] to be the majority

among the 4 alphabets as indicated by those reads that cover site i and

are estimated to belong to string j in the above clustering step.

Euclidean Community Detection Algorithm

We first describe the key idea used in this step, before presenting the

algorithm in detail. Observe that, for any two reads that overlap in the sites

covered, we can infer whether they belong to the same or different strings quite

accurately. The intuition for this is identical to the pair-wise classify step of

the community detection algorithm in the previous chapter. We can then

leverage this to classify all nodes in a box, as good, using a non-parametric

spectral method as opposed to the parametrized Is-Good sub-routine used in

181



the previous chapter. However, as the graph G has a large diameter (of or-

der
√
n)), all nodes cannot be classified accurately at once using the spectral

method. Moreover, applying the spectral method to G is also computationally

impractical, as any clustering schemes will be super-linear in the number of

nodes Nn, which renders them horribly slow on large instances that are typ-

ical in practice. Furthermore, even pre-processing the reads to construct the

graph G is of order N2
n, which makes it infeasible on large instances. A direct

spectral method on G is also statistically sub-optimal as the fluctuations in

density of reads in space is variable, i.e., the point process representation is

not homogeneous. In many problem instances, the density of reads can vary

across space, just due to the randomness in the read generation process and

spectral methods are sensitive to these variations. For instance, in Figure 6.1,

we see an example where the density of reads captured by the spectral al-

gorithm is highly imbalanced across the three strings due to the fluctuations

of nodes in space. Hence, one would need an additional ‘constraint’ in the

reconstruction algorithm to enforce the spatial distribution of reads across all

communities to be identical. This is achieved by our Euclidean community

detection algorithm, as we apply clustering on small windows of space. The

partitioning based on spatial locality automatically ensures that the spatial

distribution of the estimated communities are all roughly identical. The in-

tuition for this comes from the fact that the reads will be roughly uniformly

distributed within a box as a box is ‘small’ in size. As described in the previ-

ous chapter, we make the boxes overlapping, and hence a single read will be
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Figure 6.1: An instance with three strings and length of string being 1000,
when spectral clustering on G fails. The coverage is 10, the read lengths r = 2
and R = 250. The error probability p = 0.05. The picture on the left is
the union of the three pictures on the right. The three colored pictures are
the spatial locations of the recovered communities by the spectral algorithm
applied on G. The density of recovered blue estimates is 0.0995, while that
of red is 0.33 and of green is 0.57. The total overlap achieved by the spectral
method is 0.1. Note that in the ground truth, all three colors are equal in in-
tensity, which is not captured by the spectral method. However, our algorithm
predicts roughly equal sized communities and achieves an overlap of 0.98 and
runs 4 times faster.

present in multiple boxes. This further boosts statistical accuracy of clustering

by embedding natural error-correction scheme, as a single read gets estimated

multiple times, each of which gives new ‘evidence’ for the community label of

a node. From a computational complexity viewpoint, partitioning the set of

nodes and clustering smaller instances dramatically reduces run-time as most

typical clustering algorithms are super-linear in the number of data points

and hence reducing the sizes of the graphs to be clustered has a significant im-

pact. Thus, our algorithm is both computationally feasible on large instances

and is statistically superior compared to standard graph clustering algorithms

directly applied on G.
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Pseudo Code

We set some notations that will be helpful in describing the algo-

rithm, before going into the pseudo code. The algorithm has hyper-parameters

A,B, iter,M ∈ N and α ∈ [0, 1]. For x, y ∈ [d ñ
A
e], we denote by Bx,y ⊂ [n]2 as

Bx,y := [Ax,min(Ax+B, ñ)]× [Ay,min(Ay+B, ñ)], the box indexed by (x, y).

Thus, the parameters A and B dictate how large a box is and how many boxes

cover a single read. In the course of the algorithm, we maintain a dictionary

of lists C, where for each node u ∈ [Nn], C[u] is a list of community estimate

of node u. Each node has more than one estimate as it belongs to more than

one box. The estimates from clustering in each box is added as ‘evidence’ of

the community estimate for the node. Having multiple estimates for a node

helps in combating clustering errors in certain boxes.

We now describe the algorithm in detail. The first step consists of

partitioning the space [n]2 into multiple overlapping boxes as shown in Figure

6.2. The hyper-parameters A and B allow one to tune both the size of a box,

and also the number of boxes that will cover a given location of [n]2. In each

box indexed by (x, y) for x, y ∈ [d ñ
A
e], we identify the nodes of G having their

spatial label in that box which we denote by Hx,y. If the number of nodes

in Hx,y is small, i.e., smaller than M , a hyper-parameter, then we do not

attempt to cluster the nodes in this box. We set a minimum size for otherwise

the output of the clustering will be very noisy and non-informative.Conversely,

if more than α fraction of nodes in Hx,y have at-least one community estimate,

then again we do not cluster Hx,y. The reason for doing so and setting α < 1 is
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Figure 6.2: This is an example with ñ = 7. The parameters A = 1 and B = 3.
The red and green boxes are examples of Bx,y.

to decrease the running-time by ensuring we only perform the clustering step

when there are sufficiently new unexplored nodes. In each box (x, y), such that

the number of nodes in Hx,y is at-least M and at-most α fraction of them have

prior estimates, we apply a fast and simple local clustering algorithm, i.e., a

standard k-means algorithm [35] on the adjacency matrix of Hx,y. We then

iteratively improve this initial clustering guess of the k-means algorithm by a

combination of a linear transformation and a non-linearity. Once the nodes of

Hx,y are clustered, we then append this result to the dictionary of lists C, after

appropriately synchronizing the estimates in each node. We finally assign a

single community estimate for each node based on the majority in the list of

estimates in C.

Local Clustering Step

This step is described in Algorithm 5. Here we follow a two step-

procedure. In the first step, we get an approximate clustering of the graph

H by applying standard k-means algorithm on the adjacency matrix H. We

then ‘one hot encode’ this clustering result. More formally, if q denotes the
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Algorithm 4 Main Routine

1: procedure Main(G, k, (Xi)i∈[1,Nn], A,B, iter,M) . A,B, iter,M, α are
hyper-parameters.

2: Tessellate [n]2. For x, y ∈
[
d n
A
e
]
, let Bx,y = [Ax,min(Ax + B, n)] ×

[Ay,min(Ay +B, n)].
3: for 1 ≤ x ≤

[
d n
A
e
]

do
4: for 1 ≤ x ≤

[
d n
A
e
]

do
5: Hx,y - the subgraph of G with nodes spatial labels in Bx,y

6: if Number of nodes in Hx,y ≥ M and fraction of nodes of Hx,y

with no prior estimate is larger than 1− α then
7: e ← Local-Cluster(Hx,y, k, iter)
8: Update-Community-Estimates(C, e)
9: end if

10: end for
11: end for
12: return Reduce-by-Majority(C)
13: end procedure

number of nodes of H, then the one hot encoding result is a matrix e0 of size

q × k. Each entry of matrix e0 is either 0 or 1, with the entry in the ith row

and jth column being 1 implies that the ith node is classified as belonging to

community j. Thus, each row of the matrix e0 contains exactly one 1 and the

rest of the entries are all 0. We then run a ‘clean-up’ procedure by iteratively

updating the estimate as follows -

et+1 = T(Het). (6.3)

The function T is applied row-wise, where for a matrix A, it sets the ith

row and jth column of T(A) to 1 if j = arg maxA[i], else the ith row and

jth column of T(A) is set to 0. If a row has more than one column where

the maximum is attained, the first column where the maximum occurs gets a
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Algorithm 5 Small Graph Clustering

1: procedure Local-Cluster(H, k, iter)
2: ẽ := k-means-cluster(H, k)
3: e0 = One-Hot-Encoding(ẽ).
4: for 1 ≤ i ≤ iter do
5: ei = arg maxHei−1 . Argmax is row wise on the product
6: end for
7: return eiter.
8: end procedure

value 1 and the other columns get a value of 0. Hence the dimension of matrix

A and T(A) are the same. Furthermore, for any matrix A, the matrix T(A) is

such that its entries are either 0 or 1, with each row having exactly one entry

valued at 1.

The iterative update is based on the following intuition. Let the clus-

tering encoded as the matrix et for some t ∈ N, and consider a tagged node

u ∈ [n]. The new updated value of the community label of node u is then

the ‘most-likely’ label given the estimates for the rest of the nodes are kept

fixed. More precisely, the ‘weight’ that node u is in a community l ∈ [k] is the

sum of weights along all edges connecting u to v ∈ [n] in the graph G such

that the estimate of node v is l. The new community label of node u is that

which has the highest weight. Performing this operation simultaneously for all

nodes, one obtains the representation in Equation (6.3). It is clear that, for the

iterative update to work well, the initial estimate e0 must be ‘good enough’,

as a random community assignment to all nodes is a distributional fixed point

to the recursion in Equation (6.3). In principle, one can get somewhat better
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initial guess for e0 by applying the k-means algorithm to the eigenvectors of H,

but the marginal gains in statistical accuracy does not warrant the enormous

increase in computation needed to perform such a spectral clustering.

The clean-up method, at first glance, seems to bear similarities to other

dynamical algorithms such as expectation maximization, Belief Propagation

(BP) and tensor factorization based methods of [193]. However, unlike BP,

we do not iterate the beliefs or probabilities of a node belonging to various

communities, instead we make a hard assignment at each update step. The

reason for doing so, is one it is non-parametric and does not rely on any explicit

generative models of the data. Secondly, the graph G is not tree-like and has a

lot of triangles and loops due to the spatial embedding. Hence, we cannot just

keep track of the node marginals, but instead need the whole joint distribution,

and is hence not tractable. In light of these structural observations, we use

the heuristic recursion defined in Equation (6.3).

Synchronization Step

The main routine in Algorithm 4 considers the boxes sequentially and

performs local clustering step. Once the local clustering is performed, a key

component is to synchronize the estimates of the current box with the esti-

mates of the boxes that are already clustered. A synchronization is essential

since the problem is permutation invariant to the labels. Formally, the statis-

tical distribution of the data remains unchanged if the true underlying labels

of the [k] strings are permuted. Hence, the best hope for any recovery algo-
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Algorithm 6 Synchronization Step

1: procedure Synchronize(C, e)
2: max-weight ← 0
3: max-perm ← π.
4: for All permutations π of [k] do
5: local-weight ← 0
6: for All nodes in e do
7: local-weight ← local-weight +fraction(C[node], π(e[node]).
8: end for
9: if local-weight > max-weight then

10: max-weight ← local-weight
11: max-perm ← π.
12: end if
13: end for
14: for nodes in e do
15: Append max-perm(e[node]) to C[node].
16: end for
17: return C.
18: end procedure

rithm is to recover the k strings upto a permutation of labels. Thus, if any

clustering algorithm is run on two different subsets of nodes, the corresponding

estimates need to be synchronized to produce a clustering of the nodes in the

union of the sets. We do this clustering in Line 8 of main routine Algorithm

4 by invoking sub-routine 6.

In sub-routine 6, we decide on how to permute the label output of the

local-clustering estimate of Hx,y, that best ‘synchronizes’ with the estimates of

other nodes of G at that instance. Observe that at the instant of synchronizing

the output of Hx,y, the rest of the nodes of G have either none or multiple

estimates per node. There is possibility of more than one estimate per node as
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Algorithm 7 Reduce by Majority

1: procedure Reduce-by-Majority(C)
2: for node in C’s keys do
3: C[node]← Majority(C[node]).
4: end for
5: return C

6: end procedure

a node is present in multiple boxes, each of which adds an estimate as ‘evidence’

for a node’s cluster. We select a permutation of the labels by sequentially

going over all permutations of [k] and selecting the one that has the highest

‘synchronization-weight’. More formally, let Nx,y ⊂ [n] denote the indices of

the nodes in Hx,y and for all u ∈ Nx,y, denote by σ[u] ∈ [k] be the estimate of

the local-clustering on Hx,y. The synchronization weight for a permutation π

of [k], is defined by

Wπ :=
∑
i∈Nx,y

1C[i] 6=empty

∑
j∈C[i] 1π(σ[i])=C[i][j]∑

j∈C[i] 1
.

In words, we go over all nodes in Hx,y that have at-least one prior estimate

and sum the fraction of the previous estimate equaling the label assigned

by the local-clustering Hx,y after applying the permutation π to the local

clustering’s output. Among all permutations, we select a π∗ having the highest

synchronization weight breaking ties arbitrarily. After doing so, we append to

each node u of Hx,y, the label π∗(σ(u)) to the list C[u]. The key feature above

is to consider the fraction, which is a proxy for the ‘belief’ of the community

label of a node, rather than just a count, as the counts across different nodes

can be very skewed due to the order in which the boxes are clustered and
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synchronized.

Computational Complexity

In this section, we discuss the computational complexity of implement-

ing our algorithm, and the role played by the various hyper-parameters in this

regard. A naive implementation of our algorithm will incur a cost of order

n2, just to construct the graph G from the reads. This step itself will be in-

feasible in practical scenarios where the number of reads will be in the order

of millions. However, our algorithm only needs the subgraphs Hx,y and not

the full graph G. To do so, we pre-process the reads and create a hash-map,

where for each location in [n]2, we store the list of reads that has its spatial

label in that location. This takes a one pass through the list of reads, i.e.,

has complexity of order n and storage complexity of order n. Now, to create

the adjacency matrix Hx,y, we only take a time quadratic in the number of

nodes in Hx,y. The synchronization step takes time complexity of the order of

number of nodes in Hx,y times the number of distinct permutations of [k].

Our algorithm also has an inherent trade-off in computational complex-

ity and statistical accuracy by varying the hyper-parameters. For instance, if

we decrease A, while keeping B fixed, then we increase the number of boxes,

thereby increasing the computational time. However, the statistical accuracy

will improve since each node will now be present in many boxes and hence

the error-correction scheme will not perform worse off. Similarly, increasing

the parameter M can reduce run-time by considering only a fewer boxes to
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perform local clustering, while potentially decreasing statistical accuracy, as

each node will have fewer evidence.

Coverage Error Rate CPR MEC t(sec) σ(CPR) M-CPR

5
0.05 94.537 559.05 5.06 9.55 96.34
0.1 82.14 1209.17 5.09 16.23 87.57
0.2 41.71 2317.02 5.07 6.96 58

8
0.05 99.66 739.65 8.01 0.23 99.82
0.1 96.44 1561.46 7.4 8.28 97.56
0.2 57.97 3597.56 7.35 12.49 69.38

10
0.05 99.88 930.61 9.93 0.11 99.94
0.1 98.87 1867.85 10.06 5.29 99.24
0.2 69.41 4298 10.47 17.59 77.45

Table 6.1: The simulation results for ComHapDet diploid biallelic case.

Coverage Error Rate CPR MEC t(sec) σ(CPR) M-CPR

5
0.05
0.1
0.2

8
0.05
0.1
0.2

10
0.05
0.1
0.2

Table 6.2: The simulation results of AltHap for diploid biallelic case.

6.4 Experimental Evaluation

We benchmark the performance of our algorithm through simulations,

in both the diploid biallelic case as well as the more challenging polyploid

polyallelic case. Since, ground truth is known in simulations, we use CPR,
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Coverage Error Rate CPR MEC t(sec) σ(CPR) M-CPR

5
0.002 91.72 293.2 53.63 10.344 96.28
0.01 93.85 349.8 48 2.57 97.7
0.05 78.2 1734.4 50.46 18.55 89.13

7
0.002 98.6 97 76.7 0.88 99.5
0.01 93.78 662.1 81.25 10.794 96.95
0.05 97.11 1504.7 75.52 1.571 98.9

10
0.002 99.75 93.7 137.5 0.168 99.91
0.01 99.67 413.1 135.9 0.21 99.89
0.05 99.44 2021.9 139.78 0.27 99.77

15
0.002 99.91 124.6 300.35 0.11 99.97
0.01 99.88 611.1 307.88 0.07 99.95
0.05 99.86 2981.5 297.19 0.15 99.95

Table 6.3: Simulated Triploid Tetraallelic Data with ComHapDet.

Coverage Error Rate CPR MEC t(sec) σ(CPR) M-CPR

5
0.002 73.97 1479.7 124.59 22.6 83.4
0.01 76.73 1501.1 173.89 13.8 85.61
0.05 65.33 3165.9 190.95 17.79 77.91

7
0.002 88.95 687 295.22 13.97 92.97
0.01 88.69 966.2 289.75 17.5 92.44
0.05 80.13 2887.4 332.1 20.27 86.31

10
0.002 83.67 1215.4 593.19 20.65 88.42
0.01 92.72 1029.1 592.74 14.59 95.36
0.05 92.73 1029.1 592.44 14.59 95.36

15
0.002 89.89 1725 708.5 16.07 94
0.01 95.96 1628.6 781 9.82 97.58
0.05 87.43 6721.3 713.3 20.36 92.09

Table 6.4: Simulated Triploid Tetraallelic Data.

MEC and M-CPR as the primary performance benchmarks. We compare the

performance of our algorithm against AltHap [193], the state of the art method

for haplotype phasing in both diploid and polyploid settings. In the diploid
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Coverage Error Rate CPR MEC t(sec) σ(CPR) M-CPR

5
0.002 39.2 2996.1 76.57 13.96 71.55
0.01 49.76 2717.3 86.96 17.08 78.10
0.05 30.16 4642.7 77.99 8.57 67.325

7
0.002 79.97 1316.25 143.48 20.27 91.8
0.01 79.09 1640.0 118.52 17.84 91.8
0.05 68.34 3722.8 129.66 13.98 87.29

10
0.002 98.86 193.1 253.32 1.42 99.64
0.01 99.17 32.63 261.81 0.41 99.76
0.05 98.2 2727.7 238.56 0.64 99.51

15
0.002 99.75 182.7 487.02 0.22 99.93
0.01 99.75 806.5 482.74 0.18 99.94
0.05 99.0 4101.4 523.78 298.88 99.65

Table 6.5: Simulated Tetraploid Tetraallelic Data.

Coverage Error Rate CPR MEC t(sec) σ(CPR) M-CPR

5
0.002 61.2 2340.6 308.98 32.82 79.13
0.01 56.19 2892.6 323.38 21.35 77.62
0.05 37.88 5431.4 422.92 23.4 66.01

7
0.002 76.08 1388.6 521.36 20.81 87.49
0.01 79.86 1812.8 515.78 20.45 88.05
0.05 83.59 3481.9 503.13 20.23 91.97

10
0.002 71.92 1979.7 594.3 15.5 85.58
0.01 85.44 1779.4 585 18.53 92.10
0.05 78.55 5331.4 667.49 15.55 89.65

15
0.002 85.21 2614.6 684.45 18.39 92.01
0.01 83.53 3973.7 684.13 17.41 92.61
0.05 95.13 6397.6 682.51 14.47 97.38

Table 6.6: Simulated Tetraploid Tetraallelic Data.

biallelic case, we use the synthetic data from [177] which is often used as a

benchmark to compare methods for haplotype assembly. We report the results

in Tables 6.1 and 6.2. In the polyploid case, we benchmark the performance
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of our algorithm using the synthetic data from [193]. We report the results

in Tables 6.4, 6.3 for the triploid case and Tables 6.6, 6.5 for the tetraploid

cases. ?? for the cases of triploid, tetraploid and hexaploid respectively. In

both the triploid and tetraploid cases, we considered the tetraallelic setting,

i.e., the alphabet cardinality is 4. The average read length of a single end of

the paired-end read is 2. The average insert size between the paired end reads

was 200. In each polyploid case, we test our algorithm on 10 different problem

instances, where in each instance, a haplotype sequence of length 1000 was

phased. We use the same method and the publicly available code from [193]

to generate the synthetic data for the various instances.

The CPR and M-CPR are averages, reported after multiplying by 100,

for ease of comparison. We compare the performance as the problem parame-

ters, namely the ploidy and alphabet size as well as the measurement param-

eters, namely the coverage, average read length and error rates are varied. In

each case, the hyper-parameters was set to A = 15 and B = 4, α = 0.95, for all

polyploid cases and used the parameters A = 20, B = 2 and α = 0.7 for all the

diploid biallelic cases. The column σ(CPR) denotes the standard deviation of

CPR after multiplying it by 100. As expected, the problem gets harder, i.e.,

both the run times increase, as well as CPR reduces, as the ploidy increases,

or if the coverage reduces. We implemented our algorithm in Python, and

both the simulations, as well as the experimental evaluations were conducted

on a single core Intel I5 Processor with 2.3Ghz processor and 8 GB 2133 MHz

LPDDR3 RAM.
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6.4.1 Results and Discussions

We observe from the simulations that our method performs very well

in the polyploid polyallelic scenario, significantly outperforming the previous

state of the art method of [193]. In the diploid biallelic case, we see that our

method is competitive with the state of the art, with both methods achieving

near perfect reconstruction at reasonable run times. In terms of complexity,

we notice that our method is fast, even in the polyploid polyallelic case, and

scales gracefully, both with ploidy and coverage. Importantly, we notice that

the runtime of our algorithm also scales very gracefully with problem size, and

in particular, does not have exponential dependence on any problem parame-

ters. Indeed, with increasing coverage, we can tune the α parameter to both

achieve superior CPR, while retaining very reasonable run-times. Even with

increasing read-lengths, our problems run-time essentially remains unchanged,

which makes it attractive for high coverage scenarios.

6.5 Conclusions

In this chapter, we proposed a novel representation of the Haplotype

phasing problem as an instance of Euclidean community detection. Motivated

by the algorithmic study in Chapter 5, we propose a novel algorithm. We see

in our experimental studies that the proposed algorithm performs very well

in simulations and is comparable to the state of art methods for Haplotype

Phasing, both in terms of statistical accuracy and runtime performance.
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Appendix A

Proofs from Chapter 2

A.1 Proof of Theorem 1

Proof. We prove this by contradiction. Assume that φt is in stationary regime

and that λ > Cl(T )
ln(2)La

. We use the Miyazawa’s Rate-Conservation Principle or

Law (RCL) (e.g. [40], 1.3.3) to set-up a system of equations and identify a

contradiction. Applying the RCL to the stochastic process φt(S) which counts

the number of links yields,

λ|S| = λd, (A.1)

where λd is the intensity of the point-process on R corresponding to the epochs

of a death-time. Since we assumed that φt is in stationary regime, the point

process formed on the real line by the instants of a death is stationary with

intensity λd = λ|S|. Applying RCL to the total “work-load” in the network

i.e. the total number of bits that each of the transmitters present are yet to

send to their corresponding receivers, we get

λ|S|L = E

[∑
x∈φ0

R(x, φ0)

]
, (A.2)

where R(x, φ) is given in Equation (2.1). From the definition of Palm Proba-

bility of φ0, we have that

λ|S|L = E0
φ0

[R(0, φ0)]E[φ0(S)], (A.3)
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where E0
φ0

is the (spatial) Palm Probability of φ0 and φ0(S) is the random

variable denoting the number of links in the network in steady-state. Note

that from our assumption that φt is in stationary regime ensures the existence

of the Palm Probability measure of the spatial point process φ0. Applying rate-

conservation to the stochastic process It =
∑

x∈φt I(x, φt), the sum interference

seen at all receivers (which could possibly be ∞), we get

λ|S|E↑[I] = λdE↓[D], (A.4)

with I = I0+ − I0 and D = I0 − I0+ . Here, E↑ denotes the (time) Palm

probability corresponding to the point process on R of birth instants and E↓

denotes the (time) Palm probability of the point process on R corresponding

to the instants of death. From Equation (A.1) we have

E↑[I] = E↓[D]. (A.5)

From the PASTA property and the fact that the births are uniform in S, we

have from Campbell’s theorem that

E↑[I] = 2E[φ0(S)]
a

|S|
. (A.6)

Since the file-sizes at all transmitters are i.i.d. exponential with mean L,

the point process on the real line corresponding to the death-instants admits

as stochastic-intensity Rt = 1
L

∑
x∈φt R(x, φt) with respect to the filtration

Ft = σ(φs : s ≤ t), the sigma algebra corresponding to the locations. Hence,

it then follows from Papangelou’s theorem (e.g. [40], Theorem 1.9.2) that

dP↓

dP
|F0−

=
R0

E[R0]
. (A.7)
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Since the decrease in total interference (in state φ0−) is of magnitude I(X,φ0)

with probability R(X,φ0)
LR0

if X ∈ φ0− , we get

E↓[D] = 2E

[
R0

E[R0]

∑
x∈φ0

R(x, φ0)

LR0

I(x, φ0)

]

= 2
E[
∑

x∈φ0 R(x, φ0)I(x, φ0)]

LE[R0]

= 2
E0
φ0

[R(0, φ0)I(0, φ0)]

LE[R0]
E[φ0(S)]. (A.8)

Now combining, Equations (A.8), (A.6) and (A.2), we get

a =
E0
φ0

[R(0, φ0)I(0, φ0)]

Lλ
. (A.9)

From Equation (2.1) and basic calculus, we have that R(0, φ0)I(0, φ0) ≤
Cl(T )
ln(2)

which is a deterministic bound that is true for any φ ∈M(S). Applying

this inequality to Equation (A.9), we get the inequality that

λ ≤ Cl(T )

ln(2)La
. (A.10)

Inequality (A.10) is a contradiction to our assumption that φt is in stationary

regime and that λ > Cl(T )
ln(2)La

.

Appendix B

A.2 Proof of Theorem 3

For simplicity of the proof, we assume the link distance T = 0. The

proof for arbitrary T follows with significantly more notation that obscures

the essence of the proof. Thus, to keep the proof ideas simple, we first outline
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the proof for the special case of T = 0 with remarks in between as to how the

intermediate steps can generalize. At the end, we will give the complete con-

struction of the coupling (which will be explained later) in the general case of

T being arbitrary. This will then complete the proof in the general case as well.

Assume T = 0 for the time being. Thus, the dynamics is that of points

arriving and exiting the network and the network at any point of time con-

sists of a collection of points distributed in space S. The high level idea of

the proof is that we tesselate the space S and study another “upper-bound”

Markov Chain living on a countable state-space which we analyze through

fluid limit techniques. We then conclude about the ergodicity of φt which is a

Markov Chain on the topological space M(S).

To define the upper-bound chain, we first tessellate the square S into

cells where each cell is a square of length exactly ε. Since S is a torus, we

assume without loss of generality that the origin is in the center of a cell. One

can find a sequence of such tessellations with the side length of the cells going

to 0. The tessellation for each valid ε > 0 results in nε, a finite number of

cells as S is compact. Index the cells by i and let Ai denote the subset of S

corresponding to cell i and ai ∈ Ai denote its center. The cell containing the

origin is indexed 0 i.e. a0 = 0. For such an ε tessellation, we define a new

path-loss function lε(x, y) where lε(x, y) = lε(ai, aj) for all x ∈ Ai and y ∈ Aj
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and

lε(ai, aj) = sup{l(||bi − bj||) : ||bi − ai||, ||bj − aj|| ∈ {0, ε}}.

Note that the function lε satisfies

∑
i

lε(ai, aj) =
∑
i

lε(ai, 0) =
1

ε2

∫
x∈S

lε(||x||)dx, (A.11)

since S is a square torus and each cell Ai is a square of side-length ε,

The upper bound Markov-Chain is denoted as φ
(ε)
t which takes value

in the space M(S). This chain has the exact same dynamics as described in

Equation (2.4) except that the interference comes from lε(., .) instead of from

l(·),

Lemma 82. For all time t, the point-process φ
(ε)
t stochastically dominates φt.

This implies that if φ
(ε)
t is stable for a particular λ, then so is φt for that value

of λ.

Proof. We have from the monotonicity of l(·), lε(x, y) ≥ l(x, y) = l(||x−y||) for

each x, y ∈ S. Thus, for each x ∈ S and each φ ∈M(S), Iε(x, φ) ≥ I(x, φ) and

subsequently Rε(x, φ) ≤ R(x, φ) as R(x, φ) is a decreasing function of I(x, φ).

Therefore the point process φ
(ε)
t stochastically dominates the point process φt.

This follows from the fact that for any φ ∈ M(S), we have that the birth

rate λ|S| is the same for both process, whereas the death-rate of each point

of x ∈ φ satisfies 1
L
Rε(x, φ) ≤ 1

L
R(x, φ). Also form Equation (2.1), if φ1 ⊆ φ2,

then for each x ∈ φ1 ∩ φ2, R(x, φ1) ≥ R(x, φ2). Hence one can construct a
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coupling of the process φt and φ
(ε)
t such that φt ⊆ φ

(ε)
t ∀t, i.e. a point is alive

in φt only if it is also alive in φ
(ε)
t . Therefore, if φ

(ε)
t is ergodic for a given λ,

then φt is also ergodic for that arrival rate λ.

Define X(ε)(t) = {φ(ε)
t (Ai)}nεi=1 as the nε dimensional vector taking val-

ues in Nnε . It is easy to see that X(ε)(t) is a Markov-Chain since the path-loss

function lε(x, y) does not distinguish between two different locations of space

inside a cell. It is also evident that if X(ε)(t) is ergodic, then φ
(ε)
t is ergodic since

limt→∞ P[φ
(ε)
t (S) <∞] = limt→∞ P[||X(ε)(t)||1 <∞] = 1. The second equality

follows from the fact that X(ε)(t) is a finite-dimensional ergodic Markov chain

on Nnε . Hence, a sufficient condition for stability of φt is a condition for the

Markov Chain X(ε)(t) to be ergodic.

We show in Theorem 83 that X(ε)(t) (and hence φ
(ε)
t ) is ergodic if

λ <
C

L ln(2)
∫
x∈S l

ε(x, 0)dx
, (A.12)

which will actually conclude the proof of Theorem 3. This can be seen as fol-

lows. Since the point process φεt stochastically dominates φt, we can optimize

the stability region in Equation (A.12) by choosing the best ε. As the func-

tion r → l(r) is monotone, lε(x, 0) is monotone increasing in ε for each x ∈ S

and hence we want to have ε as small as possible. Furthermore, the function

r → l(r) has only a countable set of discontinuity points (as it is bounded

non-increasing), we have that as ε goes to 0, lε(x, 0) converges to l(x, 0) for

almost-every x ∈ S. Hence, limε→0

∫
x∈S lε(||x||)dx =

∫
x∈S l(||x||)dx from the
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Monotone Convergence theorem. Therefore, if X(ε)(t) is ergodic under condi-

tion in Equation (A.12), then φt will be ergodic under the condition

λ < lim sup
ε→0

C

L ln(2)
∫
x∈S l

ε(x, 0)dx
=

C

L ln(2)
∫
x∈S l(x, 0)dx

, (A.13)

which will conclude the proof of Theorem 3.

Theorem 83. X(ε)(t) is ergodic under the condition in Equation (A.12).

We remark that, even in the general case of T > 0, the same theorem

statement will hold for a slightly modified version of X(ε)(t) which we will

construct later. Thus, if Theorem 83 is established for arbitrary T , the proof

of the main theorem will be complete by similar reasoning in the previous

paragraph.

Proof. We can write the following evolution for the vector X(ε)(t) which we

refer to as X(t) in the sequel for convenience as

Xi → Xi + 1 at rate λε2

Xi → Xi − 1 at rate

Xi log2

(
1 +

1

N0 +
∑nε

j=1(Xj − 1(j = i))lε(ai, aj)

)
.

We note that generalizing this dynamics to the case when T > 0 is

slightly different alebit the same principles and we outline it at the end of the

proof.
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Under condition in Equation (A.12), we show the following drift argu-

ment to hold which will conclude the proof.

Theorem 84. [322] Let X(t) be a Markov Chain taking values in a countable

state space S. Assume there exists a function L : S → R+ and constants

A <∞ , ε > 0 and an integrable stopping time τ̂ > 0 such that for all x ∈ S:

L(x) > A =⇒ ExL(X(τ̂)) ≤ L(x)− εEx(τ̂). (A.14)

If in addition the set {x : L(x) ≤ A} is finite and

ExL(X(1)) <∞ for all x ∈ S, then X(t) is ergodic.

We will show that the above theorem is satisfied with the Lyapunov

function L(x) = ||x||∞ and

τ̂ = L(X(0))

(
C

L ln(2)
∑nε−1

k=0 lε(ak, 0)
− λε2

)−1

:= L(X(0))τ, (A.15)

a deterministic finite stopping-time. We will use the notation that ||x||∞ = |x|

which is also equal to L(x).

To establish the drift condition, we pass to the fluid-limit. A fluid

limit of the Markov-Process X(t) is denoted by x(t) which is a nε dimensional

vector. x(t) is defined as a fluid limit if there exists non-decreasing Lipschitz

continuous function {Di(t)}nε−1
i=0 such that

xi(t) = xi(0) + λε2t−Di(t),
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where the derivative of Di(t) satisfies Ḋi(t) = Cxi(t)

L ln(2)
∑nε−1
j=0 xj(t)lε(ai,aj)

, or equiv-

alently, the fluid limit x(t) satisfies the following set of differential equations.

If ||x(t)||∞ > 0,

d

dt
xi(t) = λε2 − Cxi(t)

L ln(2)
∑nε−1

k=0 xk(t)lε(ai, ak)
(A.16)

and if ||x(t)||∞ = 0,

d

dt
xi(t) = 0.

For y ∈ Rnε , denote by S(y) the set of fluid functions x(t) such that

x(0) = y. The following theorem establishes that the above fluid equation

is indeed obtained through an appropriate space and time scaling. It also

establishes as a corollary that S(y) is non-empty for any y ∈ Rnε .

Theorem 85. Consider a sequence of deterministic initial conditions {X(k)(0)}k≥1

for the Markov Chain X(t) and a sequence of positive integers {zk}k≥1 with

limk→∞ zk =∞ such that the limit limk→∞ z
−1
k X(k)(0) = x(0) exists. Then for

all s > 0 and all δ > 0, the following convergence takes place

lim
k→∞

P

(
inf

f∈S(x(0))
sup
t∈[0,s]

|z−1
k X(k)(zkt)− x(t)| > δ

)
= 0.

This proof is standard and is postponed later on in the appendix.

From the description of the dynamics, if we have L(x(t)) = 0, then

xi(t) = 0 for all i. Since x(t) is a finite-dimensional vector, there exists at-
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least one coordinate i∗(t) such that xi∗(t)(t) = L(x(t)). Then one can write

d

dt
L(x(t)) = λε2 − CL(x(t))

L ln(2)
∑nε−1

k=0 xk(t)lε(ai∗(t), ak)

≤ λε2 − C

L ln(2)
∑nε−1

k=0 lε(ak, 0)
, (A.17)

where the second inequality comes by the fact that xk(t) ≤ L(x(t)) and the

symmetry of the torus as given in Equation (A.11). From Equation (A.17),

we see that under the condition given in (A.12), L(x(s)) = 0 for all s ≥ τ

whenever L(x(0)) = 1, where τ =
(

C

L ln(2)
∑nε−1
k=0 l(ak,0)

− λε2
)−1

, a deterministic

time as defined in Equation (A.15).

We remark that inequality (A.17) will be identical even in the case of

arbitrary link distance T and hence, the rest of the proof ingredients are the

same for both when T = 0 and T > 0.

Lemma 86. If condition in Equation (A.12) holds, then

lim
L(x)→∞

1

L(x)
Ex[|X(L(x)τ)|] = 0. (A.18)

where τ is defined in Equation (A.15)

Proof. The first observation is that the family of random variables
{
|Xx(|x|t)|
|x|

}
x∈Nnε\{0}

is uniformly integrable. Indeed, let {Ai(·)}nε−1
i=0 be i.i.d. unit rate PPP denot-

ing the arrivals into cell i. Then

Xi(t) ≤ Xi(0) + Ai(λε
2t). (A.19)
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Thus, for X(0) = x,

Xi(|x|τ)

|x|
≤ xi
|x|

+
Ai(λε

2|x|τ)

|x|
. (A.20)

We have that xi
|x| ≤ 1 and the mean of Ai(λε

2|x|τ)
|x| equal to λε2τ . The variance

of Ai(λε
2|x|τ)
|x| is λε2τ

|x| ≤ λε2τ for all x ∈ Nnε \ {0}. As the variance is uniformly

bounded, the random variables
{
Xi(|x|τ)
|x|

}
x∈NNε\{0}

are uniformly integrable.

In addition, |X(|x|τ)|
|x| ≤

∑
i
Xi(|x|τ)
|x| , gives that

{
|Xx(|x|τ)|
|x|

}
x∈NNε\{0}

is uniformly

integrable since it is bounded above by a finite sum of random variables be-

longing to uniformly integrable families.

Let xk be any sequence of initial conditions such that |xk| → ∞. This

implies that ak = X(k)(0)/|xk| = xk/|xk| with ak ∈ [−1, 1]nε for all k. Since

the cube [−1, 1]nε is compact, there is a convergent sub-sequence i.e. Xk(l)(0)
|xk(l)|

→

x(0) with |x(0)| = 1. From Theorem 85, there is a further sub-sequence of k(l)

such that
Xk
′
(l)(|x

k
′
(l)
|τ)

|x
k
′
(l)
| → x(τ) almost surely where the function x(·) ∈ S(x(0)).

Under the stability condition (A.12), we have that for any fluid-limit function

x(·) ∈ S(x(0)), x(τ) = 0 whenever |x(0)| ≤ 1. This establishes that given

any arbitrary sequence of initial conditions xk with |xk| → ∞, one can find a

further sub-sequence k
′
(l) such that

lim
k′ (l)→∞

1

|xk′ (l)|
|Xk

′
(l)(|xk′ (l)|τ)| = 0, a.s. (A.21)

Therefore, we can conclude that for any sequence xk with |xk| → ∞, we have

1
|xk|
|Xk(|xk|τ)| tends to 0 in probability. But since, the family of random
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variables
{
|Xx(|x|τ)|
|x|

}
x∈NNε\{0}

is uniformly integrable, we have that

lim
k→∞

1

|xk|
E[|Xk(|xk|τ)|] = 0. (A.22)

As xk was an arbitrary sequence, Equation (A.18) holds whenever condition

(A.12) holds.

From Equation (A.18), we have that for any ε > 0, there is a large

enough Aε such that Equation (A.14) holds. Furthermore, for any finite A,

the set {x ∈ NNε : ||x||∞ ≤ A} is finite. Hence, we have that X(t) is stable

under the stability condition (A.12) which proves Theorem 3.

Generalization to arbitrary Link Distance T

To generalize the proof for arbitrary link distances T , we need to con-

struct the appropriate discretization of the chain φ
(ε)
t . Once, we construct an

appropriate discrete state space chain, then it is easy to see that the fluid

version of this chain will satisfy inequality (A.17) and Lemma 86 as is. This

will conclude that the case with arbitrary link distance T also yields the same

stability result.

The discrete state space process in this case will naturally involve two

vectors {Xi(t)}nεi=1 and {Yi(t)}nεi=1, which represent the vector of transmitters

and receivers in the discrete grid. However, in addition, we need a list of

vectors {Mi(t)}nεi=1 where Mi is a nε dimensional vector whose jth coordinate
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denotes how many transmitters in cell i have a corresponding receiver in cell

j. The triple Xt := (Xi(t), Yi(t),Mi(t))
nε
i=1 then evolves in a Markovian fash-

ion on a countable state-space. The evolution of X(t) is as follows. To each

cell i, a new receiver is born at rate λε2. When, a receiver is born in cell

i, we first pick an uniformly random location in the cell Ai ⊂ S and then

centered around this point, we draw a ball of radius T and pick the location

of the transmitter uniformly on the circumference to decide the cell in which

the transmitters land. Thus, at the instant of birth, both a transmitter and

receiver is born. Thus, conditioned on the event that a receiver is placed in

cell i, there is a distribution on the set {1, 2, · · · , nε} from which we sample

the cell to place the corresponding transmitter in. To compute the interference

seen at any receiver, we sum up the interference power from all transmitters

in {Yi}nεi=1 including the intended signaling transmitter, which forms an upper

bound on the interference. On the event of a death of a receiver in cell i, we

also delete an uniformly random transmitter such that it has a receiver in cell i.

This process X(t) can be studied using fluid limits as above but with

significantly more computations. The fluid equations for this case (which is

the analog of Theorem 85) will be as follows.

d

dt
xi = λε2 − xil(T )∑nε

j=1 yilε(ai, aj)

whenever xi > 0, else d
dt
xi = 0. Since, the number of transmitters and receivers
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are the same at all instants of time, we get the following inequality immediately

d

dt
yi ≤ λε2 − yil(T )

||y||∞
∑nε

j=1 lε(ai, aj)

whenever yi > 0. This is an inequality and not an equality due to the fact that

the interference is measured by a transmitter process ||y||∞1 which coordinate

wise dominates the original transmitters y. Thus, we can see that by employing

the Lyapunov function L(z) for z = (x, y,M) as L(z) := ||y||∞, we will get

exactly the same inequality as in Equation (A.17). Furthermore, it is easy to

check that Lemma 86 holds as is with |X(t)| := ||y||∞. This will then establish

that Theorem 83 will hold as is for the chain constructed in this paragraph

with generalized link distance T , which concludes the proof.

Appendix C

A.3 Proof of Theorem 5

Proof. The proof idea is to apply Rate-Conservation equations similar to that

of Theorem 1. For any receiver-transmitter pair (x; y) ∈ φt, define Bt(x) =∑
T∈φtxt \{y}

f(||T − x||) and the cadlag process Bt =
∑

x∈φRxt
Bt(x).

Since we assume that the dynamics φt is ergodic, we write RCL for the

stochastic process Bt
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λ|S|E

2

∫
x∈S

B0(x)
dx

|S|

 =

λdE

[
R0

E[R0]

∑
Tn∈φ0

R(Tn, φ0)

R0

2B0(Tn)

]
(A.23)

The LHS follows from PASTA and the fact that a birth can happen anywhere

in S uniformly and independently. The RHS follows from the Papangelou’s

theorem that the point process on R corresponding to the death epochs ad-

mits Rt = 1
L

∑
Xn∈φ0 R(Xn, φ0) as its Stochastic Intensity with respect to the

filtration Ft = σ ({φs : s ≤ t}), the sigma algebra generated by the location of

the links. We also have λd = λ|S| from Equation (A.1) and E[R0] = λ|S| from

Equation (A.2). Using this to simplify Equation (A.23), we get

E[B0(0)] =
1

λ|S|L
E

[ ∑
Tn∈φ0

R(Tn, φ0)B0(Tn)

]
, (A.24)

where we used Fubini’s theorem and the fact that φ0 is stationary in simplifying

the LHS. Using the definition of Palm probability to simplify the RHS, we get

E[B0(0)] =
β|S|
λL|S|

E0
φ0

[R(0, φ0)B0(0)] . (A.25)

Since both f(·) and the path-loss l(·) are positive non-increasing functions, we

have the deterministic behavior that if B0(0) increases, then R(0, φ0) decreases.

Hence, we can use the association inequality

E0
φ0

[R(0, φ0)B0(0)] ≤ E0
φ0

[R(0, φ0)]E0
φ0

[B0(0)] (A.26)
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Employing Inequality (A.26) in Equation (A.25), and the RCL λL =

βE0
φ0

[R(0, φ0)] from equation (A.3) we get

E[B0(0)] ≤ E0
φ0

[B0(0)]. (A.27)

Appendix D

A.4 Proof of Theorem 85

Proof. This can be argued by contradiction. Assume that for some ε > 0 and

a sub-sequence

P

(
inf

f∈S(x(0)
sup
t∈[0,T ]

|z−1
k X(zkt)− f(t)| > ε

)
≥ ε (A.28)

Without loss of generality, assume the above holds true for all k ≥ 1.

The trajectories of the process Xk(t) can be written in terms of inde-

pendent unit-rate Poisson process Aki and Dk
i

Xk
i (t) = Xk

i (0) + Aki (λε
2t)−

Dk
i

(∫ t

0

Xk
i (u) log2

(
1 +

1

N0 + Iεi (t)
du

))
. (A.29)

That is, Xk(t) is a functional of the Point Process satisfying the set of

Equations (A.29).
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One can rewrite equation (A.29) by a change of variables as

1

zk
Xk
i (zkt) =

1

zk
Xk
i (0) +

1

zk
Aki (λε

2zkt)−

1

zk
Dk
i

(∫ zkt

0

Xk
i (u) log2

(
1 +

1

N0 + Iεi (t)

)
du

)
. (A.30)

Now replacing u by zkl, we get the following

1

zk
Xk
i (zkt) =

1

zk
Xk
i (0) +

1

zk
Aki (λε

2zkt)−

1

zk
Dk
i

(
zk

∫ t

0

Xk
i (zkl) log2

(
1 +

1

N0 + Iεi (zkl)

)
dl

)
, (A.31)

which can be written as

1

zk
Xk
i (zkt) =

1

zk
Xk
i (0) + λε2t−∫ t

0

Xk
i (zkl) log2

(
1 +

1

N0 + Iεi (zkl)

)
dl + δki (t), (A.32)

where the error term δki (t) satisfies the stochastic bound

sup
t∈[0,T ]

|δki (t)| ≤ 1

zk
sup

t∈[0,λε2T ]

|Aki (zkt)− zkt|+

1

zk
sup

t∈[0,T log2(e)]

|Dk
i (zkt)− zkt|. (A.33)

The error term δki (t) is bounded by the following lemma.

Lemma 87. [261] Let Ξ be a unit rate PPP on the real line. Then for all

T > 0 and all λ > 0,

P

(
sup
t∈[0,T ]

|Ξ(t)− t| ≥ λT

)
≤ e−Th(λ) + e−Th(−λ) (A.34)

where h(λ) = (1 + λ) log(1 + λ)− λ.
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This lemma in particular implies that there exists a sub-sequence k(l), l ≥

1 and a sequence ε(l)→ 0 such that ∀i

∑
l≥1

P

(
sup
t∈[0,T ]

|δk(l)
i (t)| ≥ ε(l)

)
<∞

By Borel-Cantelli’s lemma, there exists a sub sequence such that for all i,

liml→∞ supt∈[0,T ] |δ
k(l)
i (t)| → 0 almost surely.

Now consider the random function

wk(t) =
∫ t

0
Xk
ij(zkl) log2

(
1 + 1

N0+Iεi (zkl)

)
dl which is Lipschitz for each sample

path ω, i.e.

wk(t)− wk(s) =

∫ t

s

Xk
ij(zkl) log2

(
1 +

1

N0 + Iεi (zkl)

)
dl (A.35)

≤ (t− s) log2(e)

supx,y∈S l
ε(x, y)

<∞. (A.36)

From the Arzela-Ascoli theorem, there exists a sub-sequence such that

wk(t) converges uniformly on [0, T ] to a Lipschitz continuous function Di(t)

for each sample path ω. This along with the bound on supt∈[0,T ] |δij(t)| yields

that there is a sub-sequence such that

Xk
i (zkt)

zk
→ xij(t) := xi(0) + λit−Di(t), a.s., (A.37)

where the convergence happens uniformly over [0, T ]. Di(t) is Lipschitz since

xi(t) is Lipschitz continuous. It remains to show that Ḋi(t) = xi(t)
Ii(t)

. Since Di(t)
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is Lipschitz continuous, by Rademacher’s theorem, it is differentiable almost

everywhere on [0, T ]. For all h > 0,∫ t+h

t

Xk
i (zkl) log2

(
1 +

1

N0 + Iεi (zkl)

)
dl→ ∫ t+h

t

xi(l)

Iε,fi (l)
dl.

This follows from dominated convergence and the Lipschitz continuity of l →

xij(l). Therefore Ḋi(t) = xi(t)

Iε,fi (t)
.

Hence, we have shown that given any sequence of initial conditions

Xk(0) and number zk such that the limit Xk(0)
zk

= x(0) exists, we can find

a sub-sequence kl such that
Xkl (zkl t)

zkl
converges almost surely to the Lipschitz

continuous fluid limit function x(t). This is a contradiction and hence the

theorem is proved.
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Appendix B

Proofs from Chapter 3

In this chapter, we present the proof of Theorem 19. The proof is spread

out in three sections and organized as follows. In Section B.1, we present the

main stability theorem on the torus systems. This is similar to the proof of

Theorem 3 in Chapter 2 and hence we only outline the sketch. Subsequently in

Section B.2, we write down rate-conservation equations for the torus systems

and establish the formula for the mean queue length. This section forms the

core technical innovation in this thesis about this model. Among many things,

we show a form of tightness of the marginal steady-state queue length with

respect to the truncations of space. Subsequently in Section B.3, we use this

tightness to conclude that the steady stte of the infinite space dynamics is in

a precise sense the limit of the stationary distributions of steady state queue

lengths in space truncated finite space systems.

B.1 Space Truncated Finite Systems

In this section, we discuss a finite version of the infinite queueing net-

work. For any n ∈ Z+, we consider two n-truncated systems, both of which

are obtained by restricting the dynamics to the set Bn(0), the l∞ ball of ra-
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dius n centered at 0. For notational convenience, we shall drop 0 and denote

by Bn := Bn(0) the l∞ ball of radius n centered at 0. For every n ∈ N, we

define two truncated dynamics, {y(n)
i (·)}i∈Bn and {z(n)

i (·)}i∈Bn . The process

{y(n)
i (·)}i∈Bn evolves with the set Bn ‘wrapped around’ to form a torus. More

precisely, the process {y(n)
i (·)}i∈Bn is driven by (Ai,Di)i∈Bn . The arrival dy-

namics is the same as before where each queue receives customers as a rate

λ PPP independent of everything else. In other words, for all i ∈ Bn, at

each epoch of Ai, a customer is added to queue i. The departure dynamics

is driven by Di as before, but we treat the set Bn as a torus. More precisely,

given any i, j ∈ Bn, define dn(i, j) := (i − j) mod n, where the modulo op-

eration is coordinate-wise. Thus, at any time t, and any i ∈ Bn, the rate at

which a departure occurs from queue i at time t in the process {y(n)
i (t)}i∈Bn(0)

is
y
(n)
i (t)∑

j∈Bn adn(i,j)y
(n)
j (t)

. Since n is finite, the stochastic process y(n)(t) is a contin-

uous time Markov process on a countable state-space, i.e., on N(2n+1)d . More-

over, since the jumps are triggered by a finite number of Poisson processes,

this chain has almost surely no-explosions.

Similarly, the process {z(n)
i (t)}i∈Bn is driven by the arrival data (Ai,Di)i∈Bn

as before, but this time the set Bn is viewed as a subset of Zd and in particular

the ‘edge effects’ are retained. The arrival rate to any queue i ∈ Bn in the

system {z(n)
i (t)}i∈Bn is λ, while there are no arrivals to queues in Bc

n, i.e., an

arrival rate of 0. Moreover, the queue lengths of queues in Bc
n is set to 0, i.e.,

for all t ≥ 0 and all i ∈ Bc
n, we have z

(n)
i (t) = 0. The departure process for
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any queue i ∈ Bn, is identical to the original infinite system. At any time

t ≥ 0, and any i ∈ Bn, the rate of departure from queue i at time t is given by

z
(n)
i (t)∑

j∈Zd ai−jz
(n)
j (t)

. From the monotonicity in the dynamics, we have the following

proposition.

Proposition 88. For all n > L, there exists a coupling of the processes

{xi(·)}i∈Zd , {z
(n)
i (·)}i∈Bn and {y(n)

i (·)}i∈Bn such that for all t ∈ R, and all

i ∈ Zd, we have xi(t) ≥ z
(n)
i (t) and y

(n)
i (t) ≥ z

(n)
i (t) almost surely.

The following property of the truncated systems will be used in the

analysis of the infinite system.

Theorem 89. For all n > L and λ < 1∑
j∈Zd aj

, the Markov process {y(n)
i (t)}i∈Bn(0)

is positive recurrent. Let π(n) denote the stationary queue length distribution

on N of any queue i ∈ Bn(0) and let Z be distributed as π(n). Then there

exists a c > 0 possibly depending on n such that E[ecZ ] <∞.

Remark 90. The symmetry in the torus implies that the marginal stationary

queue length distribution of any queue i, π(n), is the same for all i.

Remark 91. The existence of an exponential moment yields that all power

moments of π(n) are finite.

Remark 92. In view of Proposition 88, if λ < 1∑
j∈Zd aj

, then for all n ∈ N,

the process {z(n)
i (·)}i∈Bn is positive recurrent. Moreover, for all i ∈ Bn, the

stationary distribution of {z(n)
i (·)}i∈Bn , denoted by {π̃(n)

i }i∈Bn , is such that

there exists a c > 0 possibly depending on n satisfying E[ecZi ] <∞, where Zi

is distributed according to π̃
(n)
i .
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Proof Sketch

We provide a sketch here and defer the details to Section 5 of the ex-

tended version in [338] The proof is technical with a lot of details based on

monotonicity and the standard properties of a single-server queue with light-

tailed service time distributions. So we present its summary just to highlight

the key ideas involved. To prove the theorem, we will define a modified dynam-

ics {ỹ(n)
i (t)}t≥0,i∈Bn(0) which is coupled with the evolution of {y(n)

i (t)}i∈Bn(0).

We construct the modified dynamics such that it satisfies ỹ
(n)
i (t) ≥ y

(n)
i (t) a.s.

for all i ∈ Bn(0) and t ≥ 0. We do this by discretization of continuous time to

discrete by choosing sufficiently small interval h, i.e. times · · · ,−h, 0, h, 2h, · · ·

will form time slot boundaries. We then restrict departures so that at-most

one departure can occur in a time period. We also modify the arrivals so

that in any time slot, the difference between the maximum number of arrivals

and the minimum number of arrivals in a time slot is at-most a constant.

From monotonicity, the dynamics with such modified arrivals and departures

can be coupled to provide an upper bound to the true queue lengths. We

describe in detail this construction in Section 5 of [338]. We further iden-

tify a large r, and equalize the queues after every r time-slots, i.e. at times

· · · ,−rh, 0, rh, 2rh, · · · , we add fictitious customers so that all queues have

the same number of customers. If the number of customers is smaller than a

constant y0, we further add more customers till every queue has at least y0

customers. Thus, at the end of every r time-slots, every queue has the same

number of customers which is at least y0. From a coupling argument, we show
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that after the addition of the fictitious customers, the queue length follows

the trajectory of an appropriately modified GI/GI/1 queue which is stable.

Thus, we have dominated our process {y(n)
i (t)}i∈Bn so that every one of them

is dominated from above by a stable GI/GI/1 queue with light-tailed service

time distributions, and hence the stationary distribution of {y(n)
i (t)}i∈Bn is

also light-tailed.

B.2 Rate Conservation Arguments

This section forms the central tool used in our analysis. We shall con-

sider the space truncated systems introduced before to explicitly write down

differential equations for certain functionals of the dynamics. The key result

we will establish in this section is a closed form formula for the mean of the

steady state queue length of the space truncated torus system. To do so, we

will use the general rate conservation principle of Palm calculus [49] to derive

certain relations between the system parameters in steady state. We shall as-

sume λ < 1∑
j∈Zd aj

throughout in this section. We shall let n > L be arbitrary

and fixed for the rest of this section. In this section, we shall again consider the

two space truncated stochastic processes {y(n)
i (·)}i∈Bn and {z(n)

i (·)}i∈Bn to be

in steady-state. Recall that the process {y(n)
i (·)}i∈Bn is one wherein the set Bn

is viewed as a torus with its end points identified and the process {z(n)
i (·)}i∈Bn

is one with the end effects, i.e., with the set Bn is viewed as a subset of Zd.

Furthermore, we denote by π(n), the steady state distribution of y
(n)
0 (0) and by

the translation invariance on the torus, the steady state distribution of y
(n)
i (0),

221



for all i ∈ Bn. Similarly, for all i ∈ Bn, we shall denote by π̃
(n)
i , the steady

state distribution of the marginal z
(n)
i (t). Notice that the marginal distribu-

tions in the process z
(n)
i (·)i∈Bn depend on the coordinate, unlike in the process

y
(n)
i (·)i∈Bn . For notational simplicity, we shall denote by µ(n), the mean of π(n)

and for all i ∈ Bn, by ν
(n)
i , the mean of π̃

(n)
i . In this section, we shall study two

stochastic processes - {It}t∈R and {Ĩt}t∈R, with It := y
(n)
0 (t)(

∑
j∈Zd ajy

(n)
j (t))

and Ĩ(t) :=
∑

i∈Bn z
(n)
i (t)(

∑
j∈Zd ajz

(n)
i−j(t)). If one were to be more precise, one

should use the notation I(n)
t and Ĩ(n)

t , but we drop the superscript n to simplify

the notation. In words, the process ({It})t∈R considers the interference seen

at a typical queue in {y(n)
i (·)}i∈Bn , the system where the set Bn is viewed as a

torus and ({Ĩt})t∈R considers the total interference in the process {z(n)
i (·)}i∈Bn ,

the system with boundary effects, where the set Bn is viewed as a subset of

Zd. Observe that since Bn is a torus, the marginals of the process {y(n)
i (·)}i∈Bn

are identical and hence, we can consider a typical queue, but as the marginals

of {z(n)
i (·)}i∈Bn are different due to the edge effects, we study the total inter-

ference at all queues instead of the interference seen at a typical queue. Since

λ < 1∑
j∈Zd aj

, and the systems {y(n)
i (t)}i∈Bn and {z(n)

i (t)}i∈Bn are in steady

state, and the queue lengths in both systems posses exponential moments, it

is the case that for all t ∈ R, E[It] <∞ and E[̃I(t)] <∞.

The main technical results of this section are Propositions 93, 94 and

Lemma 100. These will then help us to derive closed form expressions for the

mean queue length and a bound on the second moment for the original infinite
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system.

Proposition 93.

d

dt
E[It] = 0 = λa0 + 2λ

(∑
j∈Bn

aj

)
µ(n)−

E
[
R(0)

(
a0(2y

(n)
0 (0)− 1) +

∑
i∈Bn\{0}

aiy
(n)
i (0)

)
+

∑
i∈Bn\{0}

R(i)aiy
(n)
0 (0)

]
,

(B.1)

where for any i ∈ Bn,

R(i) :=
y

(n)
i (0)∑

j∈Bn adn(i,j)y
(n)
j (0)

.

Proof. We provide a heuristic derivation of the differential equation using the

PASTA property of the arrival and departure process and skip all the technical

details as it is standard. For example see the Appendix of [56] for an account

of the derivation. In a small interval of time ∆t, in every queue, there will

be exactly one arrival with probability roughly λ∆t. The chance that two or

more arrivals occur in a time interval ∆t in the entire network is O
(
(∆t)2

)
,

where the O
(
·
)

hides all system parameters (for ex. λ, n) other than ∆t as

they are fixed. On an arrival at queue 0, the increase in the quantity I0 is

E[(y
(n)
0 +1)(a0(y

(n)
0 +1)+

∑
j∈Bn\{0} ajy

(n)
j )−y(n)

0 (
∑

j∈Bn ajy
(n)
j )], which is equal

to E[a0 +
∑

j∈Bn ajy
(n)
j ]. Similarly, the average increase in I0 due to an arrival

in the neighboring queues of 0 is E[(y
(n)
0 )(ai(y

(n)
i + 1) +

∑
j∈Bn\{i} ajy

(n)
j ) −

y
(n)
0 (
∑

j∈Bn ajy
(n)
j )], which is equal to E[aiy

(n)
0 ]. The chance that there are two
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or more arrivals is O
(
(∆t)2

)
, which is small. Thus, the average increase due

to arrivals is λ∆tE[a0(y
(n)
0 + 1) +

∑
j∈Bn ajy

(n)
j +

∑
j∈Bn\{0} ajy

(n)
0 ] + O

(
(∆t)2

)
.

After simplification, and using the fact that the variables y
(n)
j all have the same

mean, we get that the average increase in time ∆t is

λ∆t

(
a0 + 2µ(n)

(∑
j∈Bn

aj

))
+ O

(
(∆t)2

)
. (B.2)

Likewise, with probability R(i)∆t, there will be a departure from queue

i. When a customer leaves from queue 0, which occurs with probability R(0)∆t

the average decrease in I0 is then E[(a0((y
(n)
0 )2−a0(y

(n)
0 −1)2+

∑
i∈Bn\{0} aiy

(n)
i )].

Similarly, a departure from queue i, which occurs with probability R(i)∆t

results in an average decrease in I0 of E[aiy
(n)
0 ]. The chance that two or more

possible departures occur in time ∆t is O
(
(∆t2

)
, which is small. Thus, the

total average decrease in I0 due to departures is

∆tE
[
R(0)

a0(2y
(n)
0 − 1) +

∑
i∈Bn\{0}

aiy
(n)
i

+
∑

i∈Bn\{0}

R(i)aiy
(n)
0

]
+ O

(
(∆t)2

)
.

(B.3)

Hence, we see from Equations (B.2) and (B.3), that

1

∆t
E[I(t+ ∆t)− I(t)] = λ

(
a0 + 2µ(n)

(∑
j∈Bn

aj

))
−

E
[
R(0)

a0(2y
(n)
0 − 1) +

∑
i∈Bn\{0}

aiy
(n)
i

+
∑

i∈Bn\{0}

R(i)aiy
(n)
0

]
+ O

(
∆t
)
.

The proposition is concluded by letting ∆t go to 0.
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Now, we compute the differential equation for the space truncated

system, by carefully taking into consideration the ‘edge effects’ introduced

by the truncation to the set Bn. Denote by the set B
(I)
n ⊂ Bn, where

B
(I)
n := {z ∈ Bn : ∀y s.t. ||y − z||∞ ≤ L, y ∈ Bn}. In words, the set B

(I)
n

is the set of all points z ∈ Bn such that the l∞ ball of radius L is completely

contained in Bn.

Proposition 94.

d

dt
E[̃I(t)] = 0 ≥ −2(1− λ

∑
j∈Zd

aj)
∑
i∈B(I)

n

ν
(n)
i + 2λa0|Bn| − 2

∑
i∈Bn\B(I)

n

ν
(n)
i .

Proof. A rigorous proof of this is standard and we skip it. For example see [56].

Instead we outline the computations required in establishing this proposition.

Furthermore to lighten the notation in the proof, we drop the superscript n, as

n is fixed and does not change in the course of the proof. Thus, we shall denote

{z(n)
i (t)}i∈Bn by {zi(t)}i∈Bn and the steady-state means by (νi)i∈Bn , instead of

(ν
(n)
i )i∈Bn . As in the proof of Proposition 93, we shall consider a small interval

∆t of time such that at most one event of either an arrival or departure occurs

anywhere in the network in the set Bn. Roughly speaking, with probability

λ∆t, there will be an arrival in some queue i ∈ Bn. In the rest of the proof,

we shall partition the set Bn into B
(I)
n and Bn \B(I)

n .
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From similar computations as in the previous proposition, if there is an

arrival in queue i ∈ B(I)
n , the increase in Ĩ(t) will be

E
[
(zi(t)+1)(a0(zi(t)+1)+

∑
j∈Zd\{0}

ajzi−j(t))−zi(t)(zi(t)+
∑

j∈Zd\{0}

ajzi−j(t))+

∑
l∈Bn\{i}

(zl(t)(ai−l(zi(t)+1)+
∑

j∈Zd\{i}

aj−lzj(t))−zl(t)(ai−lzi(t)
∑

j∈Zd\{i}

aj−lzj(t)))

]
.

This follows since if there is an extra customer in queue i, then the total

interference is increased both at queue i and any other queue j such that

ai−j > 0. From the PASTA property, we know that at the moment of arrival,

{zi(t)}I∈Bn is in steady-state and in particular, E[zi(t)] = νi. Thus, the above

expression can be simplified as∑
j∈Zd

ajνi−j + a0 + a0νi +
∑

l∈Bn\{i}

νlai−l.

If i ∈ B(I)
n , the above expression is equal to

2
∑
j∈Zd

ajνi−j + a0,

while if i ∈ B(I)
n \Bn, we use the trivial inequality∑

j∈Zd
ajνi−j + a0 + a0νi +

∑
l∈Bn\{i}

νlai−l ≥ a0.

Thus, the average increase in the time interval ∆t in the interference I(t) due

to an arrival event is at least

λ∆t

∑
i∈B(I)

n

(2
∑
j∈Zd

ajνi−j + a0) +
∑

i∈Bn\B(I)
n

a0

+ O
(
∆t2
)
.
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Since for all i ∈ B(I)
n , the l∞ ball of radius L is contained within the set Bn,

we can further simplify the above expression as

λ∆t

∑
i∈B(I)

n

2νi
∑
j∈Zd

aj + a0

+ λa0∆t|Bn \B(I)
n |+ O

(
∆t2
)
.

Similarly, we can compute the average decrease in Ĩ(t) due to a depar-

ture event. Roughly, the probability of a departure from any queue i ∈ Bn is

given by Ri(t) where Ri(t) = zi(t)∑
j∈Zd ai−jzj(t)

. If there is a departure from queue

i, the average decrease can be computed as

E
[
(zi(t))(a0zi(t)+

∑
j∈Zd\{0}

ajzi−j(t))−(zi(t)−1)(a0(zi(t)−1)+
∑

j∈Zd\{0}

ajzi−j(t))

+
∑

l∈Bn\{i}

(zl(t)(ai−lzi(t)+
∑

j∈Zd\{i}

aj−lzj(t))−zl(t)(ai−l(zi(t)−1)
∑

j∈Zd\{i}

aj−lzj(t)))

]
.

We do not need to worry about the fact that zi(t) − 1 can be negative since,

in this case, the rate of departure Ri(t) will be 0. Thus the average rate of

decrease in the interference due to a departure can be written as

∆t

∑
i∈Bn

E[Ri(t)(a0zi(t) +
∑
j∈Zd

ajzi−j(t)− a0) +
∑

l∈Bn\{i}

ai−lzl(t)]

+ O
(
∆t2
)
.

Using the fact that for all i ∈ Bn and all t ∈ R, we haveRi(t)(
∑

j∈Zd ajzi−j(t)) =

zi(t), we can simplify the average rate of decrease as

∆t(
∑
i∈Bn

2νi − a0

∑
i∈Bn

E[Ri(t)]) + O
(
∆t2
)
.
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However, as {zi(·)}i∈Bn is a stationary process,
∑

i∈Bn E[Ri(t)] = λ|Bn|. This

then gives that average rate of change in E[I(t)] is

1

∆t
E[I(t∆t)− I(t)] ≥

λ(
∑
i∈B(I)

n

2νi(
∑
j∈Zd

aj) + a0) + λa0|Bn \B(I)
n | −

∑
i∈Bn

2νi + a0

∑
i∈Bn

λ+ O
(
∆t
)
.

Letting ∆t go to 0, we obtain the bound in Proposition 94.

We now state Lemma 95 which holds as a consequence of the rate

conservation argument. This establishes a closed form expression for the mean

queue length in steady state in the space truncated torus system {y(n)
i (t)}i∈Bn .

Recall that the system {y(n)
i (t)}i∈Bn is in steady state. Thus, the stochastic

process (It)t∈R is stationary. In particular, d
dt
E[It] is equal to 0. Thus, from

Proposition 93, we have the following key lemma

Lemma 95. For all λ < 1∑
j∈Zd aj

and all n > L,

µ(n) =
λa0

1− (
∑

j∈Zd aj)λ
. (B.4)

Remark 96. Note that we assumed a0 = 1 in the model. For completeness,

we give the derivation for any general a0 > 0.

This lemma in particular yields that the mean number of customers in

the steady state of the space truncated torus is independent of n, provided n

is large enough. This in particular gives supn µ
(n) <∞.
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Proof. From Equation (B.1), we get

λ

a0 + 2µ(n)

∑
j∈Zd

aj


= E

[
R(0)

(a0(2x
(n)
0 − 1) +

∑
i∈Bn\{0}

aix
(n)
i

+
∑

i∈Bn\{0}

R(i)aix
(n)
0

]
.

Now, we use the following version of the Mass Transport Principle for

unimodular random graphs (see also [255]):

Proposition 97. The following formula holds.

E

 ∑
i∈Bn\{0}

R(i)aiy
(n)
0

 = E

 ∑
i∈Bn\{0}

R(0)aiy
(n)
i

 .

Proof. The proof follows from the standard argument of Mass Transport in-

volving swapping double sums. Observe from the definition of the dynamics,

the queue lengths {y(n)
k }k∈Bn is translation invariant on the torus Bn. Hence,

for all j ∈ Bn, the variables y
(n)
j

∑
i∈Bn\{j}R(i)ai−j are identically distributed,

and in particular have the same means. The proposition is now proved thanks
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to the following calculations.

E

 ∑
i∈Bn\{0}

R(i)aiy
(n)
0

 =
1

|Bn|
E

∑
j∈Bn

y
(n)
j

∑
i∈Bn\{j}

R(i)ai−j


(a)
=

1

|Bn|
E

∑
i∈Bn

R(i)
∑

j∈Bn\{i}

ai−jy
(n)
j


(b)
=

1

|Bn|
E

∑
i∈Bn

R(i)
∑

j∈Bn\{i}

aj−iy
(n)
j


(c)
= E

 ∑
i∈Bn\{0}

R(0)aiy
(n)
i

 .
Equality (a) follows by swapping the order of summations, which is licit since

they each contain finitely many terms. Equality (b) follows since ak = a−k

for all k ∈ Zd. Equality (c) again follows from the fact that for all i ∈ Bn,

R(i)
∑

j∈Bn\{i} aj−iy
(n)
j are identically distributed. This is a consequence of the

queue lengths {y(n)
k }k∈Bn being translation invariant on the torus.

We now show how to conclude the proof of Lemma 95, using the con-

clusions of Proposition 97. Intuitively, Proposition 97 can be interpreted by

considering the finite graph with vertices on the torus Bn with a directed edge

from i to j in Bn with weight R(i)adn(i−j)y
(n)
j . This random graph, when rooted

in 0, is unimodular and hence the Mass Transport Principle holds ([255]). Since

ai = a−i, we get that the average decrease is E[−a0R(0) + 2R(0)
∑

i∈Bn aiy
(n)
i ].

Now, E[R(0)] = λ, and since, for all i ∈ Bn, E[y
(n)
i ] = µ(n),

2λ(
∑
i∈Bn

ai)µ
(n) + 2λa0 = E[2R(0)(

∑
i∈Bn

aiy
(n)
i )]. (B.5)
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But since R(0)(
∑

i∈Bn aiy
(n)
i ) = y

(n)
0 , we get

µ(n) =
λa0

1− (
∑

i∈Zd ai)λ
.

Corollary 98. If λ < 1∑
j∈Zd aj

, then the sequence of probability measures

{π(n)}n>L is tight.

Proof. From Markov’s inequality, we have

P[X > Q] ≤ λa0

Q(1− (
∑

i∈Zd ai)λ)
,

where X is distributed according to π(n). Thus, for every ε > 0, we can find

Q large such that supn>L Pπ(n) [X > Q] < ε.

B.2.1 Finiteness of Second Moments

In this section, we establish that under the conditions stated in Proposi-

tion 21, the second moments of the marginals of the queue lengths of {y(n)
i (·)}i∈Bn

are uniformly bounded in n. In order to show this, we need the following aux-

iliary lemma. For completeness, we provide expressions without assuming that

the value of a0 of the interference sequence {ai}i∈Zd to be 1.

Lemma 99. For all λ > 0, {ai}i∈Zd , d ∈ N and n > L, we have E[y2
0

∑
i∈Bn Riai] ≤

2cE[y2
0], where the constant c equals

√
a20+a0

∑
j∈Zd\{0} aj − a0∑

j∈Zd\{0} aj
.
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Proof. From symmetry, i.e., ai = a−i for all i ∈ Bn and translation invariance

on the torus, we have

E[y2
0

∑
i∈Bn

Riai] = E[R0

∑
i∈Bn

y2
i ai]. (B.6)

Let c > 0 be such that 2ca0 = a0 − (
∑

j∈Zd\{0} ai)c
2. The only positive

solution to this equation is c =

√
a20+a0

∑
j∈Zd\{0} aj − a0∑

j∈Zd\{0} aj
. Thus, we have the

following chain of equations -

∑
i∈Bn

aiy
2
i = a0y

2
0 +

∑
i∈Zd\{0}

aiy
2
i = 2ca0y

2
0 +

∑
i∈Zd\{0}

ai(y
2
i + c2y2

0) ≥ 2cy0

∑
i∈Bn

aiyi,

(B.7)

where the last inequality follows from y2
i +c2y2

0 ≥ 2cy0yi. Thus, from Equations

(B.6) and (B.7), we have

E[R0

∑
i∈Bn

y2
i ai] ≥ 2cE[R0y0

∑
i∈Bn

aiyi] = 2cE[y2
0].

Lemma 100. For all λ < 2
3

1+c∑
j∈Zd aj

, we have E[(y
(n)
0 )2] ≤ 2µ(λ+λ

∑
j∈Zd aj+1)

2(1+c)−3λ
∑
j∈Zd aj

,

where the constant c is

√
a20+a0

∑
j∈Zd\{0} aj − a0∑

j∈Zd\{0} aj
.

Proof. The proof of this lemma is an application of the rate conservation

equation to the process (y
(n)
0 )2I

(n)
0 , where I

(n)
0 is the interference given by

I
(n)
0 =

∑
j∈Zd ajy

(n)
j . For brevity of notation, we remove the superscript n in

the calculations. The average increase in the process y2
0I0 due to an arrival is
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given by

E

λ
((y0 + 1)2(I0 + 1)− y2

0I0) +
∑

j∈Zd\{0}

(y2
0(I0 + aj)− y2

0I0)


=E

λ
((y2

0 + 2y0 + 1)(I0 + 1)− y2
0I0) +

∑
j∈Zd\{0}

y2
0aj


=E

λ
y2

0 + 2y0I0 + 2y0 + I0 + 1 +
∑

j∈Zd\{0}

y2
0aj


=λ
∑
j∈Zd

ajE[y2
0] + 2λE[y0I0] + 2λµ+ λµ

∑
j∈Zd

aj + λ

≤3λ
∑
j∈Zd

ajE[y2
0] + 2λµ+ λµ

∑
j∈Zd

aj + λ. (B.8)

In the last simplification, we use the bound that y0yj ≤ 1
2
(y2

0 + y2
j ) and the

fact that E[y2
0] = E[y2

j ] for all j ∈ Bn. Similarly, the average decrease in the

process (y
(n)
0 )2I

(n)
0 due to a departure is then given by

E

R0

(
y2

0I0 − (y0 − 1)2(I0 − 1)
)

+
∑

j∈Zd\{0}

Rj(y
2
0I0 − y2

0(I0 − aj))


=E

R0

(
y2

0I0 − (y2
0 − 2y0 + 1)(I0 − 1)

)
+

∑
j∈Zd\{0}

Rjy
2
0aj


=E

R0

(
y2

0 + 2y0I0 − 2y0 − I0 + 1
) ∑
j∈Zd\{0}

Rjy
2
0aj


=E

y2
0

∑
j∈Zd

ajRj

+ 2E[R0y0I0]− 2E[R0y0]− E[R0I0] + E[R0]. (B.9)

Since the process {y(n)
i }i∈Bn is stationary, the average change due to arrivals

and departures is 0, i.e., the difference between the left hand sides of Equations
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(B.8) and (B.9) equals 0 . Further, using the simplifications that E[R0] =

λ, R0I0 = y0 and R0 ≤ 1 almost surely, we have by taking a difference of

Equations (B.8) and (B.9), that

0 ≤ 3λ
∑
j∈Zd

ajE[y2
0] + 2λµ+ λµ

∑
j∈Zd

aj + λ−E
y2

0

∑
j∈Zd

ajRj

+ 2E[R0y0I0]− 2E[R0y0]− E[R0I0] + E[R0]

 .

The above equation can be simplified by employing the result of Lemma 99 as

follows:

0
(a)

≤ 3λ
∑
j∈Zd

ajE[y2
0] + 2λµ+ λµ

∑
j∈Zd

aj − 2cE[y2
0]− 2E[y2

0] + 2µ+ λµ
∑
j∈Zd

aj,

≤ 2µ(λ+ λ
∑
j∈Zd

aj + 1)− (2(1 + c)− 3λ
∑
j∈Zd

aj)E[y2
0].

The inequality (a) follows from Lemma 99. By rewriting the last display, it is

clear that if λ < 2(1+c)
3

1∑
j∈Zd aj

, then E[y2
0] ≤ 2µ(λ+λ

∑
j∈Zd aj+1)

2(1+c)−3λ
∑
j∈Zd aj

.

The above proposition in particular gives us the following corollary.

Corollary 101. For all n > L, if λ < 2(1+c)
3

1∑
j∈Zd aj

, then supn≥L E[(y
(n)
0 )2] <

∞.

Based on discrete event simulations, we conjectured in the initial ver-

sion of this paper posted online, that the second moment is uniformly bounded
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in n for the entire stability region. This was subsequently established by [356].

See also Conjecture 30 in Section 3.3.1, and the discussions following it.

B.3 Coupling From the Past - Proofs of Theorem 19
and Proposition 21

The key idea is to use monotonicity and the backward coupling repre-

sentation. In order to implement the proof, we need some additional notation.

For any T > 0 and n ∈ N such that n > L, and any i ∈ Zd, we define

the random variables xi;T (0), y
(n)
i;T (0) and z

(n)
i:T (0). These variables represent

the number of customers in queue i at time 0 in three different dynamics

which will be coupled and driven by the same arrival and departure processes

- (Ai,Di)i∈Zd . In all of them, the subscript i refers to queue i and T refers

to the fact that the system started empty at time −T . We now describe the

three different dynamics in question:

1. xi;T (0) denotes the number of customers in queue i at time 0 in the

original infinite dynamics.

2. y
(n)
i;T (0) denotes the number of customers in queue i at time 0 for the dy-

namics restricted to the setBn(0) viewed as a torus. Hence {y(n)
i;T (0)}i∈Bn(0)

is the queue length of the process studied in Section B.1.

3. z
(n)
i;T (0) denotes the number of customers at time 0 for the dynamics

restricted set Bn, not seen as a torus. Thus for all i ∈ Bn(0)c, we have

z
(n)
i;T (0) = 0, by definition.
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The following two propositions follow immediately from monotonicity.

Proposition 102. For all T > 0, all n > L, and all i ∈ Zd, we have xi;T (0) ≥

z
(n)
i;T (0) and y

(n)
i;T (0) ≥ z

(n)
i;T (0) almost surely.

Proposition 103. For all n > L, almost surely, the following limits exist:

xi;∞(0) := lim
T→∞

xi;T (0),

y
(n)
i;∞(0) := lim

T→∞
y

(n)
i;T (0),

z
(n)
i;∞(0) := lim

T→∞
z

(n)
i;T (0).

Note that the distribution of the random variable y
(n)
0;∞ is the marginal

on coordinate 0 of the probability measure π(n), whose existence was proved

in Theorem 89 We also established in Corollary 98 that the sequence of prob-

ability measures {π(n)}n∈N is tight. Moreover, in view of Lemma 16, it suffices

to show that queue 0 is stable to conclude that the entire network is stable.

Hence for notational brevity, we will omit the queue and time index by adopt-

ing the following simplified notation for the rest of this section: xT := x0;T (0),

y
(n)
T := y

(n)
i;T (0), z

(n)
T := z

(n)
i;T (0), where T ∈ [0,∞].

Proposition 104. Almost surely, for every T ≥ 0, we have limn→∞ z
(n)
T = xT .

Proof. Notice from the construction (outlined in [338]), that for every finite

T , there exists a random subset X ⊂ Zd which is almost surely finite and such
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that the value of xT can be obtained by restricting the dynamics to the set X

in the time interval [−T, 0]. Let N be any integer such that X is contained in

Bn. Then, for all n ≥ N , xT = z
(n)
T .

Lemma 105. The sequence z
(n)
∞ is non-decreasing in n and almost surely

converges to a finite integer valued random variable denoted by z
(∞)
∞ .

Proof. Note that for all finite T , z
(n)
T is non-decreasing in n. Thus for any

n > m, we have z
(n)
T ≥ z

(m)
T , for all T . Now, taking a limit in T on both

sides, which we know exist from Proposition 103, we see that z
(n)
∞ ≥ z

(m)
∞ .

This establishes the fact that z
(n)
∞ is an non-decreasing sequence and hence

the almost sure limit limn→∞ z
(n)
∞ := z

(∞)
∞ exists. We now show the finiteness

of z
(∞)
∞ . Note that for all n and T , z

(n)
T ≤ y

(n)
T . Now, taking a limit in T ,

we see that z
(n)
∞ ≤ y

(n)
∞ . The distribution of the random variable y

(n)
∞ is the

probability measure π(n) on N. From Corollary 98, the sequence {πn} is tight.

Let π̃(n), n ∈ N, denote the distribution of z(n). Thus the sequence {π̃(n)}n∈N

is tight as well since z
(n)
∞ ≤ y

(n)
∞ almost surely. Moreover, due to monotonicity,

z
(n)
∞ converges almost surely to a random variable z

(∞)
∞ . But since the sequence

{π̃(n)}n∈N is tight, the limiting random variable z
(∞)
∞ is almost surely finite.

Lemma 106. There exists a random N ∈ N, such that for all n ≥ N , there

exists a random Tn ∈ R+, such that for all t ≥ Tn, z
(∞)
∞ = z

(n)
t .

Proof. From the previous lemma, z
(n)
∞ converges almost surely to a finite limit

as n → ∞. Since the random variables {z(n)
∞ }n∈N are integer valued, there
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exists a random N such that z
(∞)
∞ = z

(n)
∞ , ∀n ≥ N . Now, since, for each

T and n, z
(n)
T is integer valued, the existence of an almost surely finite limit

limT→∞ z
(n)
T implies that there exists a Tn, almost surely finite and such that

z
(n)
t = z

(n)
∞ for all t ≥ Tn. Now, combining the two, for every n ≥ N , we can

find a Tn such that z
(n)
t = z

(n)
∞ for all t ≥ Tn. Since N is such that for all

n ≥ N , z
(n)
∞ = z

(∞)
∞ , the lemma is proved.

Lemma 107. Let TN be the random variable defined in Lemma 106. For all

t ≥ TN , we have xt = z
(∞)
∞ .

Proof. Let m ≥ N and t ≥ TN be arbitrary. Observe that limT→∞ z
(m)
T =

z
(m)
∞ = z

(∞)
∞ , where the second equality follows from the fact that m ≥ N .

From Lemma 106, there exists an almost surely finite Tm such that for all

t ≥ Tm, we have z
(m)
t = z

(m)
∞ = z

(∞)
∞ . Let t

′ ≥ max(t, Tm). Since t
′ ≥ Tm, we

have z
(m)

t′
= z

(∞)
∞ . Basic monotonicity gives us the following two inequalities:

z
(m)
t ≥ z

(n)
t = z(∞)

∞ ,

z
(m)
t ≤ z

(m)

t′
= z(∞)

∞ .

The first inequality follows from monotonicity in space and the second from

monotonicity in time. Thus, z
(m)
t = z

(∞)
∞ . But since m ≥ N was arbitrary,

it must be the case that xt = limm→∞ z
(m)
t = z

(∞)
∞ , where the first equality

follows from Proposition 104. Thus we have established that, for all t ≥ TN ,

we have xt = z
(∞)
∞ and, in particular, x∞ = limt→∞ xt = z

(∞)
∞ is an almost

surely finite random variable.
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Corollary 108. If λ < 1∑
i∈Zd ai

, then the following interchange of limits holds

true:

lim
t→∞

lim
n→∞

z
(n)
t = lim

n→∞
lim
t→∞

z
(n)
t = x∞ = z(∞)

∞ <∞ a.s.

Corollary 109. If λ < 1∑
j∈Zd aj

, then E[x∞] ≤ λa0
1−λ(

∑
j∈Zd aj)

<∞.

Proof. From Corollary 108, x∞ = limn→∞ z
(n)
∞ . Moreover since z

(n)
∞ is non-

decreasing in n, it follows from the monotone convergence theorem that E[x∞] =

limn→∞ E[z
(n)
∞ ]. As z

(n)
∞ ≤ y

(n)
∞ and supn≥L E[y

(n)
∞ ] = λa0

1−λ(
∑
j∈Zd aj)

from Lemma

95, we get E[x∞] ≤ λa0
1−λ(

∑
j∈Zd aj)

<∞.

Now to finish the proof of Theorem 19, we need to conclude about the

mean queue length value, which we do in the following Lemma.

Lemma 110. If λ < 1∑
j∈Zd aj

, then E[x0;∞(0)] ≥ λa0
1−λ

∑
j∈Zd aj

.

Proof. We shall choose n > L arbitrary and consider the stochastic process

Ĩ(n)(t) defined in Proposition 94. We shall let Ĩ(n)(t) be stationary as λ <

1∑
j∈Zd aj

. Furthermore, notice from Theorem 89 that the truncated process

{z(n)
i (t)}i∈Bn has exponential moments. Thus, we have for all n ∈ N and all

t ∈ R, E[̃I(n)(t)] <∞. Thus, we can equate d
dt
E[̃I(n)(t)] to 0 in Proposition 94

along with the fact |Bn| ≥ |B(I)
n |, to obtain
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0 ≥ −2(1− λ
∑
j∈Zd

aj)
∑
i∈B(I)

n

ν
(n)
i + 2λ|B(I)

n | − 2
∑

i∈Bn\B(I)
n

ν
(n)
i . (B.10)

Re-arranging the inequality, we see that

1

|B(I)
n |

∑
i∈B(I)

n

ν
(n)
i ≥

λa0

1− λ
∑

j∈Zd aj
−
∑

i∈Bn\B(I)
n
ν

(n)
i

|B(I)
n |

. (B.11)

Notice that ν
(n)
i ≤ E[x0;∞(0)] which in turn thanks to Corollary 108 is upper

bounded by λa0
1−λ

∑
j∈Zd aj

. Further-more, from elementary counting arguments

we have limn→∞ |Bn \B(I)
n ||B(I)

n | = 0. Thus, we obtain for all n > L,

E[x0;∞(0)] ≥ 1

|B(I)
n |

∑
i∈B(I)

n

ν
(n)
i ≥

λa0

1− λ
∑

j∈Zd aj

(
1− |Bn \B(I)

n |
|B(I)

n |

)
. (B.12)

Taking a limit as n→∞ concludes the proof.

B.3.1 Proof of Proposition 21

From Corollaries 101, and 108, the conclusion of Proposition 21 follows.

B.4 Proof of Proposition 20 - Uniqueness of Stationary
Solution

To carry out the proof, we shall employ the following rate conservation

principle.

Lemma 111. If {qi}i∈Zd is a stationary solution to the dynamics satisfying

E[q2
0] <∞, then E[q0] = λa0

1−λ
∑
j∈Zd aj

.
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Proof. Since E[q2
0] <∞, then we can apply the same proof verbatim of Propo-

sition 93, where the stochastic process I(t) := q0(t)
∑

i∈Zd aiqi(t). Then the

conclusion of Proposition 93 and Lemma 95 follow.

We now prove Proposition 20 with the aid of certain monotonicity ar-

guments.

Proof. Let π
′

be a stationary measure on (Zd)N, with finite second moment

for the marginals. Let this distribution be different from π, the distribution

corresponding to the minimal stationary solution {xi;∞(0)}i∈Zd . We show by

elementary coupling and monotonicity arguments that π = π
′
. Let T > 0

be arbitrary. We couple the evolutions of the two systems {yi;T (·)}i∈Zd and

{xi;T (·)}i∈Zd as follows: Let {qi}i∈Zd be distributed according to π
′
, indepen-

dently of everything else. Let {yi;T (−T )}i∈Zd be such that yi;T (−T ) = qi, for all

i ∈ Zd and {xi;T (−T )}i∈Zd be empty, i.e., for all i ∈ Zd, we have xi;T (−T ) = 0.

Thus, for all i ∈ Zd, xi;T (−T ) ≤ yi;T (−T ). Monotonicity in Lemma 14 implies

that, almost surely, for all i ∈ Zd, we have xi;T (0) ≤ yi;T (0). By the defini-

tion of invariance, {yi;T (0)}i∈Zd is distributed as π
′

with E[y0;T (0)] given in

Lemma 111. From Proposition 107, we know that as T → ∞, x0;T (0) con-

verges almost surely to a random variable which has a finite first moment.

Furthermore, from the hypothesis of the proposition, we know that the almost

sure limit limT→∞ x0;T (0) also possesses finite second moment. Thus from the

dominated convergence theorem, we have that limT→∞ E[x0;T (0)] = E[x0;∞(0)],
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which is also the same as given in Lemma 111. Thus π
′

coordinate-wise dom-

inates π. But they have the same first moment. This implies that the two

probability measures are the same.
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Appendix C

Proofs from Chapter 4

C.0.1 Proof of Theorem 37

Proof. We need the following lemma first.

Lemma C.0.1. Let Y be any E-valued R.V. and g(·) : C × E→ R.

E[sup
x∈C

g(x, Y )] ≥ sup
x∈C

E[g(x, Y )].

Proof. We have

sup
x∈C

g(x, Y ) ≥ g(x, Y ) ∀x ∈ C,

and hence

E[sup
x∈C

g(x, Y )] ≥ E[g(x, Y )] ∀x ∈ C. (C.1)

Since (C.1) is valid for all x ∈ C, we can pick the supremum on the RHS, i.e.

E[sup
x∈C

g(x, Y )] ≥ sup
x∈C

E[g(x, Y )]. (C.2)
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We can now prove Theorem 37.

Rπ∗

I2
= E[ max

i∈[1,T ]
sup
j≥1
E[pi(SINRi,j

0 )|FI2 ]]

(a)
= E[E[ max

i∈[1,T ]
sup
j≥1
E[pi(SINRi,j

0 )|FI2 ]|FI1 ]]

(b)

≥ E[ max
i∈[1,T ]

sup
j≥1
E[E[pi(SINRi,j

0 )|FI2 ]|FI1 ]]

(c)
= E[ max

i∈[1,T ]
sup
j≥1
E[pi(SINRi,j

0 )|FI1 ]] = Rπ∗

I1

where (a) follows from the tower property of expectation, (b) follows from

Lemma C.0.1 and (c) follows from the tower property of expectation and the

fact that FI1 ⊆ FI2 .

C.0.2 Proof of Lemma 4.3.1

Proof. From the properties of PPP, we know that almost-surely, the distances

{rik}k≥1 are distinct i.e. satisfy rik > rik+1. Denoting Sk = Pili(r
i
k) for each k ∈

N (instead of representing it as Sik, we drop the i in this proof for simplicity),

we can write (4.3) as

ji = arg sup
j≥1
E

[
pi

(
SjHj

N i
0 +

∑
d6=j SdHd

)∣∣∣∣FI
]

(a)
= arg sup

j≥1
E

[
SjHj

N i
0 +

∑
i 6=j SiHi

∣∣∣∣FI
]
,

(C.3)
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where (a) follows from the fact that the function pi(·) is non-decreasing.

sup
j≥1
E

[
SjHj

N i
0 +

∑
d 6=j SdHd

∣∣∣∣FI
]

= sup
j≥1
E

[
E

[
SjHj

N i
0 +

∑
d6=j SdHd

∣∣∣∣σ(FI ∪ φi)

] ∣∣∣∣FI
]

≤ E

[
sup
j≥1
E

[
SjHj

N i
0 +

∑
d6=j SdHd

∣∣∣∣σ(FI ∪ φi)

] ∣∣∣∣FI
]
, (C.4)

where the inequality follows from Lemma C.0.1. Since conditioned on φi, we

have Sk deterministic and Hk conditionally i.i.d. given φi and independent of

FI , we have

sup
j≥1
E

[
SjHj

N i
0 +

∑
d 6=j SdHd

∣∣∣∣σ(FI ∪ φi)

]

= sup
j≥1
E [SjHj|σ(FI ∪ φi)]E

[
1

N i
0 +

∑
d6=j SdHd

∣∣∣∣σ(FI ∪ φi)

]

= sup
j≥1
E [SjHj|φi]E

[
1

N i
0 +

∑
d6=j SdHd

∣∣∣∣φi
]
. (C.5)

Thus j = 1 achieves the supremum in (C.5) since Sk > Sk+1 and is determin-

istic given φi. Combining this fact with (C.4), we have

sup
j≥1
E

[
SjHj

N i
0 +

∑
d6=j SdHd

∣∣∣∣FI
]
≤ E

[
S1H1

N i
0 +

∑
d≥2 SdHd

∣∣∣∣FI
]
, (C.6)

which yields that ji = 1.

C.0.3 Proof of Theorem 38

Proof. For ease of notation, we denote the path-loss function as simply l(·)

instead of l(α)(·), i.e. implicitly assume the dependence on α as l(x) = x−α.
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For each fixed α, we have from (4.2)

π∗α(0)

= arg max
i∈[1,T ]

E

[
p

(
Pil(r

i
1)H i

1∑
j≥2 Pil(r

i
j)H

i
j

)∣∣∣∣(rl1, · · · , rlk)Tl=1

]

= arg max
i∈[1,T ]

E

[
Pil(r

i
1)H i

1∑
j≥2 Pil(r

i
j)H

i
j

∣∣∣∣(rl1, · · · , rlk)Tl=1

]

= arg max
i∈[1,T ]

E

 1∑
j≥2

l(rij)H
i
j

l(ri1)Hi
1

∣∣∣∣(ri1, · · · , rik)
 . (C.7)

We now argue that for each technology i, the conditional expectation in (C.7)

can be written as A
l(ri1)

l(ri2)
− e(α)

i such that e
(α)
i

α→∞−−−→ 0 almost surely and A is

a positive constant independent of i and α. If we show this, then the lemma

can be proved as follows:

π∗α(0) = arg max
i∈[1,T ]

A
l(ri1)

l(ri2)
− e(α)

i (C.8)

(a)
= arg max

i∈[1,T ]
A
ri2
ri1
− e(α)

i

α→∞−−−→
a.s.

arg max
i∈[1,T ]

A
ri2
ri1

= arg max
i∈[1,T ]

ri2
ri1
, (C.9)

where step (a) follows from the fact that l(a)
l(b)

= l(a/b) and the fact that l(·) is

non-increasing. Since e
(α)
i converges to 0 almost-surely ∀i ∈ [1, T ], a finite set,

we have uniform convergence i.e. supi∈[1,T ] e
(α)
i

α→∞−−−→ 0 almost-surely which

gives (C.9). In the rest of the proof, we show that (C.7) can be written as

A
l(ri1)

l(ri2)
− e(α)

i .
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Expanding on the conditional expectation in (C.7) using simple algebra

to factor out the leading term, we get

E

 1∑
j≥2

l(rij)H
i
j

l(ri1)Hi
1

∣∣∣∣(ri1, .., rik)
 (b)

=
l(ri1)

l(ri2)
E
[
H i

1

H i
2

∣∣∣∣(ri1, .., rik)]−
l(ri1)

l(ri2)
E

[
H i

1

H i
2

(
Q

(α)
i

1 +Q
(α)
i

)∣∣∣∣(ri1, · · · , rik)
]
, (C.10)

where Q
(α)
i =

∑
j≥3

l(rij)H
i
j

l(ri2)Hi
2
. Step (b) follows from the fact that H i

j are i.i.d.

random-variables. Indeed (C.10) resembles (C.8) with the constant A =

E
[
Hi

2

Hi
1

]
(which is independent of i and α). It thus remains to prove that

the second term (which is the error e
(α)
i ) in (C.10) goes to 0 almost surely as

α goes to infinity.

From Campbell’s Theorem, we know that

E[Q
(α)
i |(ri1, · · · , rik), H i

2] =
E[H]

∑k
z=3 l(r

i
z)

H i
2l(r

i
2)

+

E[H]

H i
2l(r

i
2)

2πλi

∫
u≥rik

l(u)udu. (C.11)

with the notation that
∑b

z=a · = 0 if b < a. Furthermore, since l(x) = x−α, we

have 1
l(ε)

∫
u≥ε l(u)udu goes to 0 as α goes to ∞ for every ε > 0. Thus, we have

from (C.11) and the fact that for a homogeneous PPP of positive intensity λi,

rij > rij+1 a.s. ∀j ∈ N, we get

lim
α→∞

E[Q
(α)
i |(ri1, · · · , rik), H i

2] = 0 a.s. (C.12)
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Note that we needed to invoke Campbell’s theorem, since we need to

conclude about a sum of infinite random variables involved in the definition

of Q(α). Thus,

e
(α)
i =

l(ri1)

l(ri2)
E

[
H i

1

H i
2

(
Q

(α)
i

1 +Q
(α)
i

)∣∣∣∣(ri1, · · · , rik)
]

≤ l(ri1)

l(ri2)
E
[
H i

1

H i
2

E[Q
(α)
i |(ri1, · · · , rik), H i

1, H
i
2]

∣∣∣∣(ri1, · · · , rik)]
(c) α→∞−−−→ 0 a.s. (C.13)

where step (c) follows from (C.12) (through Dominated Convergence) and the

fact that H i
1 is a finite mean random variable independent of everything else.

Since e
(α)
i is positive, inequality (C.13) yields that e

(α)
i → 0 a.s.

C.0.4 Proof of Lemma 4.5.1

Proof. From the definition of f ∗i (r), we have,

f ∗i (r)dr = P[r ∈ dr|i = i∗]

=
P[{r ∈ dr} ∩ {i = i∗]}

P[i = i∗]

(a)
=
P[{r ∈ dr} ∩j 6=i {πj(rj, λj) ≤ πi(r, λj)]}

P[i = i∗]

(b)
= fi(r)

T∏
j=1,j 6=i

Fπj(πi(r, λi))
1

pi
dr, (C.14)

where pi is the probability that i = i∗ and dr is an infinitesimal element of

RL. Here (a) follows from the definition of i∗ in (4.6) and (b) follows from the

independence of the different point process and as a consequence independence

of the observation vectors rj.

248



C.0.5 Proof of Theorem 39

Proof. The performance of a policy πi(·) in (4.4) becomes:

Rπ
I = E[pi∗(SINRi∗,ji∗

0 )]

=
T∑
i=1

P[i = i∗]E[pi(SINRi,ji
0 )|i = i∗]

=
T∑
i=1

P[i = i∗]Eri [E[pi(SINRi,ji
0 )|ri, i = i∗]]

(a)
=

T∑
i=1

P[i = i∗]

∫
r∈RL

E[pi(SINRi,ji
0 )|r, i = i∗]f ∗i (r)dr

(b)
=

T∑
i=1

P[i = i∗]

∫
r∈RL

E[pi(SINRi,ji
0 )|r]f ∗i (r)dr

(c)
=

T∑
i=1

∫
r∈RL

E[pi(SINRi,ji
0 )|r]fi(r)

T∏
j=1,j 6=i

Fπj(πi(r, λi))dr.

We use the definition of f ∗i (r) to perform the averaging over ri on the event

i = i∗ in step (a). Step (b) follows from the independence of φi across i and

hence we can drop the conditioning on i = i∗. Step (c) follows from Lemma

4.5.1.
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C.0.6 Proof of Theorem 40

Proof. Consider first the case with information ri1:

cp(1; r, λ, P,N0, β)

=P

[
Ph1r

−α

N0 +
∑

j≥2 Phjr
α
j

> β
∣∣r1 = r

]
(a)
= exp

(
−µβN0P

−1rα
)
E

[
exp

(
−µβrα

∑
j≥2

r−αj hj

)]
,

(C.15)

where (a) follows follow from the fact that {hi}{i≥1} are i.i.d. exponential

random variables with mean 1
µ
. Simplifying E

[
exp

(
−µβrα

∑
j≥2 r

−α
j hj

)]
, we

get

E

[
exp

(
−µβrα

∑
j≥2

r−αj hj

)]
(b)
= (C.16)

exp

(
−2πλ

∫
u≥r

(
1− Eh[e−hµβ(u

r
)−α ]
)
udu

)
(c)
= exp

(
−2πλ

∫
u≥r

(
1− µ

µβ(u
r
)−α + µ

)
udu

)
= exp

(
−2πλ

∫
u≥r

(
1

1 + β−1(u
r
)α

)
udu

)
,

where (c) follow from the fact that {hi}{i≥1} are i.i.d. exponential random

variables with mean 1
µ
. (b) follows from the expression for the Probability

Generating Functional of an independently marked PPP and the fact that

conditioned on the distance of the nearest point to the origin of a PPP of

intensity λ as r1 , the point process on R2 \ B(0, r1) is a homogeneous PPP

with intensity λ.
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The second case with information [ri1, r
i
2] can be proven similarly:

cp(1; [r1, r2], λ, P,N0, β)

=P

[
Ph1r

−α
1

N0 + Ph2r
−α
2 +

∑
j≥3 Phjr

α
j

> β
∣∣r1, r2

]
(a)
= exp

(
−µβN0P

−1rα1
)
E
[
exp

(
−µβh2

(
r1

r2

)α) ∣∣∣∣r1, r2

]
E

[
exp

(
−µβrα1

∑
j≥3

r−αj hj

)]
.

(C.17)

The computation for E
[
exp

(
−µβrα1

∑
j≥3 r

−α
j hj

)]
follows the steps

similar to the above case and we skip it for brevity. We can compute E
[
exp

(
−µβh2

(
r1
r2

)α) ∣∣∣∣r1, r2

]
since H2 is an independent exponential random variable and hence that ex-

pectation is equal to

(
1

1+β
(
r1
r2

)α
)

.

C.0.7 Proof of Lemma 4.6.1

Proof.

Fπi(y) = P[cp(1; r, λi, Pi, N0, β) ≤ y]

= P

[∫ ∞
u=r

1

1 + β−1
(
u
r

)αudu ≥ 1

2πλi
ln

(
1

y

)]
,

where the probability is with respect to the random variable r which is Rayleigh

distributed with parameter 1√
2πλi

. In the above expression, making a change
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of variables of v = u
r
, we have

Fπi(y) = P
[
r2

∫ ∞
v=1

1

1 + β−1 (v)α
vdv ≥ 1

2πλi
ln

(
1

y

)]
= P

[
r ≥

√
ln

(
1

y

)
1

2πλi

1∫∞
v=1

1
1+β−1(v)α

vdv

]

= e
− ln( 1

y )
1
2

(∫∞
v=1

1
1+β−1(v)α

vdv
)−1

. (C.18)

C.0.8 Proof of Lemma 4.6.2

Proof.

P
[
ri2
ri1
≤ x

]
= E[E[1(ri2 ≤ xri1)|ri1]]

(a)
= E[1− e−λiπ(x2−1)(ri1)2 ]

(b)
= 1− 1

x2
, (C.19)

where (a) follows from the Strong Markov property of a stationary PPP

which states that conditioned on r1 of a PPP φ, φ|B(0,r1)c is a Poisson point

process with the same intensity as φ. The equality in (b) follows from the fact

that r2
1 of a stationary PPP of intensity λ is an exponential random variable

with mean 1
λπ

.
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C.0.9 Proof of Corollary 42

Proof. In employing Theorem 39, we need to compute E[pi(SINRi,ji
0 )|r] as

follows

E[pi(SINRi,ji
0 )|r] = P

[
Pih1l(r

i
1)

N0 +
∑

z≥2 Pihzl(r
i
z)
≥ β

∣∣∣∣ri2ri1
]

=

∫ ∞
u=0

(
cp (1; [u, ut] , λi, Pi, β) g

ri1|
ri2
ri1

(u, t)du

)
, (C.20)

where cp (1; [u, ut] , λi, Pi, β) is computed through (4.14) and the conditional

pdf g
ri1|

ri2
ri1

(u, t) is the distribution of ri1 conditioned on the ratio
ri2
ri1

= t.

g
ri1|

ri2
ri1

(u, t) =

g
ri1,

ri2
ri1

(u, t)∫∞
u=0

g
ri1,

ri2
ri1

(u, t)du

(a)
=

g
ri1,

ri2
ri1

(u, t)

fπi(t)

(b)
= 2(πλi)

2u3t4e−λπ(ut)2 , (C.21)

where (a) follows from the fact that the observation is the ratio
ri2
ri1

and hence

the marginal the pdf fπi(·), which is the derivative of Fπi(·) given in Lemma

4.6.2. We now show that (b) holds.

Let the function gr1,r1/r2(x, y) = (2πλi)
2xye−πλiy

2
denote the joint prob-

ability density function for the distance from the origin to the nearest BS and

the ratio of distances of the nearest and the second-nearest BSs distributed

as a PPP of intensity λ. Transforming this pdf through (x, y)→ (x, y
x
) yields

the joint pdf of gri1,ri2/ri1(u, v) = (2πλi)
2u3ve−λπ(uv)2 . Plugging the law Fπi(·) of

Lemma 4.6.2 into (4.8) of Theorem 39 finally completes the proof.
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C.0.10 Proof of Theorem 44

Proof. We start by rearranging (4.8) for our special case where the observations

are scalar and the performance pi(·) and association πi(·) are the same for all

technologies i and are independent of i.

Rπ
I =

T∑
i=1

∫
t≥1

E
[
p(SINRi,1

0 )

∣∣∣∣ri2ri1 = t

]
fπi(t)

∏
j 6=i

Fπj(t)dt

=
T∑
i=1

∫
t≥1

P
[
SINRi,1

0 ≥ βi

∣∣∣∣ri2ri1 = t

]
fπi(t)

∏
j 6=i

Fπj(t)dt

(a)
=

T∑
i=1

P

[
SINRi,1

0 ≥ βi,
ri2
ri1
≥ max

j 6=i

rj2
rj1

]

=
T∑
i=1

∫
t≥1

E

[
P

[
SINRi,1

0 ≥ βi,
ri2
ri1
≥ t

∣∣∣∣max
j 6=i

rj2
rj1

= t

]]
where in step (a) we used the fact that the observations from the different

technologies are independent. Now using the density function of the maximum

of T − 1 independent scalar observations each distributed according to a law

as given in Lemma 4.6.2, we can simplify the above equation to obtain

Rπ
I =


∑T

i=1

∫
x∈[0,1]

P[SINRi,1
0 ≥ βi,

ri2
ri1
≥ 1

x
]

2(T − 1)x(1− x2)T−2dx, if T ≥ 2∫
x∈[0,1]

P
[
SINRi,1

0 ≥ βi,
ri2
ri1
≥ 1

x

]
dx, if T = 1

Further notice that

= P
[
SINRi,1

0 ≥ βi,
ri2
ri1
≥ 1

x

]
= P

[
SINRi,ji

0 ≥ βi

∣∣∣∣ri2ri1 ≥ 1

x

]
P
[
ri2
ri1
≥ 1

x

]
= P

[
SINRi,1

0 ≥ βi

∣∣∣∣ri2ri1 ≥ 1

x

]
x2, (C.22)
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where (C.22) follows from Lemma 4.6.2. Now it remains to show the following

lemma, which finally proves (4.20).

Lemma C.0.2. Assume N i
0 = 0 and li(r) = r−α. For any technology i with

intensity λi,

P
[

SIRi,1
0 ≥ βi

∣∣∣∣ri2ri1 ≥ 1

x

]
=

1

1 + β
2/α
i φ(α, βi, x)

.

In the meantime, akin to the derivation from (4.9) to (4.10), we can

obtain the following average achievable rate expression:

E
[
log2

(
1 + SIRi,1

0

) ∣∣∣∣ri2ri1 ≥ 1

x

]
=

∫
t≥0

1

1 + (2t − 1)2/αφ(α, 2t − 1, x)
dt.

After manipulating this equation in a similar way, we can derive (4.21).
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C.0.11 Proof of Lemma C.0.2

Proof. We drop the subscripts and superscripts i denoting technologies for

brevity.

P

[
H1(r1)−α ≥ β

∑
j≥2

Hj(rj)
−α
∣∣∣∣r2

r1

≥ 1

x

]

= E

[
P

[
H1(r1)−α ≥ β

∑
j≥2

Hj(rj)
−α
∣∣∣∣r2

r1

≥ 1

x
, r1

]]

=

∫ ∞
u=0

P

[
H1(u)−α ≥ β

∑
j≥2

Hj(rj)
−α
∣∣∣∣r2

r1

≥ 1

x
, r1 = u

]
fr1| r2r1≥

1
x
(u)du

(a)
=

∫
u≥0

E

 ∏
x∈φi,||xi||≥u/x

1

1 + βuα||xi||−α


1

P
[
r2
r1
≥ 1

x

] ∫
v≥1/x

fr1, r2r1
(u, v)dv

(b)
=

∫
u≥0

exp

(
−2πλ

∫
w≥u/x

(
1− 1

1 + βuαw−α

)
wdw

)
1

x2
2λπue−λπ(u/x)2du

(c)
=

∫
u≥0

exp

(
−πλu2β

2
α

∫
b≥β

−2
α

x2

1

1 + b
α
2

db

)
1

x2
2λπue−λπ(u/x)2du

(d)
=

∫
u≥0

exp

(
−πλu2β

2
α

1

x2

∫
c≥β

−2
α

1

1 + x−αc
α
2

dc

)
1

x2
2λπue−λπ(u/x)2du

=
1

1 + β2/αφ(α, β, x)

where step (a) follows from the fact that {Hi} are i.i.d. exponential random

variables as in the proof of Theorem 40. Step (b) follows from Lemmas 4.6.2
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and the PGFL of a PPP. Step (c) follows by the substitution β
−1
α u2b2 = w.

Step (d) follows by the substitution x2b = c.
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Appendix D

Proofs from Chapter 5

D.1 Analysis and Proof of the GBG Algorithm in the
Sparse Regime

The following theorem is the main theoretical guarantee on the perfor-

mance of the GBG algorithm.

Theorem 112. Let ε ∈
(
0, 1

2

)
be arbitrarily set in Algorithm 2. Let η ∈

(
0, 1

2

)
be such that

(
1
2

+ η
)

(1 − ε) > 1
2
. Then there exists a constant λ0 < ∞

depending on fin(·), fout(·), d, ε and η such that for all λ > λ0, Algorithm 3

will solve weak-recovery.

To prove the main result, we will need an additional classification of

the cells of Bn as either T-Good or T-Bad. The nomenclature stands for

Truth-Good.

Definition 113. A cell Qz is T-Good if -

1.

∣∣∣∣φ ∩Qz

∣∣∣∣ ≥ max
(
λ
(
R
4

)d 1
d
(1− ε), 1

)
; and

2. For all i, j ∈ N such that Xi, Xj ∈ QL1(z)∩φ, Pairwise-Classify(i, j, φ,G)

returns 1Zi=Zj − 1Zi 6=Zj , i.e. the ground truth.
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If a cell is not T-Good, we call it T-Bad.

A cell is T-Good, if for any pair nodes which either lie in the cell under

consideration or the neighboring cells, the output of the pairwise estimation

matches the ground-truth. Of-course since the ground truth is unknown, one

cannot test whether a cell is T-Good or not. We introduce the notion of a

T-Good cell to aid in the analysis.

The proof of Theorem 112 can be split into three parts. The first

part is composed of combinatorial arguments leveraging the definitions of A-

Good and T-Good cells. These combinatorial lemmas will conclude that it

suffices to ensure that there exists a ‘giant’ T-Good connected component in

the data (φn, Gn). The next is a local analysis wherein we conclude that the

probability a cell is T-Good can be made arbitrarily large by choosing the

constant λ sufficiently high. The final step is to couple the process of T-Good

cells to that of dependent site percolation on Zd to conclude that if a single cell

is T-Good with sufficiently high probability, then there exists a giant T-Good

component comprising of many nodes.

D.1.1 Combinatorial Analysis

The main result in this sub-section we want to establish is the following

statement. If we establish this, then the performance of our algorithm will

follow from a study of the properties of the random graph G.

Proposition 114. If there exists a connected component of T-Good cells in

the data (φn, Gn) which contains a fraction of nodes of Gn strictly larger than
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a half with probability 1 − on(1), then the output returned by Algorithm 3

solves the weak-recovery problem as given in Definition 46.

The proof of the above proposition is based on the following two ele-

mentary combinatorial propositions.

Proposition 115. If a cell Qz is T-Good, then it is also A-Good. In par-

ticular, every connected T-Good component is contained in some connected

A-Good component.

Proof. It suffices to prove that for any k ∈ N,
∏k

i=1(1Zi=Zi−1
− 1Zi 6=Zi−1

) = 1,

where Xk := X0 and Zk := Z0, i.e. a cycle. We can see this by contradiction.

Assume
∏k

i=1(1Zi=Zi−1
− 1Zi 6=Zi−1

) = −1. This implies that an odd number

of −1′s exists in the product. This can never be, since this would imply that

Z0 must be both simultaneously +1 and −1. Hence, such a product is always

+1.

The following proposition is the basis of Line 5 in the GBG in Algorithm

3. For every z ∈ Zd, denote by A(z) the maximal Zd connected set containing

z such that for all u ∈ A(z), cell u is A-Good.

Proposition 116. For every z ∈ Zd such that cell z is A-Good, there exists

a unique partition of φA(z) := φ
(+)
A(z)

∐
φ

(−)
A(z) such that for all z, z

′ ∈ A(z) with

||z − z′||∞ ≤ 1 and all Xi ∈ φ ∩Qz and Xj 6= Xi ∈ φ ∩Qz′ , we have

• If Xi ∈ φ
(+)
z and Xj ∈ φ

(−)
z or , if Xi ∈ φ

(−)
z and Xj ∈ φ

(+)
z , then

Pairwise-Classify(i, j, G) will return −1.
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• If Xi, Xj ∈ φ(+)
z or if Xi, Xj ∈ φ(−)

z , then Pairwise-Classify(i, j, G) returns

+1.

Moreover, the partition produced in Line 8 of our Algorithm 3 coincides with

this partition.

This Proposition shows that all nodes inside A-Good connected com-

ponents can be partitioned into two sets uniquely, such that the T-Good sub-

component inside the A-Good component will be partitioned according to the

underlying ground truth. Moreover, by following any arbitrary enumeration

of the nodes of G as done in Line 5 of Algorithm 3, we can now build this

unique partition of nodes of the A-Good component. This is what allows our

algorithm to be fast. The proof of this Proposition is quite standard and is

defered to the Appendix in ??. We are now in a position to conclude the proof

of Proposition 114.

Proof. Proof of Proposition 114

Proposition 116 justifies Line 5 of Algorithm 3. First note that since

every A-Good cell is non-empty of nodes of G, the arbitrary sequence in Line

5 of Algorithm 116 will enumerate all the nodes in each connected component.

In other words, the only estimates that will be set in Line 13 of Algorithm

3 are those nodes that fall in the A-Bad cells. Moreover, the partition of

the A-Good connected components in Line 8 will coincide with the partition
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referred to in Proposition 116. From the definition of T-Good components,

the unique partition referred to in Proposition 116 will be such that the T-

Good component will be partitioned according to the ground truth. Hence, if

there exists a T-Good connected component that has a fraction α > 1
2

of the

nodes of Gn, Algorithm 3 will partition this set of nodes in accordance to the

ground truth. Thus, the achieved overlap will be at-least 2α − 1 > 0. This

follows since the mis-classification of all nodes apart from this ‘giant’ connected

T-Good component cannot diminish the overlap below 2α − 1 which is still

positive.

D.1.2 Local Analysis

The main goal of this subsection is to show that the probability a cell

is T-Good can be made arbitrarily high by taking λ sufficiently high. In

order to present the arguments, we recall the definition of a generalized Palm

distribution. For any k ∈ N and x1, · · · , xk ∈ Rd, we denote by Px1,···xk to be

the Palm distribution of φ at x1, · · ·xk. This measure is the one induced by

first sampling φ and G and then placing additional points at x1, · · · , xk and

equipping them with independent community labels and edges. More precisely,

we give these nodes i.i.d. uniform community labels Z−1, · · ·Z−k ∈ {−1, 1}k.

Conditionally on all the labels and φ, we draw an edge between any i, j ∈

{−k,−(k− 1), · · · } such that at-least one of i or j belong to {−k, · · · ,−1} as

before, i.e. with probability fin(||Xi − Xj||) if the two nodes have the same

community labels or with fout(||Xi − Xj||) if the two nodes have opposite
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community labels independently of other edges.

Proposition 117. For any two x 6= y ∈ Rd such that ||x − y||2 < 2R, then

conditionally on the labels of the points at x and y denoted as Zx and Zy

respectively, we have for all k ∈ N

• If Zx = Zy, then Px,y[E(R)
G (x, y) = k] = e−λMin(x,y)(λMin(x,y))k

k!
, i.e. is

distributed as a Poisson random variable with mean λMin(x, y).

• If Zx 6= Zy, then Px,y[E(R)
G (x, y) = k] = e−λMout(x,y)(λMout(x,y))k

k!
, i.e. is

distributed as a Poisson random variable with mean λMout(x, y).

Proof. Slivnyak’s theorem for independently marked PPP gives that condi-

tionally on k points at locations x1, · · ·xk ∈ Rd, the marked point process

φ̄ \ {x1, · · · , xk} has the same distribution as the original marked point pro-

cess, i.e. is a PPP of intensity λ with independent marks. The independent

thinning property of the PPP states that if any point at x ∈ φ is retained

with probability p(x) and deleted with probability 1 − p(x), independently

of everything else, then the set of points not deleted forms a (potentially in-

homogeneous) PPP.

Notice that the event that any k ∈ φ \ {x, y} such that k ∈ B(x,R) ∩

B(y,R) has an edge to both points x and y in G only depends on the location k

and the community labels of points at locations k, x and y and is independent

of everything else. Now, since the community labels are i.i.d. and independent
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of φ, the independent thinning property of PPP gives that the distribution of

E
(R)
G (x, y) is a Poisson random variable.

It remains to notice that the means are precisely λMin(x, y) and λMout(x, y).

This follows from the Campbell - Mecke’s theorem, that for any F (·) : Rd →

R+, we have for independently marked process is

Ex,yφ

 ∑
z∈φ\{x,y}

F (z)

 = λ

∫
z∈Rd

Ex,y,zφ [F (z)]dz. (D.1)

Now, setting F (z) := 1z has an edge to x and y1||z−x||2<R1||z−y||2<R will con-

clude the statement on the means.

Proposition 118. For all connection functions fin(·) and fout(·) satisfying

the hypothesis of Theorem 54, there exists a constant c > 0 such that for all

x 6= y ∈ Rd satisfying ||x− y||2 ≤ (3/4)R, we have

Px,y[(x, y) is misclassified by Algorithm 1] ≤ e−cλ, (D.2)

where the constant c satisfies

c ≥ inf
x,y∈Rd:||x−y||2≤3R/4

(1Mout(x,y)>0Mout(x, y) + 1Mout(x,y)=0Min(x, y))h

(
Min(x, y)−Mout(x, y)

2Min(x, y)

)
,

(D.3)

where h(t) := (1 + t) log(1 + t) − t, for all t ∈ R+. In particular, c > 0 is

strictly positive.
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Proof. From Proposition 117, we know that E
(R)
G (x, y) is either a Poisson ran-

dom variable with mean λMin(x, y) if the two nodes have the same community

label or is a Poisson random variable of mean λMout(x, y) if the two nodes have

opposite community labels. Thus, the probability of mis-classification is then

Px,y[points at x and y are mis-classified ] =

1

2
P
[
X ≥ λ

Min(x, y) +Mout(x, y)

2

]
+

1

2
P
[
Y ≤ λ

Min(x, y) +Mout(x, y)

2

]
,

(D.4)

where X is a Poisson random variable of mean λMout(x, y) and Y is a Poisson

random variable of mean λMin(x, y). The above interpretation is a probabilis-

tic restatement of Algorithm 1. The coefficient 1/2 denotes the case that the

points at x and y could be in the same community or in opposite communities.

Thus, by a basic application of Chernoff’s bound, we have

Px,y[points at x and y are mis-classified ] ≤
1

2
e
−λMout(x,y)h

(
Min(x,y)−Mout(x,y)

2Min(x,y)

)
+

1

2
e
−λMin(x,y)h

(
Min(x,y)−Mout(x,y)

2Min(x,y)

)
, (D.5)

where h(·) is defined in the statement of the proposition.

Now under the assumptions on the connection functions fin(·) and

fout(·), for all r ∈ [r̃, R], fin(r) > fout(r), we have that,

infx,y∈Rd:||x−y||2≤(3/4)RMin(x, y)−Mout(x, y) > 0. Moreover, since Min(x, y) and

Mout(x, y) are non-negative, Min(x, y)−Mout(x, y) > 0 implies automatically

that Min(x, y) > 0 for all x, y ∈ Rd such that ||x − y||2 ≤ (3R/4). Hence, it
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follows that

sup
x,y∈Rd:||x−y||2≤(3/4)R

Px,y[points at x and y are mis-classified ] ≤ e−cλ, (D.6)

where c is a strictly positive constant as given in the statement of the propo-

sition.

Lemma 119. For all z ∈ Zd,

P[Cell z is T-Good in graph G] ≥ 1− e−λ(R/4)d 1
d
h(ε) − λ2(3R/4)d

1

d
e−cλ,

(D.7)

where the constant c and function h(·) are defined in Proposition 118.

Proof. This follows from a basic union bound. We will prove an upper bound

to a cell being T-Bad. A cell is T-Bad if either the number of points is

smaller than λ(R/4d1/d)d(1− ε) or there exists two points Xi and Xj in the 1

thickening of the cell {z} such that when Algorithm 1 is run on input (i, j, G),

the returned answer is different from the truth.

From a simple Chernoff bound, the probability that a cell has fewer than

λ(R/4d1/d)d(1− ε) is at-most e−λ(R/4d1/d)dh(ε), where h(ε) is strictly positive for

all ε > 0.

We bound the probability that there exist two nodes that Algorithm 1

mis-classifies by the first moment method. We use the fact that if X ≥ 0 is

a N valued random variable, then P[X > 0] ≤ E[X]. Hence, the probability
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that there exists a pair of points of φ that are mis-classified is bounded by the

average number of pairs of points that are misclassified. Thus, for each cell z,

we compute

E[
∑
i,j∈N

1Xi,Xj∈L1(z)1 Algorithm 1 mis-classifies i and j]. (D.8)

From the Moment-Measure expansion and the Campbell-Mecke theo-

rem for an independently marked PPP ([119]), we obtain

E[
∑
i,j∈N

1Xi,Xj∈L1(z)1 Algorithm 1 mis-classifies i and j]

= λ2

∫
x∈QL1(z)

∫
y∈QL1(z)

Px,y[points at x and y are mis-classified ]dxdy

≤ λ2

(
3R

4

)d
1

d
e−cλ. (D.9)

The last inequality follows directly from Proposition 118. Therefore, by a

simple union bound, we see that

P[ Cell z is T-Bad] ≤ e−λ(R/4d1/d)dh(ε) + λ2

(
3R

4

)d
1

d
e−cλ. (D.10)

The proposition is proved by taking complements.

Thus, we immediately have the following corollary which is what we

will use in the sequel. The key fact to be used here is that the tessellation size

R does not depend on λ and only depends on the connection functions fin(·)

and fout(·).

267



Corollary 120. For every p ∈ (0, 1), and every fin(·) and fout(·) satisfying

the hypothesis of Theorem 54, there exists a λ
′

such that for all λ > λ
′
, and

all z ∈ Zd, P[Cell z is T-Good] ≥ p.

Proof. It suffices to notice that for each fixed fin(·), fout(·) and d, we have

lim
λ→∞

p(λ) ≥ lim
λ→∞

1− e−λ(R/4)d 1
d
h(ε) − (λ2 + λ)(3R/4)d

1

d
e−cλ = 1, (D.11)

where c is given in Proposition 118.

D.1.3 Global Analysis

In this section, we present the central tool required to analyze about

the ‘giant’ connected T-Good component in the graph Gn. To do so, we exploit

a coupling between the T-Good cells in the graph G and a certain dependent

site percolation process on Zd.

Denote by (Yz)z∈Zd to be the random 0 − 1 field on Zd where Yz :=

1Cell z is T-Good in G. From the construction of the field, notice that the random

field (Yz)z∈Zd is only mildly dependent. Indeed, given any two z, z
′ ∈ Zd,

such that ||z−z′ ||1 ≥ 12d1/d, we have that Yz and Yz′ are independent random

variables. This follows from the fact that we only look upto Euclidean distance

of at-most 2R from any point inside a cell z to determine whether a cell is T-

Good or T-Bad. Since, in an independently marked PPP, events corresponding

to disjoint sets of Rd are independent, the claim follows.
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We will now set some notation that will be useful in studying the process

(Yz)z∈Zd . For any z ∈ Zd, cell z is open in Zd if Yz = 1. Similarly, any edge

connecting z and z
′

is said to be open if both its end points are open. For any

z ∈ Zd, we denote by C(z) to be the maximal connected random subset of Zd

containing z such that all z
′ ∈ C(z) satisfies Yz′ = 1. The main proposition

we want to establish in this section is the following.

Proposition 121. For every η ∈
(
0, 1

2

)
, there exists λ0(η, ε) <∞ (where ε is

set in Algorithm 2) chosen sufficiently high (as a function of fin(r), fout(r), r ∈

[0, R] and d), such that for all λ > λ0(η, ε) and all j ∈ Zd

lim inf
n→∞

1

(2n)d

∑
i∈Zd:||i−j||∞≤n

1i∈C(j) ≥
1

2
+ η, (D.12)

P almost-surely on the event that {|C(j)| = ∞}. Moreover, for λ > λ0(η, ε),

and all j ∈ Zd, P[|C(j)| =∞] ≥ 1
2

+ η and P[∃j ∈ Zd : |C(j)| =∞] = 1.

The key insight out of the proposition we want is to ensure that by tak-

ing λ sufficiently high, there exists an infinite open component in the process

(Yz)z∈Zd , i.e. there exists z ∈ Zd such that |C(z)| = ∞. Moreover, we want

to show that this infinite component contains more than half of the sites of

Zd. The reason this does not immediately follow from Corollary 120 is that

we have not yet established that the infinite open component in (Yz)z∈Zd if it

exists is unique. However [242] provides a clean ‘black-box’ methodology to

establish this and our proposition can be viewed as a direct corollary of Theo-

rem 1 in [242]. We will first dominate the process (Yz)z∈Zd by an independent
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percolation process which is known to have a unique infinite component and

then leverage this domination to conclude the proposition.

Proof. Notice that the process (Yz)z∈Zd isM := d12d1/de dependent. Moreover,

thanks to Proposition 118, for every z ∈ Zd,

P[Yz = 1|σ(Yu : u ∈ Zd, ||u− z||∞ > M)] ≥ p(λ), P a.s. , (D.13)

where p(λ)→ 1 as λ→∞.

Thus, from Theorem 1 in [242], the law of (Yz)z∈Zd stochastically dom-

inates that of i.i.d. Bernoulli p̃(λ) random variables where p̃(λ) converges to

1 as p(λ) converges to 1. More precisely, Theorem 1 from [242] gives the ex-

istence of a probability space (Ω
′
,F
′
,P′) containing two sequences of {0, 1}

valued random variables (Y
′
z )z∈Zd and (Ỹ

′
z )z∈Zd such that

• The distribution of (Y
′
z )z∈Zd is the same as that of (Yz)z∈Zd .

• For all z ∈ Zd, Y ′z ≥ Ỹ
′
z , P′ almost-surely.

• P′ [Ỹ ′z = 1|σ(Ỹ
′
u : u ∈ Zd \ {z})] = p̃(λ), P′ almost-surely. In other words,

(Ỹ
′
z )z∈Zd is an i.i.d. sequence of Bernoulli random variables with success

probability p̃(λ).

• p̃(λ) converges to 1 as p(λ) converges to 1.

Denote by C
′
(0) and C̃

′
(0) the cluster at the origin of the process

(Y
′
z )z∈Zd and (Ỹ

′
z )z∈Zd respectively. Denote by θd(λ) := P′ [|C̃ ′(0)| =∞]. From
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a direct application of Peirl’s argument ([83], Chapter 1), it is also well know

that θd(λ) → 1 as p̃(λ) → 1. Thanks to Line 4 above, we have θd(λ) → 1 as

p(λ)→ 1. From Corollary 120, this can be rephrased as limλ→∞ θd(λ) = 1.

The stochastic domination in Line 2 above yields

1

(2n)d

∑
i∈Zd:||i−j||∞≤n

1i∈C′ (j) ≥
1

(2n)d

∑
i∈Zd:||i−j||∞≤n

1i∈C̃′ (j) P
′

a.s. (D.14)

On the event that |C̃′(j)| =∞, we have

1

(2n)d

∑
i∈Zd:||i−j||∞≤n

1i∈C′ (j) ≥
1

(2n)d

∑
i∈Zd:||i−j||∞≤n

1|C̃′ (i)|=∞ P
′

a.s. (D.15)

This follows from the well known fact that in an independent site percolation

process that the infinite component if it exists is unique. In other-words, for all

i, j ∈ Zd, |C̃′(i)| =∞ and |C̃′(j)| =∞ implies C̃
′
(i) = C̃

′
(j), P′ almost-surely.

Now, taking a limit on both sides, we get that

lim inf
n→∞

1

(2n)d

∑
i∈Zd:||i−j||∞≤n

1i∈C′ (j) ≥ lim inf
n→∞

1

(2n)d

∑
i∈Zd:||i−j||∞≤n

1|C̃′ (i)|=∞ P
′

a.s.

(D.16)

From Birkhoff’s ergodic theorem, it is well known that for all j ∈ Zd ,

lim
n→∞

1

(2n)d

∑
i∈Zd:||i−j||∞≤n

1|C̃′ (i)|=∞ = θd(λ) P′ a.s. (D.17)

But since limλ→∞ θd(λ) = 1, for every η and ε, we can take λ0(η, ε)

sufficiently large so that p(λ) is sufficiently large which in turn indicates p̃(λ)

is sufficiently large so that θd(λ) ≥ 1
2

+ η. The proof is concluded by observing

that (Y
′
z )z∈Zd

(d)
= (Yz)z∈Zd .
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D.1.4 Concluding that Weak-Recovery is Solvable

The following proposition along with Proposition 114 will conclude the

proof of Theorem 112.

Proposition 122. Let ε ∈
(
0, 1

2

)
be set in Algorithm 2. For all η ∈

(
0, 1

2

)
such

that (1− ε)
(

1
2

+ η
)
> 1

2
, for all λ ≥ λ0(ε, η) where λ0(ε, η) is from Proposition

121, the fraction of nodes of Gn that lie in the largest T-Good component,

denoted by αn ∈ [0, 1] is such that lim infn→∞ αn >
1
2
, P almost-surely.

Proof. Observe that the definition of a cell being A-Good or A-Bad is spatially

‘local’. More precisely, for all z ∈ Zd such that z + B(0, 2R) ∈ Bn, the event

that cell z being A-Good in Gn is the same as cell being A-Good in G. We

call cells z ∈ Zd such that z + B(0, 2R) ∈ Bn internal to Bn. Observe that

all z ∈ Zd is eventually internal to Bn for all n large enough. Moreover, since

each cell is of side R/(4d1/d), Bn has at-most d(4n1/d/Rd1/d)de cells out-of

which at-least b(4n1/d/Rd1/d)dc−d8dn1/de cells are ‘internal’ to Bn. Thus, the

fraction of cells in Bn that are internal to Bn is 1− on(1).

From Proposition 121, we know that P[|C(0)| =∞] ≥ 1
2

+η and P[∃z ∈

Zd : |C(z)| = ∞] = 1. Moreover on the event {|C(z)| = ∞}, we know from

Proposition 121 that

lim inf
n→∞

1

(2n)d

∑
i∈Zd:||i−z||∞≤n

1i∈C(z) ≥
1

2
+ η P a.s. (D.18)

However, from an elementary counting argument, we conclude that

lim inf
n→∞

1

(2n)d

∑
i∈Zd:||i||∞≤n

1i∈C(z) ≥
1

2
+ η P a.s. (D.19)

272



In other words, the reference point does not matter when considering the limit,

which can be seen easily by the following in Equation (D.20)

.

1

(2(n+ z))d

∑
i∈Zd:||i−z||∞≤n

1i∈C(z) ≤
1

(2n)d

∑
i∈Zd:||i−z||∞≤n

1i∈C(z)

≤ 1

(2(n+ z))d

(∑
i∈Zd

1||i−z||∞≥n1||i||∞≤z+n + 1||i−z||∞≤n1i∈C(z)

)
.

But since for every fixed z ∈ Zd,

1

(2(n+ z))d

(∑
i∈Zd

1||i−z||∞≥n1||i||∞≤z+n + 1||i−z||∞≤n1i∈C(z)

)
−

1

(2(n+ z))d

∑
i∈Zd:||i−z||∞≤n

1i∈C(z) = O
(
n1−d) ,

it follows that for all z ∈ Zd

lim inf
n→∞

1

(2n)d

∑
i∈Zd:||i−z||∞≤n

1i∈C(z) = lim inf
n→∞

1

(2n)d

∑
i∈Zd:||i||∞≤n

1i∈C(z). (D.20)

Let z ∈ Zd be arbitrary and condition on the event {|C(z)| =∞}. On

this event, Equation (D.20) and Proposition 121 along with the fact that the

fraction of cells in Bn that are internal is 1 − on(1) give that the fraction of

internal cells in Bn in the connected T-Good component of cell z (i.e. in C(z))

is 1
2

+η−on(1). Since there are at-least λ(R/4)d(1/d)(1−ε) nodes of G in each

T-Good cell, the number of nodes of Gn in this T-Good connected component

is at-least (b(4n1/d/R)dc−d8dn1/de)
(

1
2

+ η
)
λ(R/4)d(1−ε) > 1

2
(b(4n1/d/R)dc−

d8dn1/de)λ(R/4)d since we assumed that (1− ε)
(

1
2

+ η
)
> 1

2
. Moreover, from
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elementary Chernoff and Borell Cantelli arguments, we get that for every fixed

ε
′
> 0, there exists a random nε′ such that for all n ≥ nε′ , the number of nodes

in Gn is less than or equal to d(4n1/d/R)deλ(R/4)d(1 + ε
′
) almost-surely. Now,

fix an ε
′
> 0, such that there exists a γ > 0 satisfying (1/2+η)(1−ε)

(1+ε′ )
= 1

2
+ γ.

Thus, for n larger than nε′ , the fraction of nodes in Gn lying the T-Good

component of cell z is αn, where

αn ≥
(b(4n1/d/R)dc − d8dn1/de)

(
1
2

+ η
)
λ(R/4)d(1− ε)

d(4n1/d/R)deλ(R/4)d(1 + ε′)
≥ 1

2
+ γ − on(1)

(D.21)

almost-surely, i.e., limn→∞ P
[
αn >

1
2

∣∣∣∣|C(z)| =∞
]

= 1. But since P[∃z ∈ Zd :

|C(z)| =∞] = 1, we can drop the conditioning on the event {|C(z)| =∞} and

conclude that with probability 1, a fraction of nodes of Gn strictly larger than

half lie in a connected T-Good component.

D.1.5 Proof of Proposition 55

From Proposition 122, we know that for every ε ∈ (0, 1) and η ∈ (0, 1
2
]),

there exists λ0(ε, η) < ∞, such that for all λ > λ0(ε, η), the GBG algorithm

achieves an overlap of (1
2

+ η)(1 − ε). The proof is concluded by noticing

that for any δ ∈ (1
2
, 1), we can choose ε ∈ (0, 1) and η ∈ (1

2
, 1) such that

(1
2

+ η)(1− ε) > δ.
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D.2 Identifiability of the Partition and Proof of Theo-
rem 56

The key technical tool is the ergodicity of the PPP which is summarized

in the following lemma. We need to set some notation that are needed to state

the lemma. Denote by MΞ(Rd) the set of all ‘marked’ point processes on Rd

where each point is assigned a ‘mark’ from the measure space Ξ, with its

associated sigma-algebra. The set MΞ(Rd) is a Polish space, has a natural

topology and hence an associated sigma-algebra (see [136]). Denote by θ :

Rd ×MΞ(Rd) → MΞ(Rd) the ‘shift’ operator which is a measurable function

where θ(x, ψ) retains the same marks but translates all points of ψ by a vector

x.

Lemma 123. Let Cn ⊂ Rd be a sequence of Lp, p ∈ [1,∞] balls centered at

the origin with radius going to infinity as n→∞. Let f : MΞ(Rd)→ R+ be a

measurable function such that E0
φ[f ] <∞. Then, the following limit exists :

lim
n→∞

∑
i∈N 1Xi∈Cnf ◦ θ(Xi, G)∑

i∈N 1Xi∈Cn
= E0[f ] P a.s. . (D.22)

We now prove Theorem 56.

Proof. First if g(·) 6= fin(·)+fout(·)
2

Lebesgue almost everywhere, then G and

Hλ,g(·),d are mutually singular and this can be seen through the following

elementary argument. Fix some L < ∞ such that
∫
x∈Rd:||x||≤L g(||x||)dx 6=∫

x∈Rd:||x||≤L((fin(x) + fout(||x||))/2)dx are both finite. Such a L exists since
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g(·) 6= fin(·)+fout(·)
2

. Now, we apply the ergodic theorem, where every node

i ∈ N of φ is equipped with a mark Ξi ∈ N, which denotes the number of

graph neighbors of node i at a distance of at-most L from Xi, i.e. Ξi = |{j ∈

N \ {i}i ∼G j, ||Xi −Xj|| ≤ L}|. Thus, the Ergodic theorem implies that the

measure induced by G will be concentrated on the set{
g ∈MG(Rd) : lim

n→∞

∑
i,j∈N 1||Xi||≤n,||Xi−Xj ||≤L1i∼gj∑

i,j∈N 1||Xi||≤n,||Xi−Xj ||≤L

=

∫
x∈Rd:||x||≤L

(fin(x) + fout(||x||))/2dx
}
,

while the measure induced by Hλ,g(·),d will be concentrated on the set{
g ∈MG(Rd) : lim

n→∞

∑
i,j∈N 1||Xi||≤n,||Xi−Xj ||≤L1i∼gj∑

i,j∈N 1||Xi||≤n,||Xi−Xj ||≤L

=

∫
x∈Rd:||x||≤L

g(||x||)dx
}
.

Thus, the only case to consider is the one where g(·) = (fin(·)+fout(·)/2

Lebesgue almost-everywhere. From linearity of expectation, the average degree

of any node i ∈ N in both graphs G and H
(λ,

fin(·)+fout(·)
2

,d)
is the same and

equal to (λ/2)
∫
x∈Rd(fin(||x||)+fout(||x||))dx and thus empirical average of the

degree does not help. However, we see that the triangle profiles differ in the

two models which we leverage to prove the Theorem.

For ease of notation, we denote by H := Hλ,(fin(·)+fout(·))/2,d. Define

∆ = E0

[ ∑
x 6=y 6=0

h(x, y)1((0, x) ∈ E, (0, y) ∈ E, (x, y) ∈ E)

]
.
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Denote by ∆G and ∆H the value of the above expression if the underlying

graphs were G and H respectively. From the moment measure expansion of

PPPs [119], we get that

∆G =

∫
x∈Rd

∫
y∈Rd

h(x, y)(fin(||x−y||)
(
fin(||x||)fin(||y||) + fout(||x||)fout(||y||)

4

)
+ fout(||x− y||)

(
fin(||x||)fout(||y||) + fout(||x||)fin(||y||)

4

)
)λ2dxdy,

and

∆H =

∫
x∈Rd

∫
y∈Rd

h(x, y)

(
fin(||x||) + fout(||x||)

2

)(
fin(||y||) + fout(||y||)

2

)
(
fin(||x− y||) + fout(||x− y||)

2

)
λ2dxdy.

Now observe that

∆G−∆H =

∫
x∈Rd

∫
y∈Rd

h(x, y)
1

2
(fin(||x||)− fout(||x||)) (fin(||y||)− fout(||y||))

(fin(||x− y||)− fout(||x− y||))λ2dxdy.

From the fact that fin(r) ≥ fout(r) and fin(r) is not equal to fout(r) Lebesgue

almost everywhere, there exists a positive bounded function h(x, y) such that

0 ≤ ∆H < ∆G < ∞. Choose one such test function h(·, ·), for ex. h(x, y) =

1||x||≤R1||y||≤R1fin(||x||)>fout(||x||)1fin(||y||)>fout(||y||)1fin(||x−y||)>fout(||x−y||) and consider

the following estimator:
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Algorithm 8 Detect-Partitions

Given the data, i.e. locations of nodes and the graph, pick a L large enough
and compute

∆(L) :=

∑
i∈N 1(|Xi| ≤ L)h̃(Xi)∑

i∈N 1(|Xi| ≤ L)
,

where h̃(Xi) =
∑

j,k∈N,j 6=k 6=i h(Xi −Xj, Xi −Xk)1(i ∼G j, i ∼G k, j ∼G k).

From ergodicity, we know that limL→∞∆(L) = ∆G, P almost-surely

if the data is the block model graph or limL→∞∆(L) = ∆H P almost surely

if the graph is drawn according to the null model. We can apply the ergodic

theorem since a spatial random graph is a marked point process (as described in

Section 5.2.1). Thus, the measures induced by (φ,G) and (φ,H
λ,
fin(·)+fout(·)

2
,d

)

are mutually singular. Moreover, the above algorithm when tested on the

finite data (Gn, φn) runs in time proportional to λn with the multiplicative

constants depending on the connection functions fin(·) and fout(·) with success

probability 1 − on(1) with the on(1) term depending on the function h(·, ·)

chosen.

We investigated the singularity of measures in order to understand the

question of distinguishability of the planted partition model. This is a hypoth-

esis testing problem of whether the data (graph and spatial locations) is drawn

from the distribution of G or from the distribution of Hλ,g(·),d with a proba-

bility of success exceeding a half given a uniform prior over the models. This
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problem is in some sense easier than Community Detection, since this asks for

asserting whether a partition exists or not, which intuitively should be simpler

than finding the partition. Indeed, we show this in our model by proving that

the distinguishability problem is trivially solvable while community detection

undergoes a phase transition and is solvable only under certain regimes. In

the general sparse SBM however, the equivalence between distinguishability

and community detection is only conjectured and not yet proven ([142],[62]).

D.3 The Exact-Recovery Problem

In this section, we provide a lower bound for the exact-recovery problem

as stated in Definition 47. Recall that for the exact-recovery case, we equipped

the set Bn with the torridal metric rather than the usual Euclidean metric.

This is done mainly to simplify the presentation of the results. Nevertheless,

one could establish identical results to the case when the set Bn equipped with

the Euclidean metric albeit with significantly more heavier notation to handle

the ‘edge effects’. We note that for any x := (x1, · · · , xd), y := (y1, · · · , yd) ∈

Bn, the torroidal distance is given by ||x − y||Tn = ||(min(|x1 − y1|, n1/d −

|x1 − y1|), · · · ,min(|xd − yd|, n1/d − |xd − yd|))||, where ||.|| is the Euclidean

norm on Rd. The key result we establish about this model is a lower bound

or a necessary condition to perform Exact-Recovery. We then observe that

the GBG algorithm presented earlier achieves Exact-Recovery, if the intensity

λ is sufficiently high, thereby establishing a phase-transition. We establish

the lower bound by exploiting recent advances in the understanding of error
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exponents for the probability of error in distinguishing between two Poisson

random vectors developed in [20]. Furthermore, we also conjecture this nec-

essary condition to also be sufficient. The exact proof of this conjecture is

left open in this paper. Another important note is that since we view the set

Bn as a torus in this section, the notion of Palm probability needs more care

in stating. In the most general sense, we must employ the moment measure

expansions of a Poisson Point Process on compact topological groups to dis-

cuss the Palm measure on the torus. We provide a justification of the moment

measure equations we use in this section in the Appendix D.5.

D.3.1 Lower Bound for Exact-Recovery

In this section, we prove Theorem 58. To do so, we first give a general

result in Proposition 124 using the Genie aided argument introduced in [18],

and then subsequently prove an explicit formula for the lower bound stated

in Theorem 58 using the large deviation results of [20] for hypothesis testing

between Poisson random vectors. To state the result, we define a notion of

Flip-Bad for nodes. Roughly speaking, we say a node i ∈ [1, Nn] is Flip-

Bad in Gn, if on flipping the community label of node i from Zi to −Zi, the

likelihood of the observed data (Gn, φn) increases. More formally, given data
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(φn, Gn, (Zi)
Nn
i=1), the likelihood is defined as

L(φn, Gn, (Zi)
Nn
i=1) :=

e−λn(λn)Nn

Nn!

(
1

2n

)Nn ∏
1≤i<j≤Nn:Zi=Zj ,i∼j

f
(n)
in (||Xi −Xj)∏

1≤i<j≤Nn:Zi 6=Zji∼j

f
(n)
out (||Xi −Xj||)

∏
1≤i<j≤Nn,Zi=Zj ,i�j

(1− f (n)
in (||Xi −Xj||))∏

1≤i<j≤Nn,Zi 6=Zj ,i�j

(1− f (n)
out (||Xi −Xj||)),

with the empty product being equal to 1. Thus, it is easy to see that for every

n, 0 < L((φn, Gn, (Zi)
Nn
i=1)) ≤ 1 almost-surely, since for every n, Nn is finite

almost surely. We say a node j is Flip-Bad in Gn if

L((φn, Gn, (Zi)
Nn
i=1)) ≤ L((φn, Gn, (Z̃

(j)
i )Nni=1)),

where Z̃
(j)
i = Zi if i 6= j and Z̃

(j)
j = −Zj. Thus, we use the term Flip-Bad,

where a node is ‘bad’ if on flipping its community label, the observed data

becomes more likely. We use this definition to reason about the maximum-

likelihood estimator. More formally, for each node i ∈ [1, Nn], the Maximum-

Likelihood (ML) estimate of the community label is denoted as Ẑi and satisfies

(Ẑi)i∈[1,Nn] = arg max
z∈{−1,+1}Nn

P[(Zi)i∈[1,Nn] = z|φn, Gn]

= arg max
z∈{−1,+1}Nn

L((φn, Gn, z) (D.23)

In words, it is the optimal estimate for the community labels given the observed

data φn and Gn, where optimality refers to the fact that it minimizes the

probability that the vector is (Ẑi)i∈[1,Nn] is different from the ground truth
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(Zi)i∈[1,Nn] among all possible estimators. More formally, the ML estimator

(Ẑi)i∈[1,Nn] in Equation (D.23) satisfies

P[(Ẑi)i∈[1,Nn] 6= (Zi)i∈[1,Nn]] = inf
(Z̃i)i∈[1,Nn]=A(φn,Gn)

P[(Z̃i)i∈[1,Nn] 6= (Zi)i∈[1,Nn]],

where the infimum is over all measurable functions A of the data φn and Gn.

This asserts that the ML estimator for the community labels is the optimal

estimator that minimizes probability of error. The following proposition gives

a structural condition on the model parameters of Gn to identify a sufficient

condition when the ML estimator will fail.

Proposition 124. If the model parameters of Gn satisfies

lim sup
n→∞

∫
y∈Bn E

0,y[10 is Flip-Bad in Gn∪{0,y}1y is Flip-Bad in Gn∈∪{0,y}]mn,d(dy)

nE0[10 is flip-bad in Gn∪{0}]
2

≤ 1,

(D.24)

lim
n→∞

nE0[10 is flip-bad in Gn∪{0}] =∞ (D.25)

where mn,d is the Haar measure on the torus Bn, then Exact-Recovery is not

solvable.

The condition in Equation (D.24) states that the event of two ‘far-

away’ nodes being Flip-Bad are asymptotically uncorrelated. Such statements

are true for instance if the functions f
(n)
in (·) and f

(n)
out (·) have support that

is o(n). For example, if the connection functions satisfy f
(n)
in (r) = an1r≤Rn

and f
(n)
out (r) = bn1r≤Rn , for some 0 ≤ bn ≤ an ≤ 1 and Rn = o(n1/d), then

they satisfy the condition. See for example also Lemma 126. On the other

hand, Equation (D.24) is satisfied even if the model is reduced to the classical
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SBM without geometry, i.e., any two nodes in Gn are connected only based

on their community labels and not the location labels if the average degree is

proportional to the logarithm of the population size.

Proof. If there exists a node in Gn that is Flip-Bad, then the Maximum Like-

lihood estimator for the community labels will not match the ground truth.

We will show that if Equations (D.24) and (D.25) hold, then P[∃i ∈ [1, Nn] :

i is Flip-Bad in Gn] = 1− on(1), which will conclude the proof of the result.

To do this, define by Yn :=
∑

i∈[1,Nn] 1i is Flip-Bad in Gn . From the classical

method of moments, it suffices to establish that lim supn→∞
E[Y 2

n ]
E[Yn]2

≤ 1 and

E[Yn] → ∞ as n → ∞. Indeed, if this were the case, then by Chebychev’s

inequality, we would have

P[Yn = 0] ≤ E[Y 2
n ]

E[Yn]2
− 1,

which will converge to 0. It remains to compute the first and second moment

of Yn.

From Campbell’s theorem (see Appendix D.5 for Palm probability on

the torus), we have

E[Yn] = λ

∫
y∈Bn

Ey[1y is Flip-Bad in Gn∪{y}]mn,d(dy)

= λnE0[10 is Flip-bad in Gn∪{0}], (D.26)

where the second inequality follows from the symmetry in the torus. Thus

from the hypothesis of the theorem in Equation (D.25), E[Yn] converges to∞.
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To compute the second moment, we use the factorial moment expansion of the

Poisson Process as follows.

E[Y 2
n ] (D.27)

= E[(
∑

i∈[1,Nn]

1i is Flip-Bad in Gn)2]

= E[Yn] + E[
∑
i 6=j

1i is Flip-Bad in Gn1j is Flip-Bad in Gn ]

(a)
= E[Yn]+ (D.28)

λ2

∫
x∈Bn

∫
y∈Bn

Ex,y[1x is Flip-Bad in Gn∪{x,y}1y is Flip-Bad in Gn∈∪{x,y}]mn,d(dx)mn,d(dy)

(b)
= E[Yn] + λ2n

∫
y∈Bn

E0,y[10 is Flip-Bad in Gn∪{0,y}1y is Flip-Bad in Gn∈∪{0,y}]mn,d(dy),

(D.29)

where equality (a) follows from the 2nd order Moment Measure expansion of

a Poisson process and (b) follows from the symmetry in the torus. Thus, from

Equations (D.26) and (D.29) , we have,

E[Y 2
n ]

E[Yn]2
=

1

E[Yn]
+

λ2
∫
y∈Bn E

0,y[10 is Flip-Bad in Gn∪{0,y}1y is Flip-Bad in Gn∈∪{0,y}]mn,d(dy)

(λnE0[10 is Flip-bad in Gn∪{0}])
2

. (D.30)

From the assumption on the connection functions in Equation (D.24)

and the first moment in Equation (D.30), we have lim supn→∞
E[Y 2

n ]
E[Yn]

≤ 1.

In the rest of the section, we consider the model given in Definition

57 where the connection functions f
(n)
in (·) and f

(n)
out (·) take the form fin(r) =

a1r≤log(n)1/d and f
(n)
out (r) = b1r≤log(n)1/d for some 0 ≤ b < a ≤ 1, to illustrate
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how one can use the previous proposition to obtain a closed form expression for

the phase-transition threshold. We first prove Theorem 58 to provide an exact

necessary condition in terms of the model parameters λ, a and b for achieving

exact-recovery. The proof of Theorem 58 follows from the next two lemmas.

Recall that, we denote by νd for all d ∈ N as the volume of the unit Euclidean

ball in d dimensions.

Lemma 125. For all λ > 0, d ∈ N and 0 ≤ b < a ≤ 1, if Gn ∼ G(λn, a, b, d),

then

E0[10 is Flip-Bad in Gn∪{0}] = e−λνd log(n)(1−
√
ab−
√

(1−a)(1−b)−o(1)).

Lemma 126. For all λ > 0, d ∈ N and 0 ≤ b < a ≤ 1 such that λνd log(n)(1−
√
ab −

√
(1− a)(1− b) < 1, the graph Gn ∼ G(λn, a, b, d) satisfies Equation

(D.24).

Proof. of Theorem 58.

From Lemma 126, we know that the connection functions satisfy the model

assumption in Equation (D.24). From Lemma 125, we know that if λνd(1 −
√
ab−

√
(1− a)(1− b)) < 1, then E0[10 is flip-bad in Gn∪{0}] = n−1+δ−o(1) for some

δ > 0. Thus, nE0[10 is flip-bad in Gn∪{0}] = nδ−o(1) which converges to∞ as n goes

to ∞. The proof is now complete thanks to Proposition 124.

We now provide the proofs of the associated lemmas.

Proof. of Lemma 125.

This lemma is a corollary of Lemma 11 proven in [20], where the error expo-
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nent for hypothesis testing between Poisson random vectors was established.

To assess whether the node at 0 is Flip-Bad, we need to decide given the loca-

tions and true community labels of the neighbors and non-neighbors of node at

0, whether it belongs to community +1 or −1. However, since the connection

functions have support of log(n)1/d and events in disjoint regions of space are

independent, it suffices to consider the neighbors and non-neighbors within

the ball of radius log(n)1/d around 0. (Note from the model that there are no

neighbors of the node at 0 at a distance larger than log(n)1/d). The number of

neighbors of nodes in the same commuity as 0 is a Poisson random variable of

mean λ/2νda log(n) and the number of neighbors in the opposite community

is another independent Poisson random variable of mean λ/2νdb log(n). The

independence follows from elementary independent thinning property of the

PPP. Similarly, the number of non-neighbors in the same and opposite com-

munity as 0 and within a distance of log(n)1/d of 0 are independent Poisson

random variables of mean λ/2νd(1− a) log(n) and λ/2νd(1− b) log(n) respec-

tively. This argument again follows from the independent thinning property

of an independently marked Poisson Process.

Thus the probability of a node at 0 being flip-bad is equal to the

error made by an optimal hypothesis tester between two random vectors

(λ/2)νd log(n)(a, b, 1 − a, 1 − b) and (λ/2)νd log(n)(b, a, 1 − b, 1 − a), given

an uniform prior over the two models. Furthermore, the components of the

observed random vector are independent. Thus, we are in a setting to ap-

ply the CH-divergence theorem of [20] to characterize the error probability
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of the optimal hypothesis testing error. More precisely, applying Lemma 11

from [20] the error probability in identifying between the two Poisson ran-

dom vectors with uniform prior (λ/2)νd log(n)µ and (λ/2)νd log(n)ν where

the vectors µ := (a, b, 1 − a, 1 − b) and ν := (b, a, 1 − b, 1 − a) is equal to

E0[10 is flip-bad in Gn∪{0}] is given by

E0[10 is flip-bad in Gn∪{0}] := n−(λ/2)νdD+(µ,ν)+o(1), (D.31)

where the CH-Divergence D+(µ, ν) ([20]) is given by

D+(µ, ν) := max
t∈[0,1]

∑
x∈X

(tµ(x) + (1− t)ν(x)− µ(x)tν(x)1−t). (D.32)

Here X := [1, 2, 3, 4], and µ(x) (ν(x)) for x ∈ X refers to the xth component

of the vector µ (ν). Evaluating Equation (D.32) yields that D+(µ, ν) = 2(1−
√
ab−

√
(1− a)(1− b)) with the maximum being achieved at t = 1/2 due to

symmetry in the vectors µ and ν. Substituting Equation (D.32) into (D.31)

yields the result.

Proof. of Lemma 126.

This lemma follows from some straightforward calculations exploit-

ing the spatial independence across the Poisson process. To verify Equation
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(D.24), consider the following chain of equations.∫
y∈Bn

E0,y[10 is Flip-Bad in Gn∪{0,y}1y is Flip-Bad in Gn∈∪{0,y}]mn,d(dy) =∫
y∈B(0,2 log(n)1/d)

E0,y[10 is Flip-Bad in Gn∪{0,y}1y is Flip-Bad in Gn∈∪{0,y}]mn,d(dy)

+

∫
y∈Bn∩B(0,2 log(n)1/d){

E0,y[10 is Flip-Bad in Gn∪{0,y}1y is Flip-Bad in Gn∈∪{0,y}]mn,d(dy)

≤
∫
y∈B(0,2 log(n)1/d)

E0,y[10 is Flip-Bad in Gn∪{0,y}]mn,d(dy)

+

∫
y∈Bn∩B(0,2 log(n)1/d){

E0,y[10 is Flip-Bad in Gn∪{0,y}1y is Flip-Bad in Gn∈∪{0,y}]mn,d(dy)

(D.33)

The key observation to make is that for x, y such that ||x− y|| > 2 log(n)1/d,

we have

Ex,y[1x is Flip-Bad in Gn∪{x,y}1y is Flip-Bad in Gn∈∪{x,y}] =

Ex[1x is Flip-Bad in Gn∪{x}]Ey[1y is Flip-Bad in Gn∪{y}] (D.34)

This follows since in an independently marked Poisson Process, events

on disjoint sets are independent. Further more, from the symmetry in the

torus, for all x ∈ Bn, we also have

Ex[1x is Flip-Bad in Gn∪{x}] = E0[10 is Flip-Bad in Gn∪{0}]. (D.35)

Thus, we get from Equations (D.33),(D.34) and (D.35) that∫
y∈Bn

E0,y[10 is Flip-Bad in Gn∪{0,y}1y is Flip-Bad in Gn∈∪{0,y}]mn,d(dy) ≤

(n− 2dνd log(n))E0[10 is Flip-Bad in Gn∪{0}]
2 + 2dνd log(n)E0[10 is Flip-Bad in Gn∪{0}].

(D.36)
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Thus, since λνd log(n)(1−
√
ab−

√
(1− a)(1− b) > 1, we have from Lemma

125 that,

nE0[10 is Flip-Bad in Gn∪{0}] = nγ for some γ > 0. Hence Equation (D.36) implies

Equation (D.24) if λνd log(n)(1−
√
ab−

√
(1− a)(1− b) > 1.

D.3.2 Upper Bound for Exact-Recovery - Proof of Theorem 60

In the present paper, we are only able to establish the presence of the

phase transition by proving Theorem 60. We believe a ‘two-round’ information

theoretic argument can be employed to prove this result. A possible strategy

is to first show that for any 0 ≤ b < a ≤ 1, a ‘large’ (i.e. all but o(n)) nodes

will be correctly classified by the ML estimator with high probability. Further,

if the parameters satisfied λνd(1−
√
ab−

√
(1− a)(1− b)) > 1, then all nodes

will be correctly classified with high probability. One can possibly make this

efficient by means of ‘sample splitting’ arguments of [20]. One can sub-sample

the edges so that the graph is almost sparse so that a large fraction of the

nodes can be correctly labeled by the ML estimator. Then, we can ‘clean-up’,

i.e. estimate a corrected community label estimate using the edges not used

in the first round. This conjecture is also reminiscent of the ‘local to global’

phenomena that occurs in many random graph models ([18],[286],[83],[305]),

where an obvious local necessary condition also turns out to be sufficient.

However, as a corollary to the GBG algorithm introduced above, we Theorem

60 which establishes that Exact-Recovery can be solved if the intensity λ is
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sufficiently high.

Proof. of Theorem 60

Notice that with R = log(n)1/d/2d, there are at-most d4ddn/ log(n)e grid-

cells in Bn. If we show that the chance that a grid cell is T-BAD is n−1−δ

for some δ > 0, then by an union bound argument, we can assert that with

probability at-least 1 − n−δ, all grid-cells will be T-GOOD. Furthermore, if

all grid cells are T-GOOD, then by Proposition 116, all nodes in Gn will be

correctly partitioned by the algorithm.

Set R = log(n)1/d/2d and ε ∈ (0, 1) arbitrary as parameters of the GBG

algorithm. From Proposition 118, we know that for any z, z
′ ∈ Zd such that

||z − z
′ ||∞ = 1, the probability that the pairwise classifier makes an error

is at-most e−c(d,a,b)λ log(n), where c(d, a, b) > 0 is a positive constant. From

Lemma 119, it is clear, that the probability that a cell is T-BAD is at-most

n−c(d,a,b)λ log(n)dC+n−c
′
(ε)λn, where c and c

′
are two strictly positive constants.

Thus, by choosing λ sufficiently high, we can ensure that the probability of a

grid-cell being T-BAD is at-most n−1−δ for some δ > 0.

Here we also want to remark that using ideas from Section 5.4.5, the

GBG algorithm can be implemented without knowledge of the parameters. In

particular, one can use standard spectral or SDP algorithms to decide whether

a cell is T-GOOD or not, as explained in Section 5.4.5. This can be done so

since the sub-graph of Gn restricted to nodes within the 1 thickening of any

grid cell z is dsitributed as the SBM with random log(n) number of nodes and
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having a constant connection probability of either a or b among nodes of the

same or opposite communities. Thus, one can employ standard spectral or

SDP algorithms ‘off the shelf’ to implement the algorithm without knowledge

of a,b or λ.

D.4 Proof of Lemma 79

Proof. Denote by TI(j) be the breadth first spanning tree of I constructed

with j as the root. Thus in the tree TI(j), and for all k ∈ VI(j), there is

exactly one path from j to k in the tree TI(j).

The existence of two labelings is not so difficult since we know there

exists one underlying true labeling which generated the data G, I. But since,

the model is symmetric, the complement of the true labels will also be consis-

tent in the sense of Lemma 78. Thus, there are at least two labeling consistent

with the observed data G, I. These two labels of VI(j) can be constructed

explicitly which we do in the next paragraph. We then show, that there are

no other that can be consistent in the sense of Lemma 78, which will conclude

the proof.

To construct the two possible labelings, first assume that Zj = +1.

Now conditionally on this and G, each neighbor of j in TI(j) will have exactly

one possible community label estimate that is consistent in the sense of Lemma

78. Now, by induction, we can construct the labels of VI(j). Assume, that

conditionally on Zj = +1 and G, we have a unique set of labels for all vertices

in TI(j) at graph distance of less than or equal to k. Let u ∈ TI(j) be an
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arbitrary vertex such that it is at graph distance k + 1 from j in TI(j). Since

TI(j) is a tree, there is a unique vertex v in VI(j) such that v ∼TI(j) u and v

is at a distance of k from j. Thus, conditionally on Zj = +1, Zv is a fixed

community label due to the induction hypothesis. Since Zv is fixed, then there

is a unique label for Zu that will be consistent in the sense of Lemma 78. Since

u was arbitrary, we can uniquely assign a community label to all vertices at

graph distance of k + 1 from j in TI(j). Hence, by induction, conditionally

on Zj = +1, there is a unique community estimate for all vertices in VI(j).

Similarly, if we assumed Zj = −1, we will find another unique labeling for the

vertices in Vi(j) which will be the complement of the unique labeling obtained

by assuming Zj = +1. This, gives us that there exist at-least two labelings

of Vi(j) that are complements of each other and consistent with the observed

data G and I in the sense of Lemma 78.

To see that there can be no other possibilities, we argue by contradic-

tion. Assume there are two labelings and a vertex k such that in one of the

labelings Zj = +1, Zk = +1 and in the other Zj = +1, Zk = −1. It is clear

that at-most one of the above labelings will be consistent in the tree TI(j) in

the sense of Lemma 78. This establishes that the two sequences we constructed

in the previous paragraph which are complements of each other are the only

two possible sequences that are consistent in the sense of Lemma 78.
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D.5 Palm Measure on the Torus

In this section, we recap the basic properties of the Poisson Point Pro-

cess on the torus. As the torus is a locally compact unimodular topological

group, the definition of Palm measures and the moment measure equations

of PPP on a torus follows directly from the theory described in [228]. We

reproduce the key results needed for our paper here. Fix a n ∈ N and con-

sider the d dimensional torus on the set Bn :=
[
−n1/d

2
, n

1/d

2

]d
equipped with

the Haar measure denoted as mn,d(·) which is invariant under translations on

the torus. Let (Ω,F,P) be a probability space on which we have a stationary

independently marked PPP on the torus Bn of intensity λ > 0 with marks in

an arbitrary Polish space K. Denote by the atoms of this point process by

φn := {X1, · · · , XNn} enumerated in an arbitrary manner and the correspond-

ing marks as {K1, · · · , KNn}. From the definition of the PPP, Nn is a Poisson

random variable of mean λn independent of everything else and conditional

on Nn, (Xi)
Nn
i=1 are i.i.d. random variables that are uniformly distributed in

the set Bn. Conditionally on Nn and (Xi)
Nn
i=1, the sequence (Ki)

Nn
i=1 are i.i.d.

In this framework, for any k ∈ N and x1, · · · , xk ∈ Bn, the Palm measure

Px1,··· ,xk corresponds to adding fictitious atoms at locations {x1, · · · , xk} and

equipping them with independent marks having the same law as K1. In other

words, thanks to Slivnyak’s theorem ([228]), the atoms of the PPP under the

Palm measure Px1,··· ,xk is φn ∪ {x1, · · · xk} where φn is the law of the point

process under P, with the marks of these additional points having the same

distribution as that of K1 and independent of everything else. For this frame-

293



work, for any function f(·) : Bn → R+ such that
∫
x∈Bn f(x)mn,d(dx) <∞ we

have the following version of Campbell’s theorem ([228]) -

E[
∑
x∈φn

f(x)] = λ

∫
x∈Bn

Ex[f(x)]md,n(dx). (D.37)

More generally, we have the following k-th order moment measure expansions

of the Poisson process. Let f(·) : Bk
n → R+ be such that∫

x1,··· ,xk
f(x1, · · · , xk)

k∏
i=1

mn,d(dxi) <∞.

Then, we have

E[
∑

x1,··· ,xk∈φn
6=

f(x1, · · · , xk)] = λk
∫
x1,··· ,xk∈Bn

Ex1,··· ,xk [f(x1, · · · , xk)]
k∏
i=1

mn,d(dxi).

(D.38)

We use Equations (D.37) and (D.38) in Section D.3 to compute the first and

second moments of the number of Flip-Bad nodes in Gn.
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[182] Olivier Guédon and Roman Vershynin. Community detection in sparse

networks via grothendieck’s inequality. Probability Theory and Related

Fields, 165(3-4):1025–1049, 2016.

[183] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang. Mea-

surements, analysis, and modeling of Bittorrent-like systems. In Proc.

ACM/USENIX IMC, October 2005.

[184] Piyush Gupta and Panganmala R Kumar. The capacity of wireless

networks. IEEE Transactions on information theory, 46(2):388–404,

2000.

[185] R. K. Gupta and S. D. Senturia. Pull-in time dynamics as a measure

of absolute pressure. In Proc. IEEE International Workshop on Micro-

electromechanical Systems (MEMS’97), pages 290–294, Nagoya, Japan,

January 1997.

319



[186] M. Haenggi, J. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti.

Stochastic geometry and random graphs for the analysis and design of

wireless networks. 27(7):1029–1044, September 2009.

[187] Martin Haenggi, Jeffrey G Andrews, François Baccelli, Olivier Dousse,

and Massimo Franceschetti. Stochastic geometry and random graphs for

the analysis and design of wireless networks. IEEE Journal on Selected

Areas in Communications, 27(7):1029–1046, 2009.

[188] J. Hagenauer. Rate-compatible punctured convolutional codes (RCPC

codes) and their applications. 36:389–400, April 1988.

[189] Bruce Hajek. Balanced loads in infinite networks. The Annals of

Applied Probability, 6(1):48–75, 1996.

[190] Khairi Ashour Hamdi. A useful lemma for capacity analysis of fading in-

terference channels. IEEE Transactions on Communications, 58(2):411–

416, 2010.

[191] Mark S Handcock, Adrian E Raftery, and Jeremy M Tantrum. Model-

based clustering for social networks. Journal of the Royal Statistical

Society: Series A (Statistics in Society), 170(2):301–354, 2007.

[192] S. Hart and M. Kurz. Endogenous formation of coalitions. Economet-

rica, 51:1047–1064, 1983.

320



[193] Abolfazl Hashemi, Banghua Zhu, and Haris Vikalo. Sparse tensor de-

composition for haplotype assembly of diploids and polyploids. BMC

genomics, 19(4):191, 2018.

[194] Dan He, Arthur Choi, Knot Pipatsrisawat, Adnan Darwiche, and Eleazar

Eskin. Optimal algorithms for haplotype assembly from whole-genome

sequence data. Bioinformatics, 26(12):i183–i190, 2010.

[195] J. He, A. Chaintreau, and C. Diot. A performance evaluation of scal-

able live video streaming with nano data centers. Computer Networks,

53:153–167, 2009.

[196] Maurice Herlihy. A methodology for implementing highly concurrent

data objects. ACM Trans. Program. Lang. Syst., 15(5):745–770,

November 1993.

[197] Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space

approaches to social network analysis. Journal of the american Statis-

tical association, 97(460):1090–1098, 2002.

[198] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt.

Stochastic blockmodels: First steps. Social networks, 5(2):109–137,

1983.

[199] J. Horrigan. Home broadband adoption 2008. Pew Internet & Ameri-

can Life Project, July 2008.

321
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peer-assisted services: A fluid Shapley value approach. In Proc. ACM

Sigmetrics, June 2010.

331



[273] M. Miyazawa. The derivation of invariance relations in complex queue-

ing systems with stationary inputs. Advances in Applied Probability,

15(4):874–885, 1983.

[274] N. Miyoshi and T. Shirai. A cellular network model with Ginibre con-

figured base stations. Advances in Applied Probability, 46(3):832–845,

2014.

[275] J. Mo and J. Walrand. Fair end-to-end window-based congestion con-

trol. 8(5):556–567, October 2000.

[276] Ciamac Moallemi and Devavrat Shah. On the flow-level dynamics of a

packet-switched network. In ACM SIGMETRICS Performance Evalu-

ation Review, volume 38, pages 83–94, 2010.

[277] Ciamac Moallemi and Devavrat Shah. On the flow-level dynamics of a

packet-switched network. In ACM SIGMETRICS Performance Evalu-

ation Review, volume 38, pages 83–94. ACM, 2010.

[278] J. Møller. Random Johnson-Mehl tessellations. Advances in Applied

Probability, 24(4):814–844, 1992.

[279] Jesper Møller and Rasmus P Waagepetersen. Modern statistics for

spatial point processes. Scandinavian Journal of Statistics, 34(4):643–

684, 2007.

332



[280] Andrea Montanari and Subhabrata Sen. Semidefinite programs on

sparse random graphs and their application to community detection.

arXiv preprint arXiv:1504.05910, 2015.

[281] Cristopher Moore. The computer science and physics of community

detection: landscapes, phase transitions, and hardness. arXiv preprint

arXiv:1702.00467, 2017.

[282] Elchanan Mossel. Reconstruction on trees: beating the second eigen-

value. Annals of Applied Probability, pages 285–300, 2001.

[283] Elchanan Mossel, Joe Neeman, and Allan Sly. Stochastic block models

and reconstruction. arXiv preprint arXiv:1202.1499, 2012.

[284] Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block

model threshold conjecture. arXiv preprint arXiv:1311.4115, 2013.

[285] Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block

model threshold conjecture. arXiv preprint arXiv:1311.4115, 2013.

[286] Elchanan Mossel, Joe Neeman, and Allan Sly. Consistency thresholds

for the planted bisection model. In Proceedings of the forty-seventh

annual ACM symposium on Theory of computing, pages 69–75. ACM,

2015.

[287] Elchanan Mossel, Joe Neeman, and Allan Sly. Consistency thresholds

for the planted bisection model. In Proceedings of the Forty-Seventh An-

333



nual ACM on Symposium on Theory of Computing, pages 69–75. ACM,

2015.

[288] Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and esti-

mation in the planted partition model. Probability Theory and Related

Fields, 162(3):431–461, 2015.

[289] Ehsan Motazedi, Dick de Ridder, Richard Finkers, Samantha Baldwin,

Susan Thomson, Katrina Monaghan, and Chris Maliepaard. Tripoly:

haplotype estimation for polyploids using sequencing data of related in-

dividuals. Bioinformatics, 2018.

[290] Ehsan Motazedi, Richard Finkers, Chris Maliepaard, and Dick de Rid-

der. Exploiting next-generation sequencing to solve the haplotyping

puzzle in polyploids: a simulation study. Briefings in bioinformatics,

19(3):387–403, 2017.

[291] R. Myerson. Graphs and cooperation in games. Mathematics of Oper-

ations Research, 2:225–229, 1977.

[292] S. Nedevschi, S. Ratnasamy, and J. Padhye. Hot data centers vs. cool

peers. In Proc. USENIX Workshop on Power aware computing and

systems (HotPower), December 2008.

[293] Mark EJ Newman and Michelle Girvan. Finding and evaluating com-

munity structure in networks. Physical review E, 69(2):026113, 2004.

334



[294] Mark EJ Newman, Duncan J Watts, and Steven H Strogatz. Random

graph models of social networks. Proceedings of the National Academy

of Sciences, 99(suppl 1):2566–2572, 2002.

[295] Dusit Niyato and Ekram Hossain. Dynamics of network selection in het-

erogeneous wireless networks: an evolutionary game approach. 58(4):2008–

2017, 2009.

[296] Mariana Olvera-Cravioto and Octavio Ruiz-Lacedelli. Parallel queues

with synchronization. arXiv preprint arXiv:1501.00186, 2014.

[297] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose. Modeling TCP

Reno performance: a simple model and its empirical validation. 8:133–

145, April 2000.

[298] Q. Pang, S. Liew, J. Lee, and V. Leung. Performance evaluation of an

adaptive backoff scheme for WLAN. Wirel. Commun. Mob. Comput.,

4(8):867–879, December 2004.

[299] H. Park, R. Ratzin, and M. van der Schaar. Peer-to-peer networks –

protocols, cooperation and competition. Streaming Media Architectures,

Techniques, and Applications: Recent Advances, IGI Global, pages 262–

294, 2011.

[300] H. Park and M. van der Schaar. Coalition-based resource negotiation

for multimedia applications in informationally decentralized networks.

11(4):765–779, June 2009.

335



[301] B. Peleg and P. Sudhölter. Introduction to the Theory of Cooperative

Games. Springer-Verlag, 2nd edition, 2007.

[302] Mathew Penrose. Random geometric graphs. Number 5. Oxford Uni-

versity Press, 2003.

[303] Mathew D Penrose. On a continuum percolation model. Advances in

applied probability, 23(03):536–556, 1991.

[304] Mathew D Penrose. Existence and spatial limit theorems for lattice and

continuum particle systems. Prob. Surveys, 5:1–36, 2008.

[305] Mathew D Penrose. Connectivity of soft random geometric graphs. The

Annals of Applied Probability, 26(2):986–1028, 2016.

[306] E. Pinheiro, W. Weber, and L. A. Barroso. Failure trends in a large

disk drive population. In Proc. USENIX FAST, February 2007.

[307] Yuri Pirola, Simone Zaccaria, Riccardo Dondi, Gunnar W Klau, Nadia

Pisanti, and Paola Bonizzoni. Hapcol: accurate and memory-efficient

haplotype assembly from long reads. Bioinformatics, 32(11):1610–1617,

2015.

[308] Chris Preston. Spatial birth-and-death processes. Bull. Int. Stat.

Inst., Proc. of the 40th Session Warsaw 46, No.2, 371-391 , 1975.

[309] James Gary Propp and David Bruce Wilson. Exact sampling with cou-

pled markov chains and applications to statistical mechanics. Random

structures and Algorithms, 9(1-2):223–252, 1996.

336



[310] A. Proutiere. Pushing mean field asymptotics to the limits: Stability

and performance of random medium access control. In Proc. Stochastic

Networks Conference, ENS, Paris, June 2008.

[311] A. Proutiere, Y. Yi, T. Lan, and M. Chiang. Resource allocation over

network dynamics without timescale separation. In Proc. IEEE Info-

com, March 2010.

[312] Zrinka Puljiz and Haris Vikalo. Decoding genetic variations: Communications-

inspired haplotype assembly. IEEE/ACM Transactions on Computa-

tional Biology and Bioinformatics (TCBB), 13(3):518–530, 2016.

[313] Zrinka Puljiz and Haris Vikalo. Decoding genetic variations: Communications-

inspired haplotype assembly. IEEE/ACM Transactions on Computa-

tional Biology and Bioinformatics (TCBB), 13(3):518–530, 2016.
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2006.

[334] A. Sang, X. Wang, M. Madihian, and R. D. Gitlin. Coordinated load

balancing, handoff/cell-site selection, and scheduling in multi-cell packet

data systems. In Proc. ACM MobiCom, pages 302–314, Philadelphia,

PA, September 2004.

[335] Abishek Sankararaman. Spatial stochastic models in wireless and data

networks. http://abishek90.github.io/QualReport.pdf, May 2017.

[336] Abishek Sankararaman and François Baccelli. Spatial birth–death wire-

less networks. IEEE Transactions on Information Theory, 63(6):3964–

3982, 2017.

[337] Abishek Sankararaman and François Baccelli. Community detection

on euclidean random graphs. In Proceedings of the Twenty-Ninth An-

nual ACM-SIAM Symposium on Discrete Algorithms, pages 2181–2200.

SIAM, 2018.

[338] Abishek Sankararaman, François Baccelli, and Sergey Foss. Interference

queueing networks on grids. Annals of Applied Probability (To Appear),

2019. (available at http://arxiv.org/abs/1710.09797).

[339] Abishek Sankararaman and Sayan Banerjee. Moment bounds for inter-

ference queueing networks. In Preparation, 2019.

340

http://abishek90.github.io/QualReport.pdf
http://arxiv.org/abs/1710.09797


[340] Abishek Sankararaman, Jeong-woo Cho, and François Baccelli. Performance-

oriented association in large cellular networks with technology diversity.

In 2016 28th International Teletraffic Congress (ITC 28), volume 1,

pages 94–102. IEEE, 2016.

[341] Abishek Sankararaman, Jeong woo Cho, and François Baccelli. Performance-

oriented association in large cellular networks with technology diversity.

Technical Report, March 2016. (available at http://arxiv.org/abs/

1603.06928).

[342] A. Seetharam, M. Somasundaram, D. Towsley, J. Kurose, and P. Shenoy.

Shipping to streaming: Is this shift green? In Proc. ACM Sigcomm

Workshop on Green Networking, August 2010.

[343] S. Sesia, G. Caire, and G. Vivier. Incremental redundancy hybrid ARQ

schemes based on low-density parity-check codes. 52:1311–1321, August

2004.

[344] Andrey A Shabalin, Victor J Weigman, Charles M Perou, and Andrew B

Nobel. Finding large average submatrices in high dimensional data.

The Annals of Applied Statistics, pages 985–1012, 2009.

[345] Devavrat Shah, NC David, and John N Tsitsiklis. Hardness of low

delay network scheduling. IEEE Transactions on Information Theory,

57(12):7810–7817, 2011.

341

http://arxiv.org/abs/1603.06928
http://arxiv.org/abs/1603.06928


[346] Devavrat Shah, Jinwoo Shin, et al. Randomized scheduling algorithm

for queueing networks. The Annals of Applied Probability, 22(1):128–

171, 2012.

[347] Devavrat Shah, Jinwoo Shin, and Prasad Tetali. Efficient distributed

medium access. arXiv preprint arXiv:1104.2380, 2011.

[348] Virag Shah and Gustavo de Veciana. Performance evaluation and

asymptotics for content delivery networks. In INFOCOM, 2014 Pro-

ceedings IEEE, pages 2607–2615. IEEE, 2014.

[349] A. Shaikh, J. Rexford, and K. Shin. Load-sensitive routing of long-lived

IP flows. In Proc. ACM Sigcomm, August 1999.

[350] Claude E. Shannon. Two-way communication channels. In Proc. of the

4th Berkeley Symp. on Mathematical Statistics and Probability, Vol 1,

pages 611–644, Berkeley, Calif., 1961.

[351] L. Shapley. A Value for n-Person Games. In H. W. Kuhn and A.

W. Tucker, editors, Contribution to the Theory of Games II, vol. 28 of

Annals of Mathematics Studies, Princeton University Press, 1953.

[352] G. Sharma, A. Ganesh, and P. Key. Performance analysis of contention

based medium access control protocols. 55(4):1665–1681, April 2009.

[353] N. Shephard. From characteristic function to distribution function: a

simple framework for the theory. Econometric theory, 7(4):519–529,

1991.

342



[354] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-

tion. IEEE Transactions on pattern analysis and machine intelligence,

22(8):888–905, 2000.

[355] AN Shiryaev. Absolute continuity and singularity of probability mea-

sures in functional spaces. In Proceedings of the International Congress

of Mathematicians, Helsinki, pages 209–225, 1978.

[356] Seva Shneer and Alexander Stolyar. Stability and moment bounds under

utility-maximising service allocations, with applications to some infinite

networks. arXiv preprint arXiv:1812.01435, 2018.

[357] Galen R Shorack and Jon A Wellner. Empirical processes with applica-

tions to statistics, volume 59. Siam, 2009.

[358] G. Simons and N. Johnson. On the convergence of binomial to Poisson

distributions. Ann. Math. Statist., 42(5):1735–1736, 1971.

[359] Sushil Singh, Harpreet S Dhillon, and Jeffrey G Andrews. Offloading in

heterogeneous networks: Modeling, analysis, and design insights. Wire-

less Communications, IEEE Transactions on, 12(5):2484–2497, 2013.

[360] Rayadurgam Srikant and Lei Ying. Communication networks: an opti-

mization, control, and stochastic networks perspective. Cambridge Uni-

versity Press, 2013.

343



[361] A. L. Stolyar. On the asymptotic optimality of the gradient scheduling

algorithm for multiuser throughput allocation. Oper. Res., 53(1):12–25,

January 2005.

[362] Alexander L Stolyar. An infinite server system with customer-to-server

packing constraints. In Communication, Control, and Computing (Aller-

ton), 2012 50th Annual Allerton Conference on, pages 1713–1720. IEEE,

2012.

[363] Y. Sun, F. Liu, B. Li, B. Li, and X. Zhang. FS2You: peer-assisted semi-

persistent online storage at a large scale. In Proc. IEEE International

Conference on Computer Communications (Infocom), April 2009.

[364] V. Suryaprakash, J. Møller, and G. Fettweis. On the modeling and

analysis of heterogeneous radio access networks using a Poisson cluster

process. 14(2):1035–1047, February 2015.

[365] A.-S. Sznitman. Topics in propagation of chaos. Lecture Notes in
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