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Abstract 

 

Functionality Enhancement of Two-Dimensional Transition Metal 

Dichalcogenide-Based Transistors 

 

Amritesh Rai, Ph.D. 

The University of Texas at Austin, 2019 

 

Supervisor:  Sanjay K. Banerjee 

Atomically thin molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), 

members of the transition metal dichalcogenide family, have emerged as prototypical two-

dimensional semiconductors with a multitude of interesting properties and promising 

device applications spanning all realms of electronics and optoelectronics. While 

possessing inherent advantages over conventional bulk semiconducting materials (such as 

Si, Ge and III-Vs) in terms of enabling ultra-short channel and, thus, energy efficient field-

effect transistors, the mechanically flexible and transparent nature of 2D MoS2 and WSe2 

make them even more attractive for use in ubiquitous flexible and transparent electronic 

systems. However, before the fascinating properties of these materials can be effectively 

harnessed and put to good use in practical and commercial applications, several important 

technological roadblocks pertaining to their contact, doping and mobility engineering must 

be overcome. This dissertation reviews the important technologically relevant properties 

of semiconducting 2D TMDs followed by a discussion of the performance projections of, 

and the major engineering challenges that confront, 2D MoS2 and WSe2-based devices. 

Finally, this dissertation provides a comprehensive insight into two novel and promising 

engineering solutions that can be employed to address the all-important issues of contact 

resistance, controllable and area-selective doping, and charge carrier mobility 
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enhancement (electrons in MoS2 and holes in WSe2) in these devices. Specifically, this 

work sheds light upon the interfacial-oxygen-vacancy mediated n-doping of MoS2 by high-

κ dielectrics, such as HfO2, Al2O3 and TiO2, using detailed experimental characterizations 

and theoretical calculations. This n-doping effect on MoS2 by high-κ dielectrics is proposed 

as a mechanism responsible for the performance enhancement observed in MoS2 devices 

upon encapsulation in high-κ dielectric environments. This work also sheds light upon the 

band structure engineering and p-doping of layered WSe2 using a simple and facile one-

step chemical functionalization technique utilizing ammonium sulfide solution. Detailed 

experimental and theoretical studies once again reveal the underlying mechanism 

responsible for the p-doping in WSe2 after chemical treatment. Results show that the 

doping techniques presented in this dissertation can easily be adapted to obtain high-

performance FETs based on 2D MoS2 and WSe2. Finally, some future research directions, 

based on the work presented in this dissertation, are highlighted.   
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Chapter 1: An Overview of Semiconducting Two-Dimensional 
Transition Metal Dichalcogenides: Prospects and Challenges  

1.1 GRAPHENE AND THE RISE OF 2D MATERIALS  
The isolation and characterization of graphene, an atomically thin layer of carbon 

atoms arranged in a hexagonal lattice, in 2004 by Geim and Novoselov ushered in the era 

of two-dimensional (2D) atomically thin layered materials1. This all-important discovery 

came at the backdrop of a continuous ongoing quest by the semiconductor industry to 

search for new semiconducting materials, engineering techniques and efficient transistor 

topologies to extend “Moore’s Law”—an observation made in the 1960s by Gordon Moore 

which stated that the number of transistors on a complementary metal-oxide-

semiconductor (CMOS) microprocessor chip and, hence, the chip’s performance, would 

double every two years or so2-4. In effect, this law led to the shrinking down of conventional 

CMOS transistors (down into the nm regime) to enhance their density and performance on 

the chip5-10. However, in the past decade or so, the performance gains derived due to 

dimensional scaling have been severely offset by the detrimental short-channel effects 

(SCE) that cause high OFF-state leakage currents (due to loss of effective gate control over 

the charge carriers in the semiconducting channel and inability of the gate to turn the 

channel fully OFF) leading to higher static power consumption and heat dissipation (i.e., 

wasted power), which have dire implications for Moore’s Law11-16. With continued scaling 

(sub-10 nm regime), the SCE effect will get far worse and even state-of-the-art CMOS 

transistor architectures designed to enhance gate controllability (such as MuGFETs, UTB-

FETs, FinFETs, etc.) will face serious challenges in minimizing the overall power 

consumption. Hence, the need of the hour is an appropriate transistor channel material that 

allows for a high degree of gate controllability at these ultra-short dimensions17-20. In this 

light, graphene has been thoroughly researched for its remarkable properties, such as 2D 

 
Much of the discussions presented in this Chapter have been reproduced with permission from the 

following invited feature review article referenced as: Rai, A., Movva, H., Roy, A., Taneja, D., Chowdhury, 
S., & Banerjee, S. (2018). Progress in Contact, Doping and Mobility Engineering of MoS2: An Atomically 
Thin 2D Semiconductor. Crystals, 8(8), 316. The dissertator, A. Rai, planned and wrote the entire review 
article with contributions from all authors. 
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atomically thin nature, extremely high carrier mobilities, superior mechanical strength, 

flexibility, optical transparency, and high thermal conductivity, that can be useful for a 

wide range of device applications21-23. While graphene can allow for excellent gate 

controllability due to its innate atomic thickness, a major drawback of graphene is its 

“semi-metallic” nature and, hence, the absence of an electronic “band gap” (Eg)—a 

necessary attribute any material must possess to be considered for electronic/optoelectronic 

device applications. Hence, a graphene transistor cannot be turned “OFF”24,25. 

1.2 BEYOND GRAPHENE: 2D TRANSITION METAL DICHALCOGENIDES  
Graphene’s shortcomings led to the search for alternative materials with similar yet 

complementary properties. This led to the emergence of a laundry list of 2D layered 

materials ranging from insulators to semiconductors and metals26,27. Among these 2D 

materials, the family of transition metal dichalcogenides (TMDs) has garnered the most 

attention28. These TMDs are characterized by the general formula MX2 where M represents 

a transition metal (M = Mo, W, Re, etc.) and X is a chalcogen (X = S, Se, Te)29,30. 

Analogous to graphene, these layered 2D TMDs can be isolated down to a single atomic 

layer from their bulk form. A TMD monolayer can be visualized as a layer of transition 

metal atoms sandwiched in-between two layers of chalcogen atoms (of the form X-M-X) 

with strong intra-layer covalent bonding, whereas the inter-layer bonding between two 

adjacent TMD layers is of the van der Waals (vdW) type. Moreover, depending on the 

specific crystal structure and atomic layer stacking sequence (1T, 2H or 3R), these TMDs 

can have metallic, semiconducting or superconducting phases29,30. Figure 1.1(a) 

schematically illustrates the 3D crystal structure of the 2H phase of molybdenum disulfide 

(MoS2) the prototypical TMD. The 2H phase of tungsten diselenide (WSe2) has a similar 

MX2 crystal structure.  

Of particular interest is the subset of semiconducting 2D TMDs as they offer several 

promising advantages over conventional 3D semiconductors (Si, Ge and III-Vs) such as: 

(i) inherent ultra-thin bodies enabling enhanced electrostatic gate control and carrier 

confinement versus 3D bulk semiconductors (this can help mitigate SCE in ultra-scaled 
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FETs based on 2D TMDs as their ultra-thin bodies can allow significant reduction of the 

so-called characteristic “channel length (LCH) scaling” factor “λ”, given by λ = 

√(tOXtBODYεBODY)/εOX, where tOX and tBODY are the thicknesses of the gate oxide and 

channel, respectively, and εOX and εBODY are their respective dielectric constants; a simple 

relationship for the scaling limit of FETs, i.e., minimum length required to prevent SCE, is 

given by LCH > 3λ. Figure 1.1(c) shows the schematic cross sections of the gate-channel 

regions of FETs employing bulk 3D and 2D semiconducting channels and compares their 

electrostatic carrier confinements31; (ii) availability of a wide range of sizeable band gaps 

and diverse band alignments32; and (iii) lack of surface “dangling bonds” unlike 

conventional 3D semiconductors allowing for the formation of pristine defect-free 

interfaces (especially 2D/2D vdW interfaces)33. Figure 1.1(b) schematically compares the 

surface of bulk 3D and 2D materials. These attributes make the semiconducting 2D TMDs 

extremely promising for future “ultra-scaled” and “ultra-low-power” devices30,31,33-39.  

Among the semiconducting 2D TMDs, MoS2 has been the most popular and widely 

pursued material by the research community owing to its natural availability and 

environmental/ambient stability. Like most semiconducting TMDs, MoS2 is characterized 

by a thickness-dependent band gap as has been verified both theoretically and 

experimentally: in its bulk form, it has an indirect band gap of ~ 1.2 eV, whereas in its 

monolayer form, the band gap increases to ~ 1.8 eV due to quantum confinement effects 

and is direct40-44. Figure 1.1(d) illustrates the band structure evolution of MoS2 with 

decreasing layer thickness. WSe2, on the other hand, has properties analogous to that of 

MoS2 and has emerged as another extremely promising semiconducting 2D TMD. WSe2 

is highly environmentally stable like MoS2 and can afford ambipolar carrier transport 

relatively easily unlike MoS2, thereby, making it very attractive for enabling 2D CMOS 

circuits45,46. This band gap variability, together with high carrier mobilities, mechanical 

flexibility, and optical transparency, make 2D MoS2 and WSe2 extremely attractive for 

practical nano- and optoelectronic device applications on both rigid and flexible 

platforms47-53. 
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Figure 1.1: (a) 3D schematic of the crystal structure of semiconducting 2H MoS2, the 
prototypical TMD, showing stacked atomic layers. Atoms in each layer are covalently 
bonded, whereas a vdW gap exists between adjacent layers with an interlayer separation of 
~ 0.65 nm. Adapted with permission from [40]. Copyright Springer Nature 2011. (b) 
Schematic illustration of bulk 3D (top) versus 2D materials (bottom) showing the absence 
of surface dangling bonds in the latter. (c) Schematic illustration of the carrier confinement 
and electrostatic gate coupling in bulk 3D (top schematic) versus 2D semiconducting 
materials (bottom schematic) when used as the channel material in a conventional FET 
architecture. 2D semiconductors offer much better gate control and enhanced carrier 
confinement, as opposed to 3D semiconductors, owing to their innate atomic thickness. 
(b,c) Adapted with permission from [35]. Copyright Springer Nature 2016. (d) Band 
structure evolution of MoS2 from bulk to monolayer (1L) showing the transition from an 
indirect to a direct band gap (as indicated by the solid black arrow). Adapted with 
permission from [41]. Copyright 2010 American Chemical Society. 
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MoS2 and WSe2 can also be combined with conventional 3D semiconductors (such 

as Si and III-Vs), other 2D materials (e.g., TMDs or graphene), and 1D and 0D materials 

to form various 2D/3D, 2D/2D, 2D/1D and 2D/0D vdW heterostructure devices, 

respectively, enabling a wide gamut of functionalities54-61. Indeed, several device 

applications such as ultra-scaled FETs62-65, digital logic66-71, memory72-77, analog/RF78-81, 

conventional diodes82-86, photodetectors87-90, light emitting diodes (LEDs)91-95, lasers96-99, 

photovoltaics100-103, sensors104-108, ultra-low-power tunneling-devices such as tunnel-FETs 

(TFETs)109-114, and piezotronics115-118, among several others, have been demonstrated using 

2D MoS2 and WSe2 (either on exfoliated flakes or synthesized films), highlighting their 

promise and versatility. Concurrently, massive research effort has been devoted to solving 

various key technical challenges, such as large-area wafer-scale synthesis using techniques 

like chemical vapor deposition (CVD) and its variants (such as metal–organic CVD or 

MOCVD), van der Waals (vdW) epitaxy,119-124, reduction of parasitic contact resistance 

(RC), and enhancement of charge carrier mobility (µ), that can improve the operational 

efficiency of these devices and allow MoS2- and WSe2-based circuits and systems to 

become technologically and commercially relevant. 

1.3 PROJECTED PERFORMANCE OF SEMICONDUCTING 2D MOS2 AND WSE2 
To realize low-power and high-performance electronic/optoelectronic devices 

based on 2D semiconducting TMD materials, several key parameters, such as contact 

resistance (RC), channel/contact doping (n- or p-type) and charge carrier mobility (for both 

electrons and holes), need to be effectively engineered to harness the maximum intrinsic 

efficiency from the device31,35,36,38,39. In the case of MoS2 and WSe2, excluding the effect 

of any external factors, their calculated/predicted intrinsic performance are indeed 

extremely promising. Firstly, the quantum limit to contact resistance (RCmin) for crystalline 

semiconducting materials in the 2D limit is determined by the number of conducting modes 

in the semiconducting channel which, in turn, is connected to the 2D sheet carrier density 

(n2D, in units of 1013 cm−2) as RCmin = 26/√n2D Ω·µm125-128. Figure 1.2(a) depicts this 

quantum limit in a plot of RC versus n2D. For n2D = 1013 cm−2, this yields an RCmin of 26 
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Ω·µm, which is well below the projected maximum allowable parasitic source/drain (S/D) 

resistances for high-performance Si CMOS technology (for example, 80 Ω·µm for 

multiple-gate FET technology) as per the ITRS requirements for the year 2026129. Thus, 

2D MoS2 and WSe2-based devices have the potential of meeting the RC requirements if a 

sheet carrier density of ~ 1013 cm−2 or higher is realized in their source/drain contact 

regions by doping or other means.  

Secondly, the predicted room temperature (RT, i.e., 300 K) phonon-limited, or 

“intrinsic”, electron mobility for monolayer MoS2 falls in the range of 130–480 cm2/V-s130-

133. On the other hand, the predicted phonon-limited hole mobility for monolayer MoS2 is 

supposed to be as high as 200–270 cm2/V-s132,134. For monolayer WSe2, the predicted 

intrinsic electron and hole mobility values are as high as 250 and 270 cm2/V-s, respectively. 

Moreover, the calculated saturation velocities (vsat) of electrons and holes in monolayer 

MoS2 are 3.4–4.8 × 106 and 3.8 × 106 cm/s, respectively, whereas the predicted vsat of 

electrons and holes in monolayer WSe2 are as high as 4.0 × 106 and 3.5 × 106 cm/s, 

respectively132. Note that the predicted carrier mobilities and saturation velocities in WSe2 

are comparable to that of MoS2. This makes 2D MoS2 and WSe2 extremely promising for 

various semiconductor device applications and gives them a distinct advantage for use in 

thin-film transistor (TFT) technologies as their predicted carrier mobilities are higher than 

conventional TFT materials such as organic and amorphous semiconductors as well as 

metal oxides135-137. In fact, these TMDs offer channel mobilities that are comparable to 

single-crystalline Si138. Figure 1.2(b) compares the mobility of TMDs against various other 

semiconducting materials. 

Moreover, MoS2 and WSe2 can potentially outperform conventional 3D 

semiconductor devices at aggressively scaled channel lengths (LCH < 5 nm) thanks to their 

excellent electrostatic integrity139-141, finite band gap, and preserved carrier mobilities even 

at sub-nm thickness (monolayer MoS2/WSe2  thickness ~ 0.65 nm), unlike 3D 

semiconductors that can experience severe mobility degradation (due to scattering from 

dangling bonds, interface states, atomic level fluctuations, surface roughness, etc.) and a 

large band gap increase (due to quantum confinement effects) with dimensional/body 
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thickness scaling below ~ 5–10 nm35,36,142-144. Thus, the high predicted mobilities and 

saturation velocities, coupled with their atomically thin nature, high optical transparency 

and mechanical flexibility, make 2D MoS2 and WSe2 very attractive for applications in 

ultra-scaled CMOS technologies as well as in flexible nanoelectronics and flexible “smart” 

systems80,135,136,145-147. 

 

Figure 1.2: (a) Contact resistance (RC) plotted as a function of the 2D sheet carrier density 
(n2D) showing the respective contact resistances of various semiconducting materials (Si, 
III-Vs, graphene, and TMDs). The red dashed line represents the quantum limit to RC. Top 
right inset shows the schematic top view of a basic transistor configuration. Adapted with 
permission from [128]. Copyright Springer Nature 2014. (b) Plot of carrier mobility versus 
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band gap for various semiconducting materials used in technological applications such as 
processors, displays, RFIDs and photovoltaics. TMDs have a distinct advantage over 
poly/amorphous Si and organic semiconductors, and their mobilities are comparable to that 
of single-crystalline Si. Adapted with permission from [148]. Copyright 2017 John Wiley 
and Sons. (c) Projected ON-current performance versus gate length L of monolayer 
MoS2 FETs compared against low-power (LP) (left plot) and high-performance (HP) (right 
plot) ITRS requirements. ITRS requirements are shown in blue with fixed IOFF = 10 
pA/μm for LP and 100 nA/μm for HP. Simulations in red use vsat = 106 cm s−1, with solid 
symbols for CVD-grown MoS2 (µFE = 20 cm2/V-s) and open symbols for exfoliated 
MoS2 (µFE = 81 cm2/V-s). The green curve shows projections for MoS2 FETs using both 
the higher mobility value (i.e., 81 cm2/V-s) and higher vsat = 3.2 × 106 cm s−1, that meet 
ITRS requirements for both LP and HP applications for gate lengths L < 20 nm. Adapted 
with permission from [149]. Copyright 2016 IOP Publishing. 

The projected performance potential of MoS2 transistors has also been investigated 

by several research groups and compared to conventional CMOS devices for applicability 

in future technology nodes. For example, the performance of double-gated monolayer 

MoS2 FETs was theoretically examined (in the presence of intrinsic phonon scattering) and 

compared to ultra-thin body (UTB) Si FETs by Liu et al., with results showing that 

MoS2 FETs can have a 52% smaller drain-induced barrier lowering (DIBL) and a 13% 

smaller subthreshold swing (SS) than 3-nm-thick-body Si FETs at an LCH of 10 nm with 

the same gating140. This favorable performance and better scaling potential of monolayer 

MoS2 FETs compared to UTB Si counterparts was attributed to its atomically thin body (~ 

0.65 nm thick) and larger effective mass that can suppress direct source-to-drain tunneling 

at ultra-scaled dimensions. Moreover, the performance of MoS2 FETs was found to fulfill 

the requirements for high-performance logic devices at the ultimate scaling limit as per the 

ITRS targets for the year 2023140. Through rigorous dissipative quantum transport 

simulations, Cao et al. found that bilayer MoS2 FETs can indeed meet the high-

performance (HP) requirement (i.e., the ON-state current drive capability) up to the 6.6 nm 

node as per the ITRS. Moreover, they showed that with proper choice of materials and 

device structure engineering, MoS2 FETs can meet both the HP and low-standby-power 

(LP, i.e., good subthreshold electrostatics in the OFF-state) requirements for the sub-5 nm 
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node as per the ITRS projections for the year 2026150. Another recent simulation study by 

Smithe et al. revealed that, if the predicted saturation velocity of monolayer MoS2 can be 

experimentally realized (i.e., vsat > 3 × 106 cm/s), then MoS2 FETs can potentially meet the 

required ON-currents (while meeting the OFF-current requirements) for both HP and LP 

applications at scaled ITRS technology nodes below 20 nm. Figure 1.2(c) compares the 

projected ON-currents of monolayer MoS2 FETs against ITRS requirements for different 

MoS2 vsat and field-effect mobility (µFE or µeff) values, as a function of gate length “L”149. 

Like these, several other insightful simulation studies exist which discuss the projected DC 

and high-frequency RF device performance of 2D MoS2 and WSe2 at ultra-scaled gate 

lengths151-154.  

While these performance projections are extremely encouraging, it must be kept in 

mind that these calculations of contact resistance, mobilities, and FET performances 

assume an ideal or a near-ideal scenario wherein the 2D MoS2 under consideration is 

pristine with a defect-free crystal structure, and its material/device properties are evaluated 

in the absence of extrinsic carrier scattering sources and while considering ideal contact 

electrodes (i.e., Ohmic contacts). In practice, several non-idealities and inherent challenges 

exist that can have a detrimental effect on the key performance metrics, thereby, adversely 

affecting the overall MoS2 device performance. The same holds true for WSe2 devices. 

1.4 MAJOR CHALLENGES IN CONTACT, DOPING AND MOBILITY ENGINEERING OF 
2D MOS2 AND WSE2 

1.4.1 THE SCHOTTKY BARRIER AND THE VAN DER WAALS (VDW) GAP 
One of the biggest issues confronting 2D MoS2- and WSe2-based devices is the 

presence of a Schottky barrier (SB) at the interface between the TMD and the contact metal 

electrode. This results in a “non-Ohmic” or a Schottky electrical contact characterized by 

an energy barrier, called the Schottky barrier height (SBH or ΦSB), that hinders the injection 

of charge carriers into the device channel155. Consequently, this notable SBH leads to a 

large RC and a performance degradation (e.g., low field-effect mobilities) in two-terminal 

TMD devices since a large portion of the applied drain bias gets dropped across this 
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RC
156,157. The presence of the SBH in MoS2  and WSe2 devices has been experimentally 

verified by several research groups157-162, and these barriers are thought to be formed due 

to strong Fermi level pinning (FLP) effects at the contact metal/TMD interface127,155,163. 

Detailed microscopic and spectroscopic studies on natural MoS2 flakes revealed high 

concentrations of defects and impurities, such as sulfur vacancies (SVs) and subsurface 

metal-like impurities, which are thought to be responsible for the strong FLP164-167. These 

SV defects/impurities lead to a large background n-doping in the MoS2 and introduce 

unwanted energy levels or “mid-gap states” closer to the conduction band edge (CBE) that 

ultimately governs the location of the charge neutrality level where the metal Fermi level 

gets pinned resulting in fixed barrier heights at the contact/MoS2 interface168-170.  

Further insight on the possible origin of this FLP effect was shed by theoretical 

calculations based on density functional theory (DFT). Kang et al. reported that 

interactions between certain metals and MoS2 can lead to the formation of a 

“metal/MoS2 alloy” at the contact interface with a much lower work function than 

unalloyed MoS2. This leads to an abnormal FLP as if the MoS2 is contacted to a low work 

function metal171. Gong et al., on the other hand, claimed that the FLP mechanism at 

metal/MoS2 interfaces is unique and distinctively different from traditional metal-

semiconductor junctions. According to their calculations, the FLP at the metal/MoS2 

interface is a result of two simultaneous effects: first, a modification of the metal work 

function by interface dipole formation due to the charge redistribution at the interface and, 

second, by the formation of mid-gap states originating from Mo d-orbitals, that result from 

the weakening of the intralayer S-Mo bonds due to the interfacial interaction, and the 

degree thereof, between the metal and the S atom orbitals172. A qualitatively similar result 

was obtained by Farmanbar et al. where they studied the interaction between a wide range 

of metals and MoS2 using DFT and found that this MoS2/metal interaction leads to the 

formation of interface states due to perturbation of the MoS2 electronic band structure, with 

energies in the MoS2 band gap that pin the metal Fermi level below its CBE. The extent of 

this interfacial interaction depends on whether the metal is physisorbed (i.e., weakly 

adsorbed) or chemisorbed (i.e., strongly adsorbed) on the MoS2 surface, resulting in a small 
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or large density of interface states, respectively. Moreover, the authors showed that by 

artificially enlarging the physical distance between MoS2 and the metal, these interface 

states vanished173. Guo et al. suggested that the strongly pinned SBHs at the metal/2D 

MoS2 interface arises due to strong bonding between the contact metal atoms and the TMD 

chalcogen atoms174, in accordance with the age-old theory of metal-induced gap states 

(MIGS) established for metal contacts to conventional bulk 3D semiconductors175-177. The 

SBH prevalent at WSe2/metal interfaces can be thought to have similar origins. 

Regardless of the exact underlying physical mechanism involved, FLP is an 

undesired effect as it leads to fixed SBHs at metal/TMD interfaces. It is for this very 

pinning effect that most metal-contacted MoS2 FETs typically show unipolar n-type 

behavior as the metal Fermi level gets strongly pinned near the CBE of MoS2 irrespective 

of the contact metal work function158,159,178,179. In addition to degrading the device 

performance due to large RC, the reduced tunability of the SBH due to FLP is detrimental 

towards realizing both n-type and p-type Ohmic contacts to MoS2 desirable for CMOS 

applications127. In the case of WSe2 devices, while both n-type and p-type transport (i.e. 

ambipolarity) can be achieved relatively easily, unlike MoS2, by proper choice of the WSe2 

layer thickness, contact metal work function, contact gating etc.161,180,181 , the FLP effect is 

still present and can lead to significant Schottky barrier heights and contact resistances for 

both electron and hole injection. 

 Besides SBH, another relevant parameter associated with these Schottky barriers 

is the width of its depletion region in the semiconductor channel or, simply, the Schottky 

barrier width (SBW). The SBW is largely dependent on the extent of semiconductor “band-

bending” in the 2D TMD/MoS2 channel under the electrode contacted region182. Both the 

SBH and the SBW together determine the charge injection in the 2D MoS2 or WSe2 

channel. While SBH governs the extent of thermionic emission of carriers “over” the 

barrier, SBW determines the extent of thermionic field emission (i.e., thermally-assisted 

tunneling) and/or field emission (i.e., direct tunneling) “through” the width of this barrier 

due to the quantum mechanical tunneling of charge carriers127,155,183,184. Figure 1.3 shows 

the band alignment at the metal/2D TMD interface under different gating conditions and 
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illustrates the different charge carrier injection mechanisms. Note that although the figure 

illustrates the charge carrier injection mechanisms assuming an n-type contact, the same 

underlying concepts are also applicable to p-type contacts. Hence, both the SBH and SBW 

must be minimized to achieve efficient injection of charge carriers (electrons or holes) from 

the contact into the semiconducting TMD channel. Additionally, the FLP-induced SBH 

has been found to depend strongly on the MoS2 layer thickness (especially in the limit of 

1–5 layers) since the electronic band structure of MoS2 undergoes a drastic change as its 

thickness is reduced (recall that band gap increases with decreasing MoS2 thickness), 

leading to a modification of its electron affinity and relative shifts in its band edge positions 

(i.e., CBE and valence band edge or VBE) in the energy-momentum (or E-k) space44,185. 

Owing to these factors, thinner MoS2 with a larger band gap typically yields a larger SBH 

with metal contacts. Same concepts hold true for Schottky barriers in WSe2 devices. 

Finally, in addition to the SB, there are several other important issues that require 

careful consideration. In an ideal scenario, the surface of TMDs has an absence or at least 

a dearth of dangling bonds and, thus, MoS2 does not tend to form interfacial covalent bonds 

with the as-deposited contact electrodes. Hence, the metal/MoS2 interface is characterized 

by the presence of a van der Waals (vdW) gap, especially in the top contact geometry 

(which is most common). This vdW gap acts like an additional “tunnel barrier” for the 

charge carriers in series with the inherent metal/MoS2 SB (as shown in Figure 1.3) and can 

increase the overall RC 127,157,171. Moreover, this vdW gap-induced tunnel barrier also 

manifests itself in multilayer MoS2 devices as additional “interlayer” resistors (since 

adjacent MoS2 atomic layers are also separated by a vdW gap) and can have implications 

on the overall device performance. Therefore, for purely electronic applications, the 

thickness of MoS2 must be carefully chosen for optimum device performance. Some 

elegant ways to overcome this vdW gap issue are to realize “hybridized” top contacts 

and/or “edge contacts” (that have a greater degree of orbital interaction with the MoS2 

atoms/bonds resulting in a more intimate contact having lower RC) instead of the regular 

top contacts127,186. 
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Figure 1.3: Energy band diagram of the n-type contact/MoS2 interface under different 
gating (electrostatic n-doping) conditions depicting the different charge injection 
mechanisms/paths from the metal into the MoS2 channel across the SB. qΦB0 represents 
the SBH. Thermionic emission is represented by Path (1), thermionic field emission by 
Path (2) and field emission by Path (3) as shown in the top band diagram for the case of 
maximum n-doping or maximum gate voltage Vg (that causes maximum downward band-
bending). The additional tunnel barrier due to the vdW gap is also shown (marked by the 
red text). The lateral distance through which the carriers “tunnel” through in Paths (2) and 
(3) represents the SBW. As Vg decreases (i.e., n-doping decreases), the band-bending 
decreases and charge injection is governed by thermionic emission only, as shown by Path 
(1) in the middle and bottom energy band diagrams. Adapted with permission from [127]. 
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1.4.2 CONTACT LENGTH SCALING, DOPING AND EXTRINSIC CARRIER SCATTERING 
A major problem arises when we consider “contact length scaling” for MoS2 and 

WSe2. Contact length (LC) scaling is required when we consider designing aggressively 

scaled ultra-short-channel devices based on any semiconductor, because LC must be shrunk 

by a similar factor as the channel length (LCH) as it will determine the final device 

footprint/density and can lead to chips with smaller area and faster speeds187,188. However, 

while scaling LCH decreases the channel resistance (RCH), scaling LC increases RC in 2D 

TMDs. These two effects are contradictory to each other and device performance will 

ultimately be limited by RC for aggressively scaled devices189. LC scaling issue mainly 

arises from the fact that in 2D TMDs like MoS2, the transfer length (LT)—i.e., the average 

length over which the charge carriers move in the semiconductor before being transferred 

to the contact electrode (also referred to as the “current crowding” effect at 

metal/semiconductor contacts)190-192—is often large. Figure 1.4(a) shows the schematic 

illustration of this “current crowding” effect at the metal/2D TMD junction using a resistor 

network model. For example, LT = 600 nm for monolayer MoS2 182 and 200 nm for six-

layer MoS2 with Ti contacts192. If the LC is scaled below LT (i.e., LC << LT), then 

RC increases as per the relation RC = ρC/LC where ρC is the specific contact resistivity [note 

that RC is independent of LC when LC >> LT and is then given by the relation RC = √(ρC ρSH) 

where ρSH is the sheet resistance of the semiconducting channel underneath the 

contact]127,193. Therefore, for ultra-short-channel FETs (targeting the sub-10 nm node) 

based on 2D TMDs, it is extremely important to minimize ρC or, in other words, minimize 

LT [since LT = √(ρC/ρSH)] to achieve low RC. This is important because the RC of any FET 

must only be a small fraction (~ 20%) of the total FET resistance (i.e., RCH + 2RC) for the 

transistor to operate properly while ensuring that its current-voltage (I-V) behavior is 

primarily determined by the intrinsic channel resistance RCH 127,129. Hence, it is imperative 

that RC must scale (i.e., reduce) together with both LCH and LC before TMD-based FETs 

can come anywhere close to rivaling the performance of state-of-the-art Si and III-V device 

analogs (for reference, the RC values reported for most TMD FETs to date are about an 

order of magnitude higher than in today’s Si Fin-FET technologies where RC is well below 
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100 Ω·µm)127,128,155. Now, the ρC is strongly dependent on the SBH among other factors, 

hence minimizing or eliminating the SBH is a guaranteed way to alleviate the RC issue in 

TMD FETs.  

Next, the ultra-thin nature of the 2D MoS2 and WSe2 makes it incredibly 

challenging to employ conventional CMOS-compatible doping techniques (ion 

implantation or high-temperature diffusion) to perform controlled and area-selective 

doping to control the carrier type (n or p) and carrier concentration (ranging from 

degenerate in the source/drain contact regions to non-degenerate in the channel region) in 

MoS2- and WSe2-based FETs, especially at the monolayer limit194. This is primarily 

because the atomically thin TMD lattice is highly susceptible to structural damage and 

etching which, for example, is typically unavoidable in the ion implantation process195. 

Lastly, MoS2 and WSe2 devices typically show much lower intrinsic carrier mobilities in 

experiments than the predicted phonon-limited values, implying the existence of extrinsic 

carrier scattering sources. Thus, it is important to eliminate or minimize the effect of these 

extrinsic charge carrier scattering mechanisms, such as substrate remote phonons, surface 

roughness, charged impurities, intrinsic structural defects (e.g., SVs), interface charge traps 

(Dit) and grain boundary (GB) defects that can severely degrade the mobility in 2D MoS2- 

and WSe2-based devices148,185,196-203. Figure 1.4(b) schematically illustrates some 

prominent extrinsic charge carrier scattering mechanisms prevalent in a 2D TMD device 

channel. 
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Figure 1.4: (a) Schematic illustration of the contact length (LC), transfer length (LT) and 
current injection (or the “current crowding” effect) near the metal contact/2D TMD 
interface edge. The different resistive components at play are marked in the resistor 
network model (note: in the figure, ρC is depicted as rC, LC is depicted as l, and TMD is 
depicted as SC). Adapted with permission from [127]. Copyright Springer Nature 2015. (b) 
Schematic illustration of the various extrinsic charge carrier scattering mechanisms in a 2D 
TMD/MX2 device channel. The black and blue balls denote the M and X atoms, 
respectively. The orange balls and corresponding orange dashed arrows denote the 
electrons and their paths in the channel, respectively. Change in the direction of the carrier 
path denotes a scattering event. The green balls and the smeared green areas denote the 
charged impurities and their scattering potentials, respectively. The red arrow denotes the 
polar phonon in the top dielectric. Hollow blue circle represents atomic vacancies which 
tend to form in both natural and synthetic chalcogenides. Blue dashed line represents grain 
boundaries (GBs) which are typically present in synthetic chalcogenides. Adapted from 

[185] with permission of The Royal Society of Chemistry. 
 

a. 

b. 
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1.4.3 TACKLING THE MAJOR CHALLENGES 
To achieve low-power, high-performance and ultra-scaled devices based on 2D 

MoS2 and WSe2, it is highly necessary to come up with effective solutions to alleviate the 

various issues, as highlighted above, that have an adverse effect on key device performance 

metrics. It is worth noting that solutions to several of these problems are intertwined and 

solving one can alleviate the other. As an obvious case, reduction of the SB (either by 

minimization of the SBH or thinning of the SBW) lowers the RC and effectively improves 

the charge injection efficiency and the field-effect mobility (µFE) in TMD FETs. Reduction 

of the SBH can lead to a reduced specific contact resistivity ρC. With area-selective and 

controlled doping, one can potentially realize degenerately doped S/D contact regions in 

MoS2 and WSe2 devices, just like in the conventional Si-CMOS case, to achieve Ohmic 

contacts. Realization of edge contacts to mono-, few- or multilayer MoS2 and WSe2, such 

that each individual layer of the TMD stack is independently contacted from the side, can 

not only help in eliminating the vdW gap-induced tunnel barriers and interlayer resistances, 

but it can also be useful in terms of contact scaling and overall device area/footprint 

reduction. Unsurprisingly, therefore, there has been an extensive research effort in the past 

few years to explore effective solutions for mitigating the various challenges associated 

with the contact, doping and mobility engineering of 2D MoS2 and WSe2 devices.  

This dissertation describes in detail some novel and promising engineering 

approaches to tune the charge carrier doping densities in devices based on 2D MoS2 and 

WSe2 (specifically, electrons in MoS2 and holes in WSe2). The doping consequently leads 

to the alleviation of the adverse effects of both the Schottky barrier-induced contact 

resistance and external charge carrier scattering, thereby, resulting in an improvement in 

the charge carrier field-effect mobilities in these devices. Thorough experimental 

characterizations, backed by theoretical DFT calculations, reveal the underlying 

mechanisms responsible for each of these doping effects. 
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Chapter 2: Interfacial-Oxygen-Vacancy Mediated N-Doping of MoS2 by 
Solution-Processed Amorphous TiOx  

2.1 INTRODUCTION  
In order to alleviate the large RC in MoS2 FETs, insightful work has been done by 

several groups over the past few years. Das et al. demonstrated the use of low work function 

scandium as an efficient electron injector into the conduction band of MoS2
158. N-type 

charge transfer dopants such as potassium ions (K)204 and polyethylenimine (PEI)205 have 

been utilized, although these doping reagents are unstable in ambient conditions. The use 

of graphene–metal heterocontacts206 and air stable doping via benzyl viologen (BV)207 

were shown to be effective strategies, but the RC values were still greater than 1 kΩ·μm 

and only moderate channel mobilities were achieved. More recently, the use of phase 

engineered contacts208 and chloride doping209,210 were demonstrated on MoS2 with 

promising results. However, the stability of the phase engineered contacts under high-

performance device operation is still unknown208. Furthermore, the chloride doping 

mechanism is unclear and it is speculated that the doping occurs due to filling of the 

naturally occurring sulfur vacancies in MoS2 by chlorine atoms210. Besides doping and the 

corresponding RC reduction, considerable effort has also been put into dielectric 

engineering utilizing high dielectric constant (high-κ) materials to reduce the scattering of 

carriers in MoS2 devices. Although several high-κ dielectrics have been investigated, 

atomic layer deposition (ALD) of alumina and hafnia have been the most common 

choices40,66,136,211-213. 

In this Chapter, we demonstrate an air stable, self-encapsulating, n-type charge 

transfer doping technique on monolayer (ML) MoS2 utilizing amorphous titanium 

suboxide (ATO) thin films. The ATO can be solution processed in the form of a sol–gel 

 
The results, discussions and figures presented in this Chapter have been adapted with permission 

from the following reference: Rai, A., Valsaraj, A., Movva, H. C. P., Roy, A., et al. (2015). Air Stable Doping 
and Intrinsic Mobility Enhancement in Monolayer Molybdenum Disulfide by Amorphous Titanium 
Suboxide Encapsulation. Nano letters, 15(7), 4329-4336. The dissertator, A. Rai, conceived and designed the 
experiment, fabricated the devices, performed the electrical, Raman and photoluminescence measurements, 
analyzed the data and largely wrote the manuscript with contributions from all the authors. 
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precursor and its application involves a simple spin-coating process, thereby making this 

approach extremely facile and easily scalable in contrast to the phase engineering or 

chloride doping schemes that require several hours of treatment with their respective 

chemical reagents208,214. Utilizing this technique, we achieved a very low RC of ~ 180 

Ω·μm on ML MoS2, which compares favorably to the RC values obtained on 2–3 layer 

MoS2 with phase engineered contacts208 and is ~ 2.5 times lower than the RC reported on 

chloride-doped multilayer MoS2 FETs210. An ON-current as high as 240 μA/μm was 

achieved for a 450 nm channel length (L) back-gated FET with an oxide thickness (tOX) of 

93 nm at a drain-to-source voltage (VDS) of 2 V and back-gate overdrive voltage (VBG – VT) 

of 70 V. Field-effect mobilities (μFE) as high as 83 cm2/V-s and intrinsic mobilities (μint) 

as high as 102 cm2/V-s were achieved on ML MoS2 devices at room temperature (RT) 

upon ATO encapsulation. Temperature-dependent measurements revealed enhanced 

intrinsic mobilities approaching 501 cm2/V-s in ATO encapsulated ML MoS2 at 77 K. 

Density functional theory (DFT) analysis was performed to gain further insight into the 

doping mechanism of ATO films on ML MoS2. 

2.2 DEVICE FABRICATION AND MATERIAL CHARACTERIZATION DETAILS 

2.2.1  Materials and Device Fabrication Methods 
MoS2 flakes were mechanically exfoliated, using the conventional ‘scotch-tape’ 

method, from a bulk MoS2 crystal (SPI Supplies) onto degenerately doped (ρ < 0.005 Ω-

cm) n-type Si substrates covered with 93 nm thermally grown SiO2. The oxide thickness 

was verified via ellipsometry measurements. Upon exfoliation, the samples were annealed 

in high vacuum (2 x 10-6 Torr) at 350°C for 8 h. This high vacuum annealing step helps 

minimize tape residues from the top surface of the flakes as well as trapped adsorbates, 

such as moisture, from in between the flake and the underlying SiO2 substrate. A 

combination of optical contrast, atomic force microscope (AFM), Raman and 

photoluminescence (PL) measurements were used to identify atomically flat monolayer 

MoS2 flakes of interest. Contacts on the flakes were patterned using standard electron beam 

lithography utilizing PMMA as the e-beam resist, followed by development in 1:3 
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MIBK:IPA to open up the pads. Electron beam evaporation (at a base pressure of 5 x 10-6 

Torr) and acetone lift-off steps were used to deposit a 20/30 nm stack of silver/gold 

(Ag/Au) which served as the contact electrodes. Ag was chosen as the contact metal due 

to the superior interface quality that it forms with MoS2
215 besides having good adhesion 

with the SiO2 substrate. No annealing was done after contact deposition. The contact width 

was fixed at 1 µm. ATO thin films were deposited on top of the MoS2 devices by spin-

coating an ATO sol-gel precursor solution (85 mg/ml) followed by a short baking step, all 

of which was done in ambient conditions. The typical spin speed was 3000 rpm for a 

duration of 45 s, following which the samples were baked at 90°C on a hot plate for 15 min 

in order to dry the residual solvent and enable the conversion of the ATO precursor 

molecules into ATO through hydrolysis. The thickness of ATO films deposited in this 

manner was ~ 140 nm with an average surface roughness below 0.5 nm as determined from 

AFM. The κ value of the ATO film was extracted to be ~ 10 from high frequency 

capacitance-voltage (HFCV) measurements. 

2.2.2  Characterization Tools and Techniques 
Optical investigation was done using an Olympus BX51M Microscope using their 

proprietary Stream Essentials analysis software. Ellipsometry measurements were taken 

using a JA Woollam M-2000 ellipsometer. Raman spectroscopy measurements were taken 

with a Renishaw inVia micro-Raman system with an excitation wavelength of 532 nm and 

a grating of 3000 l/mm. Photoluminescence measurements were taken with a Renishaw 

inVia micro-Raman system configured for photoluminescence with specialized optics at 

an excitation wavelength of 532 nm and a grating of 1200 lines/mm to obtain high energy 

peaks. Atomic force microscopy images were taken with a Veeco Nanoscope 5 in tapping 

mode. X-ray Photoelectron Spectroscopy was performed in a MULTIPROBE system from 

Omicron NanoTechnology GmbH utilizing a monochromatic Al-Kα source. Electrical 

characterization of the devices was done in dark using the Agilent 4156C and B1500A 

Semiconductor Parameter Analyzers. Ambient measurements were carried out in a 

Cascade Summit 11000 AP probe station. Low temperature and vacuum measurements (< 
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5 x 10-5 Torr) were carried out in a Lakeshore Cryotronics cryogenic probe station. All 

electrical measurements prior to ATO encapsulation were performed in vacuum in order 

to exclude the degrading effects of atmospheric adsorbates on the MoS2 channel. All 

measurements post encapsulation were performed in ambient conditions except the low 

temperature measurements which were done in vacuum. Note that the gate voltage sweep 

direction was from positive to negative voltages for the FET data presented in this Chapter. 

2.2.3  Preparation of the Sol-Gel Precursor Solution 
The ATO precursor solution was prepared utilizing the recipes as outlined in 

previous literature reports216,217. The sol-gel preparation procedure is as follows: 25 ml of 

2-methoxyethanol (CH3OCH2CH2OH, Aldrich, 99.9+%) and 2.5 ml of ethanolamine 

(H2NCH2CH2OH, Aldrich, 99.0+ %) were first mixed in a cylindrical glass vessel equipped 

with a thermometer. The mixture was left for 10 min under magnetic stirring following 

which 5 ml of titanium (IV) isopropoxide (Ti [OCH (CH3)2]4, Aldrich, 99.999%) was 

added to the mixture. The cylindrical vessel containing the final mixture was then placed 

in a silicone-oil bath and was heated to 80°C for a period of 2 h. under magnetic stirring. 

The temperature was then raised to 120°C for 1 h. This two-step heating cycle (80°C – 2 h 

+ 120°C – 1 h) was then repeated a second time at the end of which the color of the solution 

turned yellowish orange, indicating the formation of the ATO precursor solution. The 

concentration of the as-prepared solution was determined to be ~ 85 mg/ml. This was done 

by completely evaporating the solvent from 5 mL of the as-prepared solution and 

measuring the weight of the residual crystallites. In the case of graphene, diluted solutions 

of the ATO precursor (10 mg/ml or 20 mg/ml) were used217. However, for doping the ML 

MoS2, the as-prepared precursor solution with the high initial concentration was chosen 

because, unlike graphene, monolayer MoS2 has a large band gap and would need 

substantial doping to achieve high carrier densities unlike graphene. 
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2.2.4  X-Ray Photoelectron Spectroscopy (XPS) Analysis of ATO Films 
Figure 2.1 below shows the XPS spectra as measured from the surface of our as-

formed ATO films showing the corresponding binding energies of the Ti 2p 3/2, Ti 2p 1/2 

and O 1s states. The elemental composition of our ATO film was determined by integrating 

the peak areas of the Ti 2p and O 1s spectra by properly fitting the components to each 

peak. It is to be noted that the O 1s peak shows the presence of two components. The peak 

at ~ 532 eV represents the un-bonded component of O probably resulting from OH species 

and, hence, it was not considered in our ratio determination. Only the shifted O 1s 

component at ~ 531 eV was considered as it represents bonding between the O and Ti 

atoms. We found the Ti:O ratio in our ATO films to be ~ 1:1.5. 

 

Figure 2.1: XPS spectra obtained from as-formed ATO films showing the Ti 2p (top plot) 
and O 1s (bottom plot) bonding states. 

2.3 ATO DOPING SCHEME AND SPECTROSCOPIC CHARACTERIZATION OF ATO-
ENCAPSULATED MONOLAYER MOS2 

  The mechanism of charge transfer doping is particularly attractive for ultrathin 

layered materials because it does not involve any substantial distortion of the 2D crystal 

lattice207. Several charge transfer doping techniques that were previously demonstrated on 

carbon-based nanomaterials were also successfully demonstrated on MoS2
204,205,207. 
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Similarly, we investigate the effects of high-κ ATO thin films on MoS2 that serve as an n-

type charge transfer dopant. For the purpose of this experiment, only ML MoS2 flakes were 

considered. ATO thin films were deposited on MoS2 FETs by spin-coating at 3000 rpm 

and subsequent baking of an ATO sol–gel precursor solution at 90°C on a hot plate for 15 

min to dry the residual solvent and convert the precursor solution into ATO through 

hydrolysis. ATO thin films obtained using this process were reported to have band gaps of 

~ 3.7216 and ~ 3.9 eV217 corresponding to a Ti:O ratio of 1:1.34 and 1:1.59, respectively. 

The amorphous nature of these films and their large band gaps have been confirmed in 

literature by X-ray diffraction (XRD) and optical absorption measurements, 

respectively216,217 . The Ti/O ratio in our films was estimated to be ~ 1:1.5 from the XPS 

data confirming the oxygen deficiency. Also, from the reported band gaps for ATO films 

with different Ti/O ratios216,217, the band gap of our films can be estimated to be between 

3.7 and 3.9 eV. Therefore, ATO can effectively be regarded as a wide band gap amorphous 

oxide semiconductor. As TiO2 can serve as channel for n-type thin film transistors218-220, it 

is important to first rule any parallel conduction paths that can be added to the 

MoS2 channel by the encapsulating ATO layer. To test for possible conduction through the 

ATO film, a set of control devices without the MoS2 channel were fabricated in exactly the 

same manner as the actual devices. No conduction was observed through the as-formed 

ATO layer even under higher biasing conditions (both back-gate and drain) than what was 

used in actual devices. Hence, the ATO films in our case were found to be completely 

insulating. 

  Figure 2.2(a) shows an image of the as-prepared ATO sol–gel precursor solution 

with a concentration of ~ 85 mg/mL. Figure 2.2(b) shows a schematic of the chemistry 

responsible for the formation of ATO from titanium isopropoxide, its precursor molecules. 

A schematic of a back-gated FET encapsulated by ATO is illustrated in Figure 2.2(c).  
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Figure 2.2: (a) Optical image of the as-prepared ATO precursor solution showing its 
characteristic yellowish-orange color. (b) Schematic of chemical steps involved in the 
formation of ATO from its precursor molecules, namely titanium isopropoxide (R = CH 
(CH3)2). (c) Schematic of a representative back-gated ML MoS2 FET with Ag/Au 
source/drain contact electrodes and ATO encapsulation. 

  The doping of MoS2 leads to changes in its Raman and photoluminescence (PL) 

spectra. Figure 2.3 compares the normalized Raman spectra of an as-exfoliated ML 

MoS2 flake (blue) to that of the same flake after encapsulation by ATO (red). The peak 

positions of the out-of-plane A1g and in-plane 𝐸𝐸2𝑔𝑔1  peaks for the bare ML MoS2 are at 402.0 

and 383.0 cm–1, respectively, corresponding to a peak separation of 19 cm–1. This peak 

separation is characteristic of ML MoS2
221. Upon encapsulation with ATO, the 𝐸𝐸2𝑔𝑔1  peak 

position and peak full-width half-maximum (FWHM) remain relatively unchanged. On the 

other hand, the A1g peak shows a distinct broadening with its FWHM increasing from 6.6 

to 8.1 cm–1, as well as a redshift from 402.0 to 399.6 cm–1. This redshift and peak 

broadening of the A1g Raman mode are characteristic of doped MoS2 and have been 

observed in previous doping studies207. Figure 2.4 compares the PL spectra of a ML 

MoS2 flake before (blue) and after (red) encapsulation with ATO. Before encapsulation, 
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the peak position of the A exciton is at 1.86 eV, consistent with reported values for ML 

MoS2
41. Upon ATO encapsulation, the A exciton peak shows a decrease in intensity and a 

redshift of 16 meV, which can be attributed to the formation of negatively charged trions 

from excitons as a result of the increased electron concentration222,223. The pronounced 

changes in the Raman and PL spectra of ML MoS2 upon ATO encapsulation clearly 

indicate the n-type doping effects of ATO on MoS2. 

 
Figure 2.3: Raman spectra of ML MoS2 showing its characteristic A1g and 𝐸𝐸2𝑔𝑔1  peaks before 
(blue) and after (red) ATO encapsulation illustrating the electron doping-induced changes 
in the peak positions and peak widths. 
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Figure 2.4: Photoluminescence spectra of ML MoS2 before (blue) and after (red) ATO 
encapsulation showing a redshift in the peak position of the A exciton. 

2.4 ELECTRICAL CHARACTERIZATION AND CONTACT RESISTANCE EVALUATION OF 
ATO-DOPED BACK-GATED MOS2 TRANSISTORS 

2.4.1  Transfer and Output Characteristics of ATO-Encapsulated Back-Gated 
MoS2 Transistors 
The transfer characteristics of a representative back-gated MoS2 FET at VDS = 1 V, 

before and after ATO encapsulation, as well as after one month of exposure to ambient 

conditions are shown in Figure 2.5 below. All FETs were fabricated on 93 nm SiO2/n+2 Si 

substrates. The transfer curve before doping (blue) indicates a strong electrostatic gate 

control over the channel with a threshold voltage (VT) of 7 V, extracted from the linear 

region of the transfer characteristics, and an ION/IOFF ratio up to 108. Upon encapsulation 
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with ATO, the gate modulation is significantly reduced (red curve), and the VT shifts to 

−25 V. This large negative VT shift is indicative of the n-doping effect of ATO. The 2D 

sheet electron concentration (n2D) after ATO doping can be estimated as n2D = 

(COX |ΔVT|)/q, where q is the electron charge, COX = 3.71 × 10–8 F/cm2 is the gate oxide 

capacitance, and ΔVT = − 32 V is the shift in threshold voltage right after doping. The 

extracted value of n2D for this device upon doping was 7.4 × 1012 cm–2. Previous doping 

studies on MoS2 utilizing K ions204 and benzyl viologen207 reported n2D values of 1 × 

1013 cm–2 and 1.2 × 1013 cm–2
, respectively. The n2D value as a result of ATO doping is 

slightly lower in our case, however, it should be noted that our experiments used ML flakes 

unlike previous studies that utilized multilayer flakes. The long-term air stability of 

encapsulated ATO doping is evident from the electrical data as even after 30 days of 

exposure to ambient conditions, the device shows similar ON-currents, a weak gate 

modulation, and has an n2D = 3.7 × 1012 cm–2 (green curve). Moreover, by virtue of being 

self-encapsulating, ATO films protect the underlying MoS2 channel from the degrading 

effects of atmospheric adsorbates. However, there is slight performance degradation after 

extended ambient exposure in ATO encapsulated devices. 

The inset of Figure 2.5 shows the transfer characteristics of the same device at 

larger gate and drain biases following the ATO encapsulation. The 450 nm channel length 

device could be switched off to a moderate extent (ION/IOFF = 4 × 103, subthreshold swing 

= 1.6 V/decade) at large negative gate biases even though VDS was as high as 2 V. Further 

optimization and control over the starting concentrations of the ATO precursor solution or 

realization of top gated devices with ATO encapsulated S-D access regions would help 

yield an ideal balance between ION/IOFF ratio and high saturation ON-currents. Figure 2.6 

shows the output characteristics of the same device as in Figure 2.5. After ATO 

encapsulation, the ON current of the ML device at VDS = 1 V and VBG = 25 V is 144 μA/μm, 

which is 2.5 times greater than the corresponding value for the undoped device. The inset 

of Figure 2.6 shows the output characteristics of the same device subject to larger biasing 

conditions. At a VDS of 2 V and VBG of 45 V, the ON current is as high as 240 μA/μm 

showing the onset of current saturation at large positive gate and drain biases. Our ATO-
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doped ML MoS2 FET with an ON current of 240 μA/μm compares well with the highest 

drain current to date on chloride-doped multilayer MoS2 FETs210,214, taking into account 

the fact that the channel length in our case was 4.5 times larger and the device was made 

on a ML flake. 

 

Figure 2.5: Transfer characteristics, shown on a semilog scale, of a representative ML 
MoS2 FET at VDS = 1 V before (blue) and after (red) ATO doping, and after 30 days of 
ambient exposure (green). Inset shows the transfer characteristics of the doped FET 
measured under larger gate (−45 to 45 V) and drain biasing (2 V) conditions. The channel 
length and width are 450 nm and 10.4 μm, respectively. 
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Figure 2.6: Output characteristics of the FET in Figure 2.5 before (blue) and after (red) 
ATO doping. Inset shows the output characteristics under larger biasing conditions with 
the ON-current reaching up to 240 μA/μm at a VBG of 45 V and VDS of 2 V. 

2.4.2  Performance Degradation in ATO-Encapsulated Devices 
As discussed above, the doping effect observed in ATO encapsulated devices is 

absent when it is replaced by stoichiometric TiO2. Therefore, it is reasonable to assume 

that the slight degradation observed in the performance of ATO-encapsulated MoS2 

devices over long term air exposure (30 days) could be due to the ATO becoming more O-

rich at the ATO–MoS2 interface owing to its interaction with the pre-adsorbed oxygen and 

water molecules on the strongly hydrophilic SiO2 substrate. The resulting oxide or 

hydroxide formation can adversely impact the electron donating capability of Ti atoms to 



 

30 

MoS2 at the ATO–MoS2 interface. Moreover, the pre-adsorbed oxygen or water molecules 

on the underlying SiO2 substrate can react over time and degrade the quality of the ML 

MoS2 itself. A possible way to eliminate any degradation effects could be to encapsulate 

the devices in ATO from both the top and bottom, especially since it has been shown that 

ATO is much more hydrophobic than SiO2
216

. Other ways could be to use alternate 

substrates instead of SiO2 such as h-BN. Moreover, further optimization of the preparation 

and deposition methods of the as-prepared ATO precursor solution is needed in order to 

minimize any impurities or trapped moisture in the overlaying dielectric. 

2.4.3  Contact Resistance Evaluation of ATO-Doped Back-Gated MoS2 Transistors 
In order to quantify the effect of ATO doping on the electrical contact between the 

metal (Ag) and the ML MoS2, a transfer length method (TLM) analysis was carried out. A 

suitable large area ML flake was identified, upon which a set of contacts were fabricated 

with different channel lengths as shown in the inset of Figure 2.8. The basic equation 

underlying the TLM analysis can be written as RTOTAL = (RSHL)/W + 2RC, where RTOTAL is 

the total measured resistance of a channel between two contacts, RSH is the sheet resistance 

of the channel, L and W are the channel’s length and width, respectively, and RC is the 

contact resistance. By fitting a plot of (RTOTAL·W) as a function of L, key parameters such 

as RSH, RC, and transfer length (LT) can be extracted. Figure 2.7 shows the total resistance, 

measured at a VBG of 25 V and VDS of 0.1 V, as a function of L before (blue) and after (red) 

ATO encapsulation. From a linear fit to the measured resistances before doping, an RSH of 

20.1 kΩ/□, RC of 2.9 kΩ·μm and a transfer length (LT) of 145 nm were extracted. Fitting 

the measured resistances after ATO encapsulation, we extracted an RSH of 12.4 kΩ/□, RC of 

~ 180 Ω·μm (inset of Figure 2.7), and an LT of 15 nm. This significant reduction in RSH, RC, 

and LT upon ATO encapsulation reflects the efficacy of this doping technique. This is one 

of the lowest reported RC value among all previous n-type doping studies on 

MoS2
204,205,207, and compares well with the recently reported record low RC value (~ 80 

Ω·μm at a VBG of 30 V) on MoS2 with phase engineered contacts208.  
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Figure 2.7: Plot of total resistance as a function of channel length as determined from the 
TLM structure before (blue) and after (red) ATO doping at a VBG of 25 V. The solid blue 
and red lines are linear fits to the data. The RC and LT extracted before doping are 2.9 
kΩ·μm and 145 nm, respectively. After ATO doping, the extracted RC is ~ 180 Ω·μm 
and LT is 15 nm. Inset: zoomed in view of the extrapolated dashed red line. 
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Figure 2.8: Extracted RC as a function of VBG before (blue) and after (red) ATO doping. 
The RC shows a strong gate dependence before doping and a weak gate dependence after 
doping. Inset: optical micrograph image of the as-fabricated TLM structure. 

Figure 2.8 above shows the extracted RC values plotted as a function of VBG before 

and after ATO encapsulation. For the undoped case (blue curve), the RC shows a strong 

dependence on gate bias and increases exponentially at negative gate biases due to the large 

Schottky barriers present at the contacts. On the other hand, for the ATO doped case (red 

curve), the RC is fairly independent of the applied gate bias for VBG > − 10 V. This results 

from the substantial thinning of the Schottky barrier width as a consequence of heavy 

doping at the contact regions. This Schottky barrier thinning effect is also apparent in the 

transfer characteristics temperature dependence, and in the output characteristics measured 
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at 77 K of a back-gated ML MoS2 FET after ATO doping as discussed in Section 2.4.4 

below. Thus, in the ATO-doped ML MoS2 devices the effective Schottky barriers are 

significantly reduced even though the doping occurs along the contact edges as opposed to 

directly underneath the contacts. We note that this ATO doping effect on ML MoS2 is 

absent when stoichiometric TiO2 is used, as demonstrated previously in the case of 

graphene217,224. This was verified by depositing TiO2 on back-gated ML MoS2 FETs 

utilizing a recently demonstrated technique225 as shown in Section 2.4.5 below. 

2.4.4  Transfer Characteristics Temperature Dependence & Output 
Characteristics at 77 K of a Back-Gated ML MoS2 FET Before/After ATO 
Figure 2.9 below shows the temperature dependent transfer characteristics of a 

back-gated ML MoS2 FET (L = 4 µm, W = 2 µm) at a VDS of 100 mV. The x-axis is back-

gate overdrive voltage (VBG – VT) and the VT of each individual curve was taken into 

account in generating the above plots. Before ATO doping (plot on the left), the current at 

a fixed gate overdrive voltage decreases as the temperature is lowered indicating Schottky-

barrier limited transport which is dominated by thermionic emission over the barriers. After 

ATO doping (plot on the right), the trend reverses and the current at a fixed gate overdrive 

voltage increases as the temperature is lowered which is characteristic of phonon-limited 

transport. The dominant transport mechanism is no longer thermionic emission, but 

tunneling through the barriers as a consequence of doping-induced Schottky barrier width 

thinning. 
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Figure 2.9: Temperature dependent transfer characteristics of a back-gated ML MoS2 FET 
before (top plot) and after (bottom plot) ATO encapsulation. 
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Figure 2.10: Output characteristics of the back-gated ML MoS2 FET from Figure 2.9 at 77 
K before (top plot; blue curves) and after (bottom plot; red curves) ATO encapsulation. 
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Figure 2.10 above shows the output characteristics of the back-gated ML MoS2 

FET, presented in Figure 2.9, measured at a temperature of 77 K before and after ATO 

doping. The effect of Schottky barriers on electron transport will be greater at 77 K owing 

to the reduced thermal energy of the carriers. The plot on the left (blue curves) depicts the 

bare MoS2 FET clearly illustrating the exponential IDS – VDS behavior indicative of 

substantial Schottky barriers between the MoS2 and the Ag contact. In contrast, after the 

device is encapsulated in ATO, the output characteristics show a linear transport behavior 

indicating Ohmic contacts as depicted in the plot on the right (red curves). This linear 

behavior results due to the doping-induced thinning of the Schottky barrier width, thereby 

allowing the electrons to easily tunnel through. 

2.4.5  Deposition Method of Stoichiometric TiO2 and its Effect on MoS2 FET 
Performance 
The method to deposit TiO2 on MoS2 was adopted from a recent report of forming 

TiO2 dielectrics on graphene as demonstrated by Corbet et al.225 Using an SEC-600 e-beam 

evaporator from CHA Industries, high purity titanium pellets were evaporated from a 

titanium carbide crucible at a base pressure of 5 x 10-6 Torr which further reduced to 1 x 

10-6 Torr during Ti deposition. Ti films with a thickness of 1 nm were evaporated at a rate 

of < 0.1 Å/s with the chamber being vented to atmosphere after each 1 nm of deposition in 

order to oxidize the Ti film to TiO2. A 5 cycle deposition was performed which resulted in 

a TiO2 film about 6 nm thick as has been demonstrated using ellipsometry and TEM 

analysis225. Furthermore, XPS measurements reported on titanium oxide deposited in this 

manner revealed a pure TiO2 film225. 
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Figure 2.11: Transfer characteristics of a back-gated ML MoS2 FET before (red) and after 
(blue) ~ 6 nm TiO2 deposition at a VDS of 1 V. 

Unlike the ATO films, the stoichiometric TiO2 film did not show any doping effect 

when deposited on back-gated ML MoS2 FETs. Instead, as illustrated in Figure 2.11 above, 

the device showed a performance degradation. This can be explained by the poor interface 

quality that probably forms between MoS2 and PVD deposited TiO2. In fact, mobility 

degradation was also reported in graphene FETs with TiO2 gate dielectrics225. Furthermore, 

the degradation could also be due to short range scattering by TiO2 impurities as has been 

observed in the case of graphene224. 
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 2.5 THEORETICAL INVESTIGATION OF THE DOPING MECHANISM OF MOS2 BY ATO 
USING DENSITY FUNCTIONAL THEORY 
To gain further insight into the doping mechanism of MoS2 by ATO, an ab initio 

DFT analysis was carried out to study the effects of both a Ti-rich and an O-rich interface 

of an underlying TiO2 slab on the electronic structure of ML MoS2 via band structure and 

atom-projected density-of-states (AP-DOS) calculations. The DFT simulation was 

performed using the Vienna ab initio simulation package (VASP)226,227 and exact details 

of the methodology employed here are described elsewhere228. Briefly, our simulations 

were performed by constructing a supercell of ML MoS2 on an approximately 1 nm thick 

TiO2 slab. Atomic relaxation was performed within a rectangular supercell (a = 9.366 

Å, b = 5.407 Å) chosen to reduce the lattice mismatch between ML MoS2 and rutile-

TiO2 as shown in Figure 2.12. The rutile phase was chosen for the simulation because it is 

the most common natural form of TiO2
229. As stated before, we consider two possible 

terminations for the TiO2 slab, a Ti-rich TiO2 slab and an O-rich TiO2 slab. For the Ti-rich 

TiO2 case, the surface O atoms were removed from the supercell corresponding to an O-

vacancy density of 7.896 × 1014/cm2 in order to mimic the ATO structure with interfacial 

O-vacancies. In these 0 K simulations, the highest occupied state corresponds to the 0 eV 

reference energy.  
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Figure 2.12: Supercell showing the composite crystal structure consisting of ML MoS2 on 
an underlying rutile-TiO2 slab as simulated in VASP. For simulating the O-rich TiO2 case, 
the TiO2 slab was left unaltered. In contrast, for the Ti-rich TiO2 case, a suitable number 
of O vacancies were created in TiO2 at the ML MoS2–TiO2 interface so as to mimic the 
MoS2–ATO scenario. Note: All DFT simulations presented in Chapters 2 and 3 were 
performed at The University of Texas at Austin by Amithraj Valsaraj under the supervision 
of Professor Leonard F. Register. 
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Figure 2.13: (a) Band structure and atom-projected density-of-states (AP-DOS) plots for 
the ML MoS2–Ti-rich TiO2 case. From the plots, it can be deduced that in the presence of 
O vacancies, electronic states from Ti atoms are introduced near the conduction band edge 
of ML MoS2 causing the Fermi level to get pinned above the conduction band indicating 
strong doping. (b) Band structure and AP-DOS plots for the ML MoS2–O-rich TiO2 case. 
No doping effect is seen in this case and the Fermi level remains pinned at the valence band 
edge. (Simulations were done assuming 0 K). 

Figure 2.13(a) shows the band structure of ML MoS2 on a Ti-rich TiO2 slab 

depicting occupied conduction bands below the Fermi level leading to a system that 

appears metallic. From the corresponding AP-DOS plot shown at the right, we can observe 

(a) 

(b) 
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that the occupied conduction bands can be attributed to Ti, Mo, and S atom states implying 

that the additional states introduced by the Ti atoms appear near the conduction band states 

of ML MoS2. For the composite MoS2–TiO2 system, this phenomenon can be interpreted 

as a transfer of electrons into the lower conduction-band-edge of the ML MoS2 layer 

analogous to modulation doping. In contrast, this phenomenon is absent in the case of ML 

MoS2 on the O-rich TiO2 slab, as depicted in Figure 2.13(b), wherein we have an ideal 

TiO2 surface without any O-vacancies in the supercell. Here, the Fermi level is pinned at 

the valence band edge and the conduction band states remain unoccupied. Hence, our 

theoretical findings are in excellent agreement with our experimental results. It is to be 

noted that in the band structures depicted in Figures 2.13(a) and (b), the conduction band 

minima and the valence band maxima are located at the Γ point as opposed to the K point 

for ML MoS2. This is because using a bigger supercell in the DFT simulations results in 

the corresponding Brillouin zone being smaller and hence the K point folds into the Γ 

point228.  

2.6 INVESTIGATION OF INTRINSIC MOBILITY ENHANCEMENT IN ATO-
ENCAPSULATED ML MOS2 USING FOUR-POINT BACK-GATED DEVICES 
An added advantage of using high-κ ATO as a self-encapsulating dopant is the 

intrinsic mobility enhancement of ML MoS2 as extracted from four-point back-gated 

devices that exclude contact resistance effects. High-κ dielectric engineering, using ALD 

deposited hafnia and alumina, has been used widely on MoS2 and other 

TMDs40,66,136,158,211,230. Although the exact mechanism is still unclear, it is believed that the 

presence of a high-κ environment enhances the carrier mobility by “screening” the 

Coulomb interactions with charged impurities, as well as by quenching the homopolar 

phonon modes of MoS2
130,196,231. Although ATO films have been shown to have a κ-value 

ranging between 70–120232, the κ-value of our solution-processed ATO films was extracted 

to be ~ 10 from capacitance–voltage measurements, a value comparable to the κ-values 

reported for alumina and hafnia233. Figure 2.14 shows the measured four-point 

conductance (G4-pt) as a function of VBG – VT for a ML MoS2 device (shown in the inset 
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with the flake outlined at its edges) before and after ATO encapsulation. The four left-most 

contacts of the device (a, b, c, and d) were used for the four point measurement that was 

done at RT. Current was passed between the outer two contacts (a, d) while the inner two 

contacts (b, c) served as the voltage probes. A marked difference exists between the slopes 

of the curves from the bare device (blue) and after its encapsulation in ATO (red). Intrinsic 

mobility (μint) was calculated using the expression μint = (L/W) (1/COX) (dG4-pt/dVBG|max) 

where L = 1.45 μm and W = 1.42 μm are the length and width of the active region bounded 

by contacts b and c, respectively, COX is the geometric oxide capacitance, and (dG4-

pt/dVBG|max) is the maximum slope of the four point conductance curves as marked by 

dashed light-green lines in the figure. For the bare ML MoS2, we extracted a μint of 48 

cm2/V-s at RT, whereas after encapsulation μint increased to 102 cm2/V-s (~ 2× 

improvement). This value is among the highest intrinsic mobilities reported for ML 

MoS2 at RT and comes close to the calculated RT phonon-limited mobility of 130 cm2/V-

s, a more realistic estimation in which the effect of intervalley scattering between the K 

and Q valleys, separated from each other in energy by just 70 meV, was also 

considered131. Though this was the best RT intrinsic mobility enhancement we observed 

upon ATO encapsulation (>2× improvement), the effect itself was observed in five other 

four-point devices. The two-point μFE measured between contacts “d” and “e” (L = 0.46 

μm, W = 1.42 μm) at a VDS of 100 mV before and after encapsulation was 24 cm2/V-s and 

83 cm2/V-s, respectively, showing > 3× improvement [the linear transfer curves of this 

FET is shown in Figure 2.15]. Comparing the two point μFE of this device with the four-

point μint of the parent MoS2 flake, we see that the ratio μint/μFE decreases from 2.02 before 

ATO encapsulation to 1.23 after ATO encapsulation implying that the two-point μFE of this 

device approaches the four-point μint of the parent flake due to the doping by ATO. 
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Figure 2.14: Four-point conductance (G4-pt) curves as a function of the gate overdrive 
(VBG – VT), measured between contacts a, b, c, and d of the device shown in the inset, before 
(blue) and after (red) ATO encapsulation at RT. Dashed light green lines represent the 
regions from where the maximum slope was extracted for the calculation of intrinsic 
mobility of the ML MoS2 flake before/after ATO encapsulation. The length and width of 
the active region are 1.45 and 1.42 μm, respectively. Contacts d and e (separated by 460 
nm) were used to extract the two-point field effect mobility before/after ATO encapsulation 
(ML MoS2 flake is outlined at its edge). 
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Figure 2.15: Transfer characteristics of the FET between contacts ‘d’ & ‘e’ of the multi-
contact device shown in Figure 2.14. 

Figure 2.15 above shows the transfer curves of the two-point FET between contacts 

‘d’ & ‘e’ of Figure 2.14 at a VDS of 100 mV measured at RT before (blue) and after (red) 

ATO encapsulation. From the regions of maximum slope as marked in the figure by dashed 

light-green lines, the peak gm was extracted both before and after ATO doping. The µFE 

calculated before doping was ~ 24 cm2/V-s which increased to ~ 83 cm2/V-s after doping 

showing a > 3X improvement in the field effect mobility. This two-point device with a 

channel length of 460 nm showed the best mobility enhancement upon ATO encapsulation 

among all other two-point devices with a similar channel length. 
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Figure 2.16 below shows the maximum four-point intrinsic mobility of another ML 

MoS2 device (shown in the inset) as a function of temperature. The length and width of the 

active region are 2.3 and 2.5 μm (flake width), respectively. Before ATO encapsulation 

(blue), the intrinsic mobility varies from 30 cm2/V-s at RT to 285 cm2/V-s at 77 K. After 

ATO encapsulation (red), the values range from 52 cm2/V-s at RT to 501 cm2/V-s at 77 K 

following a similar trend. This value of 501 cm2/V-s in ATO-encapsulated MoS2 is among 

the highest intrinsic mobilities reported to date on ML MoS2 at 77 K and compares well 

with the recent work on ultrahigh mobility MoS2 that is encapsulated in hexagonal boron 

nitride and contacted by graphene234. Although this mobility enhancement may be 

attributed to the high-κ nature of the encapsulating ATO, we know that the n2D in the 

MoS2 channel is increased as the high-κ ATO film dopes the MoS2 owing to its interfacial 

oxygen vacancies. Increased carrier densities in a nondegenerate 2D channel aids in 

enhancing the carrier mobility by screening the charged impurities, as has been 

demonstrated both theoretically231 and experimentally197 in ML MoS2. Furthermore, the 

increased electron concentration also serves to soften the homopolar phonons of MoS2 as 

evident from the red shift and broadening of the out-of-plane A1g Raman mode of ML 

MoS2 upon ATO encapsulation. Our results, therefore, give important insight into the 

mechanism of mobility enhancement in MoS2 devices effected by high-κ dielectrics. In 

light of our ATO–MoS2 results, it is plausible that this doping effect can be caused by other 

high-κ dielectrics, such as ALD-deposited alumina or hafnia, if they have inherent oxygen 

vacancies at their interfaces with MoS2. Given the amorphous nature of the ALD grown 

high-κ dielectrics, it is highly possible that oxygen vacancies exist in their structure. In fact, 

our recent investigation228 reveals that interfacial oxygen vacancies in alumina or hafnia 

lead to the creation of donor states near the conduction band of MoS2. These donor states 

originate from the uncompensated aluminum and hafnium atoms at the high-κ–

MoS2 interface, much akin to our case of uncompensated titanium atoms at the ATO–MoS2 

interface, resulting in n-type doping of the ML MoS2 channel. On the other hand, when the 

alumina or hafnia is perfectly stoichiometric, no doping effect is observed. Therefore, we 

propose that this interfacial-oxygen-vacancy-mediated doping effect plays a prominent 
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role in enhancing both the intrinsic and field-effect mobility in high-κ encapsulated TMD 

devices. Upon high-κ encapsulation, there would be an increase in the n2D of the TMD 

channel even before the application of external gate or drain biases, and this 

increased n2D would screen out the charged impurities, suppress the homopolar phonons, 

and reduce the effective Schottky barriers at the contacts to a greater extent than in bare 

devices. Hence, when external biases are applied, the electrons would be injected more 

easily and will move across the channel with less scattering, resulting in higher 

transconductance at relatively lower gate/drain biases in high-κ encapsulated TMD FETs. 

 

Figure 2.16: Intrinsic mobility of ML MoS2 as a function of temperature before (blue) and 
after (red) ATO encapsulation. Optical micrograph of the four-point device is shown in the 
inset. The length and width of the active region are 2.3 and 2.5 μm, respectively. The 
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intrinsic mobilities are enhanced after ATO encapsulation reaching up to 501 cm2/V-s at 
77 K (ML MoS2 flake is outlined at its edge).  

2.7 CONCLUSION 
To conclude, we have demonstrated that high-κ ATO films can be used as an n-

type charge transfer dopant on ML MoS2. The fact that ATO encapsulated ML MoS2 

devices exhibited comparable or better performance than previous doping and high-κ 

studies bears testimony to the superior doping and mobility enhancing capabilities of ATO 

thin films. Moreover, high-κ ATO can be deposited by a simple spin coating process that 

makes this doping approach attractive when compared to other time-consuming doping 

techniques. Utilizing this technique on ML MoS2, we demonstrated two-point field effect 

mobility as high as 83 cm2/V-s at RT, four-point intrinsic mobility as high as 102 cm2/V-s 

at RT and 501 cm2/V-s at 77 K. ON-currents as high as 240 μA/μm for a 450 nm channel 

length device, and a record low RC of 180 Ω·μm were demonstrated on ML MoS2 after 

ATO encapsulation. In addition, we also shed light on the interfacial-oxygen-vacancy 

mediated doping of MoS2 by high-κ dielectrics, in general, leading to improved screening 

of charged impurities, suppression of homopolar phonon scattering, and reduction of the 

effective Schottky barriers at the contacts. Future work includes studying the stoichiometry 

and thickness scalability of ATO films and their effect on the performance and air stability 

of TMD-based devices. 
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Chapter 3:  Interfacial-Oxygen-Vacancy Mediated N-Doping of MoS2 by 
Atomic Layer Deposited HfOx and Al2Ox   

3.1 INTRODUCTION 
The atomically thin form of ML TMDs translates to excellent electrostatic gate 

control even at nanoscale channel length dimensions30,37,62. However, the two-dimensional 

(2D) nature of ML TMDs makes their properties susceptible to the surrounding 

environment, as evidenced by the mobility enhancement of ML MoS2 when placed on a 

high-κ dielectric such as hafnia (HfO2)40. Dielectric engineering using high-κ oxides, such 

as atomic layer deposited (ALD) Al2Ox and HfOx, has been in widespread use to enhance 

the mobility of molybdenum disulfide (MoS2)-based field effect transistors (FETs)196,212. 

This mobility improvement in 2D materials was attributed to the damping of Columbic 

impurity scattering, as well as the quenching of homopolar phonon modes of MoS2, by 

high-κ dielectrics235. However, the exact mechanism is still unclear. Theoretical 

calculations of HfO2 interfaces have indicated that band offsets can be altered chemically 

by utilizing different interface terminations236. The conductive characteristics of 

MoS2 deposited on SiO2 have been shown to be dependent on the interface structure237. 

Controllable n-type doping of graphene transistors with extended air stability have been 

demonstrated by using self-encapsulated doping layers of titanium sub-oxide (TiOx) thin 

films217. These results puts into stark focus the need to consider the effect of surrounding 

materials and the interfaces with them on the characteristics of ML TMDs. 

In this Chapter, we focus on the effects of O vacancies (O deficiency) in MoS2 on 

HfO2 and on Al2O3. We have used both theoretical DFT and experimental analysis to study 

the n-doping of MoS2 mediated by interfacial-oxygen-vacancies at the high-κ-MoS2 

 
Much of the results, discussions and figures presented in this Chapter have been adapted with 

permission from the following two references: (1) Rai, A., Valsaraj, A., Movva, H. C. P., Roy, A., Tutuc, E., 
Register, L. F., & Banerjee, S. K. (2015, June). Interfacial-Oxygen-Vacancy Mediated Doping of MoS2 by 
High-κ Dielectrics. In 2015 73rd Annual Device Research Conference (DRC) (pp. 189-190). IEEE. (2) 
Valsaraj, A., Chang, J., Rai, A., Register, L. F., & Banerjee, S. K. (2015). Theoretical and Experimental 
Investigation of Vacancy-Based Doping of Monolayer MoS2 on Oxide. 2D Materials, 2(4), 045009. The 
dissertator, A. Rai, helped conceive and design the experiments, fabricated the devices with high-κ 
dielectrics, performed the electrical, Raman and photoluminescence measurements, and contributed to data 
analysis and writing the manuscripts. 
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interface and, based on these results, propose a mechanism for the mobility enhancement 

effect in MoS2 devices upon high-κ encapsulation. For the O deficient systems, two 

possible terminations for the HfO2 (Al2O3) slab are considered using DFT: an O-terminated 

HfO2 (Al2O3) slab with H passivation and an Hf (Al)-terminated HfO2 (Al2O3). The 

naming of two possible terminations is indicative of the initial structures used as starting 

point in our atomistic relaxations. The effects of O-vacancies in the first few layers of oxide 

on the band structure of the MoS2-oxide system were simulated, with results for vacancies 

in the topmost/MoS2-adjacent O layer shown here. Among our findings, O vacancies can 

lead to modulation-like doping of the MoS2 from donor states in the oxide depending on 

the oxide terminations. Moreover, consistent with our theoretical results, electron doping 

of ML MoS2 via O deficiency in the high-κ oxides was experimentally demonstrated by 

electrically and spectroscopically characterizing back-gated MoS2 field-effect transistors 

(FETs) encapsulated by O deficient versions of either alumina (Al2Ox) or  hafnia (HfOx). 

3.2 DETAILS OF EXPERIMENTAL AND THEORETICAL METHODS 

3.2.1  Experimental Method 
Monolayer (ML) or bilayer (BL) MoS2 was mechanically exfoliated from 

commercially available bulk MoS2 crystals (SPI Supplies) onto a degenerately doped n-

type Si-(100) substrate, which served as the back-gate, covered by a 90 nm thick thermal 

oxide. Upon exfoliation, the samples were annealed at 350°C in high vacuum (~ 10−6 Torr) 

for 8 h to minimize tape residues and trapped adsorbates between the MoS2 and the silicon 

dioxide substrate. A combination of optical microscopy, atomic force microscopy, Raman 

and photoluminescence measurements were used to identify atomically flat ML 

MoS2 flakes of interest. Source and drain contacts were patterned using electron beam 

lithography followed by electron beam evaporation and solvent lift-off of an Ag/Au (20/30 

nm) stack or just Au (50 nm). Finally, devices were covered by ~ 30 nm of either alumina 

or hafnia deposited at 200°C using atomic layer deposition (ALD) via the reaction of water 

with standard ALD precursors, namely trimethyl aluminum for alumina and tetrakis 

(dimethylamido) hafnium for hafnia. Figure 3.1 shows the 3D schematic of the back-gated 
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MoS2 FET encapsulated by high-κ oxide. The stoichiometry of the as-deposited ALD high-

κ oxides were changed by altering the ratio of their precursor pulse times as well as the 

precursor pulsing order so as to achieve either an O-rich oxide or an O-deficient oxide. The 

thickness of the as-deposited ALD oxides were determined using ellipsometry and their 

dielectric constant values (or ‘κ’ values) were determined from standard high frequency 

capacitance-voltage (HFCV) measurements done on MOSCAP structures utilizing the 

Keysight B1500A Semiconductor Parameter Analyzer. Electrical transport measurements 

were carried out in the ambient, and in the dark, utilizing either the Keysight B1500A or 

the Keysight 4156C Semiconductor Parameter Analyzers. All electrical measurements 

were done on a Cascade Summit 11000 AP probe station. Note that the gate voltage sweep 

direction was from positive to negative voltages for the FET data presented in this Chapter. 

The stoichiometry of the as-deposited high-κ oxide was determined using x-ray 

photoelectron spectroscopy (XPS). An in-depth look at the experimental details and device 

fabrication procedures can be found in the work by Rai et al.238,239. 

 

Figure 3.1: 3D schematic of a back-gated ML MoS2 FET encapsulated by HfOx. 
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3.2.2  DFT Computational Details 
The theoretical DFT calculations were performed using the projector-augmented 

wave method with a plane-wave basis set as implemented in the Vienna ab 

initio simulation package226,227. We chose a kinetic energy cutoff of 400 eV. The k-mesh 

grid of 7 × 7 × 1 for the sampling of the first Brillouin zone (BZ) of the supercell was 

selected according to Monkhorst–Pack type meshes with the origin being at the Γ point for 

all calculations except the band structure calculation. The local density approximation 

(LDA)240 was employed primarily for the exchange-correlation potential as LDA has been 

shown to reproduce the apparent experimental band gap (Eg = 1.8 eV)241 of ML 

MoS2 well171,242. The calculated lattice constant for the MoS2 layer after volume 

relaxation, a = 3.122 Å, is also a good match to the experimental value243. We have also 

re-checked some of the DFT results using the generalized gradient approximation 

(GGA)244. We note, however, that both the LDA and the GGA underestimate the band gap 

of at least the bulk HfO2 and Al2O3, which makes the prediction of band offsets from 

theoretical calculations unreliable. With approximately 150 atoms per supercell, use of 

presumably more accurate hybrid functionals or GW methods for atomistic relaxations was 

not practical. However, we have utilized hybrid functionals, namely HSE06245, to perform 

band structure calculations using the relaxed structures from our GGA simulations to 

further check our key conclusions. However, the primary objective of this theoretical work 

is to explore possible pathways to insulating and doping MoS2 MLs qualitatively toward 

device applications, ultimately for experimental follow-up for promising cases. Similarly, 

we did not include spin–orbit coupling here, which causes substantial spin splitting in the 

valence band, for similar reason. However, only conduction band doping is observed in our 

results, mitigating the impact of this latter approximation. Van der Waal's forces also were 

simulated due to the absence of covalent bonding between the TMD and the oxides213. In 

our computations, we have adopted the DFT-D2 scheme to model the non-local dispersive 

forces wherein a semi-empirical correction is added to the conventional Kohn–Sham DFT 

theory246. 
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The two representative dielectrics, HfO2 and Al2O3, were chosen for high-κ value 

and minimal lattice mismatch, respectively. The MoS2 ML of principle interest, with its 

hexagonal lattice, was taken to be unstrained with its above-noted volume-relaxed lattice 

constant of a = 3.122 Å. For the dielectric oxide, the energetically stable crystalline phases 

of bulk HfO2 and Al2O3 at ambient conditions, namely, monoclinic HfO2
247 and hexagonal 

Al2O3
248, respectively, were utilized. Our simulations were performed by constructing a 

supercell of ML MoS2 on an approximately 2 nm thick oxide slab. For HfO2, atomic 

relaxation was performed within a rectangular supercell (a = 9.366 Å, b = 5.407 Å) chosen 

to reduce the lattice mismatch between ML MoS2 and monoclinic HfO2. However, a 

roughly 6% strain remains along the in-plane directions in the HfO2 - see Figure 3.2(a). 

For Al2O3, atomic relaxation was performed in a (rotated) hexagonal supercell (a = 8.260 

Å) with a strain of only about 0.2% - see Figure 3.2(b). The systems were relaxed until the 

Hellmann–Feynman forces on the atoms were less than 0.02 eV Å−1. During relaxation, all 

the MoS2 ML atoms and the top half of the layers of the dielectric oxide were allowed to 

move in all three spatial dimensions. Oxygen vacancies were modeled by removing a single 

O atom from an O-layer of the supercell. Since we have periodic supercells, the O vacancy 

is repeated in each instance of the supercell. The system is then allowed to relax again with 

the introduced O-vacancy. All simulations were performed at a temperature of 0 K. 
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Figure 3.2: (a) Supercell of ML MoS2 on an H-passivated, O-terminated HfO2 slab of 
approximately 2 nm thickness with O-vacancy (side view). (b) Supercell of ML MoS2 on 
an H-passivated, O-terminated Al2O3 slab of approximately 2 nm thickness with O-
vacancy (side view). The monolayer of MoS2 belongs to the space group P-6m2 (point 
group D3h).  

3.3 THEORETICAL DFT RESULTS 
The band structure and atom-projected density-of-states (AP-DOS) have been 

calculated for the ML MoS2-oxide system considering different possible terminations of 

the oxide at the interface in the presence of O vacancies in the oxide or Mo and S vacancies 

in the MoS2. We compared (overlaid) the band structures for the MoS2-oxide systems with 

vacancies to the ideal MoS2-oxide results. In all cases, the highest occupied state of the 

system with vacancies serves as the zero energy reference in these 0 K simulations. 

However, the reference band structures absent vacancies are shifted up or down to provide 

a rough fit to the former in terms of band structure and the AP-DOS of the Mo and S atoms. 

Otherwise, the zero energy reference for the latter would be the valence band edge. 
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3.3.1  Monolayer MoS2 on HfO2 Slab with O Vacancy 
When an O vacancy is introduced into the top layer of the O-terminated and H-

passivated HfO2 slab, in these 0 K simulations, an occupied defect state (band) is 

introduced within the band gap of ML MoS2 – see Figure 3.3(a), which is associated 

primarily with Hf atoms in the oxide. Analogous Hf-associated defect states also arise in 

an isolated O-terminated and H-passivated HfO2 slab228. In this latter case (and for 

analogous cases below) we simply removed the MoS2 layer from the combined system, 

while otherwise holding the crystal structure fixed as a control. However, the close 

proximity of the occupied defect band to the conduction band (of the reference band 

structure) suggests that these states might be able to act as donors. As can be seen from the 

AP-DOS in Figure 3.3(b), the conduction band edge for MoS2 is pinned at the Fermi level 

indicating n-type doping. However, the defect band formation due to the limited supercell 

size and associated very large (1.97 × 1014 cm−2) O-vacancy density in these simulations 

leaves the binding energy for lower defect densities uncertain. Alternatively, these interface 

states could function as relatively shallow charge traps, leading to degradation of device 

performance. Since a rectangular supercell was used in these simulations of MoS2 on HfO2, 

the corresponding BZ is smaller and the K point of the primitive unit cell—where the ML 

MoS2 band edges are located—folds into the Γ point in the supercell's BZ. 
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Figure 3.3: (a) Band structure of ML MoS2 on an H-passivated, O-terminated HfO2 slab 
with an O-vacancy in the top layer, plotted along the high symmetry directions of the BZ 
(black solid lines). The 0 eV reference corresponds to the highest occupied state in these 0 
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K simulations. The band structure of vacancy-free ML MoS2–HfO2 system (O-terminated) 
is superimposed for comparison (red dashed lines). However, this latter band structure, 
which otherwise would have its zero reference energy at the upper edge of the valence 
band, is shifted up or down to provide a reasonable fit to the former. (b) Atom-projected 
density-of-states for the ML MoS2 and O-terminated HfO2 system with an O-vacancy. Red 
arrows indicate the conduction and valence band edges. An occupied defect state (band) is 
introduced within the band gap of ML MoS2. 

In the case of Hf-terminated HfO2–MoS2 system with an O vacancy in the top layer 

of oxide, there is a straddling gap alignment (Type 1) as seen in the AP-DOS of Figure 

3.4(b) for this large O-vacancy density, much as for O-terminated HfO2. Moreover, there 

are now two partially occupied bands at the bottom of the conduction band as can be seen 

in Figure 3.4(a), both of which are largely localized to the MoS2 layer, resulting in a system 

that now appears metallic. Calculation of the band structure for a freestanding Hf-

terminated HfO2 slab with an O vacancy exhibits occupied conduction band states 

associated with the Hf atoms228. In the combined HfO2–MoS2 system, these electrons are 

then transferred into the lower conduction-band-edge MoS2 layer, in a modulation-doping-

like process. In MoS2, the DOS at the conduction and valence band edges are dominated 

by dxz and dz2 orbitals from the Mo atoms while in the HfO2 the band edge states arise 

mainly from the contribution of Hf—d orbitals and O—p orbitals. 
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Figure 3.4: (a) Band structure of ML MoS2 on Hf-terminated HfO2 slab with an O-vacancy 
in the top layer, plotted along the high symmetry directions of the BZ (black solid lines). 
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The energy-shifted band structure of vacancy free ML MoS2–HfO2 system with Hf-
termination is superimposed for comparison (red dashed lines). (b) Atom-projected 
density-of-states for the ML MoS2 and Hf-terminated HfO2 system with an O-vacancy. A 
straddling gap band alignment is now observed along with two partially occupied bands at 
the conduction band edge both of which are largely localized to the MoS2 layer, resulting 
in a system that now appears metallic. 

For the HfO2–MoS2 with O vacancy systems, we also repeated the simulations with 

the GGA approximation for comparison with the above LDA results. Figure 3.5(a) shows 

the band structure of ML MoS2 on Hf-terminated HfO2 with an O-vacancy, as obtained 

using both the GGA and the LDA approximations. The same nominal crystal structure was 

used, but a separate relaxation was performed for the LDA and GGA calculations (the 

latter, however, starting with the former for computational efficiency). As can be seen, the 

results match closely, including the degree of degenerate doping. A similar comparison 

(not shown) was performed for MoS2 on O-terminated HfO2, again with good agreement 

between the results obtained with the GGA and with the LDA including the location of the 

occupied defect band just below the conduction band. Finally, in Figure 3.5(b), we have 

used hybrid functionals, specifically HSE06, which provide a more accurate value for the 

band gap of bulk HfO2 to simulate the band structure of ML MoS2 on Hf-terminated 

HfO2, to further check key results. The much larger computational demands required for 

hybrid method combined with the large supercell size constrained us to use a coarse k-point 

grid for evaluation of the band structure and precluded us from running any relaxations of 

the structure using the hybrid method. Instead, we reused the structure obtained from the 

GGA relaxations. As shown in Figure 3.5(b), with the hybrid method, the conduction band 

edge is again pulled below the Fermi level as in our previous GGA and LDA results, 

indicating the n-type doping of ML MoS2 modulated by dielectric oxide. 
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Figure 3.5: (a) Band structure of ML MoS2 on an Hf-terminated HfO2 with an O vacancy 
obtained using the GGA (solid lines, black online). The band structure obtained using the 
LDA is overlaid on top for comparison (dashed lines, red online). Both results exhibit n-
type doping, and essentially the same degree of degeneracy. (The zero energy reference 
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remains the Fermi level in each case.) (b) Band structure of ML MoS2 on an Hf-terminated 
HfO2 with an O vacancy obtained using the HSE06. The conduction band edge is pulled 
below the Fermi level indicating n-type doping of MoS2. 

3.3.2  Monolayer MoS2 on Al2O3 Slab with O Vacancy 
For the O-terminated and H-passivated Al2O3–MoS2 system, creation of an O 

vacancy in the top O-layer of Al2O3 produces only a modest effect on the conduction band 

edge states in comparison to the vacancy free reference system. However, the O-vacancy 

pulls the conduction band edge below the Fermi level, filling the lower MoS2 conduction 

band states as shown in Figure 3.6(a), which remain largely localized in space to the 

MoS2 layer as shown in the AP-DOS plot in Figure 3.6(b), resulting in a system that now 

appears metallic, much as for the Hf-terminated HfO2–MoS2 system with an O vacancy. 

Calculation of the band structure for an isolated O-terminated Al2O3 slab with an O 

vacancy exhibits occupied conduction band states associated with the O atoms228. In the 

combined Al2O3–MoS2 system, these electrons again are transferred into the lower 

conduction-band-edge MoS2 layer, in a modulation-doping-like process. 

For Al-terminated Al2O3–MoS2 system, the system retains a straddling gap 

alignment after the introduction of an O vacancy in the oxide layer. However, an occupied 

state (band) deep in the band gap of the MoS2 is produced as shown in Figure 3.7(a), which 

is localized to the Al and O atoms in the oxide layer as shown in the AP-DOS plot in Figure 

3.7(b). Such defect states could serve as recombination centers or charge traps. In addition, 

however, a direct band gap is found at these doping concentrations, in contrast to the Al-

terminated Al2O3–MoS2 system without an O vacancy. 
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Figure 3.6: (a) Band structure of ML MoS2 on an H-passivated, O-terminated Al2O3 slab 
with an O-vacancy in the top layer, plotted along the high symmetry directions of the BZ 
(black solid lines). The energy-shifted band structure of vacancy free ML MoS2–
Al2O3 system (O-terminated) is superimposed for comparison (red dashed lines). (b) Atom-
projected density-of-states for the ML MoS2 and O-terminated Al2O3 system with an O-
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vacancy. A new partially filled band, largely localized to the MoS2 layer, is introduced at 
the edge of the MoS2 conduction band resulting in a system that now appears metallic. 

 

 

Figure 3.7: (a) Band structure of ML MoS2 on Al-terminated Al2O3 slab with an O-vacancy 
in the top layer, plotted along the high symmetry directions of the BZ (black solid lines). 
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The energy-shifted band structure of vacancy free ML MoS2–Al2O3 system (Al-terminated) 
is superimposed for comparison (red dashed lines). (b) Atom-projected density-of-states 
for the ML MoS2 and Al-terminated Al2O3 system with an O-vacancy. An occupied state 
(band) deep in the band gap of the MoS2 is produced, which is localized to the Al and O 
atoms in the oxide layer. 

3.4 ELECTRICAL AND SPECTROSCOPIC CHARACTERIZATION RESULTS 
Electron doping of ML MoS2 by O deficient high-κ oxides was experimentally 

demonstrated by electrically and spectroscopically characterizing back-gated ML MoS2 

FETs encapsulated by alumina (Al2Ox) and hafnia (HfOx). The DFT calculations would 

suggest that an O-deficient high-κ oxide encapsulating the MoS2 ML would produce a 

combination of n-type modulation doping of the bands and occupied defect states within 

the gap in bulk materials, the latter contributing perhaps little to the doping but important 

when trying to pull the Fermi level below them. On exposure to air, the Hf (Al)-terminated 

HfO2 (Al2O3) is unrealistic while the O-termination provides a more accurate model for 

surface termination in the oxide. However, in our experimental system as shown in Figure 

3.1, the high-κ oxide encloses the MoS2 ML and MoS2-oxide interface is not exposed to 

air allowing us to investigate both O-rich and O-deficient oxide interfaces. 

3.4.1  MoS2 FETs with O-deficient and O-rich HfOx 
Figure 3.8(a) shows the room temperature (RT) transfer characteristics of a back-

gated ML MoS2 FET before (blue) and after (red) encapsulation by ALD HfOx. The length 

(LCH) and width (W) of the device are 900 nm and 2 μm, respectively, and the data was 

collected at a drain-source voltage (VDS) of 50 mV. Before encapsulation, the device 

exhibits a threshold voltage (VT) near -15 to -20 V. After encapsulation in ALD HfOx, there 

is a large negative shift in VT consistent with n-type doping, as well as pronounced stretch-

out of the transfer characteristic as VBG is made more negative, consistent with near-band-

edge defects in the band gap as predicted by the DFT for O-deficient HfOx. Note that for 

the FET data presented in Figure 3.8(a), the transfer curve after ALD HfOx encapsulation 

was measured about two months after the initial HfOx encapsulation and still shows 
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pronounced n-doping effects, thus, reflecting the long-term air stability of this ALD high-

κ doping process. The n-type doping was further confirmed by Raman spectroscopy 

performed on the ML MoS2 in the channel region of the same FET before (blue) and after 

(red) HfOx encapsulation as shown in Figure 3.8(b). Before HfOx, the peak positions of the 

out-of-plane A1g and the in-plane 𝐸𝐸2𝑔𝑔1  peaks are at ~ 402 cm−1 and ~ 383 cm−1, 

respectively, which is characteristic of ML MoS2
221. After HfOx encapsulation, 

the 𝐸𝐸2𝑔𝑔1  peak remains relatively unchanged, while the A1g peak shows a distinct broadening 

and a red shift in its peak position from ~ 402 cm−1 to ~ 399 cm−1. These changes in 

the A1g Raman peak upon HfOx encapsulation are indicative of the increased electron 

concentration in the ML MoS2 channel, and also have been observed in previous n-type 

doping studies of MoS2
207. The Hf:O atomic ratio in the as-deposited HfOx was determined 

to be ~ 1:1.56 from XPS analysis, thereby establishing the correlation between oxygen 

deficiency and n-type doping of ML MoS2 caused by HfOx. 

The results for the control sample of O-rich HfOx on ML MoS2 are shown in 

Figure 3.9. The Hf:O ratio for the ALD deposited O-rich HfOx was determined to be ~ 

1:2.1 from XPS measurements in exactly the same manner and using the same number of 

components that were used in peak fitting of the O-deficient HfOx. As can be clearly seen, 

there is negligible change in the Raman spectra of MoS2 after O-rich HfOx deposition – see 

Figure 3.9(b). There is no red shift or peak broadening of the A1g Raman mode implying 

negligible n-type doping of MoS2. Moreover, from the transfer curve we can see that the 

device can be turned off within the same back-gate voltage sweep range after deposition of 

the O-rich HfOx – see Figure 3.9(a). These results depict negligible doping of the ML 

MoS2 after O-rich HfOx deposition, which contrast to the strong doping of the MoS2 when 

an O-deficient HfOx was deposited. 

 

 

 

 

 



 

65 

 

 

Figure 3.8: (a) Room temperature transfer characteristics of a back-gated ML MoS2 FET 
before (blue) and after (red) ~ 30 nm ALD HfOx (x ~ 1.56) encapsulation, and (b) 
corresponding normalized Raman spectra of the ML MoS2 FET channel before (blue) and 
after (red) ALD HfOx encapsulation. The shifted threshold voltage and A1g peak are 
consistent with n-type doping after encapsulation. 

(b) 

(a) 
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Figure 3.9: (a) Room temperature transfer characteristics of a back-gated ML MoS2 FET 
before (blue) and after (red) ~ 30 nm ALD HfOx (x ~ 2.1) encapsulation, and (b) 
corresponding normalized Raman spectra of the ML MoS2 FET channel before (blue) and 
after (red) ALD HfOx encapsulation. There is no red shift or peak broadening of 
the A1g Raman mode implying negligible n-type doping of MoS2. 
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To further study the effects of O-deficient and O-rich ALD HfOx films on the field-

effect mobility of MoS2 FETs, top-gated FETs were fabricated on exfoliated BL MoS2 

flakes. The procedure first involved the fabrication of typical back-gated FET structures 

on a degenerately doped n-type Si-(100) substrate covered by a 90 nm thick thermal oxide. 

Thereafter, the ALD HfOx  layer was deposited followed by fabrication of the top-gate stack 

(Cr/Au ~ 10/30 nm) using standard e-beam lithography, metal deposition and solvent lift-

off. The top-gate was fabricated in such a way so as to ensure a slight overlap with the 

underlying source/drain contact electrodes, thereby, allowing complete top-gating of the 

BL MoS2 channel regions. During all top-gated measurements, the back-gate was kept 

grounded. The linear top-gated transfer characteristics of the BL MoS2 FET (channel length 

L = 1.5 µm) with the O-rich HfOx top-gate dielectric (Hf:O ~ 1:2.1), measured at a VDS of 

100 mV, is shown below in Figure 3.10(a). The inset of the figure shows the optical image 

of the top-gated BL MoS2 FET. The ALD deposition recipe of the O-rich HfOx was: H2O 

pulse time = 0.3 s (pulsed first), Hf precursor pulse time = 0.15 s, deposition temperature 

= 200°C, number of deposition cycles = 300. The oxide thickness was determined to be ~ 

35 nm from ellipsometry and the dielectric constant was extracted to be ~ 21 from 

MOSCAP HFCV measurements. As can be seen in Figure 3.10(a), the n-branch ON-

current achieved in the BL MoS2 FET with O-rich HfOx was only ~ 160 nm/µm and the 

extracted top-gated field-effect mobility (µFE) for this FET was found to be 2.4 cm2/V-s. 

In contrast, the linear top-gated transfer characteristics of a similar BL MoS2 FET 

(L = 1.5 µm) with O-deficient HfOx top-gate dielectric (Hf:O ~ 1:1.56), measured under 

the same biasing conditions (VDS = 100 mV; VTG sweep range = -3 to 3 V), shows a 

significant improvement in the n-branch ON-current (ION ~ 3 µA/µm) as well as the top-

gated field-effect mobility (µFE ~ 16.1 cm2/V-s), as shown in Figure 3.10(b), when 

compared to the BL MoS2 FET with O-rich HfOx. The improved n-branch behavior in the 

O-deficient HfOx case can be attributed to the n-doping of the BL MoS2 FET channel region 

which helps in enhanced screening of the Coulombic charge impurity scattering sources as 

well as reduction of the contact resistance due to heavy n-doping near the S/D contact 

regions. The ALD deposition recipe of the O-deficient HfOx was:  
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Figure 3.10: Comparison of the top-gated transfer characteristics of BL MoS2 FETs having 
ALD-deposited O-rich HfOx (a) and O-deficient HfOx (b) as the top-gate dielectric. 

(a) 

(b) 
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Hf precursor pulse time = 0.25 s (pulsed first), H2O pulse time = 0.06 s, deposition 

temperature = 200°C, number of deposition cycles = 300. The oxide thickness was 

determined to be ~ 32 nm from ellipsometry and the dielectric constant was extracted to be 

~ 18 from MOSCAP HFCV measurements. 

3.4.2  MoS2 FETs with O-deficient Al2Ox 
Similar n-type doping results were obtained after encapsulating back-gated ML 

MoS2 FETs with ALD Al2Ox. Figures 3.11(a) and (b) show the RT transfer characteristics 

of a ML MoS2 FET (LCH = 500 nm, W = 2.3 μm, VDS = 100 mV, Au contacts) and the 

normalized Raman spectra of the ML MoS2 channel, respectively, before (blue) and after 

(red) ALD Al2Ox deposition. As in the case of HfOx, the negative VT shift, as shown in 

Figure 3.11(a), and the broadening and red shift of the A1g Raman peak, as shown in Figure 

3.11(b), of ML MoS2 after encapsulation in ALD Al2Ox is indicative of n-type doping, 

again consistent with the DFT results with oxygen vacancies. The Al:O atomic ratio was 

determined to be ~ 2:1.55 from XPS analysis239, thereby, confirming the inherent oxygen 

deficiency in the as-deposited high-κ oxide. 
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Figure 3.11: (a) Room temperature transfer characteristics of a back-gated ML MoS2 FET 
before (blue) and after (red) ~ 30 nm ALD Al2Ox (x ~ 1.55) encapsulation and (b) 
corresponding normalized Raman spectra of the ML MoS2 FET channel before (blue) and 
after (red) ALD Al2Ox encapsulation. The shifted threshold voltage and A1g peak are 
consistent with n-type doping after encapsulation. 

(a) 

(b) 
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3.5 CONCLUSION 
In summary, we have experimentally and theoretically verified the interfacial-

oxygen-vacancy mediated n-doping effect of high-κ dielectrics on MoS2. DFT simulations 

suggest that occupied near-conduction-band-edge states that might function either as 

donors or shallow traps are introduced in the MoS2-oxide system by O vacancies in the O-

terminated and H-passivated HfO2–MoS2 system. More promising as a means of doping, 

with O vacancies, both the Hf-terminated HfO2–MoS2 system, and the O-terminated and 

H-passivated Al2O3–MoS2 system appear metallic due to doping of the oxide slab followed 

by electron transfer into the MoS2, in manner analogous to modulation doping. Consistent 

with these latter theoretical results, n-type doping of ML MoS2 by high-κ oxides with 

oxygen vacancies was demonstrated experimentally by electrically and spectroscopically 

characterizing back-gated ML and BL MoS2 FETs encapsulated by ALD alumina (Al2Ox) 

and hafnia (HfOx). Our results provide insight on the performance enhancement observed 

in MoS2 devices upon encapsulation in a high-κ dielectric environment. The interfacial-

oxygen-vacancy mediated n-doping of MoS2 by high-κ dielectrics could very well be 

responsible for the mobility enhancement in high-κ-encapsulated MoS2 FETs due to 

improved screening of charged impurities, suppression of homopolar phonon scattering 

and reduction of the Schottky barrier-induced contact resistance by the enhanced sheet 

electron density in the MoS2 channel. 
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Chapter 4: Band Structure Engineering and P-Doping of Layered WSe2 

via One-Step Chemical Functionalization  

4.1 INTRODUCTION 
A monolayer (ML) TMD consists of a mono-atomic layer of transition-metal atoms 

‘M’ (e.g., Mo or W) sandwiched in between two layers of chalcogen atoms ‘X’ (e.g., S or 

Se) in the form of an X–M–X (MX2) triple-atomic layer structure. By combination of 

different M and X atoms, the band structure of TMDs can be altered to achieve band gaps 

in the range of ~ 1–2 eV249,250, resulting in different electrical or optical characteristics in 

TMD-based devices. Since the electronic structure of TMDs is the most important 

determinant of the electrical performance as well as the intrinsic limitation of TMD-based 

field-effect transistors (FETs)251,252, engineering the band structure of TMDs is critical. 

The band structure of TMDs originates from the orbital overlap of d orbitals of transition 

metals and p orbitals of chalcogens in the mirror symmetry crystal structure253, therefore, 

the band structure of TMDs can be tuned by perturbing the overlapped orbital configuration 

of their constituent atoms208,254-258. Moreover, if molecular adsorption is intentionally 

introduced in TMDs (typically via surface doping), both the band gap and the carrier 

concentration can be controlled259-261. Typically, high-density molecular adsorption on the 

channel of TMD FETs can act as scattering or trapping centers for charge carriers168,262-

264. However, if the molecular dopant adsorption sites are spatially confined to the desired 

regions in a FET, for example, source/drain (S/D) contact and access regions, they can 

boost the FET performance by decreasing the resistance at the contact metal/TMD interface 

resulting in enhancement of ION and field-effect mobilities due to a more efficient charge 

carrier injection into the FET channel204,207,238,259-261,265-271.  

 
The results, discussions and figures presented in this Chapter have been adapted with permission 

from the following reference: #Park, J. H., #Rai, A., Hwang, J., Zhang, C., Kwak, I., et al. (2019). Band 
Structure Engineering of Layered WSe2 via One-Step Chemical Functionalization. ACS Nano 13 (7), 7545-
7555. (#equal contribution). The dissertator, A. Rai, helped conceive and design the experiment, fabricated 
the devices, performed the electrical, Raman and photoluminescence measurements, contributed to data 
analysis and largely wrote the manuscript with contributions from all the authors. 
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In the present Chapter, band structure engineering is demonstrated to enhance the 

electrical performance of layered tungsten diselenide (WSe2) FETs using a one-step 

dipping process in (NH4)2S(aq) solution. Although various aqueous chemical treatment 

methods have been demonstrated to enhance the electronic performance of TMDs, their 

underlying mechanisms have not been fully understood at the molecular level in previous 

studies272-276. WSe2 is chosen as the representative TMD in this study since it is simple to 

achieve both n-type230 and p-type277 transport in WSe2-based devices, thereby, making it 

attractive for complementary-metal-oxide-semiconductor (CMOS) applications45,70.  

(NH4)2S(aq) solution, on the other hand, has been widely employed in semiconductor 

research for the passivation of semiconductor surfaces278. Thus, it can be expected that the 

chemical treatment of WSe2 with (NH4)2S(aq) solution can be easily integrated into 

existing CMOS fabrication processes. Moreover, previous reports have revealed that the 

(NH4)2S(aq) chemical treatment of 2D molybdenum disulfide (MoS2) leads to an enhanced 

electrical performance, and sulfur and its related compounds have been considered possible 

candidates for functionalization of 2D materials279,280.  

(NH4)2S(aq) chemical treatment of WSe2 is investigated at the molecular level 

using scanning tunneling microscopy (STM) and spectroscopy (STS) to elucidate the 

mechanism of the electronic transition in WSe2. The (NH4)2S(aq) chemical treatment of 

ML WSe2 induces an electronic band gap reduction to almost half of the value of bare ML 

WSe2 and increases the density of positive charge carriers or holes. This Fermi level shift 

toward the WSe2 valence band edge (VBE) is confirmed by density functional theory 

(DFT) calculations which reveal that this shift is induced due to the adsorption of molecular 

“SH” species on the bare WSe2 surface. As a consequence of this (NH4)2S(aq) chemical 

treatment, ION at the p-branch increases more than an order of magnitude in back-gated 

few-layer (FL) WSe2 FETs. This electrical enhancement in WSe2 FETs can be achieved by 

a simple and facile one-step dipping method without employing any additional complicated 

processes or specialized equipment, thereby, enabling easy integration of this (NH4)2S(aq) 

chemical treatment technique into the conventional TMD transistor fabrication process. 



 

74 

4.2 DETAILS OF EXPERIMENTAL AND THEORETICAL METHODS 

4.2.1  MBE and STM/STS Method 
For STM/STS experiments, the WSe2 layers were grown by molecular beam 

epitaxy (MBE) in an ultrahigh-vacuum (UHV) system (RIBER, MBE 32) on HOPG 

substrates. HOPG substrates were first cleaned by multiple exfoliation cycles. Afterward, 

the cleaned substrates were transferred immediately into the UHV chamber. WSe2 layers 

were grown while the HOPG substrates were held at 1073 K for 20 min. Elemental W and 

Se were simultaneously dosed onto the HOPG surface using an electron beam source and 

a Knudsen cell, respectively. After the growth of WSe2 layers on the HOPG substrates, 

about 20 nm Se capping layers were deposited on the WSe2/HOPG samples to prevent 

unintentional oxidation of the samples during transfer to the separate STM/STS UHV 

chamber (Omicron, base pressure: <1 × 10–10 Torr). After transferring the WSe2/HOPG 

samples into the STM chamber, Se capping layers were removed from the WSe2/HOPG 

samples by annealing at 750 K for 120 min. STM and STS measurements were performed 

using electrochemically etched tungsten tips. 

It is noted that it is extremely difficult to approach the STM tips to micron-sized 

exfoliated WSe2 flakes supported on insulating SiO2/Si substrates due to its low electrical 

conductivity. Therefore, STM/STS was performed on MBE-grown WSe2 (~ 0.75 ML) on 

conductive HOPG substrates to elucidate the effects of (NH4)2S(aq) chemical treatments 

on the electronic properties of WSe2. Moreover, as shown in previous reports, MBE-grown 

TMD samples have nearly the same physical properties as mechanically exfoliated 

samples, including band structure and optical properties281-283. Therefore, the experimental 

STM/STS results derived on MBE-grown WSe2 can be used to understand the properties 

of the mechanically exfoliated WSe2 flakes, and it can be expected that the electronic 

effects of (NH4)2S(aq) chemical treatment on MBE-grown WSe2 will be nearly identical 

to the effects of the same treatments on mechanically exfoliated WSe2. However, since 

MBE-grown WSe2 samples typically have very small domain sizes (typically 500 – 800 

nm), devices fabricated with MBE-grown WSe2 would have more grain boundaries which 
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can severely degrade the electrical performance of WSe2 FETs. Thus, exfoliated WSe2 

flakes were used for studying the electrical current-voltage characteristics. 

4.2.2  Device Fabrication Process, Chemical Treatment Method, and Raman 
Characterization 
Back-gated FL WSe2 FETs were fabricated by first mechanically exfoliating WSe2 

flakes from commercially available bulk crystals (source: HQ Graphene) onto a 

degenerately doped p-type Si-100 substrate with 90 nm of thermally grown SiO2. Upon 

exfoliation, the samples were subjected to a high-vacuum annealing step (340°C for 6 h; 

base pressure: 10–6 mbar) to minimize tape residues as well as trapped adsorbates between 

the WSe2 flakes and the underlying SiO2 substrate. FL WSe2 flakes (3–4 nm, i.e., 4–5 

atomic layers thick) were identified using a combination of optical microscopy and atomic 

force microscopy (AFM) imaging. Top contact electrodes were patterned using standard 

electron-beam lithography (EBL) utilizing a poly methyl(methacrylate) (PMMA) resist, 

following which Ni/Au (20/30 nm) metal electrodes were deposited using electron-beam 

evaporation and solvent lift-off steps to serve as the source/drain (S/D) electrodes. After 

device fabrication, the WSe2 FET samples were dipped in the 20% (NH4)2S(aq) solution 

for a specified time period, following which the samples were rinsed in IPA and dried in 

air. All chemical treatments were performed for 10 min unless otherwise noted. Note that, 

although acetone is a widely employed solvent to remove hydrocarbon residues, IPA does 

remove hydrocarbons as well, and, thus, a single step rinsing process with IPA was utilized 

in the present study. It is noted that the effect of (NH4)2S(aq) chemical treatment on layered 

TMDs persists even after washing with acetone and water, as reported in previous 

publications272,273. Raman spectroscopy measurements were taken with a Renishaw inVia 

micro-Raman system with an excitation wavelength of 532 nm and a grating of 3000 l/mm. 

4.2.3  Theoretical DFT Computational Details  
To explain the underlying mechanism behind the p-type doping and electronic band 

gap reduction in WSe2 after (NH4)2S(aq) chemical treatment, density functional theory 

(DFT) calculations were performed using the Vienna ab initio simulation package 
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(VASP)226. The projector augmented wave pseudopotentials were employed284 with 

Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional285. A 4 x 4 supercell of 

monolayer WSe2 was used to investigate the effect of molecular adsorption on the 

electronic structure of WSe2, and a vacuum size of ~ 20 Å was employed to avoid periodic 

image interactions. With a cutoff energy of 450 eV, the atomic coordinates were relaxed 

until the residual force on each atom was less than 0.01 eV Å−1. The Monkhorst-Pack k-

point sampling in the Brillouin zone (BZ) is Γ-centered with 4 × 4 × 1 and 6 × 6 × 1 meshes 

for the ionic and electronic optimizations, respectively.  

Based on the possible dissociation reaction of (NH4)2S molecule in H2O solution, 

SH, H2S, and NH3 molecules as well as elementary S were considered as possible 

candidates that could introduce p-type doping in WSe2. The binding energy of an adsorbate 

on the ML WSe2 surface was calculated using the following formula: 

𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(q) = 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − ∑𝑁𝑁𝑖𝑖𝜇𝜇𝑖𝑖        (1) 

where 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the total energy of the ML WSe2 with the adsorbed species, 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is 

the total energy of the bare ML WSe2, 𝑁𝑁𝑖𝑖 is the number of species, and 𝜇𝜇𝑖𝑖 is the chemical 

potential of the adsorbate (for example, SH). The calculation of the binding energy for each 

molecule showed that molecular SH and elementary S can be adsorbed on the WSe2 surface 

with binding energies of 0.48 eV and 1.58 eV, respectively, while H2S and NH3 molecules 

showed negligible interaction with WSe2 (binding energies of ~ 20 meV). Afterwards, the 

effect of different adsorbates on the electronic band structure of WSe2 was investigated as 

shown later in Figure 4.9; the Fermi level of the bare ML WSe2 is located close to the 

center of the band gap, which is about 0.78 eV above the valence band edge. Femi level 

(𝜇𝜇) of the intrinsic semiconductor was calculated from 𝜇𝜇 = 𝜀𝜀𝑣𝑣 + 1
2
𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔 + 1

2
𝑘𝑘𝐵𝐵𝑇𝑇 𝑙𝑙𝑙𝑙 �𝑃𝑃𝑣𝑣

𝑁𝑁𝑐𝑐
�, 

where 𝜀𝜀𝑣𝑣 is the energy of the valence band edge and 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔 is the band gap. 𝑁𝑁𝑐𝑐 and 𝑃𝑃𝑣𝑣 are 

related to the number of carriers present at temperature T, i.e.,  𝑛𝑛𝑐𝑐 (electron) and  𝑝𝑝𝑣𝑣 (hole), 

by 𝑛𝑛𝑐𝑐(𝑇𝑇) = 𝑁𝑁𝑐𝑐(𝑇𝑇) exp(−(𝜀𝜀𝑐𝑐 − 𝜇𝜇) /𝑘𝑘𝐵𝐵𝑇𝑇) and 𝑝𝑝𝑣𝑣(𝑇𝑇) = 𝑃𝑃𝑣𝑣(𝑇𝑇) exp(−(𝜇𝜇 − 𝜀𝜀𝑣𝑣) /𝑘𝑘𝐵𝐵𝑇𝑇), 

respectively. 𝑛𝑛𝑐𝑐(𝑇𝑇) and 𝑝𝑝𝑣𝑣(𝑇𝑇) were calculated from the following expressions: 
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𝑛𝑛𝑐𝑐(𝑇𝑇) = � 𝑑𝑑𝑑𝑑
∞

𝜀𝜀𝑐𝑐
𝑔𝑔𝑐𝑐(𝜀𝜀) 

1
exp(−(𝜀𝜀 − 𝜇𝜇) /𝑘𝑘𝐵𝐵𝑇𝑇) + 1

 

𝑝𝑝𝑣𝑣(𝑇𝑇) = � 𝑑𝑑𝑑𝑑
𝜀𝜀𝑣𝑣

−∞
𝑔𝑔𝑣𝑣(𝜀𝜀) 

1
exp(−(𝜇𝜇 − 𝜀𝜀) /𝑘𝑘𝐵𝐵𝑇𝑇) + 1

 

 

, where 𝑔𝑔𝑐𝑐(𝜀𝜀) and 𝑔𝑔𝑣𝑣(𝜀𝜀) are the density of states at the conduction and valence band edges, 

respectively. Fermi level of the WSe2 with adsorbate was calculated using the same 

approach. It is noted that the density of states shown later in Section 4.4 were smoothened 

by the Gaussian smearing method, with the smearing parameter σ of 0.1, for better 

visualization. 

4.3 SURFACE ANALYSIS RESULTS OF BARE AND CHEMICALLY TREATED WSE2 

4.3.1  STM/STS on MBE-Grown Bare ML WSe2 
The bare surface of ML WSe2 grown via molecular beam epitaxy (MBE) was 

probed using STM and STS. Schematic diagrams in Figure 4.1(a) represent the side and 

top views of WSe2. As shown in Figure 4.1(b), a WSe2 ML (lateral size ~ 100 nm) grown 

on a highly oriented pyrolytic graphite (HOPG) surface was observed via STM, and a 

triangular island of bilayer (BL) WSe2 was identified within the scanned area of the STM 

image along with the ML WSe2 region. Note that the applied sample bias and the measured 

tunneling current during STM/STS measurements are denoted by VS and IT, respectively, 

in the figure captions. Atomically resolved STM imaging was performed on the ML WSe2; 

as shown in Figure 4.1(c), a honeycomb array of Se atoms in ML WSe2 was observed 

through a hexagonal moiré pattern, consistent with the hexagonal pattern observed in the 

Fourier transform image as shown in the inset286,287. It is noted that the periodic brightness 

pattern observed in the Se atom array is consistent with the presence of different local 

density of states (LDOS). This variation of LDOS can result from different orbital 

overlapping with the underlying HOPG, consistent with the moiré pattern. The interatomic 

spacing in the dotted white triangle drawn in Figure 4.1(c) was determined to be about 0.33 

± 0.01 nm, in good agreement with previously reported results287,288.  
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Figure 4.1: (a) Schematic diagrams of the ML WSe2 atomic structure with top and cross-
sectional views. (b) Filled state STM image of bare ML WSe2 (VS = − 2 V, IT = 20 pA). A 
small triangular BL WSe2 region is also observed within the scanned image. (c) Atomically 
resolved STM image of ML WSe2 (VS = − 0.8 V, IT = 320 pA). It is noted that the STM 
image is slightly distorted due to thermal drifting during STM imaging. Inset shows the 
Fourier transform of the STM image. (d) Empty state STM image of the bare ML 
WSe2 scanned over the same area as in (b) (VS = 2 V, IT = 20 pA). 

The defects in the basal plane of ML WSe2 were probed by applying a variable 

sample bias during STM imaging. It is noted that the density of defects has flake-to-flake 

variation. As shown in Figure 4.1(b), a flat and smooth terrace was only observed under 

the “filled state” imaging with a −2 V sample bias. However, when the imaging mode was 

switched to “empty states” using a +2 V sample bias, bright protrusions were observed on 

the terrace along with bright brims of step edges as shown in Figure 4.1(d). The 

asymmetrically enhanced brightness of defects indicates that the defects have a different 

electronic structure from the defect-free terrace in ML WSe2. To elucidate the nature of the 

asymmetric bias dependence of defects, LDOS was probed using STS. As shown in Figure 

4.2(a), STS was recorded with the STM tip at the defects (red ‘×’) and far away from the 
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defects (white ‘×’). The measured LDOS from STS of defects and defect-free regions are 

compared as shown in Figure 4.2(b). The black curves, corresponding to the defect-free 

areas, have an apparent gap centered at the Fermi level (0 V) and states at both conduction 

band (CB) and valence band (VB) edges. However, as the STM tip was moved to the defect 

site, the acquired STS curves (shown in red) reveal a larger LDOS at both CB and VB 

edges than the black curve. Furthermore, the Fermi level is pinned closer to the VBE 

indicating a large density of positive charge carriers or holes. 

  

 

Figure 4.2: (a) Enlarged empty state STM image showing defects (bright protrusion marked 
by a red cross) and defect-free areas (marked by white cross) (VS = −1 V, IT = 50 pA). (b) 
LDOS probed using STS at the defect sites (red curves) and defect-free areas (black curves) 
corresponding to the red and white cross ‘×’ marks, respectively, as shown in (a). 

(a) 

(b) 
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4.3.2  STM/STS on MBE-Grown Chemically Treated ML WSe2 
The effect of chemical treatment on ML WSe2 was probed after dipping the as-

prepared ML WSe2 sample in a 20% (NH4)2S(aq) solution (source: Sigma-Aldrich; 98% 

purity)272,273. As shown in Figure 4.3(a) below, the dissociation of (NH4)2S in H2O solution 

is expected to result in the generation of SH and H2S species as per the following chemical 

reactions289,290:  

(NH4)2S(aq) → 2NH3(aq) + H+(aq) + HS-(aq), 

                     ↔ 2NH3(aq) + H2S(aq)          (1) 
 

As shown in previous reports, the (NH4)2S molecules are readily dissociated into 

molecular species such as NH3, SH, and H2S in H2O solution. Thus, these dissociated 

molecular species, including NH3, SH, H2S, etc., can readily adsorb on the bare 

WSe2 surface when the WSe2 samples are dipped in (NH4)2S(aq) solution. The (NH4)2S(aq) 

chemical treatments were performed at 300 K followed by a gentle spray of isopropyl 

alcohol (IPA) to remove unintentional contaminants such as hydrocarbons, following 

which the samples were air-dried. 
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Figure 4.3: (a) Schematic diagram illustrating the one-step chemical treatment process of 
ML WSe2 using 20% (NH4)2S(aq) solution. (b) Large area empty state STM image of 
chemically treated MBE-grown ML WSe2 (VS = 2.5 V, IT = 10 pA). It is noted that there is 
an imaging noise induced by weak interactions between the adsorbates and the STM tip. 
From the line trace, the expected step height of 6–7 Å was determined for the ML WSe2. 
(c) Raman spectra of mechanically exfoliated ML WSe2 before (black curve) and after (red 
curve) (NH4)2S(aq) chemical treatment, showing negligible change in its characteristic 
Raman modes. 

The large area empty state STM image shown in Figure 4.3(b) reveals the surface 

of chemically treated MBE-grown ML WSe2 with interspersed BL WSe2 islands; 

noticeable surface changes were not clearly observed in the large area empty state STM 

imaging in this case, possibly due to imaging noise induced by weak interactions between 

the adsorbates and the STM tip. Moreover, as shown in Figure 4.3(c), Raman spectra 

acquired on a mechanically exfoliated ML WSe2 surface before (black curve) and after (red 

curve) (NH4)2S(aq) chemical treatment shows a negligible change in the characteristic 
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Raman modes, that is, the A1g and 2LM(M) modes, suggesting no change in the structural 

integrity of ML WSe2 post-chemical treatment. It is noted that there is no clear evidence 

for the intercalation of SH molecules in the van der Waals (vdW) gap between adjacent 

WSe2 layers. If a large number of SH molecules were indeed intercalated between adjacent 

WSe2 layers, then the top WSe2 layers should get delaminated. However, the Raman plots 

shown in Figure 4.3(c), and later in Figure 4.11(b), indicate that there is no noticeable 

change in the peak positions and peak widths (i.e., FWHM) of the WSe2 Raman modes 

after chemical treatment. This implies that the structural integrity of WSe2 is maintained 

even after chemical treatment. Therefore, it is hypothesized that SH molecules mostly 

adsorb on the top surface of WSe2 rather than intercalating between adjacent WSe2 layers. 

After the chemical treatment of ML WSe2 using 20% (NH4)2S(aq) solution, a large 

density of electronic states was indeed observed by STM on the WSe2 surface under 

optimized imaging conditions. As shown in Figure 4.4(a), the chemically treated ML 

WSe2 showed filled state STM imaging (−1 V bias) similar to that of a bare ML 

WSe2 surface, as shown in Figure 4.1(b), that is, the step edges are electrically enhanced, 

while defects are not clearly observed on the terraces. However, switching the imaging 

mode to empty states with a +1 V sample bias in Figure 4.4(b) below, a high density of 

adsorbate-like features was observed on the terraces as well as step edges which can be 

denoted as chemical treatment-induced (CTI) defects. 
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Figure 4.4: (a) A chemically treated WSe2 surface with filled state STM imaging (VS = −1 
V, IT = 40 pA). (b) Defects in chemically treated WSe2 revealed with empty state STM 
imaging (VS = 1 V, IT = 20 pA). Note that (b) is imaged on the same surface area as (a). (c) 
High-resolution zoomed-in filled state STM image of the chemically treated WSe2 surface 
acquired from the dashed square region marked in (b). The dashed purple circle marks the 
location of the CTI defects, whereas black ‘×’ denotes the defect-free lower terrace (VS = 
−0.8 V, IT = 100 pA). (d) STS plots obtained after (NH4)2S(aq) chemical treatment from 
the lower defect-free terrace point X (black curve) and defect points inside the dashed 
purple circle (red and blue curves) as shown in (c). 

To elucidate the nature of these CTI defects, the LDOS on the surface of chemically 

treated ML WSe2 was probed using STS. Figure 4.4(c) shows the high-resolution zoomed-

in filled state STM image of the CTI defects, acquired from the dashed square region 

marked in Figure 4.4(b), by precisely positioning the STM tip at their locations. STS curves 

were measured at the defect-free lower terrace (marked by ×) and at the location of the CTI 

defects (inside the dashed purple circle). As shown in the STS spectra in Figure 4.4(d), 
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three different STS curves were observed, as depicted by the red, blue, and black curves, 

within the voltage range of −1 V to +1 V. In comparison to the black curve acquired at the 

defect-free lower terrace, both the red and blue STS curves acquired on the adsorbed CTI 

defects reveal that the band edge states expand across the Fermi level position (0 V) and 

have larger LDOS near the WSe2 VBE (i.e., below the Fermi level), thereby, confirming 

that the Fermi level at the CTI defect sites is positioned closer to the ML WSe2 VBE after 

(NH4)2S(aq) chemical treatment. It is noted that probing the sample surface using STM tips 

relies on the feedback of tunneling current between metal tips and sample surfaces, while 

maintaining only a few angstrom (Å) distance. Thus, if mobile molecules or atoms are 

placed between the metal tip and sample surfaces, the interaction of metal tip with 

molecules induces STM imaging noise (horizontal lines) as shown in Figure 4.3(b) 

and Figures 4.4(a)–(c)291,292.  

Based on the observation of STS measurements on adsorbed CTI defects, it can be 

hypothesized that if the density of CTI defects increases on ML WSe2, then the overall 

charge carrier density increases. Moreover, since both the blue and red STS curves 

corresponding to CTI adsorption sites reveal a larger density of electronic states near the 

WSe2 VBE, it can be hypothesized that the population of positive charge carriers (holes) 

should be larger than the population of negative charge carriers (electrons), resulting in an 

enhanced p-type behavior. This CTI electronic transition in ML WSe2 is further confirmed 

by the large range STS spectra shown in Figure 4.5. It is noted that in Figure 4.5, during 

STS measurements on the surface of (NH4)2S(aq)-treated WSe2, the STM tip mostly 

approaches the adsorbed molecules on WSe2 (physical distance <1–3 nm to molecules). 

Each STS curve was averaged over 5–7 curves with each curve recorded from random 

positions on multiple ML WSe2 samples while intentionally avoiding domain boundaries 

and step edges, but not the defects. Although some of the recorded STS data may have 

been on defects, the final STS curves should represent a random sampling of terrace sites. 

As shown in the LDOS of bare ML WSe2 (black curve), an electronic band gap of ~ 2.1 

eV can be observed consistent with previously reported values293-295. However, 

(NH4)2S(aq) chemical treatment of ML WSe2 for 15 min at 300 K induces a reduction of 
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this electronic band gap to ~ 1.1 eV and pins the Fermi level closer to the edge of the 

valence band, as shown by the red STS curve in Figure 4.5. Therefore, both the density of 

charge carriers and the electronic band gap of WSe2 can be tuned by defect engineering 

utilizing (NH4)2S(aq) solution. Based on the averaged STS data, a greater enhancement in 

hole concentration than electron concentration can be predicted over the chemically treated 

ML WSe2 surface. It is noted that the detectable limit of tunneling current is about ±1 nA 

in the I–V curves during STM/STS probing. Therefore, current levels above ±1 nA cannot 

be measured, and, instead, they are only shown as a steady current of ±1 nA. 

 

Figure 4.5: Averaged STS curves of ML WSe2 before (black curve) and after (red curve) 
(NH4)2S(aq) chemical treatment. Each STS curve was averaged over 5–7 different STS 
curves measured on the WSe2 surface distant from the step edges and domain boundaries. 
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4.3.3  AFM Study of the Removal of Carbon Composites and Oxides in WSe2 after 
(NH4)2S(aq) Chemical Treatment 
To elucidate the effect of (NH4)2S(aq) chemical treatment on WSe2, the topography 

of ML WSe2 exfoliated mechanically from bulk WSe2 was probed using atomic force 

microscopy (AFM). A large area of bare ML WSe2 is displayed in Figure 4.6(a) with a few 

pinholes and step edges. Typically, carbonaceous deposits are introduced during the 

mechanical exfoliation and transfer processes onto SiO2 substrates using Scotch tape and 

polydimethylsiloxane (PDMS) stamps in ambient conditions296,297. Furthermore, 

hydrocarbons can be introduced from ambient air, which has been confirmed in a previous 

report298. Therefore, the observed pinholes and the step edges are hypothesized to be filled 

by carbonaceous deposits. It is known that removal of these carbon contaminants requires 

annealing in a UHV chamber above 573 K296. However, after (NH4)2S(aq) chemical 

treatment, the AFM image of Figure 4.6(b) reveals that the carbon contaminants are mostly 

removed. The data is consistent with the carbon composites being washed out by the 

reaction with (NH4)2S(aq) solution. 

 

Figure 4.6: Atomic force microscopy (AFM) images of mechanically exfoliated ML WSe2 
(a) before (NH4)2S(aq) chemical treatment and (b) after (NH4)2S(aq) chemical treatment 
showing a cleaner surface topography. Pinholes and step edges are marked with dotted 
yellow circles and solid yellow arrows, respectively. 

During transfer of the WSe2 sample in ambient conditions or during fabrication 

processes, the WSe2 surface is exposed to ambient air resulting in the partial oxidation of 
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WSe2. To elucidate the effect of chemical treatments on oxidized WSe2, the surface of 

WSe2 was intentionally oxidized by treating it with ultraviolet-ozone (UV-O3) which 

generates WOx particles on the surface. As shown in Figure 4.7 below, (NH4)2S(aq) 

chemical treatment of oxidized WSe2 induces the removal of UV-O3-induced WOx 

particles at the surface. Oxidized WSe2 surfaces were probed using AFM, before and after 

chemical treatments. As shown in Figure 4.7(a), bulk WSe2 surface was exposed to UV-

O3 for 20 min at 473 K to oxidize the WSe2; AFM shows particle-like features consistent 

with WOx particles of variable sizes. However, after dipping in diluted (NH4)2S(aq) 

solution for 1 hr. at 323 K, most of the WOx particles were removed, and only a few 

particles remain on the bulk WSe2 surface as shown in Figure 4.7(b). It is hypothesized 

that the entire oxidized WSe2, including both agglomerated and layered WOx, is removed 

by the (NH4)2S(aq) chemical treatment, thereby, exposing a fresh WSe2 surface as observed 

in the AFM image. Although complete removal of WOx requires dipping in the 

(NH4)2S(aq) solution for a few hours, it can be estimated that the small coverage of WOx 

on just ambient-exposed WSe2 is removed by a 10 to 15 min (NH4)2S(aq) chemical 

treatment, which is the typical time duration of the (NH4)2S(aq) chemical treatments used 

in the STM/STS and FET studies in this work. 

 

Figure 4.7: Atomic force microscopy (AFM) images of bulk WSe2 exposed to UV-O3 (a) 
after UV-O3 and before (NH4)2S(aq) chemical treatment and (b) after (NH4)2S(aq) chemical 
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treatment showing a cleaner surface topography. Most of the UV-O3-generated WOx 
particles are removed by the (NH4)2S(aq) chemical treatment. 

4.3.4  Chemical Analysis of Chemically Treated Bulk WSe2 using XPS 
To track the chemical change in bulk WSe2 after dipping in (NH4)2S(aq) solution, 

X-ray photoelectron spectroscopy (XPS) was performed. The spectra of W 4f, Se 3d and 

O 1s for bare bulk WSe2 and chemically treated WSe2 show negligible change in W 4f and 

Se 3d peaks – see Figures 4.8(a) and (b) below.  

 

 

Figure 4.8: XPS spectra of bulk WSe2 before and after (NH4)2S(aq) chemical treatment. 
The black curves correspond to the bare bulk WSe2, while the red curves correspond to 
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(NH4)2S(aq)-treated bulk WSe2. (a) Spectra of W 4f peaks. (b) Spectra of Se 3d peak. (c) 
Spectra of O 1s peak. 

The peak positions and the peak widths are nearly constant after chemical 

treatment, consistent with the absence of direct influence of the chemical treatment on the 

chemical binding configuration of the atoms in WSe2. The atomic ratio of elementary Se 

3d to W 4f in chemically treated bulk WSe2 (1.92:1) was also found to be nearly identical 

to Se 3d/W 4f ratio (1.96:1) in untreated bulk WSe2. This reveals that the (NH4)2S(aq) 

chemical treatment does not induce any decomposition of WSe2. 

Since the bulk WSe2 was exposed to ambient air during chemical treatments, O 1s 

spectra of bulk WSe2 is probed before and after (NH4)2S(aq) chemical treatment to quantify 

the oxidation in ambient air. As shown in Figure 4.8(c), there was no observable O 1s peak 

in both cases. It is noted that both the bare and chemically treated bulk WSe2 samples were 

gently annealed at 573 K for 10 min in the UHV chamber to remove any ambient molecular 

adsorption from their surface before doing XPS. Therefore, it can be concluded that the 

(NH4)2S(aq) chemical treatment does not induce any oxidation of the WSe2 surface in 

ambient air. 

4.4 THEORETICAL DFT INVESTIGATION OF THE CHEMICAL TREATMENT-INDUCED 
BAND STRUCTURE TRANSITION AND P-DOPING IN WSE2 
To determine the exact mechanism underlying the aforementioned electronic 

transition in WSe2 after (NH4)2S(aq) chemical treatment, DFT calculations were performed 

to compare the electronic band structures of ML WSe2 before and after (NH4)2S(aq) 

chemical treatment. The surface interaction between WSe2 and various chemically 

generated molecular species in the (NH4)2S(aq) solution was determined; calculations were 

performed to model all the possible adsorbates (S, SH, H2S, NH3) from the sequence of 

reactions in (1), but only the “SH” adsorbates produced an electronic surface structure 

consistent with the experiments. As shown in Figure 4.9(a), the adsorption of SH molecule 

on the WSe2 surface exhibits a noticeable change in its electronic band structure; it induces 

the formation of acceptor-like in-gap states as well as an increase in the density of states 



 

90 

(DOS) right below the WSe2 VBE and shifts the Fermi level toward the WSe2 VBE. 

Conversely, the adsorption of elementary S introduces additional states near both band 

edges without a Fermi level shift and slightly reduces the electronic band gap from 1.55 to 

1.49 eV. When a H2S or NH3 adsorbate is applied on WSe2, the DOS of WSe2 is nearly 

consistent with extremely weak interactions.  

The effect of SH adsorbates on the WSe2 band structure was investigated in more 

detail. The calculated electronic band structure of bare ML WSe2 is shown in Figure 4.9(b); 

an electronic band gap of about 1.55 eV is calculated with the Fermi level positioned closed 

to the middle of the band gap. However, as shown in Figure 4.9(c), the adsorption of SH 

on WSe2 induces the electronic band structure modification due to an increase in the DOS 

right below the WSe2 VBE and formation of additional acceptor-like states in the band gap, 

thereby, causing a shift of the Fermi level toward the WSe2 VBE. It is noted that the 

calculated binding energy of SH molecules at the Se atom site of WSe2 is 0.48 eV. 

Introduction of the second SH molecule onto the surface of WSe2 induces an additional 

increase in both the DOS below the WSe2 VBE and acceptor-like in-gap states, as shown 

in Figure 4.9(d). Based on the DFT modeling results, it can be hypothesized that the 

adsorption of “SH” molecules is responsible for the p-type doping and electronic band gap 

reduction in WSe2 after (NH4)2S(aq) chemical treatment. 
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Figure 4.9: (a) Calculated band structure of ML WSe2, with and without adsorbed 
species, versus energy. Only the adsorption of chemically generated “SH” molecules on 
the WSe2 surface introduces in-gap states and shifts the Fermi level toward the 
WSe2 valence band edge (red curves). Adsorption of other molecular species (S, H2S, and 
NH3) has a negligible effect on the ML WSe2 band structure. Total DOS for (b) bare ML 
WSe2, (c) ML WSe2 with a single SH molecule adsorbed, and (d) ML WSe2 with two SH 
molecules adsorbed. In the latter two cases, the increase in the DOS right below the VBE 
is indicated by black arrows. The modeled atomic structure corresponding to each of these 
cases is shown on the right. A free-standing ML WSe2 layer is considered in all cases. Note 
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that for the localized defect-induced states, the partial occupancy of both spin up and spin 
down states is energetically unfavorable due to the strong repulsive interaction between 
localized electrons – see Figure 4.10(b) below. Note: The DFT simulations presented in 
this Chapter were performed at The University of Texas at Dallas by Jeongwoon Hwang 
and Chenxi Zhang under the supervision of Professor Kyeongjae Cho. 

It is noted that in Figures 4.9(b), (c) and (d) above, introducing one SH adsorbate 

on the bare ML WSe2 supercell leads to one unoccupied acceptor-like in-gap state as shown 

in Figure 4.9(c), which originates from the pz orbital of S (with spin down). The occupied 

pz orbital-dominant state with the opposite spin (orange line for spin up) increases the 

density of states (DOS) below the valence band edge (VBE) as marked with a black arrow 

in Figure 4.9(c). As a result, the overall density of states near the WSe2 VBE increases. 

When one additional SH adsorbate is introduced  (i.e., a total of two adsorbed SH molecules 

on the WSe2 surface), two pz orbital-dominant states with opposite spins are occupied 

leaving two unoccupied acceptor-like in-gap states with opposite spins. As shown in Figure 

4.9(d), this additional acceptor-like in-gap state from the second SH molecule corresponds 

to the increase in the orange line at ~ 0.3 eV, whereas the occupied pz orbital-dominant 

state with the opposite spin (blue line for spin down) from the second SH molecule further 

increases the DOS below the VBE as marked with the lower black arrow in Figure 4.9(d). 

These acceptor-like in-gap states as well as the additional states near the VBE 

induced by molecular SH adsorption can effectively reduce the electronic band gap of 

WSe2, which is consistent with the experimentally observed electronic band gap reduction. 

Figure 4.10(a) below compares the projected DOS on SH with the total DOS of the SH-

WSe2 system, whereas Figure 4.10(b) illustrates the iso-surface of the charge density of 

SH adsorbate-induced states for the spin up and spin down cases as marked by the blue and 

red arrows, respectively, in Figure 4.10(a). Thus, these DFT calculation results are 

consistent with the adsorption of SH molecules on the WSe2 surface being the underlying 

mechanism for the experimentally observed p-type doping and electronic band gap 

reduction in WSe2 after (NH4)2S(aq) chemical treatment. 
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Figure 4.10: (a) Projected density of states on SH (green line) is shown with the total 
density of states (black line). (b) Illustration of the iso-surface of the charge density of SH 
adsorbate-induced states for the spin up (left) and spin down (right) cases as marked by the 
blue and red arrows, respectively, in (a). 

It is noted that in the STS curves shown earlier in Figure 4.5, quantification of the 

exact change of ML WSe2 electronic band gap with (NH4)2S(aq) chemical treatment is 

challenging because of the limited energy resolution and relatively high sample 

temperature (100 K). In addition, STM lacks chemical selectivity, and, thus, identifying a 

chemically induced adsorbate using STM is challenging. However, as shown in Figure 4.9, 

DFT reveals that as SH molecules adsorb on the surface of WSe2, additional electronic 

states are introduced in the band gap as well as right below the VBE consistent with p-

doping and band gap narrowing. Therefore, it is hypothesized that the p-doping and 
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electronic band gap reduction in (NH4)2S(aq)-treated ML WSe2 results from the 

introduction of additional energy states in the WSe2 band structure with the adsorption of 

a large density of SH molecules299-301. It is noted that the present DFT model is simplified 

with a limited number of SH adsorption sites (only one and two) on the WSe2 surface, 

because a DFT calculation with a large density of SH adsorption on WSe2 would require 

an enormous processing time and complicated models. Conversely, as shown earlier in the 

STM images of (NH4)2S(aq)-treated ML WSe2, a large coverage of adsorbate-like CTI 

defects is observed on the WSe2 surface which includes SH molecular adsorbates among 

others, and, therefore, it can be inferred that multiple adsorbed SH molecules induce the 

generation of a large DOS in the WSe2 band structure consistent with p-type doping and 

electronic band gap reduction. 

4.5 ELECTRICAL AND SPECTROSCOPIC CHARACTERIZATION OF THE P-DOPING IN 
WSE2 AFTER CHEMICAL TREATMENT 

4.5.1  Transfer Characteristics and Raman Characterization of Back-Gated Few-
Layer WSe2 FETs 
To further substantiate the STS and DFT results, the hole doping induced in WSe2 

by the one-step (NH4)2S(aq) chemical treatment process was also investigated via the 

electrical characterization of FL WSe2-based FETs. Figure 4.11(a) illustrates the schematic 

of a back-gated FL WSe2 FET along with an optical micrograph of a typical FET used in 

this study. The FL WSe2 flake is first characterized using Raman spectroscopy. Figure 

4.11(b) shows the Raman spectra acquired on the FL WSe2 device flake before (black 

curve) and after (red curve) (NH4)2S(aq) chemical treatment (10 min at 300 K + quick IPA 

rinse + air-dry), revealing a negligible change in the peak positions or sharpness of the 

characteristic Raman modes of FL WSe2, that is, the A1g, 2LA(M), and 

𝐵𝐵2𝑔𝑔1  modes302, suggesting that the material/structural quality of the FL WSe2 flake, much 

like the case of ML WSe2 as shown in Figure 4.3(c), remains unaffected by the (NH4)2S(aq) 

chemical treatment. 
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Figure 4.11: (a) Optical image and schematic illustration of the back-gated FL WSe2 FET 
with Ni/Au top contact electrodes. (b) Raman spectra taken on a FL WSe2 device flake (~ 
3–4 nm thickness) before (black curve) and after (red curve) (NH4)2S(aq) chemical 
treatment. (c) Room temperature back-gated transfer characteristics of the FL WSe2 FET 
shown in (a) before (black curve) and after (red curve) (NH4)2S(aq) chemical treatment. A 
clear enhancement of ION in the p-branch is observed after (NH4)2S(aq) chemical treatment. 
(d) Qualitative equilibrium band diagrams along the FL WSe2 FET channel before (top; 
bare FET) and after (NH4)2S(aq) chemical treatment (bottom; treated FET) explaining the 
enhanced p-type behavior and hole field-effect mobilities observed in chemically treated 
back-gated FL WSe2 FETs. 

The back-gated FL WSe2 FETs were electrically characterized at room temperature 

(300 K) under vacuum (base pressure: 6 × 10–6 mbar) in the dark, utilizing a Lakeshore 

probe station and a Keysight B1500A semiconductor parameter analyzer. The back-gate 
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voltage VBG was swept from negative to positive for all the current–voltage transfer 

characteristic measurements presented, unless otherwise noted. The source and drain 

electrodes were kept constant for all measurements taken on any given FET. The flake 

thickness used in our FL WSe2 FETs was in the range of 3–4 nm, corresponding to 4–5 

atomic layers. Figure 4.11(c) shows the semilog transfer characteristics (i.e., log IDS vs VBG) 

of the back-gated FL WSe2 FET shown in Figure 4.11(a), measured at VDS = 1 V. The 

channel length (L) and width (W) of this device are 0.75 and 10 μm, respectively. Before 

the (NH4)2S(aq) chemical treatment, the as-fabricated FET displays an ambipolar behavior, 

typical of FL WSe2 FETs with Nickel (Ni) contacts161, as shown by the black curve. 

The ION in the p-branch and the n-branch are comparable, consistent with the contact metal 

Fermi level being pinned close to the midgap of FL WSe2. After the (NH4)2S(aq) chemical 

treatment, the measured transfer characteristic shows a pronounced difference as evidenced 

by the red curve in Figure 4.11(c). The back-gate voltage at which the p-branch current 

starts to emerge is slightly shifted toward more positive VBG values after (NH4)2S(aq) 

chemical treatment, suggesting a positive threshold voltage shift indicative of p-type 

channel doping. There is a large increase (~ 70×) in the p-branch ION (from ~ 200 nA/μm 

to ~ 14 μA/μm), whereas the n-branch ION remains largely unchanged (~ 100–150 nA/μm). 

4.5.1.1 Reasons for Ambipolarity in FL WSe2 FETs Post Chemical Treatment 
Note that the present WSe2 FETs display ambipolar behavior even after chemical 

treatment with fairly significant n-branch ON-currents. This is expected because the Fermi 

level of Ni typically pins slightly above the midgap in WSe2 at the Ni/WSe2 contact 

interface161, and the present chemical treatment is done after complete FET fabrication 

(i.e., after the fabrication of Ni/Au top source/drain (S/D) electrodes), implying that the p-

doping is effective only on the exposed WSe2 channel regions and not the channel 

extensions underneath the Ni/Au top contacts. Moreover, as elucidated via the STS and 

DFT results discussed before, the (NH4)2S(aq) chemical treatment also induces a reduction 

in the overall electronic band gap of WSe2, and it is likely that this electronic band gap 

reduction in the chemically treated WSe2 channel regions contributes to such sustained n-
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branch currents in the present FETs. Therefore, owing to these reasons, ambipolarity is 

expected in our FL WSe2 FETs even after chemical treatment. 

4.5.1.2 Detailed Investigation of the P-Branch of the FL WSe2 FET 
Since only the p-branch of the FL WSe2 FET shows significant relative changes 

after (NH4)2S(aq) chemical treatment, it is analyzed in more detail. As can be seen in Figure 

4.11(c), due to the increase in the p-branch ION after (NH4)2S(aq) chemical treatment, the 

p-branch ION/IOFF ratio increases by 2 orders of magnitude (from ~ 107 to ~ 109). The 

extrinsic or two-point (2-pt) field-effect hole mobility (μFE-h) is calculated from the linear 

transfer curves of the FET data shown in Figure 4.11(c), using the expression: 

µFE = (δIDS/δVBG |max)(L/W)(1/COX)(1/VDS) 

where δIDS/δVBG |max is the maximum back-gated transconductance, L and W are the length 

and width of the channel, respectively, COX represents the geometric back-gate 

capacitance, and VDS is the drain/source voltage. The present chemical treatment induces 

p-doping consistent with molecular SH adsorption on the WSe2 FET channel. Since doping 

the channel near the contact regions reduces the contact resistance and increases the field-

effect mobility of charge carriers in TMD-based FETs, the ‘extrinsic’ or ‘2-pt’ mobility 

equation (which includes the voltage drop across the series resistance of the contacts) was 

employed to estimate the relationship between the p-doping and changes in the hole field-

effect mobility (μFE-h) in the back-gated WSe2 FETs. The μFE-h of the bare FL WSe2 FET 

was extracted to be ~ 3.5 cm2/V-s (i.e., before (NH4)2S(aq) chemical treatment), while the 

μFE-h after (NH4)2S(aq) chemical treatment was ~ 22.7 cm2/V-s, showing about a 6× 

enhancement in the hole field-effect mobility. Similar device results, that is, enhancement 

of the p-branch ION and improvement in μFE-h, were obtained on four different back-gated 

FL WSe2 FETs after (NH4)2S(aq) chemical treatment. The ambient stability of this 

(NH4)2S(aq) chemical treatment process was studied by remeasuring the FET transfer 

characteristics after a period of 10 days following the initial measurement post-chemical 

treatment. The FETs displayed good ambient stability as they retained a majority of the 

chemical treatment-induced enhanced p-type behavior. Moreover, the (NH4)2S(aq) 
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chemical treatment process shows reversibility as the WSe2 FET transfer characteristic 

almost returns to its initial state after subjecting the samples to a high-vacuum annealing 

step at 340°C. The repeatability, stability, and reversibility of the (NH4)2S(aq) chemical 

treatment process can be seen in the transfer characteristics of another similar back-gated 

FL WSe2 FET as discussed later in Section 4.5.3. 

4.5.1.3 Mechanism of WSe2 FET Operation Before and After Chemical Treatment 
To understand the mechanism of WSe2 FET operation before and after (NH4)2S(aq) 

chemical treatment, simple qualitative equilibrium band diagrams along the FL WSe2 FET 

channel are illustrated in Figure 4.11(d). Before (NH4)2S(aq) chemical treatment, the FL 

WSe2 FET shows typical ambipolar behavior as the Ni Fermi level pins slightly above the 

midgap in WSe2 at the Ni/WSe2 contact interface, resulting in large Schottky barrier 

heights for both electron and hole injections as represented by ΦN and ΦP, respectively, 

in Figure 4.11(d). After (NH4)2S(aq) chemical treatment in the exposed channel region, the 

band profile along the channel changes due to the enhanced p-doping induced by the 

adsorbed SH species on the WSe2 surface. This chemical p-doping results in an enhanced 

“upward” band bending in the entire WSe2 channel region, resulting in a narrowing of the 

p-type Schottky barrier width as illustrated by the shaded light red oval regions in the 

bottom band diagram of Figure 4.11(d). Note that the WSe2 channel extensions directly 

underneath the Ni contacts are not affected by the (NH4)2S(aq) chemical treatment, and, 

thus, the chemical p-doping is confined only to the exposed WSe2 channel/access regions 

in this study.  

The overall effect of this (NH4)2S(aq) chemical treatment-induced p-doping in the 

WSe2 channel and access regions is that when similar negative back-gate voltages are 

applied (which causes an upward band bending in the WSe2 layer due to electrostatic p-

doping), it makes it relatively easier for the holes to get injected into the valence band of 

WSe2 via tunneling through the p-type Schottky barrier width present at the 

Ni/WSe2 contact interface. In other words, after (NH4)2S(aq) chemical treatment on our 

WSe2 FETs, the combined effect of the chemical p-doping and electrostatic p-doping by 
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the negative back-gate voltage results in an enhanced upward band bending in the 

WSe2 channel leading to enhanced narrowing of the p-type Schottky barrier width, as 

opposed to the case before chemical treatment where the band bending is effected only by 

the negative back-gate voltage. Thus, enhanced p-branch ON-currents and hole field-effect 

mobilities were obtained in our FL WSe2 FETs after chemical treatment. Since Schottky 

barriers result in large contact resistances, it can be said that the (NH4)2S(aq) chemical p-

doping helps alleviate the p-type Schottky barrier-induced contact resistance in our FL 

WSe2 FETs. This is consistent with other reports on TMD-based FETs where chemical 

doping in the channel/access regions has been shown to improve the FET performance by 

alleviating the Schottky barrier-induced contact resistance303.  

4.5.2  Detailed Analysis of the FL WSe2 FET Current-Voltage Characteristics 
After Chemical Treatment 
In this Section, detailed current-voltage characterization of another representative 

back-gated few-layer (FL) WSe2 FET before/after (NH4)2S(aq) chemical treatment is 

shown. Optical images of the FET before/after chemical treatment elucidate the effects of 

the (NH4)2S(aq) chemical treatment on the Ni/Au contact electrodes. The transfer 

characteristics at two different drain voltages show the reproducibility of our chemical 

treatment-induced p-doping. The p-branch output characteristics demonstrate the relative 

improvement in the linearity of the p-branch drain currents indicative of a reduced Schottky 

contact behavior. The data also show the hysteresis in the transfer characteristics as well 

as an evolution of the p-doping with increasing chemical treatment time (5, 10 and 15 min). 

4.5.2.1 Optical Images of the FL WSe2 FET 
As shown in Figure 4.12 below, the back-gated FL WSe2 FET was imaged both 

before chemical treatment and after 15 min chemical treatment followed by an IPA rinse + 

air dry. Although there was some discoloration of the WSe2 flake near its bulk bottom left 

region, the majority of the FL device flake and the Ni/Au top contact electrodes were not 

significantly affected by a 15 min chemical treatment in (NH4)2S(aq) solution. All electrical 

data shown in Section 4.5.2 was collected from this FET. 
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Figure 4.12: Optical images of a representative back-gated FL WSe2 FET with Ni/Au top 
contact electrodes before and after 15 min chemical treatment showing no significant 
change in the Ni/Au contact electrodes as well as majority of the WSe2 flake regions. The 
channel length L of the FET is about 1.5 µm. Scale bar is 10 µm. Red arrow points to the 
small bulk region of the WSe2 affected by the chemical treatment. 

4.5.2.2 Transfer Characteristics of the FL WSe2 FET at Different Drain Biases 
Figure 4.13 below shows the semi-log transfer characteristics of the back-gated FL 

WSe2 FET (shown in Figure 4.12) before and after 10 min chemical treatment at two 

different drain voltages (VDS = 1 V and 200 mV). The VBG sweep direction was from 

negative to positive. Before chemical treatment (black curves), the FET displayed 

ambipolar behavior as expected with Ni contact electrodes, the Fermi level of which pins 

near the WSe2 midgap at the Ni/WSe2 interface. However, the n-branch currents were 

greater than the p-branch currents before chemical treatment, consistent with the contact 

Fermi level pinning being in the upper half of the WSe2 band gap. The chemical treatment 

resulted in enhanced p-branch ON-currents (about a 100x increase) and a positive shift in 

the p-branch threshold voltage as shown by the red curves in Figure 4.13.  The n-branch 

ON-currents remained similar or were slightly lower after chemical treatment. These 

results are similar to the FET results presented in Figure 4.11(c) above and Figure 4.17 

below. 
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Figure 4.13: Transfer characteristics of the back-gated FL WSe2 FET before and after 10 
min chemical treatment at two different drain voltages (VDS = 1 V and 200 mV) showing a 
clear enhancement in the p-branch ON-currents (up to 100x) accompanied with a positive 
threshold voltage shift. The n-branch ON-currents remain similar after chemical treatment. 

4.5.2.3 P-Branch Output Characteristics of the FL WSe2 FET 
Figure 4.14 below compares the p-branch output characteristics of the FL WSe2 

FET before (left plot) and after (right plot) chemical treatment. The VBG is decremented in 

-5 V steps from -15 V to -30 V to probe the p-branch of the WSe2 FET. Before chemical 

treatment (top plot), the output current levels are fairly low (ION ~ 0.3 µA for VBG = -30 V 

and VDS = -1.5 V), and the current vs. voltage displays large non-linearity, especially at low 

VDS values between -0.5 V and 0 V, consistent with the presence of a significant p-branch 

Schottky barrier height. However, after chemical treatment for 5, 10 and 15 mins (bottom 
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plot), there is a significant increase in the p-branch currents with increasing chemical 

treatment time (ION ~ 63 µA for VBG = -30 V and VDS = -1.5 V after 15 min treatment) as 

well as a relative improvement in the linearity of the IDS-VDS current-voltage curves at low 

VDS values. This indicates that the chemical treatment-induced p-doping of the FL WSe2 

channel near the contact regions, coupled with the electrostatic p-doping induced by the 

negative VBG, causes an enhanced ‘upward’ band bending at the WSe2/Ni contact interface 

leading to narrowing of the p-type Schottky barrier width – see Figure 4.11(d) in Section 

4.5.1 – which, in turn, facilitates enhanced hole injection from the Ni contacts into the 

WSe2 valence band via tunneling through the Schottky barrier. 

Although the chemical treatment leads to an improvement in the ON-currents and 

linearity of the p-branch IDS–VDS curves at low VDS values, some nonlinearity is still 

present in the p-branch output characteristics of the FL WSe2 FET consistent with non-

ohmic or Schottky-type contacts even after chemical treatment. This signifies that the 

chemical p-doping technique used in this study only converts the p-type contacts from 

being “more” Schottky-type before chemical treatment (i.e., more nonlinearity in the 

output curves) to relatively “less” Schottky-type after chemical treatment. It is noted that 

Ni S/D contact electrodes were used in this study which typically pins slightly above 

midgap in WSe2, resulting in ambipolar FET behavior and large Schottky barrier heights 

for hole injection161. Consequently, Ni contacts are not optimized for efficient hole 

injection in WSe2 and are partly responsible for the Schottky-type behavior observed in the 

p-branch of the FL WSe2 FETs even after chemical treatment.  
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Figure 4.14: P-branch output characteristics of the back-gated FL WSe2 FET before (top 
plot) and after (bottom plot) (NH4)2S(aq) chemical treatment showing a significant 
enhancement in the p-branch output currents after chemical treatment. For VBG = -30 V and 
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VDS = -1.5 V, the p-branch ON current increases from 0.3 µA to 10 µA, 50 µA and 63 µA 
after 5, 10, and 15 min of chemical treatment, respectively. With increasing chemical 
treatment time, there is also a relative improvement in the linearity of the IDS-VDS current-
voltage curves at low VDS values. 

Moreover, a (NH4)2S(aq) solution with a fixed starting concentration (20% in H2O) 

was utilized for the chemical p-doping. In principle, the starting concentration as well as 

the treatment time of the (NH4)2S(aq) solution can be varied to achieve different 

concentrations of adsorbed SH species on the WSe2 surface, thereby, resulting in different 

p-doping levels ranging from nondegenerate doping in the channel region to degenerate 

doping in the S/D contact and access regions (as proof of concept, the p-doping evolution 

with increasing chemical treatment time using the 20% (NH4)2S(aq) solution is 

demonstrated in the next Section, along with an estimation of the 2D hole doping 

concentration after chemical treatment). Therefore, with further optimization of this 

chemical p-doping process (changing the (NH4)2S(aq) starting concentration, chemical 

treatment time etc.) and proper choice of the S/D contact electrode (e.g., high work function 

Pd or Pt), p-type ohmic contacts and high-performance WSe2 PFETs might be fabricated 

with the simple one-step (NH4)2S(aq) chemical functionalization technique. 

4.5.2.4 Evolution of P-Doping in FL WSe2 FETs with Chemical Treatment Time 
This one-step chemical treatment technique can induce variable p-doping 

concentrations in WSe2. It is hypothesized that changing the starting concentration of the 

(NH4)2S(aq) solution and/or changing the chemical treatment time should result in variable 

SH molecular adsorption on the WSe2 surface resulting in variable p-doping. Since the 

starting concentration of the (NH4)2S(aq) solution used in this study was fixed at 20%, the 

current-voltage characteristics of the FL WSe2 FET were probed as a function of varying 

chemical treatment times. As already shown in the output characteristics of Figure 4.14 

above, increasing the chemical treatment time leads to a gradual increase in the p-branch 

currents. Figure 4.15 below shows the transfer characteristics of the FL WSe2 FET with 

changing treatment times (5 min and 10 min) which is consistent with variable p-doping. 
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Increasing the chemical treatment time increases the p-branch ON-currents by ~ 100x. The 

2D hole doping concentration (p2D) after chemical treatment can be estimated as p2D = (COX 

|ΔVT|)/q, where q is the electron charge, COX = 3.84 × 10-8 F/cm2 is the geometric back-

gate oxide capacitance, and |ΔVT| is the magnitude of the p-branch threshold voltage shift 

after chemical treatment (note that in the present case, VT was estimated using the constant 

current method wherein the VBG value corresponding to IDS = 10 nA was taken as the VT). 

The extracted value of p2D for each 5 min chemical treatment time is ~ 1.5 × 1012 cm-2. As 

highlighted in the main manuscript, together with strategic choice of the contact metal, this 

one-step chemical treatment process can be optimized further to achieve both degenerate 

and non-degenerate p-doping levels in the contact and channel regions, respectively, to 

achieve high-performance WSe2 PFETs. 

 

Figure 4.15: Semi-log transfer characteristics of the FL WSe2 FET showing increasing p-
doping levels with increasing chemical treatment time. A consistent increase is observed 
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in the p-branch ON-current levels of the FL WSe2 FET after 5 min and 10 min chemical 
treatment using the 20% (NH4)2S(aq) solution. 

4.5.2.5 Hysteresis in the FL WSe2 FET After Chemical Treatment 
Hysteresis was also observed in the back-gated FL WSe2 FETs both before and 

after chemical treatment. Figure 4.16 below compares the semi-log transfer characteristics 

of the back-gated FL WSe2 FET, shown earlier in Figure 4.12, before (black curves) and 

after 15 min chemical treatment (red curves) with the back-gate swept in both directions 

(the sweep direction is indicated by the corresponding dashed arrows in the figure). 

Although all the current-voltage measurements were carried out in vacuum (base pressure: 

6 x 10-6 mbar) to minimize the hysteretic effects of atmospheric adsorbates, the FETs used 

in this study were back-gated and un-passivated. The hysteresis shown in the as-fabricated 

FETs is consistent with defects in the SiO2 back-gate dielectric. After chemical treatment, 

there was only a small increase in the hysteresis. Note that there was no deliberate attempt 

to either minimize the water content from the chemically treated WSe2 sample surface after 

dipping in 20% (NH4)2S(aq) solution or to minimize the impurity content of the 

(NH4)2S(aq) solution which had a purity rating of 98%. Both water and other impurities 

are major sources of hysteresis in 2D TMD-based FETs and could be responsible for the 

observed increase in the hysteresis in the transfer curves of the FL WSe2 FET after 

chemical treatment304.  
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Figure 4.16: Semi-log transfer characteristics of the back-gated FL WSe2 FET before and 
after chemical treatment showing both sweeping directions. Hysteresis is observed in the 
FET before chemical treatment which increases slightly after a 15 min chemical treatment 
in (NH4)2S(aq) solution. 

4.5.3  Stability and Reversibility of the Chemical Treatment Process 
 As mentioned earlier, a total of five different back-gated FL WSe2 FETs displayed 

similar device characteristics after chemical treatment. The semi-log transfer 

characteristics of another representative FL WSe2 FET is shown in Figure 4.17. The VBG 

sweep direction was from positive to negative in this case. Again, there was significant 

enhancement in its p-branch ION of more than two orders of magnitude [~ 300x increase; 

ION increases from about 0.01 μA/μm before chemical treatment (black curve) to about 3 

μA/μm after chemical treatment (red curve)], consistent with the enhanced p-type behavior 
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observed in the transfer curve of the back-gated FL WSe2 FET after chemical treatment as 

shown in Figure 4.11(c). Moreover, after chemical treatment, the p-branch threshold 

voltage showed a more prominent shift towards positive back-gate voltages as evidenced 

by the location of the current minima in the red curve as compared to the black curve. It is 

known that chemically doping a TMD channel with electrons or holes will shift the 

threshold voltage towards more negative or more positive voltages, respectively303. This is 

consistent with the present threshold voltage shift towards more positive back-gate voltages 

for the p-branch of the WSe2 FETs after chemical treatment because we are doping the 

WSe2 channel with holes. Additionally, the blue curve in Figure 4.17 reveals that the effect 

of the chemical treatment is well retained even after leaving the FL WSe2 FET sample in a 

desiccator under low vacuum conditions (~ 745 mbar) for 10 days (the p-branch ION at VBG 

= -20 V decreases by only about ~ 2 μA/μm upon remeasuring the FET in vacuum after 10 

days, and the p-branch threshold voltage remains similar). It is noted that the ambient 

stability of this p-doping in WSe2 due to the adsorbed SH molecules can potentially be 

further improved when combined with other surface passivation techniques.  

Finally, it was observed that a high vacuum annealing step (340°C for 6 h; base 

pressure: 10-6 mbar) after the chemical treatment reversed the p-doping effect and largely 

restored the transfer curve of the FL WSe2 FET to its initial state, i.e., similar p-branch 

ON-current and threshold voltage as before chemical treatment, as shown by the green 

curve in Figure 4.17. This is consistent with the fact that the high vacuum annealing step 

can desorb the adsorbed SH species (DFT-calculated binding energy of SH on WSe2 = 0.48 

eV) from the surface of the WSe2 channel, thus, restoring the original band structure profile 

along the channel. 
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Figure 4.17: Room temperature back-gated transfer characteristics of a FL WSe2 FET 
before (NH4)2S(aq) chemical treatment (black curve), after (NH4)2S(aq) chemical 
treatment (red curve), after 10 days of ambient exposure (blue curve), and after a final high 
vacuum annealing step (green curve). Inset shows the optical image of the measured back-
gated FL WSe2 FET with Ni/Au top contacts. Scale bar is 5 µm. 

It is also noted that the pre-treatment of conventional bulk semiconductor surfaces 

(Ge, SiGe and III-V) using (NH4)2S(aq) solution has been demonstrated to suppress the 

interface trap sites or unsaturated chemical bonds at the semiconductor/dielectric interface 

after deposition of dielectrics via atomic layer deposition (ALD)305-307. Although SH 

molecules do not directly bond to WSe2, it is hypothesized that the adsorption of SH 

molecules on the surface of WSe2 provides a van der Waals (vdW) gap which can 

effectively suppress any damage of the WSe2 surface during the subsequent deposition of 

a top dielectric as well as atomic intermixing between the dielectric and WSe2. 
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4.5.4  Photoluminescence Study of ML WSe2 Before/After Chemical Treatment 
To elucidate the effect of (NH4)2S(aq) chemical treatment on the optical transition 

in ML WSe2, room temperature photoluminescence (PL) was performed at 300 K using a 

Renishaw inVia micro-Raman system configured for PL with specialized optics at an 

excitation wavelength of 532 nm and a grating of 1200 lines/mm to obtain high energy 

peaks. PL measurements were recorded before and after (NH4)2S(aq) chemical treatment 

keeping all measurement parameters identical. As seen in Figure 4.18 below, after 

(NH4)2S(aq) chemical treatment, the ML WSe2 PL intensity significantly decreases. This 

possibly results from the acceptor-like in-gap states introduced in WSe2 by the molecular 

SH adsorption which act as trap sites for the excited excitons, thereby, lowering the 

efficiency of radiative recombination. It is noted that PL probes the optical band gap of ML 

WSe2, whereas the STS measurements and DFT calculations reveal its electronic band gap. 

Thus, the electronic effects of the chemical treatment on ML WSe2 are not observed in PL. 

 

Figure 4.18: Room temperature photoluminescence spectra of ML WSe2 before and after 
(NH4)2S(aq) chemical treatment. The ML PL intensity decreases after chemical treatment. 



 

111 

4.6 CONCLUSION 
The band structure engineering of 2D layered WSe2 via the one-step (NH4)2S(aq) 

chemical treatment method is demonstrated to enhance its p-type electrical performance. 

Molecularly resolved STM and STS reveal that chemical treatment-induced defect 

adsorption on the WSe2 surface induces this band structure transition; the electronic band 

gap of ML WSe2 decreases from 2.1 to 1.1 eV, and the position of the Fermi level is shifted 

toward the WSe2 VBE. The underlying mechanism responsible for this WSe2 band 

structure modification is elucidated via DFT calculations which reveal that the adsorption 

of chemically generated “SH” molecules on the bare WSe2 surface is consistent with the 

formation of additional acceptor-like states in the WSe2 band gap as well as states right 

below the WSe2 VBE, resulting in the overall electronic band gap reduction and shifting of 

the Fermi level toward the WSe2 VBE. As a result of this electronic band structure 

transition in chemically treated WSe2, an enhancement of the p-branch ION (up to 2 orders 

of magnitude) as well as the hole field-effect mobilities (up to 6×) is observed in back-

gated ambipolar FL WSe2 FETs. The facile nature of this one-step (NH4)2S(aq) chemical 

functionalization process to tune the band structure of layered WSe2 at room temperature, 

without requiring additional vacuum or other complicated processes, can provide a 

potential pathway to easily integrate the band structure engineering of TMDs into the 

conventional TMD transistor fabrication process. 
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Chapter 5: Conclusions and Future Work 

5.1 DISSERTATION SUMMARY  
Atomically thin semiconducting TMDs, such as MoS2 and WSe2, indeed hold great 

promise for use as a transistor channel material and can be advantageous for a wide variety 

of electronic and optoelectronic device applications. The material and device performance 

projections for these 2D TMDs certainly seem to give them an edge over conventional bulk 

semiconductors in ultra-scaled future technology nodes. Moreover, as ultra-thin, flexible 

and transparent material, MoS2 and WSe2 can change the status quo in flexible 

nanoelectronics and thin-film transistor technologies. However, the promising advantages 

of these 2D TMD materials can only be utilized to the fullest once several key performance 

bottlenecks are mitigated. As discussed in Chapter 1 of this dissertation, the challenges 

associated with contact resistance, doping and mobility engineering are of paramount 

importance and these parameters must be carefully engineered to extract the maximum 

efficiency from MoS2- and WSe2-based devices and to make any TMD-based technology 

commercially viable. This dissertation presents a thorough and in-depth analyses of two 

very novel engineering solutions to help mitigate the challenges associated with doping, 

contact resistance and mobility engineering in 2D MoS2 and WSe2 devices. Moving 

forward, the doping techniques discussed here must be further optimized to ensure their 

robustness for use on both rigid and flexible platforms, as well as to improve their doping 

selectivity and controllability in order to enable TMD devices with tailored electrical 

properties. The brief chapter-wise summaries are given below. 

Chapter 1 gives an overview of 2D materials in the context of graphene and 

semiconducting TMDs and discusses the advantages of semiconducting TMDs over 

graphene, as well as of 2D TMDs over conventional bulk 3D semiconductors. The unique 

properties that set these 2D semiconducting TMDs apart have been described. Thereafter, 

a discussion of the projected performance of 2D MoS2 and WSe2 has been provided which 

is followed by a thorough discussion of the major engineering challenges that confront 

these 2D semiconducting TMDs before they can be successfully implemented in ultra-
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scaled, low-power and high-performance transistor technologies for commercial 

applications. One of the key goals of Chapter 1 is to give the reader a good sense of 

expectation versus current reality when it comes to these 2D semiconducting materials, as 

well as of the existing non-idealities that can have a detrimental effect on the key 

performance metrics of devices based on 2D TMDs. 

Chapter 2 describes a novel doping technique wherein a solution-processed sub-

stoichiometric high-κ dielectric, namely, amorphous titanium suboxide (TiOx or ATO), has 

been demonstrated to serve as an effective n-type charge transfer dopant on monolayer 

(ML) MoS2. Detailed experimental and theoretical investigations reveal that ATO could 

be utilized to reduce the Schottky-barrier-induced contact and access resistance, and the 

impact of charged impurity scattering on mobility in devices based on 2D MoS2. Utilizing 

ATO as the “high-κ dopant”, low contact resistances, enhanced ON currents, as well as 

enhanced field-effect and intrinsic electron mobilities were achieved in ATO-encapsulated 

ML MoS2 devices. It was revealed that the doping effect of ATO films on ML MoS2, a 

phenomenon that is absent when stoichiometric TiO2 is used, is due to the interfacial-

oxygen-vacancies that exist in the high-κ ATO film at the MoS2-dielectric interface. 

In Chapter 3, the study of the interfacial-oxygen-vacancy mediated n-doping of 

MoS2 by high-κ dielectrics has been extended to atomic layer deposited hafnium oxide 

(HfOx) and aluminum oxide (Al2Ox). HfOx and Al2Ox are widely used in conventional 

Silicon CMOS technology and, thus, offer an easy pathway for integration with 2D MoS2 

using commercially available tools. Once again, detailed theoretical and experimental 

investigations reveal that the n-doping of MoS2 is only effected when oxygen vacancies 

are present in the high-κ oxide at the MoS2-dielectric interface. Band structures and atom-

projected density-of-states for each MoS2-dielectric system and with differing oxide 

terminations were calculated, as well as those for the defect-free MoS2-dielectric system. 

It is revealed that electrons are transferred from the high-κ oxide into the MoS2 layer in a 

manner analogous to modulation doping. Electrical and spectroscopic characterization of 

MoS2 FETs encapsulated by oxygen deficient hafnium and aluminum oxides confirm the 

n-doping effect. 
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Chapter 4 describes a novel chemical functionalization technique to enhance the p-

type electrical performance of 2D layered WSe2 FETs using a one-step dipping process in 

an aqueous solution of ammonium sulfide [(NH4)2S(aq)]. Molecularly resolved scanning 

tunneling microscopy and spectroscopy reveal that molecular adsorption on a monolayer 

WSe2 surface induces a reduction of the electronic band gap from 2.1 to 1.1 eV and a Fermi 

level shift toward the WSe2 valence band edge, consistent with an increase in the density 

of positive charge carriers. The mechanism of electronic transformation of WSe2 by 

(NH4)2S(aq) chemical treatment is elucidated using density functional theory calculations 

which reveal that molecular “SH” adsorption on the WSe2 surface introduces additional in-

gap states near the VBE, thereby, inducing a Fermi level shift toward the VBE along with 

a reduction in the electronic band gap. As a result of this chemical treatment, the p-branch 

ON-currents of few-layer ambipolar WSe2 FETs are enhanced by about 2 orders of 

magnitude, and an increase in the hole field-effect mobility is observed. Detailed electrical 

characterizations of chemically treated WSe2 FETs shed further light on the feasibility of 

this one-step chemical functionalization approach. 

5.2 DIRECTIONS FOR FUTURE WORK 
Although the research studies presented in this dissertation provide an in-depth 

analysis and understanding of some novel approaches to engineer the mobility, contact 

resistance and doping concentrations in devices based on semiconducting TMDs such as 

MoS2 and WSe2, they also open up several avenues for further investigations and 

optimizations of these novel doping techniques for their successful integration with 2D 

semiconducting TMDs in order to realize more energy efficient (i.e., low-power) and high-

performance transistors. Some promising future research directions are outlined below. 

5.2.1  Extending the High-κ Dielectric Doping Technique to Other Semiconducting 
TMDs 
While we have demonstrated the interfacial-oxygen-vacancy mediated n-doping of 

MoS2 by high-κ dielectrics leading to an improvement in the MoS2 device performance, 

we do not yet know whether the same doping mechanism is applicable to other members 
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of the semiconducting 2D TMD family. Therefore, a natural extension of our work would 

be to explore, both experimentally and theoretically, the high-κ dielectric doping of other 

TMDs such as tungsten disulfide (WS2) and molybdenum diselenide (MoSe2). Just like 

MoS2, other semiconducting TMDs also suffer from the problem of Schottky barrier-

induced high n-type contact resistances which degrade their device performance303.  

Moreover, this problem is exacerbated in large band gap TMDs such as WS2
214

. Therefore, 

it’ll be of great value if we can demonstrate that the deleterious contact resistance issue in 

other TMDs can also be alleviated using CMOS-compatible high-κ dielectrics deposited 

using industry-standard techniques like ALD. 

5.2.2  Top-Gated Enhancement-Mode MoS2 Devices using Spatially-Confined and 
Stoichiometry-Controlled High-κ Dielectrics 
While we have demonstrated promising operation, contact resistance reduction and 

field-effect mobility enhancement in back-gated exfoliated n-type MoS2 transistors 

utilizing the sub-stoichiometric high-κ dielectric doping technique, it is to be noted that the 

high-κ dielectric doping effect was realized all across the MoS2 device including the 

channel as well as the source/drain access regions. Consequently, due to the strong high-κ 

n-doping, this led to depletion-mode MoS2 transistors (i.e., normally-on transistors) with 

negative operating gate voltages238. However, to realize MoS2 transistors geared towards 

ultra-low-power and high-performance operation, it is extremely important to realize top-

gated enhancement-mode MoS2 transistors (i.e., normally-off transistors having positive 

threshold voltages). This can be achieved by spatially confining the sub-stoichiometric 

high-κ n-doping effect only in the source/drain contact and access regions of the device to 

help mitigate the Schottky barrier-induced contact resistance, whereas using a 

‘stoichiometric’ high-κ dielectric in the channel regions under the top-gate to prevent any 

intentional n-doping and associated negative threshold voltage shifts in the MoS2 channel. 

This would enable the realization of MoS2 transistors with both high current ON/OFF 

ratios, low contact resistances and high ON-currents. Moreover, optimizing the process 

flow to attain strict control over the stoichiometry of the as-deposited high-κ dielectrics 
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(either via ALD or spin coating) on MoS2 would enable on-demand fabrication of MoS2 

transistors having fixed electron doping densities and threshold voltages with reproducible 

results. In addition to improving the DC performance, this scheme would naturally enable 

energy-efficient top-gated MoS2 RF transistors. Figure 5.1 below depicts the cross-section 

schematic of a top-gated MoS2 RF device structure (having two MoS2 FETs in parallel) 

wherein the sub-stoichiometric high-κ HfOx layer (i.e., the layer responsible for n-doping) 

is confined only to the source/drain access regions of the device (as represented by the red 

shaded regions), whereas the HfOx directly underneath the top-gate is fully stoichiometric 

(i.e., x = 2). 

 

 

 

 

 
 

 

 

Figure 5.1: Schematic illustration of the top-gated ML MoS2 RF device structure with the 
sub-stoichiometric high-κ HfOx n-doping effect spatially-confined only to the source/drain 
contact and access regions of the device as represented by the shaded red boxes. Adapted 
with permission from [79]. Copyright 2015 American Chemical Society. 

5.2.3  Further Optimizations of the One-Step (NH4)2S(aq) Chemical 
Functionalization Technique for High-Performance WSe2 Transistors 
While we thoroughly analyzed the novel one-step (NH4)2S(aq) chemical 

functionalization of WSe2 and uncovered the underlying mechanism responsible for the 

enhanced p-type behavior in WSe2 devices via detailed experimental and theoretical 

studies, this one-step chemical functionalization technique could be further optimized and 

integrated with other processes to yield WSe2 transistors having enhanced DC and RF 

performance. The starting concentration of the commercially purchased (NH4)2S(aq) 

solution used in our work was fixed at 20% and it had a purity rating of only 98%. However, 

 Sub-stoichiometric high-κ doping 
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using a (NH4)2S(aq) solution with enhanced purity and variable starting concentrations 

could lead to better performing WSe2 devices and would allow the fabrication of WSe2 

devices with variable p-doping densities in the channel and contact/access regions. Thus, 

one could potentially achieve extremely low p-type contact resistances in WSe2 devices by 

degenerately doping only its contact/access regions using a more concentrated (NH4)2S(aq) 

solution, while maintaining non-degenerate and fixed p-doping levels in the WSe2 channel 

regions to allow efficient gating and threshold voltage control. Moreover, this one-step 

chemical functionalization technique could be easily integrated with the bottom-contacted 

device architecture for WSe2 using high work-function platinum contacts, an architecture 

that was recently developed by our group, to yield high room temperature hole mobilities 

and enhanced p-type charge transport in WSe2 FETs277. 
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