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ABSTRACT

Temporal vertical eddy viscosity coefficient (VEVC) in an Ekman layer model is estimated using an

adjoint method. Twin experiments are carried out to investigate the influences of several factors on inversion

results, and the conclusions of twin experiments are 1) the adjointmethod is a capablemethod to estimate different

kinds of temporal distributions of VEVCs; 2) the gradient descent algorithm is better than CONMIN and L-BFGS

for the present problem, although the posterior two algorithms perform better on convergence efficiency; 3) in-

version results are sensitive to initial guesses; 4) themodel is applicable to differentwind conditions; 5) the inversion

resultwith thickboundary layer depth (BLD) is slightly better than thinBLD; 6) inversion results aremore sensitive

to observations in upper layers than those in lower layers; 7) inversion results are still acceptable when data noise

exists, indicating the method can sustain noise to a certain degree; 8) a regularization method is proved to

be useful to improve the results for present problem; and 9) the present method can tolerate the existence

of balance errors due to the imperfection of governing equations. The methodology is further validated in

practical experiments where Ekman currents are derived from Bermuda Testbed Mooring data and as-

similated. Modeled Ekman currents coincide well with observed ones, especially for upper layers. The

results demonstrate that the assumptions of depth dependence and time dependence are equally important

for VEVCs. The feasibility of the typical Ekman model, the imperfection of Ekman balance equations, and

the deficiencies of the present method are discussed. This method provides a potential way to realize the

time variations of VEVCs in ocean models.

1. Introduction

The effect of oceanic vertical eddy viscosity (VEV),

which is closely related to the turbulence, plays an im-

portant role in ocean motions. Lentz (1995) demonstrated

the sensitivity of the cross-shelf circulation over the inner

shelf, especially the location and width of the cross-shelf

divergence in the Ekman transport, to the form of the

VEV profile. McWilliams et al. (2009) and Wirth (2010)

investigated the influence of vertical structure of the eddy

viscosity on the Ekman spiral structure. How to parame-

terize the effect of turbulence is of great importance for

oceanic studies (Davies and Xing 2001). Compared

with large-eddy simulation (LES) and direct numerical

simulation (DNS), the Reynolds-averaged Navier–Stokes

equations (RANS) can be implemented with minor com-

putation cost, which makes it the most popular method

to depict the turbulence, especially for the motionsCorresponding author: Jicai Zhang, jicai_zhang@163.com
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with large Reynolds numbers, including oceanic and

atmospheric processes. Turbulence models are needed

to close the equations and calculate the Reynolds

stress and turbulent scalar flux.Many turbulencemodels

have been developed, for example, the Prandtl’s mixing

length model, k–« model, Mellor–Yamada model,

Reynolds stress model, and KPP model. (Obermeier

2006; Mellor and Yamada 1982; Launder et al. 1975;

Large et al. 1994). Unfortunately, there is no suchmodel

that can fit turbulent flows under different kinds of sit-

uations. One of the largest deficiencies of the RANS

method is the lack of universality. How to increase the

universality of RANS method is essential to depicting

the effects of turbulence.

The vertical eddy viscosity coefficients (VEVCs), which

cannot be measured directly, are an important parameter

in ocean models and usually assigned by experience or

calculated by turbulence models. In many earlier works,

the coefficientwas regarded as a constant in space and time

domain, which is easy to perform but not accurate. The

VEVCs produced by turbulence models are more rea-

sonable by taking into account ocean dynamics. However,

there are many parameters that need to be assigned for

most of the complex turbulence models. It is usually dif-

ficult to decide these parameters, especially when turbu-

lence observations are absent or inadequate, which has

significantly limited the application and accuracy of tur-

bulence models. Besides, turbulent flows are quite com-

plex with time and space scales spanning a wide range, and

the nonuniversality of turbulence models, as indicated

above, also becomes a block.

Data assimilation methods, especially the complex

ones like four-dimensional variational data assimila-

tion (4DVAR), are developed on the basis of rigorous

mathematical theories, such as inverse problem theory

and optimal control theory (Thacker and Long 1988).

The ultimate purpose of applying data assimilation

method is to reduce the data misfit between model re-

sults and various observations, by either estimating

the model parameters or dynamically interpolating

the observations (Anderson et al. 1996). Among all the

data assimilation methods, 4DVAR is one of the most

effective and powerful approaches (Kazantsev 2012).

As one of 4DVAR, the adjoint method is an advanced

data assimilation technique and has the advantage of

directly assimilating various observations distributed in

time and space into numerical models, while main-

taining dynamical and physical consistency with the

model (Zhang and Lu 2010). The adjoint method is a

powerful tool for parameter estimation (Navon et al.

1992; Navon 1998). Navon (1998) presented a signif-

icant overview of parameter estimation in meteorology

and oceanography in view of applications of 4DVAR

data assimilation techniques to inverse parameter esti-

mation problems.

As a type of inverse problem, the methodology of pa-

rameter estimation has been applied to determine VEVCs

(Panchang and Richardson 1993; Lardner and Song 1995).

Using adjointmethod,YuandO’Brien (1991), Zhang et al.

(2009), and Cao et al. (2017) estimated the depth-

dependent VEVCs by assimilating in situ or pseudo mea-

surements. Using the least squares method, Yoshikawa

and Endoh (2015) estimated the tide-induced eddy vis-

cosity profile by solving the Ekman balance equations

with measured velocity spirals. However, previous re-

search mostly considered the VEVCs as a constant or

depth dependent. The ocean is a time-varying system

and the parameters decided by ocean dynamics should

also be time varying. For example, the surface drag co-

efficients will change with time under different wind

conditions (Jarosz et al. 2007; Maurer et al. 2015). The

bottom friction coefficients and other parameters also

have the similar variability in the time domain (Lacy et al.

2005; Lozovatsky et al. 2008; Gwyther et al. 2015). The

VEVCs can be influenced by heat transferring processes

as well as vertical mixing induced by surface and bottom

friction (Pohlmann 1996), upwelling/downwelling (Kirincich

and Barth 2009), cycle of spring and neap tides (Yoshikawa

et al. 2010), etc. If time-varyingVEVCs are applied in ocean

numerical models, the accuracy of simulation can be im-

proved, which activates the present work. As one of the

most important theories in oceanography, whether the

typical Ekman theory can be observed in the real ocean

has been studied continuously (Price et al. 1987; Chereskin

1995; Elipot and Gille 2009; Lenn and Chereskin 2009;

Polton et al. 2013; Roach et al. 2015). These studies found

the classical constant viscosity inadequate and in need of

improvements. To improve the model, this work aims to

develop a methodology of estimating the time-varying

VEVCs from in situ current observations by applying an

adjoint data assimilation method.

The organization of this paper is as follows. The nu-

merical model is shown in section 2. In section 3, identical

twin experiments are performed to determine the opti-

mum settings for the method. In section 4, the method is

further validated in practical experiments where in situ

Ekman currents are assimilated. The feasibility, the im-

perfection of Ekman balance equations, and deficiencies

of the present method is discussed in section 5. Con-

clusions are given in section 6.

2. Numerical model

a. Governing equations (forward model)

Ekman layer model is a starting point for studying

upper-ocean physics and has been applied in numerous
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works (Elipot andGille 2009). In thismodel, a horizontally

unbounded ocean surface layer with depth H0 is consid-

ered. The z axis points upward, and the sea surface locates

at z 5 0. The Coriolis parameter f is a constant (f-plane

assumption). Governing equations are shown as follows:8>>><
>>>:
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where u(z) (positive to the east) and y(z) (positive to

the north) are horizontal velocity components; ua and

ya are eastward and northward wind velocity compo-

nents, respectively; ra and rw are densities of air and

water, respectively; CD is the wind stress drag co-

efficient; and A(t) is the VEVCs. Assuming that the

wind force is only along the u direction, ya is 0.

Considering that the variables in governing equations

have different units and magnitudes, the nondimensional

variables are introduced to make all the variables in the

scaled problem of order unity (Yu andO’Brien 1991). The

inertial period is chosen as the time scale as the motions in

the upper ocean are dominated by the inertial oscillations.

According to Yu and O’Brien (1991), the following non-

dimensional variables are introduced as
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where ra 5 1.2 kgm23, rw 5 1.025 3 103 kgm23, Sa 5
5.0 3 1022m2 s21, Sc 5 1.2 3 1023.

Equations (1)–(4) are then modified as follows:
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A
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The initial conditions are

uj
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5 u
0
, yj

t50
5 u

0
, (8)

In the work of Zhang et al. (2009) and Zhang et al.

(2015), the VEVCs are supposed to be depth dependent

and constant in time domain. It will be much more rea-

sonable to suppose the VEVCs to be vertically and

temporally varying synchronously. However, because

parameter estimation belongs to the field of inverse

problem, this assumptionwill significantly enhance the ill-

posedness, which can lead to estimation errors. In addi-

tion, observations sampled in the SouthernOcean proved

that a depth-constant VEVC can adequately represent

the vertical structure of the Ekman currents, indicating a

depth-constant VEVCs can be applicable in certain areas

(Polton et al. 2013; Roach et al. 2015). Therefore, in this

study the VEVCs are supposed to be time-varying but

depth-constant values. The effect of stratification and

imperfection of balance equations on the present method

are discussed in section 5.

b. Adjoint model (inverse model)

A cost function which quantifies the discrepancy be-

tween modeling results and observations is defined as

J(u, y,A)5
1

2
K

m

ð
t

ð
z

[(u2 û)2 1 (y2 ŷ)2] dz dt , (9)

where û and ŷ denote the observed velocities, and Km is

the weighting matrix. Generally, Km should be the in-

verse of the covariance matrix of observation errors,

which can be simplified by assuming that observation

errors are uncorrelated and equally weighted. In this

study, Km is set as a unit matrix (Zhang and Lu 2010).
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By introducing Lagrange multipliers, which are also

called adjoint variables, the Lagrange function is given by

L(u, y,A, l,m)5 J1

ð
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where l and m are Lagrange multipliers for u and y, re-

spectively. The problem of minimizing the cost function

under the constraint of governing equations becomes a

problem of finding stationary points of u, y, A, l, and

m under the condition that gradients of Lagrange function

vanish, which yields the following equations:
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›A
5 0. (13)

Equations (11) recover the original governing equa-

tions, while the equations in (12) result in the adjoint

equations, given by
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(u2 û) ,

›m

›t
1 l1

›

›z

�
A
›m

›z

�
5K

m
(y2 ŷ) .

(14)

The corresponding boundary conditions are
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The corresponding initial conditions are
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5 0, (17)

where T is the total integral time of Ekman layer model.

Ekman currents are simulated by integrating the forward

model, while the adjoint variables are obtained by back-

ward integrating the adjoint model. In general, the back-

ward integral time of the adjoint model is equal to the

integral time of the forward model (Zhang and Lu 2010).

The control variable in the model (VEVC) can be op-

timized with (13) by applying optimization algorithms.

c. Discretization of model equations

Following Crank–Nicholson scheme, the numerical

model is formulated using a finite difference discretiza-

tion with a spatial increment Dz and a temporal in-

crement Dt. Finite difference schemes corresponding

to governing equations are
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With boundary conditions (6) and (7), the recursive

relation was obtained to solve the initial boundary value

problem (5)–(8):

MW
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where

W5 (u
1
,u

2
, . . . , u

20
; y

1
, y

2
, . . . , y

20
)T,

F
i
5 [f

1
(i), 0, . . . , 0; f

21
(i), 0, . . . , 0]T,

f
1
(i)5

C
D

A
Dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
a(iDt)1 y2a(iDt)

q
u
a
(iDt) ,

f
21
(i)5

C
D

A
Dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
a(iDt)1 y2a(iDt)

q
y
a
(iDt) . (21)

The nonzero elements of M are

a
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The nonzero elements of M0 are
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a
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Similar to (20), the recursive relation to solve the

initial boundary value problem (14)–(17) is

MaW
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In the matrix, index j 5 1–20 is for u component, and

index j5 21–40 is for y component. In (22) and (26), the

values of a1,j, a20,j, a21,j, and a40,j ( j 5 40) have to be

assigned according to the surface and boundary condi-

tions as shown in (6) and (7), respectively.

d. Optimization of the VEVCs

Using (13), the gradient of Lagrange function L with

respect to A yields
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Using optimization algorithm, the VEVCs can be

optimized as

A
n11

5A
n
1a

n
d
n
, (29)

where An and An11 are a priori and adjusted values

of the VEVCs in the nth iteration step, and an and

dn represent the iteration step length and the

search direction, respectively. In this paper, an is

taken as 4.0 3 1024, which is obtained through a

trial and error procedure (Hülsmann et al. 2010).

There are many feasible optimization algorithms to

determine dn (Navon and Legler 1987; Zhu and

Navon 1999). Three algorithms, the gradient de-

scent method (GD), the limited-memory conju-

gate gradient (CG) algorithm (CONMIN; Shanno

and Phua 1980), and the limited-memory Broyden–

Fletcher–Goldfarb–Shanno (L-BFGS; Liu and

Nocedal 1989) are employed and compared in

section 3b.

In GD, the search direction d1
n is

d1
n 52g

n
(30)
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,

where (›J/›A)n and jj(›J/›A)njj are the gradients of the

cost function with respect to the VEVCs and their L2

norm at the nth iteration, respectively.

CONMIN algorithm is a limited-memory conju-

gate gradient method. Navon and Legler (1987) gave

details on different conjugate gradient algorithms. In

the conjugate gradient method, the search direction

dn* is defined as a conjugate direction:
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*52g

n
1

kg
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kg
n21

k2dn21
. (31)

L-BFGS is a modified BFGS algorithm with a limited

amount of computer memory (Liu and Nocedal 1989;

Zou et al. 1993). It requires that the search direction dy
n

satisfies

dy
n 52H

n
g
n
, (32)

where

H
n
5 (VT

n21, . . . ,V
T
n2m)H0

(V
n2m

, . . . ,V
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1 r
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n2m12)sn2m11

sTn2m11(Vn2m12
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n21
)
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where rn 5 1/sny
T
n , Vn 5 12 rnyns

T
n , sn 5 An11 2 An 5

andn, yn5 gn112 gn, andm is the correction steps varied

between three and seven (Alekseev et al. 2009). Them is

taken as five in this study.

For inverse problems, it is a challenge to find the

global minimum of cost function. The Hessian matrix of

cost function with respect to the control variables can be

used to analyze whether the global minima has been

reached. The Hessian matrix can be obtained by carry-

ing out second-order adjoint (SOA) sensitivity analysis

(Wang et al. 1992; Wang et al. 1995; Alekseev and

Navon 2001). Wang et al. (1995) proposed a modi-

fied version of the truncated-Newton algorithm by us-

ing SOA technique to obtain an exact Hessian vector

product which was required in calculating the Newton

line search direction. Their methodwas tested in shallow

water equations and obtained improved convergence

efficiency compared with the original truncated-Newton

method and L-BFGS. In this work, the SOA model is

not developed. Nevertheless, in order to decrease the

cost function continuously, the gradient of cost function

with respect to control variables is normalized first,

which means that only the direction of the gradient is

used when optimization is performed. Then a small

value is assigned to the step size an. With this method,

the cost function can be decreased without fluctuation to

reach the global minimum continuously.

3. Ideal twin experiments and results analysis

a. Model settings

To evaluate the reasonability and feasibility of the

model and method developed in this paper, ideal twin

experiments are designed to estimate the time-varying

VEVCs. Nine groups of experiments are carried out to

investigate the factors that can influence the parameter

estimation, including the optimization algorithm, initial

guess, prescribed distribution, wind condition, boundary

layer depth (BLD), vertical level of observations, data

noise, regularization algorithm, and balance error.

The process of ideal twin experiments is designed as

follows:

1) Run the forwardmodel with prescribedVEVCs and the

simulated currents are taken as pseudo ‘‘observations.’’

2) Run the forward model with a constant initial guess

of the VEVC. Because the initial guess is different

from the prescribed VEVCs, differences exist be-

tween simulated currents and observations, which act

as the force of the adjoint model.

3) Based on simulated results of forward and adjoint

models, the gradients of cost function with respect to

VEVCs can be calculated according to (28). By

employing an optimization algorithm, the VEVCs

can be optimized.

4) By iterating processes 2 and 3, the VEVCs can be

optimized continuously and the difference between

simulated currents and observations will be reduced.

Once a certain convergence criterion is met, the

processes of estimation will be terminated.

In this study, unless specified, simulated velocities at

all the layers are used, which means the vertical reso-

lution of observations is equal to the spatial increment of

the model (Dz 5 5m). In practice, the data may be not

available at some layers, or the resolution of in situ

measurements is smaller than the model. However, it is

not necessary for this method to use observations at

every layer (Yu and O’Brien 1991). Other vertical res-

olutions have also been tested, such as 10.00 and 20.00m,

but the difference can be neglected.

If there is no special specification, model parameters

are set as follows:

d f 5 1024 s21 for midlatitude (438N);
d u0( j)5 0.01 cos[p/42 ( j2 0.5)p/20]e-( j20.5)p/20 m�s21,

y0(j)5 0.01sin[p/42 (j2 0.5)2 p/20]e2(j20.5)p/20 m�s21,

for generating centimeter-scale initial velocity;
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d ua 5 10 sin(2piDt/T0)m�s21, where T0 is the cycle

period of winds, for generating wind speeds that vary

periodically;
d A(i) 5 0.0053[1 1 0.4 sin(2piDt/12T0)]m

2 s21 for

VEVCs that vary periodically, which is regarded as

the prescribed distribution of true values;
d A1 5 0.001m2 s21 is used as the initial guess;
d CD 5 1.2 3 1023, H0 5 100.00m, Dz 5 5.00m, Dt 5
0.5 h, T0 5 10h, and T 5 10 days.

b. Group 1: Optimization algorithm

Previous works have developed many optimization

algorithms. For example, there are many forms of CG

(Hager and Zhang 2005). Among all the algorithms,

CONMIN (CG), GD, and L-BFGS are the most com-

monly used. Many studies have compared the perfor-

mance of these algorithms in parameter estimation.

Zou et al. (1993) carried out a study with several limited-

memory quasi-Newton methods, and concluded that

L-BFGS had the best performance for some large-scale

problems in oceanography and meteorology. Never-

theless, Zhang and Wang (2014) concluded that the

efficiency of the L-BFGS was better than that of the

GD for simple conditions in two-dimensional tidal

models. Jin et al. (2015) stated that inversion results

using the L-BFGS were closer to prescribed values than

those using GD. However, Lu and Zhang (2006) and

Zhang et al. (2011) found that GD was more efficient in

the estimation of spatially varying bottom friction co-

efficient in a tidal model. Chen et al. (2013) demon-

strated that the performance of the L-BFGS was not

satisfactory when applied in practical experiments for an

internal tidal model, while GD was much steadier.

Zhang et al. (2015) found that the errors using GD were

smaller than those using CONMIN and L-BFGS for

an Ekman model. Overall, from previous works it

can be concluded that none of these algorithms could

be always the most effective for different problems.

Liu and Nocedal (1989) found that L-BFGS with dy-

namic scaling performed better than the CONMIN

and the standard CG method. However, for large

problems with inexpensive functions, CG was com-

petitive with L-BFGS. Alekseev et al. (2009) com-

pared the performance of several robust large-scale

minimization algorithms for the unconstrained mini-

mization of an ill-posed inverse problem, and they

concluded that 1) for the inviscid case, CG-descent

method of Hager performed the best, and 2) in the

viscous case, the hybrid method emerged as the best

performed followed by CG-CONMIN and CG-

descent. In an internal tidal model, Chen et al.

(2014) concluded that the performance of L-BFGS

was better when assimilating all observations, in-

cluding the observations near open boundaries; how-

ever, the gradient descent method will become a good

choice if only assimilating the observations far from

open boundaries. Therefore in order to determine the

best choice of optimization algorithm, performances

of GD (Case 1), CONMIN (Case 2), and L-BFGS

(Case 3) in Ekman layer model are compared in this

subsection.

In the process of parameter optimization, the iter-

ation was executed with enough steps, and the best

result was adopted for analysis. The prescribed and

inverted VEVCs as well as cost functions versus iter-

ation steps are illustrated in Figs. 1a and 1b. Cost

functions and root-mean-square errors (RMSEs) be-

tween VEVCs before and after assimilation are shown

in Table 1.

FIG. 1. (a) Prescribed and inverted VEVCs in Group 1, (b) cost functions in Group 1, (c) prescribed and inverted

VEVCs in Group 2, and (d) cost functions in Group 2.
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In these cases, cost functions are decreased by

at least three orders of magnitude and RMSEs by

about one order of magnitude. Convergence rates of

CONMIN and L-BFGS are much faster than that of

the GD. The cost function using CONMIN and

L-BFGS reaches the minimum in less than 50 itera-

tion steps, while it is about 350 for GD. However,

results in Table 1 demonstrate that inversion results

using GD are the closest to the prescribed values

among three methods. After assimilation, the cost

function using the GD decreases to 3.33 1026, which

is smaller than that of the other two algorithms. It

can be found that the cost function decreases by

nearly five orders of magnitude with GD, while less

than four orders by using CONMIN and L-BFGS. In

addition, Fig. 1a also indicates that inversion re-

sults using GD are much smoother than those using

L-BFGS and CG. Large fluctuations have been

found in both inversion results and cost function

when using CONMIN and L-BFGS (Fig. 1b), in-

dicating that CONMIN and L-BFGS is probably not

suitable for this problem. The conclusion is similar

to those obtained by Chen et al. (2013) and Zhang

et al. (2015). Consequently, GD will be selected to

estimate the VEVCs in the following groups of

experiments.

c. Group 2: Initial guess

Previous studies have indicated that reasonable

initial guess can improve the inversion results and

accelerate the convergence (Dattner 2015). There-

fore, experiments are designed to test the effect of

the initial guess on inverted results in this model.

Another purpose is to examine model’s ability of

tolerating different initial guesses. The initial

guesses for Cases 4–6 are specified as 0.0005, 0.005,

TABLE 1. Cost functions and RMSEs before and after assimilation in Groups 1–8: K1 and K2 represent the values of normalized cost

function with respect to VEVCs before and after assimilation, respectively; and K3 and K4 are the values of RMSEs between prescribed

and estimated VEVCs before and after assimilation, respectively.

Group index Case index Options K1 K2 K3 K4

Group 1: Algorithms Case 1 GD 9.8 3 1022 3.3 3 1026 4.2 3 1023 3.2 3 1024

Case 2 CONMIN 9.8 3 1022 2.4 3 1024 4.2 3 1023 4.6 3 1024

Case 3 L-BFGS 9.8 3 1022 2.1 3 1024 4.2 3 1023 4.5 3 1024

Group 2: Initial guess Case 4 0.0005 1.6 3 1021 3.7 3 1026 4.7 3 1023 3.5 3 1024

Case 5 0.005 4.1 3 1022 1.3 3 1026 1.4 3 1023 1.1 3 1024

Case 6 0.050 1.7 3 1021 5.0 3 1024 4.5 3 1022 4.5 3 1023

Group 3: Distribution Case 7 1 1.0 3 1021 3.1 3 1026 4.8 3 1023 2.5 3 1024

Case 8 2 1.2 3 1021 2.8 3 1026 4.8 3 1023 4.0 3 1024

Case 9 3 9.8 3 1022 2.5 3 1026 4.2 3 1023 3.0 3 1024

Case 10 4 8.6 3 1022 4.2 3 1026 4.1 3 1023 2.9 3 1024

Group 4: Wind condition Case 11 1 1.6 5.3 3 1025 4.2 3 1023 3.2 3 1024

Case 12 2 2.4 3 1021 6.2 3 1026 4.2 3 1023 2.4 3 1024

Case 13 3 3.6 3 1021 2.8 3 1024 4.2 3 1023 2.3 3 1023

Case 14 4 2.0 3 1021 2.6 3 1025 4.2 3 1023 3.3 3 1024

Group 5: BLD Case 15 40 6.3 3 1021 1.9 3 1024 4.2 3 1023 5.2 3 1024

Case 16 80 1.7 3 1021 9.2 3 1026 4.2 3 1023 3.5 3 1024

Case 17 120 6.1 3 1022 1.5 3 1026 4.2 3 1023 3.0 3 1024

Case 18 160 3.0 3 1022 4.5 3 1027 4.2 3 1023 2.9 3 1024

Group 6: Layers Case 19 Odd layers 6.4 3 1022 3.5 3 1026 4.2 3 1023 3.8 3 1024

Case 20 1–10 9.6 3 1022 3.3 3 1026 4.2 3 1023 3.2 3 1024

Case 21 11–20 1.7 3 1023 — 4.2 3 1023 —

Group 7: Data noise Case 22 2% 9.8 3 1022 5.8 3 1025 4.2 3 1023 5.2 3 1024

Case 23 6% 9.8 3 1022 4.5 3 1024 4.2 3 1023 7.4 3 1024

Case 24 10% 9.9 3 1022 1.2 3 1023 4.2 3 1023 8.7 3 1024

Group 8: Regularization Case 25 a 5 1 4.4 3 1023 1.2 3 1028 4.2 3 1023 1.1 3 1025

Case 26 a 5 10 4.4 3 1023 1.2 3 1028 4.2 3 1023 1.1 3 1025

Case 27 a 5 100 4.4 3 1023 1.2 3 1028 4.2 3 1023 7.0 3 1026

Case 28 a 5 1000 4.4 3 1023 1.2 3 1028 4.2 3 1023 2.5 3 1025

Group 9: Balance errors Case 29 DB 5 0.01 8.4 3 1022 3.0 3 1026 4.2 3 1023 2.5 3 1024

Case 30 DB 5 0.1 8.4 3 1021 3.5 3 1025 4.2 3 1023 2.5 3 1024

Case 31 DB 5 1 8.5 3.5 3 1024 4.2 3 1023 2.5 3 1024

Case 32 DB 5 0.01 9.9 3 1022 4.0 3 1026 4.2 3 1023 2.4 3 1024

Case 33 DB 5 0.1 9.9 3 1021 3.6 3 1025 4.2 3 1023 2.4 3 1024

Case 34 DB 5 1 9.9 3.5 3 1024 4.2 3 1023 2.4 3 1024
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and 0.05, respectively. The initial guess of 0.005

equals to the mean value of the prescribed distri-

bution, while the other two options are smaller and

larger, respectively. The prescribed and inverted

VEVCs as well as curves of cost functions versus

iteration steps are illustrated in Figs. 1c and 1d. Cost

functions and RMSEs before and after assimilation

are shown in Table 1.

It can be found that all inverted VEVCs can con-

verge to the prescribed ones. After assimilation, cost

functions and RMSEs are reduced by at least three

orders and two orders, respectively. Apparently, re-

sults in Case 5 are the best in this group. In Case 5, the

cost function and the RMSE decrease to 1.3 3 1026

and 1.1 3 1024, respectively, both of which are

smaller than that of Cases 4 and 6. From Fig. 1d, it is

easy to find that the fewest iteration steps are used in

Case 5, suggesting the highest efficiency of conver-

gence for this case. In addition, Fig. 1c indicates that

the fluctuation in Case 5 is much smaller than the

other two cases. Results in Group 2 demonstrate the

importance of adopting reasonable initial guess in

the estimation of time-varying VEVCs in the Ekman

layer model. Previous studies have computed VEVCs

in realistic ocean, which can provide the basis for

initial guess (Yu and O’Brien 1991; Yoshikawa and

Endoh 2015).

d. Group 3: Distribution of prescribed VEVCs

Actual distributions of the VEVCs in the ocean

still remain unclear. Consequently, it becomes essen-

tial to explore whether the model can deal with dif-

ferent prescribed distributions of VEVCs. In this

group, four distributions are designed to test the ca-

pability of the model, which are shown as follows:

Case 7: A(i)5 0:0031 ln

�
i

48
1 1

�
/600m2 s21;

Case 8: A(i)5 0:0031 ln

�
112

i

48

�
/600m2 s21;

Case 9: A(i)5 0:0053

�
11 0:4 sin

�
2p

iDt

4:8T0

��
m2 s21;

Case 10: A(i)5

8<
:

0:003m2 s21 i5 12 48, 1932 240, 3852 432
0:005m2 s21 i5 492 96, 1452 192, 2412 288, 3372 384, 4332 480
0:007m2 s21 i5 972 144, 2892 336

.

Inversion results of Group 3 are plotted in Fig. 2.

Cost functions and RMSEs before and after

assimilation are shown in Table 1. Inversion results

in this group validate that the model has the abil-

ity to invert VEVCs that are gradually increas-

ing (Case 7), gradually decreasing (Case 8),

sinusoidal varying (Case 9), and piecewise-linear

varying (Case 10). As can be seen from Table 1,

cost functions and RMSEs are decreased by around

four orders and one order, respectively. In Figs. 2a

and 2b, large differences between prescribed

and inverted VEVCs always occur at points where

prescribed VEVCs is large, which may be due to

the small initial guess. Similar results can also be

found in Fig. 2c. In Case 10 (Fig. 2d), great differ-

ences always appear at discontinuity points. In ad-

dition, the results indicate that smoothly changing

prescribed VEVCs are easier to be estimated in

the model than the sharply changing ones. More-

over, in all the cases the differences are abnor-

mally large at the startup of the time domain due

to the small currents at the beginning of simula-

tion introduced by cold start. This phenomenon

may arise from sudden variations that break the

dynamic balance of the model. Overall, it can be

concluded that the Ekman layer model developed in

this study has the ability to invert different VEVC

distributions.

e. Group 4: Wind condition

In the real ocean, the wind can be quite different

with a wide range. According to Zhang et al. (2009),

the mean eddy viscosity under strong winds could in-

crease by about 25% as compared with that under

weak winds in the South China Sea. Consequently, it is

worthwhile to examine model’s performance under

different wind conditions. In this group, four kinds of

wind conditions (Fig. 3a) are considered, which are

designed as follows:

Case 11: ua(i)5 20 sin

�
2p

iDt

T0

�
ms21;

Case 12: ua(i)5 10m s21;

Case 13: ua(i)5
iDt

1:2T0

m s21;

Case 14: ua(i)5 51
iDt

2:4T0

m s21.

Inversion results of Group 4 are plotted in Fig. 3b.

Cost functions and RMSEs before and after assimilation

are shown in Table 1.
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Reasonable inversion results can be obtained within

400 iterations for Cases 11 and 12. After assimilation,

cost functions in Cases 11–14 are decreased by at least

three orders of magnitude, andRMSEs are decreased by

at least one order, except Case 13. In Case 13 where

wind speeds increase from 0 to 10.0m s21, the inverted

VEVCs are apparently unreasonable in the first three

days, which can be found in Fig. 3b. As the model is

started from a stationary state, when wind speeds are

small at the beginning (e.g., the first three days in Case

13), the simulated currents are also small, which re-

sults in small gradients and negative influences on the

optimization of VEVCs. Comparing Case 13 with

Case 14, it is confirmed that small wind speeds at the

beginning lead to unreasonable inversion results in

the first three days in Case 13. This phenomenon only

happens when both wind speed and current velocity

are very small for a long time. Given that this situation

is uncommon, it is believed that the model can adapt

to different wind conditions.

f. Group 5: Boundary layer depth

The Ekman BLD significantly contributes to the

build-up of Ekman currents. Yoshikawa and Endoh

(2015) examined the sensitivity of estimated eddy

viscosity profile to selected BLD. Jung et al. (2007)

emphasized the influence of temporally varying water

depth on Ekman motions. In Group 5, four different

BLDs are examined, which are 40, 80, 120, and 160m

in Cases 15–18, respectively. The accurate values of

BLD are difficult to determine, therefore in this sec-

tion the BLD in fact is the model covered depth.

Inversion results of Group 5 are plotted in Fig. 4a.

Cost functions and RMSEs before and after assimi-

lation are shown in Table 1. Results indicate that all

the VEVCs are inverted successfully in Group 5 with

different BLDs. When the BLD is larger than 80m,

only a tiny difference exists among the inversion re-

sults of Cases 16–18, suggesting that the BLD does

not significantly affect the eddy viscosity estimation at

FIG. 2. The prescribed and inverted VEVCs in Group 3: (a) Case 7, (b) Case 8, (c) Case 9, and (d) Case 10.

FIG. 3. (a) The wind conditions used in Group 4 and (b) the prescribed and inverted VEVCs in Group 4.
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these levels. However, when the BLD is decreased

from 80 to 40m (Case 15), cost functions and RMSEs

sharply increase from 9.2 3 1026 to 1.9 3 1024 and

from 3.5 3 1024 to 5.2 3 1024, respectively. It seems

that there is a critical value of the BLD which can in-

tensely influence the inversion results of time-varying

VEVCs. It can be inferred that this critical value should

be in close relation with forcing winds (Kukulka and

Brunner 2015; Foreman and Emeis 2010). In practice,

the critical BLD can be determined by choosing a large

value initially and decreasing it until the estimated

VEV profile becomes unstable. Results of experiments

in this group reveal that the inversion results with thick

BLD are slightly better than those with thin BLD un-

der the present wind conditions.

g. Group 6: Vertical levels of available observations

In the experiments above, simulated velocities at all

the layers were used to increase the number of obser-

vations in order to restrict the ill-posedness of inverse

problem which might be enhanced when time-varying

VEVCs is applied. In practice, the data may be not

available at some layers because of data missing or data

resolution (Yu and O’Brien 1991). In this group, ob-

servations from different layers are selected to investi-

gate the effect of the observation level.

Inversion results of Group 6 are plotted in Fig. 4b. Cost

functions and RMSEs before and after assimilation are

shown in Table 1. In Case 19, observations from odd layers

were used; in other words, the vertical sampling interval of

this case is 10m. The result of Case 19 is very close to the

result of Case 1, indicating the vertical sampling interval of

observations can be enlarged. There is a considerable

contrast between the results of Case 20 and Case 21. In

Case 20, observations of upper 10 layers are used and the

cost function and RMSE are decreased by four orders and

one order, respectively. On the contrary, in Case 21 which

uses the observations in the bottom 10 layers, the VEVCs

have not been optimized. There are twomajor conclusions

of this group. First, this model does not require observa-

tions at every layer. Second, the inversion results of

VEVCs aremuchmore sensitive to the observations in the

upper layers, which is easy to explain that Ekman currents

are produced by surface winds and current velocities are

larger in upper layers (as shown in Fig. 4c). For the ap-

plication in real oceans, it is suggested that the sampling

resolution in the upper water column should be increased.

h. Group 7: Data noise

In all the above cases, the observations which are perfect

without any noise are directly calculated by the forward

model. However, in the real ocean, in situ observations

contain noise, which might influence inversion results.

Zhang and Lu (2008) discussed the impact of data noise

on inversion results of VEV profiles and open boundary

conditions in a three-dimensional tidal model. Their re-

sults indicated that when observation errors increased

to a certain level, the average difference between inversion

results and true values sharply increased.

In this group, in order to evaluate the influence of data

noise, observations are assimilated into the model with

random errors added as {(11 prid)u(z), (11 prid)y(z)},

where u(z), y(z) are currents calculated from the for-

ward model, rid is a uniform random number lying

between 21 and 11, and p is a factor determining the

maximum percentage of errors. The maximum per-

centages of errors for the three cases are 2% (Case 22),

6% (Case 23), and 10% (Case 24), respectively.

Inversion results ofGroup 7 are plotted in Figs. 5a and 5b.

Cost functions and RMSEs before and after assimilation

FIG. 4. (a) The prescribed and invertedVEVCs in Group 5, (b) the prescribed and invertedVEVCs inGroup 6, and

(c) the current observations in Group 6.

SEPTEMBER 2019 ZHANG ET AL . 1799



are shown in Table 1. In this group, cost functions and

RMSEs are clearly increased with the enlargement of

random errors. The apparent reduction of RMSEs

between prescribed and inverted VEVCs can also be

found after assimilation. FromFig. 5a it can be found that

the inverted curves in Case 24 oscillate more violently

than those in Cases 22 and 23. However, even in Case 24

where themaximum percentage of errors is 10%, the cost

function is decreased by nearly two orders (Fig. 5b), and

the RMSE is decreased by 80%, indicating that the in-

version results are still acceptable. Given that the tech-

nologies of measuring ocean currents are under rapid

development, the error of velocity measurements from

ADCP can be well controlled (Nystrom et al. 2007; De

Serio and Mossa 2015), especially after conscious selec-

tion and quality control. Therefore, it is believed that the

method can sustain data noise to a certain degree.

i. Group 8: Effect of regularization method

The inverse problems or parameter estimation prob-

lems are often ill-posed and beset by instability and

nonuniqueness, particularly if one seeks parameters

distributed in space and time domain. The regulariza-

tion method is often used to solve the ill-posedness of

inverse problems and has been widely applied in dif-

ferent fields (Tikhonov 1963; Alekseev and Navon 2001;

Chen et al. 2014). In regularization method, ‘‘stabilizing

function’’ is adopted to restrict admissible solutions to

spaces of smooth functions. A smooth cost function is

constructed as follows:

J
regu

5 J1 J
sta

J
sta

5
a

2

ð
z

ð
t

(A2 Â)
2
dz dt

(34)

where J is the cost function defined by Eq. (9); Jsta is

the Tikhonov stabilizer; a is the constant regularization

parameter; Â and A are prior and optimized vertical

eddy viscosity coefficient, respectively. According to the

theory of Lagrangian multiplier method, the corre-

sponding adjoint model and the gradients of smooth cost

function with respect to parameters can be obtained as

›J
regu

›A
5

›J

›A
1a(A2 Â)

›J

›A
52

ð
t

ð
z

�
›l

›z

›u

›z
1

›m

›z

›y

›z

�
dz dt

(35)

When a equals to 0, Jsta 5 0 and regularization is not

performed. If the value of a is very small, the stabilizer

function will be also small which will not significantly

reduce the ill-posedness of inverse problem; in contrast, if

the value of a is too large, the problem will depart far

from the original problem and the solution will also be

largely distorted. In Group 8, in order to evaluate the

influence of a on the estimation results, four experiments

are performed in which the values of a are assigned as

0, 1 (Case 25), 10 (Case 26), 100 (Case 27), and 1000 (Case

28), respectively. As indicated above, a5 0 is the original

experiment without regularization. The results of these

experiments are shown in Figs. 5c and 5d, and the error

statistics are provided in Table 1. The results demon-

strated that the regularization method can indeed improve

the estimations results of VEVCs. The cost functions in

the experiments without (a 5 0) and with (a . 0) regu-

larization are decreased by around 4.5 and 5.5 orders,

respectively (Fig. 5d). The convergence rate with regu-

larization is also faster than that without regularization

(Fig. 5d). Also, the fluctuation of estimation VEVCs with

regularization is relatively smooth compared with those

FIG. 5. (a) The prescribed and inverted VEVCs in Group 7, (b) cost functions in Group 7, (c) prescribed and

inverted VEVCs in Group 8, and (d) cost functions in Group 8.
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without regularization. Overall, the effect of regulariza-

tionmethod in thismodel is significant; however, it can be

further improved by employing more advanced regula-

rization method, such as the wavelets regularization

method developed in Alekseev and Navon (2001).

j. Group 9: Sensitivity to balance errors

With many assumptions in Ekman (1905), the gov-

erning equations are not perfect. Following Yoshikawa

andEndoh (2015) and Cao et al. (2017), it is assumed that

balance errors exist at z5 10m and 20m with a standard

deviation of DB, where DB is assigned as 0.01, 0.1, and

1.0ms21, respectively. Balance errors are added to the

governing equations. In Fig. 6, the prescribed and esti-

mated values of VEVCs with balance errors at depth z5
10m (Case 29: DB 5 0.01ms21; Case 30: DB 5 0.1ms21;

Case 31: DB 5 1.0ms21) and z 5 20m (Case 32: DB 5
0.01ms21; Case 33: DB 5 0.1ms21; Case 34: DB 5
1.0ms21) are plotted. It can be found thatwhen the balance

errors are 0.01ms21 and 0.1ms21, the estimated VEVCs

are quite similarwith the prescribed values, butwith a small

phase shift. When the balance error is 1.0ms21, the dif-

ference becomes relatively large. The phase shift still exists,

and there is a difference in themaximumvalues ofVEVCs.

However, overall the prescribed time-varying VEVCs can

be estimated successfully when balance errors exist in

the governing equations, which can partly demonstrate that

the present method can tolerate the existence of balance

errors due to the imperfection of governing equations.

4. Practical experiments

a. Date source

The idea of time-varying VEVCs has been proved to

be effective in identical twin experiments. However, its

performance still needs to be testified with real in situ

measurements of Ekman currents. To do this, data de-

rived from the Bermuda Testbed Mooring (BTM) are

employed in this section; the BTM is a deep-seamooring

(latitude: 318430N, longitude: 648110W) located 80km

southeast of Bermuda, as indicated in Fig. 7a. The water

depth is about 4567m, therefore the bottom friction can

be neglected. The sea near Bermuda is usually struck by

tropical storms and hurricanes and hence is an ideal area

for investigating the upper-ocean’s response to wind

forcing (Zedler et al. 2002; Black and Dickey 2008).

The BTM program was initiated in 1994 and has

provided numerous measurements for testing new in-

strumentations and performing scientific studies (Jiang

et al. 2007). The data selected for this study were col-

lected by BTM deployment 24, and the brief BTM in-

strumentation diagram used for this deployment (from

14 July 2006 to 1 March 2007) is shown in Fig. 7b.

b. Data processing

Data from 20 to 30 September 2006, including the

wind and water velocity, are used in practical experi-

ments. The Wind observations were measured by the

anemorumbometer located at the buoy tower, with

sampling interval of five minutes. As the tower was

4.40m above the sea surface (Dickey et al. 2001; Black

and Dickey 2008), the wind vector was transformed to

the standard height (10.00m above sea level, U10 for

short) using a bulk formula (Large and Pond 1981;

Zedler et al. 2002; Xu et al. 2017). The original wind

speed andU10 are plotted in Fig. 8a. From the wind data,

one can find an increased stage and a decreased stage of

the wind speed are included in selected periods, which is

necessary to testify the method. During the selected

time stage, the maximum value of wind speed reached

13.66m s21 at 24–25 September 2006 and the average

wind speedwas 5.19ms21. The current datawasmeasured

FIG. 6. The prescribed and inverted VEVCs with balance errors in Group 9 at depth (a) z5 10m and (b) z5 20m.
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by an up-looking ADCP located 200.00m below the sea

surface, with sampling internal of 15min (Dickey et al.

2001; Black and Dickey 2008). With a vertical resolution

of 3.00m, the current profile was measured from 26.52

to 191.52m below the sea surface. The time series of

the two components of the current speed for the

depth of 26.52, 50.52, and 134.52m can be found in

Figs. 8b–d, respectively.

The measurements of ADCP are the total currents

Utotal, which contain near-inertial signals Uni and peri-

odical tidal signalsUtidal. The near-inertial signalsUni can

be further divided into the wind-generated component

Uek and the geostrophic component Ugeo, as indicated in

the following equations (Chereskin 1995; Lenn and

Chereskin 2009; Roach et al. 2015; Liu et al. 2018):(
U

total
5U

tidal
1U

ni

U
ni
5U

ek
1U

geo

(36)

This study focuses on the Ekman current Uek,

therefore the other two components Utidal and Ugeo

should be filtered out. The extraction of Ekman cur-

rent from in situ current measurements is not easy due

to its small magnitude, and many factors can influence

FIG. 7. (a) Topography of study area and the position of BTM and (b) observation instruments diagram of BTM.

FIG. 8. (a) The time series of the original wind speed U and standard wind speed U10 and the time series of total

current u and y for (b) 26.52m, (c) 50.52m, and (d) 134.52m.
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the extraction results, including the geostrophic cur-

rent, inertial oscillation, internal wave, and tidal

currents, etc. (Polton et al. 2013; Roach et al. 2015).

Figure 9a shows the results of the spectral analysis for

the time series of current measurements. As shown

in this figure, at the study location the frequency of

near inertial motion ( f ) is quite close to the frequency

of P1 and K1 tidal constituents. To avoid the distur-

bance of diurnal tidal signals while retain most of the

near inertial signals, the bandpass filter is used in

Hui and Xu (2016) and Zhang et al. (2009). If high-

pass filter is employed, the extraction results of Ek-

man currents will be influenced by the semidiurnal

tidal signals (M2, S2, and K2 etc.). Another method of

eliminating tidal signals is to subtract the tidal signals

calculated from tidal current harmonic constants.

However, the precondition of this method is solid

results of tidal current harmonic constants are avail-

able which must be calculated from long-term in situ

current measurements. The harmonic constants de-

duced from short-term current measurements will

be questioned due to low accuracy (Foreman and

Henry 1989).

As in Hui and Xu (2016) and Zhang et al. (2009), in

this paper the tidal signals are removed by using the

Hilbert transform bandpass filter. According to Fig. 9a,

the bandpass frequency was selected to be [0.96f 1.3f],

where f is the local inertial frequency (Hui and Xu 2016).

The current field after bandpass filter can be found in

Fig. 10. The spectral analysis results of filtered currents are

also plotted in Fig. 9a, and one can find most of diurnal

and semidiurnal tidal signals have been removed.

In the calculation of Ekman current velocity, the as-

sumption of constant Ugeo below a certain water depth

can introduce errors in the separation between Ekman

current and geostrophic current (Polton et al. 2013;

Phillips and Bindoff 2014). For example, the assumption

of a constant geostrophic velocity within the mixed

layer is not supported by observations undertaken

during the Southern Ocean Fine-Structure (SOFINE)

experiment (Phillips and Bindoff 2014). A detailed

description about the separation between these two

components can be found in Roach et al. (2015). As a

result, the method in Roach et al. (2015) was adopted,

where the geostrophic current was assumed to be a

sum of a constant reference velocity Udeep, and a

component arising from a constant geostrophic shear

(dUgeo/dz)z:

U
geo

(t)5U
deep

(t)1
dU

geo
(t)

dz
z (37)

To determine the values of Udeep and [dUgeo(t)/dz]z,

the vertical current profile at the initial time after the

bandpass filter was plotted in Fig. 9b. One can find the

variations of current speed is quite small below 161.52m,

therefore Udeep is taken as the average value of Uni be-

low this depth. According to Ralph and Niiler (1999),

the Ekman depth DE is approximately estimated as

134.52m by using

D
E
5

7:12ffiffiffiffiffiffiffiffiffiffiffiffi
sinjujp U

10
, (38)

where u is the latitude of BTM, U10 is taken as the

maximum wind speed with a value of 13.66m s21 for the

selected time period. dUgeo(t)/dz is then obtained by

computing the average value of the vertical current

shear for the depth 134.52 to 161.52m. A snapshot of

FIG. 9. (a) The spectral analysis results for the currents before and after bandpass filter. Red, cyan, and purple

lines indicate the frequency of local inertial, diurnal, and semidiurnal, respectively; (b),(c) the vertical current

profiles before and after removing the geostrophic flow at 0000 UTC 20 Sep 2006, respectively.
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vertical profile of Ekman current at 0000 UTC

20 September 2006 after removing the geostrophic com-

ponent can be found in Fig. 9c. The values of Ekman

currents at different water depth can be obtained by line-

arly interpolating the values at sampling depth.

c. Inverse strategy

To compare different methodologies of VEVCs, in

this section three strategies are employed. The

first one (Case 35) assumes the VEVC is a constant

which neither varies with time nor with space (depth).

The second one (Case 36) assumes that the VEVCs

is depth dependent, and the last one (Case 37) is the

time-varying VEVC described in this paper. Accord-

ing to Peng and Li (2015), the wind drag coefficient

CD is calculated by

C
D
(i)52a[ju

10
(i)j2 33:0]2 1 c , (39)

wherea5 2:03 1026, c5 2:343 1023, i5 12 481. InCase

35, the constant value of A is taken as 0.008m2 s21, and

the initial values for Cases 36 and 37 are also both set to

this value. The initial state of the model is obtained by

using the BTM current observations at 0000 UTC

20 September 2006, and the model is forced by using the

BTM observed wind fields. The time step of the model is

set to 0.5h. The first day (0000 UTC 20 September to

0000 UTC 21 September) is used for model spinup. The

model is integrated forwardly in the following seven days

to generate modeling Ekman current fields, and the ad-

joint model is integrated backwardly to calculate the

adjoint variables, based on which the VEVCs can be

optimized and inverted as described in section 2. The

other settings are the same as those in section 3.

d. Results analysis

The modeled and observed Ekman currents of 26.52,

50.52, 65.52, and 98.52m in Cases 35–37 are plotted in

Fig. 11. For the modeled currents above 65.52m, both

the amplitude and phase coincide with observations

fairy well, especially the results of Cases 36 and 37. The

results of Case 36 follow Case 37 with tiny difference,

and the results of Case 35 are the worst among three

cases. The tiny difference between Cases 36 and 37

demonstrate that the assumptions of depth dependence

and time dependence are equally important for VEVCs.

Different from current fields above 65.52m, the mod-

eling results below 65.52m have shown relatively large

discrepancies from observations, existing in both the

amplitude and phase. The reasons might be that 1) the

influence of wind under this depth is too small, resulting

in decreased values of Ekman currents, and 2) the ob-

servation errors and effects of other dynamics might

have distorted the measurements.

The decrease of normalized cost function versus the

iteration steps can also demonstrate the effectiveness of

the method, as shown in Fig. 12a. All the normalized

cost function in three practical experiments have been

decreased significantly from 1.0 to around 0.3–0.4, which

indicates that the adjoint method is effective in reducing

the data misfit between observed and modeled Ekman

currents. The minimum value of cost function has been

reached in Case 37, indicating that the methodology of

time-varying VEVCs is better than the other two as-

sumptions. Besides, the variations of cost function ver-

sus iteration steps in Case 37 are the smoothest;

contrarily, the cost functions in Cases 35 and 36 fluctuate

significantly after a certain iteration step. The time series

FIG. 10. Time series of currents before and after bandpass filter: time series of (left) eastward current velocity and

(right) northward current velocity at (a),(b) 26.52m; (c),(d) 50.52m; and (e),(f) 134.52m.
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of VEVCs inverted in Case 37 is plotted in Fig. 12b. The

average and maximum vales of the estimated VEVCs

(unscaled) are 0.0021 and 0.0049m2 s21, respectively.

The tendency for the time variations of VEVCs closely

related to the variations of wind speed. For the periods

of 24–26 September 2006, the wind speed increased

from a minimum value of smaller than 2.00m s21 to

the maximum value of 13.66m s21, and then decreased

to below 1.00m s21. The similar variations of esti-

mated VEVCs, with a phase shift, can also be found in

Fig. 12b. There are two peak values of VEVCs and

happened during 24–25 September 2006 and 26–

27 September 2006, respectively, which agree well with

the peak values of wind speed. The estimation results

are in accordance with the traditional knowledge

that the VEVCs can be highly influenced by the wind

fields. In this paper the depth variance of VEVCs is

not considered, but the magnitudes of estimation re-

sults are comparable with the results of Yu and

O’Brien (1991) and Price et al. (1987). In their work

which studied the estimation of depth-dependent

VEVCs in the Sargasso Sea (;348N), the estimated

VEVCs were 0.0029m2 s21 for the surface layer,

and decreased downwardly. The modeled and ob-

served Ekman currents in Cases 37 at depth 26.52,

32.52, 38.52, 44.52, 50.52, and 56.52m at 0000 UTC

20 September 2006 can be found in Fig. 13. Both the

magnitude and direction of currents agree well with

each other, indicating that the combination of time-

varying VEVC and adjoint method can generate

reasonable Ekman currents.

e. Sensitivities to formulae of wind drag coefficients

In this section, numerical experiments are carried out

to study the impact of different formulae of wind drag

coefficient on the estimation of VEVCs. Including Peng

and Li (2015), four formulas of wind drag coefficients

are compared. The other three are given as follows:

FIG. 11. The observed and modeled (left) eastward and (right) northward Ekman current time series of (a),(b)

26.52m; (c),(d) 50.52m; (e),(f) 65.52m, and (g),(h) 98.52m in Cases 35–37.

FIG. 12. (a) The values of normalized cost function with respect the iterations in Cases 35–37.

(b) The time series of VEVCs (unscaled) estimated in Case 37.

SEPTEMBER 2019 ZHANG ET AL . 1805



Case 38 with formula in Edson et al. (2013):

C
D
(t)5 [0:0622 0:28/ju

10
(t)j]2. (40)

Case 39 with formula in Zijlema et al. (2012):

C
D
(t)5 [0:551 2:97/31:52 1:49ju

10
(t)j2/31:52]3 1023 .

(41)

Case 40 with formula in Large and Yeager (2009):

C
D
(t)5 2:703 1023/ju

10
(t)j1 1:423 1024

1 7:643 1025 2 3:148073 10213ju
10
(t)j13 .

(42)

The estimation results of VEVCs with these different

forms of wind drag coefficients can be found in Fig. 14. It

can be found that, either the decrease of cost function, or

the estimation results of VEVCs, both show quite similar

patterns among the four experiments. The average and

maximum values of estimated VEVCs in these four cases

are also very close. Only tiny differences exist, espe-

cially during the periods when the wind was weak, which

happened in the first three days in Fig. 14b. After that,

during the period with high wind speed, the estimated

VEVCs with four different formulae of wind drag

coefficients are of little difference. It indicates that

the selection of wind drag coefficient formulae will

not significantly influence the estimation of VEVCs in

this paper. However, it should be noted that, during

the study period, the wind speed is not as large as that

in typhoon or hurricane; therefore, the above con-

clusion might be only correct for this type of wind

field. For quite high wind speed, such as during a ty-

phoon or hurricane, the selection of wind drag co-

efficient formulae might have a significant influence

on the estimation of VEVCs, which will be studied in

the future.

5. Discussion

a. Feasibility of typical Ekman model

The typical Ekman theory, developed in Ekman

(1905), describe the steady spiraling velocity profiles in

boundary layers, in which the constant of proportionality

FIG. 13. The snapshot of modeled and observed Ekman currents in Cases 37 at depths of 26.52,

32.52, 38.52, 44.52, 50.52, and 56.52m at 0000 UTC 20 Sep 2006.

FIG. 14. The prescribed and estimated VEVCs with different wind drag coefficient formulae:

(a) cost functions vs iteration steps and (b) estimated VEVCs (unscaled).
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between the stress and shear, called the turbulent eddy

viscosity, is applied.Whether the typical Ekman theory

can be applied in the real ocean has been studied

continuously (Price et al. 1987; Chereskin 1995; Elipot

and Gille 2009; Lenn and Chereskin 2009; Polton et al.

2013; Roach et al. 2015). These studies found the

classical constant viscosity was inadequate and should

be improved. However, Ekman currents are difficult to

be observed. This is primarily because they are small

signals that are easily masked by ocean variability and

cannot readily be separated from the geostrophic

component. A comprehensive description about this

can be found in Roach et al. (2015). Their results on

detecting and characterizing the Ekman currents in the

Southern Ocean indicate that the constant viscosity

Ekman model can offer a reasonable description of

momentum mixing into the upper ocean in the Ant-

arctic Circumpolar Current north of Kerguelen. Polton

et al. (2013) performed an interesting work to discuss

whether ADCP observations in the Drake Passage can

match Ekman’s classic theory, by seeking a suitable

value of eddy viscosity, and their results are positive.

They found that values of VEVC in the range of 0.08–

0.12m2 s21 can reconcile their observations with the

classic Ekman theory. From previous works, two con-

clusions can be inferred: 1) the classical Ekman theory

can be used to figure out the upper-ocean response

under wind forcing; however, in order to do this, the

eddy viscosity needs adjusting, and 2) the eddy vis-

cosity is not a constant value and should be space de-

pendent or time dependent; in other words, it can be

seemed as observation dependent for most cases, which

significantly increases the difficulty of determining

the values.

This paper focuses on the time-varying eddy viscosity

to improve the Ekman layer model by assimilating in situ

observations with adjoint method. The eddy viscosity in

our method is thus observation dependent. The advan-

tage of thismethodology is that the determination of eddy

viscosity can be converted to the process of data–model

consistency, with the help of optimization methods and

idea of adjoint parameter estimation (Navon 1998). As

shown in Fig. 13, the snapshot of modeled and observed

Ekman currents indicate they agree well with each other,

including both the magnitude and direction of currents,

which demonstrate that typical Ekman theory can be

applicable by adjusting the VEVCs (Polton et al. 2013).

b. Imperfection of balance equations

Governing equations of Ekman layer model are given

in Eqs. (1). In the primitive work of Ekman (1905),

combined with the boundary conditions, the solutions

are given as

	
u5V

0
exp(gz) cos(p/41 az) ,

y5V
0
exp(gz) sin(p/41 az) .

(43)

where V0 is the velocity of the current at the sea surface,

and has the expressions

V
0
5

Tffiffiffiffiffiffiffiffiffiffiffi
r2wfA

p , g5

ffiffiffiffiffiffiffi
f

2A

r
.

Solutions (43) are suitable for typical Ekman theory:

homogeneous density, no stratification, constant VEVC,

deep water, etc. However, the stratification can influ-

ence the dynamics in Ekman layers by restraining the

turbulence and reducing the efficiency of wind energy

input to ocean interior. According to the parameteri-

zation method in Pacanowski and Philander (1981), the

effect of stratification can be introduced by improving

constant VEV as follows:

A5
y
0

(11aR
i
)2
1 y

b
, (44)

where a5 5, y0 5 0:01m2 s21, y0 5 0:001m2 s21 ,

and Ri is the Richardson number, which can be ex-

pressed by the vertical density gradient and velocity

shear, as follows:

R
i
5

(dr
w
/dz)g/r

w

(›U/›z)2 1 (›V/›z)2
, (45)

where U and V are the two components of current.

From (43)–(45) we can find that stronger stratification

leads to larger Richardson number, which then results in

smaller vertical eddy viscosity, and vice versa. There-

fore, the solutions (43) are also applicable if VEV is

improved by introducing the effect of stratification, for

example with the method of (44) and (45). In this work,

although we employed the typical Ekman model, the

VEVC is not a constant but estimated by assimilating

in situ observations. If we take the ocean as a complex

system which is driven by different forces, the in situ

observations are actually the outputs of this system. The

observations (output) are generated by various factors,

including stratification, wind, horizontal pressure gra-

dient, etc. As a result, the VEVCs estimated by assimi-

lating in situ observations are in fact the implicit

functions of these factors. It is also an advantage of this

methodology, which is based on the theory of inverse

problem and parameter estimation, and can be taken as

an improved method compared with the traditional

parameterization.

Nevertheless, with many assumptions in Ekman

(1905), the governing equations are not perfect. The
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classical Ekman model is not totally successful as

some observational evidence does not directly sup-

port it (Price and Sundermeyer 1999; Lewis and

Belcher 2004; Polton et al. 2005; Wu and Liu 2008;

Song 2009). As studied in Yoshikawa and Endoh

(2015) and Cao et al. (2017), because of the existence

of advection, pressure gradient, stratification and

other terms in the real motion, there would be errors

in the Ekman balance equations. For the present

method, the addition of these terms will make the

adjoint model too complex, because the baroclinic

field has to be solved with these terms, which is gen-

erally involved in complex general circulation mo-

dels, such as ROMS, MITGCM, and FVCOM, etc.

Besides, the complexity and difficulty of parame-

ter estimation will also be significantly increased.

Therefore, instead of involving these terms, the sen-

sitivity of the present method to Ekman balance er-

rors is investigated in this section. Following

Yoshikawa and Endoh (2015) and Cao et al. (2017),

as in section 3j, it is assumed that balance errors

(DB) exist at governing equations when carry-

ing out practical experiments. In Case 41, DB 5
0.001m s21 is assigned at z 5 211.52m; In Case 42,

DB 5 0.001m s21 is assigned at z 5 221.52m; and

in Case 43, DB 5 0.001m s21 is assigned at both

z5211.52m and z5221.52m. In Fig. 15, the results

of experiments without balance errors (Case 37) and

with balance errors (Cases 41–43) are shown. We

can find that, in experiments with balance errors, es-

pecially Case 41 and Case 42, the estimation results

of VEVC can better coincide with the wind fields

(shown in Fig. 8a). It demonstrates that the un-

resolved mechanisms can introduce estimation errors

of VEVC. However, the overall pattern in these cases

are quite similar, especially during the phases that

wind speed varied significantly, indicating that the

estimation results can reflect the variation of VEVC

to some degree.

c. Deficiencies and future work

In this paper, the wind speed is not very high, which

can consequently reduce the response of the upper

ocean to the atmosphere forcing. For very high wind

speed, such as the period of typhoons or hurricanes, the

question will be quite different, which is a big challenge

in oceanography. The enhancedmixing, the bubbles, the

rough sea surface, and the Langmuir circulation will

all influence the structures of VEVCs and Ekman cur-

rent, both in space and time domains. In this situation,

the typical Ekman theory might not be able to figure

out the response of the upper ocean to extreme events.

In the future work, we will focus on the improvement of

the adjoint Ekman model to represent the effects of

strong winds. A possible method is to modify the Ekman

model by including the wave effects (Lewis and Belcher

2004; Polton et al. 2005; Liu et al. 2007; Wu and Liu

2008; Hui and Xu 2016). By taking the wave-induced

Coriolis–Stokes forcing into account, the impact of

waves (primarily the Stokes drift) on ocean surface

currents is investigated and the wave-modified cur-

rents are formed in Hui and Xu (2016). Their results

with the Stokes drift can better adapt to the in situ

Lagrangian drifter currents, especially in the South-

ern Ocean region where the wind is strong. The reason

is that the magnitude of the Stokes drift or the wave-

modified term is directly related with the strength of the

surface wind; therefore, the wave-modified term is es-

pecially large in strong wind areas or under strong wind

conditions. Overall, by considering the wave effects in

the present adjoint Ekman model, the methodology

might be applicable in strong wind conditions.

For the real ocean, the parameter space can be as

complicated as four-dimensional and case/observation

FIG. 15. The time series of estimated VEVCs in Case 37 (without balance error) and Cases 41–

43 (with balance error).
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dependent due to the turbulence, and that is why the

parameterization is too difficult to be perfect. It will be

much more reasonable to suppose the VEVCs to be

vertically and temporally varying. However, for the in-

verse problem, it is difficult to realize the four-

dimensional parameters, depending on the quality and

quantity of in situ observations, including the horizon-

tal, vertical and temporal resolutions, noise level, etc.

Therefore, an eclectic method is focusing on a certain

dimension, depth dependent or time dependent. Also, it

will not be a copy of the present problem by adding

one dimension, because new methods of inverse prob-

lem might be necessary to constrain the ill-posedness,

such as advanced regularization method (Alekseev and

Navon 2001). The vertical and temporal VEVCs will

be considered simultaneously in the future work after

carrying out adaptive observing and developing suitable

estimation strategy.

6. Conclusions

Except some ideal case for the purpose of simplicity,

the ocean is a time-varying system and the parameters

decided by ocean dynamics should also be time varying.

Based on an Ekman layer model, the estimation of time-

varying VEVCs is studied with adjoint assimilation

method in this paper.

A series of ideal experiments are carried out to ex-

amine different influencing factors on estimation re-

sults, including optimization algorithm, initial guess,

prescribed distributions, wind conditions, BLD, ob-

servation level, data noise, regularization method,

and balance error. Three algorithms (GD, CONMIN,

and L-BFGS) are discussed in Group 1. CONMIN and

L-BFGS have a large advantage of the convergence

rate; however, GD shows better performance in the

final estimation results, which is consequently adopted

in the following experiments. In Group 2, three dif-

ferent initial guesses are tested. Although results using

different initial guesses all can converge to prescribed

values, the initial guesses should be as reasonable as

possible to increase the efficiency. The ability of the

present method of estimating different prescribed dis-

tributions is examined in Group 3. All the results are

acceptable, indicating that the model is able to invert

different distributions of VEVCs. In Group 4, the in-

fluence of different kinds of wind conditions is exam-

ined. Results demonstrate that the model is applicable

to different wind conditions including sinusoidal, con-

stant and linear changing wind speeds. However, if

both wind speeds and Ekman velocities are too small

simultaneously, the inversion results will dramatically

be poor. The response of the model to BLD is studied

in Group 5. Results reveal that inversion results with

thick BLD are better than those with thin BLD. In

Group 6, different observation levels are selected and

compared. The results are more sensitive to observa-

tions in the upper layers than in the lower layers. Group

7 discusses the influence of data noise in observa-

tions. The inversion results are acceptable when

data noise exists, indicating the method can sustain

noise to a certain degree. Since technologies have

been undergoing a rapid development, the accuracy of

current observations can ensure the accuracy of the

VEVC estimation. In Group 8, the effect of regula-

rization method is studied and the results are positive

that it can improve the estimation results. The results

of Group 9 indicate that the present method can tol-

erate the existence of balance errors due to the im-

perfection of governing equations.

The methodology is further validated in practical ex-

periments where Ekman currents are derived from

BTM data and assimilated into the model. The mea-

surements from BTM are first filtered with a band-

pass filter to remove the periodic tidal signals, and

then Ekman currents are obtained by removing the

geostrophic component by using the assumption that

the geostrophic current is assumed to be the sum of a

constant reference velocity, and a component arising

from a constant geostrophic shear. The modeled

Ekman currents coincide well with the observed ones,

especially for the upper layers. Compared with the

assumption of constant and depth-dependent VEVCs,

the results by using time-varying VEVC are the best,

which also demonstrate the effectiveness and rea-

sonability of this method. The sensitivity of estima-

tion results to different kinds of wind drag coefficient

formulae is also studied. The results indicate that the

selection of wind drag coefficient formulae will not

significantly influence the estimation of VEVCs under

relative weak wind field. However, for large wind

speed, such as during typhoon or hurricane, the se-

lection of wind drag coefficient formulae might have a

significant influence on the estimation of VEVCs.

The feasibility of typical Ekman model, the imper-

fection of balance equations, and the deficiencies of

the present method are discussed in section 5. In this

work, although the typical Ekman model is used, the

VEVC is not a constant but estimated by assimilating

in situ observations. If we take the ocean as a com-

plex system which is driven by different forces, the

in situ observations are actually the outputs of this

system. The observations (output) are generated by

various factors, including stratification, wind, hori-

zontal pressure gradient, etc. As a result, the VEVCs

estimated by assimilating in situ observations are in
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fact the implicit functions of these factors. It is an

advantage of this methodology, which is based on the

theory of inverse problem and parameter estimation,

and can be taken as an improved method compared

with the traditional parameterization. This work ex-

tends our understanding of Ekman layer model and

provides a possible way to determine the temporal

variations of VEVCs. Further work will concentrate

on parameter estimation problems during typhoon or

hurricane events, and discuss the temporal variations

of VEVCs in the real ocean under the influence of

strong wind forcing.
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