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Abstract— Current exploration of adaptation in robot
swarms requires the swarm or individuals within that swarm
to have knowledge of their own capabilities. Across long term
use a swarms understanding of its capabilities may become
inaccurate due to wear or faults in the system. In addition
to this, systems capable of self designing morphologies are
becoming increasingly feasible. In these self designing examples
it would be impossible to have accurate knowledge of capability
before executing a task for the first time. We propose an
arbitration system that requires no explicit knowledge of
capability but instead uses hormone-inspired values to decide on
an environmental preference. The robots in the swarm differ
by wheel type and thus how quickly they are able to move
across terrain. The goal of this system is to allow robots to
identify their strengths within a swarm and allocate themselves
to areas of an environment with a floor type that suits their
ability. This work shows that the use of a hormone-inspired
arbitration system can extrapolate robot capability and adapt
the systems preference of terrain to suit said capability.

I. INTRODUCTION

Adaptation is commonly used as a technique for improving

the performance of swarm robot systems [2]. Commonly,

adaptation is performed before a task begins, tuning robot

parameters to get an optimal performance for a specific

problem as is the case for more genetic algorithms. However,

in many situations it is not possible to know the exact

requirements of a task and thus it is not possible to perform

this tuning before the task begins.

Systems have been proposed that attempt to transfer offline

optimization to operate during a task. Some studies have in-

vestigated migrating the concept of genetic algorithms, which

are used frequently in offline optimization, to allow swarms

to adapt mid-task [6], [3]. This adaptation is achieved by

giving each swarm member their own virtual genome. These

genomes directly affect the behavior of individual robots

and by sharing genetic information with one another virtual

generations are produced. By choosing appropriate fitness

parameters, these genetic systems can promote successful

genomes to adapt swarms to a task and obtain a better

performance. Another method is to enable members of a

heterogeneous swarm to chose tasks based on their abilities

[9]. In this system, swarm members bid for tasks they are

capable of performing and then work from a ‘play book’ to

complete them. Working in this manner allows swarms to

form from robots of very different types, creating what the

study refers to as a ‘pickup team’.

These online adaptation techniques prove successful

within the context of the study’s goals even with robots of

mixed ability. However, the previously mentioned studies all

require the members of a swarm to have an understanding

of at least their own abilities. Having such an understanding

is not always possible. During long term deployment factors

may change: tires may wear down or robots may experience

motor or actuator failure. These factors may change the

abilities of individual robots, having a negative effect on their

interact with one another or the environment. Changes such

as these will most likely cause reduction in performance over

extended periods of time unless each robot in the swarm

is capable of receiving an up to date diagnosis of their

capabilities, using this to modify their behavior to the most

fitting option.

Moreover, there may be situations in which there is no

opportunity to inform a robot of its capabilities before a

task starts. The Triangle of Life project [5] proposed a

system in which robots are developed without humans in the

loop, suggesting methods that would have robots in a swarm

share both morphology and control systems through virtual

genomes. In the iterative design presented in these systems,

‘infant’ stage robots have no context for their own abilities.

The combination of parent robot morphology, control system

and external mutation leave the new generation of robot’s

abilities ambiguous.

In the aforementioned cases, greater performance could

be achieved with a method of adaptation that does not

require the swarm to have any initial understanding of their

own capabilities. In this paper a method is presented that

achieves this, instead of relying on an initial understanding

of their abilities, robots implicitly gain information about

themselves and other robots by monitoring the values of

virtual hormones.

A system utilizing virtual hormones was proposed in our

previous work, capable of arbitrating roles within a foraging

swarm [16]. The previous system used hormone values to

select either a low-power sleep state or a searching state

for each robot with the goal to conserve the overall power

consumption of the swarm. Here a new hormone-inspired

system is presented that will deal with more complex forag-



ing examples and arbitrate the states of multiple robot types

within a swarm. Arbitration will entail the decision between

environment types, with each robot in the swarm using

hormone values to make their environmental choice. Using

a hormone responses to dictate environmental preference

is not unheard of, there are natural examples of animals

exhibiting exactly this. For example, desert amphibians leave

spawn in pools that are intermittently filled and then dried

depending on weather. Based on this environmental stimuli

(i.e. water availability) hormone levels in the spawn change,

accelerating or inhibiting metamorphosis based on the need

to stay or leave the pool they are currently in [4].

The system proposed in this work will not only take

into account environmental stimuli, but will also use various

transmitted hormone values from other swarm members.

These values will then be used to gauge the capabilities of

each robot individually during the task. With the information

gained from the hormone values, the new system will allocate

behavior states to each robot based on how suited they are

for the task.

II. HORMONE-INSPIRED SYSTEMS

Virtual hormones and hormone-inspired systems have pre-

viously been used to directly control the motor functions of

a single robot [15]. Hormone-inspired controllers have been

successfully implemented to adapt swarm morphology, giv-

ing context to environments via stimuli and then constructing

appropriate formations [8], [10], [11]. These studies show

that hormone-inspired systems can be engineered to provide

an effective, computationally inexpensive method for robot

control.

Hormone values are constructed from a decay, reducing

the level of the hormone value over time, and a stimuli,

a condition which when met increases the level of the

hormone value. Stimuli can take the form of an interaction

with the environment or another robot. Examples of these

interactions might include discovering a point of interest,

colliding with another robot or the presence of another robots

broadcasted hormone value. Some systems might also use

inhibitors, triggered by interactions in the same way as

stimuli, but instead decreasing the hormone level. Hormone

values constructed in this manner are in accordance with the

properties highlighted as intrinsic to hormone messages in

[14].

The combination of decay and stimuli allow hormone

values to fluctuate based on interactions, keeping a live

record of the factors related to each stimuli. By using a

variety of hormone values, each triggered by different stim-

uli, the relationships between differently affected hormone

values can be examined to extrapolate information about

environmental aspects. This information can then be used

to educate or create preference within a swarm.

III. HORMONE-INSPIRED BEHAVIOR

ARBITRATION SYSTEM (HIBAS)

The hormone-inspired controller we presented in [16]

arbitrated states for a homogeneous swarm, allowing each

Symbol Meaning

Hx Hormone for suiting to environment x.

Hfx Food discovery hormone for environment x.

Hc Hormone for environment/robot collisions.

λ1 Acts as a decay affecting all environmental pref-
erence hormones (Hx), taking a value between 0
and 1.

λ2 Acts as a decay affecting all environmental pref-
erence hormones (Hfx), taking a value between
0 and 1.

λ3 Acts as a decay affecting all environmental pref-
erence hormones (Hc), taking a value between 0
and 1.

γ1 Weighting of Hfx that act as stimulus to Hx.

γ2 Weighting of Estim that act as stimulus to Hx.

γ3 Weighting of Fx that acts as stimulus to Hfx

γ4 Weighting of C that acts as stimulus to Hc

Estim An integer variable that counts how many robots
in the same state are transmitting suiting hor-
mones that are larger than the detecting robot’s.

Fx Boolean variable that becomes true for a single
time step while picking up a food item.

C Boolean variable that becomes true if something
encounters the robots obstacle avoidance sensors.

t Current time step in experiment.

TABLE I

KEY FOR THE SYMBOLS USED IN THE HORMONE EQUATIONS.

robot to choose between sleeping at a nest site or searching

the environment for food. By making this choice, the number

of robots foraging was scaled by the hormone system to

prevent large swarms from cluttering the environment. By

reducing clutter, collisions between robots were less frequent

and thus the swarm collected food in a more energy efficient

manner. To build upon this work, the new system (HIBAS)

removes the sleep state, instead the swarm is presented with

the option to explore different environments. In addition to

this the swarm is modified to contain different robot types,

some more capable in one environment than others. With no

prior knowledge of their capabilities individual members of

the swarm are able to identify their strengths and form a

preference for environment by using the hormone set shown

in equations 1, 2 and 3.

Hx(t) = λ1Hx(t− 1) + γ1Hfx + γ2Estim (1)

Hfx(t) = λ2Hfx(t− 1) + γ3Fx (2)

Hc(t) = λ3Hc(t− 1) + γ4C (3)

The subscript ’x’ in these equations is used to denote

instances where duplicate functions and variables will have to

be made. In order for the system to operate, robots require

one of these equations for each environmental option they

are presented with. By numbering these environments and

creating hormone values that relate to each environment,

copies of Hx would become H1, H2 and H3 relating to

environments 1, 2 and 3 respectively. Other symbols used in

the hormone equations are defined in table I.



Hx shown in equation 1 is the primary hormone for

controlling environment preference. In a two environment

example each robot in the swarm will have an H1 and an

H2 value. When arriving at a nest site the robot will chose

between going to environment 1 or environment 2 based

on which of the two hormone values is greater. During a

task every Hx value is broadcast from every robot, allowing

other members of the swarm to compare hormone values.

Hx values are the only values broadcast with Hfx and Hc

being used only internally by each robot.

In a two environment foraging example (Illustrated in Fig-

ure 1), considering a robot with a preference for environment

1, while exploring that environment EStim would keep track

of how many robots are transmitting an H1 value higher than

the robot’s own. EStim then increases the value of every Hx

value other than the hormone giving preference to the robots

current environment. In this example H2 would be affected

by EStim while H1 would not be. This system allows robots

to constantly compare their performance in their current

environment and, if their performance is relatively poor

given the context, start building a preference for another

environment. Providing stimuli to hormones unrelated to

the environment the robot is currently exploring is crucial.

Without this the decay present in each hormone would

slowly bring all non-stimulated hormones in the system to 0,

preventing any preference for an environment from forming

outside of the initial environment choice.

Hfx is a stimuli hormone, given two environments, Hfx

is present in the system as Hf1 and Hf2, feed into H1 and

H2 respectively. The purpose of Hfx is to create a stimulus

for Hx which operates across a greater length of time than

that of the intial stimulus trigger. This is accomplished by

taking the initial impulse of the stimulus received when a

robot picks up a food item (Fx) and providing a decaying

the value over time.

Stretching the stimuli over an additional length of time is

important due to the repelling nature of the Estim variable.

If the Hfx hormone value was to immediately increase upon

picking up food, it would immediately be at its greatest

value. This would mean that almost any robot that had not

just picked up a food item would be encouraged to change

environment preference. With the slow increase provided by

Hfx the system is able to compare performance between

robots no matter their stage in the task. This increase also

better mimics the stimuli found in biology. Typically a

fast acting neurological signal will trigger the production

of a hormone in one organ which in turn will change

the production of hormones in other organs, modifying the

behavior of the whole organism.

The hormone Hc is an element of the system kept from

previous work [16]. Its purpose is to monitor the frequency

of collisions in the environment, returning robots to the nest

should they encounter an area too cluttered with objects or

other robots. Frequency of collisions is monitored with a

slowly decaying hormone, stimulated by a boolean value,

C, triggered whenever the robots proximity sensors detect an

entity. Hc is compared to every Hx value the robot currently

Fig. 1. Two robots, A and B, operating in environment 1. Robot A
has successfully discovered a food item and as a results its H1 value is
increasing. Robot B has entered the environment and is under performing
relative to Robot A as indicated by its lower H1 percentage. These robots
transmit H1 values and as Robot B receives an H1 greater than its own
H2 is stimulated, as Robot A receives an H1 value lower than its own
no such stimulation occurs and H2 is left to decay. The net result is an
encouragement for Robot B to change preference to environment 2 and for
Robot A to continue operating in the same environment.

stores. Should Hc exceed any of these values, the robot

returns to the nest.

IV. CREATING A HETEROGENEOUS SWARM

In order to test a system in simulation with robots capable

of self classifying, robots of different capabilities had to be

identified in hardware that could provide a realistic reference

point for parameters in the simulated experiments. To keep

the system simple, an existing swarm formed from the psi

swarm robot [7] developed by the York Robotics Laboratory

was altered to allow the attachment of different wheel types

to their drive train. A disparity in robot capability was then

created by designing different wheel types that could be

3D printed and easily attached, creating a heterogeneous

swarm from groups of robots with the same fundamental

construction. Once each of the designed wheel types were

printed, they were tested in trails of 10. The average speeds

when moving in each environment were recorded, allowing

loss of traction and instability in these terrains to affect these

speed values (shown in table II).

A. WHEEL TYPE: WOOD ENVIRONMENT

The first wheel type (shown in figure 2) was a simple

design, the only constraints being that the wheels would have

to: allow a robot to travel quickly on a wooden surface and

the robot should at least be capable of entering and exiting

the grass environment.



The first factor to consider in designing the wheel was

the diameter. By increasing the wheel diameter from the

31mm of the standard robot to 60mm, the robot would gain

an additional 14mm clearance between the bottom of the

robot and the ground (initially 6mm, now 20mm) and have

a largely increased wheel circumference. This additional

circumference allowed the robots to travel faster and, with

the added hight, they were able to effectively transition from

a wooden floor to the deep grass whereas previously this was

impossible.

The next consideration was the wheel width, given that the

wheels were being designed for a smooth surface, there was

no real benefit to having wide wheels, as such a thickness

of only 3mm was chosen. These thin wheels reduced the

amount of force required to turn them by minimizing weight,

allowing them to accelerate more quickly.

Fig. 2. Wheel designed to specialize in the environment with a wooden
floor. Designed in Autodesk Inventor Professional 2018.

Environment Floor Type
Wheel Type Wood Speed (cm/s) Grass Speed (cm/s)

Wood Wheel 30.9 18.8

Grass Wheel 24.6 21.1

TABLE II

TABLE LISTING THE SPEED RECORDED IN HARDWARE FOR EACH OF THE

DESIGNED ROBOTS.

B. WHEEL TYPE: GRASS ENVIRONMENT

The second wheel (shown in figure 3) was a more complex

design as it had to perform well in the grass environment.

To achieve this, a spoke-like design was produced. These

spokes gave the robot additional traction in soft grounded

environments, digging into the surface and catching on

imperfections in the ground to propel the robot forwards.

At 14mm this wheel was also much wider than the wheel

designed for the wooden environment. This additional width

made the robot much more stable when traveling through the

rough grass environment and, with more area in contact with

the ground, made it less likely for wheels to fall into divots

in the environment, causing momentary wheel slip.

Fig. 3. Wheel designed to specialize in the environment with a grass floor.
Designed in Autodesk Inventor Professional 2018.

C. WHEEL TYPE: CONSEPTUAL

This wheel was not designed in hardware but instead was

created as a theoretical competitor to the first two wheels.

This wheel was designed to travel at a constant speed in any

environment. This speed was lower than the slowest speed in

either the grass or wooden floored environments but would

still travel at the same speed in areas of very difficult terrain

where the other two robot types would be much slower. This

was an attempt to simulate a robot with either large tracks,

very wide wheels or even a robot with hovering capabilities.

V. EXPERIMENTS

To test the proposed HIBAS two experiments were de-

signed. The goals of these experiments were to identify the

categorizing capabilities of the HIBAS and the performance

increases such a system may give. All of the following

experiments were conducted with the parameters listed in

Table III.

In each of the experiments the swarms are given a foraging

challenged. Their task is to discover, pick up and return food

items to a nest area. Foraging was chosen as the task in these

experiments so as to build upon our previous work [16].



Fig. 4. Graph displaying cumulative mean and confidence intervals for
experiment and time step requiring the largest number of replicates

Success in these experiments will be measured by the

percentage of correct categorizations made by the systems

and by the rate at which food is collected.

Parameter
Symbol

λ1 λ2 λ3 γ1 γ2 γ3 γ4

Parameter
Value

0.999 0.999 0.995 0.005 0.1 50 0.2

TABLE III

TABLE LISTING THE PARAMETERS USED IN ALL SOFTWARE

EXPERIMENTS.

A. SIMULATION

All experiments were conducted in the ARGoS simulator

[12] a multi robot simulator used to simulate large robot

swarms. As previously mentioned the robots used in these

tests were assumed move at the speeds shown in table II

based on the simulated wheel type and terrain. Additionally,

it was assumed that each of the robots was equipped with a

food sensor, allowing them to identify food items within a

2m radius.

Each experiment was set up to run for 1000 seconds, each

simulation time step was 0.1 seconds with samples recorded

for every 10 seconds of simulated time.

The number of replicates required for consistent results

were determined by performing cumulative mean tests as

specified in [13]. By using the cumulative mean of a data

set, along with a calculated confidence interval, an estimate

can be produced for a range in which the true mean lies. By

taking cumulative mean tests across multiple time steps it

was indicated that 150 trials would be the minimum number

of replicates required for the results of the experiments to be

an accurate representation of the simulation responses (graph

shown in Figure 4).

B. COMPARISON SYSTEM

To provide baseline data in these experiments a random

arbitration system was produced. This system performs the

exact same tasks as the HIBAS with the exception of the

two following changes:

1) Random Arbitration: Rather than using a series of

hormones to decide which environment should be explored

by each robot, each robot picks randomly giving each

environment an equal weighting.

2) Collision Hormone Threshold: With no Hx values to

compare Hc against the system instead uses a flat rate of

10 as the threshold value. If this value is exceeded before a

robot finds a food item, the robot returns to the nest and picks

another environment to explore at random. This threshold

value indicates that the robot has been colliding with a robot

or obstacle for a notable amount of time and will ensure

robots do not get stuck in a single environment.

C. EXPERIMENT 1

The swarm in the experiment is made up of 7 robots with

the wheels specializing in wooden floors and 7 robots with

the wheels specializing in grass flooring. The environment

for this experiment (shown in figure 5) measures 8mx20m,

split into three parts. The two larger areas are both 8mx9m

containing 50 food items, each of these areas has a different

floor type. The third section is a strip down the middle acting

as a nest site measuring 8mx2m.

Fig. 5. Screenshot of simulation environment used in experiment 1. Black
dots represent food items, white ground represents wooden flooring, green
represents grass and the grey area in the center represents the nest site.

D. EXPERIMENT 2

This experiment was designed to test the robustness of the

categorization technique. Using the exact same setup as the

first experiment, this test had only one difference: when the

simulation reached 100 seconds the environment floor types

switch. This sudden change should test the swarms ability

to categorize once already acclimatized to the environment.

This change could represent a landslide or other catastrophe,

clearing one side of a task environment but making the

other more difficult to travel in. The percentage of correct

categorizations from this experiment should be expected to

suddenly drop at the 100 second point. A successful system

will then steadily increase back to the same or greater

categorization percentage than that of the switch point as

the system re-adapts.



E. EXPERIMENT 3

The third experiment is a more challenging test of the

system. The arena is much larger (see Figure 6), introducing

a third floor type for robots to explore with the same dimen-

sions (8mx9m) as the environments in the first experiments.

The new environment also included an additional 50 food

items, making for a total of 150 in the whole arena. The

nest area is also expanded in this arena, measuring 8mx8m

to give an equal perimeter to each of the three environments.

This experiment also sees the addition of a third robot

type bringing the swarm composition to: 5 robots with

grass specializing wheels, 5 robots with wood specializing

wheels and 5 robots with wheels specializing in the difficult

terrain (red flooring). In the new environment, the robots that

specialized in the grass and wooden floored environments

moved at 11.1cm/s and 8.8cm/s respectively, both 10cm/s

slower than in the grass environment to account for additional

difficulty.

The purpose of this new environment, while having

measurements from hardware, is to give an example of a

hazardous area in which two thirds of the swarm are not able

to viably operate in. With such a large disparity in ability,

successful categorization of robots will benefit the overall

performance of the swarm as items are foraged faster and

more efficiently.

Fig. 6. Screenshot of simulation environment used in experiment 3.
Black dots represent food items, white ground represents wooden flooring,
green represents grass, red represents very rough terrain and the grey area
represents the nest site.

VI. RESULTS

A. Experiment 1

The results from the first experiment are shown in Figure

7. From this graph it can be seen that in experiment 1 the

HIBAS outperforms random arbitration in terms of ability to

categorize. For the first few samples it appears as though

the hormone system performs identically to the random

system. To confirm this Wilcoxon tests were performed,

comparing the categorization percentage datasets recorded

for both systems at each time step. These tests showed that

the 600th time step was the first sample with a significant

difference between each systems results, giving a p value of

less than 0.05. This marked the point at which the HIBAS

and random system diverge. This initial starting period is

to be expected; it will take time for the HIBAS to begin

adapting to the new environment. From the 600th time

step onwards it can be seen that the random arbitration

remains with a correct categorization percentage of roughly

45% while the the hormone-inspired arbitration increases

gradually, peaking at just over 75%. Showing that the HIBAS

gives a large improvement to categorization over random

allocation.

After this peak, the HIBAS starts to decrease in its ability

to categorize environment, falling gradually to just below

50% and then fluctuating near the performance of the random

system. This can be explained by the reduction in food items

in the environment. As the source of primary stimuli reduces,

the hormone system has no reward for item discovery and is

therefore unable to accurately categorize. Once this source of

stimuli is fully depleted, the system will behave essentially

the same as a system arbitrating at random. This drop

in performance is of no concern as, when the task nears

completion, there is little to no need for the system to

categorize successfully.

Fig. 7. Graph showing the mean results across 150 trials in experiment
1. The performance of both the random and hormone-inspired system is
shown in terms of correct categorization and food items foraged.

B. Experiment 2

In the second experiment, the average performance be-

tween random system and the HIBAS is less disparate than

the first (shown in Figure 8). By swapping the arena floor

types just as the system starts to acclimatize, the hormone

values must be re-evaluated by the swarm. This re-evaluation

can be seen between the 1000th time step, where the switch

occurs, to just after the 5000th. During this time period,



robots reallocate themselves as their hormone values decay

and it becomes apparent that their performance is lacking in

their current environment. After the 5000th time step, in a

similar manner to the first experiment, there is not enough

food left in the environment for the robots to appropriately

categorize themselves and as a result, the percentage of

correct categorization begins to tend towards that of random

allocation.

These first two experiments shared some commonality in

that the rate of food collection was marginal between system

types. Performing Wilcoxon tests on the food collection data

at every time step showed that, for almost all of the time steps

past the 150th, there was a significant difference in the food

collection data. However, performing an effect magnitude

test using the A-test [1] of the 100 time steps sampled for

each experiment, only 22 datasets from the first experiment

and 0 datasets from the second had a significantly large

difference (an A-test score of over 0.75) from the random

systems datasets. This lack of difference in food collection

rate is due to the minimal difference in speed between the

two robot types. This actually speaks to the benefit of the

HIBAS as it was capable of assisting robots in their choice

of environment even with a small difference in robot ability.

Fig. 8. Graph showing the mean results across 150 trials in experiment
2. The performance of both the random and hormone-inspired system is
shown in terms of correct categorization and food items foraged.

C. Experiment 3

The third experiment shows what the system is capable of

achieving in a more complex system and how the HIBAS can

give a large increase to performance when there are larger

disparities in robot ability.

Even given the added complexity in this final experiment

(results shown in Figure 9), the HIBAS behaves similarly to

the previous two experiments. The categorization percentage

takes an initial dip and then begins to diverge from the

percentage of the random categorization. However, in this

experiment the percentage of robots correctly categorized

fluctuates at around 40% which is much lower than the

previous tests. With an additional robot type and environ-

ment choice this is still a good result as the HIBAS still

outperforms the random system by upwards of 10% once

the system has adapted.

The third experiment highlights two other key features of

the hormone-system. First, due to the increased number of

food items in the three environment experiment, not all of

the food is foraged. As a result of this, the categorization

percentage does not taper off by the end of the experiment.

Second, due to the increased difference in robot capability,

for the first time in these experiments there is a clear

difference in food collection. This is confirmed by running

A-tests for each of the 100 time steps sampled showing a

significantly large difference between the food collection in

the two systems across all results from the 1500th time step

onwards.

The results for the third experiment show that, given

a large enough difference in capabilities, the HIBAS can

provide a large improvement to foraging collection through

correct categorization of robot ability to environment.

Fig. 9. Graph showing the mean results across 150 trials in experiment
3. The performance of both the random and hormone-inspired system is
shown in terms of correct categorization and food items foraged.

VII. CONCLUSION AND FURTHER WORK

This paper has shown that by using a hormone-inspired

behavior arbitration system a heterogeneous swarm of robots

can categorize their abilities based on their performance in

a selection of environments. In all experiments it has been

shown that given stimulus availability the HIBAS was able



to outperform the random system in terms of percentage of

correct categorization. It is also clear from the presented re-

sults that, given a simple choice between two environments,

the hormone-system is capable of categorizing successfully

with even a small difference in robot traits.

By observing the collection of food in the environment

with three terrain types and the additional robot, it is clear

that:

1) The HABAS can increase likelihood of correct catego-

rization when presented with more complex choices.

2) The categorization provided by the hormone-inspired

system can be beneficial to the performance of a task,

so long as there is a large enough change in robot

capability.

The first step that will be taken to further this work is to

test the full system in hardware with the currently designed

wheels. Following this, a return to simulation should explore

how the HIBAS performs with a swarm operating over much

greater periods of time. During these longer experiments the

swarm should have its traits modified through either faults

or a separate adaptation techniques. Such an investigation

will be substantially challenged the HIBAS and its ability to

recover from change more rigorously tested.
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