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Abstract Large‐scale (>500 km) spatial gradients of precipitation oxygen isotope ratios (δ18Op) hold

information about the hydrological cycle. They result from the interplay between rainout and

evapotranspiration along air‐parcel paths, but these counteracting effects are difficult to disentangle,

complicating quantification of the effect of land cover change on δ
18Op. We show that disentangling can

qualitatively be achieved using climate model simulations with a land‐derived precipitation tracer for

tropical South America. We then either vary land cover as observed since 1870 or replace Amazon forests

with bare land to determine the resulting signals. Our results indicate that effects of historically changing

land cover on annual mean δ
18O isotope‐ratio gradients are small and unlikely detectable, although

there is a noticeable signal during the dry season. Furthermore, the effect of changes in water recycling on

Amazon δ
18Op in paleo‐records may have been overestimated and need reinterpretation.

Plain Language Summary Deforestation causes reduction in precipitation downwind because

trees act as pumps of water from soils to the atmosphere. This mechanism is primarily important during

the dry season. How strong this effect is currently in the Amazon, given that approximately 20% of the forests

have been cut, and how important it may be in the future if more forests are being destroyed is of great

interest. One indicator of such changes is the east‐west difference in heavy water isotope content of

precipitation. While preferential rainout of the heavy isotope along air parcel trajectories enhances this

difference, transpiration by forests decreases the difference. This is because forests inject water back into the

atmosphere that is more enriched than the overlying water vapor. Records of this difference during the last

ice age, in particular, have been interpreted in a previous study as providing information on continental

recycling. We apply a land‐derived water tagging approach in model simulations to investigate the effect of

continental recycling on precipitation isotope content and to estimate this effect for varying land cover. We

find that a 20% deforestation has only a small impact on precipitation isotope content. Even for a

complete deforestation, in contrast to a previous interpretation, thus, only some of the isotopic signal

observed during the ice age can be attributed to changes in continental recycling.

1. Introduction

Water droplets condensing from water vapor in air are enriched in the heavy water isotope H2
18O compared

to the water vapor they condensed from (Dansgaard, 1964; Dansgaard et al., 1993). Accordingly, water vapor

left behind in the atmosphere is slightly depleted in the heavy water isotope (isotopically slightly lighter).

This fractionation process is weakly temperature dependent (Dansgaard, 1964) with fractionation decreas-

ing with increasing temperature. In the absence of evaporation and transpiration, fractionation during con-

densation and condensate removal via precipitation will cause a gradual depletion of the heavy water isotope

in water vapor of air parcels (so‐called “Rayleigh distillation”) travelling over the land. Put another way, and

under the same conditions, spatiotemporal patterns in the precipitation isotope ratio R≡H2
18O/H2

16O (mol/

mol) contain information about the amount of condensation along an air‐parcel's path and thus about the

hydrological cycle, both today and in the past (Baker et al., 2016; Brienen et al., 2012; Salati et al., 1979;

Thompson et al., 1995; van Breukelen et al., 2008; Wang et al., 2017; Wright et al., 2017). Air parcels moving

into continents from the sea tend indeed to show an increasing heavy‐isotope depletion signal the further

into the continent they have travelled. This phenomenon is called “continental effect” (Dansgaard, 1964).
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The signal is a decrease in R or equivalently in δ
18O (0/00) ≡(R/Rst −1)*10

3 where Rst = 2.0052 × 10‐3 (mol/

mol) is the abundance ratio of Vienna Standard Mean Ocean Water (Baertschi, 1976; Figure 1) with

increasing distance from the coast.

While precipitation causes water vapor of air travelling over land to gradually become isotopically lighter,

only a fraction of precipitated water will run off via rivers, and the rest will eventually be reinserted into

the airstream via evaporation and plant transpiration. If precipitated water is reinserted by transpiration,

this will counteract the depletion in air masses due to condensation and precipitation because plant tran-

spiration is a nonfractionating process (Barnes & Allison, 1988; Washburn & Smith, 1934; Figure 1).

Large‐scale patterns of precipitation isotope ratios as well as changes of these patterns over time thus contain

not only information about precipitation but also “recycled” water from plant transpiration. These in turn

are expected to depend on vegetation type (forest vs. grassland) particularly during the dry season. This is

because near‐surface compartments of the soil dry more rapidly compared to deeper compartments during

the dry season, and thus, shallow‐rooted grasslands will recycle less water than deep‐rooted forests (Zhang

et al., 2001).

The relative importance of the two counteracting “controls” on precipitation isotope ratios, precipitation,

and transpiration is of interest on various timescales. It is, for example, important for the interpretation of

paleo‐isotope records obtained from speleothems (Wang et al., 2017), which aim to resolve whether climate

in the Amazon was drier or wetter during the Last Glacial Maximum (LGM) compared to today. The

Amazon offers itself for analysis of its hydrological cycle with isotopes because of the large distance air tra-

vels over the basin. Air enters the basin from the tropical Atlantic via the trade winds and then travels toward

the Andes where the air stream bends southward and flows back toward the Atlantic in southeastern direc-

tion. This main air path varies only weakly between wet and dry season. Wang et al. (2017) reported a very

small Amazon east‐west δ18Op gradient in the “early to mid‐Holocene” but a much larger gradient of up to

−2.80/00/1,000 km during the LGM. They attribute the larger isotopic gradient at LGM to a strong reduction

in water recycling caused by much reduced area covered by rainforests (see also Pierrehumbert, 1999;

Thompson et al., 2000). However, to our knowledge the magnitude of the effect of forest area reduction

on water recycling and water isotopes has not yet been estimated jointly using realistic models. Spatial pat-

terns in δ
18Opmay also contain interesting information in regions like the Amazon today where both global

warming and the rapid ongoing large‐scale transformation of the land surface of both Cerrado and humid

forest biomes are likely to impact the hydrological cycle (Brienen et al., 2012; Dias et al., 2015; Spera

Figure 1. Simplified schematic of controls of Amazon basin precipitation δ18Op. Air masses enter the basin from the

north‐eastern Atlantic coast and then travel to the Andes where they are steered southward. Precipitation along this

main air mass path causes an increasing depletion of the heavy water isotope in air mass water vapor, or, that is, a decrease

in δ18Op with increasing distance from the northeastern Atlantic coast (“Continental effect”). Transpiration reinserts

previously rained out heavy isotope water vapor into overlying air and thus counteracts the δ18Op signal caused by pre-

cipitation. The net resulting East‐West gradient thus reflects the difference between these two controls. The isotope values

in the figure are fictional and serve only illustrative purposes.
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et al., 2016). While future climate model predictions of the tropical South American hydrological cycle vary,

they tend to suggest that greenhouse warming will lead to drier conditions. The lesser rainout would lead to

a decrease of the Amazon‐wide east‐west difference in δ
18Op. In contrast, lesser continental recycling would

increase it. Therefore, disentangling the effect of precipitation versus transpiration on δ
18Op is not straight-

forward and proper attribution of observed δ
18Op gradients difficult.

Here we use a General Circulation Model (GCM), to relate δ
18Op signals over South America to the

amount of precipitation and continental recycling. We also investigate the signal in precipitation oxygen

isotope ratios, precipitation amount, and continental recycling that would theoretically result from

complete removal of Amazon rainforests, as well as from historically changing land cover and greenhouse

gases. The novel element of the study is the simultaneous quantification of the effects of changes in forest

cover on both water recycling and precipitation isotope signals. The results have implications for the

interpretation of δ18Op spatial gradients both over the past 50 years resulting from land use change and

the LGM.

2. Data and Methodology

2.1. Isotope‐Enabled Climate Model HadAM3

To simulate climate, including water isotope cycling, we use the atmospheric component of the isotope

enabled version of Hadley Centre Climate model (HadAM3; Pope et al., 2000) with prescribed observed

sea surface temperatures. Several researchers have evaluated the skill of the fully coupled version of

HadCM3 to model the present South American climate (Cabré et al., 2016; Chou et al., 2011; Reboita

et al., 2014; Tindall et al., 2009) and found that the model performs well. How isotopes are represented in

the model has been described in detail in Tindall et al. (2009). Processes on land are treated in a simple

way with no fractionation during evaporation from vegetation covered land, during sublimation from ice,

exchange of water between adjacent soil layers and evaporation from soils. Thus, we assume that most of

evapotranspiration is via transpiration (Jasechko et al., 2013; Schlesinger & Jasechko, 2014), neglecting frac-

tionation during evaporation from open water, soils (Mathieu & Bariac, 1996; Melayah et al., 1996), and

water intercepted by the canopy (Gat & Matsui, 1991).

The skill of the isotope component has been evaluated for several regions with positive results. Tindall et al.

(2009) showed that simulated δ
18Op compares well with observations. Sime et al. (2008) found that the geo-

graphical pattern of modeled present‐day Antarctic δ18Op agrees well with 20th century δ18O Antarctic sur-

face snow (Masson‐Delmotte et al., 2008). We have further evaluated the skills of the HadAM3 forced by

observed sea surface for South America with results being discussed in section 2.3.

Although the skills of the model for contemporary times are high, neglecting fractionation during evapora-

tion fromwater surfaces, soils, and canopy‐intercepted water is a limitation of this study. As the contribution

of evaporation compared to transpiration may increase with forest removal, neglecting these effects may

cause underestimation of the change in water vapor isotopic depletion along air parcel paths caused by forest

removal (Haese et al., 2013; Risi et al., 2016).

2.2. Land‐Derived Precipitation Fraction Tracer

For this work, two new hydrological tracers have been incorporated into HadAM3motivated by the concepts

introduced by van der Ent et al. (2010). One of the new tracers will “tag” water that is evaporated from the

ocean, while the other will tag water that is evaporated or transpired from land (also termed recycled water).

Althoughwater tagging has been included in other isotope‐enabled GCMs (Eckstein et al., 2018; Jouzel et al.,

2013; Koster et al., 1986; Numaguti, 1999; Risi et al., 2010, 2013; Yoshimura et al., 2004), this is the first time

that this feature has been used operationally in HadCM3. This water tagging will allow us to investigate

whether the recycled proportion of precipitation changes under different scenarios and relate this to

modeled δ
18Op.

2.3. Climate Model Simulations

We investigate the hydrological cycle over South America and how it is reflected in δ
18Opwith four factorial

simulations (Table S1 in the supporting information). First, there is a control simulation (CONTROL) that is

forced with sea surface temperatures (SST's) and sea ice cover from 1870 to 2016 from the Hadley Centre
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Global Sea Ice and Sea Surface Temperature (HadISST) data sets (Rayner et al., 2003); prescribed with

constant CO2 and CH4 levels of 280 and 760 ppbv, respectively; and initialized with sea water and soil

moistures δ18O of 0‰ and ice sheet δ18Op of −40‰ (Tindall et al., 2009).

The three additional experiments are (1) NOVEG (as CONTROL but with vegetation replaced by bare soil),

(2) OBS_VEG (as CONTROL but with time‐varying vegetation according to observations), and (3)

Figure 2. Total precipitation, land‐precipitation (fraction), and precipitation δ18O predicted for preindustrial land cover

and atmospheric greenhouse gas levels (1985–2014 means.) Left column: dry season (June–August); right column: wet

season (December–February); top two rows: mean precipitation (mm/day); top row: GPCP precipitation; second row from

the top: HadAM3 simulated precipitation; third row from the top: land‐derived precipitation (fraction); bottom row:

δ18Op (0/00). The black dots on the third row from the top have been used to present the gradient of δ18Op in the later part

of the study (Figure S4).
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OBS_GHG_VEG (as CONTROL but with both vegetation and greenhouse gases varying according to

observations. Time‐varying vegetation cover from 1870 to 2016 is based on the reconstructions of

Meiyappan and Jain (2012). For the NOVEG experiment broad leaf trees, the primary vegetation type of

the Amazon humid forests was replaced by bare land (Figures S1 and S2). This corresponds to complete

clear‐cutting of the rain forests. For simulations with changing greenhouse gas levels, we prescribed CO2

and CH4 concentrations using reconstructions from ice cores up to 1959 and in situ measurements

thereafter. These two gases account for ~90% of anthropogenically caused radiative forcing. Comparisons

of model‐simulated precipitation with the Global Precipitation Climatology Project (GPCP; Adler et al.,

2003) show that the model reproduces the observed precipitation seasonal cycle for tropical South

America (Figures 2a and 2b) with maximum precipitation over Venezuela and low precipitation over the

Amazon during June–August (Amazon “dry season”) and high precipitation over the Amazon during

December–February (Amazon “wet season”). Model‐predicted wet season precipitation is somewhat larger

in the southwest of the basin and lower in Central Amazon compared to observations. Spatial patterns and

seasonality of precipitation‐weighted precipitation isotope ratio records from the Global Network of Isotopes

in Precipitation (GNIP; IAEA/WMO, 2006) are also well captured by themodel (Figure 2d). Specifically, dur-

ing the dry season, isotope signals are uniform across the Amazon, while during the wet season there is a N‐

E to S‐W gradient both in the model predictions and observations. Similarly, main patterns across all of

South America are quite well captured. To be more quantitative, we used an F test to test whether the var-

iance of the difference between observations and simulations is less than the variance of the observations for

South American sites, both for the wet and the dry season. The test result is highly significant for both wet

and dry seasons with p < 0.01 and p < 0.002, with variance ratios of 0.48 and 0.40, respectively. The RMS

difference between simulations and observations is 3.1‰ and 2.7‰ for DJF and JJA, with observation's stan-

dard deviation of 6.5‰ and 5.7‰, respectively.

Seasonality is mostly well captured with exception of a Colombian site close to the Caribbean Sea and two

Western Andean Ecuadorian sites. For two thirds of the sites time correlations of monthly means with obser-

vations were significant at 95% level with correlation coefficients >0.6. Our model captures also the season-

ality of evapotranspiration well compared with the data‐based estimates of Maeda et al. (2017; Figure S3),

specifically that evapotranspiration starts before the onset of the wet season.

Figure 3. Precipitation δ18O northeast southwest along the transect across the Amazon basin indicated in Figure 2c

(dotted line) during the dry season (top panel), wet season (middle panel), and the whole year (bottom panel) for the

preindustrial land cover and atmospheric greenhouse gas level simulation.
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3. Results

Figure 2 shows the precipitation amount, the fraction of precipitation that is recycled, and the δ18Op of pre-

cipitation for the CONTROL experiment. Wet season precipitation (December–February; Figure 2a)

increases from the Atlantic coast to the Andes along the transect shown in Figure 3. Dry season (June–

August) precipitation amount peaks in the northwest of the basin north of the equator and otherwise is

low. In contrast to precipitation amount, the recycled precipitation fraction changes little between seasons

although there is a shift of the maximum from approximately 15°S in the Western Amazon during the dry

season to 25°S to 30°S along the Eastern foothills of the Andes to the South of the Amazon during the wet

season (Figure 2b). Spatial patterns and seasonality are similar to previous studies (Staal et al., 2018;

Zemp et al., 2017), and magnitude of Amazon basin annual mean land‐derived precipitation fraction of

38% is within the range of 10 previous estimates as summarized in Staal et al. (2018).

As expected, HadCM3 predicts a steady decrease in δ
18Op along the path of the main airstream during the

wet season. However, during the dry season, there is no noticeable decrease in δ
18Op over most of the basin

(Figures 2 and 3). The wet season east‐west difference across the basin (along the dotted line on Figure 2c) is

~40/00 with a further ~40/00 depletion from 12.5°S to 15°S. This latter decrease is caused in the model by

cooling of air when ascending the slopes of the Andes, known as “altitude effect,” (Dansgaard, 1964). This

suggests that during the wet season, intense precipitation along the airstream and associated Rayleigh dis-

tillation is the main control of δ18Op. In contrast during the dry season, the spatial pattern of δ18Op is not

Figure 4. Mean difference in precipitation (mm/day) and wind at 850 hPa (top row), land‐derived precipitation (midrow),

δ18Op (bottom row) between deforestation simulation (NOVEG, Table S1), and fixed preindustrial land cover

simulation (CONTROL) for the period from 1985 to 2014. Left column: difference during dry season (June–August);

middle column: during wet season (December–226 February) and during the entire year.

10.1029/2019GL084749Geophysical Research Letters

PATTNAYAK ET AL. 6



consistent with the spatial pattern of precipitation, suggesting that across large parts of the Amazon basin

part with low precipitation), the δ
18Op signal is not due to the classical “amount effect” or Rayleigh

distillation. Instead, the δ18Op signal is consistent with increasing continental recycling along the transect in

Figure 2c. The differences in land‐derived precipitation fraction between wet and dry season are small, and

so continental recycling alone cannot be the cause of differences in δ
18Op gradients between seasons.

To understand the effect of land‐surface changes on water isotopes, it is instructive to consider the picture

resulting for the most drastic land surface cover change scenario where we replace all humid forests by bare

land (Table S1 and Figure S1). Replacement of tropical humid forests leads to an increase in 850‐mb wind

divergence over the northern and central part of tropical South America during the dry season, and along

an approximately 1,000‐km‐wide zone along the northeastern Atlantic coast and Central Amazonia during

the wet season (Figures S4b and 4a). These changes cause substantial decreases in precipitation in Central

and Northern Amazonia and in the River Plata catchment during the dry season, as well as in Central

Amazonia during the wet season (Figure 4). This result is consistent with the well‐known studies of Nobre

et al. (1991), Shukla et al. (1990), and follow‐up studies like Costa and Foley (1997). Figure 4a shows changes

in precipitation and winds between the NOVEG experiment and the CONTROL experiment. Although pre-

cipitation is larger over the Andes, most of tropical South America shows a strong decrease in precipitation.

In the NOVEG simulation the proportion of recycled precipitation has drastically reduced as expected

(Figure 4b). However, it is the reduction in recycled precipitation over the dry season that is most

Figure 5. Mean difference in precipitation (mm/day; and wind at 850 hPa top row), land‐derived precipitation fraction

(midrow), and δ18Op (bottom row) between historically changing land surface cover simulation (OBS_GHG_VEG,

Table S1) and fixed preindustrial land cover simulation (CONTROL) for the period from 1985 to 2014. Left column: dif-

ference for dry season (June–August); middle column: for wet season (December–February); and right column: during the

entire year.
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remarkable. Here the recycled precipitation fraction decreases by up to ~60% in southwest direction from the

northeastern Atlantic coast and south of the equator. In contrast, during the wet season, land‐derived pre-

cipitation fraction changes much less (less than 20%).

Figure 4c shows the change in δ
18Op between the NOVEG and the CONTROL experiment. As expected, the

wet season shows a weaker decrease of δ18Op along the main air stream (as compared to CONTROL), which

can be related to the reduction in rainfall seen in Figure 4a. In the dry season, however, there is a substantial

region over the west of South America, which shows reduced precipitation but also reduced δ
18Op, which

appears at odds with the classical amount‐effect interpretation. In this region the fraction of recycled preci-

pitation shows the most substantial decrease (Figure 4b). Theoretically, this reduction in recycled precipita-

tion would shift the distillation slope further toward the classical Rayleigh distillation shown in Figure 1 and

would be expected to lead to a reduction in δ
18Op along the airstream. Therefore, the depletion in δ

18Op seen

in the deforestation scenario is consistent with the substantial reduction in recycled water.

Overall, for full forest‐cover‐removal‐induced signals in δ
18Op, changes in rainfall are the primary control

during the wet season, while reductions in land‐derived precipitation may play a role during the dry season.

However, the simulations presented in this paper do not allow to quantify the contribution of land‐derived

precipitation fraction changes to δ
18Op changes. Additional tracers for land‐derived precipitation isotopolo-

gues would be necessary to quantify this contribution (Risi et al., 2010, 2013).

While the simulation for the extreme NOVEG scenario shows how accounting for continental recycling can

explain modeled δ
18Op, such a scenario does not reflect the actual land use change in tropical South

America. Actual changes are much less extreme and have resulted in deforestation of approximately 20%

(Figures S1 and S2). The difference of δ18Op between the historical land‐cover change simulation and fixed

preindustrial land‐cover simulation can be understood in a similar way as the bare land simulation but sig-

nals are much smaller (Figure 5). During the dry season, there is similarly a precipitation decrease in the

north‐east in a region parallel to the northeastern Atlantic coast. During the wet season, the precipitation

decreases in most of tropical South America, while there is an increase along the Andes and the air outflow

region of the Amazon (region south of ~18°S).

In comparison to the NOVEG simulations the contrast between dry and wet season for the land‐derived pre-

cipitation fraction is much weaker. The most notable signature is a decrease during the dry season in the

southern half of the Amazon and further to the south of the Amazon—including the Amazon air outflow

region (directed from Bolivia toward the Sao Paulo region).

δ
18Op patterns are again similar with enrichment during the dry season along a zone parallel to the north-

eastern Atlantic coast reflecting a decrease in precipitation and a depletion in Western Amazonia and most

of southern parts of tropical South America (with the exception primarily of the Andes) reflecting both

changes in precipitation and likely also water recycling; during the wet season, there is enrichment where

precipitation decreased and vice versa. Annual mean signals mirror primarily changes of precipitation dur-

ing the wet season and are quite small (Figure 5).

4. Discussion and Conclusions

Oxygen isotopes in precipitation (δ18Op) can potentially give us information about changes in the hydrological

cycle over large areas and a range of timescales as recorded in climate archives. We investigate here this infor-

mation and its controls for tropical South America using factorial simulations with the isotope enabled atmo-

spheric component of HadCM3. We vary land cover using an extreme bare ground scenario with all Amazon

forests replaced and a more realistic scenario where we change land cover and atmospheric greenhouse gas

concentrations over time according to reconstructions/observations (Meiyappan & Jain, 2012). We neglect

fractionation‐effects caused by evaporation from open water surfaces, soil, and canopy‐intercepted water.

Wefind the following. During thewet season, the amount of recycled precipitation changes little even if there

is a substantial land cover change. Thus, during the wet season, the difference of spatial patterns of δ18Op

between simulations with different land covermirror primarily the induced precipitation amount differences

via changes in Rayleigh distillation. In contrast, during the dry season, the amount of recycled water

decreases markedly when forests are removed, and this decrease may contribute substantially to a lower
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δ
18Op in the central‐western part of the Amazon. Thus, to detect the effect of vegetation cover changes on eva-

potranspiration, it is best to measure dry season δ
18Op because signals are largest. We find similar

patterns/controls for the difference between simulations with historical land cover changes compared to

simulations without land‐cover change, but the differences in signals are much smaller.

In more detail our simulations suggest that the large land cover changes in the Amazon, which occurred pre-

dominantly since the 1970s and have led to a decrease of approximately 20% of the Amazonian forests, cause

only a small land‐derived precipitation change (up to maximally a 4% decrease during the dry season and less

during the wet season). Precipitation decrease extends over all of Eastern and Central Amazonia but is also

quite small (up to ~0.4 mm/day or ~7 cm in total during the wet season). Similar to the extreme bare land sce-

nario annual‐mean precipitation‐weighted δ
18Op changes caused by historically observed deforestation are

the result of the changes in wet season precipitation. The signals are small (up to ±0.2‰) and unlikely to be

detectable given natural variability of δ18Op. While on its own this result is a bit disappointing, it may be that

addition of precipitation δD measurements will improve detectability of hydrological cycle changes

(Henderson‐Sellers et al., 2004). It permits to calculate deuterium excess (δD‐8*δ18Op), which provides infor-

mation on water recycling from open water surfaces on land (Aemisegger et al., 2014; Risi et al., 2016).

Our results are also relevant for recent paleo‐climate studies like Wang et al. (2017), who suggested that the

small east‐west difference of speleothem‐derived δ
18Op during the early and mid‐Holocene, but large differ-

ence (~3‰) during the LGM, can be explained by changes in vegetation cover. Our results suggest that land

cover changes can only account for a small change in east‐west δ18Op differences; thus, interpretation of

these records may need some further thought.
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